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ABSTRACT

Mobility functions involving rotational velocities and
moment excitations must be determined for the prediction of the re-
sponses of certain types of structures in dynamic analyses. Previous
investigators have approached the difficult task of experimentally
measuring such mobilities with the use of special fixturing attached
to the structures. It is shown that rotational mobilities of
structures are equivalent to spatial derivatives of their transla-
tional mobilities. The method of finite differences is adapted to
the approximation of these derivatives. By this approach the
rotational mobilities are derived from sets of conventionally
measured translational mobilities, eliminating the need for special
fixturing.

This method of determining rotational mobilities is demon-
strated in a set of experiments on a free-free beam. Good agreement
is obtained between experimentally and theoretically generated
versions of two rotational velocity/force mobilities. An experi-

mentally derived rotational velocity/moment mobility is found to
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give reasonably good indications of resonances, but exhibits large
amounts of scatter in some frequency bands. This scatter is attri-
buted to the subtraction of translational mobility quantities which
are nearly equal in magnitude with resultant magnification of minor
irregularities present in them. Further investigation is recommended
to determine an effective method of smoothing the translational
mobility data before the differencing calculations to eliminate this
scatter.

The finite difference method of determining rotational
mobilities is seen to accommodate considerable variation in the
spacings of the points where the constituent translational mobilities

are measured.

Thesis Supervisor: Richard H, Lyon

Title: Professor, Department of Mechanical Engineering
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NOMENCLATURE

Uniform beam cross-section area; also the complex
amplitude of acceleration

>

Constant coefficient of the ith term in the
expression for WX

N

Arbitrary multiplier of the rth eigenfunction of a
free vibration problem

Iy

Modulus of elasticity of beam material
Base of natural logarithms

IC?ZU,E) Complex amplitude of sinusoidally varying force
applied at position ‘; on a structure.

ZCZQ» Complex amplitude of the sinusoidally varying
force 7
)F Cyclic frequency, Hz
ZZ(Z) Concentrated force applied at Point A on a structure
j?}gfj Distributed loading applied to a beam, including

damping forces

12(};f? Distributed loading applied to beam, exclusive of
damping forces

[g%; Cross spectral density of stationary random
acceleration and random force (complex function
of cyclic frequency)

C;%: Power spectral density of stationary random force
(real function of cyclic frequency)

v Uniform beam cross-section area moment of inertia

( V<

}K Length of beam

jbfézﬁ Complex amplitude of sinusoidally varying moment

applied at position §§ on a structure
- 10 -



Q0
Qult)

?r(f)

Wix)

(x)
AC,

NOMENCLATURE (Continued)

Complex amplitude of the sinusoidally varying
moment /7%, (¢)

Modal mass of the rth mode of vibration
Total mass of beam

Concentrated moment applied at Point A on a
structure

Mode number at which infinite series of modal
mobilities is truncated

Complex amplitude of the sinusoidally varying

force)D(iQ

One member of a force couple equivalent to
moment 477 (¢)

The rth eigenvalue of a free vibration problem
Modal force of the rth mode of vibration

Modal force of the rth mode exclusive of damping
forces

Generalized coordinate or generalized displacement
of the rth mode of vibration

Time

Complex amplitude of the sinusoidally varying
displacement w(X,7)

The rth eigenfunction of a free vibration problem

Complex amplitude of sinusoidally varying translational
velocity measured at positionlz on a structure

Complex amplitude of sinusoidally varying trans-
lational velocity measured at Point A on a
structure

-1 -



B,7)
@(@7

G
&t)

NOMENCLATURE (Continued)

Transverse displacement at location X on a beam
Displacement measured at Point A on a structure

Complex amplitude of the sinusoidally varying
generalized disp]acementi%rﬁf

Coordinate of axial position on a structure

Translational velocity/force mobility: velocity
measured at A, excitation applied at B

Translational velocity/moment mobility: velocity
measured at A, excitation appliied at B

Rotational velocity/force mobility: velocity measured
at A, excitation applied at B

Rotational velocity/moment mobility: velocity
measured at A, excitation applied at B

Coordinate of transverse position on a structure
Dirac delta function of position coordinate X
Spacing of the members p(t) of a force couple

Equivalent viscous damping ratio of the rth mode of
vibration

Axial coordinate of point of velocity measurement on a
structure

Spacing between adjacent velocity measurement locations

Complex amplitude of sinusoidally varying rotational
velocity measured at positionrz on a structure

Complex amplitude of sinusoidally varying rotational
velocity at Point A on a structure

Rotation occurring at Point A on a structure

Axial coordinate of point of excitation on a structure

- 12 -



NOMENCLATURE (Continued)

Spacing between adjacent excitation points on a
structure

Mass density of beam material
Mobility phase angle

Acceleration/force cross spectral density phase
angle (function of cyclic frequency)

The portion of the rth eigenfunction p%ﬁﬁQexc]usive of
the mu]tipler.zzf

One of a set of translational velocity/force
mobilities from which one or more rotational
motilities will be derived
Angular frequency, rad/sec

A particular value of frequency
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I. INTRODUCTION

A. Background

The application of mobility functions* and their inverse
quantities, mechanical impedances, to practical problems in vibration,
shock, and acoustics has been treated extensively in the literature.
Mobility and impedance concepts are readily adaptable to dynamic
response predictions for assembltages of two or more component
structures.

A mobility function is a transfer function relating the
complex amplitude of motion at some point on a structure in response
to the complex amplitude of an excitation force applied at any point
on the same structure. In the most commonly discussed type of
mobility the response motion is a translational component of velocity,
and the excitation is a translational force as illustrated in the
transfer mobility example of Figures 1.1(a). However, the concept
of mobility can be extended to rotational velocities and moment
excitations as shown in the examples of Figures 1.1(b) through 1.1(d).
A matrix relationship involving the transfer mobilities thus defined
between the two points is shown in Figure 1.1(e).

The matrix formulation shown in Figure 1.1(e) can be

specialized to the case where the response measurement point, B,

—
Also denoted as admittances or receptances.

- 14 -



is coincident with the excitation point, A, i.e., each matrix element
is a driving point mobility; or it can be generalized to include the
existence of motions and excitations at both points. In the latter
instance the second order mobility matrix shown would be expanded
to the fourth order. Generalizing still further, the transfer
mobility matrix shown in Figure 1.1(e) could be extended to the six
possible senses of motion and applied excitation in a three-dimensional
application, attaining order 6. The mobility matrix would be enlarged
still further as additional locations for responses and excitations
would be considered.

In many instances the mobility or impedance quantities
are determined experimentally. In cases such as the applications of
impedance methods to vibration testing described in References (1)
and (2), the motions and forces involved are limited to translational
effects directed along a single axis. In the studies described in
References (3), (4), and (5), the applications are broadened to treat
the interconnection of components which may sustain rotational and
translational components of motion, but are assumed to have only
translational interaction effects. For an assemblage to be
accurately modeled by such an approach, there must be negligibly
small moment reactions among components at each interface in the
actual system by virtue of joint configuration, symmetry, or other

factors.
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Cantilevered assemblages can be readily conceived wherein
the most important interactions are rotational; in such cases there
must be compatibility of rotations at connections, and moment
reactions are far more significant than force interactions. Ex-
tensions of mobility and impedance methods to response predictions in
these cases have been hampered by difficulties in experimentally
measuring the rotational mobilities. Whereas the measurement of
translational velocities and forces is presently a routine process,
apparatus for the measurement of rotational velocities and moments in
structural dynamics applications is not commercially available.
Noiseux and Meyer (6) suggest that the lack of a general measurement
technique has retarded the application of mobility concepts and in
some cases has distorted the applications by mandating the use of
what can be measured rather than what should be measured.

Explorations of methods for the measurement of moment
excitations and rotation responses are described in References (7),
(8) and (9). In each of these studies a special fixture has been
attached to the structure being measured, and conventional linear
force gages and accelerometers have been, in turn, mounted at
various locations on the fixture. By appropriate algebraic operations
on the data gathered in each of the various measurement configurations,
rotational mobilities have been obtained with varying degrees of
success. Corrections for the dynamic influences of the fixturing

have been required in each case.
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B. Scope

The objective of this thesis is to improvise and demon-
strate a method of generating experimental rotational mobility
functions using conventional measurement techniques without a
requirement for the use of special fixturing. The approach taken
has been to represent mobilities involving rotational velocities
and moment excitations as spatial derivatives of conventional
translational mobilities; the derivatives are approximated as
finite difference sums of sets of these translational mobilities.
In Section II, the theoretical basis and calculational methods
for these representations are developed. Section III describes the
experimental and theoretical determination of mobilities of a
free-free beam demonstrating these methods. Section IV presents

the conclusions drawn.
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II. DERIVING ROTATIONAL MOBILITIES FROM TRANSLATIONAL MOBILITIES

A. Rotational Velocity/Force Mobility

Figure 2.1(a) depicts a segment of a structure which is
being driven by a sinusoidal translational force applied to Point A
and in which the resultant sinusoidal translational velocity is being
measured at Point B. Considering momentarily that the excitation is at
a particular frequency a)M, the value of the translational mobility
at that frequency is the complex quantity %@M)/ﬁ(wﬁ,,) . Now
suppose that the velocity measurement is made in turn at each point
of a set of points adjacent to Point B with the excitation maintained
at Point A as shown in Figure 2.1(b). The resulting complex amplitude
ratios W“%a?/ﬁ@ﬂ) could be plotted as functions of the position
coordinate,? , of the measuring point as shown in Figure 2.1(c).
The real and imaginary mobility data, if carefully measured, would be
found to Tie on smooth curves by virtue of the continuity of the wave
fields comprising the vibration of the structure.. Tangent lines
could be drawn to these curves at the coordinate XB of Point B.
The slopes of these tangents would have the following significance.
The instantaneous angular displacement of the structure at a

location 7 relative to its rest position would be given by:

o= I
7
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The time rate of change of this s]ope would be given by:

<E9 — CJ/ 67£V’ —- <7/ g364/ — ____ (2.1)
T at dn a’/Z dt a’/z ' '

But, because the excitation is sinusoidal, this angular velocity

could be expressed as

LaJM‘é'

G = Bwy)e . (2.2)
By combining Eq. (2.2) and the relation

W = W, ; pe bt

with Eq. (2.1), it is found that

@@m?) =5’_%MMM"'Z) 5 (2.3)

from which is formed the ratio of complex amplitudes

<:) éﬁiw) <7/ li4%2%4742)

"‘{jg&% = O/ (2] f

If the indicated measurements and ca]cu]at1ons are performed at

(2 4)

intervals over a band of driving frequencies, &0 , of interest,
the rotational velocity/force mobility function is thus derived from

the translational mobility symbolically as
os® =2 Yoplorp .

- 19 -



B. Translational Velocity/Moment Mobility

In Figure 2.2(a) the structure is again shown with
translational excitation and response vectors at Points A and B,
respectively. Again with the excitation frequency set at &xh4,
suppose that the excitation force is applied in turn at each of a
set of points adjacent to A with responses measured at Point B
as shown in Figure 2.2(b). The resulting complex amplitude ratios
;ég@%b}é?&%&g%i)could be plotted as functions of the position
coordinate, EE , of the excitation point as shown in Figure 2.2(c).
The real and imaginary mobility components would again be found to
1ie on smooth curves to which tangent lines could be drawn at the
coordinate Jﬁ,of Point A. The significance of the tangent slopes to
these curves is explained as follows.

With reference to Figure 2.2(d) it is seen that an
instantaneous moment applied to the structure at Point A could be
equivalently represented as a pair of equal and opposite parallel
forces separated a small distance, € . The response of the
structure at Point B to a sinusoidally varying moment at Point A
could then be expressed as follows:

= J5,) €“% = Ly, 22‘7 W) Pyt

€ —>0 M,§) g X+é

Wda),,_,) cay T
FleniE
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Then Uk _ Wa
W, zé/f,’”o Fley;8) l§=2;1+<6; F'(Z)_A:fc:?)) l§ 2. Ply,)e

. Wale
d?Fp(lfﬁf% gy M) 5 e
from which is formed the ratio of complex amplitudes
Waey) _ o _WNad)
My@y)  IELly;8)15=%

~{Sere/ B [ HEedl|

(2.8
If this ratio is evaluated over a band of driving frequencies, ¢/,

)

of interest, the translational velocity/moment mobility function is

thus derived from the translational mobility symbolically as

Vil = FeLpr(@8 . o

C. Rotational Velocity/Moment Mobility

The structure will again be envisioned as being excited by
a sinusoidal translational force of frequency 64%4 at Point A. If the
location coordinate E? of the force application point is then made
to vary about }€4, the resultant derivative of translational
mobility relates the complex amplitude of translational velocity

at Point B to the complex amplitude of applied moment at Point A in
- 2] -



accordance with Eq. (2.7). If Eq. (2.3) is written for the case41Z=J§5
and is combined with Eq. (2.7), the result

Ey) _ S S W(edys #7)
My@n) S 38 Flady;5) %7

(gfzaffﬁe%fﬂ”—p;fm%ﬂg 0

is obtained. If this ratio is evaluated over a band of dr1v1ng

frequencies of interest, the rotational velocity/moment mobility
function is thus derived from the translational mobility symbolically
as:

4

%BMA(M) '—‘g%‘g Y @8) .

D. Summary of Derivative Relationships

The mobility matrix relating the translational and
rotational velocity amplitudes at the response measuring Point B to
the amplitudes of force and moment at the excitation Point A on a
structure was shown in Figure 1.1(e). In accordance with Egs. (2.5),
(2.9) and (2.11) each element of this mobility matrix is a function
which can be re-expressed in terms of the translational velocity/

force mobility function, yielding the following:

- 22 _



M(‘U) _ Yuéﬁ(w) K@MA(“)) L)
650) |1 @ Yon@ | [Me)

| Y ;%KF(WZ?) JACS, -
=57 Lo ®) g i) M)
2
or, using more compact notation,
Mé = K‘/Bﬁ ‘%Y%’i 5 . (2.13)

=l 5 b
&%) b7 }{V_B’f 7% K’B’i M

It is emphasized that each element in the mobility matrix represents

a function of angular frequency &/ defined over some band of interest.

E. Implementation by Finite Difference Method

The calculation of spatial derivatives of translational
velocity/force mobilities is the essence of the above described
approach to determining rotational mobilities. For application
of this approach to the experimental determination of mobilities,
these derivatives must be approximated from conventional mobility
measurements made at a limited number of discrete locations on a
structure. The method of finite differences, References (10) and

(11), is used for this purpose.
- 23 -



Let the symbol SU denote a translational velocity/force
mobility function to identify it as one of a set of conventional
mobilities from which one or more rotational mobilities will be
derived. These conyentional mobilities will be determined with re-
sponse velocity measurements made at locations ..., b1y /7}77, /ZmH,---
spaced A? apart, and with force excitations applied at locations
. §,,_,) §”’ Ef?"/;'" spaceddg apart. Thus the notation
%,, will represent the mobility function ¢(l/), 7/;7,?;,)

If Qp were a function of only the single spatial coordinate
7, each of the following expressions would approximate the continuous
ordinary first derivative of that function, correct to within trunca-

tion errors of the order of M’Z)z
Central Difference: 4'[7 =~ _lm? %7»/
Forward Difference: Zj BT 4}'2*/ %”‘2 (2.14)
Backward Difference:_ggm 3%~ ::Z—/ Yoz
an I/?,,, Z4x

The choice of the approximation which would be used from among these

three would depend on whether the location /7mwher‘e the derivative is
desired happens to be an inboard location, and if an end location,
whether at the positive end or the negative end of the7 interval.
For the mobility function ¢(fl),'17 )E)in which two spatial coordinates
are involyed, the first partial derivative approximations have

similar form to the ordinary derivative approximation:
- 24 -



Central Difference:

,QZ =~ Sﬂm’a— m—g,gz a¢ ~ %7.’71‘/ %},;7-—/
N Vs, 24y O IEIp,E ZA%

Forward Difference:

17 3;& 4%,«/. —;{n@.ﬂ a% K ;/ﬂ’m 4%""1 %’,1‘”*2 (2.15)
s, 24y obhE, 242 |

Backward Difference:

35& 74t o, O 3%,4%,,.

.74_

afz 7”'} 247 a? R ZA§

The latter expressions are directly usable in evaluating the rotational

velocity/force mobility and the translational velocity/moment mobility
as indicated in Egs.(2.12) and (2.13) given that /7»7 = XB and E":)‘/"J
The mixed second partial derivative can be approximated by

one of the following expressions:

Central Difference:

___Q’_’_Z_{f_ ~ /wfm&;. 1) ot ap=] "’{fn-é n1  Irr-1 0.
78 Ujm, 5 FAn4%

Forward Difference:

-/
%7J§”M[9%n“/z%/nnﬁ+3%n*z (2.16)
R/ AR ST N A S 4

*/, 1742 #242,07 #9742, 194/ AW%ZHAH%£7
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Backward Difference:
—_— :2:9-___11___. - -
SR T O P e P
*/6 ;;”n-»gn-/_ 4%»/,}7*2*'3 ;ﬁ 2, /74%-2,”-/ +;fﬂn—z/n-:§7

The above central difference expression is usable for evaluating any

rotational velocity/moment mobility in which the hypothetical moment
excitation is applied at a point inboard of the ends and the rotational
velocity response is at the same point or any other inboard point.

The forward difference expression applies only to the case in which
both QZW and g;,coincide with the negative ends of their ranges;
i.e., the hypothetical moment excitation is applied and the rotational
velocity response is measured at the left end of the structure.
Similarly, the backward difference expression applies only in the

case where both the hypothetical moment excitation and the rotational
velocity response locations are at the right (positive) end of the
structure. Such end-located rotational mobilities would be of main
importance in analyzing the dynamic response of cantilevered structures.
However, in instances where the moment excitation would be applied at
an end point and the rotational velocity response would be measured at
some other location, or vice-versa, none of the above difference
expressions would be applicable. Reference (11) contains other

finite difference formulations which would apply in these instances.

In summary, the evaluation of a particular rotational
- 26 -



mobility using the above finite difference approximation methods
requires the prior determination of between two and nine conventional
translational mobilities, the quantity depending on the location and
type of rotational mobility desired. For driving point rotational
velocity/moment mobilities the number of transiational mobilities
needed may be cut almost in half by resort to the use of the
reciprocal theorem for dynamic loads, Reference (12); because éﬁanf‘fih,
as a consequency of this theorem, either of these mobilities may be
substituted for the other. It is further noted that several dif-
ferent rotational mobilities can be evaluated using a common set of
translational mobilities.

The selection of response measurement and excitation
location spacings,zdj7 andzflﬁ?, must achieve a balance between
resolution and proper approximation of derivatives across the number
of natural modes of vibration encompassed in the band of frequencies.
Some analytically or experimentally obtained knowledge of mode shapes
is desirable for use in the determination of the point spacings. The
results of Section III.D demonstrate that this balance is achievable
with latitude in the selection,at Teast in cases where a limited

number of resonances are included in the frequency band.
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ITI. EXPERIMENTAL MOBILITY MEASUREMENTS ON A FREE-FREE BEAM

A. Test Specimen and Test Equipment

Figure 3.1 depicts the beam which was prepared from cold
rolled steel rectangular bar stock for experiments to demonstrate
the previously described approach to obtaining rotational mobilities.
Excitation point and motion monitoring point locations were establish-
ed for experimental measurements of all the conventional translation-
al mobilities needed to generate the rotational mobilities identified
in Figure 3.2 by the methods of backward differences. The mobilities
included therein would be among those required to predict the trans-
lational motion at Point A due to cantilever attachment of the beam
to a moving foundation or other component at Point B.

The particular set of beam cross section dimensions was
chosen such that the off-axis (stiff direction) natural vibration
frequencies would not coincide with the drive direction (flexible
direction) natural frequencies. The tapped holes shown in Figure 3.1
were added to enable stud attachment of an impedance head for force
measurements at each drive point location in turn. Because most of
the required translational mobilities were to be transfer
mobilities, all motion measurements were made by attaching the
accelerometer to the opposite side of the beam from the impedance
head using beeswax. Accurate placement of the accelerometer was

facilitated by 1ines scribed on the surface coincident with the
- 28 -



driving stud hole centers. It is seen in Figure 3.1 that the outer-
most drive points were located as close to the beam ends as possible
with assurance of proper seating of the instrumentation at these end
locations. The .044m spacing of the driving and measuring points

at End B was established by first sketching the mode shape of the
expected highest resonance within the planned test frequency band of
0-2000 Hz. The three driving points were then spaced at the widest
distance where the backward difference method could be expected to
approximate the slope of this mode shape reasonably well. This
spacing was chosen as wide as possible to provide resolution for
accuracy in the approximation of slopes at the frequency of the
lowest resonance.

The mobility tests were conducted using broad band
stationary random excitation. The force and acceleration signals
were recorded and processed by a minicomputer using the fast Fourier
transform coherence/cross spectral density program COHER previously
deyeloped for the Acoustics and Vibration Laboratory in conjunction
with the Reference (5) ScD dissertation. The overall test system
with identification of the test equipment used is shown in Figure 3.3.

The test beam, which weighed 5.64 kg, was suspended
yvertically from one end by means of elastic bands and was driven
horizontally to effect the intended free-free boundary conditions.
The horizontally oriented shaker, which was capable of generating

a maximum force amplitude of about 25 nt, was connected to the stud-
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mounted impedance head by means of a .05m long by .002m diameter
shaft capble of accommodating minor misalignments between shaker
and beam. The beeswax-mounted accelerometer was of 2 grams mass,

and the total mass of the impedance head was 60 grams.

B. Test Procedure

Calibration of the accelerometer signal channel was
performed by temporarily mounting the accelerometer on a General
Radio Model 1557A calibrator. Subsequently, the force signal
channel was calibrated by connecting a rigid disk of known mass to
the impedance head and exciting it sinusoidally; the calibrated
accelerometer signal and the known mass were used to establish the
actual force amplitude repreéented by a given force signal. The
calibration values obtained were found to be close to the trans-
ducer manufacturers' ratings. The proper functioning of the entire
test system was later verified by driving the rigid disk with
random force input; the mobility data generated by the system were
matched very closely by the theoretical mobility of a pure mass of
the same value.

To maximize the dynamic range of the measurement system,
it was necessary to make the frequency spectrum of both channels
simultaneously as flat as possible across the 0-2000 Hz band of
interest, The test beam was instrumented at typical driying and

response locations, and the signal spectra were monitored in real
- 30 -



time using the spectrum analyzer. It was found that adequate flatness
could be obtained with the use of one signal generator output bandpass
filter as shown in Figure 3.3. A 63 Hz high pass corner frequency
setting and a 1600 Hz Tow pass corner frequency setting were used for
this filter throughout the beam mobility testing. These settings
provided the required flatness of signal spectra from 0 to 2000 Hz
while providing desired roll-off in driving force above 2000 Hz and
precluding large-amplitude,low-frequency rigid body motions of the
beam.

Prior to the start of each mobility data acquisition run
the signal channel gains were adjusted until the signal levels,
monitored on the oscilloscope, seldom exceeded the 5 volt maximum
input level of the analog to digital converters. The channel gain
values and transducer sensitivity values were then specified as in-
put data to the computer along with the desired number of averages
(400 for each run). Also specified was the maximum frequency value
(one-half the sampling rate), which was 2560 Hz for all runs. The
force and acceleration signal channel bandpass filters were
accordingly set at corner frequencies of 2 Hz (high pass) and
2000 Hz (Tow pass) for both channels. The latter setting was con-
sistent with the Reference (5) recommendation that the high fre-
quency roll-off point be set at 0.4 times the sampling rate to

eliminate aliasing effects.
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C. Measured Vs. Theoretical Translational Mobilities

For each mobility test run, the minicomputer calculated
power spectral densities and cross spectral densities of the force
and acceleration signals along with their relative phase and coherence
values. These outputs were generated at discrete frequencies spaced
10 Hz apart over a band extending from 10 Hz to 2000 Hz and were
converted into translational mobilities as explained below.

In the definition of a translational mobility as a transfer
function relating sinusoidal force and velocity quanFities, the

. . . . {7 ol .
acceleration corresponding to the velocity M/==14/23 is given as

- . cr C ‘wl
W = ca)/'/l/’ez‘wz‘_= Ae“" (3.1)

Then the translational mobility is related to the acceleration/force
cross spectral density,(:abc » and the power spectral density of the

force,(iéF., in accordance with

gﬂ.:W: [ A__/ GAE:/@Ee/yZ%
£ wF (wGe, W Gee y

(3.2)

Separating these complex quantities into their magnitude and phase

components, we obtain

(3.3)




where §zz;is the phase angle of the complex cross spectral density
C:E%;r, The magnitude portion of Eq.(3.3)can be re-expressed in
terms of the frequency and spectral density quantities in the form

output by the COHER program:

O/Oj/o/zlgl - /0[/0 /O/GF/ ~/"f/o Gf'ﬁ—/of/ow] )
which yields

20/0\7/ o!% =2 [/0/05,0 IGA ~/0/69,, GFJ -20/::7,0(27779

The phase portion of (3.3) is simply

o = @F"goa'

Frequently the force and acceleration signals in mobility
measurements are corrected for the mass and flexibility effects of
the portion of the impedance head below the force gage. Such cor-
rections are described in Reference (5), but the corrections therein
pertain to driying point mobilities only. In transfer mobility
measurements these effects cannot be determined with the test
system described, as the measured accelerations are different from
those sustained by the impedance head. Because the bulk of the

mobilities measured were transfer mobilities, no impedance head
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corrections were made in any of the runs.

The computer program TRANS, 1isted in Appendix C,was
written to convert the spectral density output data from COHER into
translational mobilities per Egs.(3.5) and (3.6} and to create plots
and store the results in quadrature form on disk for Tater manipulation.
Data input to the TRANS program is via punched cards. A separate pro-
gram, THEOR, l1isted in Appendix B,was written to generate theoretical
translational and rotational mobility functions for Bernoulli-Euler
beams and to store them on disk in magnitude and phase form for use
in comparison with the experimental results. The derivation of the
equations programmed in THEOR is presented in Appendix A.

By virtue of the reciprocal theorem for dynamic loads,
Reference (12), mobility matrices such as given in Figure 3.2 are
symmetric, Thus all elements of the matrix shown would be established
if only the upper or lower triangular portion were evaluated. If
arbitrarily the lower triangular portion is chosen to be evaluated,
the translational mobilities needed to establish this matrix are

as follows:

S

4i<2°9 : séé/ ]Kégézézca : 5éé/ J égil ) ﬁé;/
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A further consequence of the reciprocal theorem is the sym-
metry of translational mobilities, i.e., %}}7:: %m . Also, by
geometric symmetry it is seen that %/_—: {%4 . Combining these com-
monalities, the entire nine-element mobility matrix shown in Figure 3.2
would be established by measurement of the following nine translational

mobilities or their reciprocals:

éfz) 5531 %41 {g2)§/zj;3fgﬂ‘) %3) g4: %4(0/— gf/)

Theoretical and experimental versions of these translational
mobilities were generated as explained above. A tendency toward
erratic results was observed in the experimental magnitude data in
regions of resonances. It was found that these erratic results occur-
red at frequencies where the coherence values fell to low levels
(less than .50). The Tow coherences were attributable to the force
signal spectra having decayed to the level of the background noise
floor at the resonances; this ' tendency is more pronounced with items
having low damping such as the test beam. In an attempt to obtain
the best possible translational mobility data for subsequent use 1in
deriying rotational mobilities, replacement magnitude data for the
more noticeably erratic regions were obtained using sinusoidal ex-
citation. A sine wave generator was substituted for the random
signal generator and bandpass filter,and the acceleration and force
signal peak values were read from the oscilloscope without the use
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of the computer. No revised phase measurements were made. A typical
comparison of the original random excitation mboility results with
the substituted-data version of the same mobility is shown for 9ﬁg/
in Figure 3.4. Magnitude data substitutions were made in the experi-

mental mobiTities as follows:

‘Mobility Frequency Range(s) of Substitution

9@52 None

9%;/ 330-530, 770-960

fzs/ 300-530, 750-950

9@;2 None

;%52 None

%2 None

5”3); 130-220, 380-520

% 3 330-520

4,

4 430-540, 790-960

The substitutions were made over wide enough bands of frequencies
so that the sinusoidally generated data merged with the random-
excitation data with minimal discontinuities.

Figures 3.5 through 3.12 show plots of the substituted
data versions of the remaining experimental translational mobilities.
A11 theoretical mobility plots are comprised of straight line seg-
ments connecting data points at 10 Hz intervals and are calculated
based on an assumed equivalent yiscous damping ratio of .005 for

each elastic mode. In general, the agreement between the experi-
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mental and the theoretical results is good up to the third
resonance (approximately 850 Hz); however, there are noticeable
discrepancies in frequency at the fourth resonance. The reason for
the discrepancies is not clear; possibly the impedance head
rotational inertia became significant in this higher mode, where
rotational kinetic energy acquired its greatest proportion of the
total kinetic energy,

It was concluded that the portions of the experimental
data below 1000 Hz could be considered "good" data for generating
rotational mobilities, but that satisfactory results could not be

expected above 1000 Hz,

D, Experimentally Derived Vs. Theoretical Rotational Mobilities

The computer program ROTAT listed in Appendix D was
written to perform the backward difference calculations indicated
in Egs.(2.15) and (2.16), which generate right-end rotational mobilities
such as those indicated in Figure 3.2 from an appropriately chosen
set of translational mobilities, The translational mobilities are
read by the computer from storage on disk in quadrature component
form over a set of discrete frequencies. The output rotational
mobilities are plotted in magnitude and phase form and can be stored
on disk for subsequent manipulation if desired.

The previously discussed experimental translational

mobilities were read by this program for calculation of the test beam
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rotational mobilities .}gﬁﬁ(w) ,Sga/:é (‘0) , and IIQBME(“))
The results are shown plotted in Figures 3.13, 3.14 and 3.15,
respectively, along with corresponding theoretical mobility functions
~generated with the use of the previously mentioned computer program
THEOR., Again a damping ratio value of .005 was used for each

elastic mode in calculating the theoretical mobilities.

The agreement between the experimental and theoretical
versions of the rotational velocity/force mobilities )iéééz(ZLv and
Yéﬂ,@(CU) over the previously cited 0-1000 Hz band of "good"
translational mobility data is reasonably close. Although the experi-
mentally deriyed rotational velocity/moment mobility ]ZZQ;Azg@“%)
gives reasonably clear and accurate indications of resonances, it
exhibits a great deal of scatter in both magnitude and phase in some
regions, This Tlatter mobility function and its constituent
translational mobilities were examined closely in the frequency band
230 to 300 Hz, where there was a marked degree of scatter in both
the magnitude and phase plots,

The translational mobility data in this band were generated
entirely by random excitation with no substitution of sinusoidally
generated data. The scatter in the deriyed mobility data in this band
seems at first glance to be inconsistent with the smoothness of the
translational mobility data, Figures 3.4 through 3.12, within the
same band. The quadrature components of the constituent trans-

lational mobilities over this band are plotted on expanded scales 1in
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Figures 3.16 and 3.17, and the quadrature components of the resultant
rotational mobility are shown in Figure 3.18. It is seen that the
translational mobilities had been nearly purely imaginary, but the
algebraic summation of these numbers gave a resultant imaginary
component which was much smaller than most of the individual con-
stituents, magnifying the minor degrees of irregularity present in
them. The scatter in the real components of the constituents,
Figure 3.16,had been present due to minor deviations in measured
phase from the ideal value, -90°. The scatter in the quadrature com-
ponents of the resultant mobi]ity‘iiégﬁﬁng) » Figure 3.18,is the
source of the scatter in the magnitude and phase noted in Figure 3.15.
This examination of scatter in the 63?4156900
mobility shows that the stability of derived rotational mobilities
would be enhanced by performing smoothing operations on the transla-
tional mobility data before the differencing calculations. An
effective approach to smoothing might be to fit analytical mobility
expressions to a number of data points in each experimental mobility
as described in References (4) and (9). Examples of the resultant
rotational mobilities which can be deriyed by the differencing method
from translational mobilities which are smooth and accurate are shown
in Figures 3,19 and 3.20, The THEOR program was temporarily modified
to establish quadrature versions of the theoretical translational

mobilities of Figures 3.4 through 3.12 on disk files, and the
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%3/:"5(&)) and %BMB(KU) mobility data points in
Figures 3.19 and 3.20 were generated by having the ROTAT program
process these files in the same manner as it had processed the ex-
perimental data. With the exception of small deviations in anti-
resonant frequencies seen in Figure 3.20, the agreement between the
theoretical and derived mobilities is excellent.

Figures 3.21 through 3.24 show é%;éé(ZLD and
ff;égﬂég?zﬁ rotational mobility results similarly derived from
theoretical translational mobilities which were calculated at
Tocations corresponding toAff-”A?:.Og&n andA/7=A§=.022h7,
or twice and one-half the spacing of the experimental measurement
points. The results for the wide spacing, Figures 3.21 and 3,22,
show additional degrees of the antiresonant frequency deviation
noted in Figure 3.20, but the more important matching of resonant
frequencies is again achieved. The results for close spacing,
Figures 3.23 and 3.24, show excellent agreement throughout, Thus
the latitude of the differencing method of deriving rotational
mobilities in accommodating variation in measurement location

spacings is demonstrated.

- 40 -



IV. CONCLUSIONS

Rotational mobilities of structures are equivalent to
spatial derivatives of their translational mobilities and can be
determined experimentally by finite difference approximations involving
sets of measured translational mobilities. Good agreement was ob-
tained between experimentally and theoretically generated versions of
two rotational velocity/force mobilities of a free-free beam. An
experimentally deriyed rotational velocity/moment mobility gave
reasonably good indications of resonance, but exhibited large amounts
of scatter in some frequency bands. This scatter was found to result
from the subtraction of nearly equal translational mobility quantities
in the differencing operation, magnifying minor irregularities present
in them,

It is believed that this scatter in the rotational
mobilities can be eliminated by smoothing operations on the trans-
lational mobility data such as curve fitting before the differencing
calculations, However, further inyestigation should be conducted to
determine an efficient algorithm for performing the smoothing and to
evaluate its effectiveness in reproducing the magnitudes and trends
that characterize the experimental data.

It has been shown that the differencing method of deter-
mining rotational mobilities can accommodate considerable variation
in the spacings of the points where the constituent translational

mobilities are measured,
- 4] -



Excitation: f(f):‘ﬁ(w)ewft
Response: u'/a(t)-/‘,f/'(w)e“‘)t

Mobility: (w)

(a) Translational Velocity/Force Mobﬂ1ty

f(‘é) 65(1‘) Excitation: 75&)-"5(60)8@#
Response: 9(i‘)=@(w)€w

Mobility: @ﬁ(a) F(w)
A

Rotational Velocity/Force Mobility

fbu@ (z‘) Excitation: ;«;z'(f)-M(w)e
Response: (7_") W(w)

obility: W(“»

(c) Translational Velocity/Moment Mobih’ty

(-@l(ﬁ %} Excitation: @(ﬁ- (60) éfw:_-

Response: 6 (ﬁ

Mobility:

(6(.)) Yé MA(a'))
(d) _Rotational Velocity/Moment Mobility

A0 g st

.

ot | Ve Y, 0 |14
@B( 22 £@) };%(w) e

BA

(e) Matrix Equation Involving Combined Mobilities

FIGURE 1.1: Transfer Mobilities Involving Various Combinations
of Translational and Rotational Effects

- 42 -



Excitation
esponse cawt
o B i g
A B\ ’fé(%f)’= lﬂé;éh%¢)634 M
( Y

(a) Fixed Response Measurement Location

Exc1tat1on
Y f(t) /z__;f%nse 14 = i) ew’“’f
A 51, W= Wi pel“M
) Xz |

(b) Varying Response Measurement Location.

Imaginary Component
W) /
L) LT

Real C t
f4¢>//’/’_ eal Componen

P

vd

Xz 7

(c) Plot of Resultant Complex Amplitude Ratios

FIGURE 2.1: Relationship of Rotational Velocity/Force Mobility
to Translational Mobility at a Single Frequency

- 43 -



Excitation
Response

2w p
T ]W by A =Llage

s t) = V)Wt

A 453 —x
(a) Fixed Excitation Location
Excitation .
zw A esponse
5 . ‘)t
e 9 o ) -Flus9e™
3 A R, )= Ww)e ™
% |

(b) Varying Excitation Location

2
£(t,;8) T

=~ Real Component

‘5(//’ Imaginary Component

—§

%

(c) Plot of Resultant Complex Amplitude Ratios
e, _7u(t)
N\ e
A

] IS

(d) Substitution of Equivalent Force Pair for Moment

FIGURE 2.2: Relationship of Translational Velocity/Moment Mobility
to Translational Mobility at a Single Frequency

Aff).:’_”é@

- 44 -



X
o e 0 o
.0318m
' .90m >
10-24NC x .25 in deep thd. 4 places
L& Excitation pt. #4 .
-009m typ Excitation pt. #3 P
Excitation pt. #2
\\—- Excitation pt. #1
.0254m
Light scribe lines coincident with hole centerlines
Measurement pt. #4
Measurement pt. #3
Measurement pt. #2 ::::::?\\\
. e
~— Measurement pt. #1
Material: 1.00 in. x 1.25 in. cold rolled steel

FIGURE 3.1: Test Beam Details

An = 8¢ =
.044m
typ.



S

N
WR
N

~ ﬁ___;.\
W
N\~
. im%o
’ 9'\

Tur Yug Y | 141
Var) Y L |2
Yo Yo Loprs)

A oy

¥

-

FIGURE 3.2: Matrix of Desired Beam Mobilities

- 46 -



Random Signal
Generator
General Radio 1390-A

Bandpass Filter
Ithaco 4213

Power Amplifier
McIntosh MC40

Accelerometer
Impedance
Head ] B&K
Wilcoxon 4344
Shaker 2602
Ling
203
Beam

-

Buffer/Attenuator
Homemade

Acceleration Signal
Preamplifier
Ithaco 432

Bandpass Filter
Krohn-Hite 3550

Bandpass Filter
Krohn-Hite 3550

Spectrum Analyzer
Federal Scientific
UA-15A

X-Y
Plotter

Oscilloscope

FIGURE 3.3:

Test System Schematic Diagram

- 47 -

\/

Two Channel
A/D Converter

Minicomputer
Interdata M70

Teletype




DB RE IM/NT SEC

MOBILITY MAGNITUDE,

-30

.35 b

-40

-4y

-50

ul

T

— Theoretical Magnitude
> Experimental Magnitude

1000 1500 2000

FREQUENCY, HZ

(a) Original Mobility Obtained with Random Excitation

IM/NT SEC

MOBILITY MAGNITUDE, DB RE

(b) After

-30

Excitation

-

X 4 4 2
E v %7
Q, &
2 .
Response 1

T

-—- Theoretical Magnitude
¢ Experimental Magnitude

500

1000 2000

FREQUENCY, HZ

DEG

MOBILITY PHASE,

Substitution of Sinusoidally Generated Data

200"

100 Pa

-100

-200

—_ Tbeureti'c;_l “Phase
& Experimental Phase
'

(c) Mobility Phase Plot

FIGURE 3.4:

0 500 1000 1500 2000
FREQUENCY, HZ
Test Beam Translational Mobility v Before and

After Data Substitution

4,1
- 48 -



DB RE 1M/NT SEC

")
o
)
‘..‘
=
z
)
<
=
= —— Theoretical Magnitude
— -100 | % Experimental Magnitude -
= .
Response
g -110 = 4
Excitation
-120 1 ] 1
0 500 1000 1500 2000
FREQUENCY, HZ

200 T —T T
3] —— Theoretical Phase
udl O Experimental Phase

100
"
43 ]
T
a o
>
o
T -100
-
= A

. A
*  -200 — , '
0 500 1000 1500 2000

FREQUENLCY, HZ

FIGURE 3.5: Test Beam Experimental and Theoretical Translational
MobiTlity ¥1.0

—49 -



DB RE 1M/NT SEC

—— Theoretical Magnitude
3¢ Experimental Magnitude

Response

Excitation

W
0
)
l,_
—
z
)
«
=
>
'_
—
i
—
m
=)
=
-100 ' 1 -
500 1000 1500 2000
FREQUENCY, HZ

200 T T T
(a3 —— Theoretical Phase
L
0O

100
W
tn
T
a 0
>
=
i -100
-
m
2 |
= -200 L !

1000 1500
FREQUENLY, HZ

2000

FIGURE 3.6: Test Beam Experimental and Theoretical Translational
L]
- 50 -



-40 T T T
i8] *
o —— Theoretical Magnitude
_ -50 2 Experimental Magnitude 7]
prd
s
A -B60
Ll
%
@ -70
a
s
S -80
‘...
—
5
< -890
=
>_
s -100
d Excitation,
g Response
= -110

-120 ' ‘ '

0 500 1000 1500 2000
FREOQUENCY, HZ

c00 T T T
8 —— Theoretical Phase
b & Experimental Phase

100 =
w
wn
I
a 0 ]
p
F..
(] —
" -100
bt
fna)
o
= 200 | | L

0 500 1000 1500 2000
‘ FREQUENCY, HZ

FIGURE 3.7: Test Beam Experimental and Theoretical Translational
Mobility ¢, o

- 5] -



-40 - T T T
M
U
5% —— Theoretical Magnitude
> Experimental Magnitude

>z 30 i
N 3
53 Response
&J -50 L Excitation _]
ng]
a
=
= ~-70
.
et
s
]
<
= -80
>
l‘
—
-
i
% -90 -
=

-100 ! ] I

0 500 1000 1500 2000
FREQUENLY, HZ

c00 T -7 T
bl ——Theoretical Phase A
P A & Experimental Phase A 'S ‘

100 -
wul
ul .
T
a Cr
: &hﬂé
}.._
= -100 .
[}
m
O
= -200 i I 1

0 B 500 1000 1500 2000

FREQUENLCY, HZ

FIGURE 3.8: Test Beam Experimental and Theoretical Translational
Mobility yq o
- 52 -



T l T

~— Theoretical Magnitude
¥ Experimental Magnitude

.

*

3
Response

Excitatfon

| I 12€

500 1000 1500 2000
FRECUENCY, HZ

-40
98]
L
s3]
S 50
N
=
~
Ll
¥ -g0
an]
[
“
S -7C
=
-
Z
[Ea]
<
= -80
>
:
=
D -30 -
=
-100
260
aa)
ud
(&
100
Ll
43}
T
T 0
>
: o
~  -100 4
=
m
o
=

T T T

—— Theoretical Phase
O Experimental Phase

-200

FIGURE 3.9:

500 1000
FREQUENCY, HZ

Test Beam Experimental and Theoretical Translational
Mobility Vg 9

- 53 -



- 40

]
d
m 4
— -0 —— Theoretical Magnitude
g >¢ Experimental Magnitude
=
]
Ll f—
® -60 Excitation, -
g Response
i
% -70 + —
—
—
z
Z
> -go *
>
}_
et
i
—
% -30 —
= )

-100 L 1 |

] 500 1000 1500 2000
FREQUENCY, HZ

c00 T T T
. ‘
g ——Theoretical Phase

100 & Experimental Phase =
)
]
T
a O
>_
’.—
—t
1 ‘lOO
=
a
= 200 : : 1 -

0 500 1000 1500 2000
FREQUENCY, HZ

FIGURE 3.10:
Mobility vy 4

- 54 -

Test Beam Experimental and Theoretical Translational



-30 T T T
L .
Ll
u —Theoretical Magnitude
— -40 > Experimental Magnitude
z
;% Response
H ey 5.
Ll _50 o
x Excitation
m
)
R -BO
L
a
-
= -70
Pt
(3
<
=
: B0
Pt
_J
—
=]
g -390

-100 ' ' L

0 500 1000 1500 2000
FREQUENCY, HZ

200 T T T
tﬂ —— Theoretical Phase
a 100 & Experimental Phase -
3 %ﬁ
Ul
T _
a 0
>
= N
j -100 448
4
m
S | |
= -200 ‘

0 . 500 1000 1500 2000

FREQUENCY, HZ

FIGURE 3.11: Test Beam Experimental and Theoretical Translational
Mobility Vg 3
- 5§ -



-30 , T T T
U ——Theoretical Magnitude
5% 2 Experimental Magnitude
_ -40 . _ _
z
~ A Excitation,
55 1 t x Response
-50 Fy
2 = *
o 173 *
a % qd = kS
. -60 N ::“ ¥ %
o 2 N
o) ' *
2
i b ES
[ - b
Z 70 a %
o) ) 4 >
< N Y
= | )
b - —
= BO
—
i
bt
: !
g -390
) €
-100 : '
0 500 1000 1500 c000
FREQUENCY, HZ
200 T T T
() —Theoretical Phase
LéJ O Experimental Phase
100
Wi
0
T
= 0
>
,._
-
i -100
=
m
O
= i { I

-200
0 ’ 500 1000 1500 2000

FREQUENCY, HZ

FIGURE 3.12: Test Beam Experimental and Theoretical Translational
Mobility Vg 4

- 56 -



-15 * T 1

T
——Theoretical Magnitude
o X Experimentally Derived
L e Magnitude
ok -20 Kk .
..._‘
= X
~
~— _ES L_
Ly
[0
m
- ~-30
z
i)
<
=
>
}..
oo}
:
s}
O
=
e
~
T
}__

500 1000 1500 2000
FREQUENCY, HZ

W
Lt
O

200

i " L Response ™
W Excitation
&
< 100 Yo o
T h4
o
>
- O 7
|
@ "
< -100 ol AN AN -1
= —-Theoretical Phase
L Vv Experimentally Derived
T Phase
= -200 - — -

0 . 500 1000 1500 2000

FREQUENCY, HZ

FIGURE 3.13: Test Beam Experimental and Theoretical Rotational Velocity/
Force Mobility Yo F (w)
B'A
- 57 -



J
T -10
.
=z
~ -20
~
gu
¥

-30
(a8}
(]
= -40
LD
<
=
N -50
’__
—
-
o -B0
(]
=
N -70
=z

-a0
)
&

200
"
5y}
< 100
T
a.
>_
- 0
_
—
5
2 -100
L
~
I -200

T T T
E z -“) Response

Excitation w ——Theoretical Magnitude
X X Experimentally Derived 1
Magnitude
- .
) . (]
X ‘
| X ]
, 4
x X
8 ‘,’: K X X% 7]
X )
D> X ’
., \ Xx
. X
’4
- _" ']
N s ]
|
0 5C0 1000 1500 2000
FREQUENCY, HZ
v I I T .
X h N
v
X, e -

w ¥ Y ~
v v Theoretical Phase N\ N,
\ v Experimentally Derived
N | Phase , {
8, 500 1000 1500 2000
C“REQUENLCY, HZ

FIGURE 3.14:

Test Beam Experimental and Theoretical Rotational
Velocity/Force Mobility Y, (w)
B'B

- 58 -



10 % i T X I
u -
i
= 0 ) X
% X X >
= X >><< ( /><<
X g X X 7
N~ -0 XY % oo ], X ]
. X % s A%
L X% % . X X ~ X
&= -20 + X % : ) X )2 N
o < X X X X&( ,
A Xxx:% A R X 3“
. -30 / XX h
Z % g »
= X X X\
o -40 —
C A |
- X
@ -50 s
o
=
= ——— Theoretical Magnitude
< -B0 + X Experimentally Derived
T s X Magnitude
- E =3 JExcitation,
Response
-70 | | |
0 500 1000 1500 2000
FREQUENLY, HZ
o)
o
200 T
R v Experimentally Derived v
Ll v
[S9] £
< 100
T
a-
>
s 0
_J
— ~
o = o
= -100 ¥ o Y v\:\’)‘%
v v v
N X ., — Theoretical Phase o v
L -200 ' ‘ L
0 500 1000 1500 2000
FREQUENLCY, HZ
FIGURE 3.15: Test Beam Experimental and Theoretical Rotational Velocity/

Moment Mobility Y. v ()
ogMp

- 59 -~



sec

m/nt

Real Component of Mobility,

-0006 1 l l l |

.0004

.0002

.0000

.0002

.0004

OH—ND 2x3xx£)4’2

o—0 1x16xw3’3

— 2x(—12)xw4,3

.0006 o— 1X9X11)4,4 —
O——0 1x1x¢2,2

| | | 1
220 240 260 280 300
Frequency, Hz

.0008

FIGURE 3.16: Constituent Terms of Derived Experimental
Mbility YGB MB(w) Over a Frequency Band

of large Scatter: Real (omponents
- 60 -



m/nt sec

Imaginary Component of Mobility,

.020 |
015 =
.010 —
.005 -]
2x(-4)xq)3’2
.000 mr D g} —0 D
1x1xw2 2
2x3xw4M
-.005 - -
]x9xxp4 4
-.010 -
1x16xw3 3
_ | | | [ |
015 529 240 260 280 300
Frequency, Hz
FIGURE 3.17: Constituent Terms of Derived Experimental

Mobility Y {w) Over a Frequency Band of
%"y

Large Scatter:
- 61 -

Imaginary Components



1/nt m sec

Mobility Component,

T | 1 ! |
120 -
.080 -
Imaginary
Component
.000 ﬁ(
-.040 |~ -
Real Component
-.080 —
-. 120 1 | ] l
220 240 260 280 300
Frequency, Hz
FIGURE 3.18: Quadrature Components of the Derived Experimental

Mobility Y, y (w) Over the Frequency Band of
B'B
Figures 3.16 and 3.17

- 62 -



)
o -10
’_
=z
~ -20
~
Lad
[0

-3C
[un]
o
= -40
S}
-
=
. -50
b
o
o -50
O
=
N -70
T
'__

~-B0
s
&

200
"
u
< 100
T
o
>
- 0
4
—
&
= _lOO
Le
~
£ -200

FIGURE 3.19

T

I 1

An = A = .044m-7 ——Theoretical Magnitude
| X Derived Magnitude -
{ 0 ) Response
Excitation
|- ‘ ‘ X -
3
K1
) g

K
! 5 ¥
I X g /' 7

3 < ’;’ g

\\ / >(

] I

g 500 1000 1500 2000
FREQUENCY, HZ
I T T
——Theoretical Phase
~ Derived Phase

= .

] | |
0 500 1000 1500 2000

Differencing Théoreti
An = Ag = .044m

Rotational Vetocity/Force Mobility Ye

FREQUENCY, HZ

£ (u) Derived by
B'B
cal Translational Mobilities:

- 63 -



, DB RE 1/ NT M SEC

TH/M MOBILITY MAGN.

DEG.

THsM MOBILITY PHASE,

FIGURE 3:20:

10

-10
-20
-30
-40
-50

-B0

Y, / \
4 'o' S
«/ .0‘ \\
4 ) X
J o q" X
’/ 0“ s
4 o"' ‘& 3
% .' 3
3 'v Y X —
g <) 3
7 \ % A X
A X X
g 4X h
4 ) ‘
x .
S | |
X I
X
Theoretical Magnitude -
An = AE = .044m .’ '. X Derived Magnitude
5 Excitation,
- : Response |
0 500 1000 1500
FREQUENCY, HZ

2000

| L

~—Theoretical Phase
v Derived Phase

|

1000
FREQUENCY,

An = AE = .044m

- 64 -

Rotational Velocity/Moment Mobility Ye
Differencing Theoretical Trans]at1ona1

1500

HZ

Mobilities:

2000

(w) Derived by



T T T
O An = Ag .088m Theoretical Magnitude
ul -10 X Derived Magnitude
el L = )JResponse
- s 1
=z Excitation X «
~ -20 ]
3 ‘ |
o | $
x
- 30 —
m
() RS
g \\\
: 7 X
= -40 X ‘ i x
S8 L ’7 ;’ %
< %] b9 o
= & ,/I @0 0..
- 1, Y 2%
>- 50 \ ,‘4 X %
> Z gg
[l b \
J
X b,
o -60 | z X/
@ s x X
= L ) X \ %
L ( <]
< -70 X '
T H d
- !
-80 { | i
0] 500 1000 1500
FREQUENCY, HZ
o
&
200 T T T
- Theoretical Phase
ﬁ% Vv Derived Phase
< 100
al
>
: 0
_
—
S
= -100
L
- l
I -200 . ‘

0 500

FIGURE 3.21: Rotational Velocity/Force Mobility Y

FREQUENCY,

1000

1500
HZ

(w) Derived by
%5Fp

Differencing Theoretical Translational Mobilities:
An = Af = .088m

- 65 -




10 T T
X A

[
L X X
tn i J
= or ‘ ) -
= K q b
pad
~ -10 |- i 4‘ ," X =
— A ;4
L . K
¥ )

-20 A
[ >,
= Y
;-3 F ' 2 - ]
= 3
: Y X \ ¥
< e < \ X
= Sk 4 X
- -40 J . -
}_
i
- N ' X X ,
D -s0 [ ‘ .
)
. |
= _ . .
~ -60 - ——Theoretical Magnitude -
= An = AF = .088m -»f !.. X Derived Magnitude
= X Excitation, -

C : — Response
-70 ! 1 !
0 500 1000 1500 2000
FREQUENCY, HZ

s
&

200 T T 1
m
wn
< 100 t
T
n.
.
- 0
ar
m
g -100 .

—— Theoretical Phase

= v Derived Phase
I -200 ' ‘ ’

0 500 1000 1500 2000
FREQUENCY, HZ
FIGURE 3.22: Rotational Velocity/Moment Mobility Y@BMB@o) Derived by
Differencing Theoretical Translational Mobilities:
An = Ag = .088m
- 66 -



0 T l T
An = AL = .022nm
] . .-”* R Theoretical Magnitude
- 10 E '"J) esponse X Derived Magnitude
— Excitation
g
~ -20 -
~1 ‘ ‘ 4|
Ll l K] &
"y &
o -3C —
= )
2 -40 ’ X , =
[Ra) : . P 4 § p
< J
= / £
> ~L—_'!O X ,’, .
b= ! Xy
=
_J
3 —
o -50
g
=3
§ -70 b D ) -
' i
-80 I ! {
0 500 1000 1500 =000
FREQUIENCY, HZ

0
g .

200 T T T
- Theoretical Phase
ﬁ% v Derived Phase
< 100 -
T
[a
}
S of
J
[l
o 4
= -100 -
L
Z 200 ‘ ‘ :

0] 500 1000 1500 2000
FREQUENLCY, HZ

FIGURE 3.23: Rotational Velocity/Force Mobility Y, (w) Derived by
B'B

Differencing Theoretical Translational Mobilities:
An = AE = .022m

- 67 -



10 T T T
0
R A
= 0r l ! ‘ n
=
Pl .,
~ -10 ) ]
~4 (] p
L . X )
EK /l 5 \\
. -2C - 3 ]
L’IJ J o e B’
[} Y ). 3 &
é ’30 . ) \\ n
] Z ), z
o ’
= >
. -40 ! 7
— & .
— g )
_J : 1 i '
o -50 ’ ’ ' , i
o 1
=
=
~ -60 - an = _X ——Theoretical Magnitude .
x n= A = .022m —”- Excitation, X Derived Magnitude
C =+s ) Response
-7G | ! |
0 500 1000 1500 2000
FREQUENLCY, HZ

"
o

200 T T |
)
0
< 100 K=
T
o
>
—_ |
- 0
=
iy ;
o _
= 160 —— Theoretical Phase
= ~ Derived Phase’
I 200 : :

0 S00 2000 1500 2000
FREQUENCY, HZ
FIGURE 3.24: Rotational Velocity/Moment Mobility Y, MB(w) Derived by
B

Differencing Theoretical Translational Mobilities:
An = Ag = .022m 68



10.

11.

REFERENCES

W. C. Ballard, S. L. Casey, and J. D. Clausen, "Vibration
Testing with Mechanical Impedance Methods," Sound and
Vibration, January, 1969, pp 10-21.

J. V. Otts and C. E. Nuckolls, "A Progress Report on Force-
Controlled Vibration Testing," J. Envivommental Science,
December, 1965, pp 24-28.

R. M. Mains, "The Application of Impedance Techniques to a
Shipboard Vibration Absorber", Shock and Vibration Bulletin,
33, 4, March, 1964.

A, L. Klosterman and J. R. Lemon, "Dynamic Design Analysis
Via the Building Block Approach", Shock and Vibration Bulletin,
42, 1, January, 1972.

R. Dedong, "Vibration Energy Transfer in a Diesel Engine",
ScD Thesis, MIT, Dept. of Mech. Eng., 1976.

D. U. Noiseux and E. B. Meyer, "Application of Impedance
Theory and Measurements to Structural Vibration, U.S. Air
Force Flight Dynamics Laboratory Tech. Rept. AFFDL-TR-67-182.

F. J. On, "Preliminary Study of an Experimental Method in
Multidimensional Mechanical Impedance Determination",
Shock and Vibration Bulletin, 34, 3, December, 1964.

J. E. Smith, "Measurement of the Total Structural Mobility
Matrix," Shock and Vibration Bulletin, 40, 7, December, 1969.

D. J. Ewins and P. T. Gleeson, "Experimental Determination of
Multidirectional Mobility Data for Beams", Shock and Vibration
Bulletin, 45, 5, June, 1975,

E. Isaacson and H. B. Keller, 4nalysis of Numerical Methods,
John Wiley & Sons, Inc., New York, 1966.

J. W. Leech, L. Morino, and E. A. Witmer, "PETROS 2: A New
Finite-Difference Method and Program for the Calculation of
Large Elastic-Plastic Dynamically-Induced Deformations of

General Thin Shells," U. S. Army Ballistic Research Laboratories,
ASRL TR152, Contract Report No. 12, December, 1969.

- 69 -



REFERENCES (Continued)

12. S. Timoshenko, D. H. Young and W. Weaver, Jr., Vibration
Problems in Engineering, 4th Ed., John Wiley & Sons, Inc.,
New York, 1974,

13. L. Meirovitch, 4nalytical Methods in Vibrations, Macmillan
Company, 1967.

14. R. D. Cavanaugh and J. E. Ruzicka, "Vibration Isolation of

Non-Rigid Bodies", Colloquium on Mechanical Impedance Methods,
ASME, New York,1958.

- 70 -



APPENDIX A
THEORETICAL MOBILITIES OF A FREE-FREE BEAM
% 7
0 Z

> X

The governing partial differential equation for the
free vibration of an undamped uniform beam js given by Eq. (5.82) of
Ref. (12) as

P 2
W 2N
LIS = —pASzz

(A.1)

The derivation of this equation, referred to as the Bernoulli-Euler
beam equation, is based on the assumption that the effects of rotary
inertia and shearing deformations are negligible in comparison with
the effects of translational inertia and flexural deformations (i.e.,

the beam is slender).

The free vibration mode shapes and frequencies are ob-

tained by first assuming a harmonic solution of the form

‘wl

wixt) = W) e )

-7 -

(A.2)



Substitution of this expression into Eq.(A.1)results in the ordinary

differential equation

EJW””;pA wZ.W' =0 .3)

where the prime notation indicates differentiation with respect to x.

Setting

+_ pAw”
FoT £T / (A.4)

the general solution of Eq. (4.3) can be written

Wixy= G sinhpx +Cocoshpx+Cy sinpx+Cycos pX (A5)
for which the first three derivatives are:
Wen = - pC, cosh px +pG sink px+pCscos pxpG sin Px

W ?fx) =/DZZ,"5//3;A DX 701(2’6054}0;( -—/o'Z’g sipx— /37-5; cospX (A.6)
W) =P coshpr P Gsinhpx-P L5 cospx +pCsinpx.

The boundary conditions for a free-free beam are as follows:
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5[3)"’(%; -0 A

ET 2% =0
x=.2 { ox

or, simplifying slightly,

W)= O wl) =0
W) =0 W) =0 .

(A.8)

Inserting the Eq. (A.8) boundary conditions into Eq. (A.5) and (A.6)
gives the system of equations

2, / 7

e

C 2,
/ o —'/ o Cz. = 0 (A.9)

sihpl cosh fll ~sinpl —cospl ', 0 |

\coshpl sikpl -cospl sinpd \Cy O

For nontrivial results, the determinant of the above 4 x 4 matrix must
be equal to zero; effecting this condition yields the characteristic

equation
casp/ Cosépl =/ - (A.10)

The roots of this characteristic equation are the eigenvalues of the

problem and are given in p, 165 of Ref. (13) as follows:
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Pﬂ’Z:ﬁZ =0 (rigid body modes)

RZ/Z "'% 750 (first elastic mode)

/?3,2 = 7853 (second elastic mode) (A1)
//QL,éf ==(iEZV=né)E§?:) r>4

The natural frequencies are given by:

- L7 _ EL(mL)
- _o4 oA l*

w,.-—-&@[)L%z . (A.12)

The eigenfunctions are found by arbitrarily setting

Loy

or

L=/ and using the first two of Egs. (A.9) to determine that C=/
4 2
and C,{"@:O. When these results are inserted into the third of
Eq. (A.9) it is determined that:

_ v _ oS p/ ~ cosh p/
C/"C_Z, - 5//'7/;/1.4 ~ s/ pl

Then, the rth eigenfunction of the problem is:
W, 0 = D,[cosép,x * COS DX

A r[ - /-/ < ,
B gﬁé}ij —C;;Sy’;,z )(S/ o4 pri + 5/’7/’*)()] (A.13)
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for each eigenvalue P,-/ /"—’2,3}.... , where .D,. is an arbitrary
multiplier. For the special case of the rigid body modes (/PO=P,=0),

the eigenfunctions are:

M(X) =..Do (rigid body transiation)
%/f()() =D,(X"%) (rigid body rotation).

(A.14)

Let @(X) denote the bracketed quantity in Eq. (A.13)
for modes f'=2}5>) Per Appendix B of Ref.(14)the functions ﬁr()()

have the orthogonality properties
f@od@,,(x)a’z O, m#n ;
(A.15)
f B =L .

Also, per p. 164 of Ref. (13), the functions %’/ and
@'1]5'—'2—4 are orthogonal to each other and to the functions ,ﬁ,.()() 5

these functions also have the properties

otk =1 ;
0.2 i 3
[Hoode =%

At this point the forced vibration response for the un-

(A.16)

damped beam can be evaluated in terms of the preceding eigenfunctions.
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Let

W) = Z ¢(X);f(i‘) (A.17)

=0

where the j?}{%ﬂ quantities are time-varying generalized coordinates
to be determined. Placing this expression into the governing partial

differential equation with forcing term,
5[ / 5,752. "JC(Xf) ) (A.18)

yields

SHEIE S o408 = 0t

r=0

Now each term is multiplied by ﬂéé()é) and the resultant expression is

1ntegrated with respect to x:

éff@[;[ﬁ””d +27,pr 20 A
(46

If the eigenpaiV‘gggDCZ%_ satisfies the undamped homogeneous

differential Eq. (A.1), then
VL4
LG -a2pAd = O
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and

j V//4 z j
i@gf@ dx = “)f‘£¢%‘4¢/~dz (A.21)

subst1tut1ngjq (A.21) into Eq. (A. 20) en yields

> %wrf/A;ér% e +Z%f AB G
/ B Hx,L)ax -

Applying the orthogonality properties, this result reduces to the normal

(A.22)

mode equations of motion,

+MQ)}-?,. Q,,(Z") , r=0/,45.., (A.23)
where M “‘f/ ¢z(x)0/35 is the modal mass of the rth mode
//(X f)ﬁ;— 75}0/)( is the modal force of the rth mode.

Damping of the elastic modes can be taken into account by modifying

Eq. (A.23) to the form

? T\ wf%ua,,j/ 34*’4({') (A.24)
where (2 (t) /f(xt)ﬁ,—(x)d’)é is t;e revised modal force, Jg()(/f)

is the prescribed excitation loading exclusive of damping forces, and
Sr is the equivalent viscous damping ratio of the rth mode.

To obtain mobilities we will apply loads
Wl
£t = fl e ¥
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where 674%55"25) denotes the Diract delta functigr at
79
lTocation X = § . W V\riwe

-4———?——-)—

3 —X
3 Lo

The pertinent response for each mode will be the steady-state sinusoidal

generalized displacement

(et
jlr(f) = X e~ (A.25)
where amplitude .X;(C()) is complex. We will examine this

response mode by mode:

r-—O

M /OA / ¢ O/Z /AZ /77
/ £l S e-5) ) e = qu) e“r

* 28 ), Gy *) —-a)ZX (w)ef
f : Z‘&e) Ty
. X;(@ = _5% (A.26)
AL? i l?
A/ ¢ O/Xw/ 72 - /=2 Lol Y
&)= /H’a&ef //z-"f)(X*/)a/K %e (5-%)
" Z\)"a) = —2) X (w)e
% ? | _Awe s-£)
fw(é-’ff)//z
)(,(w) Ry (.27)
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0.7 / f?w)e“"%)f- ?)@de - Flye" Y %)

j/,»zg’a)/_ L % —(—a) ,«.WZ\S,’,w *ed, )Xr@)e
@4 &) Z ffw) B(8)™"

_ f?)@&)
- X m(;ud Lot AL 25 L) (A.28)

As a consequence of Eqs. (A.17) and (A.25), it follows
that

W02 =S BYGE) = 2 (oKt
2w e Lt (A.29)

The mobility is then the ratio of the complex amplitude of the trans-

verse velocity at:/Z'to the amplitude of the transverse force at Ef:

;V,((wj 20 w¢ (/]) . (A.30)

Using Egs. (A.26), (A.27) and (A.28), we obtain the resulting

expression for translational mobility:
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We _ _/ , (-£XE-£)
Flw)  wom " lwmdZ2

2 ﬁr@) ﬁr( €)

Fop WA —w+i 28w

In accordance with Eqs. (2.5), (2.9) and (2.11), the rotational

(A.31)

mobilities are given by:

[ 4

Ww _ 2 Ww
Mw) ~— € Lfry

= "4,/2 ca) 2 ﬁr@)ﬁr/ %9)
cme 5z " w2 50

Bw _ S W)
£ c9/Z L)

_ ¥-45 w< B BE)

CCI)/?ZZ /Z 7 =2 l()/::——wzv‘-(: Z5, W

(A.32)

W _ 5 Ww
M) 87 OS5 fw) |
-/ L w<S LWL
Lwmlij2 " 77 fop -~ L2 8

The series terms in the above expressions are truncated to highest

mode numbers r = N for computation, where N 1is determined such that
62%¢4K 424, <05 . The latter condition, in turn, ensures
that the exact mobilities are approximated by the truncated series

results within much less than 0.5 dB deviation.
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DO 0

R EL NGNS

DA 0,

APPENDIX B
COMPUTER PROGRAM THEOR

ARA RN A AN ARDRATREN THFqPiitttittﬁ"Q

PROGRAM TO CALCULAT®, STORF, £ PLOT THFORETICAY TRANSLATINNRL AND ROTATIONAL
MOCRTLITIES (MAANITUDE & PHASE)
INTEGER*2 RUNTD1(40), CASEID(4D)
INTEGFE*2 YLR(40), XLP(40)
NIYENSION OMERR(25),ANUMI(25) ,ANONM2(25), ANUMI(25), ANUMY(25)
DIMENSION AMMNB(1,210), PHMNR(1,210), YS(4)
CO¥PLEY ADEND, AMCR
prIBLE PRFCTSINN 7 ,DPRL,ALPHA,PR,PRY,PRXT
DANRBRLE TRECISION PHWY, PHXT, PHPPX, PHP®RYY,TRCSH,DBSNH
NTFINT DOUFRLY PRECISICN SINH £ COSH ARITHMETTIC STATEMENT FURCTIONS
DRCSH(2)= (DEXP(Z)+LEXP(-2))/2.
DASYH(?)= (DEYP(Z)-DEXP(-7))/2.
DATA X</ 0.,2000.,-400.,400./
DEFINT FILFE 17 (15,420,Y,%EP)
WTRTQS= NN, OF FORCING FREQS, (INTEGER) FOR WHICH MORILITIFS WTLL BE CrLCU-
LATED, SPACED UNTFORMLY, UP TO FMAY (FLOATING)
CAUTINN- CHECY DIMENSTON STATEMENT FOR ARRRAY SIZE
DPTAM DPPOPERTIES: T=T(N/Mr+2), AT= T (M**4), AM= TOTAL MASS (XG), Al= TFNGTH (
"), 7ETA= ASSUMED NAYPING RATIO
R¥AD (?,87) RUNTD1
READ (&,95) NCASES
ewad (9,130) VFREQS, F¥AY
RFAD (R,100) E,AI AWM, AL,ZFTR
Qe FARMAT(40RD)
35 FIRYAT(TIO)
132 FORMAT (110, F10.0)
17¢ F2RPMAT (F10.1, R10.2, 3F10.3)
WRITE (5,9C) RUNIDA
¥RITE (5,1480) E,RI, AWM, AL,ZFTR
WeITE (5,140) NPREQS,FUAX
FARMAT (2W1 ,LUCR2)
FOR¥AT(3HOF=,E10,3,4H I=,F10.3,4% %=,F5,2,44 L=,F5.3,
1 74 ZE™A=,F7.4)
160 FOPMAT(14HONG NF FREQS =,I4,12H ™AY FREQ =,F5,0///)
D" €000 NCRSE= 1,NCASES
¥= LOCMTION OF VEINCITY, "XI= ICCATION OF FNARCE OR MOMENT, KWF THRU XTHY ARE
CONTROLS OF WHTICH TYPES OF MGBILITIES ARE GFNERATED (1 FCR YES, 0 FCR NO),
NOYF, ETC. ARE ¥0S, OF PLCTS CF EACH TYPE DESIFED: N= NNNF,1= MAGN, ONTY,
2= MAGN. & PHASE
CAUTTION=- PIOT CONTROL DAT® AND LARFL CARDS ¥UST RE PROVIDED CONSISTFNT WYTH
ABNVE INPUTS
1S%¥*, ETC. ARE DISKX LNCATIONS FOR STORAGCE OF RFSULTS- SUPPLY*0* WHEN MCPTL-
TTTES ARE NOT TO BE STCRED
R¥AD (8,80) CASEIL
PERD (%,110) Y,XI,XWF,KW¥,XTHF ,KTHM
READ (R,120) WPWF ,NPWUM NPTHF, NPTHNM
oFAD (R,120) ISWF,LSWM,LSTHF,LSTHM
110 FNRWAT (2F10.2, 4710)
120 FCRMAT(4T10)
PIE= 3,141593
RIOA= AM/AL

ooy
[ el

1
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PRAD= (E*AT/(RHOA*RL**R))**0 5
RMAY= O, 54(1,/PTE)* (U4 *PIE*FMAY/PRAD)**0 5
NBEMAY= RMAY+ 1,
WRITF(5,90) CASFID
WRITE ¢5,150) X ,XI, XWF,¥WMX ,KTHF ,¥THN
YRITE(S,155) NPWF,XPWM,YPTHF,NPTHM
WRTTE(S,156) ISHF,LSWY,LSTHF,1STHM
15¢ FNPMAT(3HOY=,¥6,3,5H YI1=,F6,3,6H ¥WF=,T2,6H XWM=,I12,7H KTHF=,
1 T72,7TH  XTVE=,T2)
155 FNRYAT(6HONPWF=,I1,84, NPWM=,T1,9H, YWPTHF¥=,T1,9H, NPTHN=,I1)
156 FORMAT(6HOLSWF=,T1,8%, LSW%=,11,0H, ISTH*=,I1,9H, LSTHM=,I1)
T CALCULATE MODAYL PARANFTFRS NOF RECURRING USFE
WRTITE (5,170)
170 TORMAT(U4HO NRTURAL VFREQUENCIFS OF VIPRATCRPY MODES,HZ/)
DN 400 VR= 2, NRMAY
IF (NP-3) 210,220,230
210 PRI=4,730
Gr T 740
220 PRL= 7,857
G2 TO 240
230 PPL= (2.0*FLNAT(RR)-1.0)*PIF/2,
240 OMECR(NR)= (PRL)**2+PRAD
FREQNT= NXTCRINR)/(2.*PIF)
WRITE (5,300) TREQNT
350 FORMAT (20Y,F1C6.1)
DfRL= DRLE(PRI)
ALPUA= (DRSNY(DPRL)+DSI¥(DPRL))/(DBCSH(DPRT)~-DCOS(DPRL))
rR= DEIF(PRL/AL)
pRY= PPLE(PRL*X/AL)
PRYI= DELE(PRL#*YI/AL)
PHY=DRCSH(PPY)+DCCS(PRY)~AIPHA*(DRSNH(PRY)4+DSIN(PRY))
DUYT=DR SH(PRYXT )+DCNS(PRYT)-ALPHA*(DRSNH(PRYI)+NSIN(PRYT))
PHUPRY=PR* (NDRSNP(PRY)}-DSIN(PRX ) )}-ALPHA*PR*(NRCSH(PRY)+DCOS(PRY))
PUPRXI=PR*(DRSNH(PRXT)~-DSTN(PRYXY))-ALPHA*PD*
1 (DRCSH(PRXI)I+DCOS(PRYTIY)
AMIMT("R)= SNGL(PHX*PHYTI)
ANUM2(NR)= SNCL(PHY*PHPRYT)
BNTIM3(NR)= SNAL/PHPRYX*DHXT)
AVUMY (NR)= SN7LL(PHPRY*PUPRXT)
- 400 CONTINNE
¢ CALAULATE W/F ¥QBTLITIFS TF SPECIFIED IN INPUT DATA
1000 IF (Kw¥=1) 2000,1010,1010
17210 DN 15CC NPT= 1,¥FRENS
OMTOR= 2, *PTESTWAX*FLCAT(NPT) /FLOAT(NFREQS)
BNUM= (Y=-AL/2.)*(XI-AL/2.)
BNEN= MMEGRA*R¥a (AT **2) /12,
AMOB= CMDLY(1.0,0,0)/C¥PLYX(0.0,0OMEGA*AM)4C¥PIX(RKUM,0,0)/CHPLY
1 (0.,C,RDEY™)
DS 1407 SRR= 2, NRMAX
PDEN= (OMEGR(BNRR))**2 -NVEGA**2
CDEN= 7,0*ZFRTA*OMEGR(NRR)*OMEGH
ADTYD= CMDLY (ANUMI(NRR),0.0)/CMPLYX(RDEN,CDFN)
CCNPER= NMEGA/AM
147N AMNR= AMOB4CMPLY (0.0 ,CCOEF)*ADEND
A¥MOB(1,NPT)= 20,*ALOG10(CABS(ANOB))
~ MACMITUDE J¥ DR RE 1 M/ NT SEC

-



Y¥= RFAL(A¥NR)

YY= RIMAG(2¥CP)

PPUMOR= ATAN2(YY,XY¥)

PHMNR(1,NPT)= RPHMCR*12(,/DIE

CANTINNE

TP (LSWF) 182C,152C,151C

WETTE (10 *ISHT) (AMMAR(1,1),PH™OR(1,J),3=1, "FREDS)
WRTTE(S,1515)

FORMAT(' W/F MOBILITY FILFL')

IF (NPYF-1) 2000,1530,1530

READ (2,1650) YTA

C"LL PICTR(AM¥OR,1,¥L®,¥S,1,NFRFQS,n,-1,4,1,F%AX,1)
IT™ (NDWF=-1) 2000,2070,1600

0 RTAD (8,1650) YIP

FOPMAT (4GA2)
C*LL PICTER(PH¥"R,q,YLP,XS,1,NFRFQS,0,-1,4,-2,F¥2Y,1)

T CALCULATE w/M ¥ORILTTIEFS TF SPFCIFIED IV TNPUT DATA

2450

IF (KW*-1) 3000,2010,2010

; DN 2507 NPT= 1,NFREQS

NNFAR= 2, *DTEXFMAY*FLAAT(NPT)/FLORT(NFRECS)
AVPY = Y-RL/2,

BNz AMETBRAME(RAT**2) /12,

pMNR= C¥DLY(BNUM ,0,0) /CH¥PLY(0,.0,RDEN)

B7 2u0% WRPR= 2, VRMRAY

RNEN= (NMTOP(FRR))**D -_CMECR**D

DTNz 2, 0*7FTRA*NMTCR( NRP ) *CMECA _
ADEMD= CMPLY (RPNIUUM2(YRR),N,.C)/CMDLY(RDEN,CDFVN)
CoNVF= NMIZTR /RY

A¥No= AMOR4(CMPLY(0,.0,CCCEF))*ADEND
AMMOR(1,NDP™)= 29 ,*210C10(CABS(AMOR))

S WMSNITHDE T¥ DR RT 1/ NT SRC

2520
2310
2815

2820
2530

2620
165C

¥¥= RFAL(AMNE)

YY= ATMAG(AMCR)

POY¥OR= ATRN2(YY,XY)

PUMNB(1,NPT)= RFPHMOR*180,/FTF

CONTINDE

I (LSW*) 2520,252(,2510

WRITE (10,LSWM)(RMMOB(1,J),PH¥0OR(1,]),T=1,YFREQS)
WRTTE (5,2515)

FORMAT (¢ W/M MNBTIITY FILED®)

IT (NpuY%-1) 3000,2530,2530

RZAD (7,2F5n) XLA

CALL PTCTR(AM¥NB,1,YLR,¥<,1,NFREQS,0,-1,4,1,FNAY,1)
I¥ (¥pu¥-1) 3200,3000,2600

REZAD (8,2650) XLP

FrP¥AT (4032)

C*LL PICTR(PH™CR,%1,XLP,¥S,1,VFRFQS,0,-1,4,-2,F¥2X,1)

~ CALCULATE THETA/F MOBILITIFS TIF SPECIFIED TN INPUT DATR

30606
3210

IF (KTHF-1) 4400,3010,3010

DM 350C NPT= 1, NFPEQS

O¥ENA= 2,*PTE*FMAY*FLORT(NPT) /FLOAT(NFFECS)
BY¥= YT-RL/2.

BNEN=, OMEGA*AM*(AL**2)/12.

A¥NR= CHPIY(BWU¥,0,0) /CMPLY(0.0,BDEN)

BN 34nC NRR= 2, NRMAY

RNEM= (OWTGP(VRR))I**#2 -OMEGA**2
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3490

T MAG

ISR
3511
36 -

3526
31530

2570
365

i

T caL
L'"”-u

10

5410

-
T OMEG

L4500

4515
u52¢
45130

6570
4650

CDEN= 2,0%ZETA*OMEGR(NRR)*OMECD
ADEYD= CWPLY (ANUM3(NRR),0.,0)/CHPLY(RDEN,CDFN)
CCNEF= CMFRA/ANM ,
YMOR= RMOR+(CMPLY(C.0,CCOFF))*ADEND
AMMOR(1,NDT)= 20,*RI0N10(CARS(A™OR))
NITUDE I¥ DB RE 1 RMD/ NT SEC
yv= REAL(A¥NR)
YY= AIYPG(AMOP)
RPUMOR= ATAN2(YY,XY)
DPUMOB(1,NPT)= RPHMCRw1R0,/PTF
CNNTINOT
IF (LSTHF) 3520,3520,3510C
WRITF (10'1°T"F) (l"HrP(1 J),PH¥CRB(1,7),.J=1,NFREQS)
WTITF (5,3515)
FORMAT (' TY/F VCBILITY FILED®)
IF (MPTHF-1) 4000,3530,3530
RTAD (3,3650) YLR
C*LL PTCTR(AMMOR,1,YLR,YS,1,NFRFCS,C,=-1,48,1,FNAY,1)
IT (NPTHF-1) 4000,8000,3600
ETAD (9,3650) X1P
FORMAT (40AR2)
CATL PICTR(PH™NRB,1,¥LP,XS,1,KFREQS,0,-1,4,-2,F¥2X,1)
FUTATE THETA/M MOBILITIES IF SPECIFIFD IN TNPUT DATA
I™ (KTU¥-1) 5000,4010,4010
T~ 4507 NPT= 1,N¥FRFOS
N*EGA= 2, *PIE*FYAXAFLOAT(NPT)/FLOAT(NFRFQS)
RDEN= IMEAR*AM* (AL *%2) /12,
AMNR= CMDIV(1,5,0,0)/CMPLY(0,0,RDEN)
N 4Ynn NRR= 2, NRMRY
PDEN= (N¥FAR(VRR))*42 LIRS
CNTN= 7,0*ZETA*OMEGR(NRR)*CMEG]H
DEND= CVOLY(RNUMU(NRR),0.0)/CMPLY(PDEN,CDVN)
CONTR= NWEGR /PN
AvMOR= AMNBHCMPLY (2.0 ,CCOEF)*ADEND
VUMAB(1,NPT)= 20,*ATNGI0(CRBS(AMOR))
NITUDE TN DR RE 1 RAD/ NT W™ SEC
X¥= RFRL(ANOR)
YY= AT™AG(RM¥OR)
RDUMOR= RTAN2/YY,XY)
PH¥NR(1,NPT)= RPHMOR*180,/PIF
CAVNTINNF
IF (LSTHM) 4520,4520,4510

G WRITE (10'7°TH“) (PUNCB(1 3),PH¥0OR(1,7),3=1,¥FREQS)

WRITE (5,4515)
FNPMAT (* TH/Y ¥ORTLITY FILFD')
TF (NPTHM-1) 5000,4530,4530
RTAD (8,4650) YIA
CALL PYICTR(AMMCB,1,XLA,XS,1,NFREQS,N,-1,0,1,FMAY,1)
IT (RPTHM-1) 5000,5000,4600 '
PEAD (R,4650) XTP
FORMAT (40OA2)
CALL PICTR(PH¥NR,1,YLP,¥S,1,NFREQS,0,-1,4,-2,F¥AY,1)
CONTINUE
CALL FYTIT
TR
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APPENBIX C
COMPUTER PROBRAN TRANS

AR N R SRR RS 2DROGRAN TRANSH SRR wResase

PROCRAM T0 CALCOULATE, STORE, € PLOT TRANSLATIONAL MOBILITY FUNCTIONS FEOM
COHER PROCRAX EYP*TAL SPECTRAL DATA- ALSO PLNTS STORED THEOR. MOBILITIES
INTEGER*2 IDTAPE(80),XLA(40),XLPR(40)
DTMENSICN ARRAY(7,210),A¥SCL{#4),PHSCL(U)
D'TA PHSCI/ 0 .'2000.'-"00. ..DO n/
DEFINE FIIE 10(20,420,U,NRP)
DEFINE FILE 11(15,420,0,%R0)
READ NO. OF TAPES TO BE PROCESSED IN THIS RUW
READ(8,10C) NTRPES .
10C FNRMAT(T2)
DO 1000 NT=1,NTAPES
READ IN CCNTRCL DATA FCP EACH TAPE
TA¥SCL=1 FOR AUTOSCALED WAGNITUDE PLOT; -2 FOR SCALING PER AMSCL DATA
1LAB=-4 FCR EXP*TAL DATA TO RE CCNNECTED RY LINES; -4004 FOR DATA SYMENLS;
THEOR., DATR CNNNECTED RY LINES IN EITHER CASF
TAMCCN==10 TO PLOT FYP'TAL £ THEOR. NAGRITUDES; -8 FOR EYP°TAL OWLY
TPHCNN=-68 TC PLOT EXP'TAL & THEOR. PHASE; -64 FOR EXP'TAL ONLY
RFRD (#,200) IDTAPE, 1S, FRFQS,NPLOTS,FLIST ,NPR,LSTHEO,FNAX
READ (%,205) (AMSCL(I),I=1,4),IANSCL,LLAR,TANCON,IPHCON
200 FORMAT(UOA2/6110,F10.0)
2n5 FORMAT (4F10.0,4110)
READ PLOT IARBELS TF APPLICABLE
IF (NPLOTS-1) 240,210,210
210 READ (8,220) XLA
220 FORMAT(4OR2)
IF (NPINTS-1) 240,240,230
230 READ (8,220) YLPH
READ ONFE TAPE'S DATA FROM CARDS
2u0 READ(®,300) ((ARRAY(Y,J),I=1,4),J=1,NFREQS)
300 FORMAT (F6.0,F6.1,6X,2F6,1)
I¥ (NLTST) 400,400,350

LIST INPUT DATA IF SPECIPIED (NLIST = 1)

350 WRITE (5,360) ((ARRAY(Y,J),I=1,4),J=1,NFRECS)

360 FORMAT (°* FREQ PSDF CPSDAF PHIAF*
1//¢7X,F5.0,3E15,.4))

' REDUCE COHERENCE PROGRAM TATA

NOTE- WO IMPEDANCE HEAD MASS OR FLEXTIBILITY CCRRECTIONS INCLUDED
436 pC 500 I=1,NFREQS '
W= 6.,29318+ARRAY(1,T)
ALM = 2,*(ARRAY(3,T)-ARRAY(2,I)) -20,*RLOG1O(W)
PHASE = ARRAY(4,I) - 90.
ARRAY(4,T) = ALNW
IF (PHASE - 1R0,) 420,420,410
410 PYASE = PHASE - 360.
420 IYF (PHASE + 180.) 430,440,840
430 PHASE = PHASE + 360.
440 ARRAY(7,I) = PHASE
AMGN = 10,**(AL¥/20.)
PHASE = PHASE / 57.29578
ARRAY(2,I) = AMGN * COS(PHASE)
ARRAY(3,I) = ANGN * SIN (PHASE)

- 85 =~

prtd



oy

1]

800 CONTIRDT
IT (LS*) 565,56%,55N
WRITE MOBIITITY CO & QUAD COMPONENTS ONTD DYSX IF LSM>0
550 WPITE(10°LS™) ((ARRAY(1,J),I=2,3),J=1,NFRENS)
WRITE (5,560)
560 FCR™AT (*RYPERTMENTAL MCBTIIITY FILED®)
565 IF (LSTHEC) 575,575,570
READ THFORETICRL MOBILITY FROM DYSK IF LSTHEC>C
570 READ (11*1STHEO)((RRRRY(I,J),1=2,3),J=1,NFREQS)
WRITE (%,572)
572 FOP¥AT (*THRORFTICRL MOBILITY REARD FROM FILIE')
575 WRITE(E,600) TDTAPE,LS™,NFREQS , NPLOTS,FMRX,LSTHFO
A00 FOAPMAT(21U4DATA IDENTITICATION:,40A2//4X,*'T15%=",T12,* VNFREOS=",
1 I13,* NPLDTS=*,I1," FMAY=',F5.0," LSTHEO=",12///)
TF (NPR) 650,659,625
PRINT GUTPUT DRTA TIF SPECTFIED (NPR=1)
£25 WRITE(S,640) ((ARRAY(T,J),I=1,5),1=1,NFREQF)
64C FORMAT(® FRFO co QUAD MAGN
1 PHASE'//(3Y,F5.0, 3E15.4,,F10,.,2))
650 I¥ (NPTFTS-1) 1000,700,700
P1OT MAORILITY MAGNITUDE TF NPLCTS=1 COR 2
7°¢ C!LL PICTR(ARRAY,7,XL?,RMSCY,TACON , NFPF(CS,0,-1,1L4R,TAMSCL ,FMAX,
110
I* (NPLOTS-1) 10C0,1000,920
PILAT MORILITY PHASE IF NPLOTS= 2
970 CMLL PICTR(2RRPY,7,XLPH,PHSCL,IPHCOWN , NFREQ,0,-1,LLAB,-2,FMAX,1)
1040 CONTINUF :
STNP
EXD
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APPENDIX D
COMPUTER PROGRAM ROTAT

Ci*ittitﬁﬁtttppﬂcp\! ROTATQ (222 2222 222

«
C
C

(@]

[ I )

02

(3

<

PROGRAY¥ TO CALCULATT, STORY, & PLOT ROTATIONRL MOBILITIFS FROM STORFD TRANSLA-
TIONRL MCBILITIFS USINT BACKWARD DIFFERENCES
IMTRGFE*2 RUNTD(40), LAMAG(80),LAPH(40)
DIMENSINN SYMR(2,210) ,SYM¥1(2,210),5Y¥N2(2,210)
DIMENSION SYMIN{2,210),SYY1IX1(2,210),SYM1IN2(2,210)
DIMENSION SYM2R(2,210),SY¥2%1(2,210),SY"282(2,210)
DIMENSITN PHS(4), WFS(4), WMS(8), THFS(u4), THNS(4)
DATA PUS/0.,2000,,-400.,40C./
DEFINEY FILE 10 (20,4820,0,NRP)
DEFINE FTLIY 11 (6,420,U,%RC)
RRAD RON TLENTIFICATICY DATA
READ (%,90) RUNID
90 FCRMAT(40A2)
RTAED MNTICN £ EXCITATION IOCATION NOS. AND WHICH TYPES OF MOBILITY ELEENTS
BR™ 7O BE CREATED:
READ(R,100) NY,NXI,XWFEX , KWMEX KTHFEX ,KTHNTIX
135G FORMAT(AIS)
READ MRASURFMENT POTNT NUMBERS ¥, W-4, -2, ANT™ DRTIVING POINT NUMBERS X,
¥-1, K-2; SHDPPIY °*0° WHFRE NUNB¥R IS N/A:
PEAD (%,100) W, M9,42,% ,R1,N2
RFAD PNINT SPACING VALUES (UNITS= %,), NO, OF FREQS., MAX. FREQ.:
CAUTINN: CUECX NDIVENSICN STATFNENTS FCR ARPAY SIZES ¥S. IWPUT NO, OF FEEQS.-
RERD (#,225) DELTYX,DELTYI,NFREQS,FMAY
225 FNRMAT(2F5.3,75,F5.0)
RTAD DTSKX INCATION NUMBFRS OF TRANSLAT. MORILITY FILES TO RE READ- SUFPLY
*n* WHERT NUMBER IS N/A:
READ (5,250)LSHN,LS¥IN,LSM2N,LSHNT,ISHINT, ISM2NT,LS"N2,ISNIN2,
1 TS™2W?
252 FCRMAT(9I5)
REAL DISK TOCATIC™S FGR STORAGE OF RESULTS- SUPPLY *0* WHFRE NUMBER IS N/R:
READ (4,300) LSWFY ,LSWMXY,LSTHFX,LSTHEX
300 FORMAT(4IS)
RFAD ¥n, OF PLOTS OF EACH TYPE OF MOBTLITY DESTRED: O=NONE; 1= WAGN, CNLY;
2= MAGN. AND PUASE
READ (8,390) NPWF,NPWY , NPTHF,NPTHNM
READ SCALE DATA FOR MAGNITUDE PLOTS
PFAD (%,320) ( WES(T), I=1,4)
RTAD (%2,320) ( WES(T), I=1,4)
RERD (8,320) (THFS(I), I=1,8) ~
READ (%,320) (THNS(I), I=1,4)
320 FORMAT (4F10.0)
PRINT QUT INPUT CCNTRCI DATA
WPITF(%,325) RUWID
325 FORMAT(1H1,40R2)
WRITE(5,350)N%,%XI ,XWFEX ,XRNEX,KTHFFX,KTHNFX
WPITE(S,400) M, M1,M2,N,N1,N2
WRITE(S,425) DELTX,DELTXI,NFREQS,FNAX v
H“ITE(S,“SO)LSHN,LS!1l,LSH?l,LSHI1.LSH1I1,IS!2N1,LS'I2,LSH1'2.
1 LSMA2ANZ
WPITF(E,500) 1SWFX,LSW¥X,LSTHFX,LSTR¥X
WRITE(5,575) NPWF NPWNM ,NPTHF ,NPTHN
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333 FORMAT('OCHMPUTE MCBILITIES FOR MOTTON LCCETION® ,I2,°*AND EYCTITAT
1IN LTCRTIAN: LI2//°0 KWFEY=",T1,"*, YWMEY="*,11,"°, XTRFEX="*
2,11,7,  XTENEY=',T1/) -

420 FCR¥AT (0 “EASDRFMENT PTS,: M IS *,I2,*, w1 1S .°,T12,°, ™2
115 *,12/° FORCING ®TS,: N IS *,T2,°, N1 IS *,12,°, N2 IS °*
2,12/

425 FORMATI(') PATNT SPACING VALUES: DFLTY=',F5.3,°, DELTYI =°*,
175,37/ ¥~. OF FREQS.=*,T2,°, MiX, FPEC.='.F5.0/)

4rn FORMAT(*OINPUT TRANSL, MOBTLITY DISX STORAGE LOCATINNS: */20Y,*(™,N
1 IS *,I12,°, (M, ,N-1) IS *,72,°, (¥,N-2) IS °*,12/20%,°(¥-1,8) I
22 *,12,°, (¥=1,%-1) 15 *,72,°, (¥-1,N-2) IS *,12/20%,°(¥-2,%)
IreT *,12,°, (®-2,%¥-1) IS *,12,°*, (¥-2,8-2) IS *,T2/) -
S0 FARMAT('OCUTPUT MORTLITY NISK STORAGE TOCATICNS:*/® W/F IS *,
112,°, WM™ Ic *,12,°, TR/F IS *,T72,°, TH/M IS *,T12/)
52F FORMAT('CFYPERIMENTAL PIOTS TO BF MADE: W/F:',I1,°*, W/M:',IV,°,
1 TH/Fet,TY,t, TH/M:*,T1)
RTAN TORRINCI, ¥MARITITY TATA FROM DISK NNTO ARRRYS:
T= (XTH™EX-1) £00,550,550
SEG OFYAD (10°LSMN ) ((SY¥X (I1,3),1=1,2),J=1,NFREQS)
REED (10°TS™AN ) ((SYMIN (1,3),7=1,2),J=1,YFREQS)
PERD (10°1SM2N ) ((SYM2N (7,7),7=1,2),1=1,%FRE)S)
R¥RD F£43°LS¥N1 Y ((SYMNT (7,3),I=1,2),J=1,YFREQS)
DTAD (10 CTSMINY) ((SY™IN1(T,3),1=1,2),3=1,YFREQS)
RIZAD (10°1S¥2%1) ((SYM2N1(T,J),1=1,2),J=1,%FREQS)
TEAD (10TISYET ) ((SY¥N2 (1,3),I=1,2),J=1,%FREQS)
RIAD (INCLIS®IN2) ((SYMIN2(1,0),7=1,2),J=1,YFREQS)
PERD (17°1SM2K2) ((SYM2N2(T,]),1=1,2),J=1,"FREQS)
~hTO 100
£7C I® (XTUFEY-1) 700,650,650
£50 RERD (14 1SR ) ((SY¥N (71,3),1=1,2),3=1,%YFREQS)
BEED (A0TLSMAY ) ((SY™IR (T1,J),7=14,2),3=1,¥FREDNS)
PEAD (10'1LS¥2% ) ((SY¥2N (T1,3),I=1,2),7=1,%FREQS)
740 TF (KHMEX-1) 200,750,750
750 BRTAD (10°LSMN Y ((SYMN  (I,J),I=1,2),J=1,"FREQS)
PEAD (16°ISMY1 ) ((SYMN9 (T,J),I=1,2),]=1,%FREQS)
READ (10°1S¥NZ ) ((SY™N2 (7,J),I=1,2),J=1,YFREQS)
G7 TO 500
500 RERD (12°1SMN ) ((SYMW  (1,3),7=1,2),3=1,YFREQS)
C CRLZULRTE ROTATIONAL MCOBILITIES:
1970 pn 20Cn NFR=1,NFREQS
IF (¥TU™EY-1) 1400,1100,1100

1100 CO =(C,*SYMN(1,NFR) =12, *SYMNT(1,NFF)+3,*SYMN2(1,NFR)=12,*SYNIN(T,
INTRY4+1F  ASYMAINTI( 1, NFR) =L ASYMIN2(1,"FR)+3, *SY"2R(1,NFR) -4, *SYM2N1
2¢1,NFRY+SYM2N2(1,NFP)) /(4 ,*DELTY*DELTXY)

QUAD=(G.*SY¥N(2, WFP) 12.*SYMN1(2,NFR)+3,*SYMN2(2,NFR)-12,*STMIN(2,
1¥V?)+1F *SYMIN1(2,VFR) -4, *GYF1N2(? NFR)}43,+*SYM2N(2,NFR) -4, *SYM2N1
2(2,NFRY+SYMIKR?(2, FVR))/(H *CELTX*DFLTXT)

SY¥2N2(1,¥FR)= CO

SYM2N2(2,NFR)Y= QUAD

IF (KTHFEX-1) 1800,1500,15CO

Cn = (3,*SYMN(1,NFR)-L *SYMIN(1,NFR)+SYM2¥(1,NFR))/(2.*DELTY)

QUAD= (3, *SYMN(2,NFR)-U,*SYMIR(2,NFR)+SYM2¥(2,NFR))I/(2.*DELTX)

SY™2N(1,NFR)Y= CN

SY¥2K(Z,NFR)Y= QUAD
18450 IF (KWM¥EX-1) 2000,1900,1900
1950 €N = (3.*SYMN(1, NVR) u *SYMN1(1,NFR)+SYMN2(1,NFR))/(2.*DELTXT)

O
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P
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QUAD= (3,%SYMW(2,NFR)-U, *SYMN1(2,NFP)+SY¥ND(2,NFR))/(2,*DFLTXI)
SY¥N2(1,NFRY= CO
SYMN2(Z,NFR)= NUAD
2000 CONTINDE
2 WITE TUE 2ESYITENT MORILITIES ONTO DISK:
TT (LSWFX-1) 2200,2100,2100
2100 WRTTR(I11*LSWFY ) ((SY™¥  (I,0),1=1,2),3=1,NYFREDS)
¥PITE(S,2150)
2150 FORMAT('OW/F “ORJLITY 0 & OUAD FTILFD')
2270 TP (LSW¥Y-1) Z400,2300,2300
7377 WRITR(11°TSHMY ) ((SYMN2 (71,3),7=1,2),3=1,"FREQS)
WRITE(S,2350)
235C FORMAT('OW/™ MORILITY €N £ 0QURD FTILFD')
2400 T% (LSTHFY-1) 2600,2500,2500
2570 ¥RITE(11'1STHFY) ((SY™2N (1,3),1=1,2),J=1,YFREQS)
WRITT (5 ,2550)
2550 FURMAT(*COTH/F ¥OBILITY €O & QUMD FTLED®)
1579 IT (LSTHMY-1) 2800,2700,2700
27790 WRTTE(11°1STHYY) ((SY%2N2(T,3),7=1,2),1=1,YFREQT)
WPTTE(S,2750)
7780 FORMAT('CTH/M MOBILITY CC £ QURD FITED®) -
289 CONTINDT
T CO¥PYTT MACYITUDE AND PHASF DATR, STCRE IN SAMT ARRRYS, AND PLOT:
2900 IT (NPYF-1) 3100,3000,3000
3370 DN 2AOEC NFP=1 ,MFREQS
A¥NR2=CYMN( 1, NPR)**D 4SYNN (D2, NFR)**D
R¥ACN= 10,*ALOG1CG(AM0E2+41.F-3C)
SY¥IN(Z,KFR)= RTAR2(SYMN(2,YFR),SY¥N(1,NFRY)*57,20578
3080 SYMM(1,9FR)= AMACW

CRLY. Moyw ( ' FRFECUENCY, R7

*Y /¥ MNARYLTITY MAGN,, DR RE 1 ¥/ NT SPC LN LAMAG, M ,RD)
CALL “NVE ( ' FRPEQUENCY, 47
d w/F MORYITITY PHRSE, DFG. ',",LAPH,0,20)

CALYL PTIOTR(SY™N,1, 1RMAG,WFS,-1,YFREQS,0,-1,-1004,-2,FMAY 1)
I¥ (NFWF-1) 3100 ,2100,3060
Inen CrLL FTCTR(SY®4%w ,2,LADY, PHS -2 ,NFPRFQS,0,-1,-2004,-2,F%AK,1)
3172% I® (NP%¥4-1) 3300,3200,3200
2z2¢ DN 3250 NFR= 1,¥FPRF0OS
AMNR2=CYMNZ( 1 ,NTR)**2 +SY¥NZ(2,NFR)**2
B¥RAN= 10,*2LNC10(AMNP2+1.E-30)
SY¥NQ(Z,NFR)= ATAND(SY¥N2(2 ,NFR),SYMND2(1,HTR))*RT7,29578
3250 SY¥2N1(1,NFR)= AMACN

CrLL ¥7VE ( ’ TRFQUENCY, W7
*y /¥ MORTLITY “AGN,, DR PE 1/ NT SEC *,0,LAMAG,N,80)
CArLL ¥rVE ( ' FPEQUENCY, W2
* W/¥% MORTLITY PHRSF, DFEG. ', ,1AP4H,0,80)

C:LL PTICTP(SYM2N1,1,LR2M¥RG,W¥S, -1 ,NFFEDF,0,-1,-1304,-2,F¥RY,1)
IF (YPU¥-1) 3300,3300,3260
3260 CMLL BICTR(SY®N?,2,TAPH, PRS,-2,NFRF0S,0,-1,-2004,-2,F"RY,1)
3390 IY (NPTHF-1) 350C,2U0C,340C
wsn NN O34EN NFR= 1,YFRFQS
A¥NB2=CYM2N( 1, NFRY**2 4+SYMZN(2 ,NFR)**2
E¥ACN= 10.,*ALCCI0(RMOB2+41.E-30)
SYMNT(2,NFP)= ATAN2(SYM2N{2,NFR),SYM2N(1,NFR))*57,.29578
IYEG SYVRN(1,NTR)= AMACN
CrLL ¥rVE ( ‘ TREQUENCY, H7Z
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*TH/F MCRILITY “AGN., DB RE 1/ NT SEC '40,LANRG,0,80)

CALL ™CVE ( g FREQUENCY, HZ

* TH/? MORYLITY PHASE, DEG. *y0,LAPH,0,R0)

CALL PICTR(SY™2¥,1,LAMAG,THFS,-1,NFREQS,0,-1,-1704,-2,F"rX,1)

IF (NPTHF-1) 3500,3500,3460
3460 CALL PICTR(SYMN4,2,LAPH,PHS,-2,NFPEQS,0,-1,-2004,-2,FKAY,1)
3500 I¥ (NpTHM-1) 32700,3600,3600
3670 D7 3680 WFR= 1,¥FREQS

AMNB2=CYMON2(1,NFR)**2 +SYM2N2(2,NFP)*+*2

AMAGN= 10.,*ALNG10(AMOPR2+1,E-30)

SYM2N2(2,NFR)= ATAN2(SYM2N2(2,NFR),SYM2N2(1,NFR})*57,29578
3650 SYMIN2(1,NFR)= AMAGN :

CRLL “CVE ( ’ FREQUENCY, HZ

*Tu/M MCRTITTY MAGN,, DB BRE 1/ NT M SEC  °*,",LAMAG,0,80)

CRLL MCVE ( ' FPEQUENCY, H?Z

* TH/¥ MCBTILITY PHASE, DEC. *s0,1APH,0,80)

C*LL PICTR(SY™1N2,1,LAMAG ,THM™S,-%1,NFREQS,0,-1,-1004,-2,FMAY,1)

I¥ (NPTHM-1) 2700,3707,36€0
3667 CALL PICTR(SY™2N2,2,LRPH,PHS,-2,NFREQS,0,-1,-2004,-2,FMX,)
3770 CALL ®=YIT .

FND
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