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Abstract

Past approaches on the automatic recognition of human activities have achieved promising results by
sensing patterns of physical motion via wireless accelerometers worn on the body and classifying them
using supervised or semi-supervised machine learning algorithms. Despite their relative success, once
moving beyond demonstrators, these approaches are limited by several problems. For instance, they
dont adapt to changes caused by addition of new activities or variations in the environment; they
dont accommodate the high variability produced by the disparity in how activities are performed
across users; and they dont scale up to a large number of users or activities. The solution to these
fundamental problems is critical for systems intended to be used in natural settings, particularly,
for those that require long-term deployment at a large-scale.

This thesis addresses these problems by proposing an activity recognition framework that uses
an incremental learning paradigm. The proposed framework allows learning new activities - or more
examples of existing activities - in an incremental manner without requiring the entire model to
be retrained. It effectively handles within-user variations and is able to reuse knowledge among
activities and users. Specifically, accelerometer signals -generated by 3-axis wireless accelerometers
worn on the body- are recognized using a machine-learning algorithm based on Support Vector
Machine classifiers coupled with a majority of voting algorithm.

The algorithm was implemented and evaluated using datasets collected at experimental, semi-
naturalistic, and naturalistic settings. Hence, compared to other state-of-the-art approaches, such as
Hidden Markov Models or Decision Trees, the system significantly improves the between-class and
between-subject recognition performance and requires significantly less data to achieve more than
90% within-class overall recognition rate. Based on this approach, a functional system was designed
and implemented across a variety of application scenarios (from a social-exergame for children to a
long-term data collection of physical activities in free-living settings). Lessons learned from these
practical implementations are summarized and discussed.

Thesis Supervisor: Kent Larson
Title: Principal Research Scientist
Departments of Architecture and Media Arts and Sciences
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Chapter 1

Introduction

1.1 Motivation

The notion of systems adapting to a users activity is an essential part of many context aware systems,

ambient intelligent environments and personal-health applications [3, 45, 132]. The advances on

miniaturized sensing, wireless communication technologies and smartphones have started to make

possible to collect daily fine-grained activity data over a large number of individuals [109, 31, 35].

As a result, human activity recognition research has gone from low-level detection of actions (body

locomotion like walking) to high-level understanding of behavior in natural environments (complex

actions like washing dishes). Figure 1-1 shows some examples.

Figure 1-1: Activity recognition can range from body locomotion to complex actions. Left: Body

locomotion. right: Complex actions.
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These advances and the availability of vast amounts of data have open up new possibilities for

developing innovative applications that explore novel forms of interaction and behavior understand-

ing. In particular, they have made possible to start exploring activity recognition systems that can

be deployed in the real-world over long-periods of time (such as in [116, 184], see examples of these

activities in figure 1-2).

hE77l
Figure 1-2: Examples of activites happening in the natural settings.

Currently several applications use environmental sensors and smart phones to provide sensing

capabilities that take advantage of simple context information such as users location, coarse-grained

body motion or simple environmental indicators (e.g., light or noise levels). However, after years of

research, results have indicated that coarse-grained body motion and simple location are not enough

to recognize a broad range of complex activities and situations that are intrinsic to natural settings.

As a consequence, the recognition of natural occurring activities is not a trivial problem. Of course,

this is not surprising given that humans are very complex creatures and such complexity increases

when their behavior is studied in naturalistic and unconstrained settings.

In this space, wearable activity recognition offers an attractive solution for recognizing natural

occurring activities in free-living settings. It allows systems to classify activities starting at a fine-

grained level of abstraction and, then, uses them for building up towards more complex ones (see

figure 1-3).

This solution has the advantage of being able to capture a wide-range of behaviors across diverse

settings, while requiring little infrastructure. It also better addresses sensitive issues in terms of

privacy, ethics, and obtrusiveness compared to conventional activity recognition approaches based on

computer vision [138, 115]. However, the caveat is that wearable activity recognition has challenging

requirements in terms of sensing hardware, algorithm, and user interaction. As can be seen next,

such requirements are not only challenging, but also deeply interconnected with each other and the

entire design of the system.

Sensing Hardware:

Most wearable sensors need to run continuously and be operated and programmed wirelessly. This

imposes many hardware design challenges, in particular, for systems that aim to be used in real-
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Figure 1-3: Example of wearable activity recognition systems can classify activities starting at a
fine-grained level of abstraction and build up towards complex ones.

world settings. Practical issues include the acceptability and viability to wear the sensors on the

body (specially for applications that require 24/7 behavior monitoring). Other issues include that

the system needs to be small size, be easy to use, have long battery life and, in general, satisfy the

needs of the real-world scenarios (see section 2.5.1 for a detailed discussion about these needs).

Among the wide-variety of sensing options, miniaturized low-power accelerometers are the most

widespread type of sensor used for wearable activity recognition. Their popularity is based on the

fact that they are very effective at capturing actions involving repetitive motion or still positions like

physical activities and postures (walking, running, standing, etc.), while they are low-cost, require

minimal instrumentation, and are easy to deploy. As a consequence, when combined with mobile

phone technologies, they currently offer the most suitable and scalable sensing solution for capturing

natural occurring fine-grained behavior during extended periods of time. Figure 1-4 shows examples

of common wearable devices embedding miniaturized accelerometers.

Algorithm:

Besides the sensing hardware component, wearable activity recognition requires an algorithm that

recognizes the patterns of movement coming from the sensing devices. Current approaches have had

promising results by sensing patterns of physical motion using 3-axis wireless accelerometers worn

on the body and classifying them using supervised or semi-supervised machine learning algorithms

(like decision trees or hidden markov models). However, when deployed in natural settings, these

approaches are limited by numerous practical problems such as: high-degree of user and situational
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Google Glass Actigraph Shimmer

Jawbone Sensewear Porcupine

Samsung Galaxy Genea Intel MSP

Commercial Medical Research

Figure 1-4: examples of common wearable devices embedding miniaturized accelerometers.

dependence, need of having large amounts human labeled data -which is expensive to obtain when

the system is used continuously (24/7) in natural settings-, lack of capability to accommodate the

high-variability caused by the disparity in users behavior and noise coming from sensing devices.

As a matter of fact, the majority of existing machine learning methods cannot be directly used

in real-world applications because they are often carefully handcrafted to very specific conditions

in terms of activities, subjects and context. Indeed, most activity recognition systems are proof-of-

concept systems which are mainly completed by carefully hardwiring the discontinuous prototype

technologies which makes them dependent to ecological arrangement, sensor types and installation,

as well as, specific activities and users. Existing state-of-the-art activity recognition systems suffer a

great deal from lack of scalability and ability to exchange information between different parts of the

system. These issues make it difficult to integrate them into end-user and real-world applications,

reducing the possibility to be accessible to non-experts who want to use activity recognition as a

tool to gain insights about fine-grained behavioral information.

On the other hand, as the scope of the activity recognition system broadens from carefully con-

trolled experiments to large-scale user-generated naturalistic data, existing approaches deal poorly

with user diversity in terms of age, behavioral patterns, daily routines, lifestyle, etc. (figure 1-5

shows examples of such user diversity). Performance degradation due to the difference between peo-

ple can seriously affect the classication accuracy of activity recognition systems. Actually, according

to Lane et. al. [98], this can be the case even when the system consists of only one activity and, as

few as, fifty users. Although approaches based on user-customized models (such as [108, 165]) gen-
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Figure 1-5: Activities happening in natural settings have high behavioral diversity.

erally deal better with the user diversity problem, this occurs at the cost of increased dependence on

human annotation or feedback. Thus, to obtain high recognition accuracy requires providing large

amounts of carefully labeled data-segments (containing start and end activity makers) for each user.

This dependence brings to the table another set of issues related to ground truth annotation and

the user-system interaction.

User Interaction:

As described in the previous section, two major problems among current activity recognition systems

are: (1) high-dependency on user-specific training, and (2) the need for large amounts of carefully

labeled data. Indeed, these problems are significantly more challenging when activities are collected

in naturalistic settings than in controlled experimental settings.

Typically activity recognition experiments in controlled settings involve few subjects (often in-

clusively, the researchers who develop the system) and sets of scripted activities. In general, these

conditions tend to oversimplify the problem and, similarly, the activities can unconsciously be per-

formed in a way that favors the recognition system. Figure 1-6(A) shows an example of a typical

experimental setting.

On the other hand, longitudinal capturing of activities in naturalistic settings enables more

realistic collection of data. However, its drawback is that collecting ground-truth annotations for

this purpose is not an easy task. For instance, previous research on activity recognition makes the

assumption that labels are consistent. While this might be true in simple experimental settings, in

naturalistic settings this might not be the case and annotation issues might start becoming a concern

(e.g., it might cause annotator annoyance or interruption, assignment of different labels to similar

activities, overlap of activity labels boundaries, etc.)[137]. Figure 1-6(B) shows an example of a

typical setup in a natural setting. There are several methods to capture longitudinal annotations in

naturalistic settings (see section 2.5.3 for a detailed discussion). But, most methods are error-prone

and time-consuming, they might use invasive sensors that are not acceptable due to privacy reasons,
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Figure 1-6: Example of typical experimental and naturalistic setups for activity recognition. (A)
The left figure shows the set up used for the data collection reported in Tapia et al. [169]. (B) The
right figure shows the set up used for activity recognition in natural settings using wockets, which
is the sensing system used in this work.

or they might disrupt or annoy the user - who typically is whom annotates the data. And this might

be especially problematic when detailed user annotations are needed.

1.2 Scope of Research

Recently, several models have been proposed to alleviate the issues and limitations of current activity

recognition systems. For example, the learning-upon-use paradigm (described in Lukowicz et. al.

[109]) proposes a practical approach in which simple action detectors can be trained reasonably

well in a user-depended way. This means that an activity recognition system running on a smart

phone application can be pre-trained and delivered ready to use. Precisely the idea is that, while

the user might have given an application that initially doesnt fully work, the activity recognition

system could learn as the user interacts with the system. Of course, depending on the training

and feedback/annotation method, this can be a complex and tedious process. In contrast to the

learning-upon-use paradigm, a number of studies [97, 98] had suggested models that require minimal

user intervention by crowdsourcing the labeling of training examples and updating the user activity

classification model in a networked fashion.
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Even though the crowdsourcing paradigm is relative novel in the field of wearable activity recog-

nition, it is not within the field of computer vision - in where its advantages and disadvantages are

well known [175]. Such knowledge confirms the findings indicating that existing activity recognition

methods based on crowdsourcing dont scale well with an increasing number of users. Hence for large

groups of users (particularly among cases in where the behavioral differences get more prominent

and, for instance, harder to generalize), the crowdsourcing annotation becomes an impractical, re-

dundant and non-scalable task. Besides, data recorded from wearable sensors (like accelerometers

or gyroscopes) is generally not intuitive and more difficult to interpret than data produced via other

sensors such as RFID tags, environmental sensors, microphones, or cameras [189]. Indeed, anno-

tating activities based on accelerometer data generally requires an experienced annotator (generally

the researcher) to identify the activity from the data stream. In addition, crowdsourcing methods

could be costly, since the data is labeled in a traditional fashion without end-user involvement via a

third observer -the crowdsourcing online worker- who has to be trained to label complex data.

These two paradigms represent two opposite sides of the spectrum that characterizes the user-

system interaction. For instance, one side, the learning-upon-use paradigm is low-cost and scalable.

However, the intense labeling of examples could cause user-burden because of unwanted interruptions

and information overload. On the other side, the crowdsourcing paradigm has the advantage of keep-

ing the burden for the end-user low, but it has to deal with errors generated by annotators/online-

workers. The number of errors is generally high due to the difficulty to interpret and generalize

behavioral data. In particular, if the data is based on accelerometer signals, crowd-sourced an-

notations often suffer from low-quality and inconsistency [113, 129]. Moreover, the crowdsourcing

approach is subjected to additional privacy concerns since it explicitly exposes users behavioral data

to third parties (who are not part of the research staff or the system creation team and who, of-

ten, have few or not background checks). As well, this approach makes it difficult to tag personal

preferences or information that can be valuable for the user.

Alternatively to these paradigms, this thesis focuses in a solution lying at the middle of the spec-

trum. It takes advantage of the learning-upon-use paradigm -by incrementally acquiring knowledge

from examples provided by the users- whereas minimizes the number of examples -by maximizing

the information provided to the classifier taking advantage of data similarities across activities and

users (see chapter 3 for details).

Specifically, this thesis argues that the performance of current activity recognition systems is

highly conditional to the systems capability to learn efficiently with few examples and quickly adapt

to new activities and situations. Thus, this work focuses on the problems of adaptability and scalabil-

ity faced by wearable activity recognition systems deployed in free-living settings. It systematically

analyzes limitations of state-of-the-art approaches to identify current challenges and critical trade-

offs encountered in real-time settings. Further, it proposes a functional system and an algorithm
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framework designed with basis on lessons learned from their functional implementation and their

use in real-world applications (see chapter 7.2 for more details). Indeed, it is argued that wearable

activity recognition for the real-world needs to satisfy the following requirements:

1. Learn incrementally and upon-use the specifics of the user and the environment using as few

instances as possible.

2. Handle and adapt to the high variability produced by changes in users behavior, environmental

conditions, and systems operational difficulties.

3. Adapt the system interaction with the user to maximize user-adoption while minimizing users

cognitive load, interruptions and, in general, negativity bias. In other words, design the system

and algorithm by having the user-in-the-loop.

4. Be scalable and computationally tractable in order to be used with other systems at different

or higher-levels of abstraction. This can be achieved by creating robust activity primitives that

can be used and reused - exploiting common acknowledge - within the context of a hierarchical

activity recognition framework.

In summary, these fundamental functionalities are the corner stones for moving traditional ap-

proaches towards the next-generation of wearable activity recognition systems. We envision that

they will facilitate the development of scalable, easy-to-use, and easy-to-deploy systems, which can

be used effectively in real-world applications and with large-scale networked subsystems that interact

with communities of users.

1.3 Proposed Approach

Building on the idea of incremental and transfer learning, this thesis provides a framework and

presents a functional system that addresses the scalability and adaptability limitations of current

approaches. In addition, due to its computational efficiency, the model is capable of running in

real-time on a common mobile phone.

Specifically, accelerometer signals are generated using low-power wireless accelerometers called

Wockets, and activities are recognized using a machine-learning algorithm based on a hierarchy of

Support Vector Machine (SVMs) classifiers coupled with a voting mechanism. Specifically, the sys-

tem uses a SVM to represent a particular activity. Each SVM is treated as a building block that fits

into an output classification layer. This output layer tracks over time the SVM blocks classification

results and computes the predicted activity using a weighted majority of voting algorithm. Figure

1-7 shows the wockets system.

The design guidelines of the entire system were formulated based on the end-to-end implementa-

tion, testing and user-centered validation of the hardware, software (signal processing and algorithm)
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Figure 1-7: Example of an user wearing a miniaturized low-power accelerometer (wocket).

components. Particularly, inspired by the "learn-to-learn" paradigm, the framework presented in

this thesis ultimately informs the design of scalable real-world wearable systems that allow end-users

(jointly with researchers, doctors, designers, etc.) to work together in a feedback loop where activity

data is collected and analyzed as a continuous design cycle and new activities are added, and in turn

new data collected. Thus, researchers could monitor the activity data in real time, spot problems

on the fly and, change what the system recognizes at anytime according to their needs - instead of

waiting to analyze the results at the end of the study.

1.4 Contributions

This thesis proposes a novel scheme for activity recognition based on wearable accelerometers to

handle differences across users, settings and sensing devices in a scalable and adaptable way. It

provides a framework that facilitates the incorporation of user-feedback into the system by building

learning-upon-use applications aimed to be deployed at large scale in naturalistic settings.

To bring down the cost of computing, we maintain groups of similar activities by modeling

activities as a set of basic primitives and treating the user-behavior, settings and sensor differences

as noise. In addition to the features extracted directly from the acceleration signals, we also use

the similarity measures of features to train the activity statistical model. Specifically, to achieve

comparable accuracy while keeping the user-burden low, we exploit the knowledge provided within

groups of users. This means that an activity label provided by a particular user could be used to

recognize the same activity for another user within the same group (using the activity similarity

metrics).
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To enable robust labeling, even in the case of unreliably labeled data from users, we handle the

common issue of the overlapping boundary of activities (see Peebles et. al.[137] for more details

about this type of problem). Th handle overlapping class boundary resulting from inaccurate start

and ending times, we use multi-instance learning [101, 185]. Although important, other issues like

semantic discrepancy of labels and other errors caused by noisy data are not covered in detail given

that they are beyond the scope of this work.

In sum, the framework presented in this thesis contributes to state-of-the-art wearable activity

recognition systems as follows:

1. It handles behavioral variability within and between users in a way that remains practical even

if the number of users increases.

2. It facilitates to realize the learning-upon-use paradigm because it updates the statistical model

by incorporating new activities or more examples of existing activities in an incremental manner

without requiring the whole system to be retrained.

3. It allows the possibility to transfer statistical model knowledge between users a model that is

well trained for one user can be transferred to another user.

4. It allows creating opportunities for incorporating user feedback by collecting and analyzing

data as a continuous design cycle.

1.5 Synopsis

The chapters in this thesis are organized as follows:

Chapter 1: Introduction. This chapter describes the research problem and motivation.

Chapter 2: Background. This chapter provides an analysis of the challenges faced by wearable

activity recognition systems and highlights key results to illustrate: what is feasible,

what are the current difficulties, and where is the potential for facilitating long-term

activity recognition at a large-scale. Subsequently, we use this analysis to position the

contributions presented in this thesis.

Chapter 3: 3. This chapter describes the proposed algorithm framework and presents the criteria

used to select the algorithm parameters and design its properties.

Chapter 4: Datasets. This chapter describes the data used to carry out the algorithm experi-

ments.

Chapter 5: Materials and Methods. This chapter presents the measures used to assess the

algorithms performance in the experiments.
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Chapter 6: Experiments. This chapter presents the evaluation, the discussion of results, and the

final version of the algorithm framework in detail. The evaluation is mainly focused on

assessing the algorithm performance in terms of learning and generalization.

Chapter 7: Design Guidelines for Activity Recognition Systems. This chapter describes the

design guidelines of the hardware and the software platform used to collect the data for

the exploratory analysis, development, and evaluation of the wockets system.

Chapter 8: Conclusion. This chapter summarizes the contributions and concludes the thesis by

proposing extensions and future work.
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Chapter 2

Background

2.1 Overview

Over the last decade, the rapidly expanding field of personal devices, miniaturized wireless-sensing

technologies and machine-learning algorithms have made significant progress in terms of size, cost,

power-efficiency and computational-processing capability [132, 35, 45]. These advances have fa-

cilitated the development of novel wearable systems that can detect when, how and how often a

user performs specific activities. This achievement has caused activity recognition research to move

towards a more ambitious arena of investigating human behavior in naturalistic settings during

extended periods of time.

This chapter aims to contextualize the work and contributions presented in this thesis by exam-

ining state-of-the-art approaches in wearable human activity recognition and their challenges. In

particular, it analyzes the evolution of these challenges and their implications for systems intended

to be deployed in the real-world. It discusses crucial design and implementation issues for activity

recognition systems and examines them from a practical perspective in terms of sensing methods,

machine learning algorithms, data annotation techniques, and system-user interaction.

Further, it aims to illustrate that wearable human activity recognition in natural settings is not a

trivial problem. Indeed, it is problem that requires an inter-disciplinary approach and well-informed

understanding of the design trade-offs and challenges caused by the complexities of recognizing

human behavior in natural settings. It shows that many of these challenges are caused by the fact

that the requirements of wearable activity recognition systems are not insignificant. For instance,

the system needs to be highly power-efficient, low-cost, robust, scalable, fast when deployed in

embedded devices, and able to run over long periods of time in unpredictable free-living settings.

Besides, there are other challenging requirements related with system usability ( e.g., compliance,

comfort, and aesthetics) and user-feedback ( e.g., inform the user about the system status or prompt
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her/him for knowledge acquisition for the recognition task).

In sum, this chapter provides a comprehensive analysis of the challenges faced by state-of-the-art

activity recognition systems and highlights key research findings to illustrate: what is feasible, what

are the current difficulties, and where is the potential for facilitating long-term activity recognition

at a large-scale.

2.2 Activity Recognition: More than Overall Movement

By definition, activity recognition aims to recognize actions and goals performed by one or more

agents from a series of observations. Such observations can be the sequence of actions performed

by the agent or the environmental conditions surrounding such actions. Generally speaking, agents

can be any entity that can perform actions (e.g. robots, algorithms performing digital transactions,

humans, etc.). In our case, we consider that humans are the agents and human actions and/or its

surrounding environmental conditions are the observations.

In practice, both human activity and environmental conditions combined are often used to infer

complex activities performed in a wide-range of application scenarios. However, human activity is

a very broad term that can involve activity ranging from physical motion (e.g., body movement,

gestures, or compound activities) to physiological signals (e.g., heart-rate, electro-dermal activity,

body temperature, muscle activity, etc.). Whereas, environmental conditions can involve contextual

indicators, specific information or objects that could be used as indicators of an activity. For example,

location could be used to infer the activity of cooking when being at the kitchen, whereas, location

combined with daylight and time of the day could help to infer sleeping when being in the bedroom

at night and there is absence of light.

In recent years, activity recognition research has received vast attention given its applicability

to support a wide-range of real-world applications that have a high impact in peoples lives. Such

applications range from behavior monitoring to behavior change (see table 2.1). As can be seen, for

most of these applications, activity recognition is more than overall movement or actigraphy ( in

where actigraphy is defined as a person's coarse-grained level of physical activity logged over time

and analyzed periodically using a watch-like device referred as an actigraph unit (see figure 2-1).

Actigraphy units are mainly used in the healthcare domain and, more recently, in the consumer

electronics arena in the form of personal activity loggers such as Fitbit [58], Jawbone [80], or Misfit

[117]. The activity measurements that these devices provide are usually very coarse-grained and

only give an impression on how much movement was measured over intervals of typically from 10 to

60 seconds.
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Application Description

Seniors healthcare Monitoring activities of daily living and estimating the quality of
self-care.

Intelligent environments Smart spaces like (homes, hospitals, classrooms, offices, etc.),
smart cars, smart interactive public spaces, energy efficiency.

Fitness and well-being Fitting obesity or motivating sedentary people to be more active.

Workflow monitoring Tracking repairs or maintenance tasks, support performance

Security and military Security at airports, train stations, banks, smart parking
systems, authentication, solder monitoring in the field.

Work and social networks Displaying members activity on virtual or collaborative
environments.

Mobile computing Context aware applications and content delivery, task assistance.

Memory support Creating diaries or journals for later memory recalls.

Psychiatry Correlating activities with moods, mood swings, episodes of
depression in patients.

Medical Applications Personalized mobile healthcare monitors

Table 2.1: Activity recognition applications in the real-world.

Novel real-world applications require activity recognition solutions that focus on fine-granularity

information produced by motion sensors which can be detailed enough to distinguish the specific

type of activity and how such activity is performed. For instance, medical experts could see detailed

patterns of ambulatory and sedentary motion as key indicators for a persons emotional state and/or

physical health [30]. On the other hand, recognition of specific gestures or recurring body movements

has received increasing attention in communities interested on the rich information produced by fine-

granularity activity recognition (e.g., the recognition of specific gestures by dancers or the recognition

of non-verbal/paralinguistic actions to study social interaction). Other examples are professional

sports communities for assisting athletes in their training, medical communities for assisting patients

with their treatment, medication dosage or physical rehabilitation, or epidemiology and preventive

medicine communities to motivate sedentary people to increase their level of physical activity. More

examples are listed in table 2.1.

In the past, typical approaches to activity recognition would involve RFID tags and external

sensors forming part of an architectural infrastructure (such as video cameras or environmental sen-

sors [79, 88]) or highly instrumented body suits [173, 100] measuring acceleration and physiological

signals. However, these approaches are difficult to replicate and, besides that, they are costly and

intrusive to capture motion trough out the day. Figure 2-2 shows some examples of these approaches.

New approaches aim to provide high amount of information by providing a characterization of
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Figure 2-1: Actigraph unit [4].

Figure 2-2: Past approaches to activity recognition. Left: MITes installed at the MIT Place Lab
(published by Intille et. al. [79] in 2006). Right: Media Lab Conductors jacket (published by Marrin
et. al. [173] in 2000).

what type of movement is detected. Novel low-power wireless activity sensors - like the sensor

described in chapter 7.2 - provide data that is accurate enough to recognize activities in the users

natural environment.

2.3 Types of Activity Recognition Approaches

In general, there are an extremely large number of techniques that differ in both the kinds of

activities that they try to recognize (complex vs. low-level locomotion) as well as the robustness

with which they accomplish the task depending on the number of specific activities, type of setting,

type of subject (children, adult or senior), number of sensors, sensor placement on the body and

type of sensor (sampling rate, maximum swing and sensitivity). It is challenging to compare these

directly, however, in the next section we will attempt to characterize their main advantages and

disadvantages by classifying them according to the type of sensing hardware and the type of data

collected. As a result, we will group current activity recognition systems in four fields which are:

(1) external sensor-based activity recognition, (2) vision-based activity recognition, (3) large-scale

dataset mining activity recognition, and (4) wearable activity recognition.
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2.3.1 Sensors Around Us: External Sensor-Based Activity Recognition

This type of activity recognition is based on sensing human activity by using sensors that are around

us embedded in the environment (such as environmental sensors fixed in smart infrastructures sensing

ambient light, vibration or proximity) or video cameras used as sensors. This approach, which is

referred as external sensor-based activity recognition (ESB-AR), consists of decomposing complex

activity classes in numerous lower-level activities or specific actions. Thus, the idea is to collect not

only observations from the users themselves - such as physical movement - but also, observations

about their environment and surrounding objects.

As a consequence, systems based on ESB-AR approach rely on automated highly instrumented

sensing environments such as the Neural Network House [120]. The Neural Network House was

initially investigated and implemented in the mid 90s within the contest of home automation and

location-based applications. This project had the aim to adapt the smart home to its occupants

needs based on the recognition of their ongoing activities in the surrounding environment. From

there, an extensive research effort was undertaken to investigate the use of sensors to recognize

human activity and its context across many application scenarios, effort which originated the fields

of context awareness, smart objects, and vision-based activity recognition [156, 144, 64, 182].

Figure 2-3 shows examples of other ESB-AR approaches such as the Home Lab (Philips Research)

[140], the Place Lab (MIT) [79], and the Aware Home (Georgia Tech) [88]. These projects (developed

from early to mid 2000s) went extreme at instrumenting a home environment with hundreds of

sensors. Indeed, even though they did relatively well (~60%-70%) at recognizing the well-known

activities of daily living (ADL) compendium (which is used to estimate the quality of self-care),

their impact in the real-world has been rather small. After several years of research, it has been

found that it is quite difficult to transfer ESB-AR solutions to environments with fewer resources.

Consequently, after numerous extremely expensive projects, the research community realized that

such level of investment is rather unreasonable if the end-goal is to develop scalable real-world

applications. Furthermore, recent experiments performed by Biswas et. al. [19] have shown that it

is quite challenging to replicate ESB-AR solutions across different environments even for the same

and simplest single-user single-activity application scenario.

In sum, the previous examples illustrate that activity recognition approaches based on ESB-AR

are very difficult to generalize and/or scale up in the real-world. This is mainly due to the extensive

instrumentation needed and the difficulty of transferring results from one environment to another.

In addition, under this approach, the, problem of recognizing activities from a high-level abstraction

to low-level one becomes significantly harder since activities performed in natural settings can be

executed in highly complex manners activities can be interleaved, overlapped or parallel (e.g.,

housekeeping, watching TV and eating, etc.).
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Embedded Sensors

Figure 2-3: Examples of other external sensor-based approaches. Left: MIT, Place Lab [79]. Center:
Philips, Home Lab [140]. Right: Georgia Tech, Aware Home [88].

2.3.2 Sensors Watching Us: Vision-Based Activity Recognition

In addition to external sensor-based activity recognition, there are several approaches that have used

environmental sensors alongside video cameras in order to take advantage of the advances in the

field of computer vision. For example, Weindland et. al. and Yilmaz et al. [187, 199] have reviewed

the tracking of objects for activity recognition using computer vision.

Vision-based activity recognition (VB-AR) alone has been widely explored given its importance

in areas like building security, robotics, and surveillance. VB-AR approaches can use a wide range

of modalities that go from multi-camera stereo to infrared vision systems, and from single to groups

of individuals. In particular, a large body of research has been published surveying vision-based

systems for activity recognitio such as the classic review done by Aggarwal and Cai [6] or, more

recently, the reviews done by Turaga et. al. and Moeslund et. al. [177, 118]. Specifically, these

papers discuss key problems and novel approaches on VB-AR involving body-motion capture by

video cameras. More recently, comercial devices (such as the Kinect [201]) have been used for VB-

AR. However, they are also subjected to the same drawbacks discussed by Turaga et. al. and

Moeslund et. al. [177, 118]. Figure 2-4 shows an example of VB-AR system using the Kinect [91].

Figure 2-4: Example of a VB-AR system using the Kinect (as contained in the Cornell activity
datasets and code repository [91]).
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Certainly, the body of research in the field of VB-AR is very large and, despite its maturity

and noticeable advantages, VB-AR approaches have still numerous unresolved problems and biases.

Many of these problems are linked to privacy and ethics - as cameras are often negatively perceived

as very intrusive recording devices, even if they are used only as sensors [32, 199, 63]. Other problems

are related to datasets biases [175], limited mobility, high-power consumption, and the need of an

external infrastructure, among others.

2.3.3 Sensors Tracing Us: Large-Scale Dataset Mining Activity Recogni-

tion

There are numerous types of systems in where human behavior can be recognized using activity

models that are learned from large-scale datasets. For example, some of such datasets can be:

behavioral information of large communities based on mobile phone communication logs [47, 119],

buying activity of credit card transactions or twitter [125, 93], online activity patterns based on

weblogs or twitter data [126, 197], or mobility behavior based on human location history collected

via mobile phones [116, 203, 46, 67]. In these examples, users behaviors and activities are recognized

using data mining and machine learning techniques. This approach, known as the big data, requires

creating a statistical model, followed by a learning and a training tasks. Figure 2-5 shows an example

of a dataset mining activity recognition approach.

Figure 2-5: Example of dataset mining activity recognition using mobile phone usage logs and wifi
and bluetooth proximity detection (as described in [47, 104]).

Since this approach is driven by pre-collected data, it has the advantage of being able to handle

uncertainty and temporal information. But it also has several disadvantages. For instance, since it

requires having already a large dataset for training, this method can be impractical for modeling

fine-grained activity recognition. Depending on the behavior, the required data might be scarce or

unavailable (like data for physical activity, activities of daily living, natural gesture understanding, or
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behavior change). Besides, this method suffers from the problem of cold starting the statistical model

[96]. This problem is present given that the system cannot draw any inferences from new users or

their behaviors for which it has not yet collected sufficient information. In particular, this problem is

more prevalent in approaches relying on information filtering methods such as collaborative filtering

or content-based recommendation, which use a user profile to infer information about a new product

or movie (like in the Netflix or Amazon recommender systems.).

2.3.4 Sensors Living With Us: Wearable Activity Recognition

More recently, researchers have turned their attention to Wearable Activity Recognition. In general,

this approach involves techniques that start by recognizing lower-level actions using wearable sensors

and builds up towards recognizing high-level and complex activities. It has the advantage of requiring

much less instrumentation, power, and back-end infrastructure than other approaches.

Certainly, the idea of sensing activities through wearable sensors is not new, it had existed since

late 1990s/ early 2000s. However, the reason why it became feasible recently is that sensor technolo-

gies have evolved at the point of being realistically deployable in terms of network communication,

infrastructure, cost, hardware size, and power efficiency. In addition, it has been found that wearable

activity recognition better address sensitive issues in terms of privacy, ethics, and obtrusiveness than

conventional vision-based approaches [138, 115, 196].

Indeed, in recent years wearable activity recognition has received more attention in the field of

mobile computing and, so far, the most popular wearable sensors used in the field are accelerometers.

These sensors are very effective for monitoring actions that involve repetitive motion or still positions

like physical activities and postures (walking, running, standing, etc.). Bao et al. [15] and Kern

et al. [87] deployed a body-sensor network of 3-axis accelerometers distributed on the users body

and recognized human activities using acceleration signals in which each accelerometer provided

a motion measurement of the corresponding body location. Lee and Mase [112] measured the

acceleration and the angle of the users thigh to determine a users location and recognize sitting,

standing and walking behaviors using a dead-reckoning method. Whereas, Mantyjarvi et. al. [111]

recognized those activities on acceleration data collected from the hip. Figure 2-6 shows past and

new approaches to wearable activity recognition.

Indeed, efforts within this line of research have achieved promising results by sensing physical

movement using accelerometers worn on the body and by classifying the sensed patterns of body

motion using supervised or semi-supervised machine learning algorithms (like Decision Trees (DT)

[169, 11] or Hidden Markov Models (HMM) [131]). Notwithstanding the encouraging results, the im-

pact of these approaches on real-world applications has been limited by the challenges characteristic

of a natural setting. Once moving beyond demonstrators, these approaches have several impor-

tant limitations such as: the high degree of user and situational dependency, the need of having
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Figure 2-6: Past and new approaches to wearable activity recognition. Left: MITes [169]. Center:

Activity Recognition repository setup collected at ETH [150, 51]. Right: Newer sensing platforms

used in research [159, 94, 50].

large amounts human labeled data, and the lack of capability to accommodate the high variability

caused by the differences in how activities are performed across users and settings. These limitations

have been largely identified by the Pervasive, Wearable Computing and Ubicomp communities but

surprisingly not solved yet.

2.3.5 Conclusion: There is no Panacea

It is important to note that wearable sensors alone are not suitable for monitoring activities that

involve complex physical motions and/or multiple interactions with the environment. In most cases,

this type of observations alone are not sufficient to differentiate activities involving physical move-

ments but require a higher-level understanding in terms of context (like making tea versus making

coffee). As a result, multi-modal and human-object interaction sensing is needed as part of the dense

sensing-based activity recognition approach described earlier.

For example, Tapia et al. [171] used environmental state-change sensors to collect information

about human interaction with objects and recognized activities of daily living that could be used for

medical professionals to assess seniors health and well-being. In subsequent work, Wren and Tapia

[196] employed passive infrared motion sensors to detect presence or movement of heat sources to

recognize low-level activities like walking, wandering and turning. With lower accuracy, they also

detected mid-level activities such as visiting and meeting someone.

Hence, wearable activity recognition and other approaches - such as external sensor-based activity

recognition (ESB-AR)- are not mutually exclusive. Actually, there are several applications that

have combined more than one approach successfully. For example, Philipose et al. and Fishkin et

al. [139, 57]developed the iGlove and iBracelet which are devices that are used as RFID readers

that detect when the user interacts with unobtrusively tagged objects. This approach requires that

41



objects are instrumented with tags and users wear an RFID reader fixed to a glove. Buettner et al.

[251 recognized indoor daily activities by using an RFID sensor network. Whereas, Gu et al. [70]

combined wearable sensors and smart objects to collect multimodal sensor information. As shown

by these examples, wearable sensors and dense-sensing based approaches are complementary and

can be used in combination for improving the activity recognition results.

2.4 Activity Recognition in the Wild: Why is it Hard?

In light of what has been discussed up to now, it is evident that human activity recognition is not

a trivial problem. Humans are very complex creatures and such complexity increases when their

behavior is studied in naturalistic and unconstrained settings. In this thesis, we focus on recognizing

activities in this type of settings using a wearable system aimed to work continuously in real-time

for long-periods of time.

As seen through the characterization of different wearable activity recognition systems, existing

research provides a large number of approaches that differ in both, the kinds of activities that they

try to recognize and the robustness with which they accomplish the task depending on ecological

factors (e.g., type of setting, subject, device specifications, etc.). But, as the scope of the system

broadens from carefully controlled experiments to real-time measurement in natural settings, such

approaches are overwhelmed by the intrinsic heterogeneity of users behavioral patterns.

Fitocracy Runkeeper Supertbetter Autom~ateIt
Social Network Tracking Ganing Tracking & Autonation

Figure 2-7: Example of mobile phone based commercial activity recognition apps.

As a matter of fact, there are several approaches that can recognize short-term physical activities

and postures performed in constrained laboratory settings (like walking, sitting, running, etc.). In
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fact, such approaches have leaded to the development of several commercial applications, particularly,

in the form of mobile apps some of which are Fitocracy [60], Runkeeper [59], Superbetter [167], and

Automatelt [14] (see figure 2-7 to see UIs of these examples). Regardless their wide-spread use

and accessibility, in practice, these apps cannot be used reliably to capture continuous behavior for

long periods of time since they dont provide good inter-operability, they dont collect high-quality

fine-grained raw data and, often, they dont work as advertised. Usually, this is true for medical

applications aimed to study motor-related disorders (like parkinsons disease or stereotype movements

suffered by autistic children), mood-related disorders (like bipolar disorder or depression), movement

disorders caused by physical injure, or sleep patterns.

As wearable activity research has influenced the development in other fields (like commercial

mobile apps or mobile context awareness), other fields of research - such as computer vision and

speech recognition - have extensively influenced wearable activity recognition. Several concepts

coming from those fields, such as crowd-sourcing annotation, face and signature identification, loca-

tion traces, etc., have started to be explored with in scope of wearable activity recognition research.

As a consequence, there are numerous methodological similarities, as well as, distinctive challenges

among all these fields.

For instance, as described in Bulling et. al. [26], in the fields of computer vision and speech

recognition you can describe a well-defined problem such as detect an object in the image or detect

a spoken word in a sentence, which leads to focusing into a specific recognition system. In contrast,

wearable activity recognition is significantly more complex since it has higher intrinsic variability,

it has several interleaved or/and overlapping levels of abstraction, and it requires more degrees of

freedom in terms of recognition and implementation. Besides, there is no common definition, lan-

guage or structure of human activities that would allow formulating directly a well-defined problem

(e.g., how an activity is characterized). Inclusively, for continuous long-term activity recognition in

natural settings, relevant activities cannot even be defined upfront across all users.

In addition, human activity is highly diverse and, therefore, its recognition is subjected to sensor

arrangement (on body location) and variability due to environmental or contextual factors. As

a result, wearable activity recognition systems face distinctive challenges that require a dedicated

set of computational methods and evaluation metrics than those used in other fields. In sum,

the challenges faced by wearable activity recognition systems are an overlap between the sensing

hardware, the activity recognition algorithms, and the user interaction with the system (as depicted

in figure 2-8). The specifics of such challenges will be discussed in detail in the rest of this chapter.
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Figure 2-8: Challenges faced by wearable activity recognition systems are an overlap between the
sensing hardware, the activity recognition algorithms, and the user interaction with the system.

2.5 Critical System Design Challenges

This section discusses the main challenges faced by wearable activity recognition systems, their

practical impact on real-world applications, and critical design trade-offs.

2.5.1 Sensing and Hardware

Wearable activity recognition has many limitations caused by the system hardware. For instance,

most wearable sensors need to run continuously and be operated/programmed wirelessly. This

carries many challenges for real-world applications deployed in naturalistic settings. Practical issues

include the acceptability and viability to wear the wearable sensors (specially for applications that

require 24/7 behavior monitoring). Technical issues include the size, ease of use, battery life, and

effectiveness of the hardware design to cover the needs of real-world scenarios.

Indeed, the solution of technical issues has been discussed for many years (over a decade). This

slow pace reflects how hard it has been, for instance, to go from placing sensors on the body without

having to wear-on a backpack with a laptop and several wires/cables connecting the on body sensor

network - as shown in figure 2-9-, which only would work for a couple of hours. In fact, the battery

life span has been a significant limiting factor.

In general, it is important to realize that wearable sensors are highly variable; not only in their

types and output signals but also in their size, weight, and cost. Even for a particular type of

sensor (e.g., inertial sensor), the output, size, weight, and cost can vary significantly across different

models. For instance, there are several types of accelerometer monitors (loggers and smart phone
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Figure 2-9: Examples of approaches to wearable activity recognition requiring a PC and developed
as a body area network (WBAN). Left: NT-Neuro eegosports wireless EEG and motion system [49].

Center: Gesture & physical activities database ETH [52]. Right: HenesisWii Module [68].

based sensors) that are available from commercial vendors like (actigraph [4], sensewear [22], fitbit

[58], nike fuelband [127], jawbone [80], etc.). Figure 2-10 shows examples of devices available in the

market today. These sensors have different sizes, cost, measurements algorithms, communications,

battery life, etc. Although, the specifics of these differences are beyond the scope of this thesis, we

want to get across that these aspects have to be taken into account when designing the wearable

activity recognition system itself in order to be able to compare and interpret the bias introduced

by these hardware differences.

Sgin

Jawbone Fltft

Mobile Phones Fuelband Sensewear Samsung gear

Figure 2-10: Example of currently available wearable devices measuring acceleration.

More recently, several researchers have opted for making use of existing gadgets that people carry

in a daily basis (like smart phones, smart watches or more recently google glass) as activity monitors

(see figure 2-10). This approach has been practiced for a while [64, 155] and this trend is expected to
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increase and have an impact for the understanding of large-scale population-level behavior given the

wide-spread use, affordability and increasing processing capability of such devices. Nonetheless, these

sensors axe subjected to the same hardware biases than the dedicated activity monitors previously

mentioned.

2.5.2 Algorithm and Activities

2.5.2.1 Taxonomy and Diversity of Activities

A major challenge for both activity recognition systems and their applications is the development of

a clear definition of the activities under investigation and their specific features. At first, this might

seam trivial. However, human activity has a complex structure, it can be performed in different

manner, and it is highly subjected to contextual factors. Issues, such as overlapping or interleav-

ing execution, variability, etc., are less of a problem for short-term simple activities performed in

controlled environments. However, they are not trivial for long-term activities performed in natural

settings or activities that involve complex actions. Figure 2-11 shows examples of these issues.

Figure 2-11: Taxonomy issues typically faced by activity recognition systems. Left: walking or
eating?. Right: Activities could be performed in unexpected manner by different people and could
happen anywhere with high variability.

Providing a well-defined compendium of activities has served as a guideline for recognizing ac-

tivities relevant to the real-world applications. Typical compendiums include: (a) Katz et al. 1970

[861 who introduced for first time the activities of daily living (ADL) index as a tool of estimating

quality of self-care among seniors; and (b) Ainsworth et al. [9] compendium, which groups physical
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activity in categories based on metabolic equivalent (MET) and it is often used in energy expenditure

applications [11].

Another resource for activity recognition definition is given by time use databases like ATUS

[27], MTUS [34], and HETUS [168] . These databases are assessed by the government to understand

citizens time use. Borazio et. al. [23] and Partridge et. al. [135] have investigated the use of these

databases for activity recognition. In particular, besides providing prior probabilities for activities for

a certain time of the day and location, Borazio et. al. [23] compared the time use databases between

USA and Germany. This comparison reveled that there are significant differences on when, where

and how activities are performed due demographic differences (e.g., subject age, country, geographic

location, culture, occupation, etc.). For example, differences were found due to occupation (rhythmic

routine of a construction worker versus chaotic routine of a student) and models of transportation

within a city (USA west coast which is heavily based private cars versus Germany which is heavily

based on public transport).

These examples highlight that cultural and occupational impact should not be disregarded when

designing activity recognition systems. In general, time use databases offer a valuable resource that

can serve as taxonomy for activity recognition researchers investigating long-term activity patterns

and characterizing daily routines. For example, activity descriptions can be mined from the Web

or contributed by users like in the work done by Philipose [170]. In such case, the hierarchical

recognition approach would be greatly simplified if there were a set of key relevant activities and

temporal and causal models that can be used for a broad group of people. For example, a simplified

set of activities that describe how people use their time in the morning, etc. Nevertheless, it is

evident that a complete and a consistent categorization is not feasible since we have to learn what

information about the activity is relevant for the potential application (level of abstraction) and, in

addition, activities might have a considerable variation in execution (be performed in an interleaved

fashion, in different order, at different speeds, etc.).

As a result, hierarchies become relevant since they are allow recognition at different levels de-

composing the problem into simpler ones. For example, the work carried out by Blanke and Schiele

[20] argues that hierarchical structures can improve the performance of activity recognition systems

and facilitate their use across multiple types of applications. Indeed, the work presented in this

thesis has being inspired by this line of thought. Specifically, this work supports the idea that the

activity recognition problem can be simplified by recognizing activity primitives based on simpler

activities (e.g., physical movement, interaction with objects, and so on) and, the knowledge required

to recognize such simpler activity primitives can be used to learn and transfer knowledge across

activities and users.
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2.5.2.2 Complexity of Activities

If we go back to the definition of activity recognition introduced at the beginning of this chapter

(section 2.2), it is not difficult to realize that the recognition of actions and goals is not a trivial

problem given that human behavior is intrinsically heterogeneous and complex.

Some of these complexities are as follows:

1. Intra-class variability: Activities performed in naturalistic settings exhibit high intra-

class variability because there are many possibilities in how the same activity can be performed by

different individuals. People perform activities in a diverse manner depending on time, place, social

surrounding or, inclusively, hand dominance. Moreover, the interpretation of the activities varies

among people. There is even differences in multiple executions of the same activity by a single

individual (for example, vacuum cleaning is an example of such type of activity). All these factors

make the general signature characterization of natural occurring activities across people to be a very

challenging problem.

2. Class imbalance: The duration and incidence of natural occurring activities have a high

variation across different activities. There are activities that can last for few minutes only (e.g.,

smoking a cigarette or taking a pill), whereas others can last up to a couple of hours (e.g., cooking

or working in front of the computer). Some other activities might occur on a daily basis (e.g.,

sleeping, eating), whereas others are less frequent (e.g., doing the laundry or leisure activities).

3. Inter-class similarity: Contextual factors (e.g., object usage and location) can aid the

recognition of an activity based on movement. Nevertheless, none of these characteristics alone

can be used as a unique representation of an activity. For instance, several activities might require

similar hand movements (e.g., booming and vacuuming). Analogously, the same object might be

used in different activities (e.g., dinner table can be used for eating or working) or the same activity

can take place in different locations (e.g. one might eat at the kitchen counter, dinner.table, or office

desk). In some cases, there is a one-to-one mapping between the activity and the object or/and

location (dishwashing in front of the sink or showering in the bathroom). However, often those

mappings present exceptions and, in most cases, there is a lack of specificity among many natural

occurring activities.

4. Simultaneity: Activities can be performed in overlapped or interleaved manner and they

can be composed of sub-activities which order may vary. For example, when two or more activities

are performed at the same time (e.g., driving and talking over the phone, walking and writing a

text message on the phone, or watching TV and eating), they are defined as overlapping activities.

On the other hand, interleaved activities happen when the next activity starts before the previous

activity is completed (e.g., cleaning the house in which dishwashing, mopping and folding clothes

activities can overlap at different points in time). Finally, an interrupted activity takes place for a

certain period of time and, then, stopped and continued in a later time (e.g., writing, playing music,
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and other leisure activities).

5. Null-class problem: Typically when deploying activity recognition systems in the real-world

only a few parts of a continuous data stream are relevant for recognition task. Given this imbalance

of relevant versus irrelevant data, activities of interest can easily be confused with activities that

have similar patterns but that are irrelevant to the application of interest which is called NULL

CLASS. The NULL CLASS is a large unknown space that that can be ambiguous and increases the

confusion among the activities of interest. To generate an explicit model of the NULL CLASS is

difficult if not impossible since it represents a theoretically infinite space of arbitrary activities. In

chapter 3, we discuss how this problem impacts the approach presented in this work.

Body Locomotion Complex Actions

Figure 2-12: Examples contrasting long-term versus short-term activities and simple versus complex

activities.

Finally, it is important to highlight that continuous long-term activity recognition goes beyond

recognizing simple body locomotion typically lasting for short periods of time (actions). It is

the recognition of more complex behaviors (activities) consisting of a sequence of overlapping or

interleaving actions. If we make an analogy with the field of speech recognition, recognizing actions

is like recognizing words whereas recognizing activities is like recognizing the meaning of a sentence

being said. Similarly to natural language understanding, activities performed in natural settings

are continuous and can have different interpretations according to context, previous knowledge and

objects/people in the surroundings. Figure 2-12 shows examples contrasting long-term versus short-

term activities and complex versus simple activities.

2.5.3 User Interaction and Ground Truth Annotation

Ground truth annotation is an important problem in the field of activity recognition given that most

approaches rely on annotated data. This problem is significantly more difficult when activities are

collected for long-term in naturalistic settings than in controlled experimental settings.

Experimental settings introduce several biases that affect the validity of the data collected. One

of them is related to the observer effect or Hawthorne effect [5], which is a form of reactivity in

where subjects modify their behavior in response of the fact that they are being studied and aware
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of the presence of the activity recognition system. Another one is that typically activity recognition

experiments involve few subjects (sometimes/often, inclusive, the researchers who develop the sys-

tem) and sets of scripted activities. In general, these factors tend to oversimplify the recognition

problem and, additionally, the activities can unconsciously be performed in a way that helps the

system during the recognition task.

Hence, long-term collection of activities in naturalistic settings enables the capturing of more

realistic data that better represent what is observed in real-world applications. For this reason,

activity recognition research has been moving towards the collection of data captured in natural-

istic manner. However, capturing accurate ground truth annotations in naturalistic settings is a

challenging problem. Previous work in activity recognition makes the assumption that labels are

consistent. While this might be true in simple experimental settings, in naturalistic settings labeling

issues (such as annotator annoyance or disruption, assignment of different labels to activities that

are similar in a particular hierarchy, activity labels boundary overlapping, etc.) start becoming a

concern [137].

There are several annotation methods to capture ground truth for long-term in naturalistic

settings. Nonetheless, most of those methods are error-prone and time-consuming, can use invasive

sensors that not acceptable due to privacy reasons, or can be disrupting or annoying for the user

who typically has to annotate the data specially when detailed annotations are needed.
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Figure 2-13: Example of a direct observation offline system called Box Lab [77], which annotates
activities using video footage captured in a post-hoc manner.

An important distinction between them is the time when the annotation takes place. In general,

there are three types of annotation methods: offline, online and hybrid. The offline annotation

method relies on annotations that have been assigned after the recording has been finished (generally
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assigned by an observer). Whereas, the online annotation method depends on annotations given

in real-time during the execution of the activity (generally assigned by the user). Hybrid methods

combine offline and online annotations and annotators (observers and users). This method attempts

to minimize bias by annotating the activities from more than one standpoint combining different

techniques that balance each other out: user vs. observer, real-time vs. offline, self-reported vs.

prompted, short-engagement vs. long-engagement, etc. A more detailed analysis about the pros and

cons of each method will be introduced in the next subsections.

2.5.3.1 Offline Methods

These methods are based on annotating the data after that the recording has happened.

In many cases annotations are obtained by direct observation (often by an external observer)

in where an observer labels the data in a post-hoc manner based on video or footage [20]. This

technique has been often applied in controlled and short-term experiments[204] given that it can

be very accurate and unbiased. Nevertheless, it is difficult to use it in long-term studies taking

place in natural settings in where annotations 24/7 are not possible or labels obtained in this way

are costly. Logan et. al. [107]and Intille et. al. [79] use it for annotating a long-term activity

recognition experiment in an instrumented home. Logan et. al. [107] reports that, on average, an

hour was spent to annotate 1.5 hours of data. Besides this disadvantage, this technique has low

user acceptance due to privacy concerns and scales poorly to a large number of users. Figure 2-13

depicts a typical annotation setting based on this method.
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Figure 2-14: Example of an offline method based on self-recall or self-report (as used in [172]).

Other technique includes daily self-recall or self-reporting, which is less intrusive than direct

observation but suffer from recall and selective reporting biases [184]. As a consequence, the quality

of the ground-truth annotations is poorer than other approaches. Tapia et. al.[172]used indirect
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observations of sensor data along with users self-recall to label the data. They reported that en-

vironmental sensors - such as RFID tags, switch sensors, and light sensors might contain enough

representative information that a user can recall or identify the activity from a sensor stream. How-

ever, in the case of wearable sensors like data recorded from accelerometers or gyroscope, the data

is generally not intuitive and more difficult to interpret than data from other sensors (RFIDs, envi-

ronmental sensors or cameras) [189]. Thus, they might require an experienced user to identify the

activity from the data stream. Figure 2-14 shows a typical example of this approach.

2.5.3.2 Online Methods

Online methods involve frequent onsite annotations while the activity data is recorded. Similarly to

the offline methods, online methods can be categorized in terms of whom is annotating the data (an

external observer or the user herself).

The first category involves the online annotation of the data by an external observer. This

method is mostly used in short-term controlled experiments and it slightly reduces the annotation

cost when compared with offline direct observation methods since the annotator only needs to verify

the accuracy of the annotations done online. Therefore, it is mainly implemented to improve the

annotations reliability.

The second class involves techniques in which the user annotates the data. This can be carried

out through time diaries (TD) or ecological momentary assessment (EMA).

When using a time diary the user has to log her ongoing activity along with the activity start and

end time (passive annotation). Researchers who have investigated this type of annotation method

[184, 74, 83] have reported that is highly prone to self-recall errors and requires a high-level of

awareness about the ongoing activity.

On the other hand, ecological momentary assessment (EMA) - also called experience sampling -

consists of capturing online annotations during the data collection by periodically prompting the user

to provide information about her current activity. Several computerized versions of EMA have been

developed [62, 78] in which, essentially, a mobile device (phone or tablet) prompts for information

about the users activity by an audio or visual cue. Barrett et. al. [16] provides a comprehensive

review of computerized versions of this technique. Figure 2-15 shows a typical use scenario of the

EMA method.

EMA has been used in the field of physiology for many years [43, 188, 72]. More recently, it

has generated substantial interest not only among the activity recognition community but also in

the ubiquitous [40, 41] and mobile health [41] communities. Consequently, several lessons about its

implementation have been learned. For instance, it has been seen that it has several advantages such

as: (1) the user is reminded to annotate her ongoing activity in a way that requires less awareness; (2)

the prompts can be randomly sampled through out the day to capture a wide-range of circumstances
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Figure 2-15: Example of a typical use scenario of the EMA method.

experienced in everyday life by the user; and (3) it is less prone to recall errors and, consequently,

the annotations are more reliable.

However, despite all these advantages, it also has several disadvantages. For instance, naturalistic

data annotated in online manner could be biased simply because, by annotating the activity, the

user might change the activity itself. Other disadvantages are: inaccurate annotations due to low-

level of users attention, impossibility to respond to prompts due to the type of activity that is being

performed (e.g., office related activities versus sport related ones), and missing annotations due to

users perception of interruption. In fact, the frequency of the prompts is directly proportional to

the degree of user interruption. Thus, the higher the number of prompts the higher the method

becomes burdensome, annoying and/or irritating.

Nevertheless, work carried by Picard et. al. [141] suggests that this effect might be mitigated if

the prompting is done when the user perceives that is a good time to interrupt. For instance, if the

user is prompted during a break when she is alone, she might perceive it as a welcomed interruption.

In contrast, if she is prompted during a meeting or during a conversation, the prompt is likely to be

perceived as an annoying or a burdensome interruption.

Moreover, work carried out by Intille et. al. [73] and Froehlich el al. [62] indicates that the

prompts could be initiated at more appropriate times by context-aware events. In this approach

sensor events are used to determine when to prompt the user in order to minimize interruptions

and maximize the capture of valuable and interesting information. The sensors could be embedded

in the mobile phone (e.g., GPS, call logs, etc.) like shown in [62], they could be embedded in

the environment like shown in [78, 171], or they could be worn on the body like shown in [105, 76].
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However, the caveat is that in many cases there is not possible to determine in advance what valuable

or interesting events might be present and if they could be detected by sensor data. Thus, the system

could end up missing valuable information or causing higher number of interruptions than in the

non-sensor case - just simply caused by imprecise sensor tuning.

2.5.3.3 Hybrid Methods

Another possibility of annotating the data is by using hybrid methods. These methods try to deal

with the disadvantages of conventional approaches by providing support to users to make more

accurate online annotations or to trigger their memories when annotating the data offline.

Regarding online annotations, Kapoor and Horvitz [851 used experience sampling and active

learning to determine when to prompt the user. The authors developed a method to weight the

trade-off between the information collected by a prompt versus the degree of interruption caused to

the user.

On the other hand, a more hybrid approach has been investigated by Huynh et al. 2008 [74].

This approach combines online and offline annotation methods for allowing the user to choose a

method that is more suitable according to her ongoing situation.

Finally, several hybrid offline approaches have been developed. For instance, Tapia 2004 [171]

clustered sensor data (state change sensor data collected in a home environment called PlaceLab by

activation time and location to make annotations via indirect observation. Another approach is to

use wearable microphones and cameras worn by the users as shown in [189]. This method, referred

by the authors as context-aware recognition survey (CARS), groups the sensor data in contextualized

clusters called episodes, which are converted in a sequence of meaningful images that are shown to

the user in an offline manner via a game-like computer program. Specifically, the user attempts

to correctly guess the ongoing activity after seeing a series of images representing sensor values

generated while the activity is performed in an instrumented home environment. More recently,

Stikic et al. [164] have used a semi-supervised approach which provides a graphical representation

of the recorded sensor data to the user. The graphical representation contains both labeled and

unlabeled data. The method aids the annotation process by using feature similarity and time.

2.5.3.4 Methods in Comparison

As it can be seen, to obtain a reliable ground truth annotation requires a compromise between

accuracy and the timing of the annotation. In addition, despite their numerous advantages, state-

of-the-art methods still have several drawbacks. For instance, current offline methods require arduous

labeling, scale poorly to large number of activities and users, and are subjected to many privacy

concerns. In addition, since they are based on post-fact labeling, they can cause self-recall errors,

lack of temporal precision, and inaccurate annotations. On the other hand, online methods such as
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EMA require user participation, which could lead to frequent interruptions that might change the

activity itself or/and disrupt the user. As a consequence, for real-world problems, annotating the

collected data with existing online or offline methods is an expensive task. However, in contrast,

obtaining large quantities of unlabeled sensor data is relatively easy - since often the activities of

interest are performed in a daily basis.

Thus, the work presented in this thesis focuses on the case of decreasing the number of user

interruptions and creating an algorithm capable of learning upon use from a small number of training

examples. To effectively reduce the number of user interruptions, such examples need to be collected

in a way that the information provided to the classification task is maximized while the number of

instances is minimized. This is achieved by using an active learning approach, which is explained in

detail in chapter 3 in this thesis.

2.5.4 Complexity of the Experimental Design and Evaluation

Across this chapter, it can be seen that state-of-the-art activity recognition approaches are hard to

reproduce and evaluate. This results from the fact that, differently to other fields, such as vision or

speech recognition, activity recognition is not yet mature and well-established field. Consequently,

several non-trivial challenges are present in existing research. For instance, activity recognition

systems are difficult to reproduce, there are not clear activity taxonomies, there is lack of well-

defined experimental protocols, there are not standardized datasets to use as benchmark, and there

are not sufficient adequate evaluation metrics.

Activity recognition systems are difficult to reproduce because most data collections focus on

quite diverse requirements - like high quality of the data, fine-granularity of sensor recordings, large

number of users, large number of sensors, sensor multi-modality, or long-term sensor recordings- and

there is not effort of collecting more comprehensive and collaborative general-purpose datasets.

Collaborative general-purpose datasets could uncover which is the distinctive variability among

different activities and places providing a collection of representative training examples for activity

recognition systems. If collaborative datasets are combined with a well-defined activity classification

scheme, the research community could better investigate the problems of variability and subject-

dependent recognition. In fact, through out the multiple arguments presented in this thesis, we

advocate for making these datasets public and well-defined in terms of their activity taxonomy

description since we believe that this will result on faster development and advancement of the

algorithms used in the field.

Other important aspects to be considered are the use of unambiguous and well-designed exper-

imental protocols and appropriate evaluation metrics. These aspects are crucial for reproducing

proposed approaches and making solid comparisons across different recognition methods which is

only possible when they are tested with similar or comparable conditions. They can make a sig-
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nificant impact on moving system prototypes into wide-scale practical deployment. Currently, such

type of real-world deployment is quite challenging.

However, to conduct an unambiguous and well-designed experiment or study in activity recog-

nition is more difficult than it might be thought at first. For instance, there are several issues faced

such as: to maintain a balance between ergonomics and unobtrusiveness of the sensors versus ease-of-

use and performance of the system; to allocate the time and resources required to prepare, conduct,

and maintain the experiment; to cover the cost for participants, staff running the experiment, the

equipment, and data or phone subscriptions used by participants.

On the other hand, the appropriateness of the evaluation strongly depends on the application;

thus, the natural question is to establish what is appropriate. Specifically, in terms of recognition

performance, it is not possible to directly compare or evaluate in the same manner the recognition

performance of a system evaluated with data collected in an experimental setting covering only few

activities and few known-subjects versus a system that is evaluated with data collected in semi-

naturalistic or naturalistic settings covering a wide variety of subjects. Obviously, the later is a

significantly harder case, which involves much higher degree of variability. Nowadays in current

research, these factors are barely considered or properly addressed.

A part from an appropriate evaluation performance, in many cases, it is extremely informative

for the algorithm design to provide complete and specific information about the criteria used for

optimizing the recognition task since it provides a better understanding of in which cases the

algorithms fail.

A comprehensive solution to all these challenges is beyond the scope of this thesis. However, this

work provides a detailed account of the criteria used for the activity recognition algorithm design

and its evaluation, as well as, the lessons learned from the design and practical implementation of

semi-naturalistic and naturalistic data collections and the hardware used to collect the data. It also

includes the details of the study protocols and information to allow reproducing the results with

the aim that the approach can be implemented in real-world deployments. In general, since this

work aims to establish a set of best-practice guidelines that could contribute to the solution of the

reproducibility, experimental design, and practical implementation challenges.

2.6 Proposed Framework

In general, many state-of-the-art activity recognition approaches are often proof-of-concept systems

carefully tailored to well-specified simplistic scenarios and a small set of users. However, the interest

of monitoring a large number of users over long periods of time has increased, as mobile devices have

become more accessible and wearable sensors more powerful.

There is an increasing body of research investigating large-scale monitoring of coarse-granularity
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activity patterns [2]. But, as discussed previously, the field is moving towards fine-granularity wear-

able activity recognition -which is harder to deploy and research of large-scale systems in this area

is not very common. Indeed, typically, wearable activity recognition studies have few participants

- especially if they are monitored for several weeks such as the work carried out by van Laerhoven

et. al. [184]. Berchtold et. al. [18] have approached the scalability problem by crowdsourcing the

activity annotations using an online annotation approach built on the users mobile phones.

In this thesis, we focus on an activity recognition framework that is scalable and can handle an

increasing number of users. As most of today state-of-the-art approaches rely on machine learning

recognition techniques that require prohibitive amounts of training data for each new user or activity.

Thus, the starting point of this approach is to take a fresh look at the problem and design a novel

activity recognition framework that is suited to scale-up, learn from few examples, and transfer or

add-up new knowledge from previously learned activities across users. The objective is to reduce

the required amount the training data to the minimum while reliably recognizing new activities -

without lowering the recognition rate of activities that were previously learned by the system.

Moreover, the work introduced in this thesis argues that the proposed framework could be used

to create robust building units part of a hierarchical activity recognition model, in where the recog-

nition of high-level activities is based on the recognition results of other simpler activity instances.

The motivation is to let the simpler activity instances - which are easier to identify- be first, and

subsequently use them as building units for recognizing higher-level ones.

For instance, a high-level activity like fighting may be recognized by detecting a sequence of

several pushing and kicking interactions. Thus, in hierarchical approaches, a high-level activity is

represented in terms of sub-instances which themselves might be decomposable until atomicity (last

level of division of an activity) is obtained. As a result, sub-instances could serve as observations or

entries for a higher-level activity recognizer.

Even though, this work doesnt focus on the hierarchical model per se, it is important to explain

how it connects with a more generic framework and the logic behind its design criteria. We consider

that the hierarchical activity recognition paradigm not only makes the recognition tasks computa-

tionally tractable and conceptually understandable, but also scalable and reusable by reducing the

redundancy and utilizing common acknowledge or recognized sub-activity instances multiple times.

In general, common patterns of physical motion that appear frequently during high-level human

activities are modeled as primitive-level activities. However, as discussed along this chapter, such

modeling is not trivial due to high variability and other intrinsic complexities characterizing behavior

happening in natural settings. Thus, this thesis aims to provide a framework that allows modeling

such primitives in an efficient and scalable manner.

In addition, via lessons-learned and design guidelines, we aim to inform designers about the

challenges and trade-offs faced when designing a scalable activity recognition system intended to
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be used for long-term in natural settings. In fact, we consider that - depending on the available

resources and the specific recognition problem- these challenges are not only exclusive of activity

recognition systems but also they are common across many wearable systems intended to recognize

human behavior or physiological signals for long periods of time in natural settings.
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Chapter 3

Algorithm

The automated detection of human physical activities via wearable devices has been suggested for

over a decade as an attractive and fundamental component for a wide-range of pervasive applications.

However, the monitoring of physical activities at a fine-granularity level in natural settings (under

realistic conditions in where users follow their regular routines) has been neglected or, inclusively,

completely overlooked by the research community.

Indeed, many state-of-the-art activity recognition approaches are often proof-of-concept systems

carefully tailored to well-specified simplistic scenarios and a small set of users. However, the interest

of monitoring a large number of users over long periods of time has increased, as mobile and wearable

devices have become more accessible and wearable sensors more powerful.

Therefore, this chapter investigates the development and evaluation of a robust machine learning

method for recognizing physical activities occurring on everyday life settings, with focus not only on

the methods recognition accuracy but also its modularity, performance when adding new information

and scalability to a large number of users and activities.

In terms of robustness of the recognition, three important aspects are investigated: dealing with

(unknown) other activities, user adaptability and computational efficiency when new information

is incrementally added, both explained in more detail in the next subsections. Methods to handle

these issues are proposed and compared.

The method proposed in this thesis has been thoroughly evaluated using publicly available

datasets (described in section 6), with the aim of being accessible, reproducible, comparable, and

adaptable to support several hardware and software platforms and not only the one described in

this thesis. Also, experts and non-experts researchers or developers can utilize it to design robust

physical activity recognition systems with the selected generalization characteristics.
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3.1 Classification Problems

Building on the idea of incremental learning, the algorithm proposed in this thesis aims to provide

a solution that addresses the scalability, adaptability, and computational efficiency requirements

imposed by long-term physical activity recognition systems deployed in uncontrolled settings at

population-scale.

Specifically, this thesis argues that the performance of current activity recognition algorithms

is highly conditional to the algorithm capability to learn efficiently with few examples and quickly

adapt to and/or learn new activities and variations of the user behavior. Therefore, the activity

recognition algorithm proposed in this thesis is built on the idea that simple action detectors can be

pre-trained in a user-independent way and delivered ready to use. Thus, while the user might have

given an application that initially doesnt fully work, the activity recognition system could learn as

the user interacts with it.

In order to investigate and handle these requirements, this thesis has analyzed the following key

classification problems:

1. The null-class problem

2. The subject adaptability problem

3. The computational efficiency problem

3.1.1 The null-class problem

The recognition of basic ambulatory and sedentary activities using wearable accelerometers has

been well researched over a decade [109, 132]. Though useful, these approaches have investigated a

limited set of activities collected in controlled settings and, for instance, they only apply to specific

situations or settings.

As a result, a current problem in the field of activity recognition is how to effectively increase

the number of activities to recognize. However, there are numerous different activities that could be

recognized (e.g. It can go from 60 activities as listed in [202] to 605 as listed in [9], consequently,

it can be soon realized that is not feasible to recognize all of them. This is not only due to the

increased complexity of the recognition problem due to the multiple sources of variability (that go

from hardware differences to differences in user behavior), but also to the fact that collecting data

from all possible activities across hundred of users is a highly impractical as well as a very expensive

task.

Thus, a more practical approach is to focus on the recognition of few activities of interest, but

with the capability of discriminating the activities that do not need to be recognized or are irrelevant.

Of course, given the imbalance of relevant versus irrelevant data, activities of interest can be easily

confused with activities that have similar patterns. This problem is often referred in the literature
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as the null class problem, in where the irrelevant or other activities are called null class.

To generate an explicit model of the null class is very difficult if not impossible since it represents

a theoretical infinite space of arbitrary data. However, it is possible to handle irrelevant activities by

incorporating a rejection mechanism based on the likelihood of the classification result. Indeed, this

problem has been investigated in previous research by [130, 20] and successfully used for activity

and gesture spotting using Hidden Markov Models (HMMs).

In this chapter, the performance of the proposed algorithm for recognizing - not only few activities

but also other activities that are part of a null class- will be investigated. In fact, the inclusion of

this class considerably increases the complexity of the recognition task (as it will be shown through

out the experiments presented in subsequent sections). However, it is an important case to solve

when it is desired to increase the applicability and usefulness of the algorithm in real-world systems.

3.1.2 The user-adaptability problem

It is well known among the activity recognition community that a large difference in recognition

accuracy is often reported when classifiers are evaluated in a subject-dependent versus a subject-

independent manner.

Thus, in general, the goal of most activity recognition systems is to perform well and be validated

in a subject-independent manner. This means that usually most systems are trained on a large

number of users and then used by a new subject, which is unknown during the system development

stage. This measure is usually a pessimistic systems performance measure. In contrast, a subject-

dependent evaluation leads to a very optimistic system performance measurement.

Even though typically it is a highly recommended practice to test the system performance using

both evaluation methods for having a good picture of the overall systems behavior, still many

approaches proposed recently use subject-dependent evaluation methods(e.g., [99]. Indeed, this

type of evaluation is problematic because the very optimistic performance results might not have

much practical meaning for real-world applications in which new subjects and new information is

often been observed.

Nevertheless, the subject-dependent evaluation is desirable when the explicit goal is the devel-

opment of a tailored algorithm for a particular user. In such case, the focus is the measurement of

the algorithm performance when few examples are available or when new information is introduced

to the system. In other words, how the tailored algorithm learns new information in an incremental

manner.

Since the method proposed in this thesis is trying to be robust in both cases, both evaluation

techniques will be investigated.
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3.1.3 The computational efficiency problem

An important difference between the algorithms for wearable systems versus other types of systems

is that the computational resources of wearable systems are limited and, for instance, a low-cost

computational solution is crucial.

The method described in this thesis proposes a solution in where the user can receive a new

model within a short period of time to start using the system and, subsequently, adapts accordingly

to new incoming data and activities.

To make this approach to work is necessary that the tailored algorithm can handle complex

activity recognition tasks (e.g., recognition not only of the few basic activities which the model uses to

start, but also other activities of interest to the user). However, in contrast to other approaches, the

user should not be required to provide data from all the activities the system recognizes. The system

should only require data for the activities of interest and, using the new labeled data previously

unknown, only the relevant parts of the system should be retrained (only the activity to which new

data is incorporated or the new activity of interest), the rest of the system should remain the same.

The main goal allowing the system to preserve previous information already learned.

3.2 Contributions and Main Idea

This chapter presents the proposed method and its design criteria.

In sum, the first main contribution of the work presented in this thesis is to demonstrate that

the proposed concept can realize the learning-upon-use paradigm, as well as, demonstrate that such

concept is a valid approach to solve the main classification problems currently faced by real-world

activity recognition systems.

The second contribution is the introduction of a novel algorithm based on the proposed concept.

Since the proposed algorithm is based on the Support Vector Machines (SVM) classifier using

the all-pairs training method, the experiments section of this thesis presents first the optimization of

the model parameters of this basic classifier. Subsequently, the optimized SVM classification model

is compared to other widespread activity recognition approaches.

Moreover, the optimized SVM model is modified and extended to further increase the classifica-

tion accuracy of the activity recognition task and incorporate the user-adaptability features proposed

in this thesis. In particular, this is realized by introducing a meta-level learning algorithm based on

a weighted voting method. This method is often used in the field of game theory and has numerous

variations, thus, this work investigates several approaches to construct it.

The rest of this chapter presents the proposed algorithm, its data processing pipeline, and relevant

related work related to other activity recognition approaches and the basic techniques presented in

this work.
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3.3 Algorithm Description

In recent years, the technique of Support Vector Machines (SVMs) has been increasingly investigated

for activity recognition applications [106, 110, 24], due to its classification and estimation proficiency

[28]. In fact, SVMs have been widely investigated and used in problems for isolated handwritten digit

recognition [42], object recognition [179], speaker identification[160], and face detection in images

[48]. In most of these cases, SVM generalization performance either matches or is significantly better

than the one obtained by competing methods.

Although SVMs have good generalization performance, they can be very slow in training phase.

This problem has been addressed in [28], [81] and [142], which introduced the widely used SVM

light and SMO training algorithms. Currently, there are several modern implementations of these

algorithms that have significantly increased the computational efficiency of SVMs during the training

phase [44]. As a result, the significant improvements in low computational cost along with the SVMs

excellent estimation capabilities reported in prior research make this technique to be an attractive

approach for activity recognition systems.

Roughly speaking, SVM is a machine learning discriminative modeling approach that was origi-

nally designed for binary classification. Various methods exist where typically a multi-class classifier

is constructed by combining several binary classifiers. Also, there are methods, which consider all the

classes at once in where a single joint optimization problem is solved. The single joint optimization

problem is computationally and mathematically harder to solve than the binary problem.

In this work the all-pairs binary classification method [92] is used because it is less computation-

ally expensive than considering all classes at the same time. This method decomposes the multi-class

classification problem in several binary tasks that require solving simple optimization sub-problems

that consider only two classes at the time. Besides its low computational cost, this method provides

the advantage of adding classes incrementally (on the fly). Indeed, this offers a significant advantage

for activity recognition systems since activities could be added over time according to their relevance,

as well as, their number could increase only limited by the mechanism to discriminate them at the

top classification layer.

3.3.1 Basic formulation

Specifically, the all-pairs method constructs k(,I 1) binary classifiers, with k = number of classes

where each classifier is trained on data from two classes. Each SVM is trained with all examples

from the ith class with positive labels, and the examples from the jth class with negative labels.

Thus, given training data l(xt, yt), where xt E Rn, t = 1, 2,...,l which is the data in both classes

andyt E {i, j} which is the class of xt, the SVM solves the problem:
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min I(w i)Twii + CEWi (3.1)
toi,b'i,eij 2

Where

(wi)T (xt)+ bi > 1 - t, Iif yt = i, 0 (3.2)

(Wi)Tek(Xt) + b' < -1 + Ct' , if yt = j, 'j 0 (3.3)

Where the training data xt are mapped to a higher dimensional space by the function #, C is the

penalty parameter for the error, and t' is the slack variable that counts the classification errors made.

In other words, the SVM will construct a separating hyperplane in that higher dimensional space,

one that maximizes the separation ("margin") between the two classes. The margin hyperplanes

can be written as the set of points #(xt) in the higher dimensional space satisfying equations 3.2 and

3.3, where wij is a normal vector perpendicular to the hyperplanes and b1i determines the offset of

the hyperplane to the origin along the normal vector wi3. Then, minimizing .(wii)T wij means that
22

we would like to maximize N1w" which is the margin between the two groups of data. When data

are not linear separable, there is a penalty term CZ(fwhich can reduce the number of training
t

errors. The basic concept behind SVM is to search for a balance between the regularization term

I(wii)Twii and the training errors.

3.3.2 Typical meta-level layer

There are different methods for doing the multi-class testing after all binary classifiers are con-

structed. However, there is not a direct technique that can be used for solving a specific type of

problem.

Typically, simple voting strategies (as suggested in [92]) are used. For example, one of the most

common strategies involves the using of a sing function that predicts according with the class with

the largest number of votes.

The sign function typically used is as follows:

sign((wi3)T#O(x) + b-) (3.4)

Basically the sign function compares the input vector of features to a decision boundary in the

high dimensional space. Then, if the result is positive and we say that xi belongs to the ith class,

the vote of the ith class is added by one. Otherwise the jth class is increased by one.

However, although this strategy has found to give reasonable results, it has the problems of when

two or more classes have identical number of votes, the selection of the activity class often leads to
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high number of errors. In such case, a common strategy is to select one of the classes with similar

number of votes at random.

In summary:

1. C(C-1) classifiers are constructed in where each one is trained on data from 2 classes.2

2. To train data from the ith and the jth classes, we have to solve the following binary classification

problem:

min 1 i 
3T Wis wij,bij, ( 2 W + CZ ')

(Wij)T4(Xt)+ bj > 1 - " if yt i, (f> 0

(Wij)T O(Xt) + b'j < -1 + (f , if y, j, '3 > 0
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3. A voting strategy is used to predict x according with the class with the largest vote:

4. IF sign((wij)T4(x) + bi) > 0 THEN say x is in the ith class, then the vote of the ith class

is incremented by one. ELSE the Jth is increased by one.

If 2 classes have identical votes, one of the classes with similar number is selected at random.

3.3.3 Proposed Extension

Although the performance of the SVM algorithm often gives reasonable results, when the variability

in how users perform the activities is high, the SVM algorithm alone or other approaches cannot

perform beyond of a modest level of accuracy (- 75%, see 3.4 for more details). Thus, to further

increase the accuracy, the SVM approach has been extended to include a meta-level learning mech-

anism, which efficacy is supported by the experimental results obtained in the next chapter of this

thesis.

The main model consist of a set of S SVMs binary classifiers, in which each classifier corresponds

to a particular activity pair created from the original training data. Moreover, each set of classifiers

corresponds to a single subject from the training dataset (subject dependent method). Thus, in

the original SVM model, each SVM binary classifier in the set S has the same weight: wi = 1, i =

1,... , S and no retraining of the weights is performed. Indeed, this is what is used as the baseline

performance.

In the original SVM model, a new data example is classified with equal weighted binary classifiers,

which give a classification prediction. Subsequently, such prediction is used to determine the final

activity class based on the highest overall accumulated number of votes (in case of multiple classes

having the number of votes a random selection is made).

In the proposed model, a new data example is classified by each binary SVM classifier and the

resulting prediction is weighted according to the classifier associated retrained weight. Subsequently,

the final class is selected based on the highest weight computed on the accumulated weight of each
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binary classifier and the updating overall weight coefficient.

In the approach proposed in this thesis, the weights wi are retrained using a method based on an

extension of the weighted majority of voting technique. The proposed novel extension is described

below.

3.3.3.1 Extended formulation

Similar to other majority of voting methods (like the ones formulated in [174J), the proposed approach

uses a set of new-labeled examples to train the weights of the binary classifiers, and uses weighted

majority of voting to predict a new data instance.

It proposes a novel approach to deal with the question of what is the confidence of a binary

classifiers decision when predicting a new unlabeled example. Thus, the main idea is that this

confidence should depend on the prediction of all the other binary classifiers in the SVM model.

* Training Step

Therefore, the result of training the weights with the new labeled example is a matrix W size

SC (see figure 3-3 line 13). In where wv,,c stands for the weight of the ith binary classifier when

the majority of vote of all other classifiers is the class c. Indeed, this is defined as the weight

in performance rate of the it' binary classifier on this sub-set of examples (see figure 3-3 line

8-10).

e Prediction Step

In the prediction step, the label of the xnew instance is determined with a binary classifier

and with the resulting classification of all the other binary classifiers together (see figure 3-3

and line 18-19).

The resulting weight obtained this way is added to the accumulated weight for the label predicted

by the corresponding binary classifier. This procedure is repeated for each of the individual binary

classifiers.

Figure 3-3 Implementation pseudo-code and mathematical formulation.

Most existing majority of voting based methods only train an overall weight for each classifier,

whereas this method trains each of the w,,c weights in an overall but dependent manner. This makes

this approach more robust when a set of classifiers performs well on some cases but poorly on others.

Also, it handles better the case of missing data when the classifier has no knowledge on a part of

the problem space.

3.3.4 Complexity and Scalability

Since the proposed technique is based on SVMs, it inherits most their properties. One of the most

striking properties is that both, the training and testing functions depend on the data only through
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Require: S is the set of S different experts (classifiers): si, i = 1,..., S
C is the set of C classes the classification task is composed of:

ci' i =1...,C
N is the set of N new labeled samples: n; = (xi, yi), i = 1,..., N

(x;: feature vector, y; E [1,..., C])
New instance to classify: x

1: procedure TRAININGWEIGHT(SC,N)
2: for i +- 1, S do
3: for j +- 1, N do
4: Predict label of x. with expert si: f
5: Predict label of xi with the ensemble S n si (all experts but s;),

using majority voting: ij
6: end for
7: for c 4- 1, C do
8: Pc = (Vn E N' = c}

% samples where the majority vote of the ensemble S f) si is the class c
9: Pcdgood = (Vn E PC Ip = y)

% correctly predicted samples by si from the set of PC
10: Wi,c = IPc-goodVIPcI

% the performance rate of the ith expert on Pc
11: end for
12: end for
13: W is the return matrix of weights, composed of elements wi,c

where i = 1,..., S and c= 1,. C
14: end procedure
15: procedure PREDICTION(S,C,W,xne)
16: pc = 0, c = 1, ... , C % initialize prediction of!x_

17: for i +- 1, S do
18: Predict label of xne with expert si: class C
19: Predict label of x,e with the ensemble S n si: class t
20: Pe +- 4 e +wo
21: end for
22: The output class is argmaxc pc c= 1,..., C
23: end procedure

Figure 3-3: Algorithm pseudo-code.
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the kernel functions K(xi, x,).

Even though the kernel K itself only corresponds to a dot product in the space of dimension

dH , where dH can be very large or infinite (as it often happens in activity recognition given to the

large feature vectors computed), the complexity of computing K can be fairly small (as it is shown

in [391).

For example, for kernels of the form of K = (xi, x,)P, a dot product in H would require an order

of ( -P ) operations. In contrast, the computation of K(xi, x,) requires only O(dL) operations

(in where dL is the dimension of the data).

In fact, this property is the one that allows constructing simple hyperplanes in these very high

dimensional spaces and still can be tractable with low computational cost. For this reason, this

method can bypass both forms of curse of dimensionality. One caused by the proliferation of pa-

rameters causing intractable complexity and the other caused by the proliferation of parameters

causing overfitting. These properties offer a significant advantage for activity recognition systems,

which typically have to deal with these problems due to the high complexity generated due to the

wide-ranging diversity in how the users perform activities.

3.3.5 Limitations

One of the biggest limitations of this approach is the choice of the kernel. Once the kernel is fixed,

the individual classifiers have only one free-to-chose parameter (the error penalty). However, the

kernel is a very big rug under which we could sweep parameters. Therefore, some work has been

done on limiting kernels using prior knowledge [157, 28], but the best choice of a kernel for a given

problem is still a research problem.

For instance, in the field of activity recognition and biomedicine, prior work [Gupta-MIT] has

found that polynomial kernels (from order 2 to 4) give reasonable results when using basic SVMs

classifiers (without any meta-learning layer). As shown in Chapter 6of this thesis, our analysis also

supports these findings.

On the other hand, [1101 has reported that SVMs with radial basis functions (RBF) provide

also good classification results. However, their work doesnt systematically compare the RBF ker-

nel against other kernel functions. In contrast, [Gupta-MIT] provides a more comprehensive and

systematic analysis and has reported that polynomial kernels exhibit better performance in activity

recognition accuracy. Despite these results, since current dataset are very limited and the hard-

ware systems used to collect the data very diverse, the best choice of kernel for physical activity

recognition is still an open research question.

A second limitation is speed and size, both in training and testing. While the speed problem

in test phase is largely solved in [142, 44], this still requires two training passes for the multi-class

problem.
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As discussed in the beginning of this chapter, the all-pairs training method greatly alleviates

this limitation by breaking the problem in a set of simple binary classifiers. However, it carries the

complexity of the classification task to the meta-layer, solving this problem for very large datasets

is still an open area of research.

3.4 Related Work on SVMs extensions

Although some work has been done on extending SVMs, finding the optimal design for multiclass

SVMs classifiers that offers robust classification and low computational cost is an open area of

research.

In particular, some of the most noticeable extensions for improving the performance of SVMs are

the virtual support vector method, the reduced set method and, more recently, some meta-learning

methods combining SVMs with generative probabilistic models such as HMMs (like the method

described in [SVM-HMMs]) or combining SVMs with the AdaBoost algorithm [103].

3.4.0.1 The Virtual Support Vector Method

As described in [157], this method attempts to incorporate known invariances of the problem by first

training a system and then creating new data by distorting the resulting support vectors, and finally

training a new system on the distorted (and the undistorted) data. The idea is easy to implement

and the method has been reported to give good results when the data has high variance or for

incorporating invariances.

3.4.0.2 The Reduced Set Method

This method was introduced to address the speed of support vector machines in test phase, and

also starts with a trained SVM. As defined in [161], the idea is to replace the sum corresponding to

the support vectors weighting function woginal = E ajyjxi with a similar sum (Wefficient). Thus,

instead of support vectors, computed vectors -which are not elements of the training set- are used

and, instead of the aj, a different set of weights is computed. The resulting vector is still a vector in

the hyperplane H, and the parameters are found by minimizing the Euclidean norm of the difference

between the original vector Wigina and the approximated vector Wefficient. The same technique

could be used for SVM regression to find much more efficient kernel function representations (in

fact, this method is frequently used for data compression).

3.4.0.3 The SVM-AdaBoost Method

More recently, SVMs have been combined with the AdaBoost algorithm [103]. Specifically, the aim

of the AdaBoost algorithm is to be used along with other types of learning algorithms to improve
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their performance. The output of the other learning algorithms called weak learners (in this case

these learners are the SVMs) is combined into an overall weighted sum to determine the final output

of the classifier. The individual learners can be weak, but as long as the performance of each one

is slightly better than random guessing, the final model can converge to a strong learner. This

technique in general is sensitive to noisy data and outliers. However, in some problems can be less

susceptible to overfitting than other learning algorithms.

While this algorithm will tend to suit some problem types better than others, in the field of ac-

tivity recognition, AdaBoost has reported to perform better when used in combination with decision

trees than when used with SVMs (with a linear kernel) as the weak learners [148].

However, it is important to highlight that these results need to be interpreted with some reserve.

Since the performance of SVMs are highly dependent on the choice of their parameters (e.g., type of

kernel, training method, and error penalty among others). For instance, the experiments reported in

[148] use SVMs with linear kernel rather than other higher degree polynomial kernels that have been

shown in this thesis (see section 6) and other prior work [AR-SVM-polynomial] to be more effective

for solving the multi-class classification problem. Thus, despite the Ada-Boost is able to improve

the performance of the weak classifiers, such performance improvementmight not be sufficient if the

weak classifiers can hardly perform slightly above chance even in the best case.

3.4.0.4 Other Approaches

Techniques based on an ensemble of classifiers like adaboost, boosting or random forest have become

very popular within the machine learning community, in particular, when combined with decision

trees (DT).

As these methods are constructed using DTs, they suffer from some of the same downsides than

when using basic DTs (except for over-fitting). Of course, the fact you have a set of several DT

classifiers instead of one increases the classification rate. However, the classification rate increases

not because an individual algorithm performs better but because the ensemble is classifying using

many models that are re-weighted according to new information. Indeed, one of the original purposes

of this method is to solve the over-fitting problem typical of DTs.

In the other hand, ensemble based methods are often implemented over the cloud or a server in

where the training or classification is mostly done in an offline manner. Thus, these methods start

to be less optimal when online or near real-time classification with limited resources, many classes

and high data dimensionalityis needed. In fact, these are precisely some of the most important

requirements of wearable activity recognition systems.

In terms of computational requirements, techniques based on SVMs can be also computationally

intensive depending on the kernel used. Nevertheless, if simple kernels are used as proposed in

this work- the computational cost can be significantly reduced. In addition, SVMs framework offers
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important advantages like theoretical guarantees regarding overfitting, power of flexibility by using

the kernels, and good performance even with data that is not completely separable (which is the

case of many activity recognition problems).

In terms of bias variance tradeoff, it is important to highlight that activity recognition data

collected in naturalistic settings usually has lots of variability, overlapping, and uncertainty generated

by the lack of precise or clean annotations or hardware diversity. Thus, the choice of the best activity

classification model should not only be based on overall recognition accuracy with few samples but

also it should be based on the properties of the classification method. Some of such properties are

related to how the model handles high-variance in data or overfitting, speed, ease of use, scalability,

and other theoretical properties associated with the bias variance tradeoff - which is the tradeoff

of choosing a model that both accurately captures the regularities of its training data, but also

generalizes well to unseen data.

In general, ensemble techniques are very popular since they have been found to be very useful

for a wide-range of applications in a wide range of domains. However, this doesnt mean that they

are optimal for all types of problems.

Certainly, within the fieki of activity recognition is well known that sometimes better algorithm

properties and good data, often beat better algorithms. Thus, the choice of algorithm properties

and representative features are very important design considerations for having a good classification

performance. In fact, this is the reason why collecting data in naturalistic settings to test new

approaches is an important concern within the activity recognition community.

3.5 Chapter Contributions

This chapter introduced a novel general concept for realizing the learning-upon-use paradigm.

This concept uses a set of binary SVM classifiers as a general model, and retrains the weight of

the classifiers using new-labeled data from an unknown user.

In the next chapter we will present experiments that try to show that this is a valid approach.

Moreover, a novel algorithm is presented and compared to other existing activity recognition classi-

fication methods, showing that the recognition performance of the proposed method is significantly

better than those. This is supported with a systematic evaluation comparing the general basic model

with HMMs, decision trees, and other SVMs models using different kernels.

The main benefit of the introduced concept is that, instead of retraining all the activity classes

contained in the general classification model, only the relevant class/classes to the new-labeled

examples and their weights are retrained. As a result, this makes the re-training a new class or

an existing class much less computationally intensive, since primarily the prediction of the new

training example is required. Consequently, this approach can be used for mobile or wearable
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systems, inclusively for difficult classification tasks requiring more complex classifiers (see section

6). An analysis of the computational cost of the proposed approach (as shown in the experiment

on computational cost section) shows its feasibility for online wearable applications. Furthermore,

another advantage is that the proposed concept allows users only to collect data incrementally for

a subset of recognized activities, a single activity, or a new activity without having to lose what

the classifiers previously learned or without having to retrain the entire model every time new

information is added. These features make the proposed approach more practical and usable for

real-world applications.

Finally, most physical activity monitoring systems are usually trained in controlled laboratory

conditions on user groups of healthy adults (in fact, usually grad or undergrad students). As a

consequence, such systems often perform poorly when used by significantly different users (e.g.

young children, elderly individuals, or people suffering from overweight).
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Chapter 4

Datasets

The effort of collecting data for physical activity recognition in controlled or uncontrolled settings

is significantly harder than collecting data in, for example, home environments. As result, existing

datasets for wearable activity recognition are less comprehensive and harder to standardize because

a robust wearable hardware and software system is required.

Indeed, some of the activities that are high aerobic can stress the sensor placement, can produce

body blockage or, in general, stress the system setup (see section 2.5.1 for a detailed discussion).

Furthermore, as discussed in the background section 2.5.3, offline annotation using video record-

ing (commonly used in home environments) observer is not feasible if outdoors and 24/7 activities

are wished to be included in the data collected. As a result, online annotation by a human observer

is commonly used for creating ground truth. Of course, such type of annotation has a very high

cost in terms of human labor. There is why annotation based on experience sampling techniques is

also used with the cost of lower label accuracy, lower amount of data labeled, and high user annoy-

ance. Thus, given the high human cost of creating ground truth, there is a lack of commonly used,

standard datasets and benchmarks for wearable activity recognition.

The following section introduces two datasets for physical activity recognition, in where one of

them is publicly available (see [146] and [147]). The other dataset was collected earlier at our lab as

described in [121].

The reason why these datasets were selected is they offer a wide-range of common activities

performed by an adequate number of subjects wearing more than one sensor on common locations

on the body (at least, wrist, hip, and ankle).

The rest of this section is organized as follows: first the selection of the sensor placement is de-

scribed, then the method for creating ground truth for both datasets and, finally, the data collection

details of both datasets.

Specifically, the MITEs dataset contains data from 52 activities and 20 subjects, wearing 7
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MITES sensors (as described in [121]). Whereas the ICU-ETH dataset contains data from 18

activities and 9 subjects, wearing 3 IMUs and a HR-monitor (as described in [147]). For all datasets,

the hardware setup, the data collection protocol, etc. are described in the corresponding publications

and/or datasets referenced public dataset repository website.

4.1 Sensor Placement Selection

Previous work in e.g. [1211 showed that in the trade-off between classification performance and

number of sensors, using 3 sensor locations (hip, dominant wrist, dominant ankle/food) is the most

effective. In systems for physical activity recognition the number of sensor placements should be

kept at a minimum, for reasons of practicability and comfort since users of such systems usually

wear them for many hours a day.

Moreover, prior work doing a detail analysis of all possible combinations of sensor positions shows

that at least two [15, 38] to three [121] are necessary for the accurate classification of a wide range

of activities. Indeed, the MIT MITES and UCI-ETH datasets were selected because they contain

analogous data from the sensor positions of interest, they were collected in both controlled and

semi-naturalistic settings, and they involve a relatively similar set of activities.

4.2 Ground Truth Annotation

Both datasets were annotated using an online annotation method. Essentially, this method involves

a researcher accompanying the study participants. Then, the researcher marks the beginning and

end of each of the different activities in an online manner during the data collection. The time

stamped activity labels are stored on the data collection unit/units. The data format used in the

published dataset can be found in [147] and [121] correspondently.

Since the beginning and end of each of the different performed activities are marked on set,

time stamped activity labels are provided along with the raw sensory data. In both datasets, the

collection of all raw sensory data and the labeling were implemented in separate applications and

their synchronization was carried out offline.

4.3 The MIT MITES Dataset

4.3.1 Data Collection

This dataset is described in [121] and it was collected collaboratively by MIT Changing Places

Laboratory and the Medicine Prevention Research Center in Stanford University.
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The data collection procedure followed a protocol in which subjects were asked to perform a

series of tasks. Each task involved the performance of a specific physical activity e.g. running 3

miles on the treadmill or washing specific windows. One researcher monitored the procedure and

annotated the start and the end of the whole task associated with the activity. Data collected

outside of start-end intervals was labeled as unknown. 24 subjects participated in two sessions. The

subjects were 12 Females and 9 males with age, height and weight averages of 44 years, 171 cm and

71 kg (see details in [121}). A set of 6 and 20 activities were collected per each session. Each session

involved a different set of activities.

Postures Aerobic Complex

sitting running on treadmill folding and stacking laundry

slouching cycling on airdyne vacuuming and moving chairs

sitting at desk swinging arms washing windows

standing with hands in pockets push ups from knees sweeping and mopping

lying down deep knee bends stretching

stretching and standing up squats swinging arms

stepping on platform (1-stair) turning and pivoting

arm curls with hand weights

sit ups or crunches

picking up

Table 4.1: Activities included in the MIT MITES Dataset.

Notice that from the 24 participants for who the data was collected, only 20 turned out to

have usable data. The data for one participant was incomplete, whereas, the data for the other

participants was corrupted (sensors were misplaced, time stamps were corrupted, and/or information

was missing within one accelerometer axis data stream).

In general, the data collection was designed to investigate the relationship between physical

activity and energy expenditure as well as to validate sensors and algorithms used to measure

biological signals and body movement. Specifically, heart rate, respiration, oxygen consumption and

seven body joints acceleration signals were monitored using five types of sensors1 .

The data procedure was highly controlled given that several sources of error exist when measuring

biological signals. Error associated to sensors measurements is introduced because biological signals

are typically very noisy. In addition to this error, uncertainty is introduced by the algorithm classi-

fying physical activities. Hence, the data collection was done in such a way that contribution from
1The sensors used are the Zephyr Bioharness monitor, Actigraph monitor, Omron monitor, Polar heart rate monitor

(strap version), Oxicon respiration monitor and MITES sensors. All except the MITES sensors are commercially
available health monitors.
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known sources of error is minimal and constancy of sensor error variation across physical activities

can be verified.

As reported in [121], the tasks assigned to participants were performed as natural as possible.

For example, subjects were let to wash windows in the way how they will typically do it (e.g., using

one hand versus both hands). Thus, activities were performed in a wide range of ways involving

different speeds, joints moved and number of repetitions. As a result, the data set involves a diverse

set of samples and a considerable number of classes, which makes the physical classification tasks to

be not trivial.

Figure 4-1: Participant wearing the sensorsi used in the experiment.

4.3.2 Apparatus

Data was collected using six types of sensorsi that were worn by the participants during the exper-

iment session. Figure 4-1 shows a participant wearing the sensors. In this work, only the MITES

data was used since the scope of this analysis is on activity recognition algorithms. In particular,

the data consists of measurements coming from seven 3-axis acceleration sensors with a range of 2G,

a resolution of 9-bit, dimension 3.2x2.5x0.6cm, weight 8.1g including battery, and 45-90Hz sampling

rate. Each sensor was placed on different parts of the participants body (hip, wrists, ankles, upper
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dominant arm and upper dominant tight), was attached to the participants body by a flexible elastic

strap.

4.4 The UCI-ETH (PAMAP2) Dataset

4.4.1 Data Collection

This UCI-ETH (PAMAP2) dataset is described in [147] and involves nine subjects, eight males and

one female aged 27.22 3.31 years, and having a BMI of 25.11 2.62 kgm2. One subject was left-

handed, all the others were right-handed. The protocol of performing indoor and outdoor activities

for the data collection is described in [147].

A total of 18 different indoor and outdoor activities were included in the data collection protocol

(see table 4.2). Participants wore 3 inertial measurement units (IMUs) and a heart rate (HR).

A semi-naturalistic data collection was carried out in which participants were asked to follow the

protocol, performing all established activities in the way most suitable for them.

Since a heart rate data was also included in the hardware setup of the data collection, one and

two minute breaks were inserted in the data collection protocol after most activities. The goal was to

ensure the measured heart rate was unaffected by previous activities. However, since such situation

is idealistic and only usable for experimental purposes, the authors included in the data collection

protocol cases in where activities were performed directly one after the other. See [147] for more

details.
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Posture Aerobic Complex

lying ascending stairs ironing

sitting descending stairs vacuum cleaning

standing Normal walking folding laundry

Nordic walking house cleaning

Cycling watching TV

Running computer work

Rope jumping car driving

playing soccer

Table 4.2: UCI-ETH PAMPAP2 Dataset: Data Collection Protocol.

4.4.2 Apparatus

As described in [147], inertial data was recorded using 3 Colibri wireless IMUs from Trivisio [176].

The sensors are relatively lightweight (48 g including battery) and small (56 42 19 mm). Each IMU

contains two 3-axis MEMS accelerometers (range: 16 g / 6 g, resolution: 13-bit), a 3-axis MEMS

gyroscope (range: 1500/s, resolution: 13-bit), and a 3-axis magneto-resistive magnetic sensor (range:

400 T, resolution: 12-bit), all sampled at 100 Hz. To obtain heart rate information, a BM-CS5SR

heart rate monitor from BM innovations GmbH [21] was used, providing heart rate values with

approximately 9 Hz.

In this work, only the 3-axis accelerometer data is used from the IMU. Of the 3 IMUs, one was

attached on the wrist of the dominant arm, one on the chest of the test subjects, and one sensor

was on the ankle bodys dominant side.

A Viliv S5 UMPC (Intel Atom Z520 1.33GHz CPU and 1GB of RAM [186]) was used as data

collection unit. A custom bag was made for the collection unit and 2 USB-dongles additionally

required for the wireless data transfer one for the IMUs and one for the HR-monitor. The bag was

carried by the subjects fixed on their belt and the device can run on batteries for up to 6 hours.

Figure 4-2 shows the UCI-ETH (PAMAP2) dataset placement of IMUs (red dots) and the data

collection unit (blue rectangle) as depicted in [147].
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Figure 4-2: Sensor locations placed on the participant's body during the experiment.

4.5 Conclusion

In the field of physical activity monitoring there is a lack of a commonly used, standard dataset and

established evaluation benchmarks. This chapter introduces the two datasets used in this thesis.

One of them is publicly available at [178][166].

The MITEs dataset contains data from 20 activities and 20 subjects, wearing 7 MITES sensors (as

described in [121]). The UCI-ETH dataset was recorded on 18 physical activities with 9 subjects,

wearing 3 IMUs and a HR-monitor (as described in [147]). In the corresponding sections of this

chapter the data collection procedure, apparatus, and participating subjects have been described for

both datasets.

Apart from using these two datasets in this work, they have the advantage of being comparable

to each other. In addition, one of them is publicly available. This has been of great advantage for the

research community, which can make use of them. They contain a reasonable number of activities

performed by a reasonable number of subjects, which make them usable to define challenging activity

recognition problems, benchmark the evaluation tasks, and compare results. This entirely leads to

the improvement of novel activity recognition approaches like the ones described in section 3.4.
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Chapter 5

Materials and Methods

5.1 Data Processing

The data processing used in this work follows a classical approach used in activity recognition

systems. Such approach involves processing steps that goes from raw sensor data to the prediction

of an activity class. Figure 5-1 shows these steps.
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Figure 5-1: Typical data processing approach.

The first stage involves the common steps of pre-processing, segmentation and feature extraction.

Then, the second step involves the classification step. In this second step various classifiers can be

used (section experiments compares various classifiers and underlines their benefits and drawbacks).

This second step can be seen as the decision making module consisting of one or more than two

steps (as described in the algorithm section). With one step, a classifier takes the entire feature set

as an input, and outputs a class according to the specified classification problem. With two steps

the classifier output can be taken as an input for a meta-learning layer and/or, subsequently, a filter
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Mean Energy

Total Mean Entropy

Mean differences between axis Dominant frequency

Range or maximum signal amplitude Power ratio of certain frequency bands

Standard deviation

Covariance

Correlation between axes

Absolute integral

Peak of absolute data

Table 5.1: Extrated features in the time and frequency domain.

that can smooth the output over time.

In this work, the estimation of the activity is regarded as the main classification task. However,

the goal is not aiming for the best performance on the classification tasks, but to provide a baseline

classification characterization based on a benchmark.

The results, challenges and discussion presented in this work aim to serve as motivation to

improve existing methods with the introduction of new approaches or meta-learning layers.

For both datasets the following features were extracted:

Features are computed over sliding windows of 5s in length after interpolating and filtering the

raw accelerometer signals by a band-pass and low pass filter as explained in [121]. For feature

computation, this window is used with 50% overlapping between consecutive windows and 50% data

loss tolerance. Thus, features are extracted from the sliding window signal, shifted by one second

between consecutive windows. The signal features extracted from the acceleration sensor data are

computed for each axis separately, as well as, for the 3 axes together.

When computing all features, the resulting feature vector contains 379 (54 features per sensor).

In where, each axis measurements involve the value of mean, total mean, variance, covariance, range,

signal absolute values, FFT (3 maximum frequencies) and energy.

5.1.1 Preprocessing

The datasets mentioned in chapter 4 provide time stamped raw sensor data and time stamped

activity labels, which is synchronized in what is usually referred as the preprocessing step.

One of the problems faced in this step is the wireless data loss issue, which causes missing values.

In this work, the common approach of linear interpolation is used for simplicity. Also, further

preprocessing of the raw signal (like filtering) is used before extracting features. Finally, to avoid
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dealing with potential transient activities, 5 seconds from the beginning and the end, respectively,

of each labeled activity is deleted.

5.1.2 Segmentation

Previous analyses carried out among many types of activities [121][38] show that there is not a

unique window size that works for all activities. Lara et al. [99 and Munguia-Tapia [121] show that

for obtaining at least two or three periods of all different periodic movements, a window length of

about 3 to 5 seconds is practical choice, specially, to guarantee an efficient discrete Fourier transform

(DFT) computation for the frequency domain features (see table features). As a result, a window of

5.12s was selected. Since the sampling rate of the raw accelerometer signals collected in the datasets

are 45Hz (MITES) and 100Hz (UCI-ETH), over a window of 5.12s, represent a window size of 256

and 512 samples respectively.

5.1.3 Feature Extraction

The most commonly used features reported in literature are: mean, median, standard deviation, peak

acceleration, DFT, and energy. Other features have been used too such as the absolute integral, the

correlation between each pair of axes, power ratio of the frequency bands 02.75 Hz and 05 Hz, peak

frequency of the power spectral density (PSD), Spectral entropy of the normalized PSD, among

others. Table 5.1 shows a list of all computed features in both time and frequency domain and table

5.2 shows a list of alternative features and their usefulness for detecting specific activities.

Features Usefulness

Absolute integral Successfully used to estimate the metabolic
equivalent in e.g. [T-Reiss-118].

Correlation between each Useful for differentiating among activities that
pair of axes involve translation in just one or multiple

dimensions, e.g. walking, running vs. ascending
stairs [131].

Peak frequency of the Useful for the detection of cyclic activities in e.g.
power spectral density [42].
(PSD)

Spectral entropy of the Useful feature for differentiating between
normalized PSD locomotion activities (walking, running) and cycling

[42].

Power ratio Frequency bands 02.75 Hz and 05 Hz. proved to be
useful in [134].

Table 5.2: Feature usefulness.
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See appendix [56] for a mathematical definition of the extracted features the following notation

is used. [56]provides a review of extracted features from accelerometer sensor data.

5.2 Performance Evaluation Metrics

As mentioned before, the algorithm performance score is the single dependent variable used in this

study. In particular, this score is not based exclusively on the algorithm accuracy but also on its

precision.

Table 5.3 shows a confusion matrix describing some of the performance evaluation metrics com-

monly used for learning algorithms. In this analysis, algorithm performance is computed via the

harmonic mean between the algorithm accuracy and its precision.

The reason why the score considers a combination of these metrics is they have some disadvan-

tages when used independently. For example, if we consider the case 1 shown in Table 5.4, we can

see that both classifiers obtain 60% accuracy, but they exhibit very different behaviors. The left

has weak positive recognition rate but strong negative recognition rate, whereas the right has strong

positive recognition rate but weak negative recognition rate.

On the other hand, if we consider the case 2 shown in Table 5.5, we can see that in this case

both algorithms obtain the same precision and recall values 66.7% and 40% but they exhibit different

behaviors. They have the same positive recognition rate but extremely different negative recognition

rate (strong on for the left and almost nothing for the right). In contrast, accuracy doesnt have any

problem detecting this.

Confusion matrix ___

Cofusi on truecx Common evaluation metrics
I 'Rue class

Hypothesized class Pos Neg

Yes TP FP

No FN TN

T=TP+FN F=FP+TN

Table 5.3: Common performance evaluation metrics

5.3 Performance Evaluation Method

The classifiers are trained for each activity following K-fold cross-validation approach [89]. For the

subject-independent case, k represents the number of subjects. Whereas for the subject-dependent

case, k represents the number of partitions in a subject's data per activity.
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1 J True class True class

Hypothesized class Pos Neg Pos Neg

Yes 200 100 400 300

No 300 400 100 200

P=500 N=500 P=500 N=500

Table 5.4: Algorithms performance case 1

True class True class

Hypothesized class Pos Neg Pos Neg

Yes 200 100 200 100

No 300 400 300 0

P=500 N=500 P=500 N=500

Table 5.5: Algorithms performance case 2

For the subject-independent case, the data is divided according to the number of subjects, in

which each partition corresponds to the data coming for a particular subject. Then, a single subject

is retained as the validation data for testing the model, and the remaining subjects are used as

training data. This operation is repeated as many times as the number of subjects, each time using

different subject to test classification model accuracy.

For the subject-dependent case, the data from a particular subject is randomly divided in 10

(k=10) partitions, each of them containing 1/k from the total number of observations for each

activity class. Then, a single partition is retained as the validation data for testing the model, and

the remaining partitions (k 1) are used as training data. This operation was repeated k times, each

time using different training sets to obtain the K-fold cross-validation accuracy.

5.4 A Priori Power

Even though the physical activity data was already collected prior the design of the evaluation

experiments, I computed the sample size that would be recommended if the sample size needed to

be planned as well as, the power expected with the actual sample size. Specifically, in the field

of physical activity, the power calculation is somewhat problematic because few evaluations report

their variances in accuracy. As result, the minimum range between treatments means was specified

only based on one set of experiments previously performed in our laboratory [121]. Thus, A = 1.25a

was selected. For this value, the a priori power having 20 subjects is 0.90 for a = 0.05 and 0.80 for

a = 0.01.
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Chapter 6

Experiments

In this section different aspects of the suggested approach are analyzed. In a systematic evaluation

of the proposed general concept and the introduced algorithm, results are presented and discussed.

6.1 Experiment 1: Choice of SVM model parameters

Experiments were carried out testing different number of feature vectors {379, 64, 42, 18} and four

SVM configurations (three polynomial kernels and one radial basis function (RBF)). Specifically, the

experiments used the following parameter values C=1 with KKT tolerance 0.001. The polynomial

kernels considered degrees 1,2 and 3. The RBF kernel used . For this test, we used a subset of 20

activities from the MITES dataset.

Table Cross-validation accuracy for each activity class across different SVM models. shows the

specific activity clases contained in the dataset and their cross-validation accuracy across different

SVM models. For instance, (64F, K2) means the SVM was trained using 64 features per observation

vector and a polynomial kernel of degree 2. Given the space restriction for this paper, table 2 shows

only the best SVM models for a specific number of feature vectors. To see additional results for

different configurations (see appendix 9.1 ).

Interestingly, when using 379 feature vectors, the linear kernel of degree one had a reasonable

performance (80%) whereas the RBF kernel had a poor one (68%). Additionally, the SVM with RFB

kernel took very long time to converge (approximately ~ 2hrs+) versus few minutes for polynomials.

Part of the problem is the large number of features. Indeed, the number of vector features (in this

case 379) is sufficiently large that it is not necessary to map the data to a higher dimensional space

using a kernel such as RBF. This also can explain why, when using the largest set of feature vectors,

a simple first-degree polynomial kernel works well. Because computing 379 features (in particular

FFTs) is a very expensive computationally intensive task, the second experiment consisted in training

a multi-class SVM classifier with a reduced number of features. Features were reduced in 3 ways.
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Class 1 Cross-Validation Accu-
racy

64F,K2 427,K2 18F,13

sitting slouching 1 1 1

sitting at desk 1 1 1

standing with hands in 1 1 0.972
pockets I
running on treadmill 1 0.996 0.999

cycling on airdyne 1 1_6

folding stack laundry 0.956 0.903 0.795

vacuuming move chairs 0.971 1 0.892 0.815

washing windows 0.928 0.823 0.666

sweeping and mopping 0.969 0.933 0.597

stretching 0.88 0.766 0.684

swinging arms 0.84 0.639 0

push ups from knees 1 1 1

deep knee bends squats 0.922 0.702 0.291

stepping on platform 0.99 0.935 0.563

arm curls hand weights 0.938 0.654 0

sit ups or crunches 1 0.972 1

lying down 1 1 0.988

picking up 1 1 1

stretching standing 0.951 0.941 0.939

swinging arm turning 0.573 0.455 0.366

Overall Accuracy 97.26% 93.55% 83.99%

Ave. Training time 97.17s 1948s 194.63s

Table 6.1: Cross-validation accuracy for each activity class across different SVM models.
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One considered 64 features corresponding to the basic statistics on 3 sensors, the second one

considered a subset of 42 features, and the third one considered a subset of 18 features. The sensor

positions were selected according the sensor placement described in section 4.1.

The results show that the reducing the features to 64 can give still an accuracy of at least

93% (which is similar when using 379 features and a polynomial kernel degree 1). In contrast, the

accuracy drops to 83% when using 18 features. It is important to notice that the classes of folding

clothes, vacuuming, washing laundry, stretching and swinging arms have a low accuracy across the

different multi-class SVM classifiers. The next section focuses on the analysis of these activities

using other widely used models such as Hidden Markov Models and Decision Trees.

6.2 Experiment 2: Comparing SVM versus Hidden Markov

Models

6.2.1 Choice of HMM Model Parameters

The HMM is a generative probabilistic model consisting of a hidden variable and observable variable

at each time step. In this case, the hidden variable corresponds to a fraction of the movement that

composes the activity and the observable variable is the vector of sensor readings.

There are 2 dependency assumptions that define this model:

(1) the hidden variable at time t depends only on the previous hidden variable at time t - 1

(Markov assumption).

(2) the observable variable xt at time t, depends on the hidden variable at time t.

These assumptions allow representing an HMM model using 3 parameters associated with the

following distributions:

" the distribution over the initial states 7r = p(yi)

" the transition distribution A = p(yt I yt-1)

" the emission distribution E = p(xt I yt) that state yt would generate observation xt .

Given a training set of the observation sequences x = X1... XT corresponding to each activity, the

model parameters A(7r, A, E) need to be learned. Learning the parameters of these distributions

corresponds to maximizing the joint probability p(x, y) = p(x1 ... XT, y1 ... YT) of the paired obser-

vations and state sequences in the training data. This joint distribution can be factorized in terms

of the model parameters:

T

p(x, y) = 7r(yi)E(xiI y1) A(yt I yt-1)
t=2
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Because we axe dealing with continuous data, the emission probability E is defined as a distri-

bution of a mixture of Gaussians:

M

E(xt I = Eg(qt I yt)N(xt; pq, E)qt
q__l

for k = 1 ... M . Where M is the number of possible gaussian components and g(qt, yt) specifies

a distribution over the M possible mixture components, which depends on the underlying state yt.

Once a mixture component qt is chosen, the emission xt is generated from a Gaussian distribution

with mean Uqt and Eq,.

Given that we have partially observed data (we dont know the state sequences), the parameters

that maximize the joint probability p(x, y) axe estimated using the EM-Algorithm [1).

First the parameters are initialized to some value. Subsequently, the parameters ir, A, and

g(qt I yt) are maximized recursively until converging into a local maximum of the likelihood function.

As result, the estimates updates are:

c+1 = =1l count[i, y = y; 0c]
S- N

- n=1 count [i, y -+ y'; 8c]

=1 count [i, y -+ y'; ]

g C+l(q~ I ) = ET 1jpc [tyq]

-Zl1 t~ -yc[t, y, q]x

c+1 _ Z=1 y[t, y, q]

q = 1 yc[t, y, q]

Where -yc[t, y, q] = p(yt = y, Qt = q I Xi ... XT; E'C) is the posterior probability given the current

parameters, T is the number of observations in the sequence, S is the number of hidden states, M

is the number of mixture components and N the total number of sequences.

6.2.2 Results

To narrow down the HMM analysis to the most interesting cases, I decided to consider activity

classes that obtained low, medium and high cross-validation accuracy with the multi-class SVM

classifier. For instance, I am considering all the hard cases such as folding clothes, washing windows,

vacuuming and stretching.

An additional difficulty when analyzing this data set with HMMs is that there is not information
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Class [Model S,M CV-Accuracy

running on treadmill 3,3 100%

cycling on airdyne 3,3 99.89%

folding stack laundry 4,4 82.72%

vacuuming / moving chairs 4,4 84.20%

washing windows 5,5 85.56%

sweeping / mopping 3,3 91.98%

stretching 2,2 97.16%

swinging arms 3,3 98.77%

Table 6.2: HMM Models (64 features)

about the activity segmentation. In this case, activities were segmented from the start to the end

of the whole task rather than each activity instance by itself. Therefore, in this problem, there is

not a well-defined dictionary of movements or phonemes like in speech. In other words, I dont know

the best number of hidden states for modeling the movement transitions of each activity. Thus, it

is necessary to determine the best model for each activity.

For selecting each activity model, an HMM was trained using different numbers of hidden states

S = 1... 6 and mixture components M = 1... 6. The training was done using labeled data for each

activity in nine data sets as (training set Dk) and the testing was done using one data set (validation

set vk). This operation was done 10 times, each time using a different data set as vk.

The HMM toolbox for Matlab developed by K. Murphy [122] was used to train and test the

different models. The log likelihood of each model was calculated for each observation sequence

corresponding to the activity in the validation data set. The model with the lowest average log-

likelihood was selected.

Table 6.2 shows the model parameter values that obtained the maximum log-likelihood for each

activity, where is S is the number of hidden states and M is the number of gaussian components.

After selecting the best activity model according with table 6.3, an HMM was trained using different

number of features for each activity class (C1 ... Cs), where C indicates the learned HMM model

parameter values for each activity class, and 8 is the total number of classes considered.

Again, using K-fold cross-validation with new partitions of randomly selected examples, a train

set Dk with 9 data partitions and a test set vk with one partition were formed. The log-likelihood of

each activity model was calculated for each observation sequence in the test set vk. Each observation

sequence X = {=xL ... xr} (with T = 5) in the validation data set vk = _XIE.1 was classified

according with the activity model C that gave the maximum log likelihood. The final classification

was obtained as follows:
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I _ -Class CV-A 64F CV-A 42F CV-A 18F

running on treadmill 97.78 94.44 83.21

cycling on airdyne 98.89 95.43 86.54

folding stack laundry 82.72 74.90 63.80

vacuuming / moving chairs 84.20 74.28 54.44

washing windows 85.56 77.44 57.78

sweeping / mopping 91.98 79.26 62.22

stretching 87.16 77.42 61.98

swinging arms 98.77 89.85 67.65

total accuracy: 90.88% 82.88% 67.20%

Table 6.3: HMM Cross-Validation Accuracy (%)

(XI) = argmaxL(AJ. The classifier E) takes values in the class set E = {1,... , C}

This process was repeated 10 times using K-fold cross-validation. The average cross-validation

accuracy per class and per number of features considered was computed as shown in Table 6.3. The

results show that HMMs has a significantively lower performance than SVMs, specially, when the

number of features is decreased to 18.

Activities that are considered to be hard cases for the SVMs classifiers had also low recognition

accuracy for HMMs, which was even lower). One reason why these activities are hard to recognize

is linked to the fact that they involve more complex and less structured movements than the rest of

the cases in the data set.

Given that these activities involved more complex movements, one initial assumption was that

HMM could model such complexity (specially in the temporal domain) more effectively. However,

this turned out not to be the case given that the HMM were not able to deal with the high varibility

characteristic of most activity data collected using wearable accelerometers.

The results presented so far were obtained by modeling each activity with an HMM and using

observation sequences which had the same length for all activities. However, the classification results

could be improved by modeling each activity with a different sequence length. In some cases, a short

sequence duration might not be enough for capturing the patterns or periodicity of a particular

activity as discussed in section 5.1.2, especially when the activity involves different movements and

body positions that are relatively separated in time. Moreover, results could be improved if prior

information of activity units or activity phonemes were available.

Finally, it is important to notice that the SVMs classifiers were not significantly affected by

having activities with relatively few examples. However, this was not the case for HMMs, which

depend on the counts of how many times states and states transitions are seen in the sequences.
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The results to this condition (commonly encountered in the real-world) makes SVM to offer a big

advantage over HMMs when implemented for real-world applications.

6.2.3 Discussion of Results

This first experiment compared two types of classifier (the optimized multi-class SVMs versus

HMMs) when recognizing a set of 20 physical activities using the MIT MITES dataset described in

section 4.3. The results show that a multi-class SVM classifier performs significantly better than a

classifier based on HMMs for all types of activities. Using a multi-class SVMs classifier, an over-

all accuracy of 97%, 93% and 83.99% was obtained when using 3 sensors and 64, 42, 18 features

correspondely. These results imply that it is possible to reliable recognize common activities using

sensors embedded in commercial electronic devices placed on the body or commonly used mobile

phones, watches or shoes. Finally, the all-pairs binary decomposition training method for SVMs

facilitates the realization of such scenario in where activities classes can be added incrementaly (on

the fly). As discussed in chapter 3 sections 3.1, when adding a new class, this method keeps what

it has been learned (by retaining the models for the already trained classifiers) and only trains the

binary classifiers involving the new class. This approach has the benefit of being sognificately less

computationally expensive than training a model that contains all the classes at the same time.

6.3 Experiment 3: Comparing SVM versus Decision Trees

6.3.1 Choice of Decision Trees Parameters

Decision tree (DT) classifiers such as the C4.5 algorithm [154] are among the most used to recognize

activities from wearable accelerometers [17, 114, 134]. This is because of the following reasons:

1. They learn classification rules that are believed to be easier to interpret than the ones learned

by other methods such as neural networks (although for real-world problems, these rules can

be quite complex and not trivial to interpret).

2. They incorporate information gain feature selection during the learning process that identifies

the most discriminatory features to use.

3. They perform fast classifications making them suitable for real-time implementation. A dis-

advantage of decision trees is that they tend to overfit the data if they are trained on small

datasets and may not combine probabilistic evidence as well as other methods. Furthermore,

decision trees are static classifiers that do not incorporate any temporal transition information

of the modeled activities unless it is encoded in the features used
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Specifically, a decision tree model consists of a set of rules for dividing a large heterogeneous pop-

ulation into smaller, more homogeneous groups with respect to a particular target variable [75]. A

decision tree may be grown automatically by applying any one of several decision tree algorithms

to a model data set. In this analysis the decision tree C4.5 algorithm is used to classify an activity

feature vector by assigning it to the most likely class.

The C4.5 algorithm is Quinlans extension of his own ID3 algorithm for generating decision trees

[154]. The C4.5 algorithm recursively visits each decision node, selecting the optimal split, until no

further splits are possible. In general, steps in C4.5 algorithm to build decision tree are:

1. Choose a feature for root node.

2. Create branch for each value of that feature.

3. Split activity feature vectors according to branches.

4. Repeat process for each branch until all samples in the branch belong to the same activity

class.

In the activity classification task, the selection of the root feature is based on the highest infor-

mation gain [154] (difference in entropy) that results from choosing a specific feature for splitting the

training data. At each node of the tree, C4.5 chooses one feature of the data that most effectively

splits the set of activity samples into subsets augmenting one class or the other.

6.3.2 Types of Algorithms Used

The independent variables are type of algorithm and type of activity intensity. The algorithm

variable is composed of the three algorithms introduced before: decision trees (DT), SVM with a

linear kernel and SVM (SVMK1) with a quadratic kernel (SVMK2).

The activity intensity variable is given by the four types of intensity associated with the activities

contained in the data set. The intensity levels are postures (no intensity), light, moderate and

vigorous intensities.

6.3.3 Experiment Design

To select the experimental design, two aspects were taken into account. First, past research shows

physical activities have a high variation across subjects. Second, besides algorithm performance, the

effects of activity intensity on performance are also of interest. As a result, two experimental designs

were conducted. The first aims to compare the overall algorithms performance based on a single-

factor repeated measures model. The second aims to compare two-factors (algorithm performances

and activity intensity) and is based on a two-factor repeated measures model with repeated measures

in one factor.

o Single-factor repeated measures design: this design involves one independent variable (type of
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algorithm) as the repeated measure and a single dependent variable, which is the algorithm

performance. Algorithms were tested in a subject-dependent manner for all the 20 subjects.

Two-factor design with repeated measures in one factor design: this is a design that involves

two independent variables: type of algorithm and type of activity intensity, and a single de-

pendent variable (algorithm performance). In this approach, subjects were randomly assigned

to each activity intensity level (5 subjects per level). Similarly to the single-factor design, the

algorithms were trained in subject-dependent manner. However, this time only considering

data from activities contained within the same intensity level.

6.3.4 Experiment Results on Performance

The algorithm differences on performance were evaluated using a single-factor repeated measures

design. When the model assumptions were tested, it was found the normality assumption was not

accomplished (p=0.019) whereas the homogeneity of variances was met with a probability of 0.36

via the Brown-Forsythe test. Figure 6-1 shows the normality plot of error terms.

C
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Figure 6-1: Normality plot for the error terms for the algorithm factor

With basis on the assumption the ANOVA model is robust to deviations in normality, an ANOVA

test based on the single-factor repeated measures model was performed. The test found significant

main effects in the algorithms performances F(0.95, 2,38) = 3.25, p < 0.001. According to Bon-

ferroni pairwise comparisons, the overall performances were significantly different for all pairings

of the algorithms (p < 0.001). The overall performance score tended to be higher for the SVM

algorithm with quadratic kernel, followed by the SVM algorithm with linear kernel. Finally, overall

performance tended to be lower for the decision trees algorithm. Figure 6-2 shows a comparison of

the algorithms performances.

As was explained before, the ANOVA repeated measures model was applied because the homo-

geneity of variances assumption was not violated and the ANOVA model is robust to departures

from normality. However, if a strict criterion is applied, the violation of the normality assump-

tion suggests the need of using a non-parametric method. To verify if the parametric results still
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Algorithms compared Significance

ANOVA Friedman

DT-SVMK2 p < 0.0001 p < 0.0001

DT-SVMK1 p < 0.0001 p = 0.033

SVMK1-SVMK2 p < 0.0001 p = 0.002

Table 6.4: Probability values for pairwise comparisons across algorithms
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Figure 6-2: Median of the performance score across algorithms

hold when the data is analyzed with a non-parametric model, the Friedman test (which is the non-

parametric equivalent to the parametric repeated measures ANOVA test) was employed. As a result,

the Friedman test gave similar conclusions than the ANOVA test confirming that the differences in

the algorithms performance are significant. Figure 6-3 shows the mean rank intervals and the proba-

bilities (p-values) for the algorithms according to the Friedman pairwise test. Although the ANOVA

leads to the same than Friedman test, the ANOVA p-values are considerable smaller (p < 0.0001).

Table 6.4 shows the probabilities for both tests.

6.3.5 Experiment Results on Activity Type and Intensity

Whereas experiment 1 addressed the differences of overall algorithms performance, a second exper-

iment was designed to investigate more specific algorithm differences according to the activity type

and its intensity.

In the context of energy expenditure, activity intensity is important because, once the intensity is

known (e.g. light, moderate or vigorous), the activity can be mapped to its rate of energy expenditure

in METs according to the Compendium of Physical Activities [9]. In particular, moderate and

vigorous intensities are relevant for the medical community because, when medical interventions are

designed, it is important to know how much a subject spend in sedentary or light activities and

which is the exercise base line of a target population.
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Figure 6-3: Comparison of algorithms' mean rank intervals

After assigning the activities intensities according to the Compendium of Physical Activities [9].

The 2-factor repeated measures assumptions were tested. The Kolgomorov-Smirnov test indicated

the data was not normal (p < 0.001). The Brown-Forsythe test indicated the variances between

subjects for the activity intensity factor were not homogeneous (p < 0.001). Figure 6-4 shows the

results of the tests.

Because the model assumptions were not satisfied, the Friedman test (which is the non-parametric

equivalent to the parametric repeated measures ANOVA test) was used instead. Specifically, the

Friedman test (FR) was adjusted according to Oron et. al. [13] for accounting the two factors of

interest given that the classical version of the test only considers one repeated factor across subjects.

Therefore, the adjusted test calculates separate Friedman statistics for the algorithm effects (repeated

factor) at each level of activity intensity.

The FR test indicated there were significant main effects for activity intensity. Specifically, at

the level of 95% confidence, Friedman pairwise comparisons indicated algorithms performed signif-

icantly better when recognizing postures than activities with light and vigorous intensities. It also

indicated that moderate intensity activities tend to be recognized better than those with light inten-

sity. However, no significant difference was found between light and vigorous intensities for which

all the algorithms exhibited the lowest performance. Figure 6-5 shows the mean rank intervals and

probabilities for the pairwise comparisons.

On the other hand, the adjusted FR test indicated that were algorithm effects for all levels
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Figure 6-4: (a) normality plot of the error terms, (b) interaction plot, (c) median of the performance
score across activity intensities, and (d) median of the performance score across algorithms.

of activity intensity. As can be seen in Table 6.6, Friedman pairwise comparisons indicated the

SVMK2 algorithm performed significantly better than the decision trees algorithm at all levels of

activity intensity. As in experiment 1, the algorithms performed in the same order being the SVMK2

algorithm the best and the DT algorithm the worse. However, in this experiment, the SVMK1 was

caught in the middle overlapping the other two algorithms given that no significant differences were

found. Figure 6-6 shows the results of the test.

6.3.6 Discussion of Results

This set of experiments investigate whether the observed differences in algorithms performances can

be attributed to significant differences in their characteristics or they were obtained by chance as

well as, whether or not activity intensity has any significant effect on the algorithms recognition.

First, results from the first experiment on algorithm performance show the differences in per-

formance between the three algorithms are significant when all activities are taken into account.

Specifically, the results indicated the SVMK2 algorithm had the highest performance whereas the
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Intensities Compared Significance

Posture Light 0

Posture Moderate 0.051

Posture Vigorous 0.0001

Light Moderate 0.0015

Light Vigorous 0.2379

Moderate Vigorous 0.1124

Table 6.5: Significance of activity intensity pairwise comparisons
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Figure 6-5: Comparison of activity intensity mean, rank intervals

DT algorithm had the worse. These results were consistent when using the ANOVA (parametric) and

Friedman (non-parametric) tests. The only difference was the significance obtained by the ANOVA

test was considerably smaller (p < 0.0001) for the comparisons between DT-SVMK1 and SVMK2-

SVMK1 which for the Friedman test were p = 0.033 and p = 0.002 respectively. This result reflects

the fact that the non-parametric test is less sensitive than the parametric test. However, because

the data set is not normal, I was especially careful interpreting this result. In this case, agreement

in the conclusions of both tests as well as, the inspection of the confidence intervals confirms the

significance of the differences.

Second, results from experiment on activity type and intensity show that only algorithms SVMK2

and DT have significant differences in performance when analyzed at each level of activity intensity

(p = 0.03 for the posture category, p = 0.0054 for the other categories). In this modality, no signifi-

cant differences between the SVMK1 algorithm and the other two algorithms were found (p = 0.75

and 0.06 for postures, p = 0.2286 for the rest). Pairwise comparisons showed the SVMK1 overlaps

the lower bound of the SVMK2 interval and the upper bound of the DT interval. These results

suggests that partitioning the according to intensity levels makes the data within each intensity

category more homogeneous shrinking the differences in performance between the algorithms.
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Significance for activity intensity

Algorithms Compared Pos Light Moderate Vigorous

DT SVMK2 0.0325 0.0054 0.0054 0.0054

DT SVMK1 0.759 0.2286 0.2286 0.2286

SVMK2 SVMK1 0.0689 0.2286 0.2286 0.2286

Table 6.6: Significance of algorithms pairwise comparisons at different activity intensity levels

Third, the experiment on activity type and intensity also shows that the algorithms recognize

significantly better postures and moderate intensity activities than light and vigorous activities.

Specifically the significance of postures compared to light and vigorous intensities is p < 0.0001

whereas, the significance between moderated and light intensities is p = 0.0015. A reason why

postures might be recognized well is there is not much variation to model in the accelerometer

signals generated as these activities are static in nature. In contrast, light activities are harder

to recognize because they involve high degree of variation. These activities such as folding and

stacking laundry, stretching, swinging arms and turning and pivoting involve multiple postures and

movements that change depending on how the subject interacts with the environment. On the other

hand, vigorous activities (which only involve resistance exercises) exhibit low recognition rate even

though they involve less complex body movements than light activities. This might be due to the fact

that accelerometers are not good at detecting changes in work load. Hence, it seems the algorithms

have difficulty in recognizing activities with similar motion patterns but different levels of work load

or activities that are highly variable within an individual. Consequently, further investigation of

the effects of additional features, which could account for time or energy of the signal (such as Fast

Fourier Transform) needs to be done.

With regards the experiment design, a repeated measures model was used based on the fact

that physical activities have high variability between subjects. In addition, there were not enough

subjects to carry out a fully crossed 3 x 4 design (algorithms and intensities as factors) for which at

least 24 subjects are necessary for a minimum of 2 replicates per treatment combination.

On the other hand, because the data was collected prior designing the evaluation, there are some

aspects to be improved. For example, sessions collected at different days should include the same

activities in order to have better information about within subject variability. In this data set,

even though more than one session was collected; each session contains a set of different activities.

Hence, inferences about activity variability within the same subject are restricted to comparing

activity samples extracted from one continuous data stream (e.g. 6 min of the activity collected at

a specific time is partitioned in 10-folds).

Finally, it turned out that a good algorithm performance metric is the combination of accuracy
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and precision measures rather than accuracy or precision/recall alone. Because the number of

physical activity samples was sufficiently large, the data was partitioned in two sets with equal

amount of instances (one data set was used only for training and the other only for testing). A

cross-validation re-sampling method was used to train each algorithm. However, if the data set

were smaller and comparisons between the k-fold partitions need to be made, the decision about

applying a cross-validation method needs to be treated with care since the training sets obtained

from the re-sampled partitions are not independent. In such case, other re-sampling techniques (e.g.,

bootstrapping or randomization) could be used. Lastly, it is important to verify the appropriateness

of a parametric test. As was seen in this analysis, data from algorithms performance often violate the

normality and homogeneity of variances assumptions, which are necessary for applying a statistical

test based on a parametric method. For this analysis, a non-parametric method based on the

Friedman statistical test was employed.

6.4 Conclusion

Significant differences in algorithms performance were found when all the set of activities was taken

into account. These differences indicated that the support vector machine with quadratic kernel

algorithm (SVMK2) had the highest performance whereas the decision trees algorithm (DT) had

the worse. In contrast, when the algorithms were analyzed at each activity intensity level, only

significant differences between the SVMK2 and DT algorithms were found at all intensity levels.

In this modality, no significant differences between the support vector machine with linear kernel

algorithm (SVMK1) and the other two algorithms were found. Pairwise comparisons showed that

the SVMK1 performance was overlapping the lower bound of the SVMK2 interval and the upper

of the DT interval. In general, algorithms performed significantly better detecting postures and

moderate intensity activities than activities corresponding to light and vigorous intensities. This

finding suggests that additional features encapsulating energy of the signal and/or time need to be

explored for improving the recognition of activities with light and vigorous intensities.
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Chapter 7

Design Guidelines for Activity

Recognition Systems

7.1 Disclaimer

Via lessons-learned and design guidelines, this chapter aims to illustrate important qualitative de-

sign aspects, challenges and trade-offs faced when designing a scalable activity recognition system

intended to be used for long-term in natural settings. In fact, this qualitative analysis considers that

- depending on the available resources and the specific recognition problem- many of these chal-

lenges are not only exclusive of activity recognition systems but also they are common across many

wearable systems intended to recognize human behavior or physiological signals for long periods of

time in natural settings.

The critical qualitative analysis is based on the work developed under a NIH-Initiative called

GEI exposure biology program grant number #5U01HL091737.

In particular, this grant involved the development of a system called wockets and the systematic

data collection of physical activities using such system. This project was made as a collaborative

effort between MIT Changing Places group and the Preventive Medicine Research Center at Stanford

Medical School as described in [76].

These two chapters only involve my perspective and analysis of the design process of the wockets

system from the angle of my participation in the project.

In this collaborative effort, it was demonstrated the feasibility not only of embedding a full

multi-sensor robust wireless activity recognition system in a small factor, but more importantly, of

sensing in real-time fine-granularity activity data for long periods of time. As one would imagine, we

tackled numerous hard problems around miniaturization, wireless power, wireless communications,

ergonomics, usability, adherence, algorithm optimization, data storage, and phone OS programing,
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among others.

The result was an example of a great collaborative project, which still was left with many open

questions. Indeed, as it will be illustrated and discussed in the following chapters, such open ques-

tions are commonly encountered within the wearable computing community and, in some cases, still

unresolved. This is why other researchers must continue to invest in research, open source hardware

and software, publicly available datasets, and pushing the boundaries of science and technology in

an effort to advance the knowledge of the entire activity recognition field to help to create systems

that can effectively be integrated in real-world applications. This open approach to working with

others and across teams has consistently produced outsized results for many research projects and

for the entire scientific community at large.

As described in [76] and , besides myself, the project involved a great collaborative effort across

institutions and people with various levels of expertise, whose names are listed as follow:

Stephen S. Intille, Fahd Albinali, Jason Nawyn, Benjamin Kuris, Pilar Botana, William L.

Haskell, Mary Rosenberger, Denise Shine, and Abey Mukkananchery.

The specific contribution of each person is listed inline with the material presented. In particular,

I was involved and collaborated in various design aspects of the hardware, the software, the gathering

of the system usability requirements, and technical support of short and long-term of the data

collection.

All the material is referred to online project webpage [195] in where more detailed information

can be found.

7.2 System Design Guidelines

7.2.1 Motivation

Wearable devices and the mobile phone sensing platform are central components in implementing

an activity recognition system that can collect and understand behavior in natural settings.

In particular, from some years now the phone operating system platforms (Windows Mobile,

Android, iOS) have allowed researchers and developers to do more things with embedded devices

than it was ever seen before. Nevertheless, there is still a great gap between having code for accessing

on the phone sensors or collecting high quality raw data from external sensors, to having a deployable

system or an end-user application that fully utilizes this access. Some of the components that make

such difference are the ones related to the specialized algorithms that can enable a more efficient

data collection that maximize the battery life, delay tolerant communication with the sensors or

with the back-end server, the ability to remotely configure data collection settings, and so on. Thus,

for example, the data needs to be collected locally when the server is not available and needs to be

uploaded in the background whenever users connect to the network or when users are not actively
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using their phones.

At the time when we started our project, there was no available software system or open source

platform that supported these needs or that we could adjust or modify to our needs. As a result,

we needed to develop a system (Hardware and Software) in our own.

This problem was common in the field of activity recognition and many of our colleagues in other

research centers were facing similar problems. They had also the need to develop their own solutions

from scratch since nothing with the appropriate requirements was available to use. For example,

some of them involve only hardware like preocupine (94] and MSP [50]whereas others run only over

the phone like Funf [123], Purplerobot [33], SystemSens [55], and Paco [53].

Many of these systems, as other smaller research initiatives, were first developed for specific data

collections experiments and are mostly tailored for the needs of a specific project. However, despite

their differences, they also share many common requirements, for example, all of them needed to

deal with accessing sensors, storing data on the mobile device, and transferring it to a server. All of

them could take advantage of the users phone data connectivity by having the ability to do remote

configuration and debugging. All share the need for dealing with battery processing, storage, and

bandwidth limitations.

As a result, this leads to duplicated efforts that go towards achieving the same functionality.

Thus, based on the experience gained through our own deployments, we aim that releasing the

system as an open source and free framework could help future research initiatives in the field.

Since the beginning of the project, it was decided we wanted to share our system and our design

experience of the system with the community. This effort turned the project into an open source

hardware and software framework for researchers and developers called Wockets.

At the first design iteration, the Wockets system was used in experimental and semi-naturalistic

settings. In particular, one of the goals of this first iteration was to validate and assess the func-

tionality and quality of the data provided by the system. To do so, in collaboration with Stanford

Medical School (see team section at [71]), physical activity data was collected among 33 individu-

als. The data was collected for each person using a protocol that required performing a variety of

physical activities (see next chapter for more details). During this design iteration we (the Wockets

team) redesigned the sensing system and its settings, optimized its performance, fixed data quality

issues, and added features to the firmware and software (see details in section 2.5.1).

The second iteration of system took place when the Wockets were deployed in the real world in

the SWAP study [71]. In this iteration, the system was fully able to collect raw and summary data

and upload this data to a back-end server automatically according to the phone usage conditions.

For example, data will be uploaded at the end of the day, when the phone was plugged to the power

supply and the user was not using the device.

The first version of the system was developed using the windows mobile platform (OS version
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6.x). Then, the system was upgraded to Windows mobile OS version 8.x, which is the one described

in this thesis. The first version (OS version 6.x) was the one used to carry out the data collections

described in Section 7.3 and corresponds the system described in Intille et al [76]. Whereas the

upgraded version (OS version 8.x) is the one used in the projects described in [chang, 2014] and

corresponds to the framework described in this thesis.

The basic system (Windows Mobile OS version 6.x) was also upgraded to support Android OS

based devices. The Android OS version was further developed and maintained at Northeastern

University by Prof. Stephen Intilles research team (see project web pages [195] [194]).

7.2.2 Concept

The core concept is to provide an open source system that enables the collection of fine-granularity

body movement data, analyzes it in real-time, and uploads it to a back-end server to keep researchers

informed continuously about what is happening during the data collection. In this manner, the

researchers could analyze the data continuously, learn about the users behavior in a regular basis

and use this knowledge to identify problems in the study or design/test a particular intervention

(e.g. behavior change intervention or ask to the user relevant questions about particular events).

Together with the Wockets system simple apps could be deployed based on the Ecological Mo-

mentary Assessment (EMA) or experience sampling [16] methods to survey the users about their

activities, provide summary information about what they were doing, and gain insight about other

events of interest. Besides that, researchers, self-trackers, and independent enthusiast could use the

system to collect and explore information related to the users behavior and its correlation with his

environment, his social fabric, and/or his health.

The project originally aimed to foster a community around it and the ideas of code sharing and

reuse and low-cost manufacturing were paramount to its design. The main idea behind such design

was that new development efforts would go towards extending a common platform flexible enough

to adapt to a wide range of experiments and able to be easily reconfigured.

This chapter describes the system used in the data collections carried out by the team at Stanford

Medical School (see team section at [71]) and briefly described in section 7.3 of this thesis and in

[76]. The system is described in terms of its hardware and software architecture. Specifically, I use

the term Wockets alone to refer to the sensing units, Wockets framework to refer to the software

components, and Wockets system to refer to the system as a whole.

7.2.3 System Interaction

The interaction with the Wockets system is designed around a multi-user model. In the higher

level, no technical or software development skills are needed. While in at the lower level, developers

can add new functionality and enhance the system, or easily package their activity recognition or
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other inference algorithms for use by others users. Figure

interaction with the Wockets system, which are detailed in

7-1 Illustration of the multiple levels of

the following subsections.

Figure 7-1: System levels of interaction.

7.2.3.1 Levels of Interaction

7.2.3.2 End-user level: stand-alone app for end users

At the highest level a stand-alone mobile application provides an easy-to-use tool for the collection

of physical activity data from a single phone and/or up to 7 Wockets simultaneously connected.

This application allows any user to collect and explore information related with body movement

and users behavior that can be inferred using EMA along with other sensors on the phone. It is

well aligned with the type of end-user data collection used on self-tracking and the quantified-self

movement [143].

On the other hand, students and researchers could use the application to easily conduct automatic

sensing and data gathering of body movement using Wockets and a common mobile phone. For

instance, it could be used by researchers to gather body movement data to train and test a gesture

recognizer or study characteristic movements associated to motor related disorders (e.g., like the

ones observed in people suffering Autism disorder or Parkinsons disease).

The Wockets Data Collection Tool was the first application release for this level of user interaction

and it is available and free to download at the Wockets developers website [194].

It enables manual configuration of all data collection features via an XML configuration file and
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exports the data in multiple ways (e.g., via csv values, xml, and binary files). A simple pc-based

script for visualization of the data signals was created as a tool to verify the quality of the data

and export it as comma separated values (.cvs) text files to combine with data collected with other

sensors and import it to any statistical analysis or machine learning software.

7.2.3.3 Study manager level : system for field study managers and researchers

Researchers and others interested in long-term physical activity monitoring and non-verbal behavior

understanding based in experimental deployment, could use the Wockets system as a pre-built

ready-to-use tool for deploying and conducting experiments, very similar to the Stanford study

described in chapter 7.3. They could used to conduct data collection experiments ranging from

health and wellness, social and psychological studies, tracing users physical activity habits, or testing

behavior change interventions like motivating to increase physical activity, increase the number of

rehabilitation exercises in patients, or quit smoking.

The Wockets Data Collection Tool supports a networked mode where a server is set up to receive

automatic data uploads from multiple deployed devices, as well as a remote configuration of the

phone-side data collection settings via the server.

Researchers can install the application on the devices that they want to collect the data from

remotely, send the wearable sensors (wockets) to the participants, set up the data-collection back-end

server, remotely configure the desired sensors (wearable ones and on-the-phone) and data collection

behavior, and set up optional components like user surveys or specific interventions. Full instructions

and tutorials can be found on the Wockets Wiki Website [195], in particular the getting started guide

at [191].

7.2.3.4 Developers level : ready-to-use or extensible framework

Ready-made building blocks for mobile application development

The wockets framework is available as a pre-compiled C# library file (which we call the kernel),

which exposes an application interface (API) for a set of functionalities and building blocks that can

be easily integrated with 3rd-party applications.

This allows app developers to build mobile applications that leverage the capabilities and services

of the Wockets system through its third-party developer API, without the need to go into the Wockets

internals. This allows developers to save time and focus on the crucial parts of their app while the

Wockets kernel takes care of things like logging and uploading the app data and sensor data. Detailed

API instructions, documentation, and tutorials, can be found at the wockets developer website [193].
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Extensible framework for developing new building blocks, tools, and algorithms

Core-developers can go into the specifics and use features that are outside the scope of third-party

API. They could leverage the Wockets framework modular architecture and implemented features

and to focus on the new functionalities that they care about; for instance, a new feature extraction

or activity recognition algorithm. They could also contribute to new capabilities of the framework,

add new sensors (external or built-on-the-phone), improve the performance of existing functionality,

or export the Wockets framework to other mobile platforms like IOS or Android. Details of the

Wockets framework source code and example code can be found at the Wockets developers website

at [194].

7.2.4 Hardware

As described in [76], inertial data is captured using a MMA7331LCR1 accelerometer from Freescale

Semiconductors. The sensor is very lightweight (8g including battery) and small (3.2x2.5x0.6cm).

The sensing unit contains one 3-axis accelerometer (range 4g, 9g, 10-bit per axis resolution). It

can sample data at different sampling rates, but for the application of physical activity recognition,

the sensing unit is configured to sample at 40Hz. An A TMEGA1284P processor and an RN-41

Bluetooth module class 1 was used, with a voltage operation of 2.2v- 3.6v and lithium polymer

battery of 3.7V 24OmAh with PCB. More details about the hardware specifications can be found in

[192]. Figure 7-2 shows the evolution of the sensor hardware design.

7.2.5 Software

7.2.5.1 Software Architecture on Mobile Device

The data collection and activity recognition modules are the basic software components used by the

Wockets framework. Each module is a contained unit responsible for collecting a specific signal or

type of information. The term module is used rather than sensors or accelerometers, as modules could

encompass not only accelerometers, but also other sensors like GPS or other types of information not

traditionally considered as collected by sensors, like file sys'tem scans or the logging of user behavior

inside the phone. Using the modular probe architecture, it is easier to add new modules to the

system, or swap existing modules with an improved version.

All modules support a common set of behaviors (like module registration, type of data collected,

etc.), and each defines a set of configuration parameters that control it and format its output.

Modules can be configured locally on the device or remotely through the back-end server. Also, the

modules can be connected to one another. In this way, the one modules output can be the input of

the other, the latter acting as a client of the first. This architecture allows the creation of a hierarchy

or even a network of modules.
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Figure 7-2: Wockets sensing units.

The system includes a set of built-in modules as well as a modular architecture, which allows the

addition of new modules by third-party developers.

For example, one might want to develop an app and would like to ask users what they are

spending time on, annotate an event, or record other information that might help researchers to

contextualize the data collected.

One option to do that would be to develop totally independent code modules for logging the

data captured by the UI, saving it to disk, and then sending it back to the developers servers, while

dealing with a whole range of issues as added battery consumption, memory storage, protecting users

privacy, and so on. Alternatively, with the Wockets system, the developers might write a simple

Wockets module that logs all needed information, and leverages the Wockets existing modules and

tested software for dealing with these issues.

In general, there are two strategies for implementing modules: a fixed-sampling strategy and an

opportunistic-sampling strategy.

A fixed-sampling strategy explicitly requests data to be collected at a certain time and might

need to turn on phone resources (e.g., turns WIFI, GPS or internal accelerometer if they were off),

which might add battery expenditure. Modules supporting this strategy usually include a definition

for periodic execution, with a maximum interval between executions.
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An opportunistic-sampling strategy registers the modules as a listener for collecting different

messages sent as broadcast within the phone operating system service framework. These could be

built-in messages like battery state or screen on/off state changes, or third-party messages (like an

experience sampling application that triggers a message every time the user sets an alarm or presses

a button event).

Examples of implemented modules currently part of the Wockets system are: accelerometer raw

data, activity counts data, accelerometer data features, activity recognition module based on the

algorithm implemented in this thesis, activity recognition smoothing output, Bluetooth proximity,

file scans, screen on/off state, installed and running apps, sms, call and browse history logs, GPS,

WLAN, cell tower id, battery status, etc. Current implemented modules can be found on the

developer documentation site [194].

7.2.5.2 Remote Server

As described in Intille et. al. [76], the Wockets software uses the phones data network to send

motion summary data to a secure remote server on an hourly basis. This allows the physical activity

summary data be viewed hourly, as well as, other types of data such as, for example, wearability

patterns of sensors and EMA self-annotations about users physical activities, cognitive or emotional

states, and context.

Every 24 hours, raw data is uploaded to the server via the WIFI network if available. In addition,

in order to minimize user disruption and maximize data integrity and transfer speed, this operation is

done over night when the users phone is charging and not in-use. After the data has been successfully

uploaded to the server, it is deleted from the local storage on the phone.

Simple code was developed on the server side to track sensor wearability, detect any data anoma-

lies or system performance problems, and send immediate feedback to participants over their phones

to improve compliance. As future work, we believe this information can be used as a basis to create

just-in-time interventions that can aid the user to achieve his health or performance goals.

Figure 7-3 shows an screen capture of the website used in the study when the sensing system

was deployed along with windows mobile phones.

7.2.5.3 Software Key Features

The Wockets system incorporates a set of build in data collection tools and functionalities. Key

features are listed below. Detailed and up-to-date features and specific components can be found at

the developers website [194].

* Several optimizations for prolonging battery life. For example, some of these optimizations

are: a delta compression algorithm coded in the firmware to minimize the memory space used

to storage raw data, a state machine that adapts to the activity logging frequency whether the
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Figure 7-3: Study website.

sensors are within the phones range or their battery level, and solutions for everyday use-cases

(e.g., only upload data when the phone is plugged to the charger, the WI-FI or cell network is

available, and the user is not actively interacting with the phone UI or making a phone call).

" Delay tolerant implementation used when the Bluetooth or Internet connection is not available.

It stores data locally until the Bluetooth receiver or server connection is restored. The raw

data stored can be constrained by configuration in order that it doesnt take over the device

storage space, but this is ultimately limited by the amount of space on the devices storage

memory. The data can be compressed and/or aggregated by computing summary measures

(e.g. activity counts or the extracted signal features).

" Remote configuration from a back-end server. The phone-side application can be configured

to routinely check a remote server and download any configuration files or software updates.

Configuration files can be defined as formatted XML files.

* Automatic or manual data upload. Automatic upload is done via built-in mechanisms for

server communication for data upload and synchronization.

* Modular architecture. It allows for adding core functionalities and modifying existing behavior.

I Survey app for manual data collection. Surveys can be defined as a text file that is synchronized

with the device as part of the remote configuration protocol. An example of a survey is shown

in Figure 7-4.
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* Field proven system. The system was validated and deployed in various laboratory settings,

as well as, semi-naturalistic and naturalistic long-term field studies (for more information see

[76] and [152]).

Figure 7-4: Example of survey protocols.

7.2.6 Power Consumption

We ran experiments to evaluate the power consumption of the Wockets System in both continu-

ous and power-efficient transmission modes. The power measurements were taken by measuring

the voltage drop across a resistor during phone use. When the Wocket is not connected to the

phone, the radio is continuously awaiting a connection and therefore the current consumption is

a relatively high 11.88 mAmps. When the Wocket is connected and transmits continuously, the

power consumption registered 26.63 mAmps on average. With a 240 mAmps battery the Wocket

operates for approximately 8.3 hours. In power-efficient mode, the Wocket shuts down its radio

for approximately 45s, during which the power consumption is dramatically reduced. The average

power consumption for the Wocket in power- efficient mode is 6.18 mA, lower than a Wocket waiting

for connections. The lifetime of a 240 mAh battery exceeds 32 hours. For the phone, the baseline

power consumption with the screen off is 10.86 mA. With the screen off and the Wockets connected,

the power consumption jumps to 109.42 mA. For an 1100 mAh standard battery, the phone would

operate for approximately 10 hours. Once the Wockets are configured to run in power-efficient mode,

the consumption drops as low as 31.5 mA that allows the phone to run for over 34 hours (if no other

functionality is being used). Table 7.1 shows the power consumption scheme.
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Phone Usage Power Consumption
(mAmps)*

Phone doing nothing, screen off 10
Phone doing nothing, screen on +132
Phone doing nothing, backlight +105

Making phone call +128
Playing MP3 +67
Downloading MP3 using GSM network +352
Browsing internet using GSM network +267

Bluetooth on +6
Bluetooth discovering +136
Bluetooth connect /recounect *6

1 Wocket transmitting in continuous made (90Hz) +86
2 Wockets transmitting in continuous mode (90Hz) +97
3 Wockets transmitting in continuous mode (901Hz) +101

1 Wocket transmitting in sniff mode (90Hx) +95
2 Wockets transmitting in sniff mode (90Hz) +96
3 Wockets transmitting in sniff mode (90Hz) +97

Saving to external memory at 90H z (1 wacket) *I
Saving to external memory at 180Hz (2 wockets) *2
Saving to external memory at 270Hx (3 wockets) .3

Internal accelerometer at 25Hs #3

* The power was profiled using a HTC Diamond Touch phone.

Table 7.1: System and phone's power consumption.

7.3 Data Collection Design Guidelines

7.3.1 Investigating Behavior in Free-Living Environments

The Stanford study has given us unprecedented insights into the understanding of fine-granularity

physical activity. The great number of diverse data collected per person and about the study as

a whole allow us to interpolate a behavioral image of a persons behavior throughout the studys

duration.

This chapter starts with an overview of the Stanford dataset and basic statistics about the data.

We then present analysis and results from several components of the Stanford study. These are but

initial forays into the studys comprehensive dataset, some of which were done, as the study was

ongoing, and served to inform the design of subsequent components and parts of the system design.

Aside from the direct research questions that we can answer, these first investigations have helped

us formulate directions for further analysis, and demonstrate the potential of the Wockets data-rich

methodology.

These components are aligned with one of the studys high-level goals of understanding the be-

havioral mechanisms related to motivate to increase physical activity and health, as well as designing

and evaluating new tools and mechanisms to help people make better health-related decisions.
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Besides that, there are other investigation trajectories currently ongoing by similar research ini-

tiatives. For instance, they are looking into the connection between behavioral patterns and wellness

related topics, like sleep, stress, or mood, and/or investigating connections between personality traits

of individuals and the social networks or contagious behaviors that form around them. Besides phys-

ical activity, these examples make use of a variety of signals collected during the study, including

physical collocation of participants, self-reported social closeness, and mood, among several others.

7.3.2 Data Collection for System Validation

In the Stanford study, validation data was collected in four phases.

" Phase one was in a laboratory controlled setting and consisted of structured exercise activities

with participants wearing a variety of sensors.

" Phase two added additional everyday activities with subjects wearing the same suite of sensors

(and the latest version of the hardware).

" Phase three was the final validation study of the Wockets system, comparing the system

classification output to self-report and selected sessions for a extended period of time.

To provide a sense of the effort, the data analyses were conduced during phase one and concluded

on phase two, which represents the first 2.5 years of he starting of the project. There were many

challenges along the path, from getting many sensor systems to work in sync in a reliable and robust

manner to optimizing the power consumption of the sensing system and the phone, etc. As a result,

in phase three, a simplified and more robust system and study protocol was used.

7.3.3 Remote Study Administration

In the validation phase of the study (phase four), summary activity data was sent back to researchers

hourly using the phone's data network, allowing remote compliance monitoring and troubleshooting.

It was also possible to trigger simple EMA self-report prompts on the phone and provide feedback

to each participant about his/her overall physical activity level. These additional tools facilitate

remote monitoring using exchange of data via SMS messaging, which is a more efficient way to send

small amounts of data than requiring the phone to connect to the Internet via the data network.

7.4 Remarks

The Wockets system was first implemented for phones running the windows mobile OS version 6.x.

Then, it was upgraded to Windows mobile OS version 8.x, which is the one described in this thesis.

The first version (OS version 6.x) was the one used to carry out the data collections described in
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(190] and corresponds the system described in Intille et al [76]. Whereas the upgraded version (OS

version 8.x) is the one used in the projects described in [chang, 2014] and corresponds to the system

described in this thesis. In particular, the upgraded version (OS version 8.x) extends the basic

software version of the system to include the algorithm module described in chapter 3.

The Android OS version was developed and maintained at Northeastern University by Prof.

Stephen Intilles research team (see project page [195]).

As it can be seen in [192], the original system hardware parts, including housing and materials,

can be assembled in quantities of 100 by companies that make printed circuit boards. The cost of

per sensor was approximately $63 US dollars including battery and housing. This cost is expected

to be lower with large-scale production and over time -as the electronic components and batteries

tend to be cheaper with time.
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Chapter 8

Conclusion

8.1 Conclusion

The advances on miniaturized sensing, wireless communication technologies and smartphones have

started to make possible to collect daily fine-grained activity data over a large number of individu-

als. These advances and the availability of large amounts of data have open up new possibilities for

developing innovative applications that explore novel forms of interaction and behavior understand-

ing. In particular, they have made possible to start exploring activity recognition systems that can

be deployed in the real-world over long-periods of time. Henceforth, the focus of this thesis is on

the development of a novel method for the recognition of physical activities, which can be used for

wearable activity recognition systems deployed at scale in unconstrained natural environments.

A great attention has been placed on identifying important distinctive challenges faced by the

activity recognition research community and discussing the crucial role of the interplay between the

sensing, the algorithm and the user interaction components for the design of the computational meth-

ods and algorithms used by physical activity recognition systems. The specifics of these challenges

are discussed with great detail in the background and algorithm sections of this thesis.

Additionally, a high emphasis was put on the evaluation of the feasibility of the proposed concept

and method via the experiments introduced in chapter [chapter experiments] of this thesis. Finally,

practical design guidelines are discussed based on the lessons learned throughout the implementation

of a wearable activity recognition system called wockets, which was a large collaborative project

funded by the NIH GEI biology exposure program [54} (see disclaimer in section 7.1 and project

website [195] for more details about the project).
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8.2 Contributions

" Assessment of various activity recognition problems with commonly used classification algo-

rithms (Hidden Markov Models and Decision Trees).

" Analysis of the means to create robust activity algorithms for real-world systems, which allows

to realize the concept of learning-upon-use.

" Demonstrate that the proposed algorithm concept is a valid approach to solve three main

classification problems currently faced by real-world scalable activity recognition systems.

" Introduction of novel evaluation techniques based on design of experiments methods and tech-

niques that simulate the learning-upon-use concept (learning previously unknown activities or

learning them in an incremental manner using only limited amounts of data).

" Introduction and validation of a novel algorithm, based on binary SVMs models combined

with a meta-learning majority of voting algorithm.

" Introduction and validation of the idea of a modular activity recognition, where the user is

not required to provide data from all the activities the system recognizes. The system only

requires data for the activities of interest and, using the new-labeled data previously unknown,

only the relevant parts of the system are retrained the rest of the system remains the same-

allowing it to preserve the information that has been already learned.

* Via lessons learned and design guidelines, this thesis informs designers about the challenges

and trade-offs faced when designing a scalable activity recognition system intended to be

used for long-term in natural settings. In fact, since these challenges are not only exclusive of

activity recognition systems but also they are common across many wearable systems intended

to recognize human behavior, some of the lessons learned and the practical approach used by

the methods presented can benefit not only the activity recognition community but also other

communities such as the Wearable Computing, Ubicomp, Behavioral Science communities.

" The listed contributions are both of theoretical (the novel concept and algorithm) and of

practical value (the proposed evaluation technique). Furthermore, this thesis also discusses

the practicalities of implementing the presented methods, in order to realize the envisioned

learning upon use concept for activity recognition systems intended to be deployed for long-

term in unconstrained natural settings.
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8.3 Future Work

The contributions of this work can be viewed as several important milestones towards creating a

wearable physical activity system that can be deployed at scale in natural unconstrained environ-

ments. Nevertheless, several questions still need to be answered. Therefore, future directions to

continue and extend this work are introduced below.

First, this thesis argues that the proposed framework could be used to create robust building

units part of a hierarchical activity recognition model, in where the recognition of high-level activities

is based on the recognition results of other simpler activity instances. The motivation is to let

the simpler activity instances - which are easier to identify- be first, and subsequently use them as

building units for recognizing higher-level ones. For instance, a high-level activity like fighting may be

recognized by detecting a sequence of several pushing and kicking interactions. Thus, in hierarchical

approaches, a high-level activity is represented in terms of sub-instances which themselves might

be decomposable until atomicity (last level of division of an activity) is obtained. As a result,

sub-instances could serve as observations or entries for a higher-level activity recognizer.

Even though, this work doesnt focus on the hierarchical model per se, it is important to continue

and extend this work for connecting it with a generic framework. I consider that the hierarchical

activity recognition paradigm not only makes the recognition tasks computationally tractable and

conceptually understandable, but also scalable and reusable by reducing the redundancy and utilizing

common acknowledge or recognized sub-activity instances multiple times.

Second, more work on creating collaborative general-purpose datasets should be done. This is

important because these datasets could uncover which is the distinctive variability among different

activities and places providing a collection of representative training examples for activity recognition

systems. If collaborative datasets are combined with a well-defined activity classification scheme,

the research community could better investigate the problems of variability and subject- dependent

recognition. In fact, through out the multiple arguments presented in this thesis, I advocate for

making these datasets public and well-defined in terms of their activity taxonomy description since

we believe that this will result on faster development and advancement of the algorithms used in

the field.

Third, other important aspects to be improved in future work are the creation and use of unam-

biguous and well-designed experimental protocols and appropriate evaluation metrics. These aspects

are crucial for reproducing proposed approaches and making solid comparisons across different recog-

nition methods, which is only possible when they are tested with similar or comparable conditions.

They can make a significant impact on moving system prototypes into wide-scale practical deploy-

ment. Currently, as it was discussed in chapters 2 and 7, such type of real-world deployment is quite

challenging.

However, to conduct an unambiguous and well-designed experiment or study in activity recog-
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nition is more difficult than it might be thought at first. For instance, there axe several issues faced

such as: to maintain a balance between ergonomics and unobtrusiveness of the sensors versus ease-of-

use and performance of the system; to allocate the time and resources required to prepare, conduct,

and maintain the experiment; to cover the cost for participants, staff running the experiment, the

equipment, and data or phone subscriptions used by participants.
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Chapter 9

Appendix

9.1 SVM Model Confusion Matrices
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