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ON THE STEINBERG CHARACTER
OF A SEMISIMPLE p-ADIC GROUP

JU-LEE KiM AND GEORGE LUSZTIG
Dedicated to Robert Steinberg on the occasion of his 90-th birthday

1. INTRODUCTION

1.1. Let K be a nonarchimedean local field and let K be a maximal unramified
field extension of K. Let O (resp. Q) be the ring of integers of K (resp. K) and
let p (resp. p) be the maximal ideal of O (resp. O). Let K* = K — {0}. We write
O/p =F,, a finite field with ¢ elements, of characteristic p.

Let G be a semisimple almost simple algebraic group defined and split over K
with a given O-structure compatible with the K-structure.

If V' is an admissible representation of G(K) of finite length, we denote by ¢y
the character of V' in the sense of Harish-Chandra, viewed as a C-valued function
on the set G(K),s := Grs N G(K). (Here G, is the set of regular semisimple
elements of G and C is the field of complex numbers.)

In this paper we study the restriction of the function ¢y to:

(a) a certain subset G(K ), of G(K),s, that is to the set of very regular elements
in G(K) (see 1.2), in the case where V is the Steinberg representation of G(K)
and

(b) a certain subset G(K )y, of G(K )y, that is to the set of split very regu-
lar elements in G(K) (see 1.2), in the case where V' is an irreducible admissible
representation of G(K) with nonzero vectors fixed by an Iwahori subgroup.

In case (a) we show that ¢y (g) with g € G(K),s is of the form 4¢" with
n € {0,—1,—-2,...} (see Corollary 3.4) with more precise information when g €
G(K)svr (see Theorem 2.2) or when g € G(K)¢yr (see Theorem 3.2); in case (b)
we show (with some restriction on characteristic) that ¢y (g) with G(K)sy, can be
expressed as a trace of a certain element of an affine Hecke algebra in an irreducible
module (see Theorem 4.3).

Note that the Steinberg representation S is an irreducible admissible repre-
sentation of G(K) with a one dimensional subspace invariant under an Iwahori
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subgroup on which the affine Hecke algebra acts through the “sign” representa-
tion, see [MA], [S]. This is a p-adic analogue of the Steinberg representation [St] of
a reductive group over Fy,. In [R], it is proved that ¢g(g) # 0 for any g € G(K),s.

1.2. Let g € G,s NG(K). Let T" = T, be the maximal torus of G that contains
g. We say that g is very regular (resp. compact very regular) if 7" is split over K
and for any root o with respect to 7" viewed as a homomorphism 7"(K) — K*
we have

a(g) ¢ (1+p) (resp. afg) € O, alg) & (1 +p)).

Let G(K)yr (resp. G(K)cyr) be the set of elements in G(K) which are very
regular (resp. compact very regular). We write G(K),, = G(K), N G(K),
G(K)ewr = G(K)eyr N G(K). Let G(K)gyr be the set of all g € G(K),, such
that T} is split over K.

1.3. Notation. Let K* = K — {0} and let v : K* — Z be the unique (surjective)
homomorphism such that v(p™ — p™*t) = n for any n € N. For a € K* we set
ja = ¢~@.

We fix a maximal torus 7' of G defined and split over K. Let Y (resp. X)
be the group of cocharacters (resp. characters) of the algebraic group 7. Let
(,):Y x X — Z be the obvious pairing. Let R C X be the set of roots of G with
respect to T', let R™ be a set of positive roots for R and let II be the set of simple
roots of R determined by RT. We write IT = {«;;i € Ip}. Let R~ = R— R*'. Let
YT (resp. Y1) be the set of all y € Y such that (y,a) > 0 (resp. (y,a) > 0) for
all « € RY We define 2p € X by 2p =3 i .

We have canonically T(K) = K*®Y'; we define a homomorphism x : T(K) — Y
by x(A®y) = v(A)y forany A € K*,y € Y. Forany y € Y we set T(K), = x " *(y).
For y € Y let T(K)® = T(K), N G(K) sy Note that if y € Y+ then T(K)® =
T(K),.

For each a € R let U, be the corresponding root subgroup of G.

Let G(K)" be the derived subgroup of G(K).

2. CALCULATION OF ¢g ON G(K)SW

2.1. Let W C Aut(T) be the Weyl group of G regarded as a Coxeter group; for
i € Iy let s; be the simple reflection in W determined by «;. We can also view
W as a subgroup of Aut(Y) or Aut(X). Let w = wg be the longest element of
W. For any J C Iy let W; be the subgroup of W generated by {s;;i € J} and
let Ry be the set of & € R such that o = w(q;) for some w € Wy, i € J. Let
R}F =R;NR", R; :RJ—R}_.

Let g be the Lie algebra of G; let t C g be the Lie algebra of T. For any
J C Iy let [; be the Lie subalgebra of g spanned by t and by the root spaces
corresponding to roots in Rj; let ny be the Lie subalgebra of g spanned by the
root spaces corresponding to roots in R — R‘j.

According to [Cl], ¢ is an alternating sum of characters of representations
induced from one dimensional representations of various parabolic subgroups of G
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defined over K. From this one can deduce that, if t € T(K) N G(K),s, then

ds(t) = Y (=1 Y 8s(w(t)/*Dryw ()"

Jci weIW

where for any J C I and t' € T(K) N G(K),s we set
Dy, ;(t') = [det(1 = Ad(t')|g1, )],

05(t") = [ det(Ad(t)]n,)],

and W is a set of representatives for the cosets W;\W. (It will be convenient
to assume that W is the set of representatives of minimal length for the cosets
W;\W.) Here for a real number a > 0 we denote by a'/? or \/a the > 0 square
root of a. We have the following result. (We write ¢ instead of ¢s.)

Theorem 2.2. Lety € YT and let t € T(K)*. Then ¢(t) = q~¥:2r).

2.3. More generally let t € T'(K );‘ where y € Y. By a standard property of Weyl
chambers there exists w € W such that w(y) € Y. Let t; = w(t). Then the
theorem is applicable to ¢; and we have ¢(t) = ¢(t;) = ¢~ (w®):20),

2.4. Let y' = wo(y),t’ = wo(t). We have ¢g(t) = ¢s(t'), t' € T(K) ,—y e Y.

We show:
(a) if B € Rt then v(1 — B(t'))
v

) =ov((B(t)); if € R~ then v(1 — 5(t'))) = 0.
Assume first that § € RT. If v(8
(y',8) <0) hence v(1 — B(t'))) =

(') # 0 then v(5(t")) < 0 (since (y', B) # 0,
o((B(t)). I v(B(t')) = 0 then (') =1 € O —p

hence v(1 — 5(t"))) = 0 = v((B(t')) as required.
Assume next that 5 € R™. If v(5(t')) # 0 then v(B(¢')) > 0 (since (y’, B) # 0,
(y',B) > 0) hence v(1 — S(t ))) 0. If v(B(t')) = 0 then B(t') — 1 € O — p hence

v(1 —5(t"))) = 0 as required.
For any w € W, J C I we have:

Drgw)) = [ g v0-eeen

a€ER—Ry

= H q—v(a(w(t’))) — H q—<y/,w_1o¢>,

a€ER—Ry;w—laceRt a€ER—Ryw—la€eR™t

’ ;1
5J(w(t/)) — H q—v(oz(w(t ) — H q—<y W oz>,

aERT—RY a€ERT—RYF

Di(t) = H g~ W)
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(We have used (a) with 8 = w™!(a).) We see that

Bt = olt) = (-1 3D g )

JCI weI W

where for w € YW we have

Ty, J = E wla — E wla

aGR‘*‘—R'}' a€ER—Rj;w—la€eRt
= g wta — E w o
a€RT—RYw—1(a)ER~ a€R-—R;;w—1(a)ERT

=2 Z wla € X.

aER"'—Rj’;w—laGR_
For w € YW we have o € Rj — w la € R hence
E wta = E w e
ozER"'—R}r;w—lozER— a€ERTw—laeR~

so that ., j = x,, where
Ty = 2 E wlae X.
acRMyw—laeR~

Thus we have

o(t) =Y (-1 > ST = 3 o/ )

JCI weIW wewWw

cw= 3y (=¥

JClLwe W

where for w € W we set

For w € W let L(w) = {i € I;s;w > w} where < is the standard partial order on
W. For J C I we have w € /W if and only if J C L(w). Thus,

cw= Y (-1¥

JCL(w)

and this is 0 unless £(w) = 0 (that is w = wp) when ¢,, = 1. Note also that
ZTw, = —4p. Thus we have

o(t) = cwoﬁ—<y”xwo> — g2 — = (v:2e)

Theorem 2.2 is proved.
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2.5. Assume now that 7 € T'(K) satisfies the following condition: for any o € R
we have a(7) —1 € p—{0} so that a(7) —1 € p"™e —p"=TF! for a well defined integer
ne > 1. Note that n_, = n, and v(1 — a(7)) = n, > 1 for all @« € R. Hence

O(r) = D (-1 B green /A nen Tt 2,
JcI weIW
Thus,
d(7) = #(W)g2oacr /2 4 strictly smaller powers of g.

In the case where K is the field of power series over Fy, the leading term
4(W)geen e/

is equal to §(W)q™ where m is the dimension of the “variety” of Iwahori subgroups

of G(K) that contain the topologically unipotent element 7 (see [KL2]).

3. CALCULATION OF ¢g ON G(K),,

3.1. We will again write ¢ instead of ¢g. In this section we assume that we are
given v € G(K),. Let T" = T.. Note that 7" is defined over K; let A’ be the
largest K-split torus of T”. For any parabolic subgroup P of G defined over K
such that v € P we set dp(y) = | det(Ad(7)|n)| where n is the Lie algebra of the
unipotent radical of P.

Let X be the set of all pairs (P, A) where P is a parabolic subgroup of G defined
over K and A is the unique maximal K-split torus in the centre of some Levi
subgroup of P defined over K; then that Levi subgroup is uniquely determined
by A and is denoted by M4. Let X’ = {(P,A) € X;A C A’}. According to
Harish-Chandra [H] we have

(a) ¢(7) = (=) N (=)W A5p(1)V 2 Dayar, ()7
(P,A)eX’

where Dg/ar, (v) = | det(1 — Ad(7)|g/1)| (we denote by [ the Lie algebra of Ma).

Theorem 3.2. Assume in addition that v € G(K)¢eypr. Then

¢(’7) — (_1)dimT—dimA/‘

From our assumptions we see that for any (P, A) € X’ we have dp(vy) = 1 =
D¢ /a, (7). Hence 3.1(a) becomes

¢(’7> _ (_1>dimT Z (_1)dimA‘
(P,A)eX’
Let YV be the group of cocharacters of A’ and let = ) ® R. The real vector
space §) can be partitioned into facets Fp 4 indexed by (P, A) € X’ such that
Fp 4 is homeomorphic to Rdim 4 Note that the Euler characteristic with compact
support of Fip 4 is (—1)4™4 and the Euler characteristic with compact support of
§is (—1)dimrH — (_1)dim A’ Uging the additivity of the Euler characteristic with
compact support we see that Z(PvA)ex,(—l)dimA = (=1)4mA  Thus, ¢(y) =

. . ’ .
(—1)dimT=dim A “ag yequired. [
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3.3. In the setup of 3.1 let P, be the parabolic subgroup of G associated to vy as
in [C2]. Note that P, is defined over K. The following result can be deduced by
combining Theorem 3.2 with the results in [C2] and with Proposition 2 of [R].

Corollary 3.4. We have ¢(v) = (—1)4imT—dim A/épW (7).

4. TWAHORI SPHERICAL REPRESENTATIONS: SPLIT ELEMENTS

4.1. Let B be the subgroup of G(K) generated by U, (O), (o € RT), Uy(p), (o €
R™) and T(K)p. (The subgroups U,(O),Us(p) of U, are defined by the O-
structure of G. We have B € B where B is the set of Iwahori subgroups of G(K).
Note that B C G(K)'. For any a € R we choose an isomorphism x,, : K — U, (K)
(the restriction of an isomorphism of algebraic groups from the additive group to
U,) which carries O onto U,(O) and p onto U,(p). We set W :=Y - W with
Y normal in W (recall that W acts naturally on Y'). Let Y’ be the subgroup of
Y generated by the coroots. Then W’ := Y’ - W is naturally a subgroup of W.
According to [IM], W is an extended Coxeter group (the semidirect product of the
Coxeter group W’ with the finite abelian group Y/Y”) with length function

l(yw) = > 1€y, @)l + > [I{y, @) = 1]|

a€RT;w—1(a)eRt a€RT;w—1(a)eER™

where |la|| = a if a > 0, ||a|]| = —a if a < 0. According to [IM], the set of
double cosets B\G(K)/B is in bijection with W; to yw (where y € Y,w € W)
corresponds the double coset €, containing T(K),w (here @ is an element in
G(O) which normalizes T'(K )y and acts on it in the same way as w); moreover,
8(Qyw/B) = #(B\Qyw) = ¢ for any y € Y, w € W. For example, if y € Y+
then I(y) = (y, 2p).

Let H be the algebra of B-biinvariant functions G(K) — C with compact
support with respect to convolution (we use the Haar measure dg on G(K) for
which vol(B) = 1). For y,w as above let T,,, € H be the characteristic function
of Q. Then the functions T,,, w € W, form a C-basis of H and according to
[IM] we have

TwTw = Ty if w,w" € W satisty [(ww') = [(w) + [(w),

(T +1)(ZTy —q) =0ifwe W, l(w) =1.

In other words, H is what now one calls the Iwahori-Hecke algebra of the (ex-
tended) Coxeter group W with parameter q.

4.2. Let C§°(G(K)) be the vector space of locally constant functions with compact
support from G(K) to C. Let (V,0) be an irreducible admissible representation
of G(K) such that the space VP of B-invariant vectors in V is nonzero. If f €
Ci°(G(K)) then there is a well defined linear map oy : V' — V such that for
any x € V we have oy(z) = [, f(g9)o(g)(z)dg. This linear map has finite rank
hence it has a well defined trace tr(c¢) € C. From the definitions we see that for
[, [ € C°(G(K)) we have of.p = 0pop : V — V where * denotes convolution.
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If f € H, then oy maps V into VB and tr(cf) = tr(os|ys). (Recall that
dim VB < 00.) We see that the maps o |y 5 define a (unital) H-module structure
on VB. Tt is known [BO] that the H-module V' is irreducible. Moreover for
w € W we have tr(og,) = tr(%,,) where the trace in the right side is taken in the

H-module VB. We have the following result.

Theorem 4.3. Assume that K has characteristic zero and that p is sufficiently

large. Let y € Y* and let t € T(K)®. We have

v (t) = ¢~ W tr(T,)

where the trace in the right side is taken in the irreducible H-module VB.

An equivalent statement is that

dv(t) = tr(ox,)/vol(€y).

(Recall that T, in the right hand side is the characteristic function of Q, =
BT(K),B.)

The assumption on characteristic in the theorem is needed only to be able to
use a result from [AK], see 5.1(F). We expect that the theorem holds without that
assumption.

In the case where y = 0 the theorem becomes:

(a) If t € T(K) N Geyy then ¢y (t) = dim(VB).

As pointed out to us by R. Bezrukavnikov and S. Varma, in the special case where
y € Y1, Theorem 4.3 can be deduced from results in [C2].

4.4. In the case where V = S, see 1.1, for any y € Y ', T, acts on the one
dimensional vector space VP as the identity map so that ¢y (t) = g 20 we
thus recover Theorem 2.2 (which holds without assumption on the characteristic).

5. PROOF OF THEOREM 4.3

5.1. Let B = By, By, Bs, -+ be the strictly decreasing Moy-Prasad filtration of
B. In [MP], this is a sequence associated to a point z in the building such that
B = G,,0. Note that each B;/B;;+1 is abelian. Let T}, := T'(K) N B,. Applying
Corollary 12.11 in [AK] to ¢y, we have

(1) ¢y is constant on the Ad(G)-orbit G(tTy) of tT}.

Lemma 5.2. Letn > 1. For any t' € T(K); and z € B, there exist g € B,
t" €T, and 2’ € B,11 such that Ad(g)(t'z) = t't"~'.

Proof. Let Z ={a € R|Uy,NB, 2 U, NBpi1}. t Z =10, B, = T,Bpy1.
Hence, z = t"2' for some t” € T, and 2z’ € B,,; and one can take g = 1. If
Z # 0, there are a, € K, a € Z such that z4(aq) € B, and z = [] ¢, Ta(aa)
(mod T,,B,,+1). Such a, can be chosen independent of the order of [] since
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B, /T, By is abelian. Take g = [],c;2za((1 — a(t’'))taa). Then, we have
t'“lgt'g=t = 27! (mod T, B,,+1). Moreover, since y € Y+, we have [1 —a(t'~1)| >
1 and thus g € B,,. (We argue as in 2. 4( ). Assume first that « € R*. If
v(a(t’™1)) # 0 then v(a(t’~1)) < 0 (since (y,a) # 0, (y,a) > 0) hence v(1 —

0)
at™ 1) = v((a(t™1) < 0and |1 —a Y] > 1. If v(a'™1) =0 then
a1y —1 € O —p hence v(1 — a(t’™1))) = 0 and |1 — a(t'"1)| = 1 as re-
quired. Assume next that o € R~. If v(a(t’7!)) # 0 then v(a(t' 1)) > 0 (smce
(y,a) # 0, {y,a) < 0) hence v(1 — a(t'71))) = 0 and |1 — a(t'~ 1)| = 1 as re-
quired. If v(a(t’71)) = 0 then a(t'7!) —1 € O — p hence v(1 — a(t'71))) = 0 and

11— a(t’~1)] =1 as required.)

Writing Ad(g)(¢ z) =t . (t'"tgt'g71) - (gzg~'), we observe that gzg~! = 2
(mod By,+1) and t'~ t’g_lz € T,B,11. Hence Ad(g)(t'z) can be written as
t't"z with ¢/ € T,, and 2’ € Bpy1. O

Lemma 5.3. BitB; C G(tT1>.

Proof. Tt is enough to show that tB; C “(t1}). Let toz; € tB; with tg = t and
z1 € B1. We will construct inductively sequences g1,9s-- -, t1,t2--- and 21, 29, - - -
such that Ad(gy - --g291)(toz1) = Ad(gk)(tot1 - -tgk—12k) = (tot1 - tg)zrs1 with
g; € B;, t; € T; and z; € B;.

Applying Lemma 5.2 ton = 1, ' = tg and z = 21, we find t; € T7 and
z9 € Bs such that gltgzlgl_l = tot122 with t; € T7 and 29 € By. Suppose we
found ¢g; € By, 241 € Bjy1 and t; € T; for i = 1,---k where k£ > 1. Applying
Lemma 5.2ton =k+1,t =tgty---tp and z = 21, we find gxr1 € Bri1, tee1 €
Tyt1 and 242 € B2 so that gry1toty - -tk2k+19k_i1 = Ad(gr41---9291)(toz1) =
totite -+ tkr12k12. (To apply Lemma 5.2 we note that t' € T(K)y‘ since tg €
T(K); and t;---t; € Ty so that for any a € R we have a(ty---tx) € 1 +p.)
Taking g € By be the limit of g ---g2g1 as k — oo, we have Ad(g)(toz1) € tT1.
O

5.4. Continuing with the proof of Theorem 4.3, we note that by Lemma 5.3 and
5.1(t), for the characteristic function f; of B1tB; we have

(+)
tr(oy,) = /G f(9)bv (9) dg = /B ov(t)dg = val(BitBr)ov ().

Thus it remains to show that
tr(oy,)/vol(BitB,) = tr(og,)/vol(BtB).

Since B is normalized by B, B acts on VP1. Moreover, since V is irreducible and
VB +£0, B acts trivially on VP! (otherwise, there would exist a nonzero subspace
of V on which B acts through a nontrivial character of B/Bj; since VB # 0 we
see that (V, o) would have two distinct cuspidal supports, a contradiction). Thus
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we have VP = VB Since oy, and oz, have image contained in VBl = VB it is
enough to show that

(a) tr(oy,|ve)/vol(BitBy) = tr(og,|vs))/vol(BtB).

We can find a finite subset L of T(K )y such that BtB = U, B1tBy7. It follows
that

(b) vol(BtB) = vol(B1tB1)#(L)
and ox, = >, 07,0(7) as linear maps V — V. Restricting this equality to V'
and using the fact that o(7) acts as identity on V2 we obtain

(c) og,lve =8(L)oy,|ve
as linear maps V¥ — VB, Clearly, (a) follows from (b) and (c). This completes
the proof of Theorem 4.3.

The following result will not be used in the rest of the paper.
Proposition 5.5. Ify € Y** andt € T(K), then BtB C “T(K),.

Proof. It is enough to show that tz C “T(K), for any z € B. We can write z = ¢z’
where tg € T(K)o, 2 € B1. We have tz = ttz’ where tty € T(K), = T(K); (here
we use that y € Y*T). Using Lemma 5.3 we have ttgz’ € “(ttoT1) C “T(K),.
This completes the proof. [

5.6. In the remainder of this section we assume that G is adjoint. In this case
the irreducible representations (V,o) as in 4.2 (up to isomorphism) are known
to be in bijection with the irreducible finite dimensional representations of the
Hecke algebra H (see [BO]) by (V,0) + VB. The irreducible finite dimensional
representations of H have been classified in [KL1] in terms of geometric data.
Moreover in [L] an algorithm to compute the dimensions of the (generalized) weight
spaces of the action of the commutative semigroup {¥,;y € Y} on any tempered
H module is given. In particular the right hand side of the equality in Theorem
4.3 (hence also ¢y (t) in that Theorem) is computable when V' is tempered.
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