
HARDWARE-LEVEL FINE-GRAINED THREAD MIGRATION
by

Mieszko Lis

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2014

C MMIV Massachusetts Institute of Technology. All rights reserved.

Cmm Ax I V)

sACHUSMS W ir
OF TECHNOLOGY

SEP 2 5 20L

UIBRARIES

AuthorSignature red actedAuthor ~ ~~~~~~e--re -c e
Department of Electrical Engineering and Computer Science

August 18, 2014

Signature redacted
Certified by

Srinivas Devadas
Professor of Electrical Engineering and Computer Science

Thesis Supervisor

Signature redacted
Accepted by

/ Lefie. Kolodziejski
Chairman, Department Committee on Graduate Theses

HARDWARE-LEVEL FINE-GRAINED THREAD MIGRATION
by

Mieszko Lis

Submitted to the Department of Electrical Engineering and Computer Science
on August 18, 2014, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Electrical Engineering and Computer Science

ABSTRACT

Although thread migration has long been employed to satisfy load-balancing goals in oper-
ating systems for symmetric multiprocessing hardware, the high cost of OS-mediated migra-
tion has made more fine-grained applications impractical. With only a few cores per proces-
sor, and high overheads due to moving threads across processors and loss of cache affinity,
assigning threads to specific processor cores for long periods has remained the default strat-
egy for ensuring maximum performance.

Massive-scale single-chip multiprocessors dramatically alter this picture. On-chip data
transfer latencies-even across a 100+-core chip-rarely exceed tens of cycles, making the
potential cost of thread migration as low as executing several instructions. At the same time,
all cores are placed on the same die and typically share one last-level cache distributed on
chip, obviating cache affinity concerns.

In this dissertation, we explore the limits of fine-grained thread migration by develop-
ing an autonomous mechanism for migrating threads implemented entirely in hardware. We
then employ migration to implement the unified shared memory abstraction without a cache
coherence protocol-a particularly demanding application that requires fast and fine-grained
thread movement-and show that performance is competitive with traditional shared mem-
ory mechanisms. Finally, we describe a real-world implementation of both concepts in a
110-core single-chip multiprocessor in 45nm ASIC technology.

Thesis Supervisor: Srinivas Devadas
Title: Professor of Electrical Engineering and Computer Science

3

4

ACKNOWLEDGEMENTS

Myong Hyon Cho and Keun Sup Shim joined me in the madness of building the EM2 ASIC
from design to tapeout. I never would have thought it possible that such a large ASIC could
have been done by a team of three in such a short time, and, indeed, I have never seen anyone
work as hard as they did; without their hard work dedication there would have been no chip.
I could not have asked for better colleagues and friends.

In addition to helping with the final stages of the tapeout process, Ilia Lebedev built a com-
piler for our custom stack-based architecture and designed an interface board for mounting
and testing the EM2 chip. He was always ready to help, be it with the project or with anything
else.

I am grateful to the Peh group, and especially Owen Hsin, for sharing their expertise and
advice. When we took upon us the task of building an ASIC, we had no idea how little we
actually knew about the subject, and would certainly have failed without their helping hand.

Ihe early work on thread migration for shared memory was a collaboration with Omer
Khan, and I fondly remember the intellectually stimulating days we spent poring over dia-
grams and data.

Many thanks to Charles Herder, who out of sheer kindness helped us with testing the
EM2 chip. He freely offered advice and patiently explained every step, betraying not only a
kind heart but also a rare talent for teaching.

My academic pedigree I owe to my supervisor, Srinivas Devadas. His example has helped
me mature as a researcher, and, although I yet have far to travel, my tastes and style bear
the imprint of his guidance. His ability to engage with students as research equals created
the best research environment I could have imagined, and in this too I hope to follow his
example.

I am grateful to the members of the Computation Structures Group who have come and
gone over the years, for supporting a great environment for professional and social interac-
tion. They have contributed both as colleagues and as friends, as the need arose.

Finally, I can never repay the debt of gratitude I owe to my family, who have never failed
in unquestioningly offering their support.

5

6

CONTENTS

1 Introduction 11
1.1 The dawn of the multicore era 11
1.2 Shared memory and threads 12
1.3 Caches and the trouble with shared memory 13
1.4 Getting threads in and out of the CPU 14
1.5 The contributions of this dissertation 14

2 Related work 17
2.1 Thread migration . 17
2.2 Shared memory . 18

3 A deadlock-free thread migration protocol 21
3.1 The emergence of deadlock 21
3.2 Deadlock in practice 23
3.3 A deadlock-free protocol . 25

4 Migration-based shared memory 31
4.1 A basic shared memory scheme . 31
4.2 Analytical model .. 34
4.3 An optimized shared memory scheme 41
4.4 Virtual memory and OS implications 45

5 Migration prediction 47
5.1 Learning and predicting locality 47
5.2 Prediction effectiveness 51
5.3 Partial-context migration 51

7

6 EM2: a thread migration architecture 55
6.1 System architecture . 55
6.2 A stack machine core . 56
6.3 Migration mechanism . 57
6.4 Partial-context migration prediction . 58

7 ASIC implementation 63
7.1 Hardware design language 63
7.2 Synthesis and the backend 64
7.3 System verification 65
7.4 System configuration and bootstrap 66

8 Performance evaluation 71
8.1 M ethods 71
8.2 Evaluation 73

9 Conclusions 85
9.1 Thread migration .. 85
9.2 Shared memory implementation 86
9.3 An enabling technology 87

A Stack ISA 89
A.1 Architectural state .. 89
A.2 Instruction encoding and semantics 90

8

3-1 Deadlock in a naive thread migration protocol
3-2 Deadlock in simulation on synthetic migration benchmarks
3-3 The acyclic channel dependency graph of ENC

Bringing computation to data
Memory access diagram under EMO
Average memory latency analysis
Migration rates in EMO
Memory access locality variations
Memory access diagram under optimized EM

Predicting migrations
Core miss rates decrease with migration prediction .
Registers used post-migration

Data cache architecture

A stack-machine core
Migration mechanism
Partial context migration ...

EM2 tile layout
EM2 chip photograph
EM2 verification methodology
EM2 configuration scan chain

4-1
4-2
4-3
4-4
4-5
4-6

5-1
5-2
5-3

6-1
6-2
6-3
6-4

7-1
7-2
7-3
7-4

8-1
8-2
8-3
8-4

9

LIST OF FIGURES

22
25
26

32
33
40
42
44
45

EM2 vs. RA as contiguous access run lengths grow ...
EM2 vs. CC-ideal as cache miss rates grow
EM2 vs. RA and CC-ideal as the number of cores grows
Benchmark performance vs. CC-ideal

. 49

. 50

. 52

. 59

. 60

. 61
. 62

. 68

. 69

. 70

....... 70

74
76
77
78

8-5 EM2 thread migration performance 79
8-6 Thread oversubscription 81
8-7 Area and power costs 84

10

CHAPTER 1

INTRODUCTION

IN this dissertation, we design a mechanism for fast, fine-grained thread migration targeted
for 100+-core general-purpose multicores, and develop a migration-based shared-memory

scheme. We then demonstrate the feasibility of these mechanisms by realizing them in a 110-
core general-purpose multicore processor implemented in 45nm ASIC technology.

To provide background for this discussion, this chapter explores the issues surrounding
of the advent of multicores in the last decade, and discusses existing approaches to shared
memory and thread migration.

1.1. THE DAWN OF THE MULTICORE ERA

The past decade has brought a revolution in computer architecture: computer processors,
instead of running on ever faster clocks, have evolved into designs that place multiple pro-
cessing cores on a single chip. This rather radical change has occurred because while transis-
tors continue to get smaller and smaller, their power requirements no longer reduce accord-
ingly, and practical consideration limit processors to roughly 100 watts of power (despite
the development increasingly intricate cooling designs, dissipating very much more from a
thumbprint-sized area has not proved commercially viable).

Why is this? Until recently, CMOS transistor technology has followed what has become
known as Dennard scaling (Dennard et al., 1974). As the linear dimensions of the transistor
are halved, the number of transistors in a given area (N) quadruples; Dennard et al. observed
that, at the same time, the dynamic capacitive load (C) and supply voltage (V) halve and the
maximum switching frequency (f) doubles. Power density per unit area depends on all three
of those,

Pdensity = NCV2f,

11

so halving transistor dimensions keeps this quantity constant:

new Pdensity = (4N) () (2) = NCV2f

More than anything, this property has been responsible for the exponential growth in pro-
cessor performance from the late 1970s until about the mid-2000s.

About a decade ago, however, the corresponding reductions in the supply voltage V have
slowed dramatically. This is mainly because a supply voltage that is too close to the transis-
tor's threshold voltage allows some current to flow through even if the transistor is switched
off-i.e., the circuit "leaks" current (and dissipates power) even if no computation is being
performed. In addition, While accepting a lower reduction in voltage keeps leakage in check,
however, it means that the V2 term in the power density equation is reduced by a substan-
tially lower factor, and one must also forgo increases in operating frequency to keep power
density constant.

Even though we can no longer run processors at faster and faster frequencies, transis-
tor dimensions still continue to shrink. Designers have taken advantage of this by placing
multiple processor cores on a single die: in effect, instead of making each processor core sig-
nificantly faster, the available transistor area has been used to place multiple cores on a single
chip. At the time of this writing, 4 to 8 cores are common in commodity general-purpose pro-
cessors, and even low-power applications such as mobile phones feature processors with 2
to 4 cores.

1.2. SHARED MEMORY AND THREADS

Unfortunately, while a typical sequential program suitable for a single-core processor will
(roughly) run twice as quickly if the operating frequency of the computing system doubles
(with the processor still executing a sequence of instructions), it will not automatically take
advantage of a processor with several cores, which execute independent streams of instruc-
tions in parallel.

To manage this concurrency, two kinds of models have developed: (a) a message passing
model where the processor cores effectively run separate programs that share no data and
must actively communicate, and (b) a shared memory model where the cores run different
parts of the same program, reading and writing the same memory space.1 While message
passing allows the programmer to achieve optimal performance by manually controlling all

'Some architectures, such as GPUs, achieve massive parallelism by restricting the efficiently implementable
program space to stream-like kernels, and are beyond the scope of this dissertation.

12

intercore communication, it comes at the very high cost in terms of programmer effort and
time, and for most applications shared memory is by far the preferred approach (Sodan, 2005).

As in the message-passing paradigm, in a shared-memory scheme different processor
cores run potentially different instruction sequences in parallel. The difference lies in how
threads communicate. Message-passing programs have separate copies of all their variables
in each core, so that if one of the cores changes the value of a variable (say x), no other cores
will directly observe the change; to coordinate the program's threads, the programmer must
explicitly add code that transmits messages among the program's threads. Shared-memory
threads, on the other hand, access the same copy of each variable: if one thread changes x
from 23 to 37, then all other threads immediately and automatically observe the change. With
shared memory, inter-thread communication occurs implicitly, and the underlying hardware
must enable a core to automatically observe any changes to the memory space effected by
the other cores in the system.

1.3. CACHES AND THE TROUBLE WITH SHARED MEMORY

Implementing shared memory in a modern multi-core processor is, however, far from straight-
forward, because modern processors implement caches to mitigate main memory latency.

T1he main memory in today's computers consists of DRAM; while this inexpensive and
area-efficient solution allows for multi-gigabyte memory sizes, however, access times are
slower-by roughly two orders of magnitude-than the time a processor core takes to execute
a single instruction. Caches are very fast but small memories that keep copies of the most
recently accessed data very close to the processor, with access times of a few clock cycles. To
achieve such short access times, caches must be close to the processor core they serve,2 and
so caches tend to be private to each core.

Private caches, however, cause a problem for shared memory, because if multiple caches
are allowed to hold copies of a variable x, they must somehow all agree as to the value of
x. This is usually accomplished with complex cache coherence protocols that coordinate the
caches in the different cores to ensure this kind of agreement (see Chapter 2 for related
research). Despite recent advances, however, cache coherence protocols remain difficult to
implement and verify, and do not easily scale to large numbers of cores (Arvind et al., 2008;
DeOrio et al., 2008; Zhang et al., 2010); as a result, a number of recent high-core-count pro-
cessors have eschewed a hardware coherence mechanism (e.g., Mattson et al., 2010).

Existing techniques-hardware cache coherence protocols, distributed shared cache, soft-
ware cache coherence, and so on-used to implement shared memory all have one thing in

2Wire delays do not scale as transistors do: while the capacitance C decreases as wires get smaller, the
resistance R goes up, and the delay RC remains roughly constant per unit distance.

13

common: they all bring data to the core that wishes to compute on it. A core contribution of
this dissertation is turning this idea upside down: we instead migrate the computation from
one core to another, bringing it to the data it wants to access.

1.4. GETTING THREADS IN AND OUT OF THE CPU

How does one move a running thread from one processor core to another? It turns out that
operating systems-even running on single-core processors-have long done something very
similar. One reason for this is time-multiplexing, a way to achieve the illusion of running
multiple threads (or processes) on a single CPU. In this technique, after running for a single
time slice (a period dependent on the task's priority, but usually ranging from a few to a few
hundred milliseconds), the operating system (OS) may evict the currently running thread
from the processor core and load in another thread, an event called a context switch. Another
reason is to put the processor in a power-saving sleep state: to accomplish this, the currently
running thread is stored in a special memory region and the processor itself is powered down
until it is woken up.

In either case, the complete state of the currently running thread must be moved out of the
CPU and stored in memory. At a minimum, this state consists of the program counter (PC)-
which holds the memory address of the next instruction to be executed-as well as all of the
general-purpose and special-purpose registers, flags, control registers, and input/output/interrupt
information, but may include other cached state to avoid recomputation when the thread is
woken up again.

Because the timescales involved are fairly long compared to processor clock cycles-on
the order of milliseconds-there has been little need for thread loading and unloading tasks
to be optimized for speed, and as a result they have largely been implemented in software.
For the purposes of this dissertation, we need to move running threads among the cores in
timeframes not exceeding tens of cycles, and existing solutions are far too slow; we therefore
develop a technique to move threads entirely in hardware.

1.5. THE CONTRIBUTIONS OF THIS DISSERTATION

In this dissertation, we develop an autonomous mechanism for fast, fine-grained thread mi-
gration in multicore processors, and outline the protocol-level innovations and microarchi-
tectural details required to implement it entirely in hardware. Capitalizing on the efficiency
of this implementation, we then design a simple, scalable shared memory mechanism, lever-
aging migration to match state-of-the-art performance levels. Finally, we describe the real-

14

ization of these concepts in the Execution Migration Machine (EM2), a 110-core chip multi-
processor implemented in 45nm ASIC technology.

Specifically, the contributions of this work are:

1. the design and implementation of the first autonomous, deadlock-free migration scheme
implementable in hardware;

2. the concept of partial context migration, which significantly reduces thread migration
costs by transferring only a useful part of the thread context;

3. an implementation of the sequentially-consistent shared memory abstraction using
purely migration;

4. an optimized implementation using both migration and remote cache access that is
competitive with the state of the art;

5. a detailed description of the first implementation of hardware-level thread migration
and migration-based shared memory in a 110-core CMP;

6. an exploration of what computation patterns benefit from thread migration; and

7. a detailed performance comparison vs. an "ideal" cache coherence baseline implemented
in RTL.

'This thesis constitutes the final part of a trinity of dissertations centered around execution
migration and the EM2 chip, following those of Cho (2013) and Shim (2014). Designing and
building such a large chip is by necessity a group activity, and, as such, there is a fair amount
of overlap among the three.

Specifically, the contribution of the deadlock-free migration protocol described in Chap-
ter 3 is shared with Cho (2013), while the design and implementation of migration prediction
described in Chapter 5 are due to Shim (2014). Lebedev (2013) describes compilation and
optimization techniques for the stack machine architecture detailed in Appendix A.

In the following sections, after reviewing related work, we develop a design for fast, fine-
grained thread migration that can be realized in hardware, and describe how to implement
shared memory using thread migration.

15

16

CHAPTER 2

RELATED WORK

T HIs chapter delineates the significance of the main contributions of the present disserta-
tion and places them in the context of previous research.

2.1. THREAD MIGRATION

In symmetric multiprocessor (SMP) systems and chip multi-processors (CMPs), process and
thread migration has long been employed to provide load and thermal balancing among the
processor cores and across separate processors. Typically, migration is a direct consequence
of thread scheduling and is performed by the operating system (OS) at timeslice granularity;
although this approach works well for achieving long-term goals like load balancing, the rel-
atively long periods, expensive OS overheads, and high communication costs have generally
rendered other applications impractical.

The advent of non-uniform memory access (NUMA) architectures in the 1990s (e.g., the
MIT Alewife machine, Agarwal et al., 1995)-as well as the subsequent appearance of on-
chip memory controllers in commodity processors during the following decade-sparked a
renewed interest in thread migration. While the unified shared memory abstraction (pro-
vided via a shared bus or a distributed cache coherence protocol) made references to any
address possible for any processor, accesses to regions of memory physically adjacent to a
given processor were significantly faster; thus, performance improvements could potentially
be achieved if threads could be moved to follow the data they operated on. Approaches like
Computation Migration (Hsieh et al., 1993), Ariadne (Mascarenhas and Rego, 1996), Milli-
pede (Itzkovitz et al., 1998), Active Threads (Weissman et al., 1998), thread migration in D-
CVM ('Ihitikamol and Keleher, 1999), and the 02 scheduler (Boyd-Wickizer et al., 2009) are in
the end limited by the costly overheads of a software implementation. Mobile Multithread-
ing (Dorojevets and Strukov, 2002) demonstrated significant speedup potential if migration

17

overheads could be kept extremely low, and highlighted the need for the fastest thread mi-
gration mechanism possible.

More recently, the need for an efficient migration mechanism has resurfaced. Rapid thread
migration among cores in different voltage/frequency domains has been used to run less
demanding computation phases on slower cores, with the goal of improving overall power-
performance ratios (Rangan et al., 2009), to accelerate critical sections by running them on
the higher-performance ("fat") cores of a heterogeneous CMP (Suleman et al., 2009), to take
advantage of the overall on-chip cache capacity and improving performance of sequential
programs (Michaud, 2004), to improve code locality (Chakraborty et al., 2006), and to acceler-
ate locks (Joao et al., 2012). In the area of reliability, fine-grained inter-core thread migration
has been proposed to salvage cores that cannot execute some instructions because of manu-
facturing faults (Powell et al., 2009).

What has been lacking is a suitably efficient implementation of fast, fine-grained thread
migration. The most important consideration is that such a protocol must be deadlock-free:
if a thread context can be blocked by other contexts during migration, this additional re-
source dependency can cause the on-chip interconnect to lock up. Secondly, the mechanism
must support instruction-granularity migrations: if the next instruction cannot be executed
on the current core (e.g., because of a hardware fault), the thread must move immediately.
Finally, migrations must have minimal overhead, both to outperform emulation mechanisms
for fault recovery and to provide any hope of accelerating memory accesses. Existing studies,
however, fail to satisfy one or more of these requirements: they either implicitly rely on ex-
pensive, centralized migration protocols that provide deadlock freedom but incur overheads
that preclude frequent migrations (Hu et al., 2010; Misler and Jerger, 2010), limit migrations to
a core's local neighborhood (Shaw and Dally, 2002), or simply give up on deadlock avoidance
and rely on expensive recovery mechanisms (e.g., Melvin et al., 2003).

In this dissertation, we develop a hardware-level thread migration mechanism that meets
all of those requirements. First, we describe a provably deadlock-free migration protocol that
is amenable to efficient implementation; unlike previous work, migrations are autonomous
and do not require handshaking. We then outline the microarchitectural details of a hardware-
level implementation of thread migration and show how to migrate only the useful subset of
a thread to obtain lower migration latency and reduced on-chip traffic. Finally, we describe
how these concepts are implemented in a 110-core chip multiprocessor ASIC.

2.2. SHARED MEMORY

Experience with early multiprocessor systems made it obvious that keeping the illusion of a
single unified memory significantly eases programming, and a shared memory abstraction-

18

with sequential consistency (Lamport, 1979) as the ultimate benchmark-has become sine
qua non for general-purpose multiprocessors.1 To support this abstraction, designers have
turned to directory-based cache coherence, in which complex protocols ensure agreement
among per-core private caches. For large-scale CMPs, however, the scalability of directories
is arguably a critical challenge since the area required for directories and coherence traffic
overhead keeps increasing along with the core count. Although some recent work has pro-
posed more scalable directories in terms of area and performance (e.g., Feldman et al., 2011;
Sanchez and Kozyrakis, 2012), the design and verification complexity of directories and com-
plex coherence protocols still remain significant and do not easily scale to a large number of
cores (Arvind et al., 2008; DeOrio et al., 2008; Zhang et al., 2010).

In addition to providing a consistent memory model, designers of modern multicores
must address the physical distribution of cache memory across the chip area, and the con-
sequent variation in cache access times. This body of work has its roots in the non-uniform
memory access (NUMA) paradigm as extended to single-die caches (NUCA: Kim et al., 2002;
Chishti et al., 2003) and chip multiprocessors (Beckmann and Wood., 2004; Huh et al., 2005).
To speed up access times, studies investigated the data movement of data towards the lo-
cus of computation in NUMA machines (e.g., Verghese et al., 1996). More recently, similar
data placement ideas have been explored in the different tradeoff regime of single-chip mul-
tiprocessors. Cho and Jin (2006) have proposed page-granularity approaches that leverage
the virtual addressing system and the TLBs to improve locality, CoG (Awasthi et al., 2009)
explored moving pages to the "center of gravity" to improve data placement, and the 02

scheduler (Boyd-Wickizer et al., 2009) made data placement a factor in OS thread scheduling.
Other schemes proposed hardware support for page migration support (Chaudhuri, 2009;
Sudan et al., 2010); at finer granularity, Zhang and Asanovik (2005) addressed locality by
keeping Li cache victims in the local L2 cache. In a similar vein, Reactive NUCA (Hardavel-
las et al., 2009) explored automatic detection of data access patterns and providing limited
replication to accelerate performance on read-only data.

Various alternative designs have the complexity of cache coherence protocols while keep-
ing, relaxing, or even dispensing with the shared memory abstraction. One approach is to
disallow automatic data replication, divide the address space among per-core caches, and
provide a hardware mechanism to access data cached in remote locations (e.g., Fensch and
Cintra, 2008); while the shared memory abstraction is maintained, performance can suffer
because remotely cached data cannot be cached locally and incur the remote access penalty
every time they are accessed. Another is to transfer the burden of cache coherence from hard-
ware to the operating system and software (Kontothanassis et al., 1997; Zeffer et al., 2006),

'For performance reasons, most multiprocessors do not implement sequential consistency directly, but
achieve it via a combination of a more efficient relaxed memory model and memory barrier instructions.

19

or to require the programmer to obey a more disciplined shared-memory model to simplify
the hardware coherence mechanism (e.g., DeNovo, Choi et al., 2011). Finally, some designs,
such as Intel's 48-core Single-Chip Cloud Computer (Mattson et al., 2010), forgo a hardware
coherence mechanism entirely and require the programmer to explicitly manage data con-
sistency.

In this dissertation, we employ fine-grained thread migration to accelerate a remote-
cache access scheme similar to that of Fensch and Cintra (2008), providing the unified shared
memory abstraction entirely in hardware. As in previous work, our scheme eschews auto-
matic data replication, and, consequently, the cost and complexity of providing automatic
cache coherence; this design choice allowed us to trivially scale the implementation from a
4-core testbed to the full 110-core ASIC. Unlike similar approaches, however, our approach
can match or exceed the performance of directory-based cache coherence on a range of ap-
plications while reducing (sometimes dramatically) on-chip network traffic rates (and con-
sequently dynamic power). In addition, because memory accesses form a significant part of
the instruction stream, implementing shared memory places strict demands on the thread
migration framework and allows us to stress-test and evaluate our migration mechanism.

20

CHAPTER 3

A DEADLOCK-FREE THREAD MIGRATION PROTOCOL

WE begin our study of thread migration by developing a migration protocol suitable for
fast, fine-grained thread movement and amenable to straightforward implementation

in hardware. After demonstrating how deadlock arises in a naive approach to thread migra-
tion, we show how to design a low-latency protocol where deadlock never arises.

3.1. THE EMERGENCE OF DEADLOCK

Most on-chip network routing protocol studies focus on the network itself and assume that
a network packet dies soon after it reaches its destination core: for example, the result of a
memory load request might simply be written to its destination register. This assumption
greatly simplifies deadlock analysis because the dead packet no longer holds any resources
that might be needed by other packets, and only live packets are involved in deadlock sce-
narios.

When a routing protocol is used for thread migration, however, this assumption no longer
holds. The packet carries an execution context, which moves to an execution unit in the core
and occupies it until it migrates again to a different core.1 The need to evict such execution
contexts-which may not always be possible-introduces a scenario where contexts arriving
over the network are blocked, and creates additional dependencies that conventional on-chip
network deadlock analysis does not consider.

For example, suppose a migrating thread T1 in Figure 3-1a is heading to core C1.Although
T1 arrives at routing node N1 directly attached to C1, all the execution units of C1 are occupied

'We could, of course, avoid this with centralized migration scheduling or a scheme where a thread requests
space from the remote core and waits for the reservation to be confirmed before migrating; both approaches,
however, require round-trip requests and conflict with our goal of supporting migration with the lowest possible
latency.

21

W thread T, W thread T2 ;; other threads

(a) the network buffers situation (b) the channel dependency graph

Figure 3-1: Deadlock in a naive thread migration protocol where threads simply swap. Thread
T1 wishes to enter core C1, but all contexts are occupied by other threads (-). One of those
must be evicted, but the network buffers are filled up with other migrating threads and will
not clear until T2 enters core C2. Thread T2, however, has the same problem, and ultimately
depends on T1 entering its destination. Because of the cyclic dependency, no thread can make
progress, and deadlock ensues.

22

X ---
N'-

N2N,

C,
............

C2

by other threads (~), and one of them must migrate to another core for T1 to make progress.
But at the same time, thread T2 has the same problem at core C2, so the contexts queued
behind T2 are backed up all the way to C1 and prevent a C1 thread from leaving. So Tal

cannot make progress, and the contexts queued behind it have backed up all the way to C2,
preventing any of C2 's threads from leaving, and completing the deadlock cycle. Figure 3-
lb illustrates this deadlock using a channel dependency graph (CDG; see Dally and Towles,
2003) where nodes correspond to channels of the on-chip network and edges to dependencies
associated with making progress on the network.

We call this type of deadlock a protocol-level deadlock, because it is caused by the migra-
tion protocol itself rather than the network routing scheme. Previous studies involving rapid
thread migration typically either do not discuss protocol-level deadlock, implicitly relying
on a centralized deadlock-free migration scheduler (Hu et al., 2010; Misler and Jerger, 2010;
Shaw and Dally, 2002), using deadlock detection and recovery (Melvin et al., 2003), employ-
ing a cache coherence protocol to migrate contexts via the cache and memory hierarchy,
effectively providing a very large buffer to store contexts (Rangan et al., 2009), or employing
slow handshake-based context swaps (Powell et al., 2009). All of these approaches have sub-
stantial overheads, motivating the development of an efficient network-level deadlock-free
migration protocol.

3.2. DEADLOCK IN PRACTICE

We have shown that using an on-chip network for thread migration introduces additional
channel dependencies that may in some circumstances result in deadlock. But do those con-
ditions actually occur in practice? In this section, we use a synthetic migration benchmark
running on a network-on-chip simulator to answer that question.

To this end, we consider the naturally arising SWAP protocol, implicitly assumed by sev-
eral works. In this scheme, whenever a migrating thread T, arrives at a core, it evicts the
thread T2 currently executing there and sends it back to the core where T1 originated. Al-
though intuitively one might expect that this scheme should not deadlock because T2 can be
evicted into the slot that T1 came from, this slot is not actually reserved for T2 and another
thread might migrate there more quickly, preempting T2 ; it is therefore not guaranteed that
T2 will exit the network and deadlock may in fact arise.2

In order to examine how often the migration system might lock up, we used a synthetic
migration benchmark where each thread keeps migrating between the initial core where it
was spawned and a hotspot core. (Since migration typically occurs to access some resource

'Although adding a handshake protocol with extra buffering can make SWAP deadlock-free (Powell et al.,
2009), the resulting scheme is too slow our goal of fast, frequent migrations.

23

Core and migration

core architecture single-issue, two-way SMT
thread context size (relative to flit size) 4 flits
number of threads 64
number of hotspots 1, 2, 3 and 4
migration interval 100 cycles

On-chip network interconnect

network topology 8-by-8 mesh
routing algorithms dimension-order wormhole routing
number of virtual channels 2 and 4
network buffer size (relative to context size) 4 per link or 20 per node
context queue size (relative to context size) 0, 4, and 8 per core

Table 3.1: The simulation setup for synthetic migration benchmarks.

at a core, be it a functional unit, a lock, or a set of memory locations, such hotspots naturally
arise in multithreaded applications.) We used varying numbers (one to four) of randomly as-
signed hotspots, and 64 randomly located threads that made 1000 migrations to destinations
randomly chosen among their originating core and the various hotspots every 100 cycles. We
used the cycle-level network-on-chip simulator HORNET (Lis et al., 2011), suitably modified
with a migration system, to model a 64-core system connected by a 2D mesh interconnect.
Each on-chip network router had enough network buffers to hold 4 thread contexts on each
link with either 2 or 4 virtual channels; we also examined the case where each core has a
context queue to hold arriving thread contexts when there are no available execution units.
We assumed Intel Atom-like x86 cores with execution contexts of 2Kbits (Rangan et al., 2009)
and enough network bandwidth to fit each context in four or eight flits. Table 3.1 summarizes
the simulation setup.

Figure 3-2 shows the percentage of runs (out of 100) that end with deadlock under the
SWAP scheme. Without an additional context queue, nearly all experiments end in deadlock;
worse yet, even though context buffering can reduce deadlock, deadlock still occurs at a sig-
nificant rate for the tested configurations.

The synthetic benchmark results also illustrate that susceptibility to deadlock depends
on migration patterns: when there is only one hotspot, the migration patterns across threads
are usually not cyclic because each thread just moves back and forth between its own private
core and only one shared core; when there are two or more hotspots and threads have more

24

75%

50% F- -

25% -I

0% ~ __I L
2VC+0 4VC+0 2VC+4, 2VC+8 2VC+0 4VC+0 2VC+4 2VC+8 2VC+ 4VC+0 2VC+4 2VC+8 2VC+014VC+0 2VC+42VC+8

1 hotspot 2 hotspots 3 hotspots 4 hotspots

Figure 3-2: The percentage of random synthetic migration patterns that deadlock under the

SWAP scheme under various configurations: 2VC+4, for example, corresponds to 2 virtual

channels and a context queue of 4 contexts.

destinations, on the other hand, their paths intersect in more complex ways, making the

system prone to deadlock. Most importantly, while small context buffers prevent deadlock

with some migration patterns, they do not ensure deadlock avoidance.

3.3. A DEADLOCK-FREE PROTOCOL

To support fine-grained thread migration, therefore, we need to design a migration proto-

col that is deadlock-free from the ground up. Our scheme, called the Exclusive Native Con-

text (ENC) protocol, takes a network-based approach to allow autonomous thread migration

while providing deadlock freedom.

With ENC, threads may begin a migration autonomously, without coordinating with any

other core or thread. When such a thread arrives at its destination core and the destination

core has no available contexts, the new thread may evict one of the thread contexts already

executing in the destination core; ENC provides the evicted thread context a safe path to an-

other core on which it will never be blocked by other threads that are in transit concurrently.

To provide the all-important safe path for evicted threads, ENC uses a set of policies in

core scheduling, routing, and virtual channel allocation.

25

100%

channel for migrating traffic

channel for evicted traffic

this nore
this node Cdepends
depends a on nothing

on nothing

is ful

Figure 3-3:'The acyclic channel dependency graph of ENC.

Each thread is considered a native thread in one particular core, which reserves storage

space (a register file and other associated context state) for the thread. Other threads cannot

use this reserved resource even if it is not being used by the native context; therefore, a thread

will always find an available resource every time it arrives at the core where the thread is

considered native. We will refer to this core as the thread's native core.

If an arriving thread is not a native thread at the destination core, it may be temporarily
blocked by other non-native threads currently on the same core.' Eventually, the new thread

evicts one of the executing non-native threads and takes the released resource. (Recall that a

thread never evicts a native context from the destination core because the resource is usable
only by the native thread.)

Dedicating resources to native contexts requires some rudimentary multithreading sup-

port in the cores. If a thread may migrate to an arbitrary core which may have a different

thread as its native context, the core needs to have an additional register file (i.e., a guest con-

text) to accept a non-native thread because the first register file is only available to the native

context. Additionally, if a core has multiple native contexts, there must be enough resources

to hold all of its native contexts simultaneously so no native thread is blocked by other native

threads. Because of the multiple contexts, an efficient fine-grained migration-based architec-

ture will require some level of multithreading in order to prevent performance degradation

when multiple threads compete for the resources of the same core.

We first describe a basic, straightforward version of ENC, which we call ENCO, and then

3To prevent livelock, a thread is not evicted unless it has executed at least one instruction since it arrived

at the core it currently occupies; that is, an existing thread may be evicted by a new thread only if it has made

some progress in its current visit in that core.

26

describe a better-performing optimized version.

The basic ENC algorithm (ENCO)

Whenever a thread wishes to move from a non-native core to a destination core, ENCO first
sends the thread to its native core which has a dedicated resource for the thread. If the des-
tination core is not the native core, the thread will then move from its native core to the
destination core. Therefore, from a network standpoint, a thread migration either ends at its
native core or begins from its native core. Since a thread arriving at its native core is guar-
anteed to be unloaded from the network, any migration process is in a fully unloaded state
(and therefore momentarily occupies no network resources) somewhere along its path.

To keep the migrations deadlock-free, however, we must also ensure that thread migra-
tions destined for a native core actually get there without being blocked by any other mi-
grations; otherwise the native-core movements might never arrive to be unloaded from the
network. The most straightforward way of ensuring this is to use two sets of virtual channels,
one for to-native-core traffic and the other for from-native-core traffic. Thus, ENCO doubles
the number of virtual channels required by the underlying network routing protocol: for ex-
ample, if for dimension-order routing, which requires only one virtual channel to prevent
network-level deadlock, ENCO requires two virtual channels.

The full ENC algorithm

Although ENCO is simple and straightforward, it incurs the overhead of introducing an inter-
mediate destination for each thread migration: if thread T wishes to move from core A to B,
it must first go to N, the native core for T. In some cases, this overhead might be significant:
if A and B are close to each other, and N is far away, the move may take much longer than
if it had been a direct move.

To reduce this overhead, we observe that indirections through the native core are not
always required to keep the protocol deadlock-free. Specifically, migrations that evict other
threads will in fact eventually complete provided that the evicted thread is guaranteed to
leave its context. This suggests a distinction between migrating traffic and evicted traffic: the
former consists of threads that wish to migrate on their own because, for example, they wish
to access resources in a remote core, while the latter corresponds to the threads that are
evicted from a core by another arriving thread.

The optimized version of the algorithm, which we simply call ENC, sends a thread to
its native core only when it has been evicted. This prevents a chain of evictions: even if the
evicted thread wishes to go to a different core to make progress (e.g., return to the core it was

27

evicted from), it must first visit its native core, get unloaded from the network, and then move
again to its desired destination. Unlike ENCO, however, whenever a thread migrates on its
own accord, it may go directly to its destination without visiting the native core. (Like ENCO,
ENC must guarantee that evicted traffic is never blocked by migrating traffic; as before, this
requires two sets of virtual channels.)

Based on these policies, the ENC migration algorithm can be described as follows. Note
that network packets always travel within the same set of virtual channels.

1. If a native thread has arrived and is waiting on the network, move it to a reserved
native context and proceed to Step 3.

2. (a) If a non-native thread is waiting on the network and there is an available guest
context, move the thread to this context and proceed to Step 3.

(b) If a non-native thread is waiting on the network and all the non-native contexts
are full, choose one thread from among the threads that have finished executing
at least one instruction on the core' and the threads that want to migrate to other
cores. Send the chosen thread to its native core on the virtual channel reserved
for evicted traffic. Then, advance to the next cycle (no need for Step 3).

3. Among the threads that want to migrate to other cores, choose one and send it to the
desired destination on the virtual channel reserved for migrating traffic. Then, advance
to the next cycle.

This algorithm breaks the cycle of dependency of migrating traffic and evicted traffic: Figure 3-
3 illustrates how the cyclic dependency from Figure 3-1b is broken (C. denotes the native core
of the evicted thread, and Nn its attached router node).

There is a subtlety when a migrating thread consists of multiple flits and the core cannot
send out an entire context all at once. For example, the core may find no incoming contexts
at cycle 0 and start sending out an executing context T1 to its desired destination, but before
T, completely leaves the core, a new migrating context, T2, arrives at the core and is blocked
by the remaining flits of T1. Because T, and T2 are on the same set of virtual channels for
migration traffic, a cycle of dependencies may cause a deadlock. To avoid this case, the core
must inject migration traffic only if the whole context can be moved out from the execution
unit, so that arriving contexts will not be blocked by incomplete migrations; this can easily be
implemented by monitoring the available size of the first buffer on the network for migration
traffic or by adding an additional outgoing buffer sufficient to hold one thread context.

4Ihis prevents livelock.

28

Both ENCO and ENC are provably deadlock-free under deadlock-free routing because
they eliminate all additional dependencies due to limited context space in cores. We con-
firmed this using the same synthetic benchmarks used in Section 3.2 (data not shown). We
also simulated an incomplete version of ENC that does not consider the partial-context sub-
tiety described above and sends out a migrating context as soon as it is possible to push out
its first flit: while ENCO and ENC had no deadlocks, the incomplete version caused deadlock.
This illustrates that fine-grained migration is very susceptible to deadlock and migration
protocols need to be carefully designed.

29

30

CHAPTER 4

MIGRATION-BASED SHARED MEMORY

IN this chapter, we introduce a unified shared memory model based on fine-grained thread
migration. Implementing shared memory support on top of migration allows us to evalu-

ate the migration framework using standard benchmarks (where memory instructions may
cause migrations). Equally important is the fact that memory access is a very fine-grained
phenomenon that directly affects application performance: this presents very strict perfor-
mance demands on the migration framework that will drive the development of design.

4.1. A BASIC SHARED MEMORY SCHEME

To provide all cores with access to the entire address space, our migration-based memory
model treats the per-core caches as a single distributed shared cache: the per-core caches are
responsible for caching non-overlapping ranges of the address space, which together cover
all of addressable memory. Because data are not automatically replicated-each address may
be cached only at its unique home core-there is no need for a protocol to ensure coherence
among multiple copies of data, and memory consistency is easy to reason about.

Dividing the address space among the per-core caches is a feature of existing shared
memory implementations (e.g., Fensch and Cintra, 2008), and is common with on-chip last-
level caches in production multicores. In those designs, whenever a core wishes to access an
address assigned to a remote cache, the hardware satisfies the request by sending a remote-
access message to the target cache over the on-chip interconnect; any results (load results,
store acknowledgements) are sent back over the interconnect to the original core via another
message. We will refer to these shared memory models as remote access (RA) architectures.

Our migration-based shared memory scheme, which we call Execution Migration (EM),
eschews remote cache accesses in favor of migrating the thread of execution to the core where
the memory resides and continuing execution there, in effect turning the remote cache access

31

(b) bringing computation to data

Figure 4-1: Traditional shared-memory paradigms (such as cache coherence or remote access)

bring data to the locus of computation, while the migration-based shared memory architec-

ture we describe here brings the computation to the data it operates on.

into a local cache access by running the thread on the remote core (see Figure 4-1). In essence,

instead of moving data to feed a given computation, we move the computation to consume

its data. In what follows, we first consider a migration-only variant called EMO, and, after

evaluating its pros and cons, develop a more optimized version.

Under EMO, if a thread is already executing at the destination core, it must be evicted

and migrated to a core where it can continue running. In accordance with the ENC protocol

(see Chapter 3), we assume that each core contains at least one native context (for threads

originating on that core) and at least one guest context (for threads originating elsewhere). In

addition, to prevent deadlock, we follow ENC in requiring that an evicted thread must travel

to its native core over a virtual network that is only used for evictions.

Figure 4-2 illustrates the life of a memory access in the EMO shared memory implemen-

tation. Briefly, when a core C running thread T executes a memory access for address A, it

must

1. compute the home core H for A (e.g., by masking the appropriate bits);

2. if H = C (a core hit),

(a) forward the request for A to the cache hierarchy (possibly resulting in a DRAM

access);

3. if H # C (a core miss),

32

(a) bringing data to computation

access memory &
continue execution

migrate another
yes ythread back to

memory address migrate #threads its native core
access cacheable n thread to exceeded?

in core C in core C? home core 4ac m o
no accessmemory&

continue execution

core originating interconnect core where address
memory access can be cached

Figure 4-2: The life of a memory access under the EMO migration-based shared memory

scheme.

(a) interrupt the execution of the thread on C (as for a precise exception),

(b) migrate the microarchitectural state to H via the on-chip interconnect:

i. if H is the native core for T, place it in the native context slot;

ii. otherwise:

A. if the guest slot on H contains another thread T', evict T' and migrate it

to its native core N'

B. move T into the guest slot for H;

(c) resume execution of T on H, requesting A from its cache hierarchy (and poten-

tially accessing the next-level cache or backing DRAM).

Unlike distributed shared memory architectures based on remote cache access, where

repeated accesses to even the same remote location must incur the penalty of a remote-access

round trip to ensure memory consistency, migration-based shared memory can potentially

take advantage of spatiotemporal locality: the thread, having moved to where the memory

is located, can continue to access a sequence of nearby locations using local cache requests.

Compared to traditional directory-based cache coherence, the migration-based approach

has advantages in simplicity and scalability: since the state of each cache line does not depend

on all potential sharers (i.e., every core in the system), the protocol transitions and state

remain the same regardless of the number of cores in the system. In addition, as any shared

memory approach that eschews replication, it also has the advantage of larger effective on-

chip cache capacity: because only one copy of any given address may be present on chip,

33

there is more room to store other data. Finally, it avoids the round-trips and indirections (via
the directory as well as other sharers) inherent in directory-based coherence protocols; while
this is often outweighed by the disadvantages that can result from not replicating data, it can
be a significant effect if the memory access patterns include large amounts of read-write
sharing.

On the other hand, migration-based shared memory potentially suffers from a number
of disadvantages. When spatiotemporal data access locality is poor, the overheads of migrat-
ing the entire thread-both in terms of network traffic and because of the added latency of
loading and unloading threads from a core's execution context-outweigh the benefits and
a message-based remote access architecture will perform better. When, on the other hand,
cache pressure is low and read-only sharing dominates, the larger effective cache capacity
and absence of indirections do not make up for the lack of data replication permitted by a
cache coherence protocol. In the next section, we examine these tradeoffs.

4.2. ANALYTICAL MODEL

To develop intuition about the relative strengths and weaknesses of EMO, this section formu-
lates analytical models based on average memory latency (AML). This model abstracts away
multi-actor system interactions to focus on the average cost of a single memory access in
terms of experimentally measurable quantities like off-chip memory and on-chip cache ac-
cess delays, fractions of the various memory requests in programs, or cache miss rates for
each request type. By clearly identifying the various sources of latency contributing to each
shared memory paradigm, the AML model allows us to explore not only the avenues of
optimization available in each protocol, but also to bound the maximum potential of each
technique. In the remainder of this section, we describe the AML models for the MSI variant
of directory cache coherence (DirCC), remote cache access (RA), and the migration-based
protocol (EMO).

Interconnect latency

We adopted a uniform network model in which, on average, each type of core-to-core mes-
sage travels the same number of hops (12 for an 8 x 8 mesh) and experiences similar congestion
(50%). Packets are divided into equal-size (256-bit) flits, and comprise a header flit with several
data flits; wormhole routing is assumed, so each packet experiences a one-cycle serialization

34

Parameter Value

COStLi$ access 2 cycles
COStLl$ insert/inv/flush 3 cycles
COStL2 $ access 7 cycles
CoStL2 $ insert 9 cycles

COStdir$ lookup 2 cycles
sizeack 32 bits
sizeaddress 32 bits

sizevalue 32 bits

sizecacheline 512 bits
sizethread 1088 bits

CostD-AM 250 cycles (200 latency + 50 serialization)
flit size 256 bits
Costavg net dist 36 cycles (12 hops x 2 cycles/hop + 50% congestion overhead)

rateread, ratewrite

rateri,wrI,rds

ratewrs
raterdm
ratewrm

rateL1$mi,,s
rateL2$ miss
ratecore miss

70%, 30%
40% + 40% + 5%

5%
10%
negligible
6%
1%
2%

Table 4.1: Default parameters for the analytical AML models, from architectural assumptions
(top) and simulations over a standard set of benchmarks (bottom).

35

delay in addition to the latency of delivering the first ffit:

[data size
Cost-+, data size = Costavg net dist Iflit size

where data size depends on
thread migrations (1088 bits
32-bit status register):

the packet size, and grows for cache lines (64 bytes) and EMO
= 32 x 32-bit registers, a 32-bit instruction pointer register, and a

cost-+, ack = Cost-*, address = cost-, value

= (12 x 2 + 50%) +

cost-, addr&value = (12 x 2 + 50%) +

cost->, cacheline = (12 x 2 + 50%) +

cost-+, thread = (12 x 2 + 50%) +

32
-1 = 36 + 1 = 37 cycles,

12561
32+32

256 = 36 + 1 = 37 cycles,F5121
-- = 36 + 2 = 38 cycles, andF10881

256= 36 + 5 = 41 cycles.

Only for cost-+, thread, we add an additional 3 cycles corresponding to restarting a five-stage
pipeline with a new instruction at the destination core, resulting in cost-, thread 44.

Last-level cache and DRAM latencies

To simplify analysis, we assumed a two-level data cache hierarchy: a per-core cache (Li)
plus a shared last-level cache (L2). The L2 cache was modeled as a shared non-uniform ac-
cess cache (NUCA) distributed in slices divided equally among all the cores, with each slice
handling a non-overlapping subset of the address space. Directories (for directory cache co-
herence) were similarly distributed, with each per-core slice handling the same predefined
address range as the L2 cache slice on the same core; therefore requests to L2 did not incur
additional network costs above those of contacting the directory or library, but only the L2
access itself and the amortized cost of accessing off-chip memory:

COStL2 $ request = CostL2 $ access

+ rateL 2$ miss x (COStDP- + COStL 2$ insert)

= 7 + 1% x (250 + 9) = 9.6 cycles.

36

First-level cache miss effects

Under EMO and RA, Li misses at the home core of the address being accessed result directly
in L2 requests, and have identical costs:

COStL1$ miss, RA COStL1$ miss, EMO

= costL 2$ request + COStLl$ insert = 9.6 + 3 = 12.6 cycles.

In all Li miss cases under DirCC, the directory must first be contacted, which may involve
network traffic if the relevant directory slice is not attached to the current core. The relevant
cache line must be brought to the Li cache for all types of access, but the protocol actions
that must be taken and the associated latency depend on the kind of request (read or write),
as well on whether any other Li caches contain the data. Reads and writes for lines that
are not cached in any Li (i.e., the directory entry is invalid) simply query the directory and
concurrently access the next level in the cache hierarchy to retrieve the cache line; the same
is true for reads of lines cached in shared state in some per-core L1, because the directory
does not store the actual cache line:

costrdI,wrI,rds = ratecore miss X cost-, addr

+ max(costdir lookup, COStL2 $ request)

+ ratecore miss x cost->, cacheline + COStL1$ insert

= 2% x 37 + 9.6 + 2% x 38 + 3 = 14.1 cycles.

(The fairly low 2% core miss rate we measured in simulation results from assigning address
ranges to L2 slices and directories using a page-granularity first-touch heuristic that keeps
data close to its accessors.)

Exclusive access (write) requests to lines that are in shared state elsewhere additionally
contact the sharer(s) to invalidate their copies and wait for their invalidate acknowledge-
ments; assuming that the messages to all sharers are all sent in parallel, we have:

CostwrS = ratecore miss x cost-+, addr

+ maX(COStdir lookup, COStL 2$ request)

+ COst-,addr + CoStLl$inv + COSt-4,ack

+ ratecore miss x cost4, cacheline + COStL1$ insert

= 2% x 37+9.6+37+3+37+2% x 38+3 = 91.1 cycles.

Read requests for data that is cached in modified state by another Li cache must flush the

37

modified line from the cache that holds it, write it back to L2 (to satisfy future read requests
from other caches), and only then send the cache line back to the client (note that, in this
case, the directory access cannot be amortized with the L2 request because the data to be
written must first arrive from the Li cache):

CostrdM = ratecore miss xCOSt-+, addr + COStdir lookup

+ Cost-, addr + COStL1$ flush + Cost, cacheline + COStL2$ write

+ ratecore miss X cost- , cacheline + CoStL1$ insert

= 2% x 37+2+37+3+38+9+2% x 38+3

= 93.5 cycles.

Writes to data in modified state are similar but can skip the L2 write (because the data is
about to be written and the L2 copy would be stale anyway) and directly send the flushed
cache line to the client cache:

costwrM = ratecore miss x COSt-, addr + COStdir lookup

+ cost-,addr + costL1$ flush + CoSt-,cacheline

+ ratecore miss X cost->, cacheline + CoStL1$ insert

= 2% x 37 + 2 + 37 + 3 + 38 + 2% x 38 + 3 = 84.5 cycles.

To estimate the occurrence rates of these state transitions, we simulated several SPLASH-2
benchmarks (Woo et al., 1995) in the Pin-based multicore simulator GRAPHITE (Miller et al.,
2010), and obtained the rates shown in Table 4.1. Given those, the overall Li miss penalty for
DirCC becomes:

costL$ miss, CC = raterdII,rdS x CoStrdwrI,rdS

+ ratewrs x costws + raterdM,wrM x costrdM,wrM

= 85% x 14.1 + 5% x 91.1 + 10% x 93.5 + 0% x 84.5

= 25.9 cycles.

Overall average memory latency

Under DirCC, the overall average memory latency (AML) comprises the Li cache access and
the pro-rated cost of the Li miss:

AMLCC = CoStL1$ access + rateL$ miss, CC x CoStL1$ miss, CC

= 2 + 6% x 25.9 = 3.56 cycles.

38

For EMO, the AML incorporates the cost of the Li request (be it a hit or a miss) and the
thread migration delay in the event of a core miss:

AIVIEMO = CoStL1$ access + rateLl$ miss X CoStL1$ miss, EMO

+ ratecore miss x cost-, thread

= 2 + 6% x 12.6 + 2% x 44 = 3.63 cycles.

Under RA, the core miss overhead involves a round-trip message that depends on the
type of access (read or write):

costcore miss, RA = rateread x (cost.,addr + Cost,value)

+ ratewrite x (cost-., addr&value + cost-,ack)

= 70% x (37 + 37) + 30% x (37 + 37) = 74 cycles,

giving a total average latency of:

AMLRA = COStLl$ access + rateLl$miss x COStL$ miss,RA

+ ratecore miss x Costcore miss, RA

= 2 + 6% x 12.6 + 2% x 74 = 4.23 cycles.

Although the analytical AML model is necessarily simplified (interactions among multi-
ple accesses are not considered, additional coherence states such as E or 0 are not modeled,
etc.), it can nevertheless provide intuition about when EMO performs well and when it per-
forms poorly. We next vary some of the model parameters from their defaults in Table 4.1,
and examine how this affects the AML for each implementation (Figure 4-3).

We first examined the effect of different Li cache miss rates on performance. Varying
rateLl$ iss has the most striking effect under the DirCC model, which incurs relatively ex-
pensive coherence protocol costs (of two or more interconnect round-trips plus directory
and often invalidation overheads) for every Li miss (Figure 4-3, top left); while the other
three protocols also degrade with increasing miss rates, the differences are not as dramatic.

Of course, Li cache miss rates under these protocols are not directly comparable: on the
one hand, DirCC can make multiple copies of data and is more frequently able to hit the local
cache; on the other hand, EMO and RA do not pollute their Li caches with multiple copies of
the same data, and feature higher total Li cache capacities. Nevertheless, comparisons within
each protocol are valid, and we can safely use the figure to examine how the protocols tend
to degrade when cache miss rates grow.

In all protocols, keeping core miss rates low via efficient data placement is critical to

39

RA EMO ------- MSI

10
8
6 --
4
2

0% 5% 10% 15 % 20% 25

10
8

2
1%

L1 cache miss rate

------- MSI

5

4

3

2

RA EMO

a-,

0% 1% 2% 3% 4%

core miss rate (vs. constant 2 for MSI and RA)

0% 2% 4% 6% 8% 10%

core miss rate

------- MSI RA EMO

.........- - - - - - - - -

4.5

4
3-

0 1024 2048 3072 4096
context size [# bits]

----- MSI RA - EMO

4.5

4

0 100 200 300 400 500

flit size [# bits]

Figure 4-3: Average memory latency (AML) of a single memory access (as estimated by the
analytical models of DirCC, RA, and EMO) demonstrates where EMO performs well/poorly.

40

------- IMSl RA -EMO

accessing the shared NUCA L2 cache efficiently. In EMO and RA, however, a core miss may
occur even if the data resides on-chip in some Li cache (because each address may only be
cached at a specific home core). Figure 4-3 (top right) varies ratecore miss and illustrates that
EMO and RA perform well as long as the core miss rate is low (below about 2%); when core
miss rates are high, however, the high rate of migrations (for EMO) and remote accesses (for
RA) means that the ability of DirCC to replicate data allows it to dominate.

Again, comparing core miss rates directly can be somewhat misleading, especially for
RA and EMO. This is because under RA threads do not move from their original cores, and
each access to a remote core's cache constitutes a core miss; under EMO, however, the thread
migrates to the relevant home core on the first access and subsequent accesses to the same
core are no longer core misses but an access to the thread's original core would now become
a core miss. The effect, then, depends on the amount of spatiotemporal locality in the access
pattern: with high locality, EMO core miss rates will be substantially lower than the RA equiv-
alent. To examine the potential, we varied ratecore m,, for EMO only, keeping it at the default
of 2% for the other protocols (Figure 4-3, center left): as expected, lower core miss rates favor
EMO, while with higher core miss rates EMO migration overheads cause its performance to
deteriorate.

Finally, the execution contexts migrated in EMO are substantially larger than both coher-
ence messages and cache-line sizes; this scheme is therefore particularly sensitive to both
architectural context size and network bandwidth. To examine the context size variations,
we directly varied sizecontext (Figure 4-3, center right); to simulate different network band-
widths, we varied the size of a flit that can be transferred in one cycle (Figure 4-3, bottom).
Both illustrate that EMO is sensitive to network bandwidth: for both very large contexts and
very low on-chip network bandwidths, EMO migration latencies become too large to offer
much benefit over the round-trips required by the other protocols.

Overall, we have identified two significant weaknesses of EMO: one is its dependence
on consistently high spatiotemporal locality (i.e., on keeping core miss rates low), and the
other is its sensitivity to migrated context sizes. We will ameliorate the first weakness in
the following section by amending the shared memory model itself, and address the second
limitation when we discuss a migration-based architecture in Chapter 6.

4.3. AN OPTIMIZED SHARED MEMORY SCHEME

To investigate how much spatiotemporal locality can be expected from standard benchmarks,
we simulated several SPLASH-2 benchmarks (Woo et al., 1995) in GRAPHITE (Miller et al., 2010)
under the EMO protocol. Figure 4-4 shows the percentage of memory instructions that result
in migrations: the resulting migration rates, at nearly 40%, are prohibitive. To understand

41

uu'oT

75% ~

50%t

25%

0% -

\\Y'~ ~
Ci _t0 LiL%I

Figure 4-4: Shared memory based on the basic EMO protocol incurs high migration rates on
a set of benchmarks.

the source of this high migration rate, we then counted the number of times an application
contiguously accessed the same region of memory (i.e., memory assigned to a single per-
core cache); the results appear in Figure 4-5. Applications tend to exhibit varying degrees of
locality: some applications consist mainly of medium to long (2 5) streaks of references to the
same region, while some have a high proportion of shorter streaks (Figure 4-5, top). Indeed,
locality varies dramatically even within a single application, with accesses divided bimodally
between very short streaks and fairly long runs (Figure 4-5, bottom).

Since these results were obtained from applications compiled using a stock C compiler
and therefore were not specifically optimized to exploit fine-grained spatiotemporal locality,'
they illustrate a lower bound on the fine-grained locality that can be exploited in applications:
cautious reordering of memory accesses by the compiler (or, potentially, hardware) would
likely increase the amount of locality available. In addition, even in applications designed to
take advantage of cache coherence, some locality optimization effects come "for free" as a
side effect of other memory layout optimizations (cf. the locality differences in the contiguous
and non-contiguous versions of LU and OCEAN in Figure 4-5).

As we saw in the previous section, EMO works very well when memory accesses come in
long contiguous runs and core miss rates are low, but performs poorly for the case where only

'The compiler transformations required to implement such optimizations, as well as their correctness under
various memory models, are beyond the scope of this dissertation.

42

I

one or two accesses are made to the same region. This is because the overheads of packing a
running thread context onto the interconnect and unpacking it at the destination core are not
amortized with only a few contiguous accesses. To optimize these short-run-length patterns,
therefore, we will turn them into round-trip remote cache accesses (RA): although several
of these are slower than one migration followed by local accesses, they become faster if a
migrated thread accesses only one address and then migrates back.

The resulting hybrid shared memory scheme, which we denote EM, is shown in Figure 4-
6. Specifically, the protocol for accessing address A by thread T executing on core C is as
follows:

1. compute the home core H for A (e.g., by masking the appropriate bits);

2. if H = C (a core hit),

(a) forward the request for A to the cache hierarchy (possibly resulting in a DRAM
access);

3. if H * C (a core miss), and instruction will execute as a remote access,

(a) send a remote access request for address A to core H,

(b) when the request arrives at H, forward it to H's cache hierarchy (possibly result-
ing in a DRAM access),

(c) when the cache access completes, send a response back to C,

(d) once the response arrives at C, continue execution.

4. if H * C (a core miss), and the instruction will cause a migration,

(a) interrupt the execution of the thread on C (as for a precise exception),

(b) migrate the microarchitectural state to H via the on-chip interconnect:

i. if H is the native core for T, place it in the native context slot;

ii. otherwise, if the guest slot on H contains another thread T', evict T' to its
native core N';2 next, move T into the guest slot for H;

(c) resume execution of T on H, requesting A from its cache hierarchy (and poten-
tially accessing DRAM).

2Evictions must wait for any outstanding remote accesses to complete in addition to waiting for
DRAM -> cache responses.

43

100% -

75% -

50% -

25%

0%

3,000,000

2,500,000

2,000,000

1,500,000

1,000,000

500,000

* 5+ accesses

* 2-4 accesses

M1 access

(a) breakdown of non-local memory access run lengths

I I_______________

i 1
1 6 11 16 21 26 31 36 41 46 51 56

(b) LU-CONTIGUOUS memory references binned into run lengths: nearly 2.5 million accesses were
part of contiguous 48-access sequences

25,000,000

20,000,000 - -

15,000,000

10,000,000

5,000,000 -I- - -

1 6 11 16 21 26 31 36 41 46 51 56

(c) OCEAN-CONTIGUOUS memory references binned into run lengths: e.g., nearly 17 million accesses
were part of contiguous 56-access sequences

Figure 4-5: The number of times a computation contiguously accesses the same memory

region varies greatly across benchmarks (top) and even within a single benchmark (bottom).

GRAPHITE simulation, 256 cores.

44

access memory &
continue execution

yes migr~Ae
address /

* cacheable -0 decision

in core C? no remote op

migrate
thread to
home core

send remote
request to
home core

migrate another
Y thread back to

threads its native core

exceeded?

no access memory &
continue execution

-- -+ access memory

return data (read)
continue execution - or ack (write) to

the requesting core C

core originating
memory access

interconnect core where address
can be cached

Figure 4-6: The life of a memory access under the
memory scheme.

optimized EM migration-based shared

Although the hybrid EM protocol can potentially handle both long and short runs of con-

tiguous accesses, its effectiveness hinges on the decision procedure that determines whether

a particular memory request should result in a migration or a remote cache access. We will

return to this subject in Chapter 5.

4.4. VIRTUAL MEMORY AND OS IMPLICATIONS

Although the architecture we describe here (see Chapter 6) follows the accelerator model and,

lacking virtual memory support, does not require a full operating system, fine-grained migra-

tion can be equally well implemented in a full-fledged CPU architecture. Virtual addressing

at first sight potentially delays the local-vs-remote decision by one cycle (since the physical

address must be resolved via a TLB lookup), but in a distributed shared cache architecture

this lookup is already required to resolve which tile caches the data (if the Li cache is virtually

addressed, this lookup can proceed in parallel with the Li access as usual). Program-initiated

OS system calls and device access occasionally require that the thread remain pinned to a

core for some number of instructions; these can be accomplished by migrating the thread to

45

memory
access

in core C

its native context on the relevant instruction.' OS-initiated tasks such as process scheduling
and load rebalancing typically take place at a granularity of many milliseconds, and can be
supported by requiring each thread to return to its native core every so often.

'In fact, our ASIC implementation uses this approach to allow the program to access various statistics tables.

46

CHAPTER 5

MIGRATION PREDICTION

G IVEN that applications exhibit a mix of single accesses and longer streaks of accesses to
the same memory region, our next task is to devise a method for deciding whether a

given memory access should be executed as a remote cache access or as a thread migration.
Because this decision must be taken quickly enough to take advantage of short bursts of
locality (on the order of 20-50 accesses), it must be implemented in hardware.

5.1. LEARNING AND PREDICTING LOCALITY

The hardware module we contemplate here must predict ahead of time whether or not a
given memory reference will begin a long streak of locality.'The key observation here is that
memory locality often arises from loops, and as such is correlated with a specific instruction.
'This is the same phenomenon that underlies branch prediction mechanisms, and, indeed,
our strategy for detecting it will be similar: for each instruction, we will count the number
of "contiguous" accesses that follow, and, if these exceed a threshold, we will learn that this
instruction should migrate.

At a high level, the prediction mechanism operates as follows:

1. when a program first starts execution, each memory access to a remote cache defaults
to the baseline RA mechanism (round-trip access);

2. as execution continues, the core monitors the home core information for each memory
access, and remembers the PC of the first instruction of every multiple-access sequence
to the same home core;

3. if the length of the sequence exceeds a threshold, the instruction address is either con-
sidered migratory (and inserted into a predictor table), or non-migratory (and poten-

47

tially removed from the predictor;

4. the next time a thread executes the instruction, it migrates to the home core if it is a
migratory instruction (a "hit" in the predictor table), and performs a remote access if
it is a remote-access instruction (a "miss" in the predictor).

To accomplish this, each thread tracks three pieces of information about the current run
of memory accesses: (a) home, which tracks the home core ID where the current memory
address can be cached, (b) depth, which indicates how many times so far this thread has con-
tiguously accessed memory at the current home location, and (c) start PC, which remembers
the PC of the very first instruction in the current sequence that accessed home. The pre-
diction mechanism is parametrized by the depth threshold 0, which determines how many
contiguous accesses must be made for an instruction to be considered migratory. Migratory
instruction PCs are stored in a table-similar to a branch predictor table-that is consulted to
determine whether or not a given memory instruction should migrate.

More precisely, when a thread T executes a memory instruction for address A whose PC
is P, it must first find the home core H for A; then,

1. if home = H (i.e., memory access to the same home core as that of the previous memory
access),

(a) if depth < 0,

i. increment depth by one; then if depth = 0, start PC is considered a migratory
instruction and inserted into the migration predictor table;

2. if home * H (i.e., a new sequence starts with a new home core),

(a) if depth < 0,

i. start PC is considered a remote-access instruction, and removed from the
migration predictor table;

(b) reset the entry (i.e., home = H, PC = P, depth = 1).

Table 5.1 shows an example of the detection mechanism when 0 = 2. Suppose a thread
executes a sequence of memory instructions, I through I7. The PCs of 1 to 17 are PC, through
PC7, respectively, and the home core for the memory address that each instruction accesses
is specified next to each PC. When I, is first executed, the mechanism considers it a possible
start of a contiguous sequence, and the tracker variables {home, depth, start PC} are set to
{A, 1, PC1}. Since the home core (B) of the next instruction 12 is different from the home from

'Non-memory instructions do not affect the predictor mechanism and are not shown here.

48

Misg PC7

C oo==

(a) predictor table miss: remote access

14,1 91 6
access C

(core hits)

(c) accesses to C become core hits post-

migration

(b) predictor table hit: migration

PC3

h# w

-- 7 . 9 2I

(d) another predictor hit: migration

Figure 5-1: The sequence of migrations and remote accesses that result once the predictor

has been trained as in Table 5.1.

49

7

h#t

PC7

N remote access only 0 migration (hybrid) U remote access (hybrid)

100% - - -

75% - --

50%

05%

Figure 5-2: Core miss rates for various remote cache access modes. The migration predictor

is able to successfully detect long runs of contiguous accesses and turn them into a small

number of migrations (dark gray) and remote cache accesses (light gray), reducing the overall

core miss rates. GRAPHITE simulation, 256 cores, predictor threshold 0 = 3.

the previous instruction, executing 12 causes the tracker to be reset with 12 as a sequence

start point. At the same time, because the depth of the contiguous accesses to home core A

has not reached the depth threshold 0, the previously tracked sequence (starting at PC1) is

not considered migratory (and, if it has an entry in the predictor table, its entry is removed).

This tracker reset occurs again for I3. When I4 is executed, however, it accesses the same

home core as 13 (C) and thus the depth field is incremented by one; since depth has now

reached the threshold 0 = 2, start PC is classified as a migratory instruction and added to

the migration predictor table. For I and 16 which keep accessing the same home core C, we

need not update the entry because 0 has already been exceeded. Finally, when 17 is executed,

the predictor again resets the tracker and starts a new sequence of accesses to home core A,

starting with PC7 . Next time this instruction sequence occurs, the migration predictor will

direct the thread to migrate to core C at 13, and again to core A at PC7 ; Figure 5-1 illustrates

this.

50

5.2. PREDICTION EFFECTIVENESS

To evaluate how the predictor performs in practice, we used GRAPHITE to simulate the same
set of benchmarks we used to investigate access locality in Figure 4-5, both in a remote-
access-only distributed shared cache system (RA) and a system that implements the hybrid
of migration/remote access protocol from Section 4.3 (EM). Overall, the predictor reduces
the total core miss rate from 38% on average2 under RA to 25% on average under EM, a 35%
improvement in data locality. The breakdown of each bar also shows that a large fraction of
remote accesses have been successfully replaced with a much smaller number of migrations:
for OCEANNONCONTIGUOUS, for example, a 86% remote access rate under RA turns into
a 45% core miss rate with only a small number of migrations. Importantly, the migration
predictor also keeps the overall migration low, with an average migration rate of 3% over all
benchmarks.

5.3. PARTIAL-CONTEXT MIGRATION

Finally, we re-examine the sensitivity of migration-based shared memory to the size of the
thread context being migrated relative to on-chip interconnect bandwidth (see Section 4.2).
While the hybrid EM protocol (Section 4.3) and the basic migration predictor lower migration
rates and reduce the overall impact of transferring large thread contexts, further reducing
that cost would positively affect both on-chip traffic levels (and consequently dynamic power
dissipation) and on-chip interconnect congestion.

With this in mind, we turn to examine the possibility of reducing the size of migrations.
Figure 5-3 shows the number of registers that are read and written under the EM protocol
when a thread migrates from its native context: for the benchmarks we simulated, only a
subset of the general-purpose registers were used when threads executed outside their native
core. This immediately suggests a strategy for further reducing migration sizes: instead of
migrating the entire thread context, we should only transfer the subset that will be used at
the thread's destination.

At a minimum, this subset consists of the program counter (PC); this allows the remote
core to fetch the next instruction to be executed. In practice, however, the computation at the
remote core requires some of the registers: for example, if the instruction migrates to access
a memory location, it will at a minimum need the register containing the relevant address.

Migrating only a subset of the context leaves the question of what to do with the parts of
the thread context that are not migrated. Fortunately, the ENC protocol that we developed

'The averages here are geometric means.

51

0 avg. number of register reads 0 avg. number of register writes

7

6

3

0

Figure 5-3: The number of general-purpose registers (out of 16) read (dark gray) and written

(light gray) after a migration (average over the entire run). Only a few of the registers are

used on the remote core. GRAPHITE simulation, 256 cores.

to ensure deadlock-free migrations provides an elegant answer with the exclusive context

reserved at each core for the core's native thread(s): a native thread's context can be simply

left dormant at its core while the relevant parts of the thread context migrate and execute

in another core's guest context. In the next chapter, we consider a core architecture that

elegantly supports partial-context migrations, and show how to predict which part of the

context should migrate.

52

memory instruction present state next state action

instr. PC home home depth start PC home depth start PC

I1: PC, A - - - A 1 PC, reset the entry for a new sequence
starting from PC1

12: PC2 B A 1 PC, B 1 PC2 reset the entry for a new sequence
starting from PC2 (evict PC, from
the predictor if it exists)

13: PC3 C B 1 PC2 C 1 PC3 reset the entry for a new sequence
starting from PC3 (evict PC 2 from
the predictor if it exists)

14: PC4 C C 1 PC3 C 2 PC3 increment depth by one, insert PC3
into the predictor table

IS: PC5 C C 2 PC3 C 2 PC3 do nothing (sequence already in-
serted)

16: PC6 C C 2 PC3 C 2 PC3 do nothing (sequence already in-
serted)

17: PC7 A C 2 PC3 A 1 PC7 reset the entry for a new sequence
starting from PC7

Table 5.1: An example of how the migration predictor learns to migrate (here the depth thresh-
old 0 = 2).

53

54

CHAPTER 6

EM 2: A THREAD MIGRATION ARCHITECTURE

T HIs chapter introduces the Execution Migration Machine (EM2) architecture, a 110-core
shared-memory multicore processor that embodies the hardware-level thread migration

and migration-based shared memory ideas developed in Chapters 3 and 4.

6.1. SYSTEM ARCHITECTURE

Ihe silicon implementation we describe in this dissertation consists of 110 homogeneous
tiles placed on a 10x 11 grid and connected via an on-chip network. Each core consists of a
stack-architecture processor core (see Section 6.2), instruction and data caches, and on-chip
interconnect routers. In lieu of a DRAM interface, our test chip exposes the two networks
that carry off-chip memory traffic via a programmable rate-matching interface; this, in turn,
connects to a maximum of 16GB of DRAM via a controller implemented in an FPGA.1

Tiles are connected by six independent on-chip networks: two networks carry migra-
tion/eviction traffic, another two carry remote-access requests/responses, and a further two
external DRAM requests/responses; in each case, two networks ensure deadlock-free opera-
tion.

The networks are arranged in a 2D mesh geometry: each tile contains six Network-on-
Chip (NoC) routers which link to the corresponding routers in the neighboring tiles. Each
network carries 64-bit flits using wormhole flow control and dimension order routing. 'Ihe
routers are ingress-buffered, and are capable of single-cycle forwarding under congestion-
free conditions.

'A practical chip would, of course, have a number of DRAM controllers on-die; since our chip is experimental
and focuses on on-chip memory accesses and on-chip network traffic, however, we chose to reduce complexity
and lower risk by effectively making the memory controller external.

55

The memory subsystem consists of a single level (Li) of instruction and data caches, and
a backing store implemented in external DRAM. Each tile contains an 8KB read-only instruc-
tion cache and a 32KB data cache, for a total of 4.4MB on-chip cache capacity; the caches are
capable of single-cycle read hits and two-cycle write hits. The first 86% (= L) of the entire
memory address space of 16GB is divided into 110 non-overlapping regions as required by
the EM shared memory semantics (see Chapter 4), and each tile's data cache may only cache
the address range assigned to it; a further 14% of the address range is cacheable by any tile but
without any hardware-level coherence guarantees. In addition to serving local and remote
requests for the address range assigned to it, the data cache block also provides an interface
to remote caches via the remote-access protocol (Figure 6-1). Memory is word-addressable
and there is no virtual address translation; cache lines are 32 bytes.

6.2. A STACK MACHINE CORE

To simplify the implementation of partial context migration, our architecture contains a cus-
tom stack-based core (Figure 6-2); in our ASIC implementation, the word width is 32 bits. Al-
though migration can equally well be implemented in a register-based architecture, a stack-
based core has several advantages that simplify implementation. Firstly, since the stack is
accessed from the top (as opposed to a random-access register file), the values most likely to
be used soon tend to percolate to the top of the stack; if the migrating thread, then, migrates
only the top part of the stack (down to some depth), it stands a good chance of those entries
being the ones that will be used in the remote core. Moreover, the amount of the context
to transfer can be easily controlled with a single parameter, i.e., the depth of the stack to
migrate (i.e., the number of stack entries from the top of the stack); this is considerably eas-
ier to specify (and predict) than what subset of registers should be migrated. In a sense, the
programmer has already specified what entries to migrate by keeping them on top of the
stack.

To ease programming, our core contains two stacks: a main stack and an auxiliary stack.
Most instructions (arithmetic operations, memory loads and stores, etc) operate on the main
stack, while the auxiliary stack can be accessed by copying or moving entries to and from
the main stack. This is very useful for storing and quickly accessing function call return
addresses, memory base addresses, loop termination conditions, and other data that would
otherwise have to be stored in memory.

For convenience, both stacks, which consist of in-core registers, are automatically backed
by the data memory. That is, when the in-core stack overflows (i.e., data are pushed onto it
when the stack is full), the hardware will automatically spill a cache line's worth of data into
the data cache, and when the stack underflows (i.e., an attempt is made to read from an empty

56

stack), the hardware refills it from the appropriate line in the data cache hierarchy.

6.3. MIGRATION MECHANISM

Whenever a thread migrates out of its native core, it has the option of transmitting only the
part of its thread context that it expects to use at the destination core. In each packet, the first
(head) flit encodes the destination packet length as well as the thread's ID and the program
counter, as well as the number of main stack and auxiliary stack elements in body flits that
follow. The smallest useful migration packet consists of one head flit and one body flit which
contains two 32-bit stack entries. Migrations from a guest context must transmit all of the
occupied stack entries, since guest context stacks are not backed by memory.

Figure 6-3 illustrates how the processor cores and the on-chip network efficiently support
fast instruction-granularity thread migration. When the core fetches an instruction that trig-
gers a migration (for example, because of a memory access to data cached in a remote tile),
the migration destination is computed and, if there is no network congestion, the migration
packet's head flit is serialized into the on-chip router buffers in the same clock cycle. While
the head flit transits the on-chip network, the remaining flits are serialized into the router
buffer in a pipelined fashion. Once the packet has arrived at the destination NoC router and
the destination core context is free, it is directly deserialized; the next instruction is fetched
as soon as the program counter is available and the instruction cache access proceeds in par-
allel with the deserialization of the migrated stack entries. In our implementation, assuming
a thread migrates H hops with B body flits, the overall thread migration latency amounts to
1 + H + 1 + B cycles from the time a migrating instruction is fetched at the source core to
when the thread begins execution at the destination core. In the 110-core EM2 implementa-
tion we describe here, H varies from 1 (nearest neighbor core) to 19 (the maximum number
of hops for 10 x 11 mesh), and B varies from 1 (two main stack entries and no auxiliary stack
entries) to 12 (sixteen main stack entries and eight auxiliary stack entries, two entries per
flit); this results in the very low migration latency, ranging from the minimum of 4 cycles to
the maximum of 33 cycles (assuming no network congestion).2

While a native context is reserved for its native thread and therefore is always free when
this thread arrives, a guest context might be executing another thread when a migration
packet arrives. In this case, the newly arrived thread is buffered until the currently executing
thread has had a chance to complete some (configurable) number of instructions; then, the
active guest thread is evicted to make room for the newly arrived one. During the eviction

'Although it is possible to migrate with no main stack entries, this is unusual, because most instructions
require one or two words on the stack to perform computations. The minimum latency in this case is still 4
cycles, because execution must wait for the I$ fetch to complete anyway.

57

process the entire active context is serialized just as in the case of a migration (the eviction
network is used to avoid deadlock), and once the last flit of the eviction packet has entered
the network the newly arrived thread is unloaded from the network and begins execution.

6.4. PARTIAL-CONTEXT MIGRATION PREDICTION

The migration predictors in EM2 are based on the mechanism described in Chapter 5, with two
differences: (a) the predictors also learn the optimal context size to transfer in each migration,
and (b) removing entries from the predictor table is accomplished via a negative-feedback
mechanism.

To learn how many stack entries to send when migrating from a native context at run-
time, the native context keeps track of the start PC that caused the last migration. When the
thread arrives back at its native core, it reports the reason for its return: when the thread
migrated back because of stack overflow (or underflow), the stack transfer size of the corre-
sponding start PC is decremented (or incremented) accordingly (see Figure 6-4). In this case,
less (or more) of the stack will be brought along the next time around, eventually reducing
the number of unnecessary migrations due to stack overflow and underflow.

The returning thread also reports the number of local memory instructions it executed at
the core it originally migrated to. If the thread returns without having made 0 accesses, the
corresponding start PC is removed from the predictor table and the access sequence reverts
to remote access (cf. Figure 5-1). This allows the predictor to respond to runtime changes in
program behavior.

-Returns caused by evictions from the remote core do not trigger removal, since the thread might have
completed 0 accesses had it not been evicted.

58

-- A load/store from the local core for an address in a remote cache
A remote cache request from another core

r

remote cache
....... remote cache

req/resp networks

emote remote
cache cache
req

native
Id/st

guest
Id/st

resp

native
Id/st

guest
Id/st

native cachemiss native
stack req/resp stack

- off-chip memory
req/resp networks

Figure 6-1: The data cache serves local load/store requests from native and guest contexts,
stack spill/refill requests from the native context, and external load/store requests from re-
mote cores.

59

instruction cache

PC

main
aux stack
stack

native context guest context

Figure 6-2: The processor core consists of two contexts in an SMT configuration, each of
which comprises two stacks and a program counter, while the cache ports, migration net-
work ports (not shown), and the migration predictor (not shown) are shared between the
contexts. Stacks of the native context are backed by the data cache in the event of overflow
or underflow.

60

data cache

PC

main
stack aux

stack

.......

|

stack PC stck PC

IV. unload
u context 8bodyflits
unload (B cydes)
1 qye) Il unload hader

body ift#2 ond K (1 eIbod flit #1 11.trovel H hops (H cycles)

head flit

migration start igration done

a t11 III IV
head flit: - - - -->+ - - - - - - - - -- - -- + - -- -+ + -

body flit #1: +----- >+ ------------------------- >+------+
body flit #2: +-------><-------------------------------++ -----

Figure 6-3: Migrations take a minimum of four cycles. (The auxiliary stack is omitted from
the diagram for clarity.)

61

destination coresource core

migrates with 2 main stack entries

(a) migrations from native cores may transfer a
partial thread context

*on son ativ

add

underflow

(c) if a thread returns because of a stack under-
flow, it takes along more of the stack next time

4, 0

guest

migrates with allvalid stack entries

(b) further migrations from guest cores must
transfer the full context

of memory accesses at
migration destination core <60

native

(d) if the thread does not make enough accesses
after migration, it is removed from the predictor

Figure 6-4: An amended migration predictor that learns how many stack entries to migrate.

62

..

CHAPTER 7

ASIC IMPLEMENTATION

IN this chapter we describe the implementation, verification, and testing infrastructure used
to implement EM2 in a 45nm ASIC technology.

7.1. HARDWARE DESIGN LANGUAGE

Bluespec (2011) is a high-level hardware design language based on synthesizable guarded
atomic actions (Hoe and Arvind, 2000). In Bluespec, a design is described using rules, each of
which specifies the condition under which it is enabled (the guard) and the consequent state
change (the action). Unlike standard Verilog always blocks, rules are atomic-in each clock
cycle, a given rule will either be applied in its entirety or not at all, and the final state can
be reconstructed as a sequence of rule applications. Actions in different rules may attempt
to alter the same state element; when those changes conflict (e.g., two rules attempting to
enqueue something in a single-port FIFO), the compiler automatically generates control logic
(called a schedule) to ensure that only one of the conflicting rules may fire in a given clock
cycle. When rule actions do not overlap or can be executed in parallel (e.g., one rule enqueu-
ing into a FIFO and the other dequeuing from it), the compiler will allow the rules to fire in
the same clock cycle. Source written in Bluespec is compiled to synthesizable Verilog, which
is then combined with any custom Verilog/VHDL modules (such as SRAMs) and synthesized
as part of the standard ASIC flow. The quality of results in terms of timing and area has been
shown to be on par with hand-optimized Verilog RTL (Arvind et al., 2004).

The atomic rule semantics of Bluespec encourage a coding style where each semanti-
cally distinct operation is described separately, instead of a style that focuses on describ-
ing each hardware element (as in Verilog). For example, in our stack-ISA CPU, the oper-
ations of automatically refilling and spilling the in-CPU stack into backing data memory
(fill-stack and spill-stack) both access the stack registers and the data cache interface,

63

but are described in two separate rules; the Bluespec compiler automatically creates the nec-
essary data path muxes and control logic. Crucially, rule atomicity means that adding or
removing a rule does not require any changes in existing rules: for example, the rule that
completes an ALU operation (alu-op) also accesses the stack registers, but adding this rule
requires no changes to fill-stack and spillstack-the compiler will just infer slightly
different muxes and control. This independence is handy in the design phase, and encour-
ages a progressive-refinement approach to design "one rule at a time." Far more significantly,
however, it means that implementation errors are localized to specific rules; thus, a bug-fix
that changes f ill-stack will not require changing or verifying alu.op even if the changes
affect which stack registers are accessed and how, and the fix will work regardless of why
the stack is being refilled (stack-to-stack computation, outbound migration, etc).

Less obvious but equally important, reasoning about our design in an operation-centric
manner and expressing it using atomic rules allowed us to separate functionality and perfor-
mance, and verify (and correct) the two aspects independently. By far most of our verification
effort focused on functionality (i.e., the module being tested producing the correct output for
any given input). Relying on the Bluespec compiler to automatically generate muxes and
interlocks for conflicting rules, we did not have to think about the precise cycle-to-cycle op-
erations or worry that concurrent execution of separate operations might combine to cause
unexpected bugs. Once functionality was verified, we tuned the cycle-to-cycle operation to
meet our performance goals, mostly by guiding the compiler with respect to rule priority
and ordering and without changing any of the rules themselves. This separation of function-
ality and cycle-to-cycle performance also allowed us to optimize performance without fear
of breaking functionality. For example, at a late stage, we discovered an unnecessary bub-
ble in our pipeline between some pairs of instructions. In our flow, the fix was simple and
localized to a faulty bypass rule; because we knew that the compiler would preserve the op-
erational correctness as described in the rules, we needed to re-verify only the performance
aspect. Had we used a design methodology where correctness and performance cannot be
easily separated, we might well have judged that the risk of breaking existing functionality
was not worth the benefit of improved performance, and taped out without fixing the bug.

7.2. SYNTHESIS AND THE BACKEND

We used Synopsys Design Compiler (DC) to synthesize the RTL Verilog produced by the
Bluespec compiler backend, using an ARM sc12 low voltage threshold cell library targeting
an IBM 45nm SOI process. Synthesis targeted a clock frequency of 800MHz, and leveraged
DC's automatic clock-gating feature.

Synthesized netlists were placed and routed using Cadence's Encounter and Virtuoso

64

tools, which were also used to lay out the power grid and generate the clock tree (see Figure 7-
1). Synopsys PrimeTime was used for static timing analysis to enable post-layout timing
closure. Layout-versus-schematic verification and signoff design rule checks were performed
using Mentor Calibre.

An ARM 1.8V wirebond I/O library was used for power/ground and chip I/O connections,
with a single row of pads surrounding the chip. An IBM PLL was used to generate the clock
from an external signal.

Both synthesis and physical layout were performed bottom-up. First, three tile variants
were synthesized and laid out: two for the tiles that included external memory controller
shims and one variant for the remaining 108 tiles. Netlist simulations and timing analysis
were then performed in single-tile, four-tile, and nine-tile configurations. The post-layout
tiles were treated as black boxes for full-chip synthesis and layout (see Figure 7-2).

7.3. SYSTEM VERIFICATION

With evolving VLSI technology and increasing design complexity, verification costs have
become more critical than ever. Increasing core counts are only making the problem worse
because any pairwise interactions among cores result in a combinatorial explosion of the
state space as the number of cores grows. Distributed cache coherence protocols in particu-
lar are well known to be notoriously complex and difficult to design and verify. The response
to a given request is determined by the state of all actors in the system (for example, when
one cache requests write access to a cache line, any cache containing that line must be sent an
invalidate message); moreover, the indirections involved and the nondeterminism inherent
in the relative timing of events requires a coherence protocol implementation to introduce
many transient states that are not explicit in the higher-level protocol. This causes the number
of actual states in even relatively simple protocols (e.g., MSI, MESI) to explode combinato-
rially (Arvind et al., 2008), and results in complex cooperating state machines driving each
cache and directory (Lenoski and Weber, 1995). In fact, one of the main sources of bugs in
such protocols is reachable transient states that are missing from the protocol definition, and
fixing them often requires non-trivial modifications to the high-level specification. To make
things worse, many transient states make it difficult to write well-defined testbench suites:
with multiple threads running in parallel on multicores, writing high-level applications that
exercise all the reachable low-level transient states-or even enumerating those states-is not
an easy task. Indeed, descriptions of more optimized protocols can be so complex that they
take experts months to understand, and bugs can result from specification ambiguities as
well as implementation errors (Joshi et al., 2003). Significant modeling simplifications must
be made to make exploring the state space tractable (Abts et al., 2003), and even formally

65

verifying a given protocol on a few cores gives no confidence that it will work on 100.
While design and verification complexity is difficult to quantify and compare, both the

remote-access-only baseline and the full EM2 system we implemented have a significant ad-
vantage over directory cache coherence: a given memory address may only be cached in a
single place. This means that any request-remote or local-will depend only on the validity
of a given line in a single cache, and no indirections or transient states are required. The VALID

and DIRTY flags that together determine the state of a given cache line are local to the tile
and cannot be affected by state changes in other cores. The thread migration framework does
not introduce additional complications, since the data cache does not care whether a local
memory request comes from a native thread or a migrated thread: the same local data cache
access interface is used. The overall correctness can therefore be cleanly separated into (a) the
remote access framework, (b) the thread migration framework, (c) the cache that serves the
memory request, and (d) the underlying on-chip interconnect, all of which can be reasoned
about separately. This modularity makes the EM2 protocols easy to understand and reason
about, and enabled us to safely implement and verify modules in isolation and integrate them
afterwards without triggering bugs at the module or protocol levels (see verification steps I
and II in Figure 7-3).

The homogeneous tiled architecture we chose for EM2 allowed us to significantly reduce
verification time by first integrating the individual tiles in a 4-tile system. This resulted in
far shorter simulation times than would have been possible with the 110 cores, and allowed
us to run many more test programs. At the same time, the 4-tile arrangement exercised all
of the inter-tile interfaces, and we found no additional bugs when we switched to verifying
the full 110-core system. Unlike directory entries in directory-based coherence designs, EM2

cores never store information about more than the local core, and all of the logic required
for the migration framework-the decision whether to migrate or execute a remote cache
access, the calculation of the destination core, serialization and deserialization of network
packets from/to the execution context, evicting a running thread if necessary, etc.-is local
to the tile. As a result, it was possible to exercise the entire state space in the 4-tile system;
perhaps more significantly, however, this also means that the system could be scaled to an
arbitrary number of cores without incurring an additional verification burden.

7.4. SYSTEM CONFIGURATION AND BOOTSTRAP

To initialize the EM2 chip to a known state at during power-up, we chose to use a scan-chain
mechanism. Unlike the commonly employed bootloader strategy, in which one of the cores
is hard-coded with a location of a program that configures the rest of the system, successful
configuration via the scan-chain approach does not rely on any cores to be operating cor-

66

rectly: the only points that must be verified are (a) that bits correctly advance through the
scan chain, and (b) that the contents of the scan chain are correctly picked up by the relevant
core configuration settings. In fact, other than a small state machine to ensure that caches
are invalidated at reset, the EM2 chip does not have any reset-specific logic that would have
to be separately verified.

The main disadvantages here are (a) that the EM2 chip is not self-initializing, i.e., that
system configuration must be managed external to the chip, and (b) that configuration at
the slow rate permitted by the scan chain will take a number of minutes. For an academic
chip destined to be used exclusively in a lab environment, however, those disadvantages are
relatively minor and worth offloading complexity from the chip itself onto test equipment.

The scan chain itself was designed specifically to avoid hold-time violations in the physi-
cal design phase. To this end, the chain uses two sets of registers and is driven by two clocks:
the first clock copies the current value of the scan input (i.e., the previous link in the chain)
into a "lockup" register, while the second moves the lockup register value to a "config" reg-
ister, which can be read by the core logic (see Figure 7-4). By suitably interleaving the two
scan clocks, we ensure that the source of any signal is the output of a ffip-flop that is not
being written at the same clock edge, thus avoiding hold-time issues. While this approach
sacrificed some area (since the scan registers are duplicated), it removed a significant source
of hold-time violations during the full-chip assembly phase of physical layout, likely saving
us time and frustration.

67

Figure 7-1: The layout of a single tile of the EM2 chip. Most of the tile is taken up by the cache
SRAMs (outlined), and the rest by the core datapath, cache controllers, and on-chip network
routers. This tile was treated as a black box and replicated to obtain the full 110-tile system.

68

Figure 7-2: A microphotograph of the fabricated EM2 chip, with the outlines of the 110-tiles

superimposed.

69

IV. 110-tile system11. single-tile I1. 4-tile system (th f e chip)(the full EM2 chip)

...* 0................ %...

inter-module # inter-tile no bugs introduced
bugs bugs by increasing the

system size

Figure 7-3: Bottom-up verification methodology of EM2 . The high modularity and design sim-
plicity of EM2 enabled verification to scale as we integrated modules and increase the system
size: the number of bugs found decreased at each step, and no new bugs were discovered by
moving from a 4-tile model to the full 110-tile system.

to core

scan in D Q
lockup

reg

clock 1
clock 2

Q
config

reg
lockup

regE
-+0D

config
reg

Q

to core

scan out

Figure 7-4: The two-stage scan chain used to configure the EM2 chip. The two separate scan
clocks and two sets of registers prevent hold time violations due to short paths between the
scan chain registers.

70

I. module

bugs within
each module

.......

--- + D

CHAPTER 8

PERFORMANCE EVALUATION

IN this chapter, we evaluate the fine-grained hardware-level thread migration techniques
we have implemented in silicon, and examine how they compare to a remote-access-only

distributed cache architecture and to directory-based cache coherence.

Because the packaged chips were in the bringup phase at the time of this writing and it
was not yet possible to obtain performance and area measurements directly from the silicon,
our evaluation here is based on RTL simulation and synthesis estimates.

8.1. METHODS

To evaluate the EM2 implementation, we chose an idealized cache-coherent baseline architec-
ture with a two-level cache hierarchy (a private Li data cache and a shared L2 cache). In this
scheme, the L2 is distributed evenly among the 110 tiles and the size of each L2 slice is 512KB.
An Li miss results in a cache line being fetched from the L2 slice that corresponds to the re-
quested address (which may be on the same tile as the Li cache or on a different tile). While
this cache fetch request must still traverse the network to the correct L2 slice and bring the
cache line back, our cache-coherent baseline is idealized in the sense that rather than focusing
on the details of a specific coherence protocol implementation, it does not include a directory
and never generates any coherence traffic (such as invalidates and acknowledgements); co-
herence among caches is ensured "magically" by the simulation infrastructure. While such
an idealized implementation is impossible to implement in hardware, it represents an upper
bound on the performance of any implementable directory coherence protocol, and serves
as the ultimate baseline for performance comparisons.

71

RTL simulation

To obtain the on-chip traffic levels and completion times for our architecture, we began with
the post-tapeout RTL of the EM2 chip, removed such ASIC-specific features as scan chains
and modules used to collect various statistics at runtime, and added the same shared-L2
cache hierarchy as the cache-coherent baseline. Since our focus is on comparing on-chip per-
formance, the working set for our benchmarks is sized to fit in the entire shared-L2 aggregate
capacity. All of the simulations used the entire 110-core chip RTL; for each benchmark, we
report the completion times as well as the total amount of on-chip network traffic (i.e., the
number of times any ffit traveled across any router crossbar).

The ideal CC simulations only run one thread in each core, and therefore only use the
native context. Although the EM2 simulations can use the storage space of both contexts in a
given core, this does not increase the parallelism available to EM2 : because the two contexts
share the same I$ port, only one context can be executing an instruction at any given time.

Both simulations use the same 8KB Li instruction cache as the EM2 chip. Unlike the PC,
instruction cache entries are not migrated as part of the thread context; while this might
at first appear to be a disadvantage when a thread first migrates to a new core, we have
observed that in practice at steady state the I$ has usually already been filled (either by other
threads or by previous iterations that execute the same instruction sequence), and the I$ hit
rate remains high.

Area and power estimates

Area and power estimates were obtained by synthesizing RTL using Synopsys Design Com-
piler (DC). For the EM2 version, we used the post-tapeout RTL with the scan-chains and
statistics modules deleted; we reused the same IBM 45nm SOI process with the ARM sc12
low-power ASIC cell library and SRAM blocks generated by IBM Memory Compiler. Syn-
thesis targeted a clock frequency of 800MHz, and leveraged DC's automatic clock-gating
feature.

To give an idea of how these costs compare against that of a well-understood, realistic
architecture, we also estimated the area and leakage power of an equivalent design where
the data caches are kept coherent via a directory-based MESI protocol (CC). We chose an
exact sharer representation (one bit for each of the 110 sharers) and either the same number
of entries as in the data cache (CC 100%) or half the entries (CC 50%);1 in both versions the
directory was 4-way set-associative. To estimate the area and leakage power of the directory,

'Note that because multiple data caches can "gang up" on the same directory slice, the 100% version does
not guarantee freedom from directory-capacity invalidations.

72

we synthesized a 4-way version of the data cache controller from EM2 chip with SRAMs
sized for each directory configuration, using the same synthesis constraints (since a directory
controller is somewhat more complex than a cache controller, this approach likely results in
a slight underestimate).

For area and leakage power, we report the synthesis estimates computed by DC, i.e., the
total cell area in pm2 and the total leakage power. While all of these quantities typically
change somewhat post-layout (because of factors like routing congestion or buffers inserted
to avoid hold-time violations), we believe that synthesis results are sufficient to make archi-
tectural comparisons.

Dynamic power dominates the power signature, but is highly dependent on the specific
benchmark, and obtaining accurate estimates for all of our benchmark is not practical. In-
stead, we observe that for the purposes of comparing EM2 to the baseline architecture, it
suffices to focus on the differences, which consist of (a) the additional core context, (b) the
migration predictor, and (c) differences in cache and network accesses. The first two are in-
significant: our implementation allowed only one of the EM2 core contexts to be active in
any given cycle, so even though the extra contexts adds leakage, dynamic power remains
constant. The migration predictor is a small part of the tile and does not add much dynamic
power (for reference, DC estimated that the predictor accounts for < 4.5% of the tile's dy-
namic power). Since we ran the same programs and pre-initialized caches, the cache accesses
were the same, meaning equal contribution to dynamic power. The only significant difference
is in the dynamic network power, which is directly proportional to the on-chip network traf-
fic (i.e., the number of network flits sent times the distance traveled by each flit); we therefore
report this for all benchmarks as a proxy for dynamic power.

8.2. EVALUATION

Performance tradeoff factors

To precisely understand the conditions under which fast thread migration results in improved
performance, we created a simple parameterized benchmark that executes a sequence of
loads to memory assigned to a remote L2 slice. There are two parameters: the run length
is the number of contiguous accesses made to the given address range, and cache misses is
the number of Li misses these accesses induce (in other words, this determines the stride of
the access sequence); we also varied the on-chip distance between the tile where the thread
originates and the tile whose L2 caches the requested addresses.

Figure 8-1 shows how a program that only makes remote cache accesses (RA-only) com-
pares with a program that migrates to the destination core 4 hops away, makes the memory

73

N RA-only M EM2-12 M EM 2-8 M EM2-4

4
number of contiguous accesses to the same core

(a) completion time

O RA-only 0 EM 2-12 M EM 2-8 M EM 2-4

4

number of contiguous acceses to the same core

(b) network traffic

Figure 8-1: Performance and network traffic comparison of EM2 vs. RA: EM2 performs better

as the run length of contiguous accesses to the same core grows (synthetic benchmark).

74

180

120
a-,

60

04--
8

90

60 -

30

0
8

'

1

1

accesses, and returns to the core where it originated (EM2), where the migrated context size
is 4, 8, and 12 stack entries (EM2-4, EM2-8, and EM2 -12). Since the same L1 cache is always
accessed-locally or remotely-both versions result in exactly the same Li cache misses, and
the only relevant parameter is the run length. For a singleton access (run length = 1), RA is
slightly faster than any of the migration variants because the two migration packets involved
are longer than the RA request/response pair, and, for the same reason, induce much more
network traffic. For multiple accesses, however, the single migration round-trip followed by
local cache accesses performs better than the multiple remote cache access round trips, and
the advantage of the migration-based solution grows as the run length increases.

The tradeoff against our "ideal cache coherence" private-cache baseline (CC) is less straight-
forward than against RA: while CC will still make a separate request to load every cache line,
subsequent accesses to the same cache line will result in Li cache hits and no network traffic.
Figure 8-2 illustrates how the performance of CC and EM2 depends on how many times the
same cache line is reused in 8 accesses. When all 8 accesses are to the same cache line (cache
misses = 1), CC requires one round-trip to fetch the entire cache line, and is slightly faster
than EM2 , which needs to unload the thread context, transfer it, and load it in the destination
core. Once the number of misses grows, however, the multiple round-trips required in CC
become more costly than the context load/unload penalty of the one round-trip migration,
and EM2 performs better. And in all cases, EM2 can induce less on-chip network traffic: even
in the one-miss case where CC is faster, the thread context that EM2 has to migrate is often
smaller than the CC request and the cache line that is fetched.

Finally, Figure 8-3 examines how the three schemes are affected by the on-chip distance
between the core where the thread originates and the core that caches the requested data
(with run length = 8 and cache misses = 2). RA, which requires a round-trip access for every
word, grows the fastest (i.e., eight round-trips), while CC, which only needs a round-trip
cache line fetch for every LI miss (i.e., two round-trips), grows much more slowly. Because
EM2 only requires one round-trip for all accesses, the distance traveled is not a significant
factor in performance.

Benchmark performance

Figures 8-4 and 8-5 show how the performance of EM2 compares to the ideal CC baseline
for several benchmarks. These include: (1) single-threaded memcpy in next-neighbor (near)
and cross-chip (far) variants, (2) parallel k-fold cross-validation (par-cv), a machine learning
technique that uses stochastic gradient learning to improve model accuracy, (3) 2D Jacobi
iteration (jacobi), a widely used algorithm to solve partial differential equations, and (4) partial
table scan (tbscan), which executes queries that scan through a part of a globally shared data

75

M RA-only M EM2-12 M EM 2-8 M EM2-4

180

120

60

0
4

number of contiguous accesses to the same core

(a) completion time

U RA-only 0 EM 2-12 U EM 2-8 U EM 2-4

90

60

30

0

8

7K

4 8

number of contiguous acceses to the same core

(b) network traffic

Figure 8-2: Performance and network traffic comparison of EM2 vs. CC-ideal: EM2 performs

better as the rate of cache misses increases (synthetic benchmark).

76

x

I

~ ---~~~~~~~

1

I

O RA-only 0CC-ideal E EM 2-8

250 ''200J

150

100

4 8 12

number of hops

Figure 8-3: The effect of intercore distance on completion time. EM2 outperforms RA and

CC-ideal as the number of cores grows and the average on-chip distance increases.

table distributed among the cache shards. We first note some overall trends and then discuss
each benchmark in detail below.

Overall remarks. First, Figure 8-4a illustrates the overall performance (i.e., completion

time) and on-chip network traffic of the ideal directory-based baseline (CC), the remote-
access-only variant (RA), and the EM2 architecture. Overall, EM2 always outperforms RA,
offering up to 3.9x reduction in run time, and as well or better than CC in all cases except

one. Throughout, EM2 also offers significant reductions in on-chip network traffic, up to 42 x

less traffic than CC for par-cv.

Migration rates, shown in Figure 8-5a, range from 0.2 to 20.9 migrations per 1,000 instruc-

tions depending on the benchmark. These quantities justify our focus on efficient thread
movement: if migrations occur at the rate of nearly one in every hundred to thousand in-

structions, taking 1000+ cycles to move a thread to a different core would indeed incur a

prohibitive performance impact. Most migrations are caused by data accesses, with stack

under/overflow migrations at a negligible level, and evictions significant only in the tbscan

benchmarks.

Even with many threads, effective migration latencies are low (Figure 8-5b, bars), with

the effect of distance clearly seen for the near and far variants of memcpy; the only exception

here is par-cv, in which the migration latency is a direct consequence of delays due to inter-

thread synchronization (as we explain below). At the same time, migration sizes (Figure 8-5b,

77

U RA-only 0 CC-ideal U EM2

4x

70

o) 3x

E2

E

.= ix-

E

Ox

memcpy-near memcpy-far par-cv jacobi tbscan-16 tbscan-1 10

(a) performance normalized to CC-ideal

N RA-only 0 CC-ideal U EM 2

3x

E2x

x

Ox

memcpy-near memcpy-far pa r-cv jacobi tbscan-16

(b) network traffic normalized to CC-ideal

Figure 8-4: Performance and network traffic under EM2 , RA, and CC-ideal on various bench-

marks, normalized to CC-ideal (RTL simulation).

78

tbscan-110

-= i

N data access M eviction U stack overflow and underflow

25

20 --- - - - - -15-

C

0
memcpy-near memcpy-far par-cv jacobi tbscan-16 tbscan-110

(a) migrations per 1000 instructions

average migration latency - average migration size

250 100%

200 -.. - --.-
75%

150
CD 50% CD

_ ~ ~ ~ ~7 10........... 50%..100-
E E

5_ _25% gx,ra 50 . . . ~ _ __

0 - 0%
memcpy-near memcpy-far par-cv jacobi tbscan-16 tbscan-110

(b) thread migration performance

Figure 8-5: EM2 migration rates and migration performance on various benchmarks (RTL
simulation).

79

line) vary significantly, and stay well below the 60% mark (44% on average): since most of
the on-chip traffic in the EM2 case is due to migrations, forgoing partial-context migration
support would have significantly increased the on-chip traffic (cf. Figure 8-4b).

Memory copy. The memcpy-near and memcpy-far benchmarks copy 32KB (the size of an Li
data cache) from a memory address range allocated to a next-neighbor tile (memcpy-near) or
a tile at the maximum distance across the 110-core chip (mempcy-far). In both cases, EM2 is
able to repeatedly migrate to the source tile, load up a full thread context's worth of data, and
migrate back to store the data at the destination addresses; because the maximum context size
exceeds the cache line size that ideal CC fetches, EM2 has to make fewer trips and performs
better both in terms of completion time and network traffic. Distance is a significant factor
in performance-the fewer round-trips of EM2 make a bigger difference when the source and
destination cores are far apart-but does not change the % improvement in network traffic,
since that is determined by the the total amount of data transferred in EM2 and CC.

Partial table scan. In this benchmark, random SQL-like queries are assigned to separate
threads, and the table that is searched is distributed in equal chunks among the per-tile L2
caches. We show two variants: a light-load version where only 16 threads are active at a time
(tbscan-16) and a full-load version where all of the 110 available threads execute concurrently
(tbscan-110); under light load, EM2 finishes slightly faster than CC-ideal and significantly
reduces network traffic (2.9x), while under full load EM2 is 1.8x slower than CC-ideal and
has the same level of network traffic.

Why such a large difference? Under light load, EM2 takes full advantage of data locality,
which allows it to significantly reduce on-chip network traffic, but performs only slightly
better than CC-ideal because queries that access the same data chunks compete for access
to the same core and effectively serialize some of the computation. Because the queries are
random, this effect grows as the total number of threads increases (Figure 8-6), resulting in
very high thread eviction rates under full load (Figure 8-5a); this introduces additional delays
and network traffic as threads ping-pong between their home core and the core that caches
the data they need.

This ping-pong effect, and the associated on-chip traffic, can be reduced by guaranteeing
that each thread can perform N (configurable in hardware) memory accesses before being
evicted from a guest context. Figure 8-6 illustrates how tbscan performs when N = 10 and
N = 100: a longer guaranteed guest-context occupation time results in up to 2x reductions
in network traffic at the cost of a small penalty in completion time due to the increased
level of serialization. This highlights an effective tradeoff between performance and power:
with more serialization, EM2 can use far less dynamic power due to on-chip network traf-

80

S EM 2-N10 U EM 2-N100

- 2.Ox -

)1.5x --

E

= 0.x -

E Q.Ox

1 4 8 16 32 64 110

number of threads active

(a) completion time

* EM 2-N1O 0 EM 2-N100

1.0x - - --

0.4x -- - -_ _ _ _~__ _ _

- 0.2x 17U2
1 2 3 4 5 6 7

number of threads active

(b) network traffic

Figure 8-6: Performance and network traffic with different number of threads for tbscan un-

der EM2. Overheads grow significantly worse when the number of threads approaches the

number of available cores.

81

fic (and because fewer cores are actively computing) if the application can tolerate lower
performance.

Parallel k-fold cross validation. In the k-fold cross-validation technique common in ma-
chine learning, data samples are split into k disjoint chunks and used to run k independent
leave-one-out experiments. For each experiment, k -1 chunks constitute the training set and
the remaining chunk is used for testing; the results are then averaged to estimate the final
prediction accuracy of the algorithm being trained. Since the experiments are computation-
ally independent, naturally map to multiple threads (indeed, for sequential machine learning
algorithms, such as stochastic gradient descent, this is the only practical form of paralleliza-
tion because the model used in each experiment is necessarily sequential). The chunks are
typically spread across the shared cache shards, and each experiment repeatedly accesses a
given chunk before moving on to the next one.

With overall completion time slightly better under EM2 than under CC-ideal and much
better than under RA-only, par-cv stands out for its 42 x reduction in on-chip network traffic
vs. CC-ideal (96x vs. RA). This is because the cost of every migration is amortized by a large
amount of local cache accesses on the destination core (as the algorithm learns from the given
data chunk), while CC-ideal continuously fetches more data to feed the computation.

Completion time for par-cv, however, is only slightly better because of the nearly 200-
cycle average migration times at full 110-thread utilization (Figure 8-5b). This is because
of a serialization effect similar to that in tbscan: a thread that has finished learning on a
given chunk and migrates to proceed onto the next chunk must sometimes wait en route
while the previous thread finishes processing that chunk. Unlike tbscan, however, where the
contention results from random queries, the threads in par-cv process the chunks in order,
and avoid the penalties of eviction. As a result, at the same full utilization rate of 110 threads,
par-cv has a better completion time under EM2 but tbscan performs better under CC. (At a
lower utilization, the average migration latency of par-cv falls: e.g., at 50 threads it becomes
9 cycles, making the EM2 version 11% faster than CC.)

2D Jacobi iteration. In its essence, the jacobi benchmark propagates a computation through
a matrix, and so the communication it incurs is between the boundary of the 2D matrix region
stored in the current core and its immediate neighbors stored in the adjacent cores. Since
the data accesses are largely to a thread's own private region, intercore data transfers are a
negligible factor in the overall completion time, and the runtime for all three architectures
is approximately the same. Still, EM2 is able to reduce the overall network traffic because it
can amortize the costs of migrating by consecutively accessing many matrix elements in the
boundary region, while CC-ideal has to access this data with several L2 fetches.

82

Area and power costs

Since the CC-ideal baseline we use for the performance evaluation above has idealized direc-
tories, it does not make a good baseline for area and power comparison. Instead, we estimated
the area required for MESI implementations with the directory sized to 100% and 50% of the
total Li data cache entries, and compared the area and leakage power to that of EM 2 . The L2
cache hierarchy, which was added for more realistic performance evaluation and not a part
of the actual chip, is not included here for both EM2 and CC.

Table 8.1 summarizes the architectural components that differ. EM2 requires an extra ar-
chitectural context (for the guest thread) and on-chip networks for migrations and evictions
as well as RA requests and responses. Our EM2 implementation also includes a learning mi-
gration predictor; while this is not strictly necessary in a purely instruction-based migra-
tion design, it offers runtime performance advantages similar to those of a hardware branch
predictor. In comparison, a deadlock-free implementation of MESI would replace the four
migration and remote-access on-chip networks with three (for coherence requests, replies,
and invalidations), implement D$ controller logic required to support the coherence protocol,
and add the directory controller and associated SRAM storage.

Figure 8-7 shows how the silicon area and leakage power compare. Not surprisingly,
blocks with significant SRAM storage (the instruction and data caches, as well as the di-
rectory in the CC version) were responsible for most of the area in all variants. Overall, the
extra thread context and extra router present in EM2 were outweighed by the area required
for the directory in both the 50% and 100% versions of MESI, which suggests that EM 2 may
be an interesting option for area-limited CMPs.

EM 2 CC

extra execution context in the core yes no
migration predictor logic & storage yes no

remote cache access support in the D$ yes no
coherence protocol logic in the D$ no yes
coherence directory logic & storage no yes
number of independent on-chip networks 6 5

Table 8.1: A summary of architectural costs that differ in the EM2 and CC implementations.

83

M routers M D$ slice Mi$ M dir. slice M predictor 0 core logic

500,000

400,000
E

300,000

200,000

100,000

0
RA EM2 CC 100% CC 50%

(a) silicon area

M routers G D$ slice M 1$ M dir. slice U predictor 0 core logic

20

$ 15

0
RA EM2 CC100% CC50%

(b) leakage power

Figure 8-7: Relative area and leakage power costs of EM2 vs. estimates for exact-sharer CC
with the directory sized to 100% and 50% of the D$ entries (DC Ultra, IBM 45nm SOI hvt
library, 800MHz).

84

CHAPTER 9

CONCLUSIONS

T HIS dissertation has explored two main novel ideas: (a) fast, fine-grained thread migra-
tion implemented entirely in hardware, and (b) a sequentially consistent shared memory

scheme based on thread migration. In this chapter, we draw conclusions from the design, im-
plementation, and evaluation of the project, and outline some directions for future research.

9.1. THREAD MIGRATION

In this work, we have successfully demonstrated the feasibility of a hardware-only imple-
mentation of thread migration. With a deadlock-free migration protocol and partial-context
migration, migrations take only a few cycles between adjacent cores and tens of cycles across
a 110-core multiprocessor.

Results from a detailed cycle-accurate evaluation generally support the hypothesis that an
efficient hardware-level implementation of thread migration is possible, and that it achieves
migrations that are sufficiently fast and fine-grained to support even such extremely demand-
ing applications as a shared-memory implementation.

The main weakness identified by our experiments was in our choice to make the migra-
tions purely autonomous. As demonstrated by our oversubscribed tablescan benchmark, this
opens up the opportunity for a birthday-paradox-like core congestion effect where multiple
threads wish to execute on the same core. In this situation, each thread enters the core, runs
for a few instructions, and is evicted because another thread is waiting; the original thread,
however, still needs to run on the same core and simply gets back in the queue of threads wait-
ing for it. This effect is mitigated somewhat by our ability to configure the number of memory
accesses that must be completed before a thread may be evicted, but this requires careful or-
chestration on the part of the programmer. While it can be very effective (as demonstrated
by the results on the parallel cross-validation benchmark), it is difficult to do for relatively

85

unstructured parallel workloads, and for workloads whose access pattern is tightly tied to
the input data (such as the tablescan benchmark).

Future research can address this shortcoming in one of two ways. One is to implement
a centralized scheduler that collects migration requests from various cores, schedules them
to minimize congestion, and sends back grants to the threads that are allowed to proceed (in
our shared-memory implementation, this would mean that threads whose requests were not
granted must use remote cache access to execute non-local loads and stores). This would, how-
ever, significantly add to the latency experienced by average migrations, and would therefore
render thread migration unsuitable for such sensitive applications as shared memory. A bet-
ter option could be for cores to collect and transmit information about core and on-chip
network congestion: while information from a far-away core would have to travel a number
of cycles and as a result would be somewhat stale, core congestion is a phenomenon that
becomes a problem only if it lasts for many cycles, and stale information would likely suffice
to avoid or ameliorate this effect.

Another direction for future research is the evaluation of thread migration on a more
complex (and realistic) core design that includes virtual memory and a full operating system.
The limitations inherent in designing and implementing a large ASIC in academic conditions
meant that this work was focused on a proof-of-concept pilot implementation in a bare-metal
accelerator model. The present work, however, validates the feasibility and applicability of
fine-grained thread migration, and paves the way for more complex cores and OS involve-
ment.

9.2. SHARED MEMORY IMPLEMENTATION

As the other significant contribution of this work we have designed and implemented se-
quentially consistent shared memory based on thread migration, and demonstrated that it
preforms competitively with an idealized state-of the art equivalent.

Although the migration-based shared memory scheme is simpler to implement than
directory-based cache coherence, occupies comparable chip area, and offers equivalent per-
formance, the address-based assignment of memory regions to per-core caches makes opti-
mization of many classes of applications difficult. Potentially, a more complex processor with
virtual memory support could provide an extra level of indirection and allow for automatic
balancing of memory-to-cache mapping; nevertheless, a design working on page granularity
would still be more difficult to optimize than a cache-coherence system working on cache-
line granularity.

A more effective application of thread migration to shared memory might therefore be
as a supplement to an already-existing cache coherence system, with the aim of, for example,

86

reducing cache pollution and L1-to-L2 distance. Although some studies have addressed using
migration to accelerate performance in such a system, they have not considered the kind of
fast, instruction-granularity migration mechanism we have presented here.

9.3. AN ENABLING TECHNOLOGY

Perhaps the most promising aspect of the fast, fine-grained thread migration mechanism
we have presented here is that it is a general technique with many possible applications.
Previous work has already considered several, ranging from performance to salvaging of
partially functional cores and thermal load balancing, and we believe that our contribution
of a proven migration mechanism with quantified tradeoffs opens the door to many more.

87

88

APPENDIX A

STACK ISA

A.1. ARCHITECTURAL STATE

'Ihe processor operates on 32-bit values, with signed arithmetic in two's complement. Mem-
ory is word-addressable, for a total of 16GB accessible address space. Internal storage is pro-
vided by two stacks, the main stack and the auxiliary stack; most instructions operate ex-
clusively on the main stack, and several ferry data between the two stacks. Both stacks are
transparently spilled to and refilled from data memory by the processor hardware, and so
appear infinite to the programmer.

Memory instructions-loads, stores, and a load-reserve/store-conditional pair-access the
data caches at word granularity. If the relevant address is not mapped to the local cache, the
memory instruction involved may either execute via remote cache access or cause a migra-
tion to the core where the address can be cached. Stores come in two flavors: acknowledged
and unacknowledged. The former increment an unacknowledged-stores counter upon issue
and decrement it upon completion (which may take some time, especially if the instruction
is executed via remote cache access), while the latter neither increment the counter nor gen-
erate an acknowledgement. For memory consistency reasons, any outstanding unacknowl-
edged stores must be acknowledged before a thread may migrate, and a migrating instruction
will stall until the unacknowledged-stores counter falls to 0. In addition, all memory instruc-
tions have fenced variants, which stall until all previous stores have been acknowledged be-
fore executing.

The instruction set, listed below, is sparsely encoded in 32-bit words, and detailed below.

89

A.2. INSTRUCTION ENCODING AND SEMANTICS

A complete list of instructions implemented in the EM2 stack ISA follows. The descriptions
use S[O] to mean the element at the top of the main stack, S[1 to mean the element just below
the top of the main stack, and, in general, S[d] to mean the entry at depth d from the top of the
main stack; similarly, A[0] indicates the element at the top of the auxiliary stack. Arithmetic,
including effective address calculation, is signed unless noted otherwise.

s11
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 - s

Shift left. Removes S[0] and pushes its value shifted left by s bits on top of the main stack.

sr
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 -s

Shift right, logical. Removes S[0J and pushes its value shifted right by s bits on top of the main
stack, zero-extended.

sra
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 2 1 -s

Shift right, arithmetic. Removes S[0] and pushes its value shifted right by s bits on top of the
main stack, sign-extended.

Inot
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 3 -
Logical negation. Removes S[0] and pushes its value negated on top of the main stack (i.e., 0
becomes 1 and any other value becomes 0).

90

bnot
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 4F 1
Bitwise negation. Removes S[0] and pushes its bitwise complement on top of the main stack.

sethi
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 5 - imm

Set high half-word. Sets bits 31:16 of S[O] to the value of imm.

land
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0

Removes S[0] and S[1], and pushes their logical conjunction on top of the main stack.

lor
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 -

Removes S[0] and S[1J, and pushes their logical disjunction on top of the main stack.

band
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 2

Removes S[0] and S[1] , and pushes their bitwise conjunction on top of the main stack.

bor
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 3

Removes S[0] and S[1] , and pushes their bitwise disjunction on top of the main stack.

91

bxor
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 4

Removes S[O] and S[1], and pushes their bitwise exclusive disjunction on top of the main stack.

add
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 5 -

Removes S[O] and S[1], and pushes their arithmetic sum on top of the main stack.

sub
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 6

Removes S[O] and SP[1, subtracts the second from the first, and pushes the result on top of the
main stack.

cmpeq
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 7 -

Removes S[O] and S[1] and performs a comparison; if their values are equal, pushes 1 on top
of the main stack, otherwise pushes 0 on top of the main stack.

cmpne
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 81-

Removes S[0] and S[i] and performs a comparison; if their values are not equal, pushes 1 on
top of the main stack, otherwise pushes 0 on top of the main stack.

cmpyugt
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 9 -

92

Removes S[0] and S[1] and performs an unsigned comparison; if the first is greater than the
second, pushes 1 on top of the main stack, otherwise pushes 0 on top of the main stack.

cmp-uge
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 10

Removes 5[0] and 5[1] and performs an unsigned comparison; if the first is greater than or
equal to the second, pushes 1 on top of the main stack, otherwise pushes 0 on top of the main
stack.

cmpUlt
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

F 11Removes S[0] and S[1] and per-
forms an unsigned comparison; if the first is less than the second, pushes 1 on top of the main
stack, otherwise pushes 0 on top of the main stack.

cmpyule
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 12

Removes S[0] and S[1] and performs an unsigned comparison; if the first is less than or equal
to the second, pushes 1 on top of the main stack, otherwise pushes 0 on top of the main stack.

cmpjsgt
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 13

Removes S[0] and S[1] and performs a signed comparison; if the first is greater than the second,
pushes 1 on top of the main stack, otherwise pushes 0 on top of the main stack.

cmp-sge
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 14 -

93

Removes S[0] and S[11 and performs a signed comparison; if the first is greater than or equal
to the second, pushes 1 on top of the main stack, otherwise pushes 0 on top of the main stack.

cmp-slt
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 15 -

Removes S[0] and S[1] and performs a signed comparison; if the first is less than the second,
pushes 1 on top of the main stack, otherwise pushes 0 on top of the main stack.

cmp-sle
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 16 -

Removes S[0] and S[1] and performs a signed comparison; if the first is less than or equal to
the second, pushes 1 on top of the main stack, otherwise pushes 0 on top of the main stack.

multu
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

2 0 -

Removes S[0] and S[1] and pushes their unsigned product on top of the main stack.

mult
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

2 1 -

Removes S[0] and S[11 and pushes their signed product on top of the main stack.

pull
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

3 0 -d

Removes S[d] and pushes it on top of the main stack.

94

pull-cp
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

3 1 d

Pushes a copy of S[d] on top of the main stack.

tuck
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

3 1 2

Removes S[O] and inserts it in position S[d].

tuck-cp
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

3 3 - d

Inserts a copy of S[OJ in position S[d].

swap
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

3 4 d

Swaps S[0] and S[d].

drop
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

3 5 d

Removes S[d].

push
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

3 6 - imm

Pushes imm on top of the main stack.

95

push-pc
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

3 7 0

Pushes the address of the next instruction on top of the main stack.

push-core
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

3 1 7 1- 1]

Pushes the ID of the core where the instruction is being executed on top of the main stack.

push-thread
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

3 1 7 1- 12]

Pushes the ID of the
stack.

thread in which the instruction is being executed on top of the main

push-stat
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

3 8 al m core stat

Reads statistics register stat in core with ID core and pushes it on top of the main stack. If
this instruction causes the thread to migrate, the migrated context includes the top 2 x m main

stack entries and 2 x a auxiliary stack entries.

main2auxsCp
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4 0

Pushes a copy of S[0] on top of the auxiliary stack.

main2aux
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4 1 -

96

Removes S[O] and pushes it on top of the auxiliary stack.

aux2maincp
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4 2 -

Pushes a copy of A[Q] on top of the main stack.

aux2main
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4 3 -

Removes A[O] and pushes it on top of the main stack.

Id
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

5 0 a m off

Removes S[0] and adds it to off; retrieves the word at the resulting address and pushes it on top
of the main stack. By default uses the migration predictor for both the migration decision
and the partial context sizes; if the prediction of the latter is disabled and this instruction
causes the thread to migrate, the migrated context includes the top 2 x m main stack entries
and 2 x a auxiliary stack entries.

Id-em
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

5 1 al m off

Removes S[0] and adds it to off; retrieves the word at the resulting address and pushes it on
top of the main stack. Always migrates if the address is not cacheable in the local core; in this
case, the migrated context includes the top 2 x m main stack entries and 2 x a auxiliary stack
entries.

Idjra
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

5 2 - off

97

Removes S[0] and adds it to off; retrieves the word at the resulting address and pushes it on
top of the main stack. Always executed via remote cache access if the address is not cacheable
in the local core.

Id-rsv
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 5 4 a mI off

Atomic load-reserve. Removes S[0] and adds it to off; retrieves the word at the resulting ad-
dress and pushes it on top of the main stack, simultaneously writing the address into the
reservation register at the home core of the address. By default uses the migration predictor
for both the migration decision and the partial context sizes; if the prediction of the latter is
disabled and this instruction causes the thread to migrate, the migrated context includes the
top 2 x m main stack entries and 2 xa auxiliary stack entries.

Id rsv em
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

5 5 a m off

Atomic load-reserve. Removes S[O] and adds it to off; retrieves the word at the resulting ad-
dress and pushes it on top of the main stack, simultaneously writing the address into the
reservation register at the home core of the address. Always migrates if the address is not
cacheable in the local core; in this case, the migrated context includes the top 2x m main stack
entries and 2 x a auxiliary stack entries.

Id rsv ra
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

5 6 a mI off

Atomic load-reserve. Removes S[0] and adds it to off; retrieves the word at the resulting ad-
dress and pushes it on top of the main stack, simultaneously writing the address into the
reservation register at the home core of the address. Always executed via remote cache ac-
cess if the address is not cacheable in the local core.

98

fnctd
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

5 8 a m off

First, stalls execution until acknowledgements for all outstanding stores have been received.
Next, removes S[0] and adds it to off; retrieves the word at the resulting address and pushes
it on top of the main stack. By default uses the migration predictor for both the migration
decision and the partial context sizes; if the prediction of the latter is disabled and this in-
struction causes the thread to migrate, the migrated context includes the top 2 x m main stack
entries and 2 x a auxiliary stack entries.

fncjdem
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

5 9 a m off

First, stalls execution until acknowledgements for all outstanding stores have been received.
Next, removes S[0J and adds it to off; retrieves the word at the resulting address and pushes
it on top of the main stack. Always migrates if the address is not cacheable in the local core;
in this case, the migrated context includes the top 2x m main stack entries and 2xa auxiliary
stack entries.

fncldra
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

5 10 - off

First, stalls execution until acknowledgements for all outstanding stores have been received.
Next, removes S[0] and adds it to off; retrieves the word at the resulting address and pushes
it on top of the main stack. Always executed via remote cache access if the address is not
cacheable in the local core.

fncldrsv
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

5 12 a m off

Fenced atomic load-reserve. First, stalls execution until acknowledgements for all outstand-
ing stores have been received. Next, removes S[0] and adds it to off; retrieves the word at the
resulting address and pushes it on top of the main stack, simultaneously writing the address

99

into the reservation register at the home core of the address. By default uses the migration
predictor for both the migration decision and the partial context sizes; if the prediction of
the latter is disabled and this instruction causes the thread to migrate, the migrated context
includes the top 2 x m main stack entries and 2 x a auxiliary stack entries.

fnc Id rsv em
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

5 13 a m off

Fenced atomic load-reserve. First, stalls execution until acknowledgements for all outstand-
ing stores have been received. Next, removes S[O] and adds it to off; retrieves the word at the
resulting address and pushes it on top of the main stack, simultaneously writing the address
into the reservation register at the home core of the address. Always migrates if the address
is not cacheable in the local core; in this case, the migrated context includes the top 2 x m
main stack entries and 2xa auxiliary stack entries.

fncId rsvmra
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

5 14 a m off

Fenced atomic load-reserve. First, stalls execution until acknowledgements for all outstand-
ing stores have been received. Next, removes S[O] and adds it to off; retrieves the word at the
resulting address and pushes it on top of the main stack, simultaneously writing the address
into the reservation register at the home core of the address. Always executed via remote
cache access if the address is not cacheable in the local core.

st-noack
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

6 0 a m off

Adds the value of S[0] to off and stores the value of S[1] at the resulting address; removes
both S[0] and S[1]. Does not increment the outstanding store counter and does not generate
a completion acknowledgement. By default uses the migration predictor for both the migra-
tion decision and the partial context sizes; if the prediction of the latter is disabled and this
instruction causes the thread to migrate, the migrated context includes the top 2 x m main
stack entries and 2 x a auxiliary stack entries.

100

st-em noack
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11.10 9 8 7 6 5 4 3 2 1 0

6 1 a m off

Adds the value of S[0] to off and stores the value of S[1] at the resulting address; removes
both s[0] and S[1]. Does not increment the outstanding store counter and does not generate
a completion acknowledgement. Always migrates if the address is not cacheable in the local
core; in this case, the migrated context includes the top 2xm main stack entries and 2xa
auxiliary stack entries.

st ra noack
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

6 2 - off

Adds the value of S[0] to off and stores the value of S[1] at the resulting address; removes
both S[0] and S[1]. Does not increment the outstanding store counter and does not generate
a completion acknowledgement. Always executed via remote cache access if the address is
not cacheable in the local core.

st-cond
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

6 4 am off

Atomic store-conditional. Adds the value of S[0] to off and stores the value of S[1] at the
resulting address if and only if the reservation register at the home core contains that address;
removes both S[0] and S[1], and writes 1 on top of the stack if the store was completed or 0
if the reservation had been broken. By default uses the migration predictor for both the
migration decision and the partial context sizes; if the prediction of the latter is disabled and
this instruction causes the thread to migrate, the migrated context includes the top 2 x m main
stack entries and 2 x a auxiliary stack entries.

st-cond-em
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

6 5 am off

Atomic store-conditional. Adds the value of S(0] to off and stores the value of S[1] at the
resulting address if and only if the reservation register at the home core contains that address;

101

removes both S[0] and S[1], and writes 1 on top of the stack if the store was completed or 0
if the reservation had been broken. Always migrates if the address is not cacheable in the
local core; in this case, the migrated context includes the top 2 x m main stack entries and 2 x a
auxiliary stack entries.

st cond ra
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

6 6 a m off

Atomic store-conditional. Adds the value of S[0] to off and stores the value of S[1] at the
resulting address if and only if the reservation register at the home core contains that address;
removes both S[0] and S[1], and writes 1 on top of the stack if the store was completed or 0 if
the reservation had been broken. Always executed via remote cache access if the address is
not cacheable in the local core.

fncst-noack
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

6 8 a m off

First, stalls execution until acknowledgements for all outstanding stores have been received.
Next, adds the value of S[0] to off and stores the value of S[1] at the resulting address; re-
moves both S[0] and S[1]. Does not increment the outstanding store counter and does not
generate a completion acknowledgement. By default uses the migration predictor for both
the migration decision and the partial context sizes; if the prediction of the latter is disabled
and this instruction causes the thread to migrate, the migrated context includes the top 2 x m
main stack entries and 2 xa auxiliary stack entries.

fnc st em noack
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

6 9 a m off

First, stalls execution until acknowledgements for all outstanding stores have been received.
Next, adds the value of S[0] to off and stores the value of S[1] at the resulting address; removes
both s[0] and S[1]. Does not increment the outstanding store counter and does not generate
a completion acknowledgement. Always migrates if the address is not cacheable in the local
core; in this case, the migrated context includes the top 2 x m main stack entries and 2 x a
auxiliary stack entries.

102

fnc_stranoack
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

6 1 10 - off

First, stalls execution until acknowledgements for all outstanding stores have been received.
Next, adds the value of S[0J to off and stores the value of S[1] at the resulting address; removes
both s[0] and 5(1]. Does not increment the outstanding store counter and does not generate
a completion acknowledgement. Always executed via remote cache access if the address is
not cacheable in the local core.

fnc.st-cond
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

6 12 ai m I off

Fenced atomic store-conditional. First, stalls execution until acknowledgements for all out-
standing stores have been received. Next, adds the value of S[0] to off and stores the value of
S[1] at the resulting address if and only if the reservation register at the home core contains
that address; removes both S[0] and S[1], and writes 1 on top of the stack if the store was
completed or 0 if the reservation had been broken. By default uses the migration predictor
for both the migration decision and the partial context sizes; if the prediction of the latter is
disabled and this instruction causes the thread to migrate, the migrated context includes the
top 2 x m main stack entries and 2 x a auxiliary stack entries.

fnc_st_cond-em
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

6 1 13 a m I off

Fenced atomic store-conditional. First, stalls execution until acknowledgements for all out-
standing stores have been received. Next, adds the value of S[0] to off and stores the value
of S[1] at the resulting address if and only if the reservation register at the home core con-
tains that address; removes both s[0] and s[1], and writes 1 on top of the stack if the store
was completed or 0 if the reservation had been broken. Always migrates if the address is not
cacheable in the local core; in this case, the migrated context includes the top 2 x m main stack
entries and 2 x a auxiliary stack entries.

103

fncst-cond-ra
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

6 14 a m off

Fenced atomic store-conditional. First, stalls execution until acknowledgements for all out-
standing stores have been received. Next, adds the value of S[0J to off and stores the value of
S(1 I at the resulting address if and only if the reservation register at the home core contains
that address; removes both S[0] and S[1], and writes 1 on top of the stack if the store was
completed or 0 if the reservation had been broken. Always executed via remote cache access
if the address is not cacheable in the local core.

St
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 ,6 5 4 3 2 1 0

6 16 a m off

Adds the value of S[0] to off and stores the value of S[1] at the resulting address; removes both
S[0] and S[1 . Increments the outstanding store counter and generates an acknowledgement
when the store has been committed to the relevant cache. By default uses the migration
predictor for both the migration decision and the partial context sizes; if the prediction of
the latter is disabled and this instruction causes the thread to migrate, the migrated context
includes the top 2 x m main stack entries and 2 x a auxiliary stack entries.

st-em
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

6 17 jal m off

Adds the value of S[0] to off and stores the value of S[1] at the resulting address; removes both
S[0] and S[11. Increments the outstanding store counter and generates an acknowledgement
when the store has been committed to the relevant cache. Always migrates if the address is
not cacheable in the local core; in this case, the migrated context includes the top 2 x m main
stack entries and 2 xa auxiliary stack entries.

st-ra

104

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

6 18 - off

Adds the value of s[o] to off and stores the value of S[1] at the resulting address; removes both
S[O] and S[1 . Increments the outstanding store counter and generates an acknowledgement
when the store has been committed to the relevant cache. Always executed via remote cache
access if the address is not cacheable in the local core.

fnc-st
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

6 24 a m off

First, stalls execution until acknowledgements for all outstanding stores have been received.
Next, adds the value of S[O] to off and stores the value of S[1 I at the resulting address; removes
both S[O] and S[1 . Increments the outstanding store counter and generates an acknowledge-
ment when the store has been committed to the relevant cache. By default uses the migration
predictor for both the migration decision and the partial context sizes; if the prediction of
the latter is disabled and this instruction causes the thread to migrate, the migrated context
includes the top 2 x m main stack entries and 2 x a auxiliary stack entries.

fncst-em
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

6 25 ai m off

First, stalls execution until acknowledgements for all outstanding stores have been received.
Next, adds the value of S[O] to off and stores the value of S[1] at the resulting address; removes
both S[O] and S[1 . Increments the outstanding store counter and generates an acknowledge-
ment when the store has been committed to the relevant cache. Always migrates if the ad-
dress is not cacheable in the local core; in this case, the migrated context includes the top
2 x m main stack entries and 2 x a auxiliary stack entries.

fncstra
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

6 26 - off

First, stalls execution until acknowledgements for all outstanding stores have been received.
Next, adds the value of S[0] to off and stores the value of S[1] at the resulting address; removes
both S[0] and S[1J. Increments the outstanding store counter and generates an acknowledge-
ment when the store has been committed to the relevant cache. Always executed via remote
cache access if the address is not cacheable in the local core.

105

i
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

7 0 - I off

Absolute jump. Removes S[0], adds it to off, and resumes execution at the resulting address.

i-pc
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

71 - off

PC-relative jump. Adds the address of the next instruction to off, and resumes execution at
the resulting address.

call
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

7 2 - off

Absolute subroutine call. Removes 5(0], adds it to off, and resumes execution at the resulting
address; pushes the return address on top of the main stack.

call-pc
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

7 3 - off

PC-relative subroutine call. Adds the address of the next instruction to off, and resumes exe-
cution at the resulting address; pushes the return address on top of the main stack.

bz
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

8 0 - ff

PC-relative branch on zero. Removes S[0]; if the value is 0, adds the address of the next in-
struction to off, and resumes execution at the resulting address. Otherwise equivalent to a
no-op.

106

bnz
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

8 1 - off

PC-relative branch on non-zero. Removes S[0]; if the value is not 0, adds the address of the

next instruction to off, and resumes execution at the resulting address. Otherwise equivalent
to a no-op.

halt
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 0

First, if the current thread is running in a guest context, it migrates to its native core. Next,
the thread stops execution.

dflush
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 1 -

Flushes the entire data cache in the current core.

iflush
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 2

Flushes the entire instruction cache in the current core.

newthread
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 3 a m core -

If the core ID is not core, migrates to core identified by core; the migrated context includes
the top 2 x m main stack entries and 2 x a auxiliary stack entries. Next, removes S[0] and writes

its value to the native context program counter. The effects of this instruction are not defined
if the value of core is equal to the current thread ID.

107

reset stat
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 4 af m core stat

Sets statistics register stat in core with ID core to 0. If this instruction causes the thread to
migrate, the migrated context includes the top 2 x m main stack entries and 2 x a auxiliary stack
entries.

108

BIBLIOGRAPHY

D. Abts, S. Scott, and D. J. Lilja. So Many States, So Little Time: Verifying Memory Coherence
in the Cray X1. In PDP, 2003.

A. Agarwal, R. Bianchini, D. Chaiken, K. L. Johnson, D. Kranz, J. Kubiatowicz, B.-H. Lim,
K. Mackenzie, and D. Yeung. The mit alewife machine: Architecture and performance. In
ISCA, 1995.

Arvind, N. Dave, R. S. Nikhil, and D. Rosenband. High-level synthesis: An Essential Ingredient
for Designing Complex ASICs. In ICCAD, 2004.

Arvind, N. Dave, and M. Katelman. Getting formal verification into design flow. In FM2008,
2008.

M. Awasthi, K. Sudan, R. Balasubramonian, and J. Carter. Dynamic hardware-assisted
software-controlled page placement to manage capacity allocation and sharing within large
caches. In HPCA, 2009.

M. M. Beckmann and D. A. Wood. Managing wire delay in large chip-multiprocessor caches.
In MICRO, 2004.

S. Boyd-Wickizer, R. Morris, and F. Kaashoek. Reinventing scheduling for multicore systems.
In HotOS, 2009.

K. Chakraborty, P. M. Wells, and G. S. Sohi. Computation spreading: employing hardware
migration to specialize CMP cores on-the-fly. In ASPLOS, 2006.

M. Chaudhuri. PageNUCA: selected policies for page-grain locality management in large
shared chip-multiprocessor caches. In HPCA, 2009.

Z. Chishti, M. D. Powell, and T. N. Vijaykumar. Distance associativity for high-performance
energy-efficient non-uniform cache architectures. In ISCA, 2003.

109

M. H. Cho. On-chip networks for manycore architecture. PhD thesis, Massachusetts Institute
of Technology, 2013.

S. Cho and L. Jin. Managing distributed, shared L2 caches through OS-Level page allocation.
In MICRO, 2006.

B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honarmand, S. V. Adve, V. S. Adve, N. P.
Carter, and C.-T. Chou. DeNovo: Rethinking the Memory Hierarchy for Disciplined Paral-
lelism. In PACT, 2011.

W. J. Dally and B. Towles. Principles and practices of interconnection networks. Morgan Kauf-
mann, San Francisco, CA, 2003. ISBN 0-12-200751-4.

R. H. Dennard, F. Gaennslen, H. Yu, L. Rideout, E. Bassous, and A. LeBlanc. Design of ion-
implanted mosfet's with very small physical dimensions. IEEE . Solid-State Circuits, 9:
256-268,1974.

A. DeOrio, A. Bauserman, and V. Bertacco. Post-silicon verification for cache coherence. In
ICCD, 2008.

M. Dorojevets and D. Strukov. Memory latency reduction with fine-grain migrating threads
in numa shared-memory multiprocessors. In PDCS, 2002.

M. Feldman, P. Lotfi-Kamran, K. Balet, and B. Falsafi. Cuckoo directory: a scalable directory
for many-core systems. In HPCA, 2011.

C. Fensch and M. Cintra. An OS-Based Alternative to Full Hardware Coherence on Tiled
CMPs. In HPCA, 2008.

N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki. Reactive NUCA: near-optimal block
placement and replication in distributed caches. In ISCA, 2009.

J. C. Hoe and Arvind. Scheduling and Synthesis of Operation-Centric Hardware Descriptions.
In ICCAD, 2000.

W. C. Hsieh, P. Wang, and W E. Weihl. Computation migration: enhancing locality for
distributed-memory parallel systems. In PPOPP, 1993.

W. Hu, X. Tang, B. Xie, T. Chen, and D. Wang. An efficient power-aware optimization for
task scheduling on noc-based many-core system. In CIT, pages 172-179, 2010.

110

J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. W Keckler. A NUCA substrate for flexible

CMP cache sharing. In ICS, 2005.

A. Itzkovitz, A. Schuster, and L. Shalev. Thread migration and its applications in distributed

shared memory systems. Journal of Systems and Software, 42, 1998.

J. A. Joao, M. A. Suleman, 0. Mutlu, and Y. N. Patt. Bottleneck identification and scheduling

in multithreaded applications. In ASPLOS, 2012.

R. Joshi, L. Lamport, J. Matthews, S. Tasiran, M. Tuttle, and Y. Yu. Checking Cache-Coherence

Protocols with TLA+. Formal Methods in System Design, 22:125-131, 2003.

C. Kim, D. Burger, and S. W. Keckler. An Adaptive, Non-Uniform Cache Structure for Wire-

Delay Dominated On-Chip Caches. In ASPLOS, 2002.

L. Kontothanassis, G. Hunt, R. Stets, N. Hardavellas, M. Cierniak, S. Parthasarathy, Jr.

W. Meira, S. Dwarkadas, and M. Scott. VM-based shared memory on low-latency, remote-

memory-access networks. In ISCA, 1997.

L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess

programs. IEEE Trans. Comp., 1979.

I. Lebedev. Execution model and optimizing compilation for execution migration. Master's

thesis, Massachusetts Institute of Technology, 2013.

D. E. Lenoski and W.-D. Weber. Scalable Shared-memory Multiprocessing. Morgan Kaufmann,

1995.

M. Lis, P. Ren, M. H. Cho, K. S. Shim, C. W. Fletcher, 0. Khan, and S. Devadas. Scalable,

accurate multicore simulation in the 1000-core era. In ISPASS, 2011.

E. Mascarenhas and V. Rego. Ariadne: Architecture of a portable threads system supporting
mobile processes. Software: Practice and Experience, 26, 1996.

T. G. Mattson, R. F. Van der Wijngaart, M. Riepen, T. Lehnig, P. Brett, W. Haas, P. Kennedy,

J. Howard, S. Vangal, N. Borkar, G. Ruhl, and S. Dighe. The 48-core SCC Processor: the

Programmer's View. In SC, 2010.

S. Melvin, M. Nemirovsky, E. Musoll, and J. Huynh. A massively multithreaded packet pro-

cessor. In NP2: Workshop on Network Processors, 2003.

111

P. Michaud. Exploiting the cache capacity of a single-chip multi-core processor with execu-
tion migration. In HPCA, 2004.

J. E. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann, C. Celio, J. Eastep, and
A. Agarwal. Graphite: A distributed parallel simulator for multicores. In HPCA, 2010.

M. Misler and N. Enright Jerger. Moths: Mobile threads for on-chip networks. In PACT, pages
541-542, 2010.

M. D. Powell, A. Biswas, S. Gupta, and S. S. Mukherjee. Architectural core salvaging in a
multi-core processor for hard-error tolerance. In ISCA, 2009.

K. K. Rangan, G.-Y. Wei, and D. Brooks. Thread motion: fine-grained power management for
multi-core systems. In ISCA, 2009.

D. Sanchez and C. Kozyrakis. SCD: A scalable coherence directory with flexible sharer en-
coding. In HPCA, 2012.

K. A. Shaw and W. J. Dally. Migration in single chip multiprocessor. In Computer Architecture
Letters, pages 12-12, 2002.

K. S. Shim. Directoryless Shared Memory Architecture using Thread Migration and Remote Access.
PhD thesis, Massachusetts Institute of Technology, 2014.

A. C. Sodan. Message-passing and shared-data programming models - wish vs. reality. In
HPCS, 2005.

K. Sudan, N. Chatterjee, D. Nellans, M. Awasthi, R. Balasubramonian, and A. Davis. Micro-
pages: increasing DRAM efficiency with locality-aware data placement. SIGARCH Comput.
Archit. News, 38:219-230, 2010.

M. A. Suleman, 0. Mutlu, M. K. Qureshi, and Y. N. Patt. Accelerating critical section execution
with asymmetric multi-core architectures. In ASPLOS, 2009.

K. Thitikamol and P. J. Keleher. Thread migration and communication minimization in dsm
systems. Proceedings of the IEEE, 87:487-497, 1999.

B. Verghese, S. Devine, A. Gupta, and M. Rosenblum. Operating system support for improving
data locality on cc-numa compute servers. SIGPLANNot., 31:279-289, 1996.

B. Weissman, B. Gomes, J. W Quittek, and M. Holtkamp. Efficient fine-grain thread migration
with active threads. In IPPS/SPDP, pages 410-414, 1998.

112

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-2 programs: charac-
terization and methodological considerations. In ISCA, 1995.

H. Zeffer, Z Radovi'., M. Karlsson, and E. Hagersten. TMA: A Trap-Based Memory Architec-
ture. In ICS, 2006.

M. Zhang and K. Asanovi'. Victim replication: maximizing capacity while hiding wire delay
in tiled chip multiprocessors. In ISCA, 2005.

M. Zhang, A. R. Lebeck, and D. J. Sorin. Fractal coherence: Scalably verifiable cache coherence.
In MICRO, 2010.

113

