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Abstract

Much of modern financial theory is based upon the assumption that a portfolio con-
taining a diversified set of equities can be used to control risk while achieving a good
rate of return. The basic idea is to choose equities that have high expected returns,
but are unlikely to move together. Identifying a portfolio of equities that remain well
diversified over a future investment period is difficult.

In our work, we investigate how to use machine learning techniques and data min-
ing to learn cross-sectional patterns that can be used to design diversified portfolios.
Specifically, we model the connections among equities from different perspectives, and
propose three different methods that capture the connections in different time scales.
Using the "correlation" structure learned using our models, we show how to build
selective but well-diversified portfolios. We show that these portfolios perform well
on out of sample data in terms of minimizing risk and achieving high returns.

We provide a method to address the shortcomings of correlation in capturing
events such as large losses (tail risk). Portfolios constructed using our method signif-
icantly reduce tail risk without sacrificing overall returns. We show that our method
reduces the worst day performance from -15% to -9% and increases the Sharpe
ratio from 0.63 to 0.71. We also provide a method to model the relationship between
the equity return that is unexplained by the market return (excess return) and the
amount of sentiment in news releases that hasn't been already reflected in the price
of equities (excess sentiment). We show that a portfolio built using this method gen-
erates an annualized return of 34% over a 10-year time period. In comparison, the
S&P 500 index generated 5% return in the same time period.
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Title: Professor, Electrical Engineering and Computer Science
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Chapter 1

INTRODUCTION

Much of modern financial theory is based upon the assumption that a portfolio con-

taining a diversified set of equities can be used to control risk while achieving a good

rate of return. Identifying a portfolio of equities that remain well diversified over a

future investment period is difficult. The main reason is that achieving diversification

benefits depends upon estimating the "correlation" structure among asset returns.

In this dissertation, we present novel ways to leverage data to learn cross-sectional

connections in multivariate financial time series. By cross-sectional connections, we

mean the connections across different variables in a multivariate time series, as op-

posed to connections on each time series across different time periods. We show how

these connections can be used to construct a selective but well-diversified portfolio of

equities. We also show that these portfolios perform well on out of sample data in

terms of minimizing risk and achieving high returns.

We particularly explore three aspects of the data-driven modeling in time series:

predicting large price changes in reposes to news, modeling connections between eq-

uities focusing on the co-occurrences of large losses, and using network structure to

model connections that span multiple equities, such as clusters and hierarchies in the

network. Our research uses techniques drawn from machine learning and data mining

coupled with the understanding of the underlying financial economics.
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1.1 Motivation

When investing in an asset, an investor is mainly concerned with the return, and,

because it is impossible to know the future return of the asset, with the risk of not

receiving the expected return. Furthermore, since people prefer to avoid risk, more

risky equities typically have higher returns. Much of modern financial theory is based

upon the assumption that a portfolio containing a diversified set of equities can be

used to control risk while achieving a good rate of return.

Diversification is one of two general techniques for reducing investment risk (the

other is hedging). Diversification reduces the risk associated with an investment

because the likelihood that a portfolio of equities will perform poorly during an in-

vestment period is smaller than the likelihood of a single equity going down.

Given the advantages of diversification, maximum diversification, also known as

"buying the market portfolio," has been widely recommended [86, 45]. Indeed for

many investors an index fund is the best way to invest in equities. However, this

is inappropriate in a world in which risk preference plays an important role. Some

investors, for example, hedge fund managers, expect high returns, and in exchange,

expect to bear corresponding risks. Hence, selective as opposed to full diversification

is important [40, 94, 42].

A simple, ancient, well-known, and still useful method of diversification is allo-

cating wealth equally across asset classes. In an Aramaic text from the 4th Century,

Rabbi Isaac bar Aha proposed: "A third in land, A third in merchandise, A third

at hand" [27, 87]. Centuries later, mathematical analysis of portfolio diversification

within an asset class began with the seminal work of Markowitz in 1952, which gives

the optimal rule for allocating wealth across risky assets in a setting where investors

care only about the mean and variance of a portfolio's return.

Over the next six decades, there have been several methods proposed to provide

an improved diversification of equities [7, 50, 71, 43, 97, 38, 27]. The underlying prob-

lem common across these methods is that the statistical moments estimated using

historical returns perform poorly on out of sample data. It is because the estimates
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of the statistical averages are so noisy that the portfolio design choices often produce

little difference in the outcome [43]. DeMiguel, et al (2009) [27] provides a study

on comparing these improved diversification methods, and concludes that noue of

the portfolios evaluated performed consistently better than an equal weighted port-

folio. Furthermore, citing the evaluation results, it recommends the cross-sectional

characteristics of assets as a direction worth pursuing [27].

Identifying a portfolio of equities that remains well diversified over a future invest-

ment period is difficult. The main reason is that the diversification benefits depend

on the "correlation" structure among equity returns [531, and the structure is mul-

tifaceted, and always evolving. In our work, we investigate using machine learning

techniques and data mining to learn cross-sectional patterns across equity returns,

and ways of using these patterns to build selective but well-diversified portfolios that

perform well on out of sample data. Specifically, we model connections from different

perspectives, and propose applications that capture the connections in different time

scales. For example, we consider the task of diversifying against tail risk, the risk

of improbable but potentially catastrophic negative return events, and the task of

learning the influence of news on the returns of equities.

1.2 Background

In this section, we provide a short background to portfolio construction and evalua-

tion. A detailed discussion is deferred to Chapter 2.

To reduce risk, investors seek a set of equities that have high expected return and

low risk. This process is called portfolio construction. Since there is a tradeoff between

risk and expected return, portfolio design usually starts by the investor choosing a

desired level of expected return (or a risk tolerance). For a given desired expected

return re, in the absence of any side information, the minimum variance portfolio

(MVP), a portfolio that has the lowest possible risk for its expected level of return,

is the optimal portfolio.

The following are few of the criteria that we use to evaluate the performance of

17



the portfolios.

* Largest loss in a day,

* Annualized return,

" Sharpe ratio, a measure of risk-adjusted return [85].

We also consider the following benchmark portfolios in evaluating the performance

of our approach.

* Equal weighted portfolio, where the portfolio is rebalanced to equal weights.

This portfolio incurs large turnovers. Therefore, in practice it is hard to im-

plement. While this portfolio has been shown to possess good theoretical per-

formance, i.e., extremely low volatility with high returns, large turnover will

negate most of the returns via transaction costs.

* SPX, the Standard & Poor 500 index.

1.3 Proposed Approaches

We discuss three areas of complimentary applications for leveraging data to learn

previously unknown cross-sectional patterns in financial time series. These methods

share the common goal of constructing selective but well-diversified portfolios that

perform well.

1. Learning connections in financial time series: A problem with building

a minimal variance portfolio is that the optimization uses a covariance matrix

based on correlation, which gives equal weight to positive and negative returns

and to small and large returns. We believe that this is inappropriate in a world

in which risk preference plays an increasingly important role. We present a

machine learning-based method to build a connectedness matrix to address the

shortcomings of correlation in capturing events such as large losses.

18



2. Learning the relationship between equity returns and news releases:

A problem with using news releases to predict future returns is that often the

information in the news has already been incorporated into the pricing of the

equity. We present a machine learning-based method to model the relationship

between the equity return that is unexplained by the market return (excess

return) and the amount of sentiment in the news releases that hasn't been

already reflected in the price of equities (excess sentiment).

3. Leveraging network structures in financial time series:. We provide

methods to leverage network structure to model connections that span multiple

equities, such as clusters and hierarchies in a network of financial time series.

We discuss how the topological properties of the network can be used to obtain

an improved segmentation of equities as opposed to the traditional sector-based

grouping, thus improving the portfolio diversification process.

We show how these methods can be used separately or together in building portfo-

lios with desirable characteristics such as greater annualized returns or smaller largest

daily loss. In financial time series analysis, patterns can be learned in four time scales:

long-term (fundamental based), mid-term (technical and macro-based), short-term

(event based), and ultra-short-term (based on inefficiencies in statistical arbitrag-

ing). The proposed methods capture the cross-sectional dynamics in the short-term

(Chapter 4), mid-term (Chapter 3), and long-term (Chapter 5).

1.4 Contributions

We briefly discuss some of the major contributions of our work. A detailed discussion

is deferred to subsequent parts of the thesis..

* Reducing tail risk: We propose an alternative to the usual approach of using

a correlation matrix to represent relationships among equities. Instead, we use

what we refer to as a connectedness matrix. This differs from a correlation

matrix in two important ways:
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1. Traditional correlation matrices do not account for interactions among

neighbors. Specifically, correlation is calculated between i and j indepen-

dently of other neighbors. Therefore, these methods may end up incor-

porating information provided by neighbors multiple times. Our method

uses supervised learning to discover the connections between two entities

while discounting the influence of others.

2. Extreme returns occur rarely and therefore play a minor role in a tradi-

tional correlation matrix. The connectedness matrix focuses on extreme

returns without ignoring the non-extreme returns.

To build the connectedness matrix, we model returns using three factors: active

return, market sensitivity, and the connectedness of equities. We formulate

the problem of estimating one return in terms of other returns as a recursive

regression problem, and provide a method to solve it using unconstrained least

squares optimization. The method ensures that the resulting connectedness

matrix is positive semi-definite.

We show that this matrix can be used to build portfolios that not only "beat

the market," but also outperform optimal (i.e., minimum variance) portfolios

over a 13-year period (2001 - 2012). More importantly, portfolios constructed

using our method significantly reduced the tail risk without sacrificing overall

returns. Compared to the traditional covariance approach, an MVP portfolio

built with connectedness matrix reduces the worst day performance from -15%

to -9%, and increases the Sharpe ratio from 0.63 to 0.71. In comparison, the

corresponding values for the equal weighed portfolio are -11% and 0.61, and

the corresponding values for SPX are -9% and 0.1.

e Explaining news sentiment: We propose a novel alternative to the usual

approach of directly learning the relationship between the sentiment in the

news releases and returns.

- First, we learn the expected sentiment, i.e., the sentiment that has already
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been reflected in the prices and discount this from current sentiment scores.

- We then model the returns on the excess sentiment instead of the raw

sentiment score.

We demonstrate the utility of this learned relationship in constructing a port-

folio that generate high risk-adjusted returns as well as our method's ability to

model the variance attributable to news (news risk) better. We show that while

using news directly yields an annualized return of 22% over a 10-year period

(2003 - 2012), our proposed way of handling the past boosts the annualized re-

turn to 34% over the same period. In comparison, an equal weighted portfolio

generates 6% annualized return, and SPX generates 5% annualized return over

the same period.

9 Grouping of equities: One common way to diversify a portfolio is holding

equities from different sectors (e.g., financial and technological stocks). We pro-

pose a novel alternative to the traditional sector-based grouping by leveraging

network structure to model connections that span multiple equities.

- The underlying idea is that equities differently positioned within a finan-

cial network exhibit different patterns of behavior, and therefore selecting

equities from different regions of the network leads to a well-diversified

portfolio.

- We investigate the use of centrality and peripherality measures to find two

distinct regions of the network.

- We discuss how graph clustering could be used to find regions that are

sparsely connected with each other, and build a portfolio based on these

clusters.

We compare the use of different linkage metrics, and different topological prop-

erties of a financial network to obtain an improved segmentation of equities.

We demonstrate the utility of this approach in constructing a diversified portfo-

lio that performs well on out of sample data. For instance, our way of grouping
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equities produces an annualized return of 22% for a 10-year period (2003 - 2012),

compared to 10% with the sector grouping. SPX generates 5% annualized re-

turn over the same period.

1.5 Organization of Thesis

The remainder of this thesis is organized as follows.

o Chapter 2 presents background on the financial jargon and the datasets.

o Chapter 3 presents a machine learning-based method to build a connectedness

matrix that addresses the shortcomings of correlation in capturing events such

as large losses, and demonstrates the utility of this learned relationship in con-

structing a portfolio containing assets that are less likely to have correlated

large losses in the future.

o Chapter 4 presents a machine learning-based method to model the relationship

between the equity return that is unexplained by the market return (excess

return) and the amount of sentiment in the news releases that hasn't been

already reflected in the price of equities. It demonstrates the utility of the

method in constructing a portfolio that effectively makes use of the firm specific

news releases.

o Chapter 5 presents a set of network analysis techniques for multivariate time se-

ries to recover a sparse graph of connected entities, and discusses the application

of this method in obtaining improved segmentation of equities as opposed to the

traditional sector-based grouping, thus improving the portfolio diversification

process.

o Chapter 6 concludes the thesis with a summary of main points and directions

for future work.
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Chapter 2

BACKGROUND

In this chapter, we start with a review of the finance background for our work. First,

we provide a discussion on equities, in particular, on equities. Next, we discuss

building a portfolio of equities and metrics for evaluating the performance of the

portfolio. We use these metrics for evaluating and comparing our methods against

benchmark portfolios later in this thesis. Those readers already knowledgeable about

these topics may want to skip to Section 2.2, which provides a description of the data

used in our work. This chapter borrows heavily from the discussion of these subjects

in the literature [66, 29, 40, 33, 19, 601.

2.1 Finance

The area of finance is broad and well studied. It covers a numerous topics, but

essentially all are related to money and the associated temporal evolutiQn of reward

and risk profile in terms of money. The fundamental objective is to seek ways to invest

money in (financial) equities, and the objective is achieved by building a portfolio of

equities.

There are many types of financial equities available for investment, including eq-

uities, bonds, commodities, and the derivatives of these fundamental equities. They

are collectively called financial instruments. While the characteristics of investment

vary across different equity classes, the nature of risk-return equilibrium is common
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for them. In our work, we focus on publicly traded equities, often called stocks.

2.1.1 Reward - Risk

The return of an equity is the earning resulting from investing in the equity. Returns

can be considered under different time periods (e.g., daily, monthly, quarterly, or

yearly) and can include different sources (dividends or capital gains). If one time

period is a day, and the equity is purchased at the closing price pt of day t and sold

at the closing price Pt+1 of day t + 1, the daily return rt for day t is given as

rt-Pt+1 - Pt +dt 21rt = + --p (2.1)
Pt Pt

Here, dt is the dividend given on day t.

Typically, the equity is held over several consecutive time periods {1, 2, ... , T},

and the returns form a time series r = {ri, r 2 , ..., rT}. A return series r can be

characterized by the following

1. Arithmetic mean return 1 T =rt

2. Cumulative return RT = ]=1 (1 + ri) - 1 = T+',P1

3. Standard deviation o = T (r - f) 2

Return is probably the most important factor that the investors consider. They

want to make as much as the return as early as possible. Arithmetic mean gives the

average change in the capital over the entire time period. Cumulative return gives

the over all change in the capital by the end of the time period.

While the past returns of an equity are known, the future return of an equity is

unknown. Therefore, when an investment is made, there is a risk associated with the

expected future return. This risk is defined as the uncertainty of the future return.

As in the case of the future return, the uncertainty of the future risk is unknown.

However, this is usually approximated by the standard deviation of the past returns

o-,.. This is the risk of whether the actual future return is higher, lower, or equal to

the expected future return.
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2.1.2 Portfolio

If two equities offer the same gain, most investors will pick the equity with the low-

est risk for investing. Therefore, high-risk equities need to offer higher return rates

than low-risk equities to attract an investor. To reduce risk, investors seek a set of

equities that have high expected return and low risk. This process is called portfolio

construction. It is widely accepted that in designing a portfolio of equities there is a

tradeoff to be made between risk and return. The root cause of the tradeoff is that

more volatile equities typically have higher returns. Much of modern financial theory

is based upon the assumption that a portfolio containing a diversified set of equities

can be used to control risk while achieving a good rate of return.

Ea)

4

Efficient frontier

High risk/High return
cp 1edium risk/Medium return

Low risk/Low return

Risk free porio io

Risk (standard deviation)

Figure 2-1: Efficient frontier (orange line) and the optimal portfolio choices (green
dots) along the efficient frontier. Dashed line shows the possible mathematical solu-
tions to Equation 4.8, but as portfolios are meaningless. Portfolios that lie below the
efficient frontier are sub-optimal, because they do not provide enough return for the
level of risk. Portfolios that lie above the efficient frontier are theoretically impossible.

Since there is a tradeoff between risk and expected return, portfolio design usually

starts by the investor choosing a desired level of expected return (or a risk tolerance).
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For a given desired expected return re, in the absence of any side information, the

minimum variance portfolio (MVP), a portfolio that has the lowest possible risk for

its expected level of return, is the optimal portfolio. Frontier of the set of optimal

portfolios is called the efficient frontier (Figure 2-1) [62]. Portfolios that lie below the

efficient frontier are sub-optimal, because they do not provide enough return for the

level of risk.

For the MVP, portfolio weights w are derived by solving the optimization problem:

min w TCw (2.2)

m+1

subject to p ;jw3 > re
j=1

m+1

Z wj = 1;0 < W 1, j = 1, ..., m + 1
j=1

f(x) = x (2.3)

Here, C is the covariance matrix of returns, and fj is the expected return of equity j.

In this formulation, the goal is to minimize the portfolio risk given an acceptable

level of expected return. Of course, not all investors have the same goals, and this

formulation can be rewritten to satisfy the following objectives:

* Minimize the portfolio risk.

" Maximize the return.

" Maximize the return given an acceptable level of risk.

* Maximize the risk-adjusted return.

There are many assumptions both explicitly and implicitly made by this model.

Here, we assume fixed capital (no leverage), perfect liquidity, no market friction, no

short positions, fractional amounts of equities could be bought, and no transaction

costs.
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Similar to that for an equity, portfolio risk a-,, is defined as the standard deviation

of the portfolio return. For the portfolio weights w = {wl, ...Wm}, and correlation

matrix p = {pi',I1 < i < m, 1 < j m} it is given by

O-,, = [wTCW] /2  (2.4)
m m m

=E [Z~ r? + 2Z Wi ri WirjPi (2.5)
i=1 i=1 j>i

In Equation 2.5, we see that the portfolio risk is made of two components: risk

of individual equities (specific risk), and risk common to all equities (systematic risk

also known as market risk). Specific risk can be reduced away by finding equities

that are uncorrelated, i.e., unlikely to move in tandem. This is called diversification.

In contrast, in a portfolio of equities, systemic risk cannot be diversified away, except

for short selling.

Short selling

Typically an investment strategy involves attempting to the equity (or any other

financial instrument) when the price is low and selling it when the price is high. The

practice of buying equity (in the hopes of selling at a higher price) is called taking

long position in the equity. The opposite, selling equities (or any other financial

instruments) that are not currently owned when the price is high, and subsequently

buying them when the price is low is called short selling. The practice is called taking

a short position in the equity. In the interim period, the investor is required to borrow

the equities to satisfy the short sale, and generally there is a fee involved which might

also incorporate any dividends the borrower gets in that period.

Similar to how long positions allow an investor to bet on the upward trend, short

positions allow an investor to bet on the downward trend. Short selling is typically

used in hedging, a way of minimizing the risk of an investment via a more complex set

of transactions. Hedging can be used to offset the potential losses/gains that may be

incurred in a companion investment. For example, the undiversifiable risk (market

risk) of a long only portfolio (like the one we discussed above) can be hedged away
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by short selling the appropriate amount of the S&P 500 index.

Of course, there is no free lunch: short selling involves additional risks as well.

After taking a short position, if the price of a stock rises significantly, the investor

is forced to close their positions. This involves buying the shares, which will in turn

increase the demand for the stock, resulting in further rise in the price, causing more

short positions to be closed. This positive feedback effect is called a short squeeze.

Similarly, the stock might be hard to borrow, resulting in significantly high fees.

In our work, we mainly use long only portfolios (except where stated otherwise).

When appropriate, we discuss how the systemic risk of our portfolios can be hedged

away by taking a companion short position.

Portfolio Evaluation

A portfolio is evaluated by its performance measured from different perspectives.

Different investors have different goals in investing. Thus, the equities selected by

distinct investors differ. The most important features of an equity are its return and

its risk. Some investors, for example, hedge fund managers, expect high returns, and

in exchange, expect to bear corresponding risks.

Therefore it is worth looking at different tools that have been used to characterize

the return and the risk of an equity. Some of these measures focus purely on dif-

ferent types of risk. For instance, largest loss in a day (worst day performance) is a

measure of tail risk, the risk of improbable but potentially catastrophic loss. Where

as, maximum drawdown measures losses sustained over a time period. Some of these

measures try to balance the risk with return. For instance, the Sharpe ratio measures

the risk adjusted return.

In our work, for a set of daily portfolio returns {rt11 < t < T}, we use the following

criteria to evaluate the performance of the portfolios:

" Largest loss in a day: Given by min(rt).

" The expected shortfall (also known as CVaR) at 5% level gives the expected

return on the portfolio in the worst 5% of the cases [81].
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" Max drawdown: Maximum drawdown is the largest peak-to-subsequent-trough

decline in cumulative return. It is given by M = min H _(rt + 1) - 1.
1<i<j<T

" Annualized return: Cumulative return RT from day 1 to day T is given by

RT = fI_1(rt + 1) - 1. Annualized total return is (RT + )1/(T/252) _ 1).

* Sharpe ratio: The Sharpe ratio measures the risk-adjusted return [85]. It is

given by S = E(r - rf)//var(r) where rf is the risk free return (assumed to be

1% annually). We quote annualized Sharpe ratio (i.e., Sv/'52) in our results.

" Information ratio: Information ratio measures the excess return for additional

risks taken 185]. It is given by I = E(r - rA)/ var(r - rA), where r is the daily

return of the portfolio and rA is the reference return (return on the S&P500 in-

dex). We quote annualized information ratio (i.e., I /252) in our results. A

positive information ratio implies that excess return is greater than the addi-

tional risk taken.

The Sharpe ratio

The Informnation RatioAA

Risk free return Beta component Atpha Component

Figure 2-2: The Sharpe ratio Vs. Information ratio.

The Sharpe ratio and information ratio are both indicators of risk-adjusted re-

turns, and are ratios of mean returns to standard deviations of some flavor. Total

returns can be considered the sum of the risk free rate, the beta (i.e., the return

for taking on market risk), and the alpha (excess return). The Sharpe ratio is the

measure of risk-adjusted return of beta plus alpha components, where as information

ratio is the measure of risk-adjusted return of alpha component. Figure 2-2 illustrates
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this. While the Sharpe ratio is widely used, we believe for our work information ratio

is more appropriate.

2.2 Data

2.2.1 Return Data

In our work, we mainly use equity daily return data from CRSP1 .

We examine all 369 companies that were in the S&P500 continuously from 2000 to

2012. This time period contains two major financial crises (2001 and 2008). The set

of companies are from ten sectors: consumer discretionary, consumer staples, energy,

financials, health care, industrials, information technology, materials, telecommuni-

cations services, and utilities.

There is a survivorship bias inherent in this dataset. For example, companies

that entered or left the S&P 500 between 2001 and 2012 are not part of our dataset,

and these companies are likely to be more volatile than the ones included in our

dataset. Therefore, the results of our method (and benchmark methods) will be

overstated. However, in our evaluations we focus on the relative improvement of our

method compared to the benchmark methods. Because our methods are specifically

designed to deal with adverse events, we believe that the survivorship bias leads to

an underestimation of the relative performance of our methods. We discuss this in

Chapter 3.

The data represent a multivariate time series R = {rt,3 }; 1 < t < T, 1 < j 5 m,

made of daily returns of m stocks. We use indexing t for days, and j for equities.

Daily return of an equity j on day T is given by rTJ = (PTJ, - PT-1,D/PT-1,J, where

PT, and PT-1,3 are closing prices of stock j on day T and T - 1.

'CRSP, Center for Research in Security Prices. Graduate School of Business, The University of
Chicago (2004). Used with permission. All rights reserved. www.crsp.uchicago.edu
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2.2.2 News Data

We use the sentiment data from Thomson Reuters, called Thomson Reuters NewsS-

cope dataset. On firm specific news releases collected from more than 60 reporting

sources, Thomson Reuters uses a proprietary natural language processing based algo-

rithm to score the news feeds, and constructs a database of sentiment scores (positive

or negative). Thus, Thomson Reuters NewsScope database assigns a "hard" number

to a "soft" concept of news sentiments.

The algorithm using natural language processing techniques analyses news pro-

vided by more than 60 reporting sources (news agencies, magazines etc) and compares

with an expert built dictionary of about 20,000 words to identify relevant content.

The outcome produced by the algorithm is a set of various (quantitative) indices based

on the presence and the position of the words in the text. Two main indices computed

by the algorithm are the relevance of a news item for the company mentioned, and

the sentiment (positive or negative) of the news reported.

Contents

The dataset contain various types of news feeds: alerts, first-take articles, follow-

ups, append, and overwrites. We only look at the feeds that are alerts or first-

take articles so that we could focus only on the "fresh" news. Figure 2-3 shows the

snapshot of relevant fields in the database. Relevance measures how targeted a news

story is to an equity. For example, a earnings announcement of a company would

have high relevance for that company's stock. Sentiment measures the positive and

negative tone of the article using natural language processing algorithms. An earnings

announcement with disappointing results would have high negative sentiment. Take

sequence indicates the step of the evolution of a news story. A news story evolves

in multiple steps, starting with an alert, followed by one or more updates as news

breaks, and may continue into full length articles. They may also be amendments

and further updates.
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Figure 2-3: Snapshot of the relevant fields in Newscope dataset.

Observations

We look at the feeds corresponding to the 369 companies that were in the S&P 500

from 2005 to 2012. We observe that the daily number of feeds for this set of equities

vary from as low as 0 to as high as 5708 feeds in a day (Figure 2-4). It exhibits,

daily, weekly, and seasonal patterns with few or no feeds on weekends, and increased

activity during the period of earnings announcements. Over all, the number of feeds

increases with time. However, the distribution of news across sectors vary with the

macroeconomic conditions (Figure 2-6). We can also see the increase in the coverage

by observing the number of stocks receiving at least one news release daily (Figure

2-5). Out of 369 companies we considered, the data cover 310 of them. In Figure 2-7

and Figure 2-8, we look at the variations in the market sentiment over the time, and

how its changes corresponding to hour of the day. We observe that the number of

news releases peak in the middle of the day, with another spike just after the closing of

the market. In contrast, there is very little activity before the opening of the market.
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Figure 2-4: Historical distribution of the number of feeds in Newscope dataset. They
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dataset. They range from 0 to 310.
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Figure 2-6: Historical distribution of the number of feeds across sectors in Newscope
dataset. Over all the coverage increased by three fold in the last decade. Note that
during the 2008 crisis, the financial sector received significantly more news feeds than
other sectors.
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Figure 2-8: Hourly distribution of the news releases scored by their positive (blue)
and negative (green) sentiments.
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Chapter 3

LEARNING CONNECTIONS IN TERMS

OF LARGE LOSSES

In this chapter, we consider the task of learning the connections in financial time series

in terms of large losses. We describe a machine learning-based method to build an

alternative to a correlation matrix, called a connectedness matrix, that addresses the

shortcomings of correlation in capturing events such as large losses. Our method uses

an unconstrained optimization to learn this matrix, while ensuring that the resulting

matrix is positive semi-definite. We further present and demonstrate the potential

real world utility of such a method in constructing portfolios. We show that the

portfolios built with our method not only "beat the market," but also outperform

optimal (i.e., minimum variance) portfolios.

3.1 Introduction

It is widely accepted that in designing a portfolio of equities there is a tradeoff to be

made between risk and return. The root cause of the tradeoff is that more volatile

equities typically have higher expected returns. Much of modern financial theory is

based upon the assumption that a portfolio containing a diversified set of equities

can be used to control risk while achieving a good rate of return. The basic idea is

to choose equities that have high expected returns, but are unlikely to move down in
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tandem.

When building a diversified portfolio investors often begin by choosing a minimum

desired expected return as the independent variable. They then formulate portfolio

design as an optimization problem with return as a constraint and variance mini-

mization as the objective function. Central to this optimization is the estimation of a

covariance matrix for the daily returns of the equities in the portfolio. If the investor

cares only about the mean and the variance of the portfolio returns, such formulation

gives the optimal portfolio. This is the idea behind modern portfolio theory.

Different investors have different goals. Some investors, for example, hedge fund

managers, expect high returns, and in exchange, expect to bear corresponding risks.

For such investors, it is critical to control for tail risk, the risk of improbable but

potentially catastrophic negative return events [5, 361. A problem with the previ-

ously mentioned approach is that the covariance matrix uses correlation, which gives

equal weight to positive and negative returns and to small and large returns. This is

inappropriate in a world where risk preference plays an increasingly important role.

Hence, selective as opposed to full diversification is gaining popularity [40, 94]. There

have been works demonstrating the importance of addressing the .improbable but

potentially catastrophic negative return events in designing portfolios [1, 641. Learn-

ing the connectedness between equities in terms of large losses and exploiting this

knowledge in portfolio construction is what this chapter is about.

We present a machine learning-based method to build a connectedness matrix to

address the shortcomings of correlation in capturing large losses, which we refer to as

events. Our method uses an unconstrained optimization to learn this matrix, while

ensuring that the resulting matrix is positive semi-definite. We further present and

demonstrate the potential real world utility of a method that constructs portfolios

using the learned relationships. We show that this matrix can be used to build

portfolios that not only "beat the market," but also outperform traditional "optimal"

(i.e., minimum variance) portfolios.
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3.2 Related Work

We begin by discussing methods that have been used to study various correlation

measures among returns. We then move on to discuss work specific to understanding

the connections of extreme returns.

3.2.1 Correlation and Partial Correlation

If one knows the correlation of equity e with all other equities, one can estimate the

expected return of e as a weighted average over known returns of other equities.

Correlation measures give equal weight to small and large returns, and therefore

the differential impact of large returns (both positive and negative) may be hidden.

To address this, researchers have proposed conditional correlations to focus on

certain segments such as returns outside a standard deviation [92]. However, it has

been shown that conditional correlation of multivariate normal returns will always

be less than the true correlation. For example, if two time series of zero mean and

unit standard deviation have correlation 0.5, semi-correlation of only positive returns

drops to 0.33, for returns larger than one standard deviation correlation drops to

0.25, and for returns larger than two standard deviation correlation drops to 0.19.

Conditional correlation goes to zero for extreme returns. This effect also exists when a

GARCH model generates the returns [57]. Therefore, conditional correlation is likely

to understate the connectedness between equities based on extreme returns.

Longin (1999) provides a formal statistical method, based on extreme value theory,

to model the correlation of large returns [57]. First, the authors model the tails of

marginal distributions using generalized Pareto distribution (GPD) [17]. Then, they

learn the dependence structure between two univariate distributions of extreme values.

Thus, they express joint distribution in terms of univariate marginal distribution

functions. This dependence structure between the variables is known as a copula.

There has been research done on extreme value distributions [63, 26] and extreme

value correlation measures [58, 77]. Semi-parametric models have since been proposed

to address the inflexibilities of such parametric models [11].
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A downside of these methods is that the linkage is learned between two time series

independently of the rest of the time series in the multivariate time series.

Partial correlation measures the degree of association between two time series

while discounting the influence of other time series in the multivariate time series.

Thus, it removes the transitive connections. It is calculated by fitting a regression

model for each of these two time series on the rest. The correlation between the

residuals of these regression models gives the partial correlation [47]. But, partial

correlation doesn't distinguish extreme values.

3.2.2 Understanding Connections on Extreme Returns

Correlation between stocks has traditionally been used when measuring co-movements

of prices, and discovering contagion in financial markets [80, 5]. Researchers have used

partial correlations to build correlation-based networks. These networks are then used

to identify the dominant stocks that drive the correlations present among stocks [48].

Bae (2003) distinguishes extreme returns in establishing the linkages between fi-

nancial time series [5]. It captures the transmission of financial shocks to answer

questions such as how likely is it that two Latin American countries will have extreme

returns on a day given that two countries in Asia have extreme returns on that or

the preceding day. There has been extensive research on multivariate extreme values

[24, 73]. Chen (2007) provides a method to model the temporal sequence associations

for rare events [20]. Arnold (2007) examines algorithms that, loosely speaking, fall

under the category of graphical Granger methods, such as model selection method-

ologies, Lasso, sparsification, and structured learning to predict the co-occurrences of

events in time series [4].

There have been works on using constraints on downside risk and value-at-risk

based optimizations to minimize the effect of event risks in portfolio constructions

[8, 44]. Following these works, Poon (2004) presents a framework based on joint-

tail distribution. It shows that the extremal dependence structure on the joint-tail

distribution helps build a better portfolio selection and risk assessment on five major

indexes [77].
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3.3 Method

In this section, we first formally define our task and describe the evaluation methods.

Thereafter, we describe an algorithm for learning the connections, and detail how it

could be used to build connectedness matrix.

3.3.1 Problem Formulation

We formulate the learning problem as given a set of equities A on a given day, some

of which had events and some of which didn't, which equities in a disjoint set B,

are mostly to experience an event on the same day as those in A. In our model, we

update the weights daily and predict the returns for the following day. We rank the

equities in B using the predicted returns.

It may seem that this is useless, because by the time we have the returns for

equities in A, we would already know the returns for equities in B. However, the goal

of this phase is not to learn to predict events, but to learn historical relationships

among equities. This learned relationship will then be used to construct a portfolio

containing assets that are less likely to have correlated events in the future.

We evaluate the accuracy of our method in producing a list of equities ordered

by their likelihoods of having large losses, given information about the behavior of

other equities. We compare this list against the true occurrences of events using mean

average precision (MAP) scores.

Later, we present and demonstrate the potential real world utility of using the

learned relationships in constructing portfolios. The performance of portfolios con-

structed using our methods are then compared to the performance of portfolios

constructed using conventional approaches, including traditional correlation-matrix

based methods.

3.3.2 Model

We use a factor model to describe the daily return of each equity in terms of the

equity's active return, market sensitivity, and the daily returns of other equities in the
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sector (e.g., financial or energy) to which that equity belongs. We learn these factors

using a recursive regression. We train the regression model on the historical data

using regularized least squares and estimate the parameters using gradient descent. In

contrast to methods that quantify the connectedness between equities using pairwise

relationships, our method accounts for interactions with all other equities in the set.

Since extreme events are rare, we use all of the historical data rather than just events.

We use a cost function that differentially weights returns of different magnitudes.

Thus we provide a model-independent approach to prioritize the connections on large

losses.

If the closing prices of equity j on day T and T - 1 are pT,j and PT-1,J, the return

for equity j on day T is given by rTJ = (PTJ, - PT-1,J)PT-1,j. On day T + 1, we are

given historical daily returns for m equities in a T x m matrix R = {rtj}; 1 < t <

T, 1 < j < m. We use indexing t for days, and j, k for equities. When rtj < -0.1 (a

10% loss), we say that equity j had an event on day t.

We assume that daily returns (rows of R) are independent. This is because, while

daily returns are generally believed to be heteroskedastic [981, we focus only on large

returns that are rare. We use regularization to tackle over fitting. The regularization

parameter A is determined by cross validation.

Factor model representation of returns is common in finance and econometrics

[57, 491. We model the return of equity k on day t by

rt,k = ak+ bkrt,A + wJ,k(rtj - dt,) (3-1)
j=1:m;jfk

In this model, we explicitly learn the factors for equity k: the equity's active return

ak, the equity's sensitivity to the market bk, and the equity's connectedness with

other equities Wj,k, where 1 < j !i m; j $ k. We represent the market return with

the S&P500 index return (rt,A) that averages the returns of all the equities on a given

day.

We use least squares minimization to estimate the weights. We find that better

performance is achieved, when we capture the differential impact of certain values by
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weighting with a cost function f(x). We discuss the choice of cost function in Section

3.4.3.

min f (rtkrt,k - rt (3.2)
a*,b*,W* l: k)rk k)

k=1:m

We can efficiently compute model parameters (9 = {(ak, bk, Wj,k Ii 1 k < m,1 <

j 5 m, j # k}) by estimating the inner products. However, estimating the weights

directly on the observed data is prone to overfitting [9]. Therefore, we learn the

parameters by solving the following regularized least squares problem:

min f(rt,k)(rt, - rt,k)2 + A(a2 + b2 + w12) (3.3)
a*,b*,W*t=:T

k=1:m

We use gradient descent to minimize the regularized square errors. For each

rt,k E R, we update the parameters by:

ak +-ak + r7(et,k - A.ak)

bk +-bk + 77i(et,k - r,- A - bk)

WJ,k +-Wji + 77(et,k(rt3 - dtj - A. Wj,k) Vj k

def

Here, q is the learning rate that is dynamically adjusted using line search, and et,=

f(rt,k)(rt,k - rt,k). We use the last 500 days in the historical data to train our model.

We iterate 100 times for the initial estimate of the parameters. The model is updated

daily to make predictions for the next day. Since this new training set differs from

the previous one for only two days, convergence is achieved within a few iterations.

3.3.3 Similarity to Other Methods

In our model (Equation 3.1), we represent the relationship between the returns of

equities after discounting their interactions with the market. In the factor model, we

simultaneously fit the regression model and learn the correlation weights. Thus, the

interpolation weights Wj,k resemble partial correlation estimates. Further, regulariza-

tion is employed in our model to reduce the likelihood of spurious estimates.
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For a matrix X, a column vector Y, and a regression problem expressed as Xw =

Y, an explicit solution, denoted by W^ is given by: W = (XTX)-XTY. If the variables

are mean adjusted, E is the covariance of X, and C is the covariance between Y and

each column of X, it can be rewritten as, w = E 3C. In Equation 3.1, we can

observe the similarity between these variables (X and Y) and adjusted returns, i.e.,

Yt ; (rt,k - dt,k), and xtj ~ (rt,j - dt,j). The connectedness matrix G, built from the

interpolation weights, models the pairwise connection between the adjusted returns

of two equities while discounting the connectedness among all other equities.

According to Peng (2009), for a covariance matrix E of random variables (yi,..., y,)

and corresponding concentration matrix E- = {oxi},x,, partial correlation between

yi and yj is given by p"3 = ~43. Then, it can be shown that for 1 i < p,

yi= Z , Iijyj + ci, such that qi is uncorrelated with yi if and only if fi3 = p' i.a

Then, under the loss function -!(E ol IYi - jg /i 1 112) + A|IP|12 and # j =

pti ! we can obtain regularized estimates for partial correlation [74]. Then, p =

sign(ij)f/ijT = 9pi, and therefore /i3 converges to p'j. Regression weights fi3

resemble the regression weights of our model.

A matrix Gob, that represents an observed network, whose diagonal is set to zero

and whose non-diagonal entries represent the weighted links in the network, can be

written in terms of direct network paths in Gdi, and indirect effects G2i., G3i,... by

GOb8 = Gdir + G.ir + ... = Gdir(I - Gdir) 1 . The network deconvolution allows us to

remove the transitive effects and recover the direct paths from the observed network

by Gdir = Gobs(I + Gob)-' [341. We note the similarity between (1 + Gon,)-1 in this

approach and (A - I + E)-1 in our approach.

3.3.4 Connectedness Matrix

In portfolio construction, connectedness between equities is used to find less correlated

assets. Generally, a covariance matrix C is used to find the optimal diversification,

i.e., minimum variance portfolio. In contrast, we use the connectedness matrix G in

place of the correlation estimates that make up C. Here, G is learned using our factor
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Table 3.1: Connectedness matrix construction

I ... 3 M

1 1 ... W1,j ... W1,m

JWji ... 1 .. Wj'm

M Wm,1 ... WM~j ... 1

model. We assume that the portfolio is built with m equities that belong to a sector.

We build the connectedness matrix G E Rmx" from the interpolation weights of

the factor model. A direct way of doing this from the weights learned via our factor

model is given in Table 3.1.

Such a matrix should be positive semi-definite to be used in portfolio optimization

involving quadratic programming. Since any positive semi-definite matrix G can be

decomposed into ppT, where P E Rmx'm, we reformulate Equations 3.1 and 3.3 as:

rt,k = ak + E Pk,vPA,vrt,A -- P+,P,(,(rt,j - dtj) (3.4a)
V jjk

dt,k

min f ,(rtrtk - 2t,k) + A(a2 + 1p12) (3.4b)
a*,P* tIT k r~

k=1:m

We begin the training by initializing P to P, where P is the Cholesky factorization

of the covariance matrix C, i.e., C = PPT. We compute the covariance matrix C

on historical data. For each rt,k E R, we update P and ak by moving against the

gradient. For 1 < j 5 m; j # k, and 1 <v < m, the updates are:
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Tt,j = rtj - dtj

Pk,v +- Pk,v + ?(et,k(PA,v - rt,A + E Pj,vTtj,) - A - Pk,v)
j3k

Pj,v Pj,v + r(et,k Pk,vrt,j - A - Pj,v)

PA,v +~PA,v + rl(et,k Pkv tA- A -PA,v)

ak a- & + r)(et,k - A - k)

Comparison to Covariance Matrix

In portfolio construction, the minimum variance formulation is typically used to find

the optimal portfolio (in terms of mean and variance of portfolio returns). The re-

sulting portfolio provides the minimum expected variance of returns such that the

expected mean return is at least the desired return. This formulation uses covari-

ance estimates in the optimization function. In contrast, the constituents of the

connectedness matrix are related to partial correlation estimates, which in turn have

interpretation in terms of inverse covariance estimates [471. The inverse covariance

estimates capture the pairwise dependencies, or more precisely, the direct relation-

ships between two equities. In contrast, covariance estimates capture both direct and

indirect (i.e., transitive connections). We hypothesize that the direct estimates will

be less noisy and more representative of the future than the indirect estimates (or the

combination of them). Thus, we expect a portfolio constructed using the direct esti-

mates (connectedness matrix) to perform better than the one using the combination

of both direct and indirect estimates (covariance matrix).

3.4 Evaluation

We evaluate our method in two ways. First, we evaluate its accuracy in producing a

list of equities ordered by their likelihoods of having large losses, given information
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about the behavior of other equities. We then present and demonstrate the potential

real world utility of a method that constructs portfolios using the learned relation-

ships. The performance of portfolios constructed using our methods are compared to

the performance of portfolios constructed using conventional approaches, including

traditional correlation-matrix based methods.

3.4.1 Data

We use daily return data from CRSP'. We examine all 369 companies that were in

the S&P500 from 2000 to 2012. This time period contains two major financial crises

(2001 and 2008). The set of companies are from ten sectors: consumer discretionary,

consumer staples, energy, financials, health care, industrials, information technology,

materials, telecommunications services, and utilities.

3.4.2 Top-K Ranking

Given all returns for days 1 to T and returns on day T+ 1 for equities in A, we predict

which equities from B will have events (losses greater than 10% on day T + 1). We

produce an ordered list of equities from B, ranked by their likelihoods of having events

on day T + 1 based on their predicted returns rT+1-

We use cost function f(x) to capture the differential impact of certain ranges of

returns. The flexibility in choosing the cost functions allows us to optimize different

aspects of the problem. Although arbitrary, for this experiment, we defined the event

as r < -0.1. The predictive model will have the maximum ambiguity of whether

an event occurred or not around the boundary (i.e., at r^ = 0.1). Therefore, in

order to achieve higher accuracy in predicting returns around r = -0.1, we use

f(x) = e-(x-ro)2 /0.01; ro = -0.1 in Equation 3.2. This helps us achieve high MAP

scores in producing the ordered list of equities that are likely to have events at -10%

level. We discuss the choice of cost function in Section 3.4.3.

'CRSP, Center for Research in Security Prices. Graduate School of Business, The University of
Chicago (2004). Used with permission. All rights reserved. www. crsp. uchicago. edu
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Evaluation

We use mean average precision (MAP) to evaluate the correctness of the ordered list.

Average precision (AP) is a popular measure that is used to evaluate an ordered list

while taking into account both recall and precision [100]. MAP is the mean of average

precision across a test set. For an ordered list of top-k items, MAP and AP are given

by:

k

AP(k) = >p(j)Ar(j) (3.5)
j=1

n

MAP(k) = Z AP(k)/n (3.6)
i=1

Here, n is the size of the test set, p(j) is the precision at cut-off j, and Ar(j) is the

change in the recall from j - 1 to j. We produce a top-10 list, and evaluate with

MAP(10).

Benchmark Methods

We compare the performance of our method with the following alternatives.

" Correlation(CR): Standard implementation.

" Partial correlation(PCR): Standard implementation.

" Extreme value correlation (EVCR): First, we apply a GARCH model to remove

serial dependencies, if there are any. Then, we fit a univariate generalized

Pareto distribution with tail fraction 0.1 on the innovations of the GARCH

model. Finally, we model the multivariate distribution with a t-Copula, and

learn the linear correlations on extreme values [21].

Experimental Results

Since diversification inevitably involves using equities from multiple sectors, we fo-

cused on the question of which equities are connected within sectors. Our problem
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formulation is that given a set of equities A on a given day, some of which had events

and some of which didn't, which equities in a disjoint set B, are mostly to experience

an event on the same day as those in A. We randomly select 20% of the companies

in each sector for set B, and use the rest for set A. For each day, we train our factor

model and learn the weights on last 500 days of historical data (consist of both A and

B), and produce an ordered list of equities from B according to their likelihoods of

having an event on that day. We run our experiments from 2000 to 2012. We evaluate

our methods only on days that had at least two events. Three sectors had less than

5 such days in the decade considered, and therefore are excluded in the experiments.

Across all the sectors, there are 539 days that had two events out of 3019 days in the

full dataset. We repeat this experiment 100 times for different A and B.

Table 3.2: MAP scores for different methods.

SECTORS I FAC CR PCR EVCR

CONSUMER DIsc. 0.73 t0.093 0.34 0.08 0.45 +0.119 0.32 +0.07
ENERGY 0.75 +0.049 0.64 +0.069 0.72 +0.064 0.62 0.066
FINANCIALS 0.64 0.05 0.45 +0.072 0.58 +0.059 0.49 +0.07
HEALTH CARE 0.65 0.176 0.4 +0.127 0.54 +0.217 0.33 +0.142
INDUSTRIALS 0.64 0.123 0.37 +0.104 0.46 +0.095 0.37 +0.092
INFORMATION TECH. 0.58 +0.07 0.39 +0.058 0.49 +0.065 0.4 +0.066
MATERIALS 0.84 +0.095 0.68 +0.114 0.77 +0.116 0.66 +0.127

Table 3.2 compares the MAP scores (higher is better) for our factor model (FAC)

with the scores for the benchmark methods: correlation (CR), partial correlation

(PCR), and correlation of extreme values (EVCR). The results are averaged over 100

runs for each sector. The best result for each sector is in bold face. Results for FAC

are statistically different (p-value < 0.001) from the results of every other method

under a paired t-test.

Our factor model consistently outperforms the other methods. EVCR often un-

derperforms PCR, and at times, CR. We conjecture that the inflexibility of the para-

metric modeling of the tails and not considering the relationship between non-extreme

values contribute to this failure. The poor performance of EVCR is striking because

t-copula is widely used in financial risk assessment, especially in the pricing of collat-

49



Table 3.3: MAP scores for different sizes of unknown set B.

SECTORS 10% 20% 40%

CONSUMER Disc. 0.77 0.73 0.53
ENERGY 0.86 0.75 0.65
FINANCIALS 0.76 0.64 0.49
HEALTH CARE 0.82 0.65 0.52
INDUSTRIALS 0.77 0.64 0.47
INFORMATION TECH. 0.71 0.58 0.43
MATERIALS 0.92 0.84 0.76

eralized debt obligations (CDO) [65, 59].

Table 3.3 compares the MAP scores for different sizes of known and unknown sets.

We change the size of B as a fraction of the total number of companies available, using

10%, 20%, and 40%. Set A contains the rest. Even when we use the information from

only 60% of the companies and to rank the equities in the other 40%, our method

remains effective. Notice that FAC for a known set of 60% of the data outperforms

other methods for known set 80% of the data.

Case study: Bank of America

Though univariate time series of daily equity returns lack significant autocorrelation

and stationarity, multivariate time series of returns exhibits consistent correlation

among themselves and with the market that persist over time (Figure 3-1). This

characteristic is the fundamental behind portfolio diversification [16, 46, 48]. As an

example, we look at an S&P500 constituent, Bank of America (BAC).

Between 2001 and 2011, BAC had 29 events, i.e., daily losses of at least 10%.

Figure 3-2 shows the change in the parameters learned using the factor model for

BAC. Notice that the market dependence (beta) rises after the 2008/9 crisis peaking

at about 160% of that in 2001, while the inherent return (alpha) falls to -220% of

that in 2001. Further, the "herding effect," as given by the spread in the weights,

widens during the crisis of 2008/9. While BAC's average connectedness changes only

by a small amount, the spread gets significantly larger. This indicates that BAC

becomes heavily connected to a smaller set of other equities in the financial sector.
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Figure 3-1: (a) Daily returns of Bank of America (BAC) and S&P500 Index (SPX)
from year 2000 through 2011. (b) Distribution of the daily returns of Bank of America
(BAC) and S&P500 Index (SPX) from the same period. (c) Correlations between
BAC and SPX from year 2000 through 2012 computed on a sliding window of 200
days. (d) Conditional distributions of daily returns of BAC when SPX is positive

(and negative) from the same period. Conditional distributions differ significantly
from each other on tails.
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Figure 3-2: Connectedness estimated by the factor model for BAC: (a) Active re-

turn a, and market sensitivity b for BAC (Equation 3.1).(b) Mean and one standard
deviation range of the correlation weights Wj,k between BAC and neighbors.
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3.4.3 Portfolio Construction

The major application of our method is the reduction of large losses in equity port-

folios. Since there is a tradeoff between risk and expected return, portfolio design

usually starts by the investor choosing a desired level of expected return (or a risk

tolerance). For a given desired expected return re, in the absence of any side infor-

mation, the minimum variance portfolio (MVP) is the optimal portfolio [62J. For the

MVP, portfolio weights w are derived by solving the optimization problem:

min1 w C (3.7)
S2

subject to r'iywi > re
j=1

m+1

wj= 1;0 wj 5 1, = 1,..., m
j=1

Here, C is the covariance matrix of returns, and rj is the expected return of equity

j. Typically, the covariance and the expected return are calculated from historical

data. Here, we assume fixed capital (no leverage), no short positions, monthly (every

20 days) readjusted portfolio weights, and we ignore the costs of transactions.

When a portfolio is heavily diversified, the expected return is smaller. In our

formulation the desired expected return re governs the amount of diversification. The

range of achievable values for re is the minimum and maximum of the expected returns

of the equities. Maximum expected return is achieved by owning the equity with the

highest historical return. Minimum risk relative to the market is achieved by owning

everything in that market.

Our method of minimizing the co-occurrences of large losses is beneficial when

the portfolio is not significantly diversified, e.g., to increase the expected return. It

has been shown that 90% of the maximum benefit of diversification is achieved with

portfolios containing roughly 5% of the market constituents [791. This led us to set

re to the 9 5 th percentile of the expected returns of the equities. This setting causes

the optimization to choose about 3 - 5 equities per sector (5% to 10%).
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We demonstrate our method's utility by building portfolios with our connectedness

matrix G (Section 3.3.4), and compare their performance to portfolios built using

methods drawn from the financial literature. For the factor model, we use an approach

similar to the traditional MVP except we replace the correlation estimates in C with

connectedness matrix G and fj with active return a3 . We learn both G and aj using

our factor model. We use the same optimization as MVP, i.e., Equation 4.8. Here,

we consider long-only portfolios, and therefore we would like to minimize the co-

occurrences of large negative returns. We use f(x) = e-x/ in Equation 3.2. In

Section 3.4.3, we discuss the choice of cost function in detail.

1. FACO.1 is the factor model with cost function f(x) = e-/0. applied. This

model heavily focuses on minimizing the co-occurrences of large losses. This

risk avoidance results in smaller overall return compared to FACIO.

2. FAC10 is the factor model with cost function f(x) = e-/10 applied. It captures

the connections by focusing mainly on negative returns. It produces significantly

larger overall returns, at the cost of larger worst case daily losses.

The cost functions for both FACO.1 and FAC10 are normalized by their maximums,

i.e., f(x) f-maxf (x)~

Benchmark Methods

We compare the performance of our method in building sector wide portfolios with

the following alternatives.

" COV: This is our baseline MVP portfolio that is built using the estimated

covariance matrix C. This is the conventional approach.

" PCR: Partial correlation is substituted for correlation in estimating C.

* EVCR: Extreme value correlation is substituted for correlation in estimating C.

Later, when we evaluate the performance on market wide portfolios, we also con-

sider the following benchmark portfolios to characterize the performance of our ap-

proach.
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" EW: Equi-weighted portfolio, where the portfolio is rebalanced to equal weights.

This portfolio incurs large turnovers. Therefore, in practice it is hard to im-

plement. While this portfolio has been shown to possess good theoretical per-

formance, i.e., extremely low volatility with high returns, large turnover will

negate most of the returns via transaction costs.

* MV: Portfolio where the optimization minimizes conditional value at risk (CVaR)

at 5% level [811. CVaR, also known as expected shortfall, measures the likeli-

hood (at a specific confidence level) that a specific loss will exceed the value at

risk. For instance, CVaR at 5% level gives the expected return on the portfolio

in the worst 5% of the cases 181].

" SPX: S&P500 index.

Results

Table 3.4 summarizes the return characteristics for the three sectors with the most

events. We re-weight the portfolio monthly, and estimate the returns daily. We use

the following criteria to evaluate the performance of the portfolios.

* Largest loss in a day: Given by min(rt).

* The expected shortfall (also known as CVaR) at 5% level gives the expected

return on the portfolio in the worst 5% of the cases [81].

* Max drawdown: Maximum drawdown is the largest peak-to-subsequent-trough

decline in cumulative return. It is given by M = min fit .(rt + 1) - 1.
1<i<j;T

" Annualized return: This is the overall return from year 2001 to 2012, i.e., RT

on December 31, 2012. Cumulative return RT from day 1 to day T is given by

RT = HT 1 (rt + 1) - 1. We quote annualized total return (i.e., (RT + 1)1/11 - 1)

in our results.

* Information ratio: Information ratio measures the excess return for additional

risks taken [85]. It is given by I = E(r -rA)/var(r - rA), where r is the daily
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return of the portfolio and rA is the reference return (return on the S&P500 in-

dex). We quote annualized information ratio (i.e., IV 5 2) in our results. A

positive information ratio implies that excess return is greater than the addi-

tional risk taken.

* Sharpe ratio: The Sharpe ratio measures the risk-adjusted return [85]. It is

given by S = E(r - rf)//var(r) where rf is the risk free return (assumed to be

1% annually). We quote annualized Sharpe ratio (i.e., SV2-5) in our results.

Table 3.4 shows that by learning the connectedness between equities, our portfolios

cannot only beat the market (positive information ratio), but also beat the optimal

(minimum-variance) portfolios. We note that FAC0 .1 reduces large losses better than

FAC10 , and FAC10 achieves better overall returns than FAC0 .1 as intended.

Table 3.4: Characteristics of portfolio returns

MEASURES ENERGY HEALTH CARE MATERIALS

COV FAC0 .1 FAC10 COV FAC. 1 FAC10 COV FAC0 .1 FAC10

LARGEST LOSS IN A DAY -0.23 -0.16 -0.22 -0.11 -0.08 -0.11 -0.19 -0.12 -0.19
EXPECTED SHORTFALL (5%) -0.05 -0.04 -0.06 -0.04 -0.03 -0.04 -0.06 -0.04 -0.06
MAx DRAWDOWN -0.75 -0.62 -0.72 -0.55 -0.46 -0.53 -0.81 -0.66 -0.82
ANNUALIZED RETURN 0.16 0.16 0.2 0.21 0.13 0.25 0.22 0.12 0.22
INFORMATION RATIO 0.57 0.65 0.67 0.81 0.57 0.96 0.73 0.62 0.75
SHARPE RATIO 0.52 0.56 0.59 0.77 0.62 0.86 0.61 0.48 0.62

Figure 3-3 shows the impact of our method on returns in the energy sector. Until

the 2008 crisis, because the energy sector remained calm, our FAC model performed

comparably to COV. Note that 2001 crisis, unlike 2008 crisis, was limited to few

sectors not including energy. After the collapse in May 2008, our model began learning

new connectivities related to large negative returns and was able to reduce large losses

(Figure 3-3(a)) late that year and going forward. It took about a year to learn the

new model, but it persisted long enough to be useful. Figure 3-3(b) demonstrates

the effectiveness of our method in making the large negative returns smaller without

significantly affecting positive and small negative returns. The largest daily loss

dropped 31%, i.e., from 22.6% to 15.6%.

Figure 3-4 shows the equity weights learned using the connectedness matrix for the

energy sector. Until August 2008, our factor model based portfolio consistently fo-
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Figure 3-3: Cumulative returns (a) of FACo, and daily returns (b) of FACO.1 against
that of COV for the energy sector. In figure (b), positive returns with COV are
highlighted with the darker color. Size of the points correspond to the absolute values
of the returns with COV. Returns above the line correspond to an improvement with
FACO.1 . A clockwise shift that is more prominent in the negative side (lighter region)
is noticeable.
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cused on two equities in the energy sector: Occidental Petroleum Corporation (OXY)

and Sunoco (SUN). In the aftermath of the 2008 crisis, our model increases the di-

versification. Following that, the portfolio changed the focus to equities like Exxon

Mobil Corporation (XOM) so that it wouldn't miss the opportunities that became

available during the recovery.

VLO .
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SUN -0.7

RRC

RDC O0.6

N 0.5
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EOG 0.3
DVN
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Figure 3-4: Heat map of the weights of the equities for the portfolios built for the
energy sector.

Next, we build a market wide portfolio by combining the portfolios built for each

sector weighted equally. Since, this design provide more diversification (via distribut-

ing across sectors) we set the desired return re to the 9 8 th percentile of the expected

returns of the equities. We compare our method with COV, PCR and EVCR. We

also compare these "MVP-like" portfolios with other benchmark portfolios. In Ta-

ble 3.5 we demonstrate the effectiveness of our model in constructing a market wide

portfolio. FAC0. 1 achieves an annualized information ratio of 1.4. It is significant

that, the portfolio built with our method outperforms the "hard-to-beat" (and hard

to implement) equal-weighted portfolio [76] in terms of annualized return and Sharpe

ratio.
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Table 3.5: Market wide portfolios.

MEASURES j FACO.1 COV PCR EVCR EW MV SPX

WORST DAY -0.09 -0.15 -0.14 -0.15 -0.11 -0.11 -0.09
EXPECTED SHORTFALL(5%) -0.03 -0.04 -0.04 -0.04 -0.03 -0.04 -0.03
MAx DRAWDOWN -0.54 -0.67 -0.68 -0.6 -0.61 -0.65 -1.07
ANNUALIZED RETURN 0.18 0.17 0.17 0.16 0.14 0.15 -0.01
INFORMATION RATIO 1.06 0.91 0.88 0.85 1.68 1.5 N/A
SHARPE RATIO 0.71 0.63 0.61 0.6 0.6 0.61 0.1

Temporal Evolution

In this section, we look at the temporal evolution of the connectedness matrix. Figure

3-5 shows the heat map of correlation matrices and connectedness matrices from year

2002 to 2012.

In correlation matrices, we observe that the density of the connections drops

from 2002-2003 to 2006-2007, and then increases dramatically over next two years.

In connectedness matrices, we observe that the density of the connections steadily

increases until 2006, drops slightly for 2006-2007, and then increases again for the

next two years before coming down in 2012. We can attribute this pattern to the

market crises of 2001 and 2008.

Unlike the 2008 crisis, the 2001 crisis didn't extend outside certain sectors, partic-

ularly to the energy sector. Increased density observed in the co'relation matrix for

the energy sector is probably due to the market dependence (equities become more

dependent on- the market during the times of crises) rather than direct relationships

among equities. Because the connectedness matrix captures only direct relationships

it avoids this issue. Unlike correlation matrices, connectedness matrices show an

increasing trend in the density of connections from 2004 - 2008, indicting that the

clusters of stocks in energy sector becoming connected, i.e., there is increased likeli-

hood of experiencing co-occurrences of large losses. It is this information that help

us minimize the co-occurrences of large losses as shown in Figure 3-3.
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(a) Temporal Evolution of correlation matrix
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Figure 3-5: Correlation matrix (a) and connectedness matrix (b) computed on a 500
day window spanning two years for Energy sector. Enlarged view for 2007-2008 with
the names of the stocks labeled in (c) - (d).
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Cost Function

When learning the weights for the factor model using least squares minimization, we

use a cost function f(x) to capture the differential impact of certain ranges of returns

(Equation 3.2). The flexibility in choosing the cost functions allows us to optimize

different aspects of the problem.

For top-k ranking evaluation (Section 3.4.2), we define events at or below -10%

daily return. There, in order to achieve higher accuracy, we use f(x) e-(X- ; re =

-0.1, because the maximum ambiguity is at the boundary.

For the portfolio construction task (Section 3.4.3), we consider long-only portfo-

lios. There, in order to minimize the co-occurrences of large negative returns, we use

f (x) = e-xh. Table 3.6 summarizes the characteristics of the corresponding portfolio

returns for the energy sector.

Table 3.6: Portfolio returns

MEASURES COV FAC
7=0.1 7=10

LARGEST LOSS IN A DAY -0.23 -0.16 -0.22

EXPECTED SHORTFALL (5%) -0.05 -0.04 -0.06
MAx DRAWDOWN -0.75 -0.62 -0.72
ANNUALIZED RETURN 0.16 0.16 0.2
INFORMATION RATIO 0.57 0.65 0.67
SHARPE RATIO 0.52 0.56 0.59

We observe that with decreasing -y, the cost function becomes steeper, results in

higher penalty for the squared differences (i.e., tighter fit) around large losses, and

the model focuses more on minimizing the co-occurrences of large losses. This risk

avoidance results in smaller overall return compared to the ones with larger Y.

As we stated earlier, an important aspect of our method is that it finds a balance

between learning infrequent (but important) connections that are based on large

loses and learning connections based on other daily returns. Thus, the portfolio

built with our method achieves high risk adjusted returns and demonstrates that risk

management can be a source of alpha. In contrast, the methods that solely focus on

capturing rare events [25] and co-occurrences of rare events [771 (as represented by
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EVCR in our experiments) miss out of common day occurrences.

Reducing Survivorship Bias and Generalizability -

We built our model and evaluated the portfolio performances using the data for

equities that were in the S&P 500 continuously from 2001 to 2012. In this section we

address two concerns: the survivorship bias that is inherent in the dataset we used

and the generalizability of our model. Because of the survivorship bias the results are

overstated for our method and benchmark models. For example, companies that left

the S&P 500 between 2001 and 2012 are not part of our dataset, and these companies

are likely to be more volatile than the ones included in our dataset.

In this section, we consider the full set of S&P 500 equities, i.e., when constructing

a portfolio, we consider all the equities that exist in the S&P 500 list continuously

throughout each training time period. The number of equities considered ranges from

415 to 477 in this set. This selection is free of survivorship bias. Next, in order to

study the generalizability of our model parameters, we also consider the full set of

S&P Smallcap 600 equities. The number of equities considered ranges from 404 to

512 in this set. Further, we also test our method on the data from both datasets for

2013.

We use the data from CRSP. We perform the portfolio construction described in

Section 3.4.3. We use the same cost function and hyper parameters from the previous

experiment.

Table 3.7 shows the impact of the survivorship bias on S&P 500 dataset. We ob-

serve that with survivorship bias removed annualized return drops from 18% to 13%.

Note, however, that the relative improvement achieved by our method is greater on

the data with survivorship bias addressed. For instance, the increase in the informa-

tion ratio is dramatic.

Table 3.8 compares the return characteristics on the S&P 500 dataset and the

S&P 600 Smallcap dataset. On both datasets, FAC0 .1 achieves the best annualized

returns while minimizing the risk. On the S&P Smallcap 600 dataset, COV and

PCR achieve smaller annualized returns compared to that on the S&P 500 dataset,
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Table 3.7: Impact of survivorship bias on Market wide portfolios: 2001-2012.

WITH SURVIVORSHIP BIAS No SURVIVORSHIP BIAS
MEASURES FAC. 1 COV PCR FACO. 1 COV PCR SPX

WORST DAY -0.09 -0.15 -0.14 -0.08 -0.09 -0.09 -0.09
EXPECTED SHORTFALL(5%) -0.03 -0.04 -0.04 -0.02 -0.03 -0.03 -0.03
MAx DRAWDOWN -0.54 -0.67 -0.68 -0.54 -0.71 -0.75 -1.07
ANNUALIZED RETURN 0.18 0.17 0.17 0.13 0.09 0.09 -0.01
INFORMATION RATIO 1.06 0.91 0.88 1.25 0.73 0.75 N/A
SHARPE RATIO 0.71 0.63 0.61 0.67 0.45 0.44 0.1

despite the fact that the S&P 600 Smallcap index (IJR) outperforms the S&P 500

index (SPX). This is probably due to historical estimates being better indicators of

future returns for the S&P 500 equities compared to the S&P 600 Smallcap equities.

However, we don't have a good explanation for why COV and PCR perform poorly

compared to the index on S&P 600 Smallcap dataset. Our method achieves 14%

annualized return on the S&P Smallcap 600 compared to 13% on the S&P 500. We

attribute the improvement in annualized returns and risk measures on both datasets

for our method to the explicit modeling of excess returns (alpha) and connections

based on co-occurrences of large returns in our model.

Table 3.8: Market wide portfolios: 2001-2012.

S&P 500 S&P 600 SMALLCAP
MEASURES FAC0 .1 COV PCR SPX FAC0 .1 COV PCR IJR1

WORST DAY -0.08 -0.09 -0.09 -0.09 -0.1 -0.1 -0.1 -0.11
EXPECTED SHORTFALL(5%) -0.02 -0.03 -0.03 -0.03 -0.03 -0.04 -0.04 -0.04
MAx DRAWDOWN -0.54 -0.71 -0.75 -1.07 -0.55 -0.86 -0.87 -0.73
ANNUALIZED RETURN 0.13 0.09 0.09 -0.01 0.14 0.03 0.03 0.1
INFORMATION RATIO 1.25 0.73 0.75 N/A 0.84 0.23 0.24 0.81
SHARPE RATIO 0.67 0.45 0.44 0.1 0.59 0.22 0.22 0.46

Next, we perform the portfolio construction for year 2013 on both datasets. Ta-

ble 3.9 summarizes the return characteristics. All three methods achieve annualized

returns as high as 30%. Note that 2013 was a particularly good year for the stock

market, the S&P 500 index returned 29%. Yet, our method outperforms the alterna-

tives with 49% annualized return on the S&P 500 equities and 34% annualized return

on the S&P Smallcap 600 equities.

'iShares S&P 600 Smallcap index fund.
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Table 3.9: Market wide portfolios: 2013.

S&P 500 S&P 600 SMALLCAP

MEASURES FACo.1 COV PCR SPX FACo.1 COV PCR IJR 1

WORST DAY -0.02 -0.03 -0.03 -0.03 -0.03 -0.4 -0.4 -0.03
EXPECTED SHORTFALL(5%) -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02
MAx DRAWDOWN -0.08 -0.13 -0.14 -0.1 -0.12 -0.11 -0.12 -0.09
ANNUALIZED RETURN 0.49 0.35 0.36 0.29 0.34 0.3 0.3 0.03
INFORMATION RATIO 2.66 0.75 0.8 N/A 0.37 0.15 0.12 1.39
SHARPE RATIO 3.33 2.28 2.29 2.37 2.01 1.65 1.61 2.54

3.5 Application Considerations

Minimum-variance portfolios built with our method achieve higher risk adjusted re-

turn than that built with traditional measures such as covariance. Like traditional

minimum-variance portfolios that are built with covariance matrix, our method re-

balances the portfolio monthly, and therefore incurs transaction costs. COV leads to

slightly more transactions than our method, and would therefore incur higher transac-

tion costs. Unlike equi-weighted portfolio, daily changes in portfolio weights are small

for minimum-variance portfolios, and the results hold when we update the portfolio

weights daily.

Relationships among equities can be viewed as occurring on three time scales:

long-term (e.g., sector grouping), mid-term (e.g., based on fundamentals and tech-

nicals), and short-term (e.g., based on real-time news and announcements). In this

work, we capture only the medium-term relationships. This may result in a slower

response when market conditions change rapidly as in 2008 (Figure 3-3). Incorpo-

rating news and sentimental analysis into our model could address this (see Chapter

4).

We show that by limiting the large losses, risk management can be a source

of excess returns. A portfolio manager might rely on non-linear payoff profiles to

maximize the Sharpe ratio using risk management techniques. For example, he could

"sharpen the Sharpe ratio" by truncating the right tail and the fat left tail of the

return distribution by buying deep out of the money put and call options [39]. In

contrast to this approach, our method provides not only high Sharpe ratio but also

significantly high total return and information ratio.
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A major application of our method is in finding the most suitable equity that can

be added to an existing equity portfolio. Many institutional investors have policies

in place that require them to maintain long only portfolios. Because of the size of

their holdings and for other reasons (e.g., tax consideration) they might not be able

to change their existing positions. In such cases, if they are to pick a new equity they

could use our method to find the one that is least likely to increase the tail risk of

their new portfolio. This is the problem definition that we began with in the first

place (see Section 3.4.2).

During the 2008 crisis, all equities became heavily correlated as the market crashed,

and market risk governed returns (Figure 3-2). Without short positions (or derivatives

that simulate short positions), this kind of risk cannot be diversified away. Because

we focus on minimizing the co-occurrences of large loses, our problem formulation

does not permit negative weights in the portfolio optimization (Equation 4.8).

In such cases, we can hedge against such risk factors (market wide or sector wide

movements) using future contracts. For example, if the daily return of our portfolio

is rt on day t, and risk factors are A'; i = 1.. .k, then we can construct a linear risk

model by,

rt = a + A + +... + kA . (3.8)

When such risk factors have a clear definition (e.g., market risk), are statistically

related (high R2 and 0 for the linear risk model), and have tradable derivatives we

can hedge away the risk [561. For the portfolio built for energy sector (FACio), if

we consider the S&P500 index for market risk, we have a statistically significant

connection -(correlation = 0.6, # = 1.114 and R2 = 0.98). Further, there exist many

liquid futures and forward contracts on S&P500 index to capture the full economic

effects.

The characterization in Equation 3.8 provides the following expected return and
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variance for a portfolio:

E[rt] = a + 31E[A1] + ... + #kE[Ak] (3.9)

Var[rt] = /3Var[At] + ... + O3Var[Af] (3.10)

While hedging away the exposure to a risk factor will reduce the portfolio risk (by

reducing Var[rt]), it will also result in reduced expected returns (by reducing E[rt]).

Litterman (2006) argues that such risk exposures are "exotic betas" and not worth

the premium 156]. As an alternative, investors could use a deep out of the money

(DOTM) options to limit their risk to only significant changes in the risk factors.

3.6 Summary

We presented a method for learning connections between financial time series in

terms of large losses. We use a factor model, and we modeled daily returns using

three factors: active return, market sensitivity, and connectedness of returns. We

learned these factors using a recursive regression. We employ a model independent

approach to prioritize the connections on large losses. Thus, our method allows the

user to balance the need to minimize the co-occurrences of large losses against the

need to minimize overall connections. We solved the regression problem using an

unconstrained least squares optimization that ensures that the resulting matrix is

positive semi-definite so that it can be used in portfolio construction.

We evaluated our method in two ways. First, we evaluated its accuracy in pro-

ducing a list of equities ordered by their likelihoods of having large losses, given

information about the behavior of other equities. We then presented and demon-

strated the potential real world utility of a method that constructs portfolios using

the learned relationships. The performance of portfolios constructed using our meth-

ods were compared to the performance of portfolios constructed using conventional

approaches, including traditional correlation-matrix based methods. Portfolios con-

structed using our method not only "beat the market," but also beat the so-called
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"optimal portfolios." More importantly, portfolios constructed using our method sig-

nificantly reduce the tail risk without sacrificing overall returns.
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Chapter 4

LEARNING THE RELATIONSHIP

BETWEEN EQUITY RETURNS AND

NEWS RELEASES

In this chapter, we consider the task of learning the influence of news on the returns

of equities using sentiment data from Thomson Reuters, called Thomson Reuters

NewsScope dataset. On the firm specific news releases collected from more than 60

reporting sources, Thomson Reuters uses a proprietary natural language processing

based algorithm to score the news feeds, and constructs a database of sentiment scores

(positive or negative). Thus, Thomson Reuters NewsScope database assigns "hard"

number to a "soft" concept of news sentiments.

A problem with using news releases to predict future return is that often, the

information in the news has already been incorporated into the pricing of the equity.

We describe a machine learning-based method to model a relationship between the

equity return that is unexplained by the market return (excess return) and the amount

of sentiment in the news releases that hasn't been already reflected in the price of

equities (excess sentiment).

We formulate the problem as recursive regression, and we use an unconstrained

optimization to learn the model. We show that while using news directly yields an

annualized return of 22% over a 10-year period, our proposed way of handling the
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past boosts the annualized return to 34% over the same period.

4.1 Introduction

In finance, a widely used assumption is that financial markets are "informationally

efficient." This is known as the efficient market hypothesis (EMH). Under this hy-

pothesis, the prices of assets reflect all past information, and in the strong form of

the theory, also hidden (insider) information [311.

Empirical analyses have showed inconsistencies with EMH theory. There has

been a growing interest in identifying various features (particularly sentiments of

news releases) that could influence equity prices.

Using sentiment data from Thomson Reuters, we analyze the influence of news on

the returns of equities. The data contain historical records of news feeds and corre-

sponding sentiment scores as computed by a Thomson Reuter's propriety algorithm.

A problem with using news releases to predict future return is that often the in-

formation in the news has already been incorporated into the pricing of the equity.

This makes it look as if the equity prices "anticipate" future news flows. In order to

address this, we build a model of the sentiment of the news releases based on the past

returns and past news flows, and then use this model to discount the expected senti-

ment from future news releases. We then model the relationship between the equity

return that is unexplained by the market return (excess return) and the sentiment

that hasn't been incorporated into the price of the equity (excess sentiment). Here,

we hypothesize that the excess sentiment would be the dominant factor contributing

to large excess returns. Learning the relationship between the excess return and the

amount of sentiment that hasn't been already reflected in the price of the equity, and

exploiting this knowledge in portfolio construction is the focus of this chapter.

We formulate the problem as a recursive regression, and we use an unconstrained

optimization to learn the model. Our experiments provide strong evidence that by ex-

ploiting these learned relationships we can build portfolios that outperform portfolios

constructed using techniques drawn from the literature. As in the previous chapter,
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the comparison is done using annualized return, minimum daily return, maximum

drawdown, information ratio, and the Sharpe ratio [85].

4.2 Related Work

Our work lies at the intersection of statistical machine learning and behavioral finance.

We review the literature related to our work on both behavioral finance and data

mining applied to finance.

4.2.1 Efficient Market Hypothesis and Events

Eugene Fama, who won the Nobel prize in economics for his work on the efficient mar-

ket hypothesis, shows that although anomalies such as over reaction and post-event

reversals are common in short term, they are chance results, i.e., their opposites are

equally likely [32]. His article "The Adjustment of Equity Prices to New Information"

was the first study that sought to analyze how equity prices respond to an event [301.

4.2.2 Behavioral Finance and Data Mining

Duran (2007) analyzes the precursors and aftershocks of significant price changes,

and finds the presence of over reactions in equity return time series in absence of any

significant change in the fundamentals [28]. Stambaugh (2012) explores a broad set

of anomalies in cross-sectional equity returns and the role played by investor senti-

ment. They show that a long-short strategy is more profitable following high levels

of sentiment [91]. They show that the short leg of each strategy is more profitable

following high sentiment, and that long legs of the strategies do not benefit from the

sentiment.

Leonid Kogan's work in asset pricing models includes development of data-driven

factor models to explain asset pricing anomalies [51, 52].
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4.2.3 Sentiment Mining Applied to Finance

In the last few years, advances in computational power have made mining large num-

bers of text documents possible. NewsCATS, an automated text categorization sys-

tem uses financial news to predict equity returns [67, 68]. Schumaker's works on

financial news mining shows that machine learning methods can be used to predict

future equity returns [84].

Researchers have found that the sentiment of tweets is correlated with large equity

returns, and use message volume to predict next-day trading volume [90]. Researchers

have also predicted the daily up and down changes in the closing value of the DIJA,

by analyzing the sentiment of the text content of daily Twitter feeds [12]. Mao (2012)

looks at the equities in the S&P 500 and the tweets mentioning them, and shows

that the daily number of tweets is correlated with equity market statistics such as

closing price and trade volume [61]. Furthermore, they show that twitter data can

be used to predict equity market trends. Ruiz (2012) studies the correlation between

micro-blogging activity and equity market events, defined as changes in the price and

traded volume of equities [82].

Chan (2003) examines monthly returns following public news, and finds strong

drift after bad news. He also observes that investors seem to react slowly to the

information and that reversal after extreme price movements are unaccompanied by

public news, supporting theories of investor over and under reaction [18]. Ryan (2004)

focuses on the influence of firm-specific news releases on both price reaction and

trading volume activity. They find that no less than 65% of significant price changes

and trading volume movements in our sample can be readily explained by public

domain information [83].

Investors' slow reactions to news and seemingly irrational behaviors in reacting to

the news (under and over reaction) serve as the motivation to our work. While the

literature often focuses on finding the correlation between news and price movements,

we explore the opportunities for excess returns in the amount of sentiment that hasn't

been already reflected in the price of the equity. To our best of knowledge there is no
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previous work on this.

A downside of these works is that they learn the relationship between news and

daily returns directly, and often, the information in the news would have already been

incorporated into the pricing of the equity. Further, most of these works attempt to

model the trends of the time series, and rarely support their claims with an out of

sample portfolio construction. In our work, we try to quantify the excess sentiment

in the news releases, and demonstrate its effectiveness by building portfolios using

the proposed method.

4.3 Method

In this section, we first formally define our task and describe the evaluation methods.

Thereafter, we describe our approach to modeling the excess return from news data.

We then present a method to model the variance of excess returns that is attributable

to news, and describe its use in building a portfolio.

4.3.1 Problem Formulation

Not all investors have the ability to trade on news releases immediately. Furthermore,

most of the earnings announcements occur after the closing of the market. Therefore,

we study the relationship between the intraday return (between the opening and

closing of the market) and the news releases before the opening of the market. We

note that lately increasing volume of off-market trading happens after the closing of

the market. Thus the information in the news releases is absorbed into the pricing of

the equities sooner than ever.

We formulate the learning problem as for each day T predicting which equities in

a set A are most likely to experience a large return (called an event) on day T + 1.

For each day, we define returns outside one standard deviation as events. We use the

returns and sentiment data until day T to learn our model.

We evaluate our method in two ways. First, we evaluate its accuracy in produc-

ing a list of equities ordered by their likelihoods of having the corresponding events
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(positive and negative), given the sentiment scores. We compare this list against the

true occurrences of events using mean average precision (MAP) scores. Second, we

present and demonstrate the potential utility of a method that constructs portfolios

using the learned relationships. The performance of portfolios constructed using our

methods are compared to the performance of portfolios constructed without news

information and with portfolios constructed with methods using news information di-

rectly without accounting for the amount of sentiment that has already been reflected

in the prices. For comparison we also provide benchmark portfolios: a equal-weighted

portfolio (EW), and the S&P 500 index (SPX).

4.3.2 Modeling Excess Return

We use a factor model to describe the return of each equity in terms of the equity's

active return, market sensitivity, and the sentiment scores of the news releases for

each of the equities. We then train a regression model on the historical data using

regularized least squares and estimate the parameters using gradient descent. This

method focuses on the excess return and the amount of sentiment that hasn't been

already reflected in the price of the equity.

We use the Thomson Reuters news analytics database that contains the news feeds

and sentiments computed by Thomson Reuters' language recognition algorithm. The

database contains a series of news feeds for each equity with the time of origin. We

use the following fields from the feed: equity identifier, date, positive sentiment score,

negative sentiment score, and relevance score that measures how relevant the news

feed is to the referred equity.

The dataset contain various types of news feeds: alerts, first-take articles, follow-

ups, appends, and overwrites. We only look at the feeds that are alerts or first-take

articles. For each equity, we only consider the feeds with relevance >75%. For equity

j on day T, the positive sentiment score sP is defined as the number of feeds with

positive sentiment >75% from 16:00 EST (closing time of the US markets) on day

T - 1 to 09:30 EST on day T. Similarly, we compute the negative sentiment score

n~j
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day t-1 day t
A A.

Figure 4-1: Timeline of return calculation. Intraday return of day t is matched with

the news sentiments between 4:00pm EST on day t - 1 to 09:3Oam EST on day t.

If the opening and closing prices of equity j on day T are ppand pithe intraday

return for equity j on day T is given by r, = (p, - p, /p. On day T+1, we are

given historical returns for m equities in a T x m matrix R = {rt,3 };1 <_ t K T,1 K

j K m. Figure 4-1 illustrates the timeline of return calculation. We are also given

sentiment data S= {s}, S" = { }1 t -T, 1 t j K m. We use index t for

days, and j, k for equities.

First, we apply a GARCH model [13] to remove any serial dependencies. There-

fore, we safely assume that the modeling errors are uncorrelated.

Factor model representations of returns are common in finance and econometrics

[57, 491. We model the return of equity k on day t by

Tt,k = ak + bkrt,A (4.1)

By adding sentiment scores to this we obtain,

dt,k

In this model, we explicitly learn the factors for equity k: active return (alpha) ak,

sensitivity to the market bk, and sensitivity to positive and negative sentiment scores

of the news releases for the equity w and wg. The S&P 500 index return (rA) is the

average return of all equities on a given day.

We are interested in the influence of news flows on future returns, especially on
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large returns. In the data, we observe that often equity prices tend to "anticipate"

future news flows, and this pattern is more prominent for negative news. Furthermore,

news articles frequently refer to the large returns of the immediate past. In order to

address this, we model the sentiment scores based on the past returns (last 5 days,

i.e, t - 5 : t - 1) and past news flows, and then use the excess sentiment in predicting

the future returns.

We model the expected positive sentiment by

t,k = ,k + U,kt5,k + ,kt20,k E k t+p,k ~ t+p,k
p=-5:-l

Here, s9.,k and s, are mean positive sentiment scores in the past 5 and 20 days

for equity k. rf Pk = (pT+1,j - pT,j PT is the daily return between the opening

prices, and df is the corresponding explained return. In this model, we learn the

weights u/,, '3, up and UPc. We model the expected negative sentiment score 8

similarly.

We update Equation 4.2 with the excess sentiment scores,

Tt ,k = ac + b/crt,A + W(S,c - ^t,/) + wk (Zt~ - gt/c)(43

Estimating the weights directly on the observed data is prone to overfitting. There-

fore, we learn the parameters by solving the following regularized least squares prob-

lem:

min (rtk - tk)2 + A(al + b2 +IWI 2 + 1u1 2 ) (4.4)
a*,b*,w*,u* t=1:T

k1l:m

The regularization parameter A is determined by cross validation. We use gradient

descent to minimize the regularized square errors. For each 1 < t < T, 1 < k < m,

X E {p, n}, and -5 < p 5 --1, we update the parameters by:

" a - a + 7r(et, - Al.ak)

" b/ c k + (et,/c rtA - A, - b/)

t f k/ > 0
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def
Here, o is the learning rate, and et,k = (rt,k - Tt,k). We use the last 400 days in

the historical data to train our model. We iterate until convergence for the initial

estimate of the parameters. The model is updated daily to make predictions for the

next day. Since each day, the new training set differs from the previous day's by only

two days, convergence is achieved within a few iterations.

Finally, using this learned relationship, on day T we predict the excess return

rT+1,k for day T + 1 by,

fT+1,k = ak + w(sT+1,k T+1,k) + Ip(ST+1,k - T+,k)(4.5)

4.3.3 Variance Decomposition

Variance measures the variability (volatility) from an average or mean, and volatility

is a measure of risk. In finance, the variance statistic is used to determine the risk an

investor might take on when purchasing a specific equity [40].

We can express the return on day t by rt = Ek Xk,tfk,t + Ut, where fk,t are

factor returns (e.g., market return, sentiment scores) on day t, Xk t are exposures

to the factors, and ut is the idiosyncratic return that cannot be explained by the

factors. Then, if we assume that the idiosyncratic returns are not correlated with

factor returns, the covariance matrix V is given by

V = XFXT + A (4.6)

Here, F is the covariance matrix of factor returns and A is a matrix of residual

variances. If the portfolio holding (weights for each equity) is w, the variance of the
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portfolio (total risk) o is given by [40],

U.2 = wXFXTWT + wAwT (4.7)

Here, total risk of is expressed in terms of factor risk - and residual risk o2, where

factor risk incorporates both market risk and news risk. For equity k, when we

substitute excess return fk,t in place of return rk,t, factor risk will be made of news

risk alone.

When the expected excess return r= {i, f2, ..fm} and expected covariance C are

given, for desired return re, the optimal portfolio weights are derived by the variance

(risk) minimization [621:

min1w TCw (4.8)
S2

10
subject to Z fkWk re

k=1
10

Z:Wk= 1O<Wk 1,Ik= 1,...,110
k=1

Here, w are the portfolio weights.

We substitute covariance C with factor covariance XFXT from Equation 4.7, thus

obtaining an optimization minimizing the news risk, -.

4.4 Experiments

To fully characterize our method, we evaluate our method in two ways. First, we eval-

uate its accuracy in producing a list of equities ordered by their likelihoods of having

corresponding events (when predicting the winners the positive events), given the

sentiment scores. Second, we present and demonstrate the potential real world utility

of a method that constructs portfolios using the learned relationships. The perfor-

mance of portfolios constructed using our methods are compared to the performance

of portfolios constructed without news information, and to portfolios constructed
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with methods using news information directly without accounting for the amount of

sentiment that has already been reflected in the prices.

4.4.1 Data

We use the equity price data used in Chapter 3. The set of companies are from

nine sectors: consumer discretionary, consumer staples, energy, financials, health

care, industrials, information technology, materials, and utilities. We exclude the

telecommunications sector because it has less than 5 equities that were in it from

2003 to 2012.

We obtain the sentiment scores from Thomson Reuters news analytics databasel

that contains the news feeds as well as sentiments computed by a proprietary Thomson

Reuters' language recognition -algorithm. The database contains a series of news

feeds for each equity with the time, of origin. We use the following fields from the

feed: equity identifier, date, positive sentiment score, negative sentiment score, and

a relevance score that measures how relevant the news feed is to the referred equity.

The dataset contain various types of news feeds: alerts, first-take articles, follow-

ups, appends, and overwrites. We only look at the feeds that are alerts or first-take

articles.

4.4.2 Methods

The methods News and News+ correspond to Equation 4.2 and Equation 4.3 respec-

tively. The baseline method Alpha orders the equities based on their active returns

ak in Equation 4.1. All three methods are trained using the regularized regression

formulation of Equation 4.4.

lhttp: //thomsonreuters . com/products/f inancial-risk/01-255/NewsAnalytics.--
ProductBrochure--Oct_2010_1_.pdf
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4.4.3 Top-k Ranking

Given the data for days 1 to T, we predict which equities will have positive and

negative events (returns outside 1 standard deviation in each direction) on day T +1.

We produce an ordered list of equities, ranked by their likelihoods of having events

on day T + 1 based on their predicted returns ?r^T.

Evaluation

As in Chapter 3, we use mean average precision (MAP) to evaluate the correctness

of the ordered list. We produce a top-5 list, and evaluate with MAP(5).

Experimental Results

We ran our experiments from 2003 to 2012, so that at the start of the experiment we

have at least a year of historical data to train on. For each day, we trained the model

using the data from previous 400 days (excluding that day), and predict the expected

return for that day. Then, we produced an ordered list of equities, ranked by their

likelihoods of having events on that day, and evaluated it using average precision

(AP). We repeated this experiment for each day to obtain mean average precision

(MAP). Thus, we evaluated our method for one-step ahead predictions on out-of-

sample data while preserving the temporal causality. Such rolling-origin evaluations

are commonly used to evaluate time series predictions [35, 23].

Table 4.1 compares the MAP(5) scores (higher is better) for our method with

the scores of a baseline method. The best result for each sector is in bold face. To

evaluate the statistical significance of the improvement of one method over the other

we perform a paired sign test2 . Except for the values highlighted (*), the p-value

of the tests for each of the methods against the baseline method is significant (i.e.,

< 0.001). The p-value of the test between News+ and News is significant for all

values.
2 Sign test is a non-parametric test which makes very few assumptions about the nature of the

distributions under test. It is used to test the hypothesis that the difference median is zero between
the continuous distributions of two random variables, in the situation where paired samples are
drawn from these random variables.
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Table 4.1: MAP scores across sectors for events based on returns.

SECTORS POSITIVE EVENT NEGATIVE EVENT
ALPHA NEWS NEWS+ ALPHA NEWS NEWS+

CONSUMER DISCRETIONARY 0.1 0.11 0.2 0.12 0.13 0.22
CONSUMER STAPLES 0.12 0.12* 0.2 0.14 0.14* 0.22
ENERGY 0.18 0.18* 0.27 0.2 0.21 0.29
FINANCIALS 0.12 0.12* 0.25 0.14 0.14 0.26
HEALTH CARE 0.1 0.12 0.21 0.13 0.13 0.21
INDUSTRIALS 0.11 0.12 0.22 0.13 0.13* 0.23
INFORMATION TECHNOLOY 0.12 0.14 0.22 0.13 0.14 0.24
MATERIALS 0.17 0.19 0.2' 0.18 0.19 0.28
UTILITIES 0.18 0.19 0.26 0.21 0.21 0.29

MARKET 0.08 0.09 0.09 0.09 0.1 0.1

While it is unsurprising that the sentiment scores computed from the news feeds

allow us to predict the equities having positive and negative events (winners and

losers) more accurately, the results show that the improvement achieved by the way

we discount the past in predicting the future is significant. In each sector, News+

outperforms News by more than 80% in MAP score.

In Figure 4-2, we compare MAP(k) scores for positive events at different cutoffs k.

As the cutoff increases, the MAP scores of these methods converge with that of the

baseline method. News+ and News use sentiment data to capture large returns better.

They perform less well on finding the patterns on smaller returns. We attribute this

to the fact that in general many factors influence the changes in equity prices and for

smaller returns noise dominates the model we learn.

In Figure 4-3, we compare MAP(k) scores for positive events at different cutoffs

k and different event levels. For positive and negative events at higher z-score levels

(i.e., returns outside 3 standard deviation) this cutoff is hardly relevant. MAP score

measures both the ability to identify the likely candidate, and the rank of the candi-

date in the ordered list. Because these events are rare, in this case it is the ability

to identify the likely candidates, and not the ordering within the selected group that

matters.
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Figure 4-3: Market wide MAP scores for positive events(a) and negative events (b)
at different cutoffs (k) and events levels (z).
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Explained Variance

For a regression model Y ~ f(X), the coefficient of determination R2 describes the

proportion of variance in Y explained by X. The maximum possible improvement in

R2 that is contributed by the independent variable j is given by,

R R2 - R 2
R2 -(4.9)

1 - R2i

Here R2 is the coefficient of determination of the regression omitting X3 .

D0.25 :

0.15

ID 0.1
inExplained by Market

>j 0.05 i improvement by News
Mimprovement by News+

Dec-05 Jul-07 Feb-09 Sep-10 Dec-12

Figure 4-4: Improvement in R2 for BAC

As an example, we look at the models learned for an S&P 500 constituent: Bank

of America (BAC). Figure 4-4 shows R2, the variance explained by the market re-

turn (Equation 4.1), R2 , the improvement in coefficient of determination achieved by

including sentiment scores (Equation 4.2), and additional improvement achieved by

discounting the sentiment that has already been reflected in the price (Equation 4.3).

We note that the variance explained by sentiment scores (News) varies over time,

and peaks during high news activity periods for BAC such as the end of 2008 and

2011. On the other hand, variance explained by excess sentiment (News+) becomes

prominent after large shifts in explained variance and following the peaks of variance

explained by sentiment scores.
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4.4.4 Portfolio Construction

The major application of our method is in exploring the opportunities for excess

returns in the amount of sentiment that hasn't been already reflected in the price of

the equity. Classic portfolio theory argues that maximum expected return is achieved

by owning the equity with the highest historical return. Minimum risk relative to a

market is achieved by owning everything in that market [93]. As in Chapter 3, we

build portfolios containing the top-10 equities across the market.

First, we build a long only portfolio (LONG) containing the top-5 equities ranked

by their predicted returns. Equities are weighted equally within each portfolio. Here,

we assume fixed capital (no leverage), no short positions, portfolio weights are read-

justed daily, and we ignore the costs of transactions. For comparison we also provide

benchmark portfolios: an equal-weighted portfolio (EW) constructed using the same

intraday returns, where the portfolio is rebalanced to equal weights daily, and the

S&P 500 index (SPX).

Second, we find optimal weightings for these equities (top-5 based on predicted

returns) using Equation 4.8. We set re to the 5 0 th percentile of the expected returns of

the equities. We use the factor covariance (Equation 4.7) estimated from the historical

data (last 400 days) in place of covariance in Equation 4.8. Thus, we obtain portfolio

weights, and build a weighted portfolio (LONG-Weighted) with top-5 equities based

on their predicted returns.

We run our experiments from 2003 to 2012. For each day, we train the model

using the data from previous 400 days (excluding that day), and predict the expected

return for that day. Then we update the portfolio weights for that day. We re-weight

the portfolio daily, and estimate the returns daily. Thus, as before, we evaluate our

method for one-step ahead predictions on out-of-sample data while preserving the

temporal causality.

As in Chapter 3, we use the following criteria to evaluate the performance of the

portfolios.

9 Largest loss in a day: Given by min(rt).
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" The expected shortfall (also known as CVaR) at 5% level gives the expected

return on the portfolio in the worst 5% of the cases [811.

" Max drawdown: Maximum drawdown is the largest peak-to-subsequent-trough

decline in cumulative return.

" Annualized return: This is the overall return from year 2001 to 2012, i.e., RT

on December 31, 2012. We quote annualized total return (i.e., (RT + 1)1/11 - 1)

in our results.

" Information ratio: Information ratio measures the excess return for additional

risks taken [851. We quote annualized information ratio (i.e., IV/25) in our

results. A positive information ratio implies that excess return is greater than

the additional risk taken.

" Sharpe ratio: The Sharpe ratio measures the risk-adjusted return 1851. We

quote annualized Sharpe ratio (i.e., SV/25) in our results.

Table 4.2 shows that by exploiting the information in the sentiment scores com-

puted from news feeds, we can beat the market (positive Information Ratio) and

other benchmark portfolios. The weighted portfolio with News+ results in 38.13%

improvement over equal-weighted for News+ in terms of annualized returns, com-

pared to 16.26% improvement with News. This demonstrates the former's ability in

modeling the news risk better than the latter.

Table 4.2: Portfolio characteristics.

MEASURES LONG LONG-WEIGHTED EW SPX
ALPHA NEWS NEWS+ NEWS NEwS+

WORST DAY -0.11 -0.13 -0.12 -0.14 -0.09 -0.09 -0.09
EXPECTED SHORTFALL (AT 5%) -0.04 -0.04 -0.04 -0.04 -0.03 -0.03 -0.03
MAx DRAWDOWN -0.65 -0.63 -0.61 -0.58 -0.53 -0.63 -0.79
ANNUALIZED SHARPE RATIO 0.77 0.75 0.9 0.9 1.27 0.41 0.34

ANNUALIZED IR 1.08 1.02 1.24 1.12 1.59 1.19 N/A
ANNUALIZED RETURN (%) 20.61 18.88 24.39 21.95 33.69 6.07 5

Figure 4-5 shows the cumulative return achieved by our methods against the

S&P 500 index (SPX). First, we note the significantly high returns generated by
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Figure 4-5: Cumulative returns (a), and daily returns (b) of News and News+ models
for the L ONG- Weighted portfolio. In figure (b), size of the points correspond to total

number of news releases for that day. Returns above the dotted line correspond to
an improvement with News+ over News. A clockwise shift (solid line) indicates that
the large returns for News+ are moderated on both positive and negative sides. Also,
there is a small (barely noticeable) shift indicating higher average returns.
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our methods after 2006 (particularly after 2009), perhaps related to the increase

in the coverage and utility of the sentiment scores computed by Thomson Reuters.

Furthermore, starting mid 2009 News+ outpaces News, probably because with the

increasing number of news releases it becomes more important to account for the

sentiment that has already been incorporated into the equity prices. Since 2011 News

and New+ underperform, perhaps indicating the vanishing opportunities to exploit

the sentiments in firm specific news.

In Figure 4-5(b), we can observe the places where this differential impact is sig-

nificant. Note that, the days with large numbers of news releases often produce small

returns as indicated by the accumulation of large circles around the center. These

likely correspond to the earning announcements, which are often expected and already

priced into the equities by the market. It is on those days where a small number of

perhaps unexpected news releases occur that our methods achieve large returns.

4.5 Application Considerations

Our method rebalances the portfolio daily, and therefore incurs transaction costs.

These costs are ignored here, therefore absolute returns are overstated for both meth-

ods. Figure 4-6 shows the annualized returns and information ratios for long portfolios

with these methods when transaction cost is taken into account. While News is com-

parable to Alpha when zero-transaction cost is assumed, it immediately becomes less

appealing with increasing transaction costs. News+ becomes comparable to Alpha at

1 basis point (0.01%). Therefore, retail investors could hardly use our method alone.

In our methods, we pick only top-5 equities based on their predicted returns.

While such a concentrated portfolio yields higher returns, it also poses higher risk.

Figure 4-7 shows the information ratio achieved for different holding sizes (i.e., top-k

positions for different k). We notice that at k = 25 we achieve the highest information

ratio across the range of transaction costs that we considered.

The average turnover of LONG-Weighted portfolio is 0.02, 0.91, and 0.90 for Alpha,

News, and News+ respectively. The settlement of the trades can take as long as three
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Figure 4-6: The annualized returns (a), and information ratios (b) for LONG port-
folios built with our methods Alpha, News, and News+ under different transaction
costs measured in basis points (1/100th of a percent).
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sizes of LONG portfolios with News+ compared against the long only portfolio with
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days, and a retail investor would need a margin account to support turnovers as high

as 0.8. Hence, the investor would also incur corresponding borrowing (margin) fees.

In financial time series analysis, patterns can be learned in four time scales: long-

term (fundamental based), mid-term (technical and macro-based), short-term (event

based), and ultra-short-term (based on inefficiencies in statistical arbitraging). In this

work, we capture short-term patterns. When patterns on other time scales dominate

(for instance the crash in 2008, which is a mid-term macro-based pattern), our method

might fail to distinguish the causes. We intend to address this in future work by

building a more comprehensive model using news-based macroeconomic sentiment

measures.

4.6 Interday returns

In our work we considered intraday returns (daily returns between the opening and

closing of the market) so that we can capture the casual information in the news

effectively. Here, we look at the influence of our method in predicting the interday

return (daily returns between the successively closings of the market).

We define it more concretely as follows. If the closing prices of equity j on day T

and day T + 1 are p',j and p' 1,3 the interday return for equity j on day T is given

by rTj = (p'+1 ,j - PT,j)PT,,. On day T + 1, we are given historical returns for m

equities in a T x m matrix R = {rt,j}; 1 < t < T, 1 < j - m. Figure 4-8 illustrates

the timeline of return calculation. For equity j on day T, the positive sentiment score

sP is defined as the number of feeds with positive sentiment >75% from 16:00 EST

(closing time of the US markets) on day T to 16:00 EST on day T + 1. Similarly, we

compute the negative sentiment score srj-

Figure 4-9 shows the annualized return and information ratio for the LONG port-

folio. Here, the portfolio is built using methods Alpha, News, and News+ for interday

returns at different lags. Negative lag (lead) is related to the news sentiments corre-

sponding to past returns. Instantaneous reaction to news is assumed at lag 0, and the

corresponding returns (although highly attractive) are thus improbable in practice.
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Figure 4-8: Timeline of return calculation. Interday return of day t is matched with
the news sentiments between 4:00pm EST on day t to 4:00pm EST on day t + 1.

Positive lag gives the causal predictive power of news sentiments on interday returns.

For next day predictions (lag 1), News+ achieves 43% annualized return and 1.6 in-

formation ratio. We note that the predictive power of our news decays rapidly, and

by the second day it is comparable to that of Alpha. Interestingly, (hypothetical) in-

formation ratio at -1 lag is as high as 1.8, indicating prescient price reaction against

the forthcoming news release.
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Figure 4-9: The annualized returns (a), and information ratios (b) for LONG portfo-
lios built with methods Alpha, News, and News+ for interday returns under different
lags.

4.7 Summary

We presented a method for learning connections between financial time series and

news releases. A problem with using news releases to predict future return is that
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often the information in the news has already been incorporated into the pricing of

the equity. In order to address this, we build a model of the sentiment of the news

releases based on the past returns and past news flows, and then use this model to

discount the expected sentiment from future news releases. Our method is a machine

learning-based model that captures the relationship between the equity return that is

unexplained by the market return (excess return) and the amount of sentiment that

hasn't been already reflected in the price of the equity. We modeled returns using

three factors: active return, market sensitivity, and connectedness of returns. We

learned these factors using a recursive regression. We solved the regression problem

using an unconstrained least squares optimization.

We evaluated our method in two ways. First, we evaluated its accuracy in pro-

ducing a list of equities ordered by their likelihoods of having large gains and large

losses, given the sentiments computed from the news releases for each of the equities.

We then presented and demonstrated the potential real world utility of a method

that constructs portfolios using this model. We show that while using news directly

yields an annualized return of 18.88%, our proposed way of handling the past boosts

the annualized return to 24.39% over a 10-year period. Furthermore, we also demon-

strate that our method more accurately models the variance attributable to news

(news risk), resulting in annualized return as high as 33.69% compared to 21.95% for

the same portfolio construction that uses news directly.
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Chapter 5

LEVERAGING NETWORK STRUCTURE

IN FINANCIAL TIME SERIES

In Chapters 3 and 4, we presented techniques for modeling pairwise connections

between equities, and demonstrated their utility in building a diversified portfolio.

Building on this work, in this chapter we consider the task of leveraging network

structure to model connections that span multiple equities, such as clusters and hier-

archies in a network of financial time series. Specifically, we discuss how the topolog-

ical properties of the network1 can be used to obtain a segmentation of equities that

has advantages over the traditional sector-based grouping.

5.1 Introduction

It is known that risk is not uniformly spread across financial markets [78]. The root

cause of this pattern is that multiple equities are simultaneously affected by latent

external factors (e.g., macro-economic factors such as oil price), resulting in the prices

of a set of equities moving together. In order to construct a well-diversified portfolio

to reduce investment risk, we group equities that are affected similarly by external

factors, and diversify across groups. Sector grouping provides a static segmentation

that is often used for this purpose.

'Throughout the chapter we use network and graph interchangeably.
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Figure 5-1: The financial filtered network built with the equities from the financial
sector for years 2006-2007. 6 of the most central and 6 of the most peripheral equities
as identified by their node degrees (ties are broken randomly) are highlighted in orange
color.

; S

a

Figure 5-2: The financial filtered network built with the equities from the financial
sector for years 2006-2007. Three clusters as identified by spectral clustering on this
network are indicated by the node colors. Size of the node corresponds to the degree
of the node.
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Recently, researchers have proposed using financial filtered networks to model the

heterogeneous spreading of the risk across equities [78, 75]. A financial filtered net-

work is built by retaining the highest correlated links of a multivariate time series,

where the network represents the pairwise connection (e.g., correlation) between the

time series. The topology of such a network encodes the high order dependency

structure (transitive connections) of the equities. The underlying idea is that equities

differently positioned within this financial network exhibit different patterns of be-

havior, and therefore selecting equities from different regions of the network leads to

a well-diversified portfolio. Compared to sector grouping, this approach is dynamic

(can be updated frequently), and data driven. Furthermore, this approach can be op-

timized for different objective functions, for example, the equities could be clustered

based on the co-occurrences of large losses.

Our goal is to use such a network structure to quantitatively distinguish sets of

equities, where sets are, loosely speaking, orthogonal to each other based on the

returns of the equities in a set. We focus on two major ideas. First, we explore

the use of centrality and peripherality measures based on the network topology to

identify a set of equities that are the most (and least) connected with the remaining

equities (Figure 5-1). Second, we use graph clustering to find regions that are sparsely

connected with each other (Figure 5-2).

A major idea of this work is to use the topology of a financial filtered network to

encode the high order dependency structure (transitive connections) of the financial

equities. Although correlation is generally used in the literature to represent the

strength of the link between two nodes in a financial filtered network, it may not

be the correct linkage measure. A correlation coefficient says nothing about whether

other equities contribute to the observed relationship between the two equities. This

is because, correlation is estimated between two time series independently of the rest

of the time series in the multivariate time series. In contrast, partial correlation

measures the degree of association between two time series while discounting the

influence of other time series in the multivariate time series. Thus, it removes the

transitive connections from the pairwise association. Therefore, in a financial filtered
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network built with partial correlation, transitive connections will be encoded by the

network topology (e.g., A -+ B -+ C). In contrast, in a correlation network, they

will be encoded via a direct link (e.g., A -- C). The factor model (FACo) presented

in Section 3.4.3 is similar to partial correlation (see Section 3.3.3), but in addition,

it specifically removes the market component and strongly weights the connections

based on large returns. Throughout this chapter, we compare the effectiveness of

these three different linkages in encoding higher order connections in financial time

series.

The remainder of the chapter is organized as follows. In Section 5.2 we discuss

the related work. Section 5.3 presents a list of linkage measures, and describes how

to construct a financial filtered network using these measures. In Section 5.4, we

discuss a list of topological measures, and describe a method to find two distinct

(central and peripheral) regions in the network using these topological measures. In

Section 5.5, we present a method to segment the network into dissimilar regions

using a graph clustering algorithm. Then, we compare the use of these clusters for

diversifying a portfolio of equities as opposed to diversifying a portfolio by holding

equities from different sectors. In Section 5.6, we present graph sparsification as

an alternative to constructing a filtered network. In Section 5.7, we discuss the

application considerations. In Section 5.8, we provide a summary.

5.2 Related Work

In recent years, there have been numerous works on network-based approaches applied

to several fields from biology [37], social [89, 2J, and financial systems [15, 78, 75].

Several researchers have used network structures to model stock markets in which

the nodes represent different equities and the links relate to correlations of returns

[96, 14, 15, 78, 751.

In our work, we extend the ideas proposed in Pozzi, et al (2013), and Peralta

and Zareei (2014). Pozzi, et al (2013) asserts that investments in equities that oc-

cupy peripheral, i.e., poorly connected, regions in financial filtered networks are most
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successful in diversifying the risk [781. Peralta and Zareei (2014) shows that highly

central equities are more systemic, i.e., market and time dependent, due to their em-

beddedness into the market structure. This in turn increases the portfolio's variance.

They prove that the centrality of each individual stock in that network and the weight

it receives in an optimal allocation of resources (in Markowitz's mean variance opti-

mization) are related [75]. They show that optimal portfolios assign wealth toward

the periphery of the market structure. However, they also point out that the equities

with higher centrality status are more stable (i.e. retain their centrality status for

consecutive years) than the peripheral equities.

In our work, we show that highly central equities, even after the market de-

pendency is excluded, are more systemic, i.e, the market movements significantly

influence their returns. They offer high returns at the expense of high variance and

increased risk (measured by the worst day performance, expected shortfall, and max-

imum drawdown). We show that well-chosen peripheral equities can offer similar risk

adjusted returns but at a reduced risk. We also show that graph clustering helps us

identify uncorrelated equities within central region. Our work has the following areas

of applications: identifying an alternative segmentation to sector grouping, leveraging

network structure to build diversified portfolios, and discovering stable dependencies

for risk management.

5.3 Financial Filtered Networks

First, we describe a method to construct financial filtered networks. Then, we discuss

the empirical observations made on the resulting networks.

5.3.1 Methods

The first step in constructing a financial filtered network is to compute the edge

weights of the graph. Then, we apply network filtering to sparsify the graph such

that the underlying structure can be exposed and studied.
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Linkage Measures

We compare the following three linkage measures.

" Correlation(CR): Standard implementation.

" Partial correlation(PCR): This captures the connection between two return time

series, while controlling for the remaining time series.

" FAC10 : This is the factor model (Equation 3.4a) with cost function f(x) =

e-X/10 applied. We us the method presented in Section 3.4.3. This method is

similar to partial correlation (see Section 3.3.3), but in addition, it specifically

removes the market component and more strongly weights the connections based

on large returns.

When filtering the network with a minimal spanning tree, it is common to convert

the linkage measures to distances. For example, if the correlation coefficient between

equities i and j is .ci, we convert it to the corresponding Euclidean distance dij =

2(1 - cij). The resulting distance matrix D is used hereafter.

Network Filtering

There are different methods in the literature for filtering a network to identify its

underlying structure: minimum spanning trees (MST) and planar maximally filtered

graphs (PMFG) are the most common. MST and PMFG are based on constructing

a constrained graph that retains the largest connections (where connection is defined

in terms of a linkage method) between connected nodes. The MST is a subgraph of

the PMFG. Both of them are planar, i.e., they can be drawn on a surface without

links crossing. For a network of N nodes, MST is a tree with N - 1 links and PMFG

has 3(N - 2) links. For a connected planar graph, MST has the minimum number

of links and PMFG has the maximum number of links [95, 78]. There are also other

methods that combine linkage estimation with network filtering: partial correlation

threshold network (PCTN), and partial correlation planar graph (PCPG) [95, 48]. In
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our work, we only consider MST because of its simplicity, and clarity in visualizing

the connections.

5.3.2 Empirical Observations

Figure 5-3 presents the minimal spanning trees generated by different linkages for

the years 2001-2002. All three trees have the same number of nodes and the same

number of links. We note that dense bubbles in the correlation tree are replaced with

deeper branches in the partial correlation tree. We hypothesize that since correlation

estimates already incorporate the transitive effects, a financial network built using

correlation will be less effective in encoding the transitive effects in the topology. The

FAC10 tree is even deeper than the partial correlation tree. This is probably because

we explicitly discount the market component in FAC10 . In addition, because FAC10

focuses more on the connection between large returns, technology equities that faced

large drops in 2001-2002 become the central nodes (e.g., FFIV, AKAM, YHOO, AES)

in the corresponding graph.

Financial networks built with each linkage method tell different versions of the

2008 crisis (Figure 5-4).

" According to the correlation network, during the bubble, companies that were

directly related to mortgage and retail/commercial banking were highly cor-

related. For instance, the following equities became the central nodes: BBT

(BB&T Corporation, a holding company of commercial bank subsidiaries), BEN

(Franklin Resources), WFC (Wells Fargo), BAC (Bank of America), C (Citi

Group), HIG (Hartford Financial Services group), USB (U.S. Bancorp), AXP

(American Express), and GE (General Electric, a diversified manufacturing

company as well as a financial services company). Market movement was based

on these entities. In the aftermath of the crisis (2007-2008), the focus shifted to

non-financial blue chip equities (large, well-established, and financially sound

companies).

" Companies from the financial sector are largely missing in the FAC10 network
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for the years 2005-2007. This is because they were the market drivers (i.e.,

market dependent), and their connections weren't based on losses. In 2007-

2008, several companies faced significant drops in their prices (drops several

times greater than that of the S&P 500 index), most notably HIG (Hartford

Financial Services Group), F (Ford), and AIG (American International Group).

They take the center stage in the FAC10 network in 2007-2008.

Notable absentees in this list are some of the companies that are not part of our data

set (because they weren't in S&P 500 from 2001 to 2012), e.g., Lehman Brothers and

General Motors.

5.4 Separating Peripheral and Central Regions

Our goal is to use the network structure to quantitatively distinguish equities that

have, loosely speaking, orthogonal returns. To this aim, we explore the use of cen-

trality and peripherality measures based on the network topology to identify a set of

equities that are the most (and least) connected with the remaining equities. Then,

we analyze the characteristics of the portfolios built using these two distinct sets of

equities.

5.4.1 Methods

We use the following topological measures to quantify the centrality and peripherality

of the nodes.

* Degree (D): Degree of a node is the number of edges connected to that node.

This helps us identify the hubs.

e Eccentricity (E): Eccentricity of a node is the maximum length of the shortest

paths that connect the node to any other node. Here, the length of a path is

the summation of link weights along the path.

e Closeness (C): Closeness of a node is the average length of the shortest paths

that connect the node to any other node.
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* Eigenvector centrality (EC): Eigenvector centrality measures the centrality

of a node as a weighted sum of the centrality of its neighboring nodes [69]. It

is based on the principle that a highly central node becomes central by being

connected with many other nodes, especially with nodes that are themselves

highly central ones. Google's PageRank algorithm is a variant of Eigenvector

centrality that ranks websites [70].

We consider a network G = {V, A}, where V is the set of nodes and A is the

adjacency matrix of the graph whose diagonal entries are set to zero to prevent

self-loops. Eigenvector centrality Ri of node i is given by,

Qi= A 1 ZAij (5.1)

When written in matrix form, the eigenvector Qk of A corresponding to the

largest eigenvalue Ak gives the centrality score.

AQ = AQ (5.2)

While these topological measures are related, each of them captures different prop-

erties of the network than others. We can notice this in Table 5.1, where we show

the cross correlation of these measures across all the equities by the start of 2012

(computed from years 2010 - 2011).

Table 5.1: Correlation matrix of topological measures for year 2012

ECCENTRICITY CLOSENESS DEGREE EIGENVECTOR CENTRALITY

ECCENTRICITY 1.00 0.91 -0.21 0.4
CLOSENESS 0.91 .1.00 -0.24 0.46
DEGREE -0.21 -0.24 1.00 -0.62
EIGENVECTOR CENTRALITY 0.4 0.46 -0.62 1.00

In order to make use of the additional information offered by each of the topological

measures, Matteo, et al (2010) and Pozzi, et al (2013) suggest using a combination

of them. We use the following combination called periphery score P, where we rank
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the equities by the average z-scores of the topological measures.

Pi = zscore(Ej) + zscore(C) - zscore(Dj) + zscore(EC) (5.3)

5.4.2 Empirical Observations

Figure 5-5 presents the whisker in/out graph to give an at-a-glance summary of each

stock's relative presence in the most peripheral set of stocks and the most central set

of stocks for years 2003 - 2012. There is a significant difference in the selection across

different measures. Since periphery score is a combination of other topological mea-

sures, its selection is more stable (i.e. selecting the same set of stocks for consecutive

years). In the rest of the chapter, we consider only the periphery score.
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Figure 5-5: The 10 most central and the 10 most peripheral equities as identified for
each year from 2003 to 2012 by different topological measures: E (Eccentricity), C
(Closeness), D (Degree), EC (Eigenvector centrality), and P (Periphery score). The
size of the circle denotes how many years the equity was in the top-10 list. Note that

central set is more stable than the peripheral set.

Figure 5-6 presents the whisker in/out graph to give an at-a-glance summary of

each stock's relative presence in the most peripheral set of stocks and the most central

set of stocks as identified by periphery score with different linkage methods for years

2003 - 2012. We observe that equities in the most central set are more stable, i.e.,

they retain their increased central status for consecutive years, whereas peripheral

equities change their positions more frequently.
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Figure 5-7 shows the sector composition of these sets as estimated by the periphery

score using FAC10 . The information technology sector dominates the central region

except for the aftermath of the 2008 crisis when the financial sector becomes dominant.

In 2009-2010, the financial sector had a few big movers such as AIG (American

International Group), C (Citi Group), and BAC (Bank of America).

Figure 5-8 shows the network and the set of equities identified as most central and

most peripheral with FACo as the linkage metric in years 2007-2008. While the set

of peripheral equities shows significant diversity in its sector composition, the set of

central equities is dominated by the financial sector (in brown color), the information

technology sector (in pink color), and the manufacturing sector (in blue color), such

as C, AIG, LNC, F, etc. The only stock from the financial sector in the peripheral

set is NTRS (Northern Trust), which had a quick rebound in its excess daily returns

compared to the rest of the sector.

Figure 5-9 shows some of the characteristics of the equities in the 10 most central

and the 10 most peripheral sets as estimated by periphery score using correlation for

linkage. Central stocks seem to have high beta, and to be more market dependent.

However, none of the stock characteristics offers a consistent separation of these two

sets.

5.4.3 Portfolio Returns

In Figure 5-10, we compare the return characteristics of the 10 most central and the 10

most peripheral equities based on linkages computed by various methods together with

periphery score as the topological measure for 2003 (network constructed from 2001-

2002). The network topology constructed with correlation as the linkage measure

results in a poor separation based on the periphery score. When FAC10 is used

for linkage measure, we achieve visibly better separation between these two sets of

equities based on their mean and standard deviation of daily returns compared to the

ones with correlation and partial correlation. While top-10 equities, and their means

and standard deviations of returns change yearly, FACo offers better separation

compared to correlation and partial correlation in all years.
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Inspired by this, we build two long only portfolios, one made of the 10 most

central and another with the 10 most peripheral equities based on our linkage methods

together with the periphery score as the topological measure. As in the previous

experiment, at the start of each year, we estimate the network parameters using the

previous two years of historical daily returns. We identify the 10 equities for each

group, and equally distribute the capital across them and hold until the end of the

year.

Table 5.2 presents the return characteristics. Pozzi, et al (2013) claims that pe-

ripheral equities offer great diversification resulting in higher returns and higher risk

adjusted returns (Sharpe ratio) than central equities. They use correlation for linkage
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Table 5.2: Central/peripheral portfolios

MEASURES CR PCR FAC1
CENTRAL PERIPHERAL CENTRAL PERIPHERAL CENTRAL PERIPHERAl

WORST DAY* -0.13 -0.16 -0.12 -0.1 -0.12 -0.1
EXPECTED SHORTFALL (5%) -0.04 -0.04 -0.04 -0.04 -0.05 -0.03
MAx DRAWDOWN -0.75 -0.74 -0.63 -0.71 -0.79 -0.65
ANNUALIZED RETURN 0.14 0.1 0.18 0.12 0.26 0.14
INFORMATION RATIO 0.95 0.4 1.25 0.8 1.08 1
SHARPE RATIO 0.61 0.5 0.76 0.62 0.85 0.71

in their work. However, we observe that the portfolio made of central equities achieves

higher return and risk adjusted return (Sharpe ratio) across all linkage methods. In

contrast, the portfolio of central equities performs poorly in some risk measures - no-

tably in the worst day performance. This observation is further supported by Figure

5-10, where we can see that the daily returns of the central equities have a higher

mean and standard deviation compared to the daily returns of peripheral equities.

5.5 Graph Clustering

In the previous section, we looked at the return characteristics of two portfolios built

using two distinct set of equities (the most central, and the most peripheral). Next,

we present a segmentation method based on graph clustering to improve portfolio

diversification as opposed to the traditional sector-based groupings.

5.5.1 Methods

A typical approach for finding different regions of a network is graph clustering.

Spectral clustering is a well known method based on the minimum k-cut [37]. For an

undirected graph G = {V, E}, where V is the set of nodes and E is the set of Edges,

if D is the edge cost matrix such that Di3 = c(Ei3 ) for a cost function c : E -+ [0, oo),

we partition V into a collection of k clusters P = {V 1, V2, ... Vk}. The problem of

finding k clusters can be stated by the following objective function,

min c(P) = Dij, (5.4)
x~y iEVx,jEV,
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such that no cluster has more than f nodes. The smallest value of f for which this is

solvable is f = |Vj/k. There exists an efficient approximate solution to this optimiza-

tion based on spectral factorization [41, 55].

Input: A multivariate time series X E R"P.

Step 1: Let A be the adjacency matrix for the chosen linkage method, and compute

D such that Dij = 9/(2(1 - Aij).

Step 2: Normalize D to make it doubly stochastic so that when the degree of a node

is high, the costs associated with its edges are low,

D +- D/(maxj Dij)

D <- D+(1- Dij)I

where I is an identity matrix of the same size as D.

Step 3: Compute the k eigenvectors U = {ei,..., ek} E RpXk of D corresponding to

the k largest eigenvalues.

Step 4: Cluster U into k clusters using a clustering algorithm such as k-means.

Output: Partitions P = {V1, ... , Vk}.

This algorithm does not guarantee that the cluster sizes will not exceed E. Al-

though, it can be achieved by forcing the k-means to produce a balanced set of

clusters [99]. In our experiments, we consistently obtained a balanced set of clusters

with traditional k-means algorithm (Figure 5-11).

Connectivity Measure

The fundamental objective of clustering is to group similar equities together in the

same cluster, and increase the dissimilarities across the clusters. To accomplish this,

we use the connectivity measure proposed in Billio, et al (2012), defined as the fraction
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Figure 5-11: Histogram of cluster sizes for clusters identified by spectral clustering
with different linkage measures: correlation and FACio. The bar chart gives the mean
number of cluster members for each cluster across years, and error bars correspond to
one standard deviation. We match the cluster labels for consecutive years by greedily
optimizing the Jaccard similarity coefficient of the cluster memberships. The Jaccard
coefficient measures similarity between two sets (A and B), and is defined as the size
of the intersection divided by the size of the union of the sets J(A, B) = jAnB1/AUBI
[54].

of the total volatility captured by the first few eigenvalues 1101. When equity returns

move together, the first few eigenvalues of the correlation matrix will capture a large

portion of the total volatility of the set. For the aggregate return of the set RS =

M Ri where Ri is the return of an individual equity, the variance of the system o

is given by
M M M

i j k

oaoajLikLjkAk. (5.5)

Here, Lik is the factor loading of equity i corresponding to the k-th eigenvalue Ak,

and ac is the standard deviation of returns R'. Then, the fraction of the variance

explained by the first m eigenvalues hm is given by,

(5.6)hm - ZkAk
ZE'k
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5.5.2 Empirical Observations

As in the previous experiment, at the beginning of each year, we build the financial

filtered network using the previous two years of historical daily returns. Then, we

filter the graph, and segment it into 10 clusters (since there are 10 sectors). Here, we

use spectral clustering for segmentation.

Figure 5-12 shows the composition of clusters for years 2003-2012. We match

the cluster labels for consecutive years by greedily optimizing the Jaccard similarity

coefficient of the cluster memberships. The Jaccard coefficient measures similarity

between two sets (A and B), and is defined as the size of the intersection of the sets

divided by the size of the union of the sets J(A, B) = IAnBI/AUB [54]. We see that

with correlation each cluster has a dominant sector attached to it. But with FAC10

and FAC , the membership is more diverse across sectors, implying the connections

they capture are more orthogonal to sector grouping than the connections captured

by correlation.

Table 5.3: Cluster connectivity

MEASURES INTRA-CLUSTER INTER-CLUSTER

(HIGHER IS BETTER) (LOWER IS BETTER)

hi h2 hi h2

SECTOR GROUPING 0.67 0.78 0.48 0.58

CR + MST + GRAPH CLUSTERING 0.67 0.79 0.54 0.63
PCR + MST+ GRAPH CLUSTERING 0.53 0.7 0.49 0.59
FACio + MST+ GRAPH CLUSTERING 0.53 0.7 0.45 0.56

In Table 5.3, we compare the average intra-cluster connectivity and average inter-

cluster connectivity (connectivity among the most central equity of each cluster) for

the years 2003-2012. Because the number of members per sector varies from 5 to

60, and because there is a significant overlap across different clusters produced by

our methods, we select the 5 most central equities per cluster in this evaluation. We

observe that graph clustering improves cluster separation (lower inter-cluster connec-

tivity), but the resulting clusters are less cohesive (lower intra-cluster connectivity)

than traditional sector grouping.
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5.5.3 Portfolio Returns

Next, we discuss how these clusters could be used to build an index portfolio similar

to sector indices. First, as in the previous experiment, at the beginning of each year

werbuild the financial network using a linkage method. Then, we filter the graph, and

cluster it into 10 clusters using the spectral clustering algorithm. Finally, we pick the

most central equity as given by the periphery score pi for each cluster, distribute the

capital across these 10 equities, and hold till the end of the year. We call this the

cluster index portfolio.

Table 5.4: Cluster index portfolios

MEASURES SECTOR I CR PCR FACo SPX

WORST DAY -0.09 -0.12 -0.1 -0.12 -0.09
EXPECTED SHORTFALL (5%) -0.03 -0.04 -0.04 -0.05 -0.03
MAx DRAWDOWN -0.71 -0.68 -0.61 -0.77 -0.79
ANNUALIZED RETURN 0.1 0.14 0.14 0.22 0.05
INFORMATION RATIO 0.67 1.01 1 0.91 N/A
SHARPE RATIO 0.54 0.63 0.68 0.73 0.34

Table 5.4 compares the return characteristics. For completeness, we also provide

a comparison with the returns of S&P 500 index (SPX). We note that FACo gives

the best performance in terms of both over all returns and risk adjusted returns.

5.6 Graph Sparsification

The objective of network filtering is to sparsify the graph such that the underlying

structure can be exposed and studied. When applying the network filtering earlier in

this chapter, we retained the highest connected links while constraining some overall

property of the network, such as the planarity. Alternatively, we could apply the spar-

sity constraint in learning the linkages, and our method of learning linkages readily

supports this.
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5.6.1 Method

There have been methods proposed in the literature to sparsify inverse covariance

method estimation [74, 721. Because inverse covariance defines the dependencies of

the graph of a multivariate time series, a sparse inverse covariance matrix leads to

fewer dependencies in the graph, and thus to graph sparsification.

Following this approach, we rewrite Equation 3.3 by replacing the f 2 norm by

the f1 norm. When the Li norm is used for regularization, it leads to solutions with

fewer nonzero parameter values, effectively reducing the number of variables upon

which the given solution is dependent. We make use of the Adaptive Lasso estimator

proposed by Zou (2006) for the case of dependent data [1011. We choose the penalty

on each of the weights as the reciprocal of the absolute value of a pre-estimator, which

is obtained by applying Equation 3.3 with the f2 norm. We call the corresponding

linkage method FAC . Since the resulting graph is already sparse, we don't apply

graph filtering.

5.6.2 Portfolio Returns

In Table 5.5, we provide the results of the previous experiment with FACI . We also

provide comparisons with the returns corresponding to a network built using sparse

partial correlation estimates (PCR8 ). For PCR, we use the method proposed in

Pavlenko, et al (2012) [72J. As in the case of FAC , the resulting network is al-

ready sparse, and therefore we don't apply network filtering to this method. FACfO

gives better results compared to FAC10. Further, instead of relying on an arbitrary

constraint to filter the graph, with FAC1
9 O we let the sparsity constraint of the opti-

mization guide the process.

5.7 Application Considerations

The index portfolios built using financial networks achieve higher risk adjusted returns

than the market index. For example, the partial correlation network based cluster
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Table 5.5: Cluster index portfolios with graph sparsification

MEASURES PCR PCR| FAC 10  FAC10

WORST DAY -0.1 -0.09 -0.12 -0.09
EXPECTED SHORTFALL (5%) -0.04 -0.04 -0.05 -0.04
MAX DRAWDOWN -0.61 -0.8 -0.77 -0.54
ANNUALIZED RETURN 0.14 0.16 0.22 0.22
INFORMATION RATIO 1 0.88 0.91 1.56
SHARPE RATIO 0.68 0.7 0.73 0.91

index portfolio and FAC10 based cluster index portfolio achieve 3 times and 4 times

the annualized return of S&P 500 index respectively. Because these portfolios are

held for a year, they incur very small transaction costs.

Relationships among equities can be viewed as occurring on three time scales:long-

term, mid-term and short-term. In this chapter, we capture only the long-term rela-

tionships. This may result in a slower response when underlying conditions change.

In contrast, more frequent updates will lead to higher transaction cost. By incorpo-

rating these considerations into the model, for a given transaction cost an optimal

update frequency can be found.

We show that by constructing a well-diversified portfolio, risk management can

be a source of excess returns. As with the portfolios presented in Chapter 3, the

portfolios described in this chapter are long only portfolios. Therefore, they are

exposed to market risk. Without short positions (or derivatives that simulate short

positions), this kind of risk cannot be diversified away.

5.8 Summary

We explored the task of leveraging network structure to study the dependencies in

financial time series. We compared the use of different linkage metrics to encode the

higher order connections in financial time series via the topological structure of a

network. We discussed how the topological properties of a financial filtered network

could be used to obtain an improved segmentation of equities, thus improving the

portfolio selection process.
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For example, we showed that highly central equities, even after the market de-

pendency is excluded, are more systemic. They offer high returns at the expense

of high variance and increased risk (measured by worst day performance, expected

shortfall, and maximum drawdown), and are significantly influenced by the market

movements. We also showed that peripheral equities, when they are uncorrelated

among themselves, can offer similar risk adjusted returns but at a reduced risk.

Then, we presented a segmentation method based on graph clustering as opposed

to the traditional sector based groupings. We showed that a portfolio built using this

method provides better risk adjusted returns compared to sector based grouping and

the S&P 500 index.
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Chapter 6

CONCLUSION AND FUTURE WORK

In this thesis, we showed how cross-sectional patterns on financial time series could

be learned using techniques from data mining and machine learning. We also showed

how these patterns could be leveraged to build a well-diversified portfolio, and that

these portfolios performed well on out of sample data in terms of minimizing risk and

achieving high returns.

We discussed three types of complimentary methods for leveraging data to learn

cross-sectional patterns in financial time series. These methods shared the common

goal of constructing a selective but well-diversified portfolio that performs well out of

sample.

* We presented a method for learning connections between financial time series

in terms of large losses. We used a factor model, and we modeled daily returns

using three factors: active return, market sensitivity, and connectedness of re,

turns. We learned these factors using a recursive regression. We employed a

model independent approach to prioritize the connections on large losses. Thus,

our method allows the user choose an objective function that balances the need

to minimize the co-occurrences of large losses against the need to minimize over-

all connections. We showed that portfolios constructed using this method not

only "beat the market," but also beat the so-called "optimal portfolios." More

importantly, portfolios constructed using our method significantly reduced tail

121



risk without sacrificing overall returns.

" We presented a method for learning connections between financial time series

and news releases. A problem with using news releases to predict future return

is that often the information in the news has already been incorporated into

the pricing of the equity. We modeled the sentiment of the news releases based

on the past returns and past news flows, and then used this model to discount

the expected sentiment from future news releases. Thus, we modeled the excess

returns in terms of excess sentiment. We showed that while using news directly

generated an annualized return of 22% over a 10-year period, our proposed

way of handling the past increased the annualized return to 34% over the same

period.

" We discussed how leveraging network structure to model the dependencies in

financial time series could be useful in obtaining an improved segmentation of

equities. We showed that segmenting equities in this way can be used to improve

the portfolio selection process. For example, we showed that highly central eq-

uities offered high returns at the expense of high variance and increased risk

(measured by worst day performance, expected shortfall, and maximum draw-

down). We also showed that peripheral equities, when they were uncorrelated

among themselves, could offer similar risk adjusted returns but at a reduced risk

compared to central equities. Then, we showed that a segmentation method

based on graph clustering could be used as an alternative to the traditional

sector based groupings.

Across all three tasks discussed in this thesis, the appropriate modeling of the con-

nections between equities has been crucial to good performance.

Specifically, we showed the importance of regularized learning, frequent model

updates, and flexible models that utilize techniques from multiple areas.
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6.1 Future Directions

The idea of modeling the "correlation" structure by learning the connections could be

used in many other areas in finance. Specifically, addressing the issue of tail risk when

learning the connections could be useful in modeling counter party risk in brokerages,

inter-bank lending for retail banks, and unwinding risk for hedge funds.

For some applications, we update the portfolio daily, which results in high turnover.

This in turn results in increased transaction costs and margin requirements. Though,

a short-term portfolio, by definition, needs to be updated frequently, we can update

the portfolio weights more intelligently by factoring in these additional costs into the

model.

We used Thomson Reuters NewsScope dataset together with daily returns data.

There are several other datasets that we could use to learn the connections between

equities. Investor sentiment can be gleaned from Twitter feeds. Compared to the

Thomson Reuters NewsScope data, Twitter feeds are more frequent, real time, and

available at "zero cost." However, the advantage offered by Twitter feeds of being "the

wisdom of crowds," may very well be its downside when it becomes the "the madness

of mobs.'

Generally, we considered long-only portfolios. When all equities are heavily cor-

related, as during the 2008 crisis, market risk governs most of the returns. Without

short positions (or derivatives that simulate short positions), this kind of risk cannot

be diversified away. We can incorporate these strategies into our model. In Section

3.5, we discussed how we could hedge against a known risk factor (e.g.,market risk).

Such strategies will have additional restrictions embedded. For instance, there are fees

associated with stock borrowing to facilitate short selling, and during certain times

(especially when short-selling is most needed) regulative restrictions can be imposed

on short-selling. Incorporating these concerns into the model would make the model

more versatile.

In financial time series analysis, patterns can be learned in four time scales: long-

term (fundamental based), mid-term (technical and macro-based), short-term (event
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based), and ultra-short-term (based on inefficiencies in statistical arbitraging). In this

thesis, we captured the short-term (Chapter 4), mid-term (Chapter 3), and long-term

(Chapter 5). An intriguing line of future work is to use these strategies and others

such as equal weighted portfolio in an ensemble. Then, we can learn to weight each

of them based on investor preferences and macroeconomic situations.

Like correlation, the connection we learn is not an observable variable, but an

average estimated over a time period. With the availability of intraday data of stock

quotes at millisecond levels, researchers have proposed methods to treat volatility

of daily returns (average variance of daily returns) as an observable [6, 3, 22]. We

can extend this to the problem of modeling the "correlation" structure on the daily

returns, which will open an exciting avenue of research. Then, the latent connections

captured by the methods proposed in this thesis could be treated as observables.

In the world of finance, where the actors are eager to exploit any inefficiency in

the system aggressively, potential benefit of a model will quickly decay with time.

This feedback necessitates constant updates to the model, and furthermore, requires

fresh ideas to be profitable. If such feedbacks can be factored into the model, the

useful lifespan of the model could be lengthened.

Finally, the act of predicting the future and acting upon this information changes

the world, i.e., the circumstances that initially led to the specific prediction. This

is particularly the case for large institutional investors who would trade in large

amounts. Some of the effects of this issue is factored into the transaction cost, but

addressing this issue specifically would be an interesting problem.
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