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Abstract

Leakage power reduction through power gating requires considerable design and
verification effort. Conventionally, extensive analysis is required for dividing a hetero-
geneous design into power domains and generating control signals for power switches
because of the need to preserve design behavior. In this thesis, I present a scheme
which uses high-level design description to automatically generate a collection of fine-
grain power domains and associated control signals. For this purpose, we explore
the field of high-level design languages and select rule-based languages on Quality-of-
Result metrics.

We provide algorithms to enable automatic power domain partitioning in designs
generated using rule-based languages. We also describe techniques for collecting the
dynamic activity characteristics of a domain, viz. total inactivity and frequency of
inactive-active transitions. These metrics are necessary to decide the generated do-
mains' viability for power gating after accounting for energy loss due to transitions.
Our automated power gating technique provides power savings without exacerbat-
ing the verification problem because the power domains are correct by construction.
We illustrate our technique using various test-cases: two wireless decoder designs, a
million-point sparse FFT design and a RISC processor design.
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Title: Johnson Professor of Computer Science and Engineering
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Chapter 1

Introduction

Leakage current dissipation in hardware designs has been increasing with tech-

nology scaling. At the same time, power consumption has become increasingly im-

portant for electronic applications running on wireless and hand-held devices, due

to constraints on the size and weight of batteries, and thermal budgets. This thesis

provides a solution to this problem by providing techniques that enable automatic

power gating of heterogeneous hardware designs. These techniques rely on high-level

design information that is available in rule-based hardware design descriptions.

1.1 Trends in power consumption of digital hard-

ware designs

Power consumption has become a first-order design concern for contemporary

hardware designs. With designs having billions of transistors due to scaling trends

seen under Moore's law, the thermal and power budgets now control how many of

these transistors can operate concurrently, which in turn affects the performance. At

the same time, proliferation of battery-operated wireless consumer devices has given

rise to an extreme focus on extending dynamic and standby operation times, and in

turn optimizing designs for reduced power consumption. Handheld mobile devices

have a strict heat budget as well to account for tolerable heat dissipated to the user,
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Chapter 1. Introduction

and this in turn places another total power dissipation limit on the devices. Such

wireless devices usually have sporadic and data-dependent activity, with most of the

operational time spent in quiescent states. This emphasizes the designers to carefully

consider the ratio of expected static (leakage) to dynamic (active) power consumption

under typical use scenarios.

There have been various projections [17, 20, 46] of the increase in chip power with

technology scaling. In particular, the fraction of leakage power is projected to in-

crease dramatically. While the active power consumption has been controlled due to

reduced supply voltage with scaling, reduction of threshold voltage of CMOS devices

to maintain performance has increased the leakage currents in newer technologies. By

one projection [64], a design at 130 nm with equal fractions of static and dynamic

power, when scaled to 32 nm and beyond would lead to leakage dissipation being the

dominant component of power consumption. Figures 1-1 and 1-2 show some of the

earlier and more recent projections of the increase in total chip leakage current dis-

sipation and in the fractional leakage power with scaling of technology nodes. These

projections were quite aggressive in predicting the rise in leakage power. The actual

measured leakage currents in both high-performance and low-power technologies have

also been increasing with technology scaling as seen in Figure 1-3, though at a re-

duced rate because of several power saving techniques including use of low-leakage

devices and use of power gating. However, application of such techniques comes with

a large design effort and verification cost.

1.1.1 Sub-threshold leakage current

Leakage current dissipation refers to the current flowing through CMOS devices

when they are not turned on. In this work, we will primarily focus on the sub-

threshold drain-to-source leakage current IDS, which is dissipated when the gate to

source voltage bias (VGs) is less than Vth. When the transistor is operating in this sub-

threshold region, IDS is approximated [61] by equation 1.1 as defined in the Berkeley

Short-channel IGFET Model technical manual [58].
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Figure 1-3: Measured increase in leakage currents of IBM's recent High-Performance
(HP) and Low-Power (LP) technology cell libraries [67]

_12, VGS-Vth-V
IDS = 10(l - e VYT )e( nv (1.1)

where

WvwO = M 2  (1.2)

VT is the thermal voltage which is linearly dependent on temperature. V'jf(=

VOFF VOFFL/Leff) is the offset voltage, which determines the channel current at

VGS = 0. W (channel width) and L (channel length) are design parameters, while m

and n (sub-threshold swing) are process constants. When the transistor is switched

off, with VGS = 0, and VDS = VDD, which is much greater than the thermal voltage VT,

the sub-threshold current IDS is directly proportional to e(-Vth). In other words, the

sub-threshold current decreases exponentially with increase in the threshold voltage

Vh. With technology scaling, VDD is reduced to decrease overall power consumption.

To maintain performance, by keeping IDS current high during transistor-on, V7 h is

reduced and this leads to an increase in the leakage current. In most techniques

for leakage reduction, a transistor with higher threshold voltage (either dynamically

changed by biasing or permanently increased by different doping) is inserted in the
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circuit path from supply voltage to ground.

1.2 Power management in hardware designs

Current designs have been successful in some mitigation of the dramatic increase

in power consumption in general, and leakage power in particular, through the use

of several power saving techniques. Dynamic power consumption has been very ef-

fectively controlled using Clock gating and Dynamic Voltage and Frequency Scaling

(DVFS). Clock gating involves turning off the clock to state elements which are not

being updated in a given cycle. DVFS, on the other hand, changes the supply voltage

and frequency of operation in proportion to the expected workload and performance.

For reducing static power consumption, there are various techniques such as the use

of high-threshold devices [14], reverse body biasing [82] and power gating [54].

1.2.1 Power gating

The most effective method of reducing the overall leakage current dissipation of

a design is using Power gating. Power gating, in the simplest definition, is turning

off the current supply to the circuit which is not being used. This is done by adding

a control switch, which itself is a low-leakage device, that shuts off current supply

based on a control signal. Such switches can be PMOS headers or NMOS footers

depending on their placement at the supply voltage or ground terminals. A power

controller generates the control signals fed to the power switches and is responsible for

turning on the power domain, controlled by the switch, when needed. Power gating

is implemented typically through the use of Multi-Threshold CMOS (MTCMOS)

technology where switches with high V are inserted to control supply of current

to logic with nominal 7th. Figure 1-4 shows a design with two power domains each

controlled by header switches. The effective supply voltage for the power domains

is denoted by VDDeff, which can differ between domains depending on the size of

the switch and amount of current drawn from the supply. To prevent spurious values

in signals generated from logic in inactive power domains, isolation logic is inserted
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between domains which holds these signal values to predetermined voltages. This

work focuses on how to partition designs and identify appropriate control signals for

each domain, using high-level design information.

VDD

Control Control High V. switches

VDD O VDDg

Power Power
Domain 1 Domain 2

GND

Figure 1-4: Insertion of header switches in a partitioned design for power gating

1.2.2 Motivation for fine-grained power gating

It is relatively straightforward to implement power gating in a broad manner, for

example, by turning off processor cores in a multi-core chip depending on processing

workload as measured in number of independent threads [30, 47, 63, 78]. However,

coarse-grained power gating, even at a modular level, fails to exploit the situations

where the entire module is not active at the same time. There is a frequent need

for a much more customized application of the technique. Ideally, a designer would

want to have exactly those transistors or logic cells turned on each cycle which are

directly involved in computing state updates. Such a design would require a power

switch for every logic cell, increasing the area of the power gated design by a large

factor. In this work, we target a middle path with fine-grained sub-modular logic

blocks gated independently, where the granularity is determined by the high-level
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design, as discussed later. Having large coarse-grained power domains increases the

average activity rate of such domains. By breaking up such a domain into fine-grained

domains, we can have a larger fraction of the inactive logic available for power gating.

Consider a design implementing a Finite State Machine (FSM) where depend-

ing on the input data, various stages are activated for processing and computation.

In such a design, we would want a power domain for each stage with independent

control signals such that only those stages are turned on which are needed. Such

data-dependent behavior is seen especially in various component blocks of wireless

transceivers. As an example, consider error correction modules, where the level of

computation activity is dependent on the amount of errors seen in input data, itself

determined by the wireless channel's signal to noise ratio (SNR). In this work, we will

explore the use of fine-grained power gating for such hardware designs. Decreasing

the size of the power domains allows the domains to turn-on much faster as well.

As we demonstrate, such domains can even transition between activity states within

a single cycle for moderate clock frequencies. This allows fine-grained gating in the

time domain as well.

1.2.3 Design cost of power gating

Though power gating allows significant savings in leakage, it also has associated

costs for increased chip area for power switches, isolation logic and gating control sig-

nals, performance costs due to lower effective supply voltage, increased supply noise,

and energy costs due to activation charging. By aiming for sub-modular granularity

we balance the area costs with increased power savings as compared to the extremes

of single logic-cell domains or large multi-module domains. Performance costs can

be mitigated by having customizable gating definition, where the designer can let

the critical path stay ungated. To compensate for increased noise in gated designs

due to switching and in-rush currents, existing techniques like re-routable network

of decoupling capacitances [44, 81] can be used. Finally, improperly chosen power

domains could result in net increased power consumption due to frequent switching

between inactive and active stages, each time incurring a charging energy cost for the
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domain's effective supply line. We demonstrate a technique for automatic collection

of appropriate activity metrics by simulation of high-level representative testbenches,

and the use of these metrics, along with domain-level breakeven thresholds, to allow

a designer to select viable power domains.

In addition, power gating of large heterogeneous designs has a significant design

and verification cost, which is exacerbated in fine-grained application of the technique.

Fine-grained power domains are not only smaller in area, and thus more numerous for

a given design, they can also be turned on and off more quickly. Manual application of

such a gating methodology requires insertion of control logic and verification to ensure

that only under appropriate conditions inactive logic is being switched off. Since

power gating is inserted at a late stage of the design process, any significant change

in design functionality due to its insertion would require considerable time and effort

for design validation. The ideal scenario is for such gating to happen automatically

in a push-button manner with the amount of change in design functionality being

minimal to none. Thus, there is a clear need for techniques to automate fine-grained

power gating and as we will demonstrate, high-level hardware design has the potential

to provide solutions in this space.

To reduce the verification burden, we will ensure that the gated design is bit and

cycle accurate to the ungated design for all state elements of the design. Our gating

technique will focus on switching off only the combinational logic in designs, aiming

at a sub-modular block-level granularity. With regards to power gating of state

elements, additional analysis is required to ensure that useful state, which might be

read in future, is not lost. We will explore some possibilities in this area towards the

end of the thesis in Chapter 9.

1.3 High-level hardware design

Automation of digital hardware design has been a long standing goal which has ad-

vanced greatly in recent years. The semiconductor industry has concurrent goals of in-

creased designer productivity, shorter design cycles and ambitious area-performance-
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power constraints. As a consequence, designers are increasingly adopting high-level

Hardware Description Languages [7, 9, 15, 16, 19, 52, 77] to address the challenging

design requirements of large systems without losing productivity. These languages

provide a higher level of abstraction than traditional languages such as VHDL or Ver-

ilog, implicitly hiding some of the low-level details in favor of an explicit system-wide

view.

A lot of these tools synthesize hardware from C, C++ [15] or SystemC [52] algo-

rithmic descriptions. This approach helps the designer by raising the level of abstrac-

tion and allowing design iterations to happen at the algorithmic level, with hardware

implications handled by the design tools. . Compiler techniques aim to ensure that

the produced circuit emulates the behavior of the abstract program. This process

should allow increased re-use of designs, plug-and-play synthesis for new algorithms

and the ability to produce large and complex hardware systems. However, the fact

that the languages used by Electronic System-Level (ESL) design tools were not orig-

inally designed to describe hardware also prevent obtaining an architectural view of

the system: the advanced techniques used to transform C/C++ code into circuits

make it difficult to establish relations between the original model and the resulting

hardware. There is a gap between the system specification and resulting hardware

which can be difficult to bridge while starting from a software-based description.

On the other hand, there exist languages specifically designed for hardware spec-

ifications, called Hardware Description Languages (HDLs). These include basic lan-

guages like Verilog and VHDL, as well as high-level rule-based languages like Blue-

spec [9]. Due to the direct relationship of specifications to the micro-architecture,

such languages can aid automated tools in design partitioning and identification of

relevant control signals needed for power gating. The electronic design industry is

increasingly adopting such languages and synthesis tools [6, 7, 9, 15, 52] to address

the challenging design requirements of resource constraints, higher performance re-

quirements and minimized power and thermal budgets. Use of high-level languages

for designing custom hardware is gaining popularity since they increase design pro-

ductivity by providing higher abstractions, design modularity, pasteurization, and
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significant increase in code reuse. High-level languages facilitate design validation

and verification, by allowing generation of designs that are correct-by-construction.

Use of formal analysis for verification is also enabled by such design languages.

To enable greater applicability of fine-grained gating in special purpose hardware,

the use of high-level hardware design languages significantly eases the design and

verification problems. Fundamentally, fine-grained gating requires the algorithmic

design intent to be available for power domain partitioning. The higher the abstrac-

tion used for designing hardware, the easier it is to extract such design intent. More

concretely, individual domains can be defined as centers of logic activity used together

as a unit, and hence comprise of design blocks that get activated and de-activated

simultaneously. Such domains can be identified from the high-level description. Con-

trol signals used for activating such units can also be present in high-level description,

and then can be used in the power management. This high-level information can be

traced through various synthesis steps, and this is how fine-grained gating is enabled

through our power domain partitioning technique.

1.3.1 Quality of hardware

One important question to explore is the impact of the use of high-level design

languages on the quality of hardware generated, with respect to increased resource

consumption or decrease in system performance. Power savings through fine-grained

gating of high-level design could possibly be overwhelmed if there are significant area

and performance costs to using high-level languages for designing hardware. In this

thesis, we examine this question by comparing software-based design languages to

rule-based languages. We also compare the high-level designs to baseline hand-coded

RTL designs to verify if there is a penalty in terms of area or performance. We also

determine common design constructs that are required for designing efficient hardware

for typical heterogeneous designs such as digital signal processing accelerators, and

whether such constructs can be efficiently expressed in the high-level designs.
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1.3.2 Ability to leverage rule-based designs

One particular high-level HDL, Bluespec SystemVerilog (BSV) [9] uses a rule-

based design methodology. Bluespec provides hardware designers with high-level lan-

guage abstractions and features that can help them to quickly and easily express the

micro-architecture they want to generate. Bluespec also facilitates latency insensitive

designs by automatically generating handshaking signals between interface methods

used to communicate between modules. This allows designers to incrementally re-

fine modules to meet their requirements. Among the examples of designs using the

Bluespec design methodology, Dave et al. [25] showed the use of single parameterized

design source code to quickly generate Fast Frequency Transform (FFT) blocks with

different architectures for different area and performance constraints. Similarly, Ng

et al. [56] developed wireless transceiver modules using Bluespec that can be reused

across different Orthogonal Frequency Division Multiplexing (OFDM) protocols.

In BSV, the hardware design is expressed in terms of state and module interface

definitions with conditional rules computing state updates. Figure 1-5 shows the def-

inition of an example module in BSV which computes the Greatest Common Divisor

of two 32-bit inputs using Euclid's swap and subtract algorithm.

The design has two register state elements x and y, and two rules swap and

subtract that compute updates to these registers. The input-output methods start

and result are declared separately as the definition of the module interface Interf GCD,

and themselves defined in the module body. Each rule and method can have an ex-

plicit guard condition specified after the name declaration. In addition, there can

be implicit guard conditions due to invocation of methods within rule and method

bodies. The Bluespec compiler automatically generates control logic for the hard-

ware design using rule and interface method definitions and all guard conditions.

Scheduling logic is generated to determine which of rules will be activated in a given

cycle. This control logic plays a crucial part in our partitioning methodology, allowing

automation of several steps involved with power gating.

As we will demonstrate, rule-based design languages occupy a sweet spot in terms
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module mkGCD (InterfGCD);
// state definitions

Reg#(Bit#(32)) x <- mkReg(O);
Reg#(Bit*(32)) y <- mkReg(O);

// rule definitions
rule swap (x > y && y > 0);

x <= Y;
y <= x;

endrule

rule subtract (x <= y && y > 0);

y <= y - X;
endrule

// method definitions
method Action start(Bit#(32) a, Bit#(32) b) if (y == 0);

x <= a;
y <= b;

endmethod

method Bit*(32) resulto) if (y == 0);
return x;

endmethod
endmodule

Figure 1-5: Example BSV design - GCD

of raising the abstraction of design description high enough while keeping the resultant

hardware quality within reasonable bounds. Hardware designers can keep the algo-

rithmic design intent apparent in the high-level rule description, allowing downstream

tools to use this description for optimizing various hardware metrics including area

and performance, and even leakage power. Static power reduction of such rule-based

designs is the focus of the work described in this thesis.

1.4 Contributions

In this work we explore the use of rule-based high-level HDLs for designing fine-

grained gating in custom hardware. We evaluate the Quality-of-Results for hardware

generated using BSV and compare them to designs generated through software-based

design methodology. After establishing clear benefits of using rule-based HDLs, we

then demonstrate how such designs can be automatically analyzed and partitioned
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for reducing their leakage power dissipation.

The main contributions of this thesis are:

1. A novel technique that uses rule-based design descriptions for automatic parti-

tioning of a digital design into power domains and associated gating signals.

2. Automatic classification of power domains for their suitability for power gating

based on their dynamic characteristics.

3. We illustrate our technique using concrete design studies: two high-performance

wireless decoders, 32-bit processor that boots Linux and a million-point Sparse

Fourier transform design. These examples will show that unlike global power

controllers, our technique introduces no new logic or state to generate power

gating control signals.

4. We discuss issues related to fine-grained partitioning of hardware starting from

Verilog RTL or from C-based high-level designs. This thesis provides reasoning

for why rule-based synthesis is the appropriate choice for identifying high-level

design information that can be used in power gating.

1.5 Thesis organization

In this chapter, we have discussed the fundamentals of power gating and high-level

design that serves as background for the thesis. The rest of this thesis is organized as

follows. In Chapter 2, we discuss related work in the area of design partitioning and

power gating. In Chapter 3, we introduce and discuss the power domain partitioning

problem. We provide a general technique for generating power domains in explicit

control circuits. In Chapter 4, we elaborate on how use of rule-based designs eases the

partitioning problem and collection of statistical information used to classify domains.

Chapter 5 introduces two dynamic activity metrics used for selecting viable domains.

We use realistic wireless decoder designs to demonstrate collection and use of activity

metrics. We also discuss the need for detailed high-level testbenches to accurately

characterize dynamic activity metrics.
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In Chapter 6, we describe two large complex designs - a million-point sparse

Fourier transform accelerator and a RISC processor that boots Linux, and discuss

their fine-grained activity metrics. Chapter 7 quantifies the power and performance

impact of our technique. In Chapter 8 we contrast and compare rule-based HDLs with

C/C++ based design methodologies for area and performance design metrics. Finally,

we present a summary of the thesis in Chapter 9, and propose future extensions and

research directions for the discussed work.
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Related work

Leakage power reduction is fundamentally linked with trade-offs in performance

and area costs of the design. Various techniques have been proposed to allow reducing

leakage power of heterogeneous designs, while balancing design effort and performance

costs. In this chapter, we give an overview of related work in this area and how the

work presented in this thesis adds to it.

2.1 Voltage islands and circuit techniques

There has been a great deal of attention focused on the problem of reduction of

power consumption of multi-core designs as the number of processors in a single chip

keeps increasing. Frequently, each processor core is located on its own voltage island

by isolating the power supply provided, in order to control its voltage independently of

other components. This allows use of Dynamic Voltage and Frequency Scaling [66] for

reducing dynamic or active power consumption, where the voltage and clock frequency

supplied to the island is scaled proportionally to the performance required or the

power and heat budget allocated.

The division of hardware designs into separate islands can also be used for power

gating of these components to reduce leakage currents. Sleep transistors are added

to control the supply of power to the Power islands, with the sleep signals generated

dynamically by a centralized power controller. Kao et al. [42] have shown how sharing
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of sleep transistors between mutually exclusive signal paths can be used for minimizing

the size of the shared sleep transistors to reduce area penalty while still maintaining

performance constraints. Calhoun et al. [14] have described how insertion of high-

threshold sleep devices can reduce standby current dissipation by 8X in configurable

logic blocks of a low-power FPGA core. Vangal et al. [75] and Matsutani et al. [50]

have demonstrated use of similar techniques for reducing leakage in on-chip routers,

where the power supply for each router component is individually controlled and the

scheduling of the activation signals is based on dynamic information in the network

packets.

Intel Nehalem [30, 47] and SandyBridge [63] processors have used such Voltage-

Frequency islands controlled by a dedicated centralized hardware power management

unit. IBM Power7 processors [78] also use voltage islands for power management in a

granular fashion of large multi-core designs. Our technique uses similar partitioning

but at a finer granularity and consists of distributed power management with control

signals generated by pre-existing logic used for scheduling. The partitioning scheme

does not require homogeneity in the hardware design, such as that present in iden-

tical processor cores or on-chip router components, and can be applied to general

heterogeneous hardware designs.

Leakage currents can also be reduced using device and circuit-level techniques

such as Body Biasing where the body terminals of the transistors are raised to an

independent potential instead of being connected to the source terminals. Reverse

biasing the source-body junction increases the effective threshold voltage decreasing

the leakage current at the cost of reduced performance [40]. Increased circuit com-

plexity due to extra terminals and increased area decrease the viability of frequent

use of this technique.

2.2 Operand Isolation

The analysis used for identifying inactive logic is similar to the concept of Operand

Isolation. Existing literature in this area, [8, 12, 18], has proposed algorithms for
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identifying input operands to computational units that are not needed under dynamic

data-dependent conditions. These operands are isolated and their value changes are

prevented from propagating to the downstream logic.

Such work has targeted reducing unnecessary dynamic transitions in designs to-

wards the goal of cutting dynamic and peak power consumption [69]. We extend

the published work on operand isolation by applying it for reducing leakage power,

through the automatic identification of unused multiplexer data inputs and power

gating of computational blocks generating them. Our technique also adds the use

of statistical activity metrics for the different logic blocks in the design to ensure

that switching energy costs do not overwhelm the leakage reduction in the selected

domains.

2.3 Automation of power gating

Chinnery et al. [21] have presented analysis and optimization techniques for gating

automation once the list of modules to be power gated and the sleep signals have been

specified. Usami et al. [74] proposed a fine-grained power gating scheme that relies on

already present enable signals of a gated clock design. Bolzani et al. [11], similarly,

start from a gated-clock netlist for partitioning the design. In contrast, our work

does not require any prior analysis of clock gating, and allows gating of logic that

might even be feeding registers being clocked in a given cycle, but not being used to

compute its next state update.

Rosinger et al. [61, 62] have created RTL estimation models to quantify the transi-

tion costs and sizing of sleep transistors for small functional blocks switching between

inactive and active states. The activity metrics discussed in this thesis build on such

work by coupling the costs with statistical data taken from testbenches, to make

design decisions on insertion of gating in viable domains. Ickes et al. [37] have also

discussed the energy costs associated with turning on inactive power domains and the

estimation of break-even time as the minimum inactive time required for net energy

savings. We have extended this analysis for differentiating between viable and non-
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viable fine-grained power domains in a single design, by automatic instrumentation

of high-level design for collection and use of the metrics.

2.4 Netlist-based partitioning techniques

Leinweber et al. [49] have described a partitioning algorithm starting from de-

sign netlists to reduce leakage power consumption. The proposed graph partitioning

scheme clusters logic gates in a manner that allows for identification of logic block

cofactors that can be power gated. Potluri et al. [59] also proposed the extraction

of data signals from post-synthesis netlists to be used for partitioning and gating of

multiplier blocks present in signal processing applications.

However, limiting such analysis to the synthesized netlist can obscure essential

high-level control signals that are present in the HLS design descriptions. Use of the

high-level design description can ease the partitioning problem, provide input on the

dynamic activity of clusters as well as allow for utilization of the designer's intent for

power reduction.

2.5 High-level designs

Dal et al. [23] use high-level synthesis from behavioral specification to cluster

activity periods of functional units. This enables switching off logic for inactive

periods that are as long as possible. However, the area-wise clustering suggested is

at a coarse-grained level with minimal consideration of breakeven periods that take

into account the cost of switching states.

Singh et al. [70] have analyzed the use of Concurrent Action-Oriented Specifica-

tions like rule-based design languages, for identifying inactive logic to reduce peak

dynamic power. This is accomplished by modifying the scheduling of rules to limit the

number of rules firing simultaneously and thus limit the amount of dynamic activity

occurring in a clock cycle. Our work focuses on analysis of similar rule-based designs

towards reduction of leakage power by gating the inactive logic, without changing the
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scheduling logic to maintain performance and cycle-accurate behavior of the gated

design. In addition, we demonstrate how the use of dynamic activity statistics col-

lected from high-level design simulation is necessary for the selection of appropriate

logic domains to be gated, and provide techniques for automatic insertion of logic

to collect these statistics. An important point here is the necessity of a direct rela-

tionship between the high-level activity and power domains, for accurate selection of

viable domains. We will elaborate on this topic in this thesis.
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Power gating and partitioning

3.1 Introduction

Leakage power reduction is increasingly important in hardware design, especially

in implementing wireless applications with long standby times [54]. As discussed in

Chapter 1, the leakage to active power ratio is increasing with technology scaling [17].

Power gating, i.e., inserting logic to switch off power to parts of the design, is one

way to reduce the leakage power. Introducing power gating in a design involves the

following steps:

* Dividing the design into power domains and generating power gating signals for

each domain to turn the domain off.

e Determining whether it is useful to power gate a particular domain based on

the expected dynamic characteristics such as its periods of activity.

e Insertion of isolation logic and power network layout including the sizing of the

power switches, and verification of signal integrity.

Generally, the first two steps are done manually while some tools and techniques

exist for automation of step 3 [14, 22, 68, 81]. Several industrial standards [44, 60]

are also under development for providing power specifications that direct tools in

insertion of gating for specified power domains. In this work, we provide a technique
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to automate the first two steps; our technique is orthogonal to the solutions used for

step 3.

Since power gating is usually done manually, it is applied only at a fairly coarse

granularity. Examples of such gating include turning off one or more processor cores in

a multi-core chip or turning off inactive wireless radios, Bluetooth, etc. in the multi-

protocol transceiver of a mobile phone. This results in relatively large power domains

with logic, state and clock networks being switched off for hundreds of clock cycles.

This process requires substantial verification effort to ensure that the functionality is

preserved. Such power gated designs rely on a global power controller which requires

a significant effort to design and integrate. We propose a technique to automatically

power gate the majority of the combinational logic on a per cycle basis. This technique

can be applied independently of whether a global power management scheme exists,

and to designs of any size and complexity without additional design and verification

effort. Using the greater savings of a fine-grained approach, our technique can result

in a significant reduction of the total leakage power dissipation.

Power gating can reduce leakage, but it has an additional overhead of the recharg-

ing energy associated with the gating transistors and power domains. It also incurs

the area cost of power-gating transistors, isolation logic and power network. Thus,

a crucial part of the analysis is to determine which power domains are likely to pro-

duce net energy savings. Such analysis, by its very nature, is based on use scenarios

and needs to be captured empirically during the design process. We will provide

techniques to collect such information and distinguish viable domains.

Our partitioning technique relies on some crucial high-level information that is

often lost in low-level RTL descriptions. Therefore, rather than analyzing at the

gate level, we rely on designs done in a high-level HDL where the control signals for

potential power domains can be easily identified by the compiler. An advantage of our

technique is that the power gating control signals are already present for the normal

functioning of the original non-power-gated design, and don't require any additional

logic for generation. These signals are updated every cycle and so can be used for

very fine-grained time switching of the domains. In this chapter, we discuss how to
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partition designs using such control signals. In our analysis, we will aim to power-gate

combinational logic in the data path, while keeping all state elements ungated. State

elements contain data values that might be used within a module or by an external

reader. To turn-off state elements, additional information is required to ensure that

useful state values are not lost. In Chapter 9, we will provide a brief discussion on

how such analysis could be done for state elements.

3.2 Power domain partitioning

3.2.1 Partitioning technique for explicit-control circuits

Partitioning a digital design into fine-grain power domains requires identifying

control signals that indicate which part of the next-state logic is needed. Two types of

control signals are of greatest interest: register write enables and multiplexer selectors.

Although such signals are generally quite obvious in high-level designs, they can get

obscured in synthesized netlists. Our partitioning technique includes the following

steps:

1. A circuit level description of the design given in terms of four elements: Regis-

ters, Multiplexers, Forks (for representing fan-outs), and all other logic gates,

shown in Figure 3-1. We call such descriptions explicit control (EC) circuits.

Any digital design can be described as an EC circuit.

Classification of a netlist into EC elements is not unique, for example, a multi-

plexer is composed of logic gates itself. Rather than identifying such elements in

existing netlists, we use a synthesis procedure for rule-based design descriptions

where EC circuits arise naturally.

2. A partitioning of the EC circuit into power domains. This step, as described

next, is implemented as a graph-coloring task where the set of colors associated

with each logic element gives the power gating condition for it.

Our partitioning algorithm is independent of how the EC circuits are generated.
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Figure 3-1: Nodes of Explicit-Control circuits

3.2.2 Partitioning algorithm as graph-coloring

We describe our power domain partitioning algorithm as coloring a graph consist-

ing of the EC elements as nodes, and connecting wires as links. The definition of the

graph colors is as follows:

1. Seed color: Each register write-enable (ens) and mux selector signal (selj) has

a unique seed color given by the dynamic Boolean values of these signals.

2. Link color: Each link in the EC circuit has a color which is a Boolean function

of the seed colors.

3. Each Mux and logic gate has a color, which is the same as its output link color.

4. Logic elements having the same color constitute a power domain, with the gating

condition defined by the color.

Link colors are derived by solving a set of equations which are set up as follows:

e Register i:

Cdata1 = Ce - en (3.1)

40



Chapter 3. Power gating and partitioning

* Mux j:

Csel, = Cout,

Cini, = Cot, Sel (3.2)

Ci.2, = Ct,- selj

" Fork k:

Cink = COUt1k + + Ctnk (3.3)

* Logic Gate 1:

Cap~i = Crest (3.4)

Co2t = Crest

" Constraint due to connectivity: For each link, the sink color is same as the

source color.

The reasoning behind the above equations can be understood as follows. In our

partitioning technique, registers are always ungated to preserve state. This implies

that the write enable signal of the register needs to be computed every cycle to check

whether the register value is updated. The color associated with the enable signal,

Ceni, evaluates to True because the value of the write enable signal is always needed

as a control signal and so the logic computing it is always turned on. The logic

generating the data input for a register is only turned on when the value of write

enable signal is high, as indicated in equation 3.1. For a mux, the selector signal is

needed only when the output of the mux is needed. For the inputs of the mux, colors

are determined by value of the selector signal and whether the output is needed, as

indicated in equation 3.2. The input signal of a fork is activated if any of the outputs

are activated, shown in equation 3.3. In case of a logic gate, if the output is activated,

all inputs are required to be activated, shown in equation 3.4.

For a given EC design netlist, it is always possible to construct the above set of

equations for every circuit element in the design. Using this set of equations and

constraints, it is straightforward to solve for all the link colors in the graph. The

solution follows from back-propagation of the seed colors, enj and sel3 , and gives
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Chapter 3. Power gating and partitioning

Table 3.1: Activity conditions for logic gates

Logic block Activity Condition

fi __ T3- (D4

f2 {{ _ _ -3} + {42 - 4D3} -

f3 1D2 - )3 D4

f4 _ _ _ - (D4

fA 43 - 44

fA 4

every link a color which is a Boolean expression of seed colors. This is a unique

solution as the seed colors are a well-defined set, and their Boolean relationship for

every link is determined by the circuit design itself.

3.2.3 Example for generation of gating conditions

As an example of this process, consider the segment of a general design shown in

Figure 3-2. Here, each logic block, fi, consists of a collection of logic gates and forks.

The seed colors of the control signals, the selectors for muxes and write enables for

registers, are denoted by Di, whose generation logic is kept ungated. In this scenario,

each logic block has a distinct activity condition consisting of all the control signal

values that allow it to propagate to any state element, as shown in Table 3.1. In

this manner, power domains and their gating conditions can be generated for an EC

circuit. In section 3.3, we will discuss partitioning in the absence of known control

signals and how that affects activity of generated domains which determines energy

costs associated with gating.

3.2.4 Nested domains

It is possible that the domains generated through such partitioning can be phys-

ically contained within larger domains. For example, consider (D and i - 1b, as the

gating conditions of two domains, where the second domain is contained within the

first domain. Such specification of domains is valid under the technique and would
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Logic generating
Control signals

41

+0

Figure 3-2: Associating activity conditions with logic blocks. Control signals are
marked in red.

imply a hierarchical granularity of power gating. The larger domain could be turned

on, while the nested domain is turned off depending on the value of 4j control sig-

nal. This can occur due to the presence of multiple conditional computations in a

design block where some computation is common to several selections. Though such

nested power domains are allowed under our partitioning algorithm, the rule-based

implementation that we will describe in the rest of this thesis will generate disjoint

fine-grained domains due to the method used for identifying control signals.

3.3 General partitioning strategies

In this section, we explore various techniques that can be used to partition designs

starting from a low level HDL description, such as in Verilog RTL or design netlists.

In this analysis we assume no high-level information to be present.

1. Pre-defined control signals: Information about structure, different types
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Chapter 3. Power gating and partitioning

For the earlier analysis, we had defined control signals as specifically mux selec-

tor signals and register write enables. The mux selector signals choose between

two (or more) alternatives to be used as state updates. This is a structural

definition, since it relies on knowledge of the presence and location of mux logic

units. When starting from high-level rule-based designs, we are interested in

preserving information about explicit (and implicit) guards to use as control

signals. For general partitioning, we have to assume that it might not always

be possible to identify mux selector signals from a given design netlist.

Example - Consider a typical RTL design of a swap-and-subtract GCD module

discussed earlier. The hardware design, split into control and datapath modules,

is shown in Figure 3-3. The main computational unit is the subtractor and it

can be gated as a fine-grained power domain. The control signal of this domain

would be the AND of conditions that the operand B is non-zero and that the

operand A is smaller than operand B. The mux selector signal, A sel, can also

provide information on whether the subtractor result will be used in a given cycle

or not. However, in a general Verilog RTL design, such control signals could

be obscured in the design description, and this makes automatically selecting

gating controls difficult. Figures 3-4 and 3-5 show the modular RTL code for

a design where control signals for gating are directly identifiable due to the

explicit structural code used for the design description. On the other hand,

Figure 3-6 shows a flattened RTL design where such control signals would be

difficult to be automatically identified.

2. Partitioning using only register write enables

For any given design, as Verilog RTL or netlist, we can determine the register

write enable signals. However, control signals corresponding to choice of state

update (earlier described mux selector signals) need not be explicitly specified.

In such cases, we use the sensitivity conditions for the always blocks to deter-

mine the control signal for the register WE. The coloring algorithm described in

section 3.2.2 is still applicable here with registers, logic gates and forks being the

44



Chapter 3. Power gating and partitioning

Figure 3-3: Hardware generated for GCD RTL design, control signals are marked
in red. Details of control module have been omitted because it is kept ungated.
Fine-grained power gating is applied to the computational unit for subtraction in the
datapath module.

Figure 3-4: Top-level Verilog RTL design of GCD with separated control and datapath
modules
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module gcd
( input clk,

input [7:0] operand-A,
input [7:0] operand-B,
output [7:0] result,

input start,

output done );

wire [1:0] A-sel;
wire A-en, B-sel, Ben, B-eq_0, A_ltB;

gcdDatapath datapath (

.operandA (operand-A),

.Lmux-sel(A-sel),

)
gcdControl control (
.A-sel(A-sel),

)
endmodule
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module gcdDatapath
( input clk,

input (7:0) operand-A,
input [7:0) operandB,
output [7:0) result,
input A-en,
input Ben,
input [1:0] A-mux-sel,
input B..mux..sel,
output B-eq_0,
output ALlt..B );

wire [7:0] B, sub...res, A.mux-out, B-mux-out;
Mux3Inp#(8) A.mux
(.in0(operand-A), . inl(B), . in2(sub-out), . sel(A.mux-sel)

Mux2Inp*(8) B.mux
(.in0 (operandB), .ini (A), .sel (B-mux-sel),

ED-FF#(8) A-f f // D flip-flop with en
( .clk (clk), .en-p (Wen), .d.p (A-nux-out),
ED-FF#(8) B-ff
( .clk (clk), .en-p (Ben), .d.p (B.mux-out),

Subtractor#(8) sub
( .in0 (A), .ini (B),
EqChk#(8) Beqzero
( .in0 (B), .ini (0),
Comparator#(8) comp
( .in0 (A), .ini (B),

. out(A.mux..out));

.out (B.mux-out));

.q..np (A) );

. q-np (B) );

.out (sub.out) );

.out (Beq.0) );

.out (AltB) );

result = A;
endmodule

module gcdControl
( input clk, input start, input Beq_0 ... output ALsel .. )

// Next state logic

Generating output signals

endmodule

Figure 3-5: Verilog RTL design of GCD datapath where signals for gating are directly
identifiable. Details of control module code has not been shown here. Each combina-
tional unit is contained in a leaf module instantiated in the datapath module. The
control signals used for mux selection can be identified due to explicit mux structures
being declared in the design. The output of subtractor is only used as an input for
the 3-input mux and so the mux selector can be used for gating the subtractor.
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module gcd
( input clk,

input [7:0) operand-A,
input [7:0) operandB,
output [7:0) result,
input start,
output done );

wire [1:0) A-sel;
wire Aen, B-sel, B.en, B.eq_0, A-ltB;

reg [7:0] A, B;
reg [1:0] state;
wire [7:0) A-in = operand..A;
wire [7:0) B-in = operand-B;
alwaysV(*)
begin

if (state == 0 && start).
begin

A <= A-in;
B <= B-in;
state <= 1;

end
else if (state == 1 && (A<B))
begin
A <= B;
B <= A;

end
else if (state == 1 && (B != 0))
begin
A <= A - B;

end
else
begin

done <= 1;
state <= 0;

end
end
result = A;

endmodule

Figure 3-6: Flattened Verilog RTL design for GCD, where it is difficult to identify
control signals for gating combinational logic.

circuit elements. Such analysis would result in coarser-grained domains. Most

of the logic between two registers would be gated by the WE of the destination

(later) register. Only logic generating the WEs needs to stay powered on.

Such power domains would have a lower level of inactivity - compared to the
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case where each alternative of a state update has a separate domain. In this

case, any of the alternatives would make the entire domain be active. In certain

cases, where only one possible update (such as an increment) happens to a state

element, it will be equivalent to the fine-grained gating.

Large module-level domains have much lower inactivity rates as discussed in

chapters 4 and 5. This leads to a reduction in potential savings. At the other

end of the spectrum, unit logic cell-level domains have an excessive area cost

and very frequent inactive-active transitions which again reduce leakage savings

from gating.

3. Acyclic nature of hardware, register outputs don't affect color of inputs

In our analysis, the hardware design is represented as Finite State Machines,

where we only attack the static power consumed by combinational logic. Since

the register state elements are kept ungated, there is no color associated with

the register outputs in our algorithm for the coloring problem. This allows the

hardware design analysis to be linearized, getting rid of the existing circular

dependency of the next state computation on the values of state elements. For

power gating of state elements, analysis is required to determine when state has

been read and will not be needed in future. We discuss details of such analysis

in Chapter 9.

4. Possibility of using an arbitrary data signal as control: With no information to

distinguish mux selectors from other signals, can we do gating at all?

Such analysis would typically result in logic cell-level gating. We can consider

the basic logic building blocks of AND (or NAND) gates and use one of the two

operand signals as a control signal for use of the other. Only if the chosen control

operand is high (for the case of AND gates), then the logic cell generating the

other operand is turned on. Potentially, this could give us domains bigger than

single logic gates. The entire logic tree feeding the other input of the AND gate

could form a power domain to be gated. Since the choice of the control signal

is arbitrary, it is possible that the activity rates are higher than to be expected
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from the mux based scheme. With the number of domains increasing beyond

the earlier described gating, the area and performance costs would also increase.

It is clear that high-level information is required for identification of the appropri-

ate control signals by automated tools. Without such information, the partitioning

hardware designs for power gating would not achieve desired results. In Chapter 4,

we describe how rule-based designs are leveraged to provide such information as they

generate explicit-control circuits by default.

It is important to realize that different power domains dissipate different amounts

of leakage power. In fact, when we take into account the energy overhead of switching

on the power domain from an inactive state, then it may not make sense to power

gate logic that is very active or has short inactive intervals. In Chapter 5, we will

describe how to differentiate between power domains based on their dynamic activity

characteristics.
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Chapter 4

Use of rule-based designs for power

gating

In this chapter, we discuss a novel technique that uses rule-based design descrip-

tions for automatic partitioning of a digital design into power domains and associated

gating signals and automatic classification of power domains for their suitability for

power gating based on their dynamic characteristics. We illustrate how such designs

naturally provide information about the control signals discussed in the Chapter 3

that can be used for power domain partitioning. In the following chapters, we will

discuss concrete examples showing how this technique is applicable to real-world de-

signs. We also show that unlike global power controllers, our technique introduces

no new logic or state to generate power gating control signals and thus, is correct by

construction reducing design and verification costs.

4.1 Hardware compilation from rule-based designs

Our technique uses design descriptions that consist of state definitions and rules,

each of which computes some state updates. We use Bluespec System Verilog (BSV) [10]

as the source language for rule-based designs. This design methodology is very well

established in the field of high-level synthesis and has been extensively used to design

complex digital hardware including out-of-order processors [24], wireless base-band
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Chapter 4. Use of rule-based designs for power gating

systems [55], video compression [28], multi-core cycle-accurate simulators [45], etc.

In BSV, each rule is a set of state transformations, and is defined as a guarded

atomic action that can execute atomically in a given cycle if the associated guard

condition is true. A precise and useful language semantics ensures that any legal

behavior of the system can be understood as a series of atomic actions on the state [5,

36]. All control circuitry used to manage interactions between rules is produced by

automatic synthesis by the Bluespec compiler. The compiler generates a scheduler

which selects rules to execute every clock cycle. The scheduler logic ensures that

there are no double writes to any register i.e., at maximum only one rule can update

a register in a clock cycle. On compilation to Verilog RTL, the compiler generates

multiplexers to select the state updates based on these scheduler-generated control

signals. In this manner, any EC circuit can be generated from a rule-based design.

Next, we elaborate on the generation of these control signals.

4.1.1 Scheduling logic in rule-based designs

Detecting and scheduling legal concurrent execution of rules is the central issue in

hardware synthesis from Bluespec's operation-centric descriptions [36]. The descrip-

tion framework uses the Term Rewriting Systems (TRS) notation. Here, the state of

a system is given by the collective values of state elements in the design. Each rule

rewrites or updates these values. Bluespec language semantics apply to specification

of the hardware behavior with a sequential application of rules. Scheduling strategies

are targeted towards maximizing performance while still maintaining one-rule-at-a-

time semantics. The Esposito scheduler algorithm [27] is the standard scheduler

generation algorithm in the Bluespec compiler. It is a heuristic to generate efficient

scheduling hardware while still achieving reasonable rule-level parallelism.

The challenge in efficient hardware generation is to obtain a scheduler that can

pick a maximal set of rules to be executed simultaneously every cycle. Conflicting

rules make updates to the same state elements, and should not be scheduled to fire in

the same cycle even if their guard conditions are true. If two rules do not update the

same state, and neither updates state that the other rule accessed, then the rules are
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said to be conflict free and can execute simultaneously. Two rules (ri and r2) are said

to be sequentially composable if one rule (r2) does not access any state updated by

the other rule (ri), and execution of ri does not disable r2. Simultaneous execution

of such sequentially composable rules is legal, because it produces the same result

as sequential execution of ri followed by r2. Rules whose guard conditions cannot

be simultaneously true are said to be mutually exclusive. The compiler aggressively

searches for such relationships between the rules to minimize resource consumption

while maximizing the performance achieved by the design.

Figure 4-1 [5] shows how the system state is used to compute dynamic values of

rule guards, which are predicates (iri), and updated state (6 ). The scheduler then

uses the predicate values and generates the rule firing signals (0j). Selection logic is

then used to generate the final updates for each state element.

Compute
predicate Scheduler

for each rule TN

Compute I2
-*next state 'Snelector -

for each rule ON

pdate.

Figure 4-1: Generation of rule firing signals #i by the scheduler

4.1.2 Example of hardware generation from BSV

As an example, consider the conceptual BSV module shown in Figure 4-2, con-

sisting of state elements x and y, and two guarded rules ri and r2 for state updates.

Functions f 1, f 2, f 3, f4 and f5 used in these rules can be arbitrarily complex combi-

national functions, which after synthesis can result in large logic blocks. This module
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Chapter 4. Use of rule-based designs for power gating

module mkExample (InterfaceExample);

Reg x, y; //state definitions

rule ri (pl(x,y));
x <= f1(x,y);

y <= f3(y) + f4(x,y);
endrule

rule r2 (p2(x,y));
x <= f2(x,y) + f3(y);
y <= f5(x,y);

endrule

method definitions;

endmodule

Figure 4-2: Conceptual design of a module in BSV

description generates the circuit shown in Figure 4-3. The scheduler logic that gener-

ates rule firing signals (willFireri) has not been shown as it is not gated. Typically

the scheduler logic is much smaller than the rest of the combinational logic of the

module. In this example, since both rules update registers x and y, the scheduler

ensures that they can never fire in the same cycle.

X - 00

1

f2(x ) j0

90

+

Figure 4-3: H ardware generated for example BSV module with state updates selected
by the rule firing control signals
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4.2 Selection of power domain logic

We parse the BSV-generated Verilog to determine the logic blocks that provide

data inputs to muxes, and introduce a fine-grained power domain for each input

controlled by the corresponding mux control input. Shared logic used to update

multiple state elements is gated by the OR of the control signals that select this logic in

each mux. The use of BSV rules to automatically generate the power domains ensures

correctness by construction. Figure 4-4 shows the possible set of power domains for

the example from Figure 4-2.

wYIlIFire,
WilFireri + will

WIlFirer1

00

10

x
01 1

0
10 1

01

Firer2

Figure 4-4: Power domain partitions and associated gating conditions for example
design

It consists of three elements: fi and f4 in one domain which is turned on only

when rI is selected, f2 and f5 in another domain which is turned on when r2 is

selected, and f3 in a third domain which is turned on when either rule is selected for

execution. The two muxes can also be considered as part of the third domain.

We summarize our algorithm for generating and selecting fine-grained power do-
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Figure 4-5: Application of partitioning algorithm to rule-based designs

mains from rule-based designs in Figure 4-5. We start with an N-rule design, with

each rule having a firing condition determining when the rule is active. These con-

ditions, denoted as 4<1..N, are functions of the state within the design. Given these

control signals and parsing the generated Verilog code for the mux control inputs,

we can associate the firing conditions with the logic blocks used for state updates.

This allows us to generate a Unified Power Format (UPF) [44, 71] specification that

provides the place and route tools with the power domain description for each of the

logic blocks and their respective gating signals. Finally, we collect activity metrics

for the identified logic blocks using rule firing statistics to select appropriate power

domains.

Through the use of rule-based digital design description, we can generate hard-

ware that is amenable to the discussed graph-coloring analysis for power domain

partitioning as well as collection of dynamic activity metrics for logic blocks. Such

designs generate groupings of logic elements and control points, which lead to a natu-

ral description in terms of fine-grained power domains. A fundamental issue in power

gating is that it should not alter the functionality of the overall design by introducing
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Input: Rule-based design and compiled RTL

1. Identify Muxes that select state updates

2. Mux Control inputs are functions of rule firing

signals 4t

3. Mux Data inputs are potential logic blocks

with some shared logic

4. Use graph-coloring to select logic functions

that are controlled by a unique control signal

5. Generate fine-grain UPF power domain description

6. Collect activity metrics to determine leakage

power savings and switching cost for domains

7. Select power domains that have net power savings

Output: Power Domain definitions for logic blocks
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unintended behavior, such as turning off some logic necessary for correct computation

or delaying computation to a later clock cycle. Grouping logical blocks into distinct

power domains, and verifying that they do not introduce changes requires significant

verification effort. This is avoided when we power gate rule-based designs. It is im-

portant to note that our technique is not limited to BSV - any design process that

generates well-structured RTL code with pre-defined control signals for logic blocks

can be used for the method of partitioning that we have outlined.

4.3 Generating UPF/CPF description

Unified Power Format or Common Power Format are power specification industry

standards developed to aid designers in specifying and verifying power intent for

hardware designs. In our technique, the specification for each design can be generated

automatically using the information collected from the high-level design. Instead of a

centralized power controller, we specify the individual control signals for each power

domain as boolean expressions of the willFire signals for each rule. From the earlier

parsed designs, the logic elements associated with each Mux input are specified as a

power domain along with appropriate gating signal.

create-power-domain -name PDTop -default

create-power-domain -name PD1 -instances { instA}
-shutoff-condition {!willFirer1} -base-domains PDTop

create-power-domain -name PD2 -instances {inst-B}
-shutoff-condition {!willFirer2} -base-domains PDTop

Figure 4-6: CPF Power specification code segment for the example design
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4.4 Collecting statistical information

After specification of the domains, we have to determine the best candidates for

power gating based on a power domain's statistical dynamic activity. We discuss

this topic in detail in Chapter 5. This can be done easily for rule-based designs by

associating activation of rules with corresponding logic blocks.

The statistical data is collected by automatically instrumenting the BSV designs

for rule activity collection. For each rule in the design, a wire is added that is asserted

high if the rule fires in that cycle. A book-keeping rule polls these wires every cycle,

and maintains state for counting number of inactive cycles. Though we have used

wires for communicating same-cycle activity, the same information can also be col-

lected using additional state that is updated by the book-keeping rule. In addition,

one-bit history is maintained for each rule's activity in the previous cycle. This al-

lows counting the number of inactive-active transitions when the history shows that

the rule has become active only in the current cycle. The BSV designs are then

simulated using high-level testbenches that emulate expected input data rates and

values. Such BSV-level simulations can run much faster that gate-level analysis, but

still provide data directly corresponding to the power domains under consideration.

The instrumentation does not affect the generated hardware as it is only generated

for simulation using compile time macros. Figure 4-7 shows how the example BSV

module is instrumented to collect the statistical activity counts for the two-rule design.

In this chapter, we showed how the partitioning algorithm is applied to hardware

generated from high-level design description. Use of rule-based design allows easy

identification of control signals for automation of partitioning. Such partitioning is

correct by construction as it relies on the pre-existing scheduling logic generated by

the Bluespec compiler. This greatly eases the design and verification effort associated

with fine-grained power gating. Activity collection at the rule-level can be performed

by automatic instrumentation of such designs. In the next three chapters, we explore

the use and impact of rule-based power gating in detail. In Chapter 5, we use realistic

58



Chapter 4. Use of rule-based designs for power gating

module mkExample (InterfaceExample);

Reg x, y; //state definitions

State inserted for activity collection during simulation
Does not affect synthesized hardware

if def STATS-ON
Reg rl-cnt, r2-cnt; // Counters for total
Reg rl-int-cnt, r2-int-cnt; // Counters for inte
Reg rl-prev, r2-prev; // Activity in previo
PulseWire rl-active <- mkPulseWireo); // Active ri in cur
PulseWire r2_active <- mkPulseWireo; // Active r2 in cur
endif

rule ri (pl(x,y));
x <= fl(x,y);
y <= f3(y) + f4(x,y);
' if def STATS-ON
rl-active.sendo;

' endif

endrule

r2 (p2(x,y));
<= f2(x,y) + f3(y);
<= f5(x,y);
if def STATSON
r2-active.send();
endif
le

' if def STATSON
rule stats;

if (rlactive)
rl-prev <= True;

if (rl-prev == False)
rl-int-cnt <= rl-int-cnt +

else
rl-cnt <= rl-cnt + 1;
rl-prev <= False;

inactivity
rvals

us cycle
rent cycle
rent cycle

/ Indicate active ri in current cycle

/ Indicate active r2 in current cycle

// If active in current cycle,

// store active state for next cycle
// If inactive in prev cycle,

1; // increment interval count

// If inactive in current cycle,

// increment inactivity count

if (r2-active)

endrule
endif

endmodule

Figure 4-7: Instrumentation of the example BSV module to collect activity statistics
for each rule in the design.
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hardware design examples to show how the obtained statistical activity information is

used to distinguish viable domains likely to generate net energy savings. In Chapter 6,

more complex example designs are used to illustrate the difference in activity between

coarse-grained gating at the module-level and fine-grained gating at the rule-level.

Chapter 7 provides our methodology to compute breakeven thresholds for inactivity

intervals and gives data on the power and performance impact of the rule-based

gating.
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Dynamic Activity Metrics

In order to determine which power domains will provide actual leakage power

savings when gated, we need to characterize the dynamic activity of the overall design.

Since the energy savings arise from turning off power to inactive domains, if we power

gate a domain which is mostly active during run-time it would not provide a lot of

savings. Thus, the average activity of identified domains need to be computed. In

addition, the energy lost during change of inactive to active state of a domain should

also be accounted for to estimate net energy savings.

For this purpose, we define two dynamic data-dependent activity metrics for the

power domains under consideration. There are two ways to use the metrics: first, to

see whether the individual power domain should be gated and second, to see whether

gating all possible domains of a design saves power. Given a representative testbench

or a suite of testbenches for the overall design, we compute the following dynamic

activity metrics:

Metric 1: Total inactivity (N1 ) It is defined as the total number of clock cycles

in which the logic block under consideration is inactive, i.e., information generated

by the block is not used to compute and update any state element.

Metric 2: Number of inactive-active transitions (N2) It is defined as the

total number of times the logic block becomes active from an inactive state in the

previous cycle.

Use of these metrics depends on the values of two technology-dependent charac-
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teristics of the power domain under consideration. Given the desired clock cycle time

t, let the leakage power saved by gating the logic block be a and the energy cost of

switching on the power domain from sleep state be P. Once we have computed these

metrics over a realistic testbench, the net energy saved for the ith power domain is

given by equation 5.1. The parameter ac is multiplied by t to get the leakage en-

ergy saved per cycle and their product with N1 gives the total energy saved over the

entire testbench. From this we subtract the energy lost during transitions, obtained

by the product of 3 and N2. For the complete design, the total energy saved can be

computed by summing over all the gated domains as in equation 5.2.

Ei = tNiai - N2i#i (5.1)

J Ei = tZ Niai - ZN2Ai (5.2)
2 j i

The ideal metrics for power gating a domain would be a high enough number of

total inactive cycles (N1 ) to compensate for the switching costs of all inactive-active

transitions (N2). Consider a logic block that is inactive for half of the total clock

cycles of a test input, but each inactive interval is just one clock cycle, followed by

one cycle of activity and so on. In this case, even though its N metric would be

quite high, the number of transitions, N2, would also be very high and would swamp

any leakage savings achieved by power gating. In this manner, dynamic metrics allow

us to eliminate power domains that are unsuitable for gating due to their expected

activity profiles.

Case 1: Frequent Activity state switching

ELE LEve

Case 2: Infrequent Activity state switching

Active Activ Actie Active

Figure 5-1: Dynamic Activity profiles

As an example, consider two cycle-by-cycle activity profile scenarios shown in
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Figure 5-1 for a power domain under consideration. It shows the dynamic activity

profiles over a typical period of 10 cycles that can be assumed to repeat indefinitely.

In both cases, the power domain under consideration has the same average activity

ratio of 40%, with a total inactivity length (N1 ) of six cycles. In the first case there are

four inactive-active transitions (N2), while the second case has two such transitions.

It is clear that the second activity profile would result in higher leakage energy savings

on power gating. We can also quantify the average inactivity interval length (N1/N 2)

for the first case as 1.5 cycles and for the second case as 3 cycles. Greater the average

inactivity interval length, greater is the net energy savings after power gating.

For the example in Figure 3-2, computing these metrics would require information

about the dynamic values of the control signals (<bj) for realistic testbenches. In

general, though this can be done for any EC circuit, doing it at the netlist level is

cumbersome and resource intensive as it requires a complete design simulation for

very large test inputs and collection of statistical values for each control signal.

In this work, we will demonstrate how we collect such metrics for rule-based

designs. For most domains, we can have a direct relationship between the logic

blocks being gated and specific rules which govern their activity. In certain cases,

shared logic arising from common sub-expressions in the design description would be

activated when any single one of a set of rules is active in a cycle. These relationships

can also be inferred during static analysis of the rule-based design description. For

simplicity, we will discuss the metrics for the various rules in each module of realistic

hardware designs. The metrics are used to make one-time decisions whether to insert

gating for each domain under consideration. Dynamic configuration can determine

which mode a particular design is operating in, and such logic can inform dynamic

decisions about when to switch-off power domains. However, most of the area and

performance costs associated with power gating occur when the static decision to

insert gating is made. So we focus on that point of the design process. Energy

savings from inserting logic to control dynamic conditions are small, and orthogonal

to our technique as such logic can be added independently.

For illustrative purposes, we have chosen two standards-compliant wireless de-
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Figure 5-2: Architecture of Reed-Solomon Decoder

coders to use for our analysis. We have simulated the designs under realistic traffic

patterns to analyze the dynamic activity statistics of their design components.

The first design is a Reed-Solomon decoder [4] which is used in 802.16 transceivers.

This design is parameterized by the input block size, and for this study was configured

to have 32 bytes of parity in each 255 byte input block. The second design is a Viterbi

decoder [56], which is a component in an 802.11 transceiver. Both these designs are

high performance implementations that meet performance requirements for respective

wireless protocols.

5.1 Metrics for the Reed-Solomon decoder

Figure 5-2 shows the architecture of the Reed-Solomon decoder consisting of five

modules, each of which performs one step of the decoding algorithm as a finite state

machine (FSM). These FSMs are designed such that they might terminate early

depending on the dynamic input conditions. We computed the earlier defined activity

metrics for each rule in the five modules of the Reed-Solomon decoder under two

different input conditions. The data shown in Table 5.1 corresponds to the maximal

activity case which occurs when the number of errors in the input data is equal to

the maximum correctable limit determined by the number of parity bytes in the

underlying Reed-Solomon encoding. The data was collected over a testbench of 4000

cycles of simulation.

At the other end of the spectrum, Table 5.2 gives the data for the case where

the input data is entirely uncorrupted with no errors. For this input, the first and

third modules of the Reed-Solomon pipeline, Syndrome and Chien, still have approx-

imately the same number of inactive cycles (N1) as the earlier case, while the Error
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Table 5.1: Reed-Solomon Activity Metrics:
errors

Input data with maximal correctable

Rule N1 : No. of N1 %: N2: No. of N1/N 2 :
Inactive Percentage Inactive-Active Avg. Inactivity

cycles inactivity transitions interval
Syndrome Module
r-in 24 0.6 17 1.4
s.out 3984 99.6 16 249.0
Berlekamp Module
calc-d 3474 86.8 526 6.6
calc-lambda 3489 87.2 511 6.8
calclamb-2 3494 87.3 506 6.9
calclamb_3 3494 87.3 506 6.9
start-new 3984 99.6 16 249.0
Chien Module
calcloc 222 5.5 38 5.8
start-next 3985 99.6 15 265.7
Error Magnitude Module
eval-lambda 261 6.5 233 1.1
enq-error 3767 94.2 233 16.2
deq-invalid 3986 99.6 14 284.7
process-err 714 17.8 71 10.1
bypass-int 4000 100 1 4000.0
start-next 3985 99.6 15 265.7
Error Corrector Module
d-no-error 4000 100 1 4000.0
d-correct 711 17.7 71 10.0

Magnitude computation module is completely inactive as there are no magnitudes to

be computed. Berlekamp module also has increased N values, as the rules involved

in the computation of the error magnitude polynomial are inactive.

In order to use this statistical data to select the viable domains for power gating,

we need to come up with appropriate values of a and 3 for each power domain,

depending on the amount of logic generated for each rule and the technology library

used. Here, we will present a general discussion.

For the Syndrome module, the entire computation logic is limited to rule r-in

which is nearly always active, and hence non-viable for gating. For the Berlekamp
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Table 5.2: Reed-Solomon Activity Metrics: Input data with no errors

Rule N1 : No. of N1 %: N2: No. of N1/N2:
Inactive Percentage Inactive-Active Avg. Inactivity
_ cycles inactivity transitions interval

Syndrome Module
r-in 16 0.4 16 1.0
s.out 1 3984 99.6 16 249.0
Berlekamp Module
calcd 3472 86.8 528 6.6
calclambda 3488 87.2 512 6.8
calclamb-2 4000 100 1 4000.0
calclamb-3 4000 100 1 4000.0
start-new 3984 99.6 16 249.0
Chien Module
calcioc 32 0.8 16 2.0
start-next 3984 99.6 16 249.0
Error Magnitude Module
evaLlambda 4000 100 1 4000.0
enq-error 4000 100 1 4000.0
deq.invalid 4000 100 1 4000.0
process-err 4000 100 1 4000.0
bypass.int 3984 99.6 16 249.0
start-next 3984 99.6 16 249.0
Error Corrector Module
d.no-error 528 13.2 16 33.0
d.correct 4000 100 1 4000.0

module, the amount of logic in each calc_* rule is about the same with no shared

logic. Though N1 is quite high for all the rules, N2 (number of inactive-to-active

transitions) is relatively high for rules calcd and calc-lambda as seen in Table 5.1.

Hence, the better candidates for gating are rules calc-lambda_2 and calc-lambda_3.

Analysis of the Chien module is similar to that of the Syndrome module. The Error

Magnitude module's activity profile depends on whether the input data has errors

or not, and hence expectations of the noise characteristics in the use-environment of

the module would affect the selection of power domains in this case. Rules enq-error,

deqinvalid, bypass-int, and start-next can be expected to be good candidates in most

cases. The Error Corrector module has a bimodal activity profile where one of two
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Table 5.3: Reed-Solomon Module-level Inactivity percentage

(a) Input data with maximal correctable errors

Module N1%: Percentage inactivity
Syndrome 0.2
Berlekamp 48.4
Chien 5.2
Error Magnitude 0
Error Corrector 17.8

(b) Input data with no errors

Module N1%: Percentage inactivity
Syndrome 0
Berlekamp 73.6
Chien 0.4
Error Magnitude 99.2
Error Corrector 13.2

rules fire with a very high activity rate, depending on the presence or absence of

errors, making them poor candidates for gating.

It is important to note that by performing this rule-based partitioning, we are

able to identify sub-modular blocks with high percentage inactivity. To illustrate this

point, we also generated coarse-grained module-level metrics for the Reed-Solomon

decoder design. For these metrics, if any rule in a module was fired in a given cycle, all

the logic of the module was activated. The combinational datapath logic of a module

could be switched off only if all the rules are inactive in a given cycle. These module-

level metrics are shown in Table 5.3. When comparing the percentage inactivity of

the modules to that of the rules contained in these modules, seen in Tables 5.1 and

5.2, it is clear that the module-level inactivity is significantly lower. In fact some

modules have at least one rule active in every cycle giving a figure of 0% module-

level inactivity, such as Error Magnitude in the maximal error case and Syndrome

in the no-error case. Thus, partitioning at the rule-level allows significantly more

opportunities for power savings than at the module-level.
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5.2 Importance of macro factors on activity

The environment of the logic block, i.e., how it fits into the macro-level design, is

crucial in determining its actual activity level beyond the information obtained using

detailed power simulations of the circuits. The activity of a wireless component inside

a radio pipeline will be affected by high-level external data, such as how frequently

the radio pipeline itself is active in a multi-radio design. This can be illustrated using

the example of the logic blocks in the Reed-Solomon Decoder.

The Reed-Solomon algorithm uses the Galois Field arithmetic for computation.

Accordingly, throughout the design we have a number of combinational GF multi-

pliers, consisting of bit shift and XOR operations. Within the Berlekamp module,

there are 32 of such 8-bit multipliers. Once syndrome polynomial input is available,

the Berlekamp computation is done using these multipliers, all of which are not used

simultaneously. So it is possible to switch off one set of multipliers when they are

inactive.

The Berlekamp algorithm implementation does polynomial multiplication using

a circular pipeline and generates a polynomial whose degree depends on the num-

ber of errors in the input block. The Chien Search module uses this polynomial

to determine which locations in the input block have errors. Downstream modules

like the Error Magnitude computation module, thus, only become active if there are

errors in the input block and this is only determined dynamically. Within the Reed-

Solomon decoder, the pipeline has been balanced between various modules for the

worst case/maximum number of errors. If there are fewer errors, then some modules

become intermittently idle.

The Reed-Solomon decoder is used in wireless receivers as a Forward Error Cor-

rection (FEC) decoder, shown in Figure 5-3. Depending on the structure of these

receiver pipelines, the decoder is not always active. The 802.16 receiver itself is not

always receiving and decoding packets and may spend a considerable amount of its

time in standby/idle state.

All of the above factors have a strong impact on reducing the overall activity
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Figure 5-3: Hierarchical activity considerations for logic blocks within wireless de-
coders

factor of the logic blocks. It is clear that for average activity factor of the module

under consideration, impact of external architecture is strictly to reduce it or keep it

at same level. Metric 2, on the other hand, is more interesting because a standalone

testbench continuously pushes data in, making inactivity intervals artificially short,

while a real usage would have longer intervals. So we need high-level testbenches that

can generate statistical data for the rate and profile of external inputs to the decoder

design under consideration.

The earlier analysis for Reed-Solomon was done using a standalone testbench that

continuously pumps input data into it. Depending on the structure of these receiver

pipelines, the decoder is not always active. In the next subsection, we use the Viterbi
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Figure 5-4: Architecture of Viterbi Decoder and testbench

decoder in a complete receiver pipeline to illustrate how external input activity affects

the analysis.

5.3 Metrics for the Viterbi decoder

To obtain the statistical activity data for the Viterbi decoder, we used the AirBlue

platform [55] to simulate the complete 802.11 receiver pipeline, as shown in Figure 5-4.

Having a setup of the global architecture in which the decoder itself is a component,

provides information on the frequency and bursty nature of the input to the decoder.

This has an impact on the internal activity metrics - the average activity decreases

and the length of inactivity intervals increases. The Viterbi decoder consists of three

main modules: Branch Metric Unit (BMU), Path Metric Unit (PMU) and Trace Back

Unit (TBU). Each of these modules has all its activity defined in one or two rules.

Thus, the data shown in Tables 5.4(a) and 5.4(b) is able to capture all the granularity

of activity with just four entries (rules push-zeros and put-data both correspond to

BMU). The data was collected over a testbench of 32000 cycles of simulation taken

at a steady state. For the case with input errors, we set the SNR at a low value

under QAM modulation, such that the Bit Error Rate (BER) of the input data was
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Table 5.4: Viterbi Activity Metrics

(a) Input data with BER = 0.5%

Rule N1 : No. of N1%: N2: No. of N1/N 2:
Inactive Percentage Inactive-Active Avg. Inactivity

cycles inactivity transitions interval

Branch Metric Unit
put-data 18079 56.5 156 115.9
push-zeros 30568 95.6 38 804.4
Path Metric Unit
pmuput 15649 48.9 156 100.3
Trace Back Unit
tbuput 15650 48.9 156 100.3

(b) Input data with BER = 0%

Rule N1 : No. of N1 %: N2: No. of N1/N2 :
Inactive Percentage Inactive-Active Avg. Inactivity

cycles inactivity transitions interval

Branch Metric Unit
put-data 28376 88.7 151 187.9
push-zeros 31424 98.2 9 3491.5
Path Metric Unit
pmuwput 27800 86.9 151 184.1
Trace Back Unit
tbu-put 27800 86.9 151 184.1

reasonably high at 0.5%. This setup provides the Viterbi decoder with a significant

amount of activity as the wireless receiver pipeline is dominated by the decoding

effort. The inactivity metrics for various components of the Viterbi decoder are shown

in Table 5.4(a). When compared with the large values of inactive cycles (N1 ), the

infrequency of inactive-active transitions (N2) indicate that the inactivity intervals

for the Viterbi decoder are quite long, much longer than those for the Reed-Solomon

decoder, making it an attractive candidate for fine-grained gating even in conditions

of low SNR and high activity.

The second testbench environment was set at a high SNR under BPSK modula-

tion, giving an effective BER of zero. As shown in Table 5.4(b), under this scenario

the Viterbi decoder has a higher number of inactive cycles, as other modules in the
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pipeline are rate-limiting. The high value of the ratio of N1 to N2 emphasizes the

long length of their inactivity intervals in this testbench emulating realistic traffic

conditions. Based on this data, we can conclude that most of these rules would be

excellent candidates for our proposed power gating scheme.

Thus, we see how the rule-based activity collection can inform decisions regarding

choice of power domains to be gated in wireless decoder designs. In the decoder

designs though the level of activity between modules is different, the overall streaming-

based processing is relatively homogeneous. In the next chapter, we explore how such

techniques can be applied in the case of much more complex designs where each

module can have dramatically different activity profile.
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Larger and complex test cases

In this chapter, we explore two significantly larger and more complex designs than

the earlier discussed wireless decoders. These test cases comprise of a million-point

sparse Fourier transform design and a Reduced Instruction Set Computing (RISC)

processor capable of booting Linux. Through these examples, we show how our

technique scales and the benefits it provides for complex and heterogeneous hardware

designs.

6.1 Million-point SFFT design

The first complex design chosen is a high-throughput implementation of a sparse

Fourier transform that operates on a million (220) inputs that are frequency sparse, i. e.,only

a few (in this case up to 500) frequency coefficients are non-zero. We first describe

the design of the SFFT hardware and then provide various activity metrics for it.

6.1.1 Design overview

Processing million-point Fourier Transforms in real time can enable numerous ap-

plications ranging from GHz-wide spectrum sensing and radar signal processing to

high resolution computational photography and medical imaging. Currently, million-

point FFTs are not practical. Hardware implementations of such large FFTs are
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prohibitively expensive in terms of high energy consumption and large area require-

ments. However, for most of the above applications the Fourier transform is sparse

which means that only few of the output frequencies have energy and the rest are

noise. Recent work [34] in the field of algorithms has shown how to compute these

sparse FFTs (SFFT) in sub-linear time more efficiently than standard FFTs and

using only a sub-linear number of samples.

At a high level, the SFFT algorithm has two main steps:

1. Bucketization: In this step, the algorithm maps the million (220) frequencies

into 4096 buckets such that the value of each bucket is the sum of the values

of 256 consecutive frequencies mapped to it. This is done by multiplying the

input samples by a Gaussian filter and performing a 4096-point FFT. This

bucketization is repeated for several iterations but in each iteration a permuted

set of samples of the input is chosen. This permutation of time samples results

in a permutation of the frequencies and randomizes the mapping of frequencies

to buckets as described in [34].

2. Estimation: The algorithm then estimates the locations and values of the large

frequency coefficients. To estimate the locations, the algorithm uses a voting

based approach. At the output of the 4096-point FFT, it picks the buckets with

the largest values. These buckets vote for the frequencies that map to them.

A large frequency coefficient will get a vote in every iteration as the values of

the buckets they map to are proportional to their own large value. A negligible

frequency coefficient will not always get a vote due to the random mapping of

frequencies to buckets. Thus, the frequencies with the most votes are the large

frequency coefficients. The values of these frequencies are estimated from the

values of the buckets they map to.

The SFFT algorithm enables computing a million-point Fourier transform faster

than standard FFT if the output is sparse. However, published software implemen-

tations [33, 65] of SFFT algorithms are unable to achieve high input data rates, nor

are they efficient from the perspectives of power, energy, unit cost or form factor. We
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Figure 6-1: Stages of the SFFT algorithm. Core stages are highlighted in blue.

present the first hardware implementation of a million-point SFFT. We use Bluespec

SystemVerilog [10], a high-level hardware design language for the design. Our design

works in a streaming manner on 24-bit input samples to generate the locations and

values of the largest 500 frequency coefficients in 4.49 milliseconds and hence can sup-

port input data rates of 2.23 x 108 samples per second. The SFFT algorithm version

implemented in this work is robust with respect to the noise-level in the input. Our

design is also reconfigurable for various sparse applications.

6.1.2 Design Architecture

The SFFT implementation consists of several modules, each implementing a dis-

tinct stage of the algorithm. Figure 6-1 shows the various stages involved in the SFFT

algorithm.

In this section, we describe the implementation of four main stages of the algo-

rithm. We have termed these stages collectively the SFFT Core, because they are

responsible for the bulk of the computation and resource usage in the algorithm.

Figure 6-2 shows the main modules used in our implementation of the SFFT Core

and their input-output semantics. Our design has been parameterized to allow de-

sign exploration and to generate optimized results for the desired specifications. The
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Figure 6-2: Modules implementing the SFFT Core

Table 6.1: Parameters for SFFT Core implementation

Parameter Value
Input data type Complex fixed-point
Fractional bits for fixed-point data 24
Total number of input data values 220
Maximum non-zero input frequency 500
Number of iterations in algorithm 8
Size of FFT in each iteration 4096

parameters chosen for the discussed implementation are given in Table 6.1.We chose

the input data type to be complex fixed-point with 24 fractional bits for each of the

real and imaginary components. The high number of fractional bits ensures that we

have sufficient accuracy for various applications. The number of input samples is 220,

thus each input sample has a 20-bit location index and a 64-bit value (accounting

for real and imaginary sign bit, integral bit and six overflow bits). The input data

is constrained to have a maximum of 500 non-zero frequency coefficients. Increasing

the number of iterations and size of FFT in each iteration, increases the accuracy

of the probabilistic SFFT algorithm. But it also increases the resource usage and

time required for completion. We chose 8 iterations with a 4096-point FFT in each

iteration, as this choice gave sufficient accuracy while still providing an achievable

hardware target. Each module was targeted to achieve a minimum operating fre-

quency of 100 MHz. We next describe the architecture of the SFFT Core modules in

detail.
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4096-point FFT

The SFFT algorithm requires taking a standard FFT of filtered input data slices,

which we refer to as dense FFT. Our design of the dense FFT module was required to

have a high throughput, low area and maximum size of the FFT possible. The larger

the size of the FFT, the lower is the chance of collisions occurring due to non-zero

frequency components being mapped to the same bucket. Initial attempts to use

folded in-place FFT designs [25] failed, as they did not scale to a size beyond 512

points for the 24-bit input data. Instead, this implementation uses a fully pipelined

streaming FFT architecture [35], utilizing a Radix-2 2 Single Delay Feedback. Each

internal block of the FFT architecture is designed as shown in Figure 6-3, where N

is a parameter that varies from 1 to 1024. The definition of the butterfly structures

is shown in Figure 6-4.

Figure 6-5 shows how the internal blocks are instantiated with appropriate pa-

rameter values to generate the pipelined 4096-point dense FFT implementation. The

use of pipelined multipliers for complex fixed-point input, and adequate buffering in

FIFO queues between blocks allows the design to continuously stream data across

iterations without any stalls. The twiddle factors W used in the computation were

generated as a look-up table that each block can independently query for values.

The indices for the twiddle factors are determined by the collective value of the 2-bit

counters present in each block. Each block has two shift registers that map directly

to FPGA shift registers. Absence of large multiplexers, which are usually present

in folded in-place FFT designs, allows this implementation to be highly efficient in

FPGA resource usage. The design is parameterized for the input data type, FFT size

and amount of pipelining in the complex multipliers.

Max Selector

In the previous stage, by performing the 4096-point FFT on the input data we

have mapped the 220 input frequencies into 4096 buckets. This stage of the sparse

FFT algorithm requires determining which of these buckets have a large magnitude,
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Figure 6-4: Definition of butterfly structures in R2 2SDF design

indicating that one or more of the frequencies mapped are non-zero. Selecting buckets

by setting a threshold would have been sensitive to noise levels in input and hence,

not robust. Sorting all the FFT outputs to generate the ordered magnitudes was

observed to be highly resource intensive and time consuming, as well as overkill since

the algorithm does not require them to be ordered. Instead, we implement this step

by selecting the largest (but unordered) 511 magnitudes of the 4096-point FFT output

for each iteration. The chosen selector architecture operates on 21 - 1 entries, hence

the number of entries being 511. Since the input data has a maximum of 500 non-zero

frequency coefficients, selecting top 511 buckets by magnitude was sufficient to collect
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Figure 6-5: Architecture of the 4096-point dense FFT

information for all of them.

Figure 6-6 shows the implementation of the Top-511 element selector. The design

is based on a pipelined heap priority queue architecture [39]. The magnitudes of the

FFT outputs are tagged with their indices and inserted into a binary tree structure

with 511 entries. Entries are addressed from 1 to 511, with the kth entry being the

parent of (and smaller in magnitude than) 2k and 2k + 1' entries. Thus, the l"

entry, called the root, has the smallest magnitude of all the entries in the tree. The

entries are divided into stages, each stage containing indices from 2" to 2'+' - 1. This

allows write operations to be localized and prevents generation of large multiplexers

during FPGA synthesis. New elements are filled into the tree in ascending order

of addresses, pushing larger entries down and maintaining the root as the minimum

entry.

Once the first 511 FFT outputs are inserted into the tree, further streaming inputs

are compared with the root to check whether they are larger than the root. Only

if they are, they replace the root element and checks are done to maintain parent

children relationships in the tree. The queues between stages of the binary tree allow

a pipelined design that can allow insertions into an unfilled tree every cycle, and

replacements in a filled tree every alternate cycle. At the end of processing all 4096

FFT outputs, the tree contains the largest 511 magnitudes, each tagged with their

corresponding location in the FFT output. The module output is a 4096-bit vector,

with a high bit for each of the 511 selected FFT outputs.

Voter: Locating the top frequencies

This stage receives as input eight 4096-bit vectors with the large buckets indi-

cated by the bits set to 1. Each of these buckets constitutes a set of 256 candidate
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Figure 6-6: Architecture of the Max Selector module

frequencies that were mapped to this bucket using randomized permutations. This

stage determines the frequency indices that have landed in top buckets in all itera-

tions. The process can be understood as eight rounds of voting, with each iteration

incrementing the votes of 511 x 256 distinct frequency indices and the final selection

of indices with eight votes.

Implementing the stage as a naive iterative voting structure would have required

book-keeping of nearly a million votes spread across a million candidate frequency

locations. Implementing such a data structure in FPGA with the reading, writing and

comparison of the votes for all candidates occurring within the required performance

constraints is impractical. Since the values of a- chosen for each iteration are statically

known, it is conceivable that a table of values can be generated that provides the static

condition for each frequency index to be non-zero. But, this also runs into the issue

of reading and comparing values from an extremely large data, structure.

Instead, our implementation is a novel pipelined filtering process where we track

candidate frequencies, instead of keeping track of votes. Candidate frequency indices

are generated by the first iteration in a stepwise manner and are passed through seven

filters. Each filter maps the incoming candidate frequency to the appropriate bucket
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Figure 6-7: Architecture of the Voter module implemented as a series of filters. Large

buckets for each iteration have been highlighted in blue.

for that iteration and checks if it lands in a top-511 bucket in the corresponding

bit vector. If it does land in a large bucket, it is sent to the subsequent iteration

otherwise it is discarded. The mapping functions are unique for each iteration and

relate to the permutations used for generating the input data slices. At the end of the

filtering process, only those frequency indices are passed through to the next stage

which have been present in top buckets for all iterations. In order to further improve

the throughput of this stage, we parallelized the processing of candidate frequencies

by the second stage. For this, we duplicated the filter for the second iteration, seen

as 2a and 2b in Figure 6-7, mapping 128 odd-indexed frequencies to 2a and 128 even-

indexed frequencies to 2b for each high bucket in the first iteration. This decreased the

number of cycles required to process the data by nearly 50% as most of the candidate

frequencies get filtered out at the second iteration itself.

Value Compute

This stage is responsible for computing the value of the frequency components that

have been determined by the previous stages. FFT outputs produced for all eight

81



Chapter 6. Larger and complex test cases
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Figure 6-8: Architecture of the Value Compute module

iterations are forwarded to the Value Compute module. They are stored locally in a

Block-RAM memory structure with eight memory banks, which allows simultaneous

processing of read requests from all eight banks.

The frequency locations determined to be non-zero in the input, obtained from

the voter module, are mapped to their respective bucket locations for each iteration.

Corresponding FFT outputs are read from the memory banks for each location. These

eight bucket values for each selected frequency are then averaged to obtain the final

value of the frequency components. Figure 6-8 shows the architecture designed for

this module.

SFFT Core

The use of high-level Bluespec interface specifications for component modules al-

lows elegant plug and play generation of complex designs. This enabled us to quickly

connect the various modules to generate the SFFT Core design. During design ex-

ploration, we had to modify the internal structure of various modules as a result of

algorithmic modifications or for meeting resource and performance constraints. How-

ever, generating the overall design was straightforward once the component modules

were complete. Adequate buffers were added to latency insensitive FIFO queues be-
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tween modules to allow individual blocks to run at different rates without stalling the

entire design. This was beneficial for the overall performance since several modules

produced outputs sporadically and in a data-dependent manner.

Design Performance

The SFFT Core was designed using BSV with a focus on parametrization and

latency insensitive interfaces in the architecture to enable extensive design explo-

ration. The design was synthesized, placed and routed for Xilinx ML605 platform

with the target device as XC6VLX240T FPGA and the target clock frequency as 100

MHz. The mapped design's output was compared with MATLAB results to verify

correctness. Table 6.2 shows the percentage Virtex-6 FPGA resource utilization of

various modules of the implementation as well as the complete SFFT Core. Differ-

ent modules have varying resource requirements due to the wide variety of designs.

The Dense-FFT module has the highest DSP slice utilization, due to instantiating

multiple pipelined multipliers for the complex fixed-point data. The Max Selector

module has the maximum LUTs slice utilization, 18% of the total, due to the logic

generated for reading and writing various entries in each internal stage. The Value

Compute module has the maximum BRAM utilization of 14% for storing the FFT

outputs for all eight iterations. Overall, as seen in the data, the Core fits well within

the resources of a single Virtex-6 FPGA with 24% Slice Registers, 48% Slice LUTs,

26% BRAMs and 16% DSP48E slice utilization.

Table 6.3 shows the latency and throughput of various modules of the implemen-

tation as measured in FPGA clock cycles with an operating clock frequency of 100

MHz. The latency of the design is defined as the number of cycles taken from provid-

ing the first input data sample to a module to receiving the last output data sample

from it. The throughput is defined, under steady state conditions with continuous in-

put supply, as the number of cycles between the first output of the first input dataset

to the first output of the second dataset. We have given the per-iteration and total

number of cycles for the FFT and Max Selector modules. For the FFT module, the

total latency is less than 8x the single iteration's latency because the pipelined ar-
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Table 6.2: FPGA Resource utilization, shown as a percentage of total resources
available on Xilinx FPGA XC6VLX240T.

Design Regs LUTs BRAMs DSP48Es
Dense-FFT 3% 11% 8% 11%
Max Selector 8% 18% 0% 0%
Voter 10% 14% 3% 2%
Value Compute 1% 2% 14% 2%
SFFT Core 24% 48% 26% 16%

Table 6.3: Latency and throughput in FPGA clock cycles

Design Latency Throughput
(cycles) (cycles)

1 iteration 13682 6826Dense-FFT Total 61468 54612
1 iteration 5888 5888

Max Selector (Avg) Total 47104 47104
Voter (Avg) Total 68816 68816
Value Compute Total 33788 33788
SFFT Core (Avg) Total 138646 116024

chitecture allows overlapping execution. The performance of the Max Selector and

Voter modules is data-dependent. We have shown the average case numbers for these

modules, and similarly for the entire SFFT Core design. For the SFFT Core, the

total number of cycles per transform under steady state is significantly less than the

sum of all individual components due to the pipelined nature of the architecture that

allows overlapping computation between various modules.

We synthesized, placed and routed individual modules as well as the complete

design to obtain processing times for each component. Table 6.4 shows the evaluated

processing times using each module's maximum operational frequency. For the com-

plete SFFT core, we run the entire design on a single clock frequency. The critical

path of the design lies in the Voter module, specifically in the filter modules that check

whether a candidate frequency falls in a high bucket for the corresponding iteration.

This check requires mapping the candidate to a bucket and then comparing with a

single value out of the 4096-point vector. We store this vector in Block RAMs, using
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Table 6.4: Processing times in milliseconds accounting for the maximum operating
frequency of the component.

Design Steady-state Maximum Processing
Throughput frequency Time

(cycles) (MHz) (ms)
Dense-FFT 54612 121.2 0.45
Max Selector 47104 134.7 0.35
Voter 68816 100.1 0.69
Value Compute 33788 121.9 0.28
SFFT Core 116024 100 1.16

a vector size of 64 that balances the number of cycles to initialize the filter and the

size of the multiplexer that selects the appropriate index out of each 64-point value.

This is a significantly better solution than use of Slice Registers, as it reduces the

design congestion and allows routing to be completed with desired time constraints.

The steady state throughput of our SFFT Core design is 116,024 clock cycles

with a 100 MHz clock, which translates to 1.16 milliseconds per million-point sparse

Fourier transform. This design is the first million-point FPGA implementation of

the SFFT algorithm. The initial single-threaded software implementation [33] of the

algorithm takes 190 milliseconds to complete a transform with the same parameters,

while executing on an Intel Core i7-2600 CPU. A recent multi-threaded software

implementation [65] takes 100 milliseconds for the same problem size, while executing

on an Intel Xeon E5-2660 CPU. Though the CPU-based designs work on floating-

point data, our fixed-point FPGA implementation is accurate enough for applications

under consideration due to the large number of fractional bits used in the input data

type. Our FPGA design is 85x faster than the latter CPU implementation, while

having the benefits of operating in a single FPGA form factor and power budget as

compared to that of a multi-core CPU.

6.1.3 SFFT design activity metrics

The activity metrics for each rule in the component modules of the SFFT design

were computed using the average case scenario discussed earlier, over 100,000 cycles
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of simulation covering one million-point SFFT computation.

It is seen that the streaming pipelined architecture of the 4096-point FFT creates

an ideal profile in terms of the dynamic activity metrics for power gating shown

in Table 6.5. Each sub-module block in this pipeline becomes active continuously

while processing the FFT of the eight iterations in one million-point SFFT and then

becomes inactive for a long duration until the start of the next SFFT. There is only

a single switching of states from inactive to active in each SFFT, as seen in the N2

metric being equal to one for all rules in the 4096-point FFT.

For the Sorter module, the number of inactive intervals is much smaller than the

number of inactive cycles for each of the rules giving a very large average inactivity

interval length for all of them. It is important to note that different rules would

become active in different cycles independently, thus an independent fine-grained

gating scheme would allow significantly more opportunities to power gate than the

module gated as a whole.

For the voter module, we notice that each of the iteration filter rules has a different

inactivity interval length, with monotonic increase in length as the stage indices

increase. This follows from the architecture where most candidate frequencies get

eliminated from the top two filter stages. Each following stage gets fewer and fewer

candidates, resulting in increased inactivity and increased inactivity interval length.

The Magnitude module follows a similar behavior to the FFT module, with similar

intervals for three of the component rules. The values themselves are higher than that

for FFT due to total inactivity being higher. Thus the domains have higher expected

power savings for typical breakeven thresholds.

We will now discuss the behavior of the SFFT design under coarse-grained gat-

ing, i.e.,domains encompassing all datapath logic of each module. During simulation,

if any rule of a module was activated the single coarse-grained domain per module was

considered active. The power domain was switched off only if all rules of the module

did not fire in a given cycle. This occurs when the module was waiting for data from

earlier modules in the pipeline, or when the module's output channels are completely

full. Under such coarse-grained gating, the total number of inactive cycles (N1 ) drops
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Table 6.5: SFFT Activity Metrics

Rule N1 : No. of N1 %: N2: No. of N1/N 2: Avg.
Inactive Percentage Inactive-Active Inactivity

cycles inactivity transitions interval

4096-point FFT Module
doStageO 75098 75.1 8300 9.05
getMultTwiddle0 75099 75.1 8300 9.05
doStagel 75101 75.1 8300 9.05
getMultTwiddlel 75102 75.1 8299 9.05
doStage2 75104 75.1 8298 9.05
getMultTwiddle2 75105 75.1 8298 9.05
doStage3 75107 75.1 8298 9.05
getMultTwiddle3 75109 75.1 8297 9.05
doStage4 75111 75.1 8297 9.05
getMultTwiddle4 75113 75.1 8296 9.05
doStage5 75115 75.1 8295 9.06
Sorter Module
initialize 99992 99.9 8 12499.00
insertltem 47596 47.6 8 5949.50
replaceltem 54484 54.5 7 7783.43
fillOutputQ 97960 98.0 8 12245.00
Voter Module
initialize 99999 99.9 1 99999
genBuckets 99944 99.9 56 1784.71
processBuckets 43604 43.6 1 43604
iterOatol 92527 92.5 7473 12.38
iterObtol 93841 93.8 6159 15.24
iter1to2 96051 96.1 3949 24.32
iter2to3 98685 98.7 1315 75.05
iter3to4 99627 99.6 893 111.56
iter4to5 99563 99.6 437 227.83
iter5to6 99563 99.6 437 227.83
fillOutputQ 99564 99.6 436 228.36
Magnitude Module
process.req 99564 99.6 436 228.36
recvmem-resp 99564 99.6 436 228.36
send-result 99564 99.6 436 228.36
getifft-vals 75117 75.1 8294 9.06
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Table 6.6: SFFT Module-level Inactivity percentage

Module N1%: Percentage inactivity
4096-point FFT 58.5
Sorter 10.1
Voter 43.6
Magnitude 73.8

significantly as compared to the values of the individual rules in these modules. This

is because the condition for inactivity is a lot more restrictive for module-level gating.

This is seen in the lower values of percentage inactivity for SFFT modules shown in

Table 6.6. In particular, the percentage inactivity of the Sorter module is only 10.1%,

while each of its individual rules has at least 45% inactivity (seen in Table 6.5). Since

these rules become active in different cycles, the overall inactivity of the module drops

significantly. At the same time, the breakeven threshold is much larger as the size

of the domain and switching logic increases. This also increases the slowdown in

clock frequency. Thus, we can see that for such designs, fine-grained gating is more

appropriate and can generate significant savings at lower energy and performance

costs.

6.2 RISC processor design

This design comprises of a 32-bit RISC microarchitecture that implements the

MIPS I ISA. It includes a multiply unit, coprocessor 0, where MIPS I implements

the data and instruction TLBs, independent instruction and data Li caches, and a

unified, N-way L2 cache. This 5-stage processor can boot the GNU/Linux kernel'.

6.2.1 Design overview

Figure 6-9 shows the architecture of the RISC processor. The PC, F, D, E, WB

and RF sub-modules are part of the Processor module, while the other components

shown in Figure 6-9 are instantiated as separate modules. The architectural details

'Primary work on creating this design was done by Oriol Arcas Abella.
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Figure 6-9: Architecture of RISC processor

are skipped here as the design has a conventional structure for a pipelined multi-

stage processor. Our goal here is to show how the design activity metrics change

when observed in a test-case which is quite different from the earlier special purpose

hardware designs for algorithmic blocks in the wireless domains.

6.2.2 RISC processor design activity metrics

We computed the activity metrics for each rule in the component modules of the

RISC processor under dynamic conditions. The data shown in Tables 6.7 and 6.8

correspond to the activity generated during a Linux boot sequence. The data was

collected over a testbench of 10 million cycles of simulation.

It is observed that there is a wide range of values of the average inactivity interval

in the component modules. While the total inactivity is quite high for most of the

rules in all the modules, from 76% to 99%, the number of transitions is dependent on

the specific module itself. The Multiplier module for example, sees infrequent activity,

and has a very large inactivity interval. The Processor-CPU module itself has much

shorter inactivity intervals due to frequent state switching, and thus it would be
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Table 6.7: RISC Processor Activity Metrics - part 1

Rule N1 : No. of N1 %: N2: No. of N1/N2: Avg.
Inactive Percentage Inactive-Active Inactivity
cycles inactivity transitions interval

Processor-CPU Module
pcgen 7665660 76.6 1088024 7.05
fetch 7665660 76.6 1088023 7.05
dec 7665660 76.6 1089905 7.03
exec 7938181 79.4 1219321 6.51
writeback 7938181 79.4 1209206 6.56
updaterf 8786735 87.8 782802 11.22
update-pc 9998444 99.9 1556 6425.74
kill 9727479 97.3 137094 70.95
Multiply Module
start.mult 9999956 99.9 44 227271.73
mult-step 9998592 99.9 44 227240.73
step-up 9998592 99.9 44 227240.73
upd.hilo 9998548 99.9 44 227239.73
Data Cache Module
proc-req 9216250 92.2 782096 11.78
req.from.mem 9999652 99.9 348 28734.63
resplrom-mem 9872425 98.7 127575 77.39
access.mem 9999652 99.9 348 28734.63
comp.tag 9216250 92.2 782096 11.78
accessproc 9216250 92.2 782096 11.78
refill-resp 9872425 98.7 127575 77.39
update-wait 9872425 98.7 127575 77.39
st-wait 9551793 95.5 448207 21.31
evict 9999652 99.9 348 28734.63
Instruction Cache Module
proc-req 7665660 76.7 1088024 7.05
req..from-mem 9999609 99.9 391 25574.45
resp..from-mem 9989732 99.9 10268 972.90
access-mem 9999609 99.9 391 25574.45
comp.tag 7665660 76.7 1088024 7.05
access-proc 7665660 76.7 1088024 7.05
refill-resp 9989732 99.9 10268 972.90
update-wait 9989732 99.9 10268 972.90
evict 9999609 99.9 391 25574.45
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Table 6.8: RISC Processor Activity Metrics - part 2

Rule N1 : No. of N1 %: N2: No. of N1/N 2: Avg.
Inactive Percentage Inactive-Active Inactivity

cycles inactivity transitions interval
Data TLB Module
TLB-matching 9216250 92.2 782096 11.78
translation 9216250 92.2 782096 11.78
store-paddr 9216250 92.2 782096 11.78
translate-addr 9216250 92.2 782096 11.78
write-Entries 10000000 100 1 10000000
Instruction TLB Module
TLB-matching 7665660 76.7 1088024 7.05
translation 7665660 76.7 1088024 7.05
store-paddr 7665660 76.7 1088024 7.05
translate-addr 7665660 76.7 1088024 7.05
writeEntries 10000000 100 1 10000000
L2 Cache Module
accessIResp 9989806 99.9 10194 979.97
accessDResp 9872498 98.7 127502 77.43
access-IReq 9989732 99.9 10268 972.90
access-DReq 9872425 98.7 127575 77.39
do-resp 9862304 98.6 137696 71.62
comp.tag 9862157 98.6 137843 71.55
replace-wait 9997046 99.9 1478 6763.90
refill-resp 9873311 98.7 126689 77.93
update.wait 9862157 98.6 137843 71.55

harder to find significant savings in this module. This is along expected lines as it

is the central module generating work for the other modules of the system. Cache

modules have different values for requests and responses as the latter get bunched

together when being served from a cache line. Thus it would be better to power gate

the response logic while keeping request logic ungated. Similarly, for each module, we

can select appropriate sub-modular blocks with high total inactivity and high average

inactivity interval lengths to obtain the viable fine-grained power domains for each

module.

Table 6.9 shows the module-level inactivity percentage for the RISC processor

design. It is seen that the coarse-grain module-level domains would have lower in-
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Table 6.9: RISC Processor Module-level Inactivity percentage

Module N%: Percentage inactivity
Processor-CPU 70.4
Multiply 99.9
Data Cache 82.9
Instruction Cache 65.6
Data TLB 84.3
Instruction TLB 65.8
L2 Cache 91.8

activity than individual rule-level domains discussed earlier. While computing these

metrics, we removed the contribution of a few book-keeping rules in these modules

that were frequently active. This was done to avoid skewing the module-level inactiv-

ity percentage even lower and to maintain a fair comparison to the rule-level metrics

shown.

In this chapter, we discussed complex designs where the level of activity differs

widely at a modular level as well as at the rule-level within modules. We observed

that coarse-grained modular activity was significantly higher than the activity of the

individual rules. This demonstrated the benefit of pursuing fine-grained gating where

individual blocks within a module can be turned off even if there is activity in other

blocks of the module. In the next chapter, we will discuss the power and performance

impact of such gating.
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Breakeven threshold and impact of

fine-grained gating

In this chapter, we discuss the overall impact of our technique on the net power

consumption and performance of the Reed-Solomon decoder, Viterbi decoder and

SFFT accelerator designs, all of which are examples of digital signal processing under

strict energy and processing time constraints. We evaluate the breakeven threshold

for inactivity of the fine-grained power domains under consideration, and compare it

to the discussed activity metrics in the last two chapters.

7.1 Leakage power consumption

We begin the analysis by looking at the total power consumption of the three

designs and the fraction consumed by leakage. Table 7.1 shows a breakdown of the

power consumption. It is seen that the fraction of total power consumed as leakage in

decoder designs is quite significant: 44% in Reed-Solomon decoder and 41% in Viterbi

decoder. For the larger SFFT design, the amount of leakage power consumed over

representative testbench is large, though the percentage fraction is smaller (34%)

due to higher rate of average activity to meet performance constraints. The data

was generated by simulating the extracted place and routed netlists with realistic

testbenches. This process also generates the breakdown of the leakage power for each
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Table 7.1: Power consumption breakdown of Reed-Solomon decoder, Viterbi decoder
and SFFT design. The synthesis was done using Nangate 45nm library with the
operating frequency set to 100MHz. Power consumption data was obtained using
simulation of the placed and routed designs.

Design Component Power (mW)
Dynamic 8.62 (56%)

Reed-Solomon decoder Leakage 6.74 (44%)
Total 15.37

Dynamic 7.96 (59%)
Viterbi decoder Leakage 5.37 (41%)

Total 13.33
Dynamic 305.9 (66%)

Sparse FFT design Leakage 157.6 (34%)
Total 463.5

logic element of the design.

The fraction of leakage power increases even further depending on a number of

factors such as operating temperature, technology node and relative external activity.

This provides a strong motivation to explore methods for reducing leakage power in

such designs. Next, we need to determine the number of clock cycles for which

a typical fine-grained logic block needs to remain inactive, in order to recoup the

energy lost in switching on the power domain and compare it to the dynamic activity

metrics obtained from simulation.

7.2 Breakeven threshold of inactivity interval

To determine the switching energy cost per transition and the breakeven threshold

of inactivity, we performed circuit-level SPICE simulations of typical logic blocks with

power switches and isolation logic using NCSU 45nm library and Nangate Open Cell

library. We chose three sizes for the power domains and appropriately sized the

power switches to balance the voltage drop and turn-on time. Table 7.2 shows a

brief summary of the analysis determining the leakage power saved by gating typical

logic blocks, breakeven time to generate net savings and the impact on output signal

propagation due to insertion of power switches and isolation cells.
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Table 7.2: Computing breakeven threshold of inactivity interval, and the performance
impact for gating typical logic blocks

(a) Characterization for logic block consisting of eight 2-input NAND gates with x2 drive strength

Property tested Value
Leakage power of ungated logic block: a 432.60 nW
Leakage power of the block after gating with a 4/1 high Vth PMOS: b 0.21 nW
Leakage power saved by power gating the block: a = (a - b) 432.39 nW
Energy lost in turning on the power switch and power domain: 3 20.8 fJ
Breakeven time for net power savings in a single inactive interval: /a 48.1 ns
Breakeven threshold in clock cycles at 100 MHz 5 cycles
Increase in output propagation delay (as measured by 50% value) 0.21 ns
Increase in output rise time (as measured by 10%-90% delay) 1.50 ns

(b) Characterization for logic block consisting of sixteen 2-input NAND gates with x2 drive strength

Property tested Value

Leakage power of ungated logic block: a 879.5 nW
Leakage power of the block after gating with a 8/1 high Vth PMOS: b 0.38 nW
Leakage power saved by power gating the block: a = (a - b) 879.12 nW
Energy lost in turning on the power switch and power domain: # 45.6 fJ

Breakeven time for net power savings in a single inactive interval: 3/a 51.9 ns

Breakeven threshold in clock cycles at 100 MHz 6 cycles

Increase in output propagation delay (as measured by 50% value) 0.23 ns

Increase in output rise time (as measured by 10%-90% delay) 1.61 ns

(c) Characterization for logic block consisting of thirty-two 2-input NAND gates with x2 drive strength

Property tested Value

Leakage power of ungated logic block: a 1738.40 nW
Leakage power of the block after gating with a 8/1 high Vth PMOS: b 0.51 nW
Leakage power saved by power gating the block: a = (a - b) 1737.89 nW
Energy lost in turning on the power switch and power domain: 1 68.3 fJ
Breakeven time for net power savings in a single inactive interval: 1/a 39.3 ns

Breakeven threshold in clock cycles at 100 MHz 4 cycles

Increase in output propagation delay (as measured by 50% value) 0.27 ns

Increase in output rise time (as measured by 10%-90% delay) 1.69 ns
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The leakage power saved by gating was obtained by comparing the power dissi-

pation with and without the power switch. The energy cost of turn-on is the total

energy drawn from the voltage supply, and it is evaluated by integrating the supply

current over the turn-on time. As seen in the data, by dividing the switching energy

cost (#) with the leakage power saved by gating (a), we arrive at the breakeven time

period. The values of the breakeven time period for the three sizes of domains are:

48.1 ns, 51.9 ns and 39.3 ns. This indicates that the minimum length of inactivity

interval required to compensate for the energy lost in switching off the domain is 4-6

cycles at a clock frequency of 100 MHz. This reflects well on our previous analysis of

the example designs which had several logic blocks having much longer average inac-

tivity intervals, thus providing significant power savings. For each technology library

used, designers can similarly determine values of a and # for typical logic blocks and

use them with the dynamic activity metrics computed for the rule-based design to

select appropriate logic blocks to be power gated.

7.3 Performance Impact

For our gating methodology, the power domains need to be turned on or off within

a clock cycle. This places a requirement on the clock cycle time to be long enough

to accommodate the time required to turn on a power domain and complete logic

computation. For the fine-grained power domains under consideration in the design

testcases, the impact of gating is seen in Table 7.2 as an increase in propagation delay

of 0.31 ns (for the output to reach 50% of the max value) and a 1.5 ns increase in

output rise time (for the output to rise from 10% to 90% of the max value). After

adding this delay to the prior critical path of the designs, we still had sufficient

margin to keep the clock frequency at 100 MHz to allow such gating and maintain

the performance requirements of wireless standards compliance.

It is possible that for designs with a high clock frequency requirement, insertion

of such gating might necessitate increasing the cycle time. Such performance impact

can be mitigated by selective addition or removal of power gating from the overall
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architecture. Since power gating is defined in a fine-grained manner, it is possible to

eliminate gating from the logic on the critical path of the clock. It is also expected

that some critical logic would be mostly active and hence would not be a viable

candidate for fine-grained power gating anyway.

7.4 Qualifying domains for the design testcases

In the designs under consideration, most rules have small logic blocks which fall

within the size range discussed in the earlier analysis. Accordingly, we can consider

the breakeven threshold for such blocks to be within the same order of 4-6 cycles. For

our analysis, we kept the threshold at 6 cycles of inactivity after which power-gating

the domain, on average, would reduce energy consumption. With this threshold,

we can determine which modules and sub-modular blocks in each design are good

candidates for fine-grained power gating.

For the Reed-Solomon design, only 3 rules (out of the total of 17 rules in the

complete design) have a smaller average inactivity interval than this threshold (in

both input data scenarios). After accounting for the logic corresponding to these 3

rules, 90% of the datapath logic in Reed-Solomon design can be power gated. For

the Viterbi design, though the rules are larger with greater logic per rule body, the

average inactivity interval for all rules is greater than 100 cycles under all conditions.

Thus, all of the datapath combinational logic for this design would qualify for gating

under our technique.

For the SFFT design, we can see that all the rules have the average inactivity

interval greater than 9 cycles. Thus, we can include all the datapath logic for power

gating for this design as well. A similar case holds true for the RISC processor design,

where all rules have their average inactivity interval length greater than the 6 cycles

threshold and qualify for fine-grained power gating. In these designs, the effect of the

gating on the critical path of designs was within acceptable bounds with the increased

delay being absorbed in the existing slack in cycle time at 100 MHz.
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7.5 Energy Savings

7.5.1 Cycle by cycle profile

In the first cycle when a power domain turns off, the effective supply voltage

VDDeff slowly decays due to the residual leakage currents. The net leakage currents

drawn from the voltage supply are immediately reduced by a large percentage (greater

than 99% in the data shown in Figure 7.2) due to the presence of high threshold power

switch. The energy savings are dictated by the reduced leakage current, which is

roughly equal to the initial value in the first cycle of inactivity and decreasing slightly

in subsequent inactive cycles as the VDDeff decreases. The activation energy cost is

spent in the first active cycle of the power domain after being inactive in previous

cycles, with the net savings determined by the total inactivity and the number of

inactive-active transitions.

7.5.2 Net reduction in power consumption

The overall leakage power reduction achieved by our technique can be estimated

in the following manner. Leakage power dissipation has these main components as

driving factors: 1. inactive combinational logic used for state updates, 2. the state

elements, and 3. the clock tree and control logic. Our technique targets the elimina-

tion of leakage power consumed by inactive combinational logic. We categorized the

various leakage power components manually by examining the digital power simula-

tion output of the designs under various activity inputs. Based on this analysis, we

estimate that 40% of the total leakage power is due to the first component, of which

90% of the domains qualify for power gating after accounting for activity metrics and

breakeven thresholds. Over the course of the testbenches, the switching costs of gating

the domains reduce the net savings to about 90% of their leakage power consumption.

Given that the decoder designs had up to 44% power as leakage dissipation (Table 7.1),

we estimate that our technique can save up to 14% (= 0.44 x 0.9 x 0.40 x 0.9) of the

total power consumption without any power-saving design burden on the user.
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In this chapter, we characterized the impact of our technique on individual fine-

grained domains as well as the complete wireless designs under consideration. We

demonstrated the use of the obtained activity metrics to compare against computed

breakeven thresholds for obtaining viable power domains from a rule-based design.

In the next chapter, we present a discussion of C-based design methodology and a

comparison of hardware quality vis-a-vis rule-based design.
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Chapter 8

Comparison of high-level languages

for hardware design

The increasing use of high-level synthesis (HLS) for hardware design provides

opportunities and challenges in the domain of power-efficient design. By raising the

level of abstraction, HLS has the potential to make the designer's intent explicit for

use in automation of power domain partitioning. Hardware design can be expressed

at a high-level with the centers of activity explicitly described. As described in this

thesis, such description can lead to a natural translation to fine-grained power domain

specification of the designs.

The questions to be explored in this chapter are:

1. Which high-level hardware design language can give us a direct relationship

between specification and fine-grained domains?

The two design methodologies that we will compare are software-based HLS

and rule-based HLS.

2. Is there a penalty in terms of resource consumption or performance compromise

to the use of HLS for hardware design?

3. To what extent can the earlier described rule-based power gating techniques be

applicable in software-based design?
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8.1 Software-based design tools

DSP community perceives several advantages in using a C-based design method-

ology [72, 31] - having a concise source code allows faster design and simulation,

technology-dependent physical design is isolated from the source and using an un-

timed design description allows high-level exploration by raising the level of abstrac-

tion. Several EDA vendors provide tools for this purpose [51, 73, 13, 29, 41].

C-based tools fall into two distinct categories - those that adhere to pure C/C++

semantics like Catapult-C [51], PICO [73] and C-to-Silicon Compiler [13], and those

that deviate from the pure sequential semantics by allowing new constructs, like

SpecC [29], SystemC [57] and BachC [41], (see [26] for a detailed discussion of this

topic). In this study, we used Catapult-C as the C-based tool, which synthesizes

hardware directly from standard C/C++ and allows annotations and user specified

settings for greater customization. Such annotations are most effective in those parts

of the source code that have static loop bounds and statically determinable data

dependencies.

8.1.1 Relationship between C-based design and generated

hardware

Given a C-based design, the tools generate hardware for completing the computa-

tion, maintaining an input-output correspondence with the C description. As we will

discuss later in this chapter, the tools utilize user provided annotations for defining

the level of parallelism, pipelining and resource sharing desired, and will optimize for

the given area and performance constraints to direct synthesis. From the generated

hardware it should be possible to create fine-grained power domains for the design,

as each C function could result in several hardware computational blocks not all of

which might be simultaneously active.

However, the generated domains would lack a direct relationship with the orig-

inal high-level specification because the compiler code transformations to generate

the hardware FSMs (Finite-State-Machines) are not visible at the source level. In
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addition, the timing information about operation scheduling is not present in the se-

quential C description. Though a high-level C execution can provide information on

how many times a given function is invoked under a particular test run, the following

information, which is essential for determining the activity metrics of the domains, is

unavailable:

1. The number of clock cycles used by the design to run the test bench.

2. The number of clock cycles each block is active for computation triggered by

the given input.

3. Relative cycle-by-cycle scheduling of operations in the design which directs ex-

actly when each block becomes active and inactive.

In absence of such a connection, all activity information for the possible domains

would have to be collected at the RTL design level. This would lead to the con-

ventional increase in design and verification effort associated with power gating of

RTL designs. Any automation techniques used would only be applied for the RTL,

bypassing the high-level design and negating benefits of using the latter.

For rule-based designs, the rule-level activity information either directly corre-

sponds to the activity of a computational block exclusively active when a rule fires,

or it can be used in a boolean function to compute the net activity of a shared block

between multiple rules. In this manner the exact activity information for the power

domains under consideration can be determined completely from a high-level simu-

lation. This ensures that the automation techniques can utilize the high-level design

information for reducing design and verification costs associated with fine-grained

power gating.

There is an additional concern about the hardware quality generated using high-

level design, whether raising the design abstractions causes an increase in area or

decrease in design performance. Such inefficiencies in the generated hardware design

would swamp any power savings obtained by the power gating. In the rest of this

chapter, we look closely at such hardware inefficiencies. We give examples where it
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is essential to exploit parallelism, the extent of which depends on run-time param-

eters. It is difficult for the user to restructure some of these source codes to allow

the C-based tool to infer the desired hardware structure. These hardware structures

can be designed using any HDL; we used a high-level rule-based HDL, Bluespec Sys-

temVerilog [9], which makes it easy to express the necessary architectural elements to

achieve the desired performance. To explore and elaborate on these issues, we will use

a specific application, Reed-Solomon decoding, as a design example. In particular, we

will explore whether the HLS design methodologies can achieve performance targets

under given area constraints.

8.2 The Application: Reed-Solomon Decoder

Reed-Solomon codes [53] are a class of error correction codes frequently used in

wireless protocols. In this chapter, we present the design of a Reed-Solomon decoder

for an 802.16 protocol receiver [38]. The target operating frequency for the FPGA

implementation of our designs was set to 100 MHz. To achieve the 802.16 target

throughput of 134.4 Mbps at this frequency, the design needs to accept a new 255

byte input block every 1520 cycles. During the design process, our goal was also to see

if the number of cycles can be reduced even further because the "extra performance"

can be used to decrease voltage or frequency for low power implementations.

8.2.1 Decoding Process

Reed-Solomon decoding algorithm [79] consists of five steps:

1. Syndrome computation by evaluating the received polynomial at various roots

of the underlying Galois Field (GF) primitive polynomial

2. Error locator polynomial and error evaluator polynomial computation through

the Berlekamp-Massey algorithm using the syndrome

3. Error location computation using Chien search which gives the roots of the error

locator polynomial
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4. Error magnitude computation using Forney's algorithm

5. Error correction by subtracting the computed errors from the received polyno-

mial

Each input block is decoded independently of other blocks. A Reed-Solomon encoded

data block consists of k information symbols and 2t parity symbols for a total of

n (= k + 2t) symbols. The decoding process is able to correct a maximum of t errors.

8.3 Generating hardware from C/C++

8.3.1 The Initial Design

The decoding algorithm was written in a subset of C++ used by the tool for

compiling into hardware. Each stage of the Reed-Solomon decoder was represented by

a separate function and a top-level function invokes these functions sequentially. The

different functions share data using array pointers passed as arguments. High-level

synthesis tools can automatically generate a finite state machine (FSM) associated

with each C/C++ function once the target platform (Xilinx Virtex II FPGA) and

the target frequency (100 MHz) has been specified. For our Reed-Solomon code, with

n as 255 and t as a parameter with a maximum value of 16, the tool generated a

hardware design that required 7.565 million cycles per input block, for the worst case

error scenario. The high cycle count was due to the fact that the tool produced an

FSM for each computation loop that exactly mimicked its sequential execution. We

next discuss how we reduced this cycle count by three orders of magnitude.

8.3.2 Loop unrolling to increase parallelism

C-based design tools exploit computational loops to extract fine-grain parallelism [32].

Loop unrolling can increase the amount of parallelism in a computation and data-

dependency analysis within and across loops can show the opportunities for pipelined

execution. For example, the algorithm for syndrome calculations consists of two
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nested for-loops. For a typical value of t = 16, the inner-loop computes 32 syndromes

sequentially. All of these can be computed in parallel if the inner-loop is unfolded.

Most C-based design tools can automatically identify the loops that can be unrolled.

By adding annotations to the source code, the user can specify which of these iden-

tified loops need to be unrolled and how many times they should be unrolled. For

unrolling, we first selected the for-loops corresponding to the Galois Field Multipli-

cation, which is used extensively throughout the design. Next, the inner for-loop of

Syndrome computation was unrolled. The inner for-loop of the Chien search was also

unrolled. To perform unrolling we had to replace the dynamic parameters being used

as loop bounds by their static upper bounds. These unrolling steps cumulatively lead

to an improvement of two orders of magnitude in the throughput, achieving 19,020

cycles per input block. Still, this was only 7% of the target data throughput.

8.3.3 Expressing producer-consumer relationships

To further improve the throughput, two consecutive stages in the decoder need

to be able to exploit fine-grain producer-consumer parallelism. For example, once

the Chien search module determines a particular error location, that location can

be forwarded immediately to the Forney's algorithm module for computation of the

error magnitude, without waiting for the rest of error locations. Such functions are

naturally suited for pipelined implementations. But this idea is hard to express in

sequential C source descriptions, and automatic detection of such opportunities is

practically impossible.

For simple loop structures, the compiler can infer that both the producer and

consumer operate on data symbols in-order. It can use this information to process

the data in a fine-grained manner, without waiting for the entire block to be available.

Consider the code segment shown in Figure 8-1.

For such simple producer-consumer pairs, the C-based tool appropriately generates

streaming hardware in the form shown in Figure 8-2 and passes one byte at a time,

as opposed to passing the entire data structure, to achieve maximum overlapped

execution of the producer and consumer processes.
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void producer (char input [255), char intermediate [255])

{
for (int i=0; i<255; i++)

intermediate (i]=input [i]+i;
}
void consumer(char intermediate (255), char output [255])
{

for (int i=0; i<255; i++)
output (i]=intermediate [i]-i;

}

Figure 8-1: Simple streaming example - source code

Implicit Pipe
Length 8 Bytes

Producer Consumer
1 Byte I Byte

Figure 8-2: Simple streaming example - hardware output

However, the presence of dynamic parameters in for-loop bounds can obfuscate

the sharing of streamed data and makes it difficult to apply static dataflow optimiza-

tions [48]. For example, consider the code segment shown in Figure 8-3, where the

length of the intermediate array produced and the producer loop iterations which

produce its values are dynamically determined based on the input.

The hardware generated by the C-based tool for this code is shown in Figure 8-4.

The compiler generates a large RAM for sharing one instance of the intermediate

array between the modules. Furthermore, to ensure the program semantics, the com-

piler does not permit the two modules to access the array simultaneously, preventing

overlapped execution of the two modules. It is conceivable that a clever compiler

could detect that the production and consumption of data-elements is in order and

then set up a pipelined producer-consumer structure properly. However, we expect

such analysis for real codes to be quite difficult and brittle in practice.

Some C-based tools support an alternative buffering mechanism called ping-pong

memory which uses a double buffering technique, to allow some overlapping execution,
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Figure 8-3: Complex streaming example - Source code

25viiedyte

Producer COM -+ Conu"Mr

L..KO a ByWO.

Figure 8-4: Complex streaming example - Hardware output

but at the cost of extra hardware resources. Using this buffer, our design's throughput

improved to 16,638 cycles per data block.

8.3.4 Issues in Streaming Conditionals

The compilers are generally unable to infer streaming architectures if the data

blocks are accessed conditionally by the producer, or consumer. For example, in

Forney's algorithm the operation of the main for-loop is determined by a conditional

check whether the location is in error or not. The input data structure contains k

(= 223) symbols out of which at most t (= 16) symbols can be in error. Let us

further assume it takes 17 cycles to process a symbol in error and only one to process

a symbol not in error. The processing of symbols is independent of each other but
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void producer (char input [255], char length,
char intermediate [255), char *count)

{
*count = 0;
for (nt i=0; i<length; i++)

if (input[i]==0)
intermediate [(*count)++]=input [i]+i;

}
void consumer (char intermediate [255), char *count,

char output[255])
{
for (nt i=0; i<*count; i++)

output [i]=intermediate [i]-i;
}
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the output stream must maintain the order of the input. If the compiler is unable to

detect this independence, it will process these symbols in-order sequentially, taking as

much as 17t + (k - t) = k + 16t = 479 cycles (see Figure 8-5(a)). On the other hand,

if the compiler can detect the independence of conditional loop iterations and we ask

the tool to unroll it 2 times, we get the structure shown in Figure 8-5(b). If the errors

are distributed evenly, such a structure may double the throughput at the cost of

doubling the hardware. The preferred structure for this computation is the pipeline

shown in Figure 8-5(c), which should take max(17t, k - t) = 272 cycles to process

all k symbols. Notice Figure 8-5(c) takes considerably less area than Figure 8-5(b)

because it does not duplicate the error handling hardware.

If (check error)
compute for 17 cycles

ele
compute for i cycle

(a) Original structure

if (check error)
compute for 17 cycles

ee
compute for I cycle

-M Sipe merge

if (check error)
compute for 17 cycles

else
compute for I cycle

(b) Unrolled structure

com =pue for 17 cycles

-+cheinpu IIIM mrgnw -

oompuxt for 1 cycle

(c) Modified structure

Figure 8-5: Forney's Algorithm Implementation
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The C-based tool was not able to generate the structure shown in Figure 8-5(c).

We think it will be difficult for any C-based synthesis tool to infer such a conditional

structure. First, it is always difficult to detect if the iterations of an outer loop can be

done in parallel. Second, static scheduling techniques rely on the fact that different

branches take equal amount of time, while we are trying to exploit the imbalance in

branches.

To further improve the performance and synthesis results, we made use of common

guidelines [72] for code refinement. Adding hierarchy to Berlekamp computations and

making its complex loop bounds static by removing the dynamic variables from the

loop bounds, required algorithmic modifications to ensure data consistency. By doing

so, we could unroll the Berlekamp module to obtain a throughput of 2073 cycles per

block. However, as seen in Section 8.5, even this design could only achieve 66.7%

of the target throughput and the synthesized hardware required considerably more

FPGA resources than the other designs.

8.3.5 Fine-grained processing

Further optimizations require expressing module functions in a fine-grained man-

ner, i.e. operating on a symbol-by-symbol basis. This leads to considerable complex-

ity as modules higher in hierarchy have to keep track of individual symbol accesses

within a block. The modular design would need to be flattened completely, so that

a global FSM can be made aware of fine-grained parallelism across the design. The

abstractions provided by high-level sequential languages are at odds with these types

of concurrent hardware structures and make it difficult for algorithm designers to

express the intended structures in C/C++. Others have identified the same ten-

sion [26]. This is the reason for the inefficiency in generated hardware which we

encountered during our study. The transaction granularity on which the functions

operate is a trade-off between performance and implementation effort. Coarse-grain

interfaces where each function call processes a complete array is easier for software

programmers but fine-grain interface gives the C compiler a better chance to exploit

fine-grained parallelism.
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8.4 Implementation in rule-based design languages

We next compare the implementation using a rule-based design language, Bluespec

SystemVerilog. Bluespec encourages the designer to consider the decoding algorithm

in terms of concurrently operating modules, each corresponding to one major func-

tional block. Modules communicate with each other through bounded First-In-First-

Out (FIFO) buffers as shown in Figure 8-6. Each module's interface simply consists

of methods to enqueue and dequeue data with underlying Bluespec semantics taking

care of control logic for handling full and empty FIFOs. It is straightforward to en-

code desired architectural mechanisms and perform design exploration to search for

an optimal hardware configuration. Bluespec supports polymorphism, which allows

expression of parameterized module interfaces to vary granularity of data communi-

cation between modules. The pipeline in Figure 5-2 is latency insensitive in the sense

that its functional correctness does not depend upon the size of FIFOs or the number

of cycles each module takes to produce an output or consume an input. This provides

great flexibility in tuning any module for better performance without affecting the

correctness of the whole pipeline.

Syndrome Berlekamp- Chien Fomey's Error
Computation -+ Massey - ~IM]} Search Algorithm CorrectionAlgorithm

Figure 8-6: Bluespec interface for the decoder

8.4.1 Initial design

In Bluespec design, one instantiates the state elements, e.g., registers, memories,

and FIFOs, and describes the behavior using atomic rules which specify how the val-

ues of the state elements can be changed every cycle. The FSM, with its Muxes and

control signals, is generated automatically by the compiler. For example, for Syn-

drome computation, the input and output of the module are buffered by two FIFOs,

r-in-q and s-ouLq and it has three registers: syn for storing the temporary value of
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the syndrome, and i and j for loop bookkeeping. The entire FSM is represented by a

single rule called compute-syndrome in the module as shown in Figure 8-7. This rule

models the semantics of the two nested for-loops in the algorithm. The GF arithmetic

operations, gf-mult and gf-add, are purely combinational library functions.

rule compute-syndrome (True);
let new-syn = syn;
let product = gfmult(newsyn[j],alpha(j+1));
new.syn(j] = gfadd(rinq.firstO, product);
if (j + 1 >= 2*t)

j <= 0; rinq.deqO;
if (i + 1 == n)
s_outq.enq(newsyn);
syn <= replicate(O);
i <= 0;

else
i <= i + 1;

else
syn <= new-syn;

j <= j + 1;
endrule

Figure 8-7: Initial version of compute-syndrome rule

We implemented each of the five modules using this approach. This initial design

had a throughput of 8,161 cycles per data block. This was 17% of the target data

throughput. It should be noted that even in this early implementation, computations

in different modules can occur concurrently on different bytes of a single data block

boosting the performance.

8.4.2 Design Refinements

Bluespec requires users to express explicitly the level of parallelism they want to

achieve, which can be parameterized similar to the degree of loop unrolling in C-based

tools. We illustrate this using the Syndrome Computation module. This module

requires 2t GF Mults and 2t GF Adds per input symbol, which can be performed in

parallel. The implementation shown in Figure 8-8 completes par iterations per cycle.

We unrolled the computations of the other modules using this technique, which

allowed the design to process a block every 483 cycles. At this point, the design
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rule compute-syndrome (True);
let new.syn = syn;
for (Byte p = 0; p < par; p = p +1)

let product = gf._mult (in-q. first, alpha(i+p+1));
new.syn[i+p] = gfadd(newsyn[i+p], product);

if (j + par >= 2*t)
j <= 0; inq.deqo;
if (i + 1 == n)
out-q.enq(newsyn); syn <= replicate(O); i <= 0;

else
i <= i + 1;

else
syn <= new.syn; j <= j + par;

endrule

Figure 8-8: Parameterized parallel version of the compute-syndrome rule

throughput was already 315% of the target performance. It was possible to boost

the performance even further by using some of the insight into algorithmic structures

discussed in Section 8.3. For example, at this point in the design cycle we found that

the Forney's algorithm module was the bottleneck, which could be resolved by using

a split conditional streaming structure shown in Figure 8-5(c). This structure can

be described in BSV using individual rules triggering independently for each of the

steps shown as a box in Figure 8-5(c). This design allowed the Forney's Algorithm

module to process an input block every 272 cycles. The sizes of FIFO buffers in the

system also have a large impact on the overall system throughput and area. It is

trivial to adjust the sizes of the FIFOs with the BSV library.. Exploration of various

sizes through testbench simulations allowed fine-tuning of the overall system to get

a system throughput of 276 cycles per input block, which was 5.5x of the target

throughput, as seen in Section 8.5.

8.5 Area and performance results

At the end of the design process, the RTL outputs of C and Bluespec design flows

were used to obtain performance and hardware synthesis metrics for comparison.

Both the RTL designs were synthesized for Xilinx Virtex-II Pro FPGA using Xilinx

ISE v8.2.03i. The Xilinx IP core for Reed Solomon decoder, v5.1 [80], was used for
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comparison. The designs were simulated to obtain performance metrics. Table 8.1

summarizes the results1 . The C-based design achieved only 23% of the Xilinx IP's

data rate while using 201% of the latter's equivalent gate count, while the Bluespec

design achieved 178% of the IP's data rate with 90% of its equivalent gate count.

Table 8.1: Comparison of Source code size, FPGA resources and performance

Design C-based tool Bluespec Xilinx
Lines of Source Code 1046 1759 3756*
LUTs 29549 5863 2067
FFs 8324 3162 1386
Block RAMs 5 3 4
Equivalent Gate Count 596,730 267,741 297,409
Frequency (MHz) 91.2 108.5 145.3
Throughput (Cyc/Blk) 2073 276 660
Data rate (Mbps) 89.7 701.3 392.8

Using the Reed-Solomon decoder as an example, we have shown that even for DSP

algorithms with relatively simple modular structure, architectural issues dominate in

determining the quality of hardware generated. Identifying the right microarchitec-

ture requires exploring the design space, i.e., a design needs to be tuned after we have

the first working design. Examples of design explorations include pipelining at the

right level of granularity, splitting streaming conditionals to exploit computationally

unbalanced branches, sizing of buffers and caches, and associated caching policies.

The desired hardware structures can always be expressed in an HDL like Verilog, but

it takes considerable effort to do design exploration. HDLs like Bluespec bring many

advantages of software languages in the hardware domain by providing high-level

language abstractions for handling intricate controls and allowing design exploration

through parametrization.

C-based design flow offers many advantages for algorithmic designs - the designer

works in a familiar language and often starts with an executable specification. The C-

based synthesis tools can synthesize good hardware when the source code is analyzable

for parallelism and resource demands. The compiler's ability to infer appropriate

1* we use a publicly available comparable Verilog RTL [76] for source code size comparison as
the source code was not available for the Xilinx IP
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dataflow and parallelism, and the granularity of communication, decreases as the

data-dependent control behavior in the program increases. It is difficult for the user

to remove all such dynamic control parameters from the algorithm, as seen in the case

of Forney's algorithm, and this leads to inefficient hardware. For our case study, we

were not able to go beyond 66.7% of the target performance with the C-based tool.

It is not clear to us if even a complete reworking of the algorithm would have yielded

the target performance.

Thus, it is clear that rule-based design languages like Bluespec can achieve desired

performance and area targets as well as hand-coded Verilog RTL. The cost of high-

level design for such implementations is minimal, while the benefits of HLS such

as concise code and higher abstraction increase designer productivity. In the next

section, we explore possibilities in applying various power gating techniques in C-

based design, in particular partitioning of designs into distinct activity regions and

quantifying the activity metrics of such designs.

8.6 Application of power gating techniques in C-

based design

In this section, we briefly explore the possibilities of applying the earlier men-

tioned power gating techniques to C-based hardware design. In this chapter, we

have shown the inefficiencies associated with such a design methodology. However

having chosen a C-based design, the application of our techniques can save leakage

power in this methodology as well. Our technique fundamentally relies on the knowl-

edge of scheduling of various logic blocks in the design, and pre-determined control

signals related to the high-level design. The C-based hardware compiler does have

this information and so it would be possible to insert power gating for logical blocks

corresponding to various computational functions in the C-based design description.

One point to note here is that our rule-based power gating scheme ensures that

there is no loss in performance by gating of the design. This requires that no logic

115



Chapter 8. Comparison of high-level languages for hardware design

block which was scheduled to be used in a given cycle of operation in the ungated

design, can be switched off in the gated design. Thus, an equivalent implementation

of power gating in the C-based design methodology also needs to ensure that the

scheduling of various functional blocks is maintained as in the ungated design.

In such designs, there could be a need for additional logic required for generating

the control signals of the power switches. The hardware generated from the C-based

description need not have such scheduling signals already present in the form that

would correspond to the fine-grained gating blocks generated for each implemented

function or method. In view of compiler optimizations for area efficiency or perfor-

mance improvement such as loop merging or loop unrolling, it could lead to changes

in the activity factors seen for the generated power domains. Our technique for use

of dynamic activity metrics for determining viable domains can only be applicable

for C-based design on clear availability of the relationship between high-level specifi-

cation and the domains under consideration. It is possible that this information can

be provided by the C-based synthesis tool. By generating breakeven thresholds for

such domains, we can similarly select viable domains for net power savings.

In this manner, the power gating techniques introduced in our work could be ap-

plied to hardware design from C-based specifications as an extension of the techniques

for rule-based design languages. A complete implementation would require building a

C-to-hardware compiler to gain access to the compiler's operation scheduling, which

is beyond the scope of this work.

116



Chapter 9

Conclusions

This chapter presents the conclusions for the thesis. In Section 9.1, we provide a

summary of the work presented and the main contributions of the thesis. We conclude

by proposing future extensions and research directions for the discussed techniques in

Section 9.2, allowing them to have greater applicability in a wide variety of hardware

designs.

9.1 Thesis Summary

With technology scaling, the fraction of leakage power in the total power con-

sumption of ASIC designs is increasing. Static power management through power

gating is an essential part of the hardware design process. This thesis presents tech-

niques that allow granularity of gating to happen at a sub-modular block-level which

can provide more opportunities to switch-off inactive logic. Design and verification

effort associated with power gating is an important impediment to wide application in

heterogeneous hardware designs. We use rule-based design information to automate

this process.

We have proposed techniques to automate: 1) the partitioning of a high-level de-

sign into independent fine-grained power domains with associated control signals, and

2) the collection of dynamic activity information for selecting viable domains from the

point of view of leakage savings and switching energy costs. The control signals used
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for gating are identified from pre-existing scheduling logic in the design and do not

require insertion of a centralized power management unit. For determining viability,

we use two technology-independent statistical activity metrics: total inactivity and

frequency of inactive-active transitions. These activity metrics are collected automat-

ically during the normal test phase of the design flow by insertion of profiling logic into

the high-level design. For each rule under consideration, average length of its inactiv-

ity intervals is computed and compared with the appropriate breakeven thresholds.

The power-gating control signals are correct-by-construction and do not involve any

hardware overhead because they are generated using high-level information already

present in rule-based designs.

We demonstrated the use of these activity metrics using hardware design examples

of protocol-compliant wireless decoders - Reed-Solomon and Viterbi, million-point

sparse Fourier transform accelerator and RISC processor. The designs were simulated

in multiple testbench environments to illustrate how such information is collected,

analyzed and used to identify the viable power domains for gating. We have shown

how the use of our technique can reduce the leakage power consumption of inactive

datapath logic by up to 90% and the total power consumption of wireless designs by

up to 14%. An important aspect of our technique is that it can be used in conjunction

with a global power management scheme, accruing additional power savings. Even

when a global power domain is turned on, the use of our technique allows switching

off blocks within this domain automatically based on their activity condition. Our

technique dramatically decreases the verification effort of fine-grained power gating of

heterogeneous hardware designs by creating domains that are correct by construction.

In addition to the rule-based methodology, this work provides analysis of how such

gating techniques could be applied in low-level RTL designs or high-level C-based

designs as well. We described some of the difficulties in identifying the appropriate

control signals in RTL designs, and issues with efficient hardware specification in

C-based synthesis. We provided reasoning for why rule-based designs are helpful in

preserving high-level design information that is essential for automating fine-grained

power gating. We next summarize the steps required for incorporating the techniques
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introduced in this work into conventional design flow.

Incorporating techniques into design flow

Specific design and activity information is required to allow tools to identify rel-

evant control signals, and to partition designs into domains that can be switched

off using the control signals. Such information can be easily obtained using high-

level design. Hardware designers can either use highly structured and modular RTL

coding styles or use high-level rule-based design which produces such RTL automati-

cally. Given such a design description, our partitioning technique can produce power

specifications that identify prospective fine-grained power domains in the design. Our

profiling technique automatically adds activity collection logic to the high-level design

for generating activity metrics through testbenches with expected input data. The

designer uses these metrics to select domains expected to save net energy accounting

for domain switching costs. The selection of domains is a static post-synthesis deci-

sion, based on expected dynamic activity and breakeven thresholds. Designers can

also remove power gating from critical regions of the design if the margin for increased

clock cycle time is overshot. Finally, the generated customized power specification

is provided to commercial tools to insert the gating into the design layout. This is

followed by customary post-layout validation for signal integrity. The main benefit

provided by the techniques is removing the burden of design effort in creating the

domains and associated control signals, as well as reducing the verification effort of

collecting relevant activity information to ensure that the gated domains save net

energy.

9.2 Future extensions

We have presented an initial framework for automating fine-grained power gating.

Using this work as a foundation, several extensions are possible through which the

power gating issues could be solved under different scenarios and requirements. We

next describe a few of the possible extensions.
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9.2.1 Automatic gating of local state

The technique for determining appropriate power domains by collecting dynamic

activity information applies to logic as well as state elements. There is a significant

fraction of leakage power consumed by state elements like registers. However, the

loss of information on switching-off state elements, and the difficulty of detecting

and specifying exactly when it is functionally correct to do so, is a barrier to the

application of this technique. Verifying that all future readers of a state have obtained

the required information and the value stored in the state element will not be needed

by any block internal or external to the module is a complex problem. However, it

could be possible to turn off some local state elements inside a module. For example,

consider a divider implementation that takes multiple cycles to complete an operation.

Any state that is used in this implementation to store running accumulator values or

pipeline states, is strictly local to the divide operation and can be turned off when

the operation is completed.

One way to implement this is to use multi-cycle rule expression, an enhancement

to BSV [43], which generates state elements that are only needed when the operation

is triggered. By using the signals indicating active rule computation, we can keep

the local state active only when needed. Another way could be by compiler analysis

of state within a module to determine what state is localized for operations and will

not be read externally. This analysis has to conservatively determine the intervals

between the last access of a state element and the next update, which can be used as

the inactivity interval for gating.

9.2.2 Allowing turn on over multiple cycles

Currently, our technique requires the power domain to turn on within a clock

cycle, thus limiting the maximum clock frequency of the design. This requirement

arises due to the control signals being updated every cycle to indicate which rules are

scheduled for execution. The way to overcome the clock speed limitation is to allow

domains to turn on over multiple cycles.
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One way to implement this while preserving original functionality requires change

in rule scheduling to stall rules that read state updates from a rule being activated over

multiple cycles. Once the logic has been triggered to be activated, the state update

would be registered only after a defined number of cycles and then the stalled rules

can be scheduled. Another method is to conservatively generate look ahead turn-on

signals for rules that might get activated in a few cycles. Though a conservative turn-

on technique would reduce the leakage savings, there can still be significant reduction

in the power consumption of designs containing rules with long inactivity intervals.

Development of a modified compilation scheme that generates scheduling logic to

account for multi-cycle activation of rules is one of the future extensions of our work.

9.2.3 Extending to module level gating

Power gating designs at the module-level coarse granularity has some advantages

from the viewpoint of post-synthesis implementation. Under such a scheme, BSV

modules would be synthesized into separate Verilog modules and can be expressed

as independent power domains for the layout tools. To automatically generate dis-

tributed gating signals for such domains, in the absence of a centralized controller,

we require information about each module's logic activity as well as state usage. We

identify the following conditions for turning on and off a power domain that consists

of a single module with methods for interfacing with the external environment. To

turn the power domain on from an off state, any one of the IO method enable signals

should be high. To turn the power domain off from an on state, all of the following

need to be true: all method enable signals should be low, all rule willFire signals

should be low and none of the state elements would be read by any external module.

Figure 9-1 shows how such module-level gating condition would depend on internal

rule firing signals as well as on signals indicating pending input-output requests, for

a module containing no externally read state.

In the general case of module-level gating, we have to ensure that there is no loss

of internal state that is yet to be read by an external method. One naive way of

verifying this would be to check the ready signals of output methods. For example,
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Module gating condition

i ~pywiliFire isFull

rule

rule Output FIFO

Input FIFO

Module

Figure 9-1: Generating module-level gating condition for modules containing no
externally read state

if a module has a FIFO buffer in which the output is stored for an external module

to read from, after the computation is completed all rules can stop firing while the

output methods become ready. However, this is not universal, and there can be

designs where module registers need to be read externally and the methods to read

such state might be always ready. We propose the use of a state done signal that

can be combined optionally with one or more methods or it can be an independent

signal designed by the user. Here, the burden of ensuring that there is no pending

state that can be lost by power gating lies with the designer, making the correctness

issue moot. In this scenario, some of the gating logic, namely the rule willFire signal

generation, is contained within the power domain being gated. However, this logic is

only needed for turning off the domain and hence it will be valid when used.

Another possibility is to consider additional primitive modules, such as FIFO

buffers themselves, being available for power gating at the modular level. Such BSV

primitive modules would have additional control signals that can provide information

required for generating the gating condition. For some FIFO buffers, BSV provides a

not-Empty signal indicating presence of at least one enqueued data element. If this
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signal is false, it is clear that the buffer module can be power gated without loss of

data. Use of such state-holding modules which provide information about the state

through externally accessible methods, can allow for gating at a modular granularity.

9.2.4 Integrated power management

This work can lead to an integrated power management which tackles both dy-

namic and static power dissipation in an automated manner. The analysis that we

perform to identify inactive computational blocks can also be extended to identify

state elements that are not updated in a given cycle. This information can be used

for clock gating of such state elements for reducing dynamic power. For state elements

which are updated in a given cycle and do get clocked, we still can save static power

by power gating of blocks that do not contribute to the new state computation.

A further improvement can be addition of dynamic decision making to the dis-

tributed power controller, for selecting whether to turn off the power domains de-

pending on the expected length of inactivity intervals. For digital signal processing

blocks used in wireless applications, frequently the bit error rates in the input data

can be determined early in the wireless pipeline. Since the activity rates and in-

terval lengths of computational blocks depends on these error rates, under certain

high BER scenarios the sleep signals of power domains can be disabled dynamically

to avoid paying the activation energy costs and increasing the net savings achieved.

Similar techniques can be applicable in micro-processors, where instruction specu-

lation can help in dynamically deciding whether functional units like floating point

arithmetic blocks can be turned off. The combination of such features for reducing

static and dynamic power dissipation can provide an integrated solution for power

management of digital designs.

In this work, we have provided methods for applying distributed power manage-

ment to combat increasing leakage power in hardware designs. With the proliferation

of wireless, hand-held electronic devices in the current era, such techniques are an

essential component for designers working with strict power budgets. Though our
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focus was towards automating fine-grained gating of the inactive combinational logic,

the ideas introduced in this work are applicable in a variety of power management

contexts. By the implementation of the discussed extensions, automatic steps can be

used in the design flow to get close to the ideal scenario of zero power dissipation for

zero work.
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