AN INDUCTOR-TYPE ALTERNATOR

by

Frank E. Steinberg
S.B., MASSACHUSETYS INSTITUTE OF TECHNOLOGY
(1951)

SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September, 1953

Signature of Author... Signature redacted Department of Electrical Engineering, Sept.i953 Certified by... Signature redacted

Accepted by.
Signature redacted
Chairman, Department Committee on Graduate Students

DISCLAIMER OF QUALITY

Due to the condition of the original material, there are unavoidable flaws in this reproduction. We have made every effort possible to provide you with the best copy available. If you are dissatisfied with this product and find it unusable, please contact Document Services as soon as possible.

Thank you.

Due to the poor quality of the original document, there is some spotting or background shading in this document.
ABSTRACT
INTRODUCTION 1
I DESCRIPTION OF THE ALTERNATOR 3
II CALCULATION OF OPEN-CIRCUIT VOLTAGE 7
III THE ALTERNATOR ON LOAD 25
IV TEST RESULTS AND THEIR COMPARISON WITH THE THEORY
V CONCLUSIONSAPPENDIX I:
CALCULATION OF AIR-PATH PERMEANCES 58
OPEN-CIRCUIT LRAKAGE PERMEANCE 60
DRANITVGS 62
APPHIDIX II:
CALCULLATION OF ARMATURE REACTION LEAKAGE PERMEANCE 63
APPENDIX III:
DATA AND EQUIVAIMTT CIRCUIT CALCUIATIONS 64
BIBLIOGRAPHY

AN INDUCTOR-TYPE ALTERNATOR
by
Frank E. Steinberg

Submitted to the Department of Electrical Engineering on Sept.7, 1953 in partial fulfillment of the requirements for the degree of Master of Science.

Abstract

A steady-state analysis of a permanent-magnetic-excited inductor alternator is presented.

The no-load flux linking the armature winding as a function of rotor position is determined by graphical analysis. Once the relationship between flux and rotor position (or equivalently time) is obtained it may be expressed in form of a Fourier series. The open-circuit voltage wave is known with the no-load flux.

With the alternator loaded the ampere turns resulting from armature reaction are shown to act on a flux path different from the path of the no-load flux. This condition is accounted for by introducing an incremental armature reaction permeance which is found to have an average value and a double-frequency component. Odd harmonic flux components result from current acting on this second order permeance. Possible demagnetization of the magnets due to armature reaction under abnormal conditions is discussed briefly.

A vector diagram for the fundamental components is included. Neglecting the double-frequency component of the armature reaction permeance permits to represent the alternator by a simple equivalent circuit for rms quantities. The performance of the alternator is then calculated from this equivalent circuit and compared with experimental results.

Thesis Supervisor: David C. White.
Title: Assistant Professor of Electrical Engineering.

ACKNOWLEDGMENT

The Hughes Aircraft Company, Culver City, California, loaned the turbo alternator to the Dymamic Analysis and Control Laboratory at the Massachusetts Institute of Technology for the purpose of this investigation. The author wishes to thank them for their sponsorship. He is also indebted to D. and R., Ltd., Santa Barbara, California, the manufacturer, for supplying drawings and other information about the alternator.

Professor David C. White's supervision and considerate guidance throughout this investigation are greatly appreciated.

Thanks are also due to Mr . Fred L. Schultz for preparing many of the drawings in this thesis.

INTRODUCTION

At the beginning of this century the need for a highfrequency power source in telecommunication led to studies of high-speed rotary power supplies. It was immediately recognized that the inductor-type alternator is well suited for this purpose. In a machine of this type the rotor consists of a laminated cylinder, slotted at the periphery and is devoid of windings. Consequently, the rotor is of simple and robust construction and may be subjected to high peripheral speeds. Also, since each rotor tooth represents a pole, a large number of poles can be accommodated. Frafs are induced in the armature winding due to a rate of change of flux linkages caused by the periodic pulsations of air-gap permeancees within a unidirectional field, set up generally by a d-c excited winding on the stator. Since the frequency of the induced emf is proportional to the product of rotor speed and the number of rotor poles it follows that the inductor alternator is capable of producing high (up to 50 kcps) frequencies.

More recently industrial applications like induction furnaces, surface hardening, dielectric heating, etc. created a growing demand for high-frequency, heavy-current alternators. Consequently, a variety of inductor-type machines was developed. In all these applications the primary object is to obtain a sufficiently highfrequency, the physical size of the machine mainly entering as a cost factor.

During recent years a new application of high-frequency power supplies has resulted from the need of maximizing the power output per unit volume. This situation exists where space is at a premium. The inductor alternator to be investigated evolved from requirements resulting from this last application. It was constructed by D. and R. Ltd., according to the following specifications:

> Output frequency: 6000 cps, single phase
> Output voltage: between 100 and 200 volts for loads from 60 to 100 watts
> Overall diameter: 2 inches
> Overall length: 1.6 inches

The manufacturer supplied a set of drawings of an alternator type similar to the one tested in this report. Calculations from design data are based on these drawings.

Other outstanding features of this alternator are:
(1) excitation is provided by means of permanent magnets, (2) the flux linking the amature winding is alternating (changing between a positive and negative maximum value), and not merely pulsating unidirectionally as is the case for most inductor alternators.

I. DESCRIPTION OF THE ALTERNATOR

Construction
Figure 1 shows a cross-sectional View of the active parts of the generator. The rotor has six equally spaced poles and is made from a stack of transformer-iron laminations. Surrounding the rotor, separated by a $0.0025^{\prime \prime}$ air gap, is the stator consisting of two laminated soft-iron structures embracing two Alnico V bar magnets. The protruding ends of the soft-iron structures form the four stator poles. Each stator yoke carries a winding of 180 turns of No 31 wire whose terminals are connected to binding posts mounted on the outside of the alternator housing. The entire assembly is cased in a cylindrical aluminum housing and all the air space with the exception of the cylindrical air gap is filled with a thermosetting plastic resin.

Principle of Operation
For the alternator described e.m. fs are induced in the armature windings due to a rate of change of flux linkages caused by periodic changes of air-gap permeances. Accordingly, this machine falls into the class of inductor-type alternators. Excitation is provided by means of the two permanent magnets, which have been polarized so that the magnetic axis of each is pointing in the upward direction. With the rotor in the position shown in Figure $2 a$, the center line of a diametrically opposite pair of rotor poles

$4 \times$ SIZE
AIR GAP 0.0025" not to scale
exactly lines up with the center line of a pair of stator poles. The other pair of stator poles faces the rotor slots. The dashed lines indicate the path of the main flux. Figure 2 b and 2 c show the path of the main flux for the rotor rotated in the clockwise direction by 15 mechanical degrees and 30 mechanical degrees respectively from the position shown in Figure 2 a . These figures show how the flux linking the armature coils varies with the rotor

FIGURE 2
(b)

(c)
position. With the rotor in the position shown in Figure $2 a$ the flux linking each armature coil is directed from right to left and has its maximum value. With the rotor displaced 15 mechanical degrees in the clockwise direction (Fig.2b) the flux linking each armature coil is zero. For the rotor position of figure $2 c$ the flux has again its maximum value but the direction is now from left to right. A further rotation of the rotor by 30 mechanical degrees in the clockwise direction results in the same flux pattern as shown in Figure 2a. Thus if the rotor is rotated through a tooth-slot combination the flux in each stator yoke goes through one complete cycle. Consequently the frequency of the e.m.f. induced in the armature windings is equal to the speed of the rotor in rps times the number of rotor poles, or

$$
\begin{aligned}
& f=\frac{p n}{60} \cdot \cdot(1) \\
& f=\text { frequency in cps } \\
& p=\text { number of poles } \\
& n=\text { rotor speed in rpm. }
\end{aligned}
$$

It should be noted that for this inductor machine the flux linking the armature coils is alternating rather than just pulsating. Also for rotor speed and number of rotor poles given, the output frequency of this machine is twice that of a conventional alternator.

II. CALCULATION OF OPEN-CIRCUIT VOLTAGE

To demonstrate the method of attack to be followed in the solution of the magnetic circuit problem of the alternator let us first consider a simpler, but closely related problem.

PROBLFM

In Figure 3 the cylindrical plunger is subjected to a forced displacement $x=0.05(1.4-\cos \omega t) \mathrm{cm}$ where x is the length of the air gap between the stationary cylinder and the moving plunger. Neglecting all leakage and fringing flux, determine the flux in either yoke as a function of time.

FIGURE 3

When the approximate magnetic field configuration throughout the greater portion of the region of interest is simple and can be determined by inspection the concepts, terminology, and symbolism of circuitry may be applied. Under these conditions it is helpful to make use of the analogy existing between the quantities current, voltage, restistance or conductance of the electric circuit and the quantities flux, mme, reluctance or permeance respectively of the magnetic circuit. Thus the arrangement of Figure 3 can be represented by the equivalent circuits shown in Figure 4.

FIGURE 4

In Figure $4 b$ the permanent magnet is represented as the driving source S and the soft-iron parts plus the air gap appear as the total external reluctance R_{t}. The theoretical justification for considering the permanent magnet as a driving source stems from the fact that inside the magnet the direction of the magnetizing force H is in the negative direction of the flux density B, whereas for the remaining iron and air parts B and E are both positive in the same direction. This situation then permits satisfying the necessary condition that the line integral of II around the closed path of a B-line vanishes. Now consider the source S and the external reluctance seperately as shown in Figure 5.

FIGURE 5

Each of the two circuit elements has a certain flux-mmf characteristic. The solution of the problem is obtained from the requirement that the two conditions

$$
\phi_{S}=\phi_{R} \text { and } F_{S}=F_{R} \cdots \cdots(2 a, b)
$$

must be simultaneously satisfied. Thus by plotting the ϕ - F characteristics of both the external circuit and the permanent magnet on one pair of axes the solution of the problem is obtained as the intersection of these two characteristics. The 1-F curve of the external circuit for any fixed instant of time is obtained by adding together the mmf-drops for each part of the external circuit at selected values of flux. Figure 6 shows these curves for $\omega t=0,45^{\circ}$ and $315^{\circ}, 90$ and $270^{\circ}, 135$ and 225°, 180°, where flux is plotted vs. mmf-drop.

The ϕ - F characteristic of the permanent magnet is derived from the demagnetization curve and incremental permeability for Alnico ∇, the cross-sectional area and length of the magnet.

In Figure 6 the curve $a b c d$ is the normal demagnetization curve of the permanent magnet where flux is plotted vs. mmf-rise. If the magnet is magnetized to complete saturation with the plunger in the position of minimum air gap, the operating point upon removal of the external magnetizing force is represented by point (b) (Fig.6). When the plunger is moved in a direction to increase the air gap, the operating point moves along the demagnetization curve from (b) to (c) where point c represents the condition of maximum air gap. When the plunger is now returned to the

minimum air gap position, the operating point travels along the lower branch of the minor hysteresis loop (shown in dashed lines) from (c) to (e). When the air gap is increased again the operating point moves along the upper branch of the minor hysteresis loop from (e) to (c). Further periodic displacement of the plunger will cause the operating point to traverse this minor hysteresis loop. The maximum external reluctance into which the magnet must operate determines the minor hysteresis loop which the operating point will traverse. To simplify calculation it is convenient to approximate the minor hysteresis loop by a straight line connecting the tips of the loops as shown in Figure 6. This straight line is sometimes referred to as recovery line. The slope of the recovery line is proportional to the incremental permeability $\mu_{\Delta}\left(\frac{\Delta \phi}{\Delta F}=\frac{\text { area of magnet }}{\text { length of magnet }} \mu_{\Delta} ; \mu_{\Delta}=\frac{\Delta B}{\Delta H}\right)$. The magnitude of the incremental permeability varies somewhat with the point on the demagnetization curve at which the recovery line originates. Numerical values for the demagnetization curve and incremental permeability can be obtained from manufacturer's data ${ }^{1}$. In Figure 6 the recovery line is considered to represent the - F characteristic of the permanent magnet operating into a maximum external reluctance corresponding to point C. The intersection of the recovery line with the characteristic of the external reluctance determines the flux for the time instants selected. Figure 7 shows

```
I
See, for instance, The Indiana Steel Product Company, Permanent Magnet Manual No 4 .
```

the solution of the problem where the flux values obtained from rigure 6 are plottea vs. a linear time scale.

The Magnetic Circuit of the Alternator
In Figure 8 the alternator is drawn in a manner to emphasize the elements which are used in the symbolic representation or its magnetic circuit shown in Fisure 9.

FIGURE 8

FIGURE 9
S_{1} and S_{2} represent the permanent magnets, R_{I} and R_{2} the reluctance of the leakage path, R_{f} the reluctance of the inevitable air gap between the permanent magnet and the soft-iron structure. The 4-terminal box stands for reluctances of the stator, rotor and air gap viewed from the pairs of entry $a b$ and $c d$. Leakage flux is considered here to be that fraction of the total permanent-magnet flux which is not transferred to the soft iron. It is assumed that leakage flux emanates from the "ends" or the magnet so that the flux over the effective length of the magnet is constent.

Although two identical magets are used, their \varnothing - F operating characteristic is not necessarily the same, an additional requirement being that they both vork into equal external reluctances. Inspection
of Figure 8, viewing from both entry pairs, shows that this requirement is satisfied for any rotor position. Consequently, the magnets exhibit identical operating characteristics and $R_{11}=R_{12}$. Having established this symmetry the subscripts 1 and 2 become superfiuous and are subsequently omitted.

The desired solution is the flux linking the armature winding, i.e. the flux through the stator yoke. Since the stator yoke is part of the circuit, represented by the 4 -terminal box, the yoke flux will be known when the relationships for the box are established. Subsequently each circuit element is considered by itself and its ϕ - P characteristic determined.

The 4-Terminal Box
In Figure 10 are drawn the parts for which the box is to represent the equivalent circuit. It was shown in the previous article that the fluxes entering at locations a and c are equal and consequently the fluxes leaving at b and d are equal to each other and to the fluxes entering. The flux ϕ entering at a has two possible pathes, (1) through the upper stator yoke, (2) through the left leg towards

FIGURE 10
the rotor. Let the flux along the latter path be ϕ_{α}. Similarly, the flux entering at c has a path through the upper stator yoke
and along the right leg towards the rotor. Let the flux through the right leg be $\phi_{\text {. }}$. From the symmetry of the arrangement it follows that the flux in the lower right stator leg away from the rotor is equal to ϕ_{α}, while the flux through the lower left stator leg away from the rotor equals ϕ_{β}. If the flux through either stator yoke is denoted by ϕ_{a} oc in the direction indicated in Figure 10, there follows

$$
\begin{aligned}
& \phi_{\alpha}+\phi_{\beta}=2 \phi \cdots \cdots(3) \\
& \phi_{a}=\phi_{\alpha}-\phi=\phi-\phi_{\beta} \cdots \cdots(4)
\end{aligned}
$$

Figure 2 a shows the rotor in a position where the center line of a rotor pole lines up with the center line of the upper left stator pole. Let this position $b \in \theta=0$ where θ is the electrical angle between the center lines measured positive for a clockwise rotation of the rotor. 360 electrical degrees correspond to a rotation through a tooth-slot combination or a sixth of a mechanical revolution.

To determine the ϕ - F characteristic of the box the following assumptions are made:
(1) The stator iron is not saturated and consequently the mmf-drop in this part can be neglected compared to the mmf-drop across the air gap.
(2) The rotor core is not saturated and can, as a first approximation, be considered as a body of constant magnetic potential.
(3) For the purpose of calculating the air-gap permeances
the iron boundaries facing the gap may be considered as equal potential surface.

The arrangement of Figure 10 (rotor position $\theta=0$) can then be represented by the equivalent circuits shown in Figure 11

(b)

FIGURE 11
where
$R_{\alpha}^{\prime \prime}$ is the reluctance of the air space between the upper left stator pole and the rotor (also of the diametrically opposite air space).
R_{t} is the reluctance of the rotor tooth.
R_{β} is the reluctance of the air space between the upper right stator pole and the rotor (also of the diametrically opposite air space), and
$R_{\alpha}=R_{\alpha}^{\prime \prime}+R_{t}$.
The fact that the reluctances of dianetrically opposite parts are equal follows from the symetry.

The next step in the solution is the deteranation of the air-path reluctances. The calculation of the permeance of flux pathes through air between surfaces of high-permeability material
has been treated by many writers for several decades. Consequently a large number of methods evolved. At the beginning of the century i'.f. Carter determined by conformal mapping the air-path permeance for an iron core with rectangular slots of width s separated from a continuous iron surface by an air gapg(see Tic.l2). The depth or the slots was assumed sufficiently large so that the bottom face had no effect on the field. He found that the perneance per om of length for the gap and the slot over the width s is given by

FIGURE 12

$$
P=\frac{s}{g}+\frac{2}{\pi} \ln \left\{1+\left(\frac{s}{2 g}\right)^{2}\right\}-\frac{2}{\pi} \frac{s}{g} \tan ^{-1}\left(\frac{s}{2 g}\right) \text { cgs units } \cdot \cdot(5)
$$

and depends only on the ratio $8 / g^{\circ}$
I'he solution of a two-dimensional field problen by the theory of a complex variable is restricted to simple geometrical boundaries. When the geonetrical configuration is not simple an approxination to the solution may be obtained by "field napping" or "relaxation procedures". With experience and effort these methods will furnish a closely approximating solution in most cases. Another, less timeconsuming method is to calculate the permeances of probable flux paths. ${ }^{2}$ Previous experience from simpler cases and the characteristic of a magnetic field to arrance itself for maximum permeance are the cuiding principles in determining simple, though probable flux paths. Based on the last method, rohl ${ }^{3}$ developed a procedure to determine the

[^0]For a detailed discussion see $\mathrm{F} . \mathrm{C}$. Roters "Electromagnetic Devices" Chap. V, John Wiley \& Sons, Inc., Hew York.
3
Robert pohl, "Theory of Pulsating-field lachines," JIRE (London), vol. 93, part II, p. 37, 1946.
air-path permeance, which he calls "Substitute-Angle Method". This method applies well to inductor alternators and will be used here.

In this method the path of the lines of force are assumed radial through the gap and along circle sections in the slot. For the actual slot sides fictious-ones are substituted, which are generated by rotating the sides through an angle α with the periphery as axis. To demonstrate the effectiveness and ease of the method consider the problem solved by Carter. In Figure 12 the assumed paths and the fictitious slot sides are shown in dashed lines. The gap and slot permeance per cm of length is then

$$
\begin{equation*}
P=2 \int_{0}^{s / 2} \frac{d r}{g+\beta r}=\frac{2}{\beta} \ln \left(1+\beta \frac{s}{2 g}\right) \text { cgs units } \tag{6}
\end{equation*}
$$

For the large values of s / g which obtain in inductor machines pohl recommends to operate with an angle $\alpha=0.47$ radian (then $\beta=90^{\circ}-\alpha=$ 1.1 radians). Using this angle Pohl made a comparison between the values of permeance obtained by using carter's formula and his own with the result that the discrepancy over the practical range of $5 \leq s / g \leq 100$ was within one per cent. It is noted that had no substitute angle been used, the permeance values would be to small. This follows from the fact that the field naturally arranges itself for maximum permeance, and hence the substitution of artificial lines of force throughout the air space must in general lead to an underestimate of permeance.

Detailed calculations of the air-path permeances for different rotor positions using the Substitute-Angle Method are presented in Appendix I. All calculations are made per cm of active length in
the axial direction of the machine.
Figure 13 shows the solution for the open-circuit flux da $_{0}$ linking the armature winding for the rotor position $\theta=0$. Referring to this figure and Figure ll, line 1 and line 2 represent the airpath reluctance corresponding to R_{β} and $R_{\alpha}{ }^{11}$, respectively, the abscissa being the $\frac{F}{2}$ - scale.

Curve 3 gives the relationship between flux per unit aotive length and mmf-drop for the tooth (shown as R_{t} in Fig.11), the abscissa is also to be read along the upper scale. This curve is obtained from the magnetization curve for the the grade of steel used in the rotor (see Appendix I). The series reluctances $R_{\alpha}{ }^{\prime \prime}$ and R_{t} are then combined to form R_{α} (line 4) by adding together the mmf-drops. Next, line.l $\left(R_{p}\right)$ and line $4\left(R_{\alpha}\right)$ are combined by adding together fluxes. One half of the resultant flux values are plotted vs. the abscissa, giving curve 5. Line 5 then is the relationship between $\frac{\phi_{\alpha}+\phi_{\beta}}{2} \equiv \phi(\mathrm{eq} \cdot 3)$ and $\frac{F}{2}$ if read on the upper abscissa scale or F if read on the lower scale. In other words, line 5 represents the $\phi-F$ characteristic of the 4 -terminal box viewed from either entry pair. Lines 4 and 5 are separated in the vertical direction by ($\left.\phi_{\alpha}-\phi\right)$, while the distance between lines 5 and 1 equals $\left(\phi-\phi_{\beta}\right)$. From the construction follows $\left(\phi_{\alpha}-\phi\right)=\left(\phi-\phi_{\beta}\right)$. Thus equation (4) is satisfied and $\phi a_{o c}$ can be read of the graph.

Referring to Figure $9 \mathrm{R}_{\mathrm{f}}$ is considered next. It was found by Ewing ${ }^{4}$ that the equivalent air gap of "comparatively rough" joints is

[^1]
less than $0.002^{\prime \prime}$. For this air gap and the contact area of the magnets the mmf-drop across R_{t} is negligible compared to the drops in the remainder of the circuit.

Next, consider the leakage flux from the permanent magnets, represented by the inclusion of R_{l} in Figure 9. The exact determination of leakage flux is a difficult problem. Sometimes a practical solution may be obtained from test. However, since thealternator can not be removed from its housing, an experimental solution is not available. In order to obtain an estimate of the order of magnitude of the leakage permeance, data given by Scott ${ }^{5}$ for the open-circuit permeance of bar magnets are used. (Calculations are shown in Appendix I.) In Figure 13 the leakage permeance is represented by line 6, where the lower abscissa scale is to be used. Adding to curve 5 the leakage flux, gives line 7 which represents the total external reluctance seen by the magnet. Curve 8 is the demagnetization curve of the magnet having been completely saturated initially. The intersection of curves 7 and 8 at a establishes the operating point of the magnet. Since the magnet sees maximum external reluctance for the rotor in position $\theta=0$, the recovery line originates at point a as shown by line 9. Subtracting the leakage flux from line 9 yields line 10. The desired solution is Oac as indicated on the graph.

Having obtained a solution under the assumptions listed on page 14 one should check their validity. A total flux 2ϕ must be transmitted through the rotor core in the direction of decreasing magnetic potential.

5 K.I. Scott, Magnet Steels and Permanent Magnets, Trans. AIEE, vol 51, pp 410-417, 1932.

For the value of \emptyset obtained from ligure 13 parts of the rotor core saturate, and consequently the mf required to drive the flux through the rotor, cannot be neglected. Figure 14 shows the approximate flux density distribution in the rotor. Core saturation is reached in the sections marked a - a. The flux through each of these sections is ϕ. Denoting the reluctance of a section by R_{C}, the core drop is properly accounted for if in the equivalent circuit of Figure llb the short circuit connectirg the two networks is replaced by $\mathrm{R}_{\mathrm{c} / 2}$. Figure 13 is modified by ading

FIGURE 14 the $m m f-d r o p$ for the core to line 5.

This construction is shown in Fisure 15. For other rotor positions the same procedure (subject to minor changes) is used. Figure 16 shows $\phi a_{\text {oc }}$ for $\theta=0^{\circ}, 45^{\circ}$, and 90°. $\phi a_{\text {oc }}$ for $90 \leqslant \theta \leqslant 180$ is obtained from the relationship $\phi a_{o c}(90+\theta)=-\phi a_{o c}(90-\theta) 0 \leqslant \theta \leqslant 90$ which follows from the fact that the roles of ϕ_{α} and ϕ_{β} are simply interchanged over this angle range. Careiul inspection of Figure 1 will reveal that the other half wave will not be absolutely symmetrical to the first one. However, the difference is so small that it can be neglected. In Figure $17 \phi a_{o c}$ is plotted vs. θ. If desired the wave can be expressed in a Fourier series where the coefficient would be determined
-22-

-23-

by one of the many schemes which have been devised for obtaining the Fourier expansion for a periodic function given in graphical form (e.g. Runge's method). With the assumption that the negative half wave is the mirror image of the positive half wave, the Fourier series contains only odd harmonics

$$
\begin{equation*}
\phi a_{o c}=\sum_{n=1}^{\infty}\left(\phi a_{o c}\right)_{n} \cos (2 n-1) \theta \tag{7}
\end{equation*}
$$

Maxwells/cm

The open-circuit voltage is given by

$$
\begin{equation*}
\mathrm{v}_{\mathrm{Oc}}=\mathrm{N} \frac{\mathrm{~d} \phi_{\mathrm{oc}}}{\mathrm{dt}}: 10^{-8}=\mathrm{N} \frac{\mathrm{~d} \theta}{\mathrm{dt}} \frac{\mathrm{~d} \mathrm{a}_{\mathrm{oc}}}{\mathrm{~d} \theta}, 10^{-8} \mathrm{Volts} / \mathrm{cm} \tag{8}
\end{equation*}
$$

where N is the number of turns.
With the alternator operating at a mechanical speed n rpm, $\frac{d \theta}{d t}=2 \pi \frac{n}{10}=2 \pi f($ see eq.l with $p=6)$. Consequently, the rmsvalue of the no-load voltage is proportional to speed (or equivalently frequency), no matter what the wave form may be.

III. THE ALTERNATOR ON LOAD

With the alternator loaded both the permanent magnets and the windings produce magnetizing forces. The effect of the load current to change the no-load flux distribution is commonly referred to as armature reaction.

In most of the better-known high-frequency alternators ${ }^{6}$, operating on the variable-reluctance principle, the d-c ampere turns produced by the field winding and the a-c ampere turns produced by the armature winding act on the same flux path. As Pohl ${ }^{7}$ showed, it is then possible to determine the flux under load by multiplying the permeance of the flux path and the sum of the d.c. and a.c. ampere turns. This method cannot readily be applied to the alternator to be considered here since the magnetomotive force produced by the permanent magnet and the ampere turns resulting from armature reaction do not act on the same path. It is therefore proposed to consider that the open-circuit condition sets the operating point and to treat armature reaction as an incremental effect with respect to this point.

Consider now the upper stator structure in Figure l. On open circuit the entire soft-iron structure was assumed to be at a constant magnetic potential. However, with current flowing in the

[^2]winding there is a potential difference between the parts to the right and to the left of the winding, corresponding to the number of gilbert produced by it. This potential difference causes flux to cross from one part to the other along the following paths: (I) through the upper and lower air space (also penetrating the winding) in an approximately horizontal direction, (2) through the top section of the rotor. Denoting the reluctance of path (I) by R_{a}, the magnetic circuit of the loaded alternator can be represented as shown in Figure 18 ,

where
$R_{\alpha}, R_{\beta}, R_{2}$ are defined on page 25 .
$\$$ represents the permanent magnet and is shown here as an ideal flux source ϕ_{i} in parallel with the reluctance R_{S}. The numerical values of ϕ_{i} and R_{S} can be obtained from the straight line 9 (Fig. 13) which can be represented by the equation $\phi=7600-4.6 \mathrm{~F}$. Thus $\phi_{i}=7600$ Maxwell $/ \mathrm{cm}$,
$\mathrm{R}_{\mathrm{S}}=\frac{1}{4.6} \frac{\text { Gilbert }}{\text { Maxwell }} / \mathrm{cm}$.
R_{c} is defined on page 21 and
$\mathrm{F}_{\mathrm{S}}=0.4 \pi \mathbb{N i}(t) / \mathrm{p} . \mathrm{u}$. axial length represents the rame-source resulting from the armature current.

To consider armature reaction effects, the circuit is viewed from source F_{s} and the incremental fluxes due to this source are determined. For the incremental analysis the ideal flux sources \emptyset_{1} are "open circuits" and reluctances are determined by $\frac{\Delta F}{\Delta \varphi}$ at the operating point of their \varnothing - F characteristics. Incremental reluctance will be designated by affixing a prime to the respective symbol. A rather lengthy calculation shows that the incremental fluxes through R_{S} and R_{l} are small compared to the total incremental flux. Thus as viewed from F_{S}, R_{l} and R_{S} may be considered as "open circuits" without introducing appreciable error. On the other hand, the incremental flux through R_{S} is a measure of the magnetizing or demagnetizing force applied to the permanent magnet. Under normal operating conditions this force is sufficiently small as not to appreciably alter or displace periodically the recovery line determined for the alternator under open circuit. this is particularly true if the rotor core is saturated. However, it may happen that F_{S} attains abnormally high values (possibly due to an inadvertently high speed of the prime mover under capacitive load), in which case the incremental mmf applied to the magnet may cause a permanent partial demagnetization. In case one winding is accidentally open ${ }^{\text {ed }}$ while the alternator is running under load, a large demagnetizing force will result and cause demagnetization.

Returning now to the conditions of normal operation when R_{S} ' and R_{C} ' may be considered as open circuits in respect to F_{S}, one realizes that R_{C} ' has no effect on the circuit viewed from F_{S}.

The incremental circuit for F_{S} can then be represented as show in rigure 19.

figure 19

Determination of Armature Reaction Flux
Refer to Figure 19. in order to calculate the arnature reaction flux $\varphi_{a r}$ for an assumed value of winding current, $R_{\alpha}{ }^{\prime}, R_{\beta}{ }^{\prime}$ and r_{a} must be known. Let us first consider R_{a} since its determination requires less effort than the evaluation of R_{α} ' or $R_{\beta}{ }^{\prime}$. The symbol R_{a} represents the reluctance offered to flux linking all or any number of winding turns having a path which is closed through air (not via the rotor). This flux is called leakage flux. Assuming that the nmf-drop in the iron is negligible against the maf-drop in air along the leakage path, R_{a} is independent of the armature current. If, in addition it is assumed that the leakage flux crosses the air space in straight horizontal lines, and that the current distribution in the armature conductors is uniform, the calculation of R_{a} becones straight forward. Computations for R_{a} are found in Appendix II. The value of the leakage permeance p.u. axial length $P_{a}=\frac{1}{R_{a}}=.9 \frac{\text { Maxwell }}{\text { Gilbert }} / \mathrm{cm}$ The determination of the reluctances $X^{\prime} \boldsymbol{q}^{\prime}$ and R_{β} ' is complicated by the fact that their flux path includes saturated iron and consequently
R_{α} and $R^{\prime}{ }^{\prime}$ do not only depend on rotor position but also on the instantaneous current in the winding.

In the preceding discussion the rotor position was denoted by the angle θ in electrical degrees. When current is considered it is convenient to introduce a time scale and to express θ as a function of time. With the alternator operating at a constant mechanical speed n rpm this angle may be expressed as

$$
\begin{equation*}
\theta=\frac{2 \pi n}{60} p t+\delta=\omega t+\delta \tag{9}
\end{equation*}
$$

where $\quad t$ is time in seconds
$\mathrm{p}=6=$ number of rotor poles
$\omega=\frac{2 \pi n}{}$ is the electrical angular speed of frequency 10 in radians per seconds, and
δ is the electrical angle in radians or degrees corresponding to the rotor position at $t=0$.

To simplify matter, let us_{*}) consider only the fundamental component of the winding current and let

$$
\begin{equation*}
i=I_{\max } \cos \omega t \tag{10}
\end{equation*}
$$

Positive current is defined as current which produces armature-reaction flux in the stator yoke from right to left, i.e. in the direction of positive (no-load)flux (see Fig.10). The significance of the angle δ is now apparent. At the instant $t=0$ the center line of a rotor pole has moved δ electrical degrees beyond the center line of the stator reference pole, while the current is at its maximum value. Consequently, δ is the angle by which the current maximum lags the

[^3]permeance maximum under the reference pole. $\boldsymbol{\delta}$ is positive for operation as a generator. 'The value of R_{α} ' and R_{β} ' for a given rotor position θ depends on the instantaneous current corresponding to θ. To calculate this current value, $I_{\text {max }}$ and $\boldsymbol{\delta}$ must be known. It will be shown later that $I_{\text {max }}$ and δ are fixed if the alternator speed and the load impedance are given. However, in order to calculate $I_{\text {max }}$ and δ, R_{α} ' and R_{β} ! must be known. Under these circumstances the only practical way of calculating R_{α} and R_{β} ' is to estimate values for $I_{\max }$ and δ corresponding to the specified load condition. Having obtained R_{α} and $R_{\rho}{ }^{\prime}, I_{\max }$ and \mathcal{J} are calculated and compared with the estimated values. If necessary, this procedure may be repeated.

Let us now consider the evaluation of R_{α} and R_{β} ' for an assumed value of $I_{\max }=B$ amps and $\delta=135^{\circ}$. Then $i(t)=B \cos \left(\theta-135^{\circ}\right)$
and $\quad F_{S}=0.4 \pi \mathrm{Ni}(t)=0.4 \pi \mathrm{NB} \cos \left(\theta-135^{\circ}\right)=\mathrm{F}_{\text {max }} \cos \left(\theta-135^{\circ}\right)$
where N is the number of turns. In Figure 16 the (static) flux-mmf characteristic of R_{α} and R_{β} ($\frac{F}{2}$ - scale) are plotted for $\theta=0,45^{\circ}, 90^{\circ}$. By using the relationship $R_{\beta}(\theta-180)=R_{\alpha}(\theta)$ and $R_{\alpha}(\theta)=R_{\alpha}(360-\theta), R_{\alpha}$ and R_{β} can be obtained in 45° intervals over the entire range from $\theta=0$ to 360°. The no-load operating points are also indicated in Figure 16. These curves are redrawn in Figure 20 merely for the purpose of demonstrating the method to be used in calculating R_{α}, and R_{β} (n (nemerical values will be obtained from Figure 16). For $\theta=0, F_{S}=-0.707 F_{\text {max }}$. This mmf causes a negative armature reaction flux $\left(\boldsymbol{Y}_{\mathrm{ar}}\right)_{r}$ which aids the no-load flux $\phi_{\boldsymbol{f}}$ of the right-hand

-31-

stator pole and opposes the no-load stator flux ϕ_{α} of the left-hand stator pole. The total ampere turns F_{S} are divided between the two series reluctances in such a way that equal flux increments (Sar) r result. The incremental reluctances are then given by $R_{\alpha}^{\prime}=\frac{\left(\varphi_{a r}\right)}{F_{\alpha}^{\prime}}$ and $R_{\beta}^{\prime}=\frac{\left(Y_{a r}\right) r}{F_{\beta}^{\prime}}$. This construction for $\theta=0$ is shown in Figure 20, where all components are labelled. For $\theta=45^{\circ}$, $F_{S}=0$. The values of R_{α}, and $R_{\beta}{ }^{\prime}$ are then determined as the slope at the operating point of the respective characteristic. For $\theta=90^{\circ}, F_{S}=0.707 F_{\max }$. The armature reaction flux is now aiding the no-load flux ϕ_{α} and opposing ϕ_{β}. For $\theta=135^{\circ}, F_{S}$ reaches its maximum value. The incremental fluxes for each of these values of θ are shown in Figure 20. Over the range $180 \leqslant \theta \leqslant 360$ the events occurring for $0 \leqslant \theta \leqslant 180$ are precisely repeated with the roles of R_{a} ' and R_{p} ' interchanged.

It is noted that the graphical construction of rigure 20 provides the solution for (gar) under the specified condition ($I_{\max }=B, \delta=135^{\circ}$). There would be very little purpose in determining incremental reluctances if the alternator would always operate under this condition. This is obviously not the case and the reason for introducing incremental reluctances is to permit an analytical solution for varying operating conditions.

The incremental reluctances R_{α} ' and R_{β} ' can be determined from Figure 20 as a function of θ. Defining then

$$
\begin{equation*}
P_{a r}=\frac{1}{R_{a r}}=\frac{1}{R_{\alpha}^{7}+R_{p}^{1}} \tag{12}
\end{equation*}
$$

the armature reaction flux is given by

$$
\begin{equation*}
\left(\varphi_{\mathrm{ar}}\right)_{\mathrm{r}}=F_{\max } \cos (\theta-\delta) P_{a r}(\theta)=F_{\max } \cos (\omega t) P_{a r}(\omega t+\delta) \tag{13}
\end{equation*}
$$

If equation (13) is used to determine ($\left.\varphi_{a r}\right)_{r}$ for an operating condition different from the one for which $P_{a r}$ has been calculated, an error is introduced. This error results from replacing the curved $\phi-F$ characteristics by straight lines passing through the no-load operating point. In order to obtain a measure of this error, $P_{a r}$ has been calculated for three largely different values of $\boldsymbol{\delta}$, which is equivalent to considering a wide range of operating conditions.

In Figure 21 are plotted the functions $\mathrm{P}_{\mathrm{ar}}(\theta)$ for parameter values of $\delta=135^{\circ}, 90^{\circ}, 45^{\circ}$. These curves are obtained from Figure 16 by the method previously described. Referring to Fig. 21 we note that each of the three $P_{a r}(\theta)$ functions is made up of an average term on which is superimposed a double-frequency component. Thus we may write

$$
\begin{equation*}
P_{a r}(\theta)=P_{\text {ave }}+\sum_{n=1} P_{n} \cos \left(n 2 \theta+\rho_{n}\right) \tag{14}
\end{equation*}
$$

It will be shown later that for purely resistive and inductive ($R-L$) loads $90 \leqslant \delta \leqslant 180$ and for capacitive $(R-C)$ loads $0 \leqslant \delta<180$. Consequently, the two top curves in Figure 21 may be considered to be representative of $P_{a r}$ for a large variety of operating modes. Since these two curves do not differ very considerably, the error

FIGURE 21

incurred by using a fixed $P_{a r}(\theta)$ in equation 13 for a range of alternator operating conditions seems tolerable.

In order to facilitate an analytical solution, let equation 14 be approximated by

$$
\begin{equation*}
P_{\mathrm{ar}}(\theta)=P_{\mathrm{ave}}-P_{1} \cos (2 \theta) \tag{15}
\end{equation*}
$$

Approximating the $\mathrm{P}_{\mathrm{ar}}(\theta)$-functions of Figure 21 by equation 15 is expected to give reasonable results for rms-currents and rmsvoltages. However, if the wave forms of these quantities are to be considered, curves like those in Figure 21 should be plotted, and their Fourier representation (eq. 14) be used.

We are now in a position to determine the resultant flux linking the armature winding for the loaded alternator. The resultant flux is equal to the sum of the no-load flux $\phi a_{o c}$ and the armature reaction flux $\phi_{\text {ar }}$. Figure 17 shows the no-load flux as a function of θ. Restricting ourselves to the fundamental component, the equation for this flux may be written as

$$
\begin{equation*}
\phi a_{o c}=\phi_{\max _{0 c}} \cos \theta \tag{16}
\end{equation*}
$$

where $\phi_{\max _{0 c}}$ is determined by Figure 17. Referring to Figure 19 the armature reaction flux is obtained by multiplying the mmf resulting from the armature current by the sum of the constant leakage permeance P_{a} and the armature reaction permeance $P_{a r}$, hence

$$
\begin{equation*}
\varphi_{a r}=\left(\varphi_{a r}\right)_{a}+\left(\varphi_{a r_{r}}\right)=0.4 \pi \mathrm{Ni}(t)\left\{P_{a}+P_{a r}\right\} \tag{17}
\end{equation*}
$$

Considering only the fundamental component of the current $i(t)$ as in equation 10 and substituting for $P_{a r}$ the value from equation 15

$$
-36-
$$

gives

$$
\begin{equation*}
\varphi_{a r}=0.4 \pi N I_{\max } \cos \omega t\left\{P_{a}+P_{a v e}-P_{1} \cos 2 \theta\right\} \tag{18}
\end{equation*}
$$

using equation 9 and adding $\phi a_{o c}$ to $\varphi_{\text {ar }}$ results in

$$
\begin{equation*}
\phi_{\text {res }}=\phi_{\max } \cos (\omega t+\delta)+0.4 N N I_{\max } \cos \omega t\left\{P_{a}+P_{a v e}-P_{1} \cos 2(\omega t+\delta)\right\} \tag{19}
\end{equation*}
$$

with the trigonometric identity $\cos \alpha \cos \beta=\frac{1}{2}[\cos (\alpha-\beta)+$ $\cos (\alpha+\beta)]$ and letting

$$
\begin{equation*}
P_{a}+P_{\text {ave }}=P_{0} \tag{20}
\end{equation*}
$$

$\phi_{\text {res }}=\phi_{\text {max }_{\mathrm{Oc}}} \cos (\omega t+\delta)+0.4 \pi N I_{\max } P_{0}$ cos ωt

$$
\begin{equation*}
-0.4 \pi N I_{\max } \frac{P I}{2} \cos (\omega t+2 \delta)-0.4 N \pi I_{\max } \frac{P 1}{2} \cos (3 \omega t+2 \delta) \tag{21}
\end{equation*}
$$

Equation 21 shows the very significant fact that even if opencircuit flux, armature current, and armature reactance permeance are assumed sinusoidal, the resultant flux will contain a third harmonic. This means, no matter how much pain is taken to shape the rotor poles for sinusoidal open-circuit voltage, harmonics will be generated under load unless other means are used to elmingate them.

For the discussion which follows, only the fundamental component of the resultant flux is considered. Then equation 21 can be represented in form of a vector diagram, as shown in Figure 22, with the current taken as reference vector. hes induces the emf E which lags the resultant flux by 90°. To obtain the terminal voltage V_{T}
*)
the $\operatorname{IR}_{\text {eff }}$ drop must be subtracted from $\underset{* *)}{\mathbb{E}}$, where $R_{e f f}$ is the effective a-c resistance of the winding.

Figure 22

Determination of Current for Given Load and Speed

With a load impedance Z connected to the alternator terminals

$$
\begin{equation*}
\left.\overline{\mathrm{I}}=\overline{\mathrm{V}}+\overline{I R}_{\theta f \mathrm{f}}=\overline{I Z}+\overline{I R_{e f f}}=\bar{I}\left(R_{e f f}+\mathrm{R}+j X\right)^{* * *}\right) \tag{22}
\end{equation*}
$$

with $Z=R+j X$ and $X=\left\{\begin{array}{cl}\omega L & \text { for inductive load } \\ -\frac{1}{\omega C} & \text { for capacitive load }\end{array}\right.$
*) What is commonly known as leakage reactance has already been taken care of.
**) Into the effective resistance are reflected the increase of copper loss in the winding, resulting from non-uniform current distribution and the incremental iron loss, caused by armature current.
***) Electrical quantities without a subscript refer to rms-values.

From the vector diagram

$$
\begin{equation*}
\bar{\phi}_{\text {res }}=\phi_{\max _{o c}} \angle \delta+0.4 \pi N I_{\max } P_{0}-0.4 \pi N I_{\max } \frac{P_{1}}{2}<2 \delta \tag{24}
\end{equation*}
$$

using Faraday's Law

$$
\begin{equation*}
\overline{\dot{E}}=-j \frac{N \omega}{\sqrt{2}} \bar{\phi}_{r e s} \times 10^{-8} \tag{25}
\end{equation*}
$$

and combining equations 22,24 and 25 yields

$$
\begin{align*}
\frac{N \omega}{\sqrt{2}} \cdot 10^{-8} \phi_{\max _{o c}}(\delta-90 \tag{26}
\end{align*}=I\left\{R_{e f f}+0.4 \pi N^{2} \frac{P_{1}}{2}, 10^{-8} \omega \sin (2 \delta)+R \quad(26),\right.
$$

letting

$$
0.4 \pi \mathrm{~N}^{2} \mathrm{P}_{\mathrm{O}} \times 10^{-8}=\mathrm{L}_{0}, \quad 0.4 \pi \mathrm{~N}^{2} \frac{\mathrm{P}_{1}}{2} 10^{-8}=\mathrm{I}_{1} \quad(27 \mathrm{a}, \mathrm{~b}, \mathrm{c})
$$

$$
\frac{2 \pi}{\sqrt{2}} \times 10^{-8} \phi_{\max _{\mathrm{OC}}}=K
$$

where the

> Is have the dimensions of inductance
and K has the dimension of Volt/cps,
then equation 26 becomes

$$
\overline{\bar{E}}=\operatorname{Kf}\left\langle\delta-90=I\left\{R_{e f f}+\omega L_{1} \sin 2 \delta+R+j\left(\omega I_{0}-\omega L_{1} \cos 2 \delta+X\right)\right\}(28)\right.
$$

If in equation 28 the real part of the right-hand side is equated to the real part of the left-hand side, and the same procedure is followed for the imaginary parts, two independent equations in the unknowns I and δ are obtained. Solving theses equations, one finds

$$
\begin{align*}
\tan \delta & =-\frac{R_{e f f}+R}{\omega\left(L_{0}+I_{1}\right)+X} \tag{29}\\
I & =\frac{K f \sin \delta}{R_{e f f}+R+\omega L_{1} \sin 2 \delta} \tag{30}
\end{align*}
$$

Equations 29 and 30 permit then to find the current I when the load (R and X) and the speed n (or equivalently wor f) are specified. We note from equation 29 that $90<\delta<180$ for inductive loads, since then $X>0$ and $\tan \delta<0$. For capacitive loads for which $X<0$: $90<\delta<180,0<\delta<90, \delta=0$ if the denominator of equation 29 is positive, negative, zero, respectively.

Although equations 29 and 30 permit to solve for the current, it may be more helpful to use an equivalent circuit representation. For this purpose equation28 is best adapted and is used to obtain the circuit shown in Figure 23.

FIGURE 28

Where

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{eq}}(\delta)=\omega L_{1} \sin 2 \delta \text { and is }\left\{\begin{array}{l}
\text { positive for } 0<\delta<90 \\
\text { negative for } 90<\delta<180
\end{array}\right. \\
& L_{\mathrm{eq}}(\delta)=\omega L_{I} \cos 2 \delta \\
& \frac{I}{\mathrm{C}_{\mathrm{eq}}}(\delta)
\end{aligned}
$$

switch S_{1} is closed (S_{2} open) when $45<\delta<135$ switch S_{2} is closed (S_{1} open) when $0<\delta<45,135<\delta<180$

Numerical values for the circuit parameters are obtained from figures 17 and 21 in conjunction with equations 20 and 27 , and the value of leakage permeance given on page 28. With the number of turns $N=180$ and an effective axial length $1=2.2 \mathrm{~cm}$

$$
\left.\begin{array}{l}
K=\frac{2 \pi N}{\sqrt{2}} 10^{-8} \phi_{\text {max }}=\frac{2 \pi}{\sqrt{2}} 18010^{-8} 15502.2=0.0274 \mathrm{~V} / \mathrm{cps} \\
I_{0}=0.4 \pi N^{2} P_{0} 10^{-8}=0.4 \pi(180)^{2} 7.62 .210^{-8}= \\
I_{1}=0.4 \pi N^{2} \frac{P_{1}}{2} 10^{-8}=0.4 \pi(180)^{2} \frac{1.7 .2 .2}{2} 10^{-8}=
\end{array}\right\}
$$

The usefulness of this equivalent circuit is impaired by the fact that the circuit elements having the subscript "eq" are dependent on the load, i.e. are non-linear. It is noted that only I_{l} gives rise to these non-linear elements. The value of L_{l} is always $l_{e s s}$ than $\frac{L 0}{2}$, and is usually small compared to L_{0}. If it is assumed that the effect of I_{1} on the fundamental component of the resultant flux is negligible, (i.e. the quantity $0.4 \pi I_{\max } \frac{P_{1} N}{2}$ in the
-41-
vector diagram of Figure 22 is discarded) the simple equivelent circuit shown in Fig. 24 is obtained. The element values of this

FIGURE 24
equivalent circuit can be determined from design data of the alternator as was done previously or may be obtained from simple tests. The value of K is found from on open-circuit test as the ratio of the no-load voltage to the frequency, or

$$
\begin{equation*}
K=\frac{V_{O C}}{f} \tag{32}
\end{equation*}
$$

A short-circuit test will determine the value of L_{0}. The output terminals are short-circuited through a thermoammeter, and the alternater is driven at a sufficiently high speed, so that $\omega L_{0}>R_{\text {Reff }}$. This condition can be observed experimentally by the fact that a constant current will result above a certain frequency. Denoting this value of current by $I_{s c}$,

$$
\begin{equation*}
L_{0}=\frac{K}{2 \pi I_{S c}} \tag{33}
\end{equation*}
$$

In case $I_{s c}$ is of such magnitude as to be destructive, the procedure is altered by connecting a known inductance I_{n} across the output,
-42-
just sufficient to limit the current to a safe value $I_{s c}{ }^{\prime}$, then

$$
\begin{equation*}
I_{0}=\frac{K}{2 \pi I_{S c}},-I_{n} \tag{32a}
\end{equation*}
$$

The effective resistance $R_{e f f}$ is discussed in the following chapter where the performance characteristics of the alternator are calculated from the equivalent circuit of Figure 24 and compared with experimental results.
IV. TEST RESULTS AND THEIR COMPARISON WITH THE THEORY

Before the experimental results are presented a few preliminary remarks seem necessary. After receiving the alternator, the rotor was removed in order that parts of the machine could be inspected. The removal of the rotor and the fact that the polarities of the magnets are in opposition cause each magnet to operate on a portion of its demagnetization curve corresponding to small values of flux desity. Consequently, when the machine is reassembled the permanent magnets will not reassume their inital state and should be recharched. At the time, the author did not have a suitable electromagnet at h is disposal. Therefore the machine was given to a local company having a "large" electromagnet with instructions to magnetize the permanent magnets. When the alternator was returned the test results presented in this chapter were obtained. Later the author built an electromagnet capable of supplying sufficient ampere turns to yield saturation flux density in the permanent magnet. Having charged the permanent magnets with this electromagnet, the alternator was given an open-circuit test. While taking data of no-load voltage vs. frequency, a number of turns of one winding became permanently short circuited due to an unknown cause. The data already obtained showed that the no-load voltage was much higher ($K=0.029 \mathrm{~V} / \mathrm{cps}$) than for the case where the magnets had been polarized by the above-mentioned company, indicating that they did not fully charge the magnets.

In the previous chapters all curves and numerical calculations were derived under the assumption that the magnets have been
origninally charged to their saturation value, as would normally be the case. Since the test results that follow were not obtained for this condition, the equivalent circuit values given on page 40 do not apply. In order to compare experimental and calculated results the equivalent-circuit elements must be evaluated for the state of the permanent magnets under which the tests were taken. I'his is accomplished by determining the value of the equivalent-circuit elements from experimental data. For all tests the alternator was driven by its own turbine, operated on filtered air (the alternator and turbine were supplied as a unit), and the two stator windings were connected in parallel. Voltage and current were measured with thermo-couple instruments, and frequency with an electilic frequency meter. In the following the results from experimental tests are presented and discussed, data and sample calculations are shown in Appendix III, where also the equivalent circuit used for calculations is derived. In all calculations involving the equivalent circuit, the effective armature resistance was taken equal to the d-c resistance of the winding. It is known that this results in a value which is too small. The increase in a-c resistance, resulting from non-uniform current distribution in the winding can be estimated by using a formula ${ }^{*}$) developed for coils embedded in slots. According to this formula the per-cent increase of
*) See e.g. Rudolf Richter, Kurzes Lehrbuch der elektrischen Naschinen, p 94, Springer-Verlag 1949
resistance varies approximately with the square of the frequency. A rough calculation shows that for the small wire size of the alternator winding the increase in resistance from this cause will not excced 10 per cent for frequencies up to 8 kcps . On the other hand the increase in effective resistance due to incremental core loss, which appears to be of much larger order of magnitude (200 to 400 per cent at 8 kcps), is much more difficult to account for. It is suggested that the effective resistance be determined experimentally. A possible procedure will be mentioned when test results with a capacitive load are considered.

Open-Circuit Characteristic

Figure 25 shows the no-load voltage to be a linear function of frequency. This was to be expected from the considerations on page 24 , if the change of apparent permeability due to core loss is neglected.

$$
-46-
$$

The slope of this straight line gives the value of K .

$$
K=0.0178 \text { Volt/cps. }
$$

The top and bottom curves of figure 26 represent the noload flux and open-circuit voltage, respectively, as they appeared on the oscilloscope. The flux pattern was obtained by using an integrating circuit.

Resistive Load

In Figure 27 the curves in full lines show the output power and terminal voltage as a function of load current for a purely resistive load at a fixed frequency. Two sets of curves are shown, one for a frequency of 2000 cps , the other for 3000 cps . Calculated results are shown in dashed lines. It is observed that maximum power for both the 2000 cps and 3000 cps curve occur at approximately the same current. This result can also be obtained by considering the equivalent circuit. For a fixed frequency the internal impedance of the alternator is constant. Maximum power transfer to the load then results when the load
-47-

$$
-48-
$$

resistance matches the magnitude of the internal inpedance, or

$$
R=\sqrt{R_{\in f f}^{2}+\left(\omega L_{0}\right)^{2}}
$$

and

$$
I=\frac{K f}{\sqrt{\left(R_{e f f}+R\right)^{2}+\left(\omega L_{0}\right)^{2}}}
$$

For $\omega L_{0}>R_{\theta f f}, \quad R \approx \omega I_{0}$ and
the current at wich maximum power occurs

$$
I \approx \frac{K f}{\sqrt{2} \omega L_{0}}=\frac{K}{\sqrt{2} 2 \pi I} \approx \frac{1}{\sqrt{2}} I_{S c}
$$

and is independent of frequency.
Figure 28 shows current wave forms for a resistive load of 80 ohms at 3 different frequencies. The top curve corresponds to $f=5000 \mathrm{cps}$ and $I=.53 \mathrm{amp}$, the one below it to $f=2000 \mathrm{cps}$ and $I=.34 \mathrm{amp}$ and the one on the bottom was taken for $\mathrm{f}=500 \mathrm{cps}$ and I. . 101 amp. The effect of armature reaction on the wave form as current increases, is clearly recosnized.

FIGURE 28

Capacitive ($\mathrm{R}-\mathrm{C}$) Load
Figures 29, 30, 31, 32 show the current, voltage across the capacitor, terminal voltage, and power, respectively, as a function of frequency for a series $R-C$ load. Three curves are shown in each figure, corresponding to resistance values of 30,50 , and 100 ohms. The same capacitance was used througout this test, and its value was selected to produce a reactance equal in magnitude to the reactance resulting from the equivalent-circuit inductance at 2000 cps. In Figure 29 calculated values are shown along with the experimental results. Comparing the experimental with the calculated values, one finds that the discrepancy is largest for frequencies in the vicinity of 2000 cps . Also the discrepancy increases with decreasing load resistance. At frequencies close to 2000 cps. the current calculated from the equivalent circuit depends almost entirely on ($\mathrm{R}_{\text {eff }}+\mathrm{R}$), since the resultant reactance is approximately zero. Consequently, the value of $R_{\text {eff }}$ exerts an appreciable influence on the equivalent circuit behavior over this frequency range. If for $R_{\text {eff }}$ a larger value than $R_{d c}$ had been used (which would be the proper procedure), the discrepancy between experimental and calculated results would be smaller.

Under the assumption that the equivalent circuit of Figure 24 is a proper representation of the alternator, the remarks made in the preceding paragraph suggest a possible experimental procedure to determine $R_{\text {eff }}$ as a function of frequency: The alternator is driven at a speed corresponding to a frequency f_{1}, operating into

-51-

FIGURE 31

a R - C load. The value of C is adjusted to resonate with the machine inductance at f_{1}, and R is made as small as is possible without drawing excessive current. The effective resistance at f_{1} is then given by $R_{\text {eff }}=\frac{K_{f_{1}}}{I_{1}}-R_{1}$ (the value of R_{1} should be carefully measured). This procedure is repeated for other *) frequencies. Referring again to Figure 29 one finds that the current may or may not have a relative maximum, depending on the value of R. In Appendix III, eq. 2 gives the frequency at which maximum current occurs, if there is one, otherwise the formula indicates that there is no maximum. From this formula the frequency at which maxinum current occurs for the three cases is $f=2090$ for $R=30, f=2840$ for $R=50$, and no maximum for $R=100$. This agrees well with the experimental results.

The capacitor voltage (Fig. 30) is a maximum for the resonant frequency. The value of this maximum voltage can be determined from equation l in the Appendix III. Thus, for $R=30, V_{c_{\max }}=56$, $R=50, V_{c_{\max }}=36$, and $R=100, V_{c_{\max }}=18.6$. These values $\mathrm{com}-$ pare favorably with the test points.

Figure 33 shows again characteristics for a capacitive load where the value of capacitance was selected for resonance at 5000 cps. Note the sharp increase of all variables as the resonant frequency is approached.

[^4]-53-

-54-

It was stated on page 36 that the fundamental component of the current acting on the double-frequency term of the armature reaction permeance, gives rise to a fundamental and a third harmonic component of flux. This third harmonic flux induces a third harmonic emf. The magnitude of the third harmonic current caused by this emf depends on the impedance offered to currents of this frequency. Figure 34 a is a reproduction of the current wave form as it appeared on the oscilloscope when the alternator was driven at 6200 rpm (corresponding to a fundamental frequency of 620 cps$)$, operating into a capacitive load with $R=5$ ohms and $C=1.47 \mu f d$. This value of capacitance resonates with the internal inductance of the alternator at 2000 cps . It then follows that for third harmonic quantities the capacitive reactance nearly neutralizes the internal inductive reactance. Consequently, a large third harmonic current component is set up. Figure 34b will prove helpful in interpreting the wave form of Figure 34 a as the result of mainly a fundamental and a third harmonic.

(b)

v. CONCLUSIONS

The small discrepancy between calculated and experimental results in the preceding chapter indicates that the equivalent circuit of Figure 24 closely simulates the behavior of the alternator over a wide operating range. The equivalent circuit constants, K and L_{0}, were determined from test data since the state of the permanent magnets was not known. In equation 31 these constants were determined for one winding purely from design data assuming that the magnets had been charged to their saturation value. Comparing the two sets of values (where L_{o} in equation 31 must be used since the two windings are in parallel) one finds that K determined from equation 31 is larger than the test value and $\frac{L_{0}}{2}$ from equation 31 is smaller. Under the assumption that the values determined from design data are correct, the discrepancy is explained by the fact that the two sets of values correspond to different states of the permanent magnets. The following question then naturally arises: For rotor and stator given, what excitation should be supplied to obtain maximum output? For maximum output K should obviously be as large as possible and it is desirable to make L_{0} small. L_{0} will be small if the iron in the path of the armature reaction flux is saturated. The requirement on L_{0}, however, is not very stringent since the effect of L_{0} can be neutralized by a series-connected compacitor, if operation is confined to a narrow frequency band. The availability of suitable capacitor in small physical sizes is an outstanding advantage in the application of high-frequency
alternators. For the alternator under investigation a suitable mica or ceramic capacitor would not exceed the size of a lo-cent coin.

We can now concentrate the discussion on K. To simplify matters, assume that the rotor core is not saturated, then Figure 13 applies. (This assumption is not anreasonable since it will usually be possible to make the rotor core deep enough to accommodate the tooth flux). In Figure 13 the operating point lies in a strongly saturated region. The useful maximum alternating flux is given by the distance between lines 4 and 5 and 5 and 1 and is a direct measure of K . Observe that the ratio of permanent magnet flux \emptyset_{S} to useful flux ϕ_{oc} is large (appr.4). Suppose now that due to a decrease in excitation (diminishing the permanent magnet dimension), the operating point moves toward the left along line 5. This will cause K to increase until the operating point has moved to the ordinate for which the tangent to line 4 is parallel to line l. Here K reaches a maximum value. It is believed that operation at or near this point will yield maximum output. Note that the ratio of permanent magnet flux to useful flux has been appreciably reduced. There remains to solve the design problem which is twofold (l) to find a magnet which will place the operating point in the region for which K isamaximum, (2) to minimize the volume of this magnet. The solution of this problem is found in the paper by Hornfleck and Edgar.*)

[^5]
APPENDIX I

Evaluation of $P_{\alpha}^{\prime \prime}$ and $P_{\beta}^{\prime \prime}$ for rotor position $\theta=0$

Figure 1 defines the sections into which the air space must be divided in order to calculate the permeance according to the Substitute-Angle Method. Dimensions are obtained from the drawings included at the end of this appendix. These drawings were supplied by $D \& R$, Ltd. The substitute angle α is taken as 0.47 radian $=27$ degrees, and calculations are performed for a machine of 1 cm axial length. If Figure l is considered to be rectified in the sense of the descriptive geometry the following relations apply:

$$
\begin{aligned}
P_{1} & =\frac{.113}{.0025}= \\
2 P_{2} & =2 \int_{0}^{\frac{01}{01}} \frac{45}{0025+\beta_{1} r} \\
\beta_{1} & =90-\alpha-15^{\circ}-48^{\circ}=.838 \text { radian units } \\
2 P_{2} & =\frac{2}{.838} \ln \left(1+.838 \frac{.01}{.0025}\right)= \\
2 P_{3} & =2 \int_{0}^{.066} \frac{d r}{.0025+\beta_{1}(r+.01)+\beta_{2} r} \\
\beta_{2} & =90-\alpha-30=33^{\circ}=.576 \text { radian } \\
2 P_{3} & =2 \int_{0}^{.066} \frac{d r}{.0025+\beta_{1} \times .01+\left(\beta_{1}+\beta_{2}\right) r} \\
& =\frac{2}{1.414} \ln \left(1+1.414 \frac{.066}{.011}\right)=
\end{aligned}
$$

-59-

FIGURE 2

$$
-60-
$$

Figure 2 pertains to $\mathrm{P}_{\boldsymbol{\beta}}$, and is shown in developed form.
$2 P_{1}=2 \int_{\frac{.151-.133}{2}}^{\frac{.0025}{2}+\beta_{1} r}=\frac{2}{.838} \ln \frac{1+.838 \frac{.0755}{.0025}}{1+.838 \frac{.009}{.0025}}=4.9 \mathrm{cgs}$ units
$2 \mathrm{P}_{2}=2 \int_{0}^{.009} \frac{\mathrm{dr}}{.0025+\beta_{2} r+\beta_{1}(.009-r)}=\frac{2}{\beta_{2}-\beta_{1}} \ln \left(1+\beta_{2}-\beta_{1} \frac{.009}{.01}\right)=1.6$ cgs units
$P_{3}=\int_{.009}^{.095} \frac{\mathrm{dr}}{.0025+\beta_{2} r}=\frac{1}{.576} \ln \frac{1+.576 \frac{.095}{1+.576} \frac{.005}{.0025}}{1.3 \text { cos units } .00}=2$

$P \eta=13.5 \mathrm{cgs}$ units

If similar calculations are performed for $\theta=45^{\circ}$ and $\theta=90^{\circ}$, one obtains

$$
\begin{array}{ll}
\mathrm{P}_{\alpha}^{\prime \prime}=44.5 \quad \mathrm{P}_{\beta}^{\prime \prime}=21 & \text { for } \theta=45^{\circ} \\
\mathrm{P}_{\alpha}^{\prime \prime}=\mathrm{P}_{\beta}^{\prime \prime}=34 & \text { for } \theta=90^{\circ}
\end{array}
$$

Open-Circuit Leakage Permeance
The equivalent diameter of the magnet

$$
d=2 \sqrt{\frac{\text { Area(total) }}{\pi}}=2 \sqrt{\frac{2.20 .812}{\pi}}=1.5 \mathrm{~cm}
$$

the length (total) of the magnet

$$
I=.87 \times 2.54=2.2 \mathrm{~cm}
$$

Then the diemensionless ratio

$$
1 / d=\frac{2.2}{1.5}=1.47
$$

for this ratio of $1 / d$ (from curve)
*

$$
\frac{\text { magnet length }}{\text { magnet area }} P_{l}=4.3
$$

then

$$
\begin{aligned}
& P_{e}=4.3 \frac{1.79}{2.2}=3.5 \\
& P_{e} \text { p.u. axial length }=\frac{3.5}{2.2}=1.6 \mathrm{cgs} \text { units }
\end{aligned}
$$

*)
A.J. Hornfleck and R.F. Edgar, The Output and Optimum Design of Permanent Magnets Subjected to Demagnetizing forces, l'rans.AIEE, vol. 59, pp 1017-1024, 1940.

APPENDIX II

Calpulation of Armature Reaction Leakage Permeance P_{a}

From the accompanying figure

$$
\begin{aligned}
& P_{a}=\frac{1}{3}^{*} \frac{.156}{.250}+\frac{1}{3} \frac{.156}{.350}+\frac{.06}{.250}+\frac{.07}{.49} \\
&=.208+.164+.24 * .143=.755 \\
& \text { add } .145 \text { for flux paths not considered } \\
& P_{a}=.9 \text { cgs units } \\
&=
\end{aligned}
$$

*) The factor of $1 / 3$ for the winding areas results from integrating the flux linkages.

LAM ASSEM.-। REQ
180 TURNS 31 HEAVT
FORMYAR WIRE

$$
-64-
$$

APPENDIX III

Data for Figure 25, no-load voltage vs. frequency

\mathbf{f}	$V_{\text {Oc }}$	\mathbf{f}	$V_{\text {Oc }}$	
630	11.2	2800	50	from which
1460	26	3400	60.5	
2000	36	4000	70.5	$\mathrm{~K}=0.0178$ Volt/cps

The short-circuit current according to the test described on $p .41$ was found to be

$$
\begin{aligned}
& I_{s c}=0.655 \mathrm{amp} ., \text { then from eq. } 33 \\
& I_{0}=\frac{K}{2 \pi I_{s c}}=\frac{0.0178}{2 \pi 0.655}=4.32 \mathrm{mh}
\end{aligned}
$$

Data and calculations for Figure 27 (Resistive Load) $f=2000 \mathrm{cps}$

Sample Calculation

$$
\begin{array}{ll}
R=251 \text { with } f=2000 \mathrm{cps} . & |z|=260 \\
E=K_{f}-35.6 ; \omega L_{0}=54.2 \text { ohms } & I=\frac{35.6}{260}=0.137 \\
Z=251+R_{\text {eff }}+j 54.2 & \\
R_{\text {eff }}=2.66 & \\
& \\
& P=V I=34.4 \times 0.137=4.72
\end{array}
$$

$$
-65-
$$

b) $\quad \mathrm{f}=3000 \mathrm{cps}$.

Data and calculations for Figures 29, 30, 31, 32 (R-C Load)
a) $C=1.47 \mu \mathrm{Id} \quad R=31 \mathrm{ohms}$

Sample Calculation

$$
\begin{gathered}
I=1000 \mathrm{cps}, \omega L_{0}=2 \pi 1000 \times 4.32 \times 10^{-3}=27.1 \Omega, \frac{1}{\omega C}=\frac{10^{6}}{2 \pi 1000 \times 1.47}=108.2 \\
Z=\sqrt{(31+2.6)^{2}+(108.2-27.1)^{2}}=88 \\
E=K f=0.0178 \times 1000=17.8 ; I=\frac{\mathbb{R}}{Z}=\frac{17.8}{88}=0.202
\end{gathered}
$$

$C=1.47 \mathrm{md}$			R - 51.4 ohms									$\stackrel{1}{1}$
f	measured \longrightarrow						calculated					
	I_{T}	V_{c}	∇_{T}	$=I_{T}{ }^{2}$	ωL_{0}	$\frac{1}{\omega C}$	$\left.-\frac{1}{60} \right\rvert\,$	X_{C}	Z	Kf	I	
765	. 104	13.9	15.3	--	20.7	141.5	119.8	14.7	--	--	--	
1010	. 184	19.4	21.6	--	27.4	107	79.6	19.7	96.4	18	. 187	
1200	. 268	23.6	27.4	--	32.5	90.4	57.9	24.2	--	--	--	
1416	. 372	28.2	33.5	7.05	38.4	76.5	38.1	28.4	--	--	--	
1600	. 458	31	38.5	7.	43.4	67.6	24,2	31	--	--	--	
1800	. 56	33	43.3	--	48.8	60.4	11.6	33.8	55.1	32	. 581	
2000	. 62	33.1	45.5	19.6	54.2	54.2	0	33.6	54	35.6	. 66	
2350	. 67	32	46.1	--	63.7	46.0	17.6	30.9	--	--		
5000	. 692	14.6	37.6	23.8	137	21.7	115.3	15	128	89	- 695	
4500	. 691	16.6	38.6	--	122	24.1	97.9	16.6	112	80.1	. 715	
3700	. 7	20.7	41	24.5	100	29.3	70.7	20.7	89	65.9	- 79	
3000	. 705	25.7	44	24.6	81.3	36.1	45.2	25.5	70.5	53.4	. 757	

From the equivalent circuit, the voltage across the capacitor

$$
\begin{aligned}
\nabla_{c} & =\frac{K f}{\sqrt{\left(R_{e f f}+R\right)^{2}+\left(\omega L_{0}-\frac{1}{\omega C}\right)^{2}}} \frac{1}{\omega C} \\
& =\frac{K}{2 \pi C \sqrt{\left(R_{e f f}+R\right)^{2}+\left(\omega L_{0}-\frac{1}{\omega C}\right)^{2}}}
\end{aligned}
$$

and is obviously a maximum at the resonant frequency

$$
f_{r}=\frac{1}{2 \pi \sqrt{I_{0} C}}
$$

then

$$
\begin{equation*}
\nabla_{c} /_{\max }=\frac{K}{2 \pi\left(R_{e f f}+R\right) c} \tag{1}
\end{equation*}
$$

Similarly the current

$$
I=\frac{K f}{\sqrt{\left(R_{e f f}+R\right)^{2}+\left(\omega L_{0}-\frac{1}{\omega \mathcal{C}}\right)^{2}}}=\frac{K}{\sqrt{\left[\frac{R_{e f f}+R}{f}\right]^{2}+\left[2 \pi L_{0}-\frac{1}{2 \pi f^{2} C}\right]^{2}}}
$$

To find the frequency for which the current is a maximum, one forms

$$
\begin{aligned}
& \quad \frac{d}{d f}\left[\left(\frac{R_{\text {eff }}+R}{f}\right)^{2}+\left(2 \pi I_{o}-\frac{1}{2 \pi f^{2} C}\right)^{2}\right] \\
& =-2 \frac{\left(R_{e f f}+R\right)^{2}}{f^{3}}+2\left(2 \pi L_{0}-\frac{1}{2 \pi f^{2} C}\right) \frac{1}{\pi f^{3} C}=0
\end{aligned}
$$

after some rearranging, the frequency at which the current is a maximum is obtained as

$$
\begin{equation*}
f_{I_{\text {max }}}=\frac{f_{f}}{\sqrt{1-\frac{\left(R_{\text {eff }}+R\right)^{2}}{2\left(I_{O} / C\right)}}} \text { with } f_{r}=\frac{1}{2 \pi \sqrt{I_{o}^{C}}} \tag{2}
\end{equation*}
$$

BIBLIOGRAPHY

1. Hornfleck and Edgar, "The Output and Optimum Design of Permanent Magnets Subjected to Demagnetizing Forces,n AIEE Transactions, Vol. 59, Pages 1017-1024, 1940.
2. The India Steel Product Company, Permanent Magnet Manual No 4
3. Robert Pohl, "Theory of Pulsating-Field Machines," JIEE (london), Vol. 93, Part II, Page 37, 1946.
4. R. Richter, "Kurzes Lehrbuch der Elektr. Maschinen," Pages 92-103, Springer-Verlag, 1949.
5. H.C. Roters, "Electromagnetic Devices," Chapter V, John Wiley \& Sons, Inc., New York.
6. R.L. Sanford, "Permanent Magnets," Circular of the National Bureau of Stendards, C 448, 1944.
7. K.L. Scott, "Magnet Steels and Permanent Magnets," AIEE Transactions, Vol. 51, Pages 410-417, 1932.
8. J.H. Walker, "High Frequency Alternators, VIEs (London), Vol. 93, Part II, Pages 67-80

[^0]: 2

[^1]: ${ }^{4}$ H.C. Roters, loc. cit. p. 86

[^2]: ${ }^{6}$ Several types of inductor alternators are described in a paper by J. H. Wal ker, High-Frequency Alternators, JIEE (London), vol. 93 part II pp 67.
 7
 Loc. cit.

[^3]: *) This situation can be approximately obtained by inserting a filter network in the load circuit.

[^4]: *) No data were obtained according to this procedure since the machine became defective before it was realized that this methods may possibly be used to determine $R_{e f f}$.

[^5]: *) Loc. cit.

