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ELLIPTIC WEYL GROUP ELEMENTS AND

UNIPOTENT ISOMETRIES WITH p = 2

GEORGE LUSZTIG AND TING XUE

Abstract. Let G be a classical group over an algebraically closed field of
characteristic 2 and let C be an elliptic conjugacy class in the Weyl group. In
a previous paper the first named author associated to C a unipotent conju-
gacy class Φ(C) of G. In this paper we show that Φ(C) can be characterized
in terms of the closure relations between unipotent classes. Previously, the
analogous result was known in odd characteristic and for exceptional groups
in any characteristic.

Introduction

0.1. Let G be a connected reductive algebraic group over an algebraically closed
field k of characteristic p ≥ 0. Let G be the set of unipotent conjugacy classes in
G. Let W be the set of conjugacy classes in the Weyl group W of G. For w ∈ W
and γ ∈ G let Bγ

w be the variety of all pairs (g,B) where g ∈ γ and B is a Borel

subgroup of G such that B and gBg−1 are in relative position w. For C ∈ W and
γ ∈ G we write C � γ when for some (or equivalently any) element w of minimal

length in C we have Bγ
w �= ∅. In [L1, 4.5] a natural surjective map Φ : W → G

was defined. When p is not a bad prime for G, the map Φ can be characterized in
terms of the relation C � γ as follows (see [L1, 0.4]):

(a) If C ∈ W, then Φ(C) is the unique unipotent class of G such that C � Φ(C)
and such that if γ′ ∈ G satisfies C � γ′, then Φ(C) is contained in the closure of

γ′.
If p is a bad prime for G, then the definition of the map Φ given in [L1] is

less direct; one first defines Φ on elliptic conjugacy classes by making use of the
analogous map in characteristic 0 and then one extends the map in a standard
way to nonelliptic classes. It would be desirable to establish property (a) also in
bad characteristic. To do this it is enough to establish (a) in the case where C
is elliptic (see the argument in [L1, 1.1].) One can also easily reduce the general
case to the case where G is almost simple; moreover, it is enough to consider a
single G in each isogeny class. The fact that (a) holds for C elliptic with G almost
simple of exceptional type (with p a bad prime) was pointed out in [L2, 4.8(a)]. It
remains then to establish (a) for C elliptic in the case where G is a symplectic or
a special orthogonal group and p = 2. This is achieved in the present paper. In
fact, Theorem 1.3 establishes (a) with C elliptic in the case where G is Sp2n(k) or
SO2n(k) (p = 2); then (a) for G = SO2n+1(k) (p = 2) follows from the analogous
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result for Sp2n(k) using the exceptional isogeny SO2n+1(k) → Sp2n(k). Thus the
results of this paper establish (a) for any G without restriction on p.

0.2. If w ∈ W and γ ∈ G, then Gad (the adjoint group of G) acts on Bγ
w by

x : (g,B) �→ (xgx−1, xBx−1). Let C ∈ W be elliptic. Let γ = Φ(C). The following
result is proved in [L2, 0.2].

(a) For any w ∈ C of minimal length, Bγ
w is a single Gad-orbit.

The following converse of (a) appeared in [L2, 3.3(a)] in the case where p is not
a bad prime for G and in the case where G is almost simple of exceptional type
and p is a bad prime for G (see also [L1, 5.8(c)]):

(b) Let γ′ ∈ G. If C � γ′ and γ′ �= Φ(C), then for any w ∈ C of minimal length,

Bγ′

w is a union of infinitely many Gad-orbits.
Using 0.1(a) we see as in the proof of [L1, 5.8(b)] that (b) holds for any G without

restriction on p. Namely, from [L1, 5.7(ii)] we see thatBγ′

w has pure dimension equal
to dim γ′ + l(w) where l(w) is the length of w and Bγ

w has pure dimension equal to

dim γ+ l(w). Also, by [L1, 5.2], the action of Gad on Bγ′

w or Bγ
w has finite isotropy

groups. Thus, dimBγ
w = dimGad (see (a)) and to prove (b) it is enough to show

that dimBγ′

w > dimGad or equivalently that dim γ′ + l(w) > dim γ + l(w) or that
dim γ′ > dim γ. But from 0.1(a) we see that γ is contained in the closure of γ′;
since γ �= γ′ it follows that dim γ′ > dim γ, as required.

Note that (a) and (b) provide, in the case where C is elliptic, another character-
ization of Φ(C) which does not rely on the partial order on G.

1. The main results

1.1. In this section we assume that p = 2. Let V be a k-vector space of finite
dimension n = 2n ≥ 4 with a fixed nondegenerate symplectic form (, ) : V ×V → k
and a fixed quadratic form Q : V → k such that (i) or (ii) below holds:

(i) Q = 0;
(ii) Q �= 0, (x, y) = Q(x+ y)−Q(x)−Q(y) for x, y ∈ V .
Let Is(V ) be the group consisting of all g ∈ GL(V ) such that (gx, gy) = (x, y)

for all x, y ∈ V and Q(gx) = Q(x) for all x ∈ V (a closed subgroup of GL(V )).
Let G be the identity component of Is(V ). Let F be the set of all sequences
V∗ = (0 = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn = V ) of subspaces of V such that dimVi = i
for i ∈ [0,n], Q|Vi

= 0 and V ⊥
i = Vn−i for all i ∈ [0, n]. Here, for any subspace V ′

of V we set V ′⊥ = {x ∈ V ; (x, V ′) = 0}.

1.2. Let p1 ≥ p2 ≥ · · · ≥ pσ be a sequence in Z>0 such that p1 + p2 + · · ·+ pσ = n.
(In the case where Q �= 0 we assume that σ is even.) For any r ∈ [1, σ] we set
p≤r =

∑
r′∈[1,r] pr′ , p<r =

∑
r′∈[1,r−1] pr′ . We fix (V∗, V

′
∗) ∈ F × F such that for

any r ∈ [1, σ] we have
(a) dim(V ′

p<r+i∩Vp<r+i) = p<r+i−r, dim(V ′
p<r+i∩Vp<r+i+1) = p<r+i−r+1

if i ∈ [1, pr − 1];
(b) dim(V ′

p≤r
∩Vn−p<r−1) = p≤r − r, dim(V ′

p≤r
∩Vn−p<r

) = p≤r − r+1. (Such

(V∗, V
′
∗) exists and is unique up to conjugation by Is(V ).)

Let B (resp. B′) be the stabilizer in G of V∗ (resp. V ′
∗). Let w be the relative

position of the Borel subgroups B,B′ (an element of the Weyl group of G) and let
C be the conjugacy class of w in the Weyl group (it is an elliptic conjugacy class).
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A unipotent class γ in G is said to be adapted to (V∗, V
′
∗) if for some g ∈ γ we

have gVi = V ′
i for all i. Note that γ is adapted to (V∗, V

′
∗) if and only if C � γ.

There is a unique unipotent conjugacy class γ in G such that γ is adapted to
(V∗, V

′
∗) and some/any element of γ has Jordan blocks of sizes 2p1, 2p2, . . . , 2pσ.

(The existence of γ is proved in [L1, 2.6, 2.12]; the uniqueness follows from the
proof of [L1, 4.6].)

Theorem 1.3. Let γ′ be a unipotent conjugacy class in G which is adapted to
(V∗, V

′
∗). Then γ is contained in the closure of γ′ in G.

The proof is given in 1.5–1.8 (when Q = 0) and in 1.9 (when Q �= 0).

1.4. Let T be the set of sequences c∗ = (c1 ≥ c2 ≥ c3 ≥ . . . ) in N such that cm = 0
form � 0 and c1+c2+· · · = n. For c∗ ∈ T we define c∗∗ = (c∗1 ≥ c∗2 ≥ c∗3 ≥ . . . ) ∈ T
by c∗i = |{j ≥ 1; cj ≥ i}| and we set μi(c∗) = |{j ≥ 1; cj = i}| (i ≥ 1); thus we have

(a) μi(c∗) = c∗i − c∗i+1.
For i, j ≥ 1 we have

(b) i ≤ cj iff j ≤ c∗i .
For c∗ ∈ T and i ≥ 1 we have

(c)
∑

j∈[1,c∗i ]
(cj − i) +

∑
j∈[1,i] c

∗
j = n.

Indeed, the left-hand side is
∑

j≥1;i≤cj

(cj − i) +
∑

j∈[1,i],k≥1;ck≥j

1 =
∑

j≥1;i≤cj

(cj − i) +
∑

k≥1

min(i, ck)

=
∑

j≥1;i≤cj

(cj − i) +
∑

k≥1;i≤ck

i+
∑

k≥1;i>ck

ck

=
∑

j≥1;i≤cj

cj +
∑

k≥1;i>ck

ck =
∑

j≥1

cj = n.

For c∗, c
′
∗ ∈ T and i ≥ 1 we have:

(d)
∑

j∈[1,i] c
∗
j =

∑
j∈[1,i] c

′∗
j iff

∑
j∈[1,c∗i ]

(cj − i) =
∑

j∈[1,c′∗i ]
(c′j − i) and

we have
∑

j∈[1,i] c
∗
j ≥

∑
j∈[1,i] c

′∗
j iff

∑
j∈[1,c∗i ]

(cj − i) ≤
∑

j∈[1,c′∗i ]
(c′j − i).

This follows from (c) and the analogous equality for c′∗.
For c∗, c

′
∗ ∈ T we say that c∗ ≤ c′∗ if the following (equivalent) conditions are

satisfied:
(i)

∑
j∈[1,i] cj ≤

∑
j∈[1,i] c

′
j for any i ≥ 1;

(ii)
∑

j∈[1,i] c
∗
j ≥

∑
j∈[1,i] c

′∗
j for any i ≥ 1.

We show the following:
(e) Let c∗, c

′
∗ ∈ T and i ≥ 1 be such that c∗ ≤ c′∗,

∑
j∈[1,i] c

∗
j =

∑
j∈[1,i] c

′∗
j . Then

c∗i ≤ c′∗i . If, in addition, we have μi(c∗) > 0, then μi(c
′
∗) > 0.

We set m = c∗i ,m
′ = c′∗i . From c∗ ≤ c′∗ we deduce

∑
j∈[1,i−1] c

∗
j ≥

∑
j∈[1,i−1] c

′∗
j

(if i = 1 both sums are zero); using the equality
∑

j∈[1,i] c
∗
j =

∑
j∈[1,i] c

′∗
j we deduce

c∗i ≤ c′∗i ; that is, m ≤ m′. From (d) we have
∑

j∈[1,m](cj − i) =
∑

j∈[1,m′](c
′
j − i).

Hence
∑

j∈[1,m]

cj =
∑

j∈[1,m′]

c′j + (m−m′)i

=
∑

j∈[1,m]

c′j +
∑

j∈[m+1,m′]

(c′j − i) ≥
∑

j∈[1,m]

c′j ≥
∑

j∈[1,m]

cj ;
(f)
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thus we have used c∗ ≤ c′∗ and that for j ∈ [m + 1,m′] we have i ≤ c′j (since
j ≤ c′∗i , see (b)). It follows that the inequalities in (f) are equalities, hence c′j = i

for j ∈ [m + 1,m′]. Thus μi(c
′
∗) ≥ m − m′. This completes the proof of (e) in

the case where m > m′. Now assume that m = m′. From c∗ ≤ c′∗ we have∑
j∈[1,m−1] cj ≤

∑
j∈[1,m−1] c

′
j . Using this and (d) we see that

∑

j∈[1,m]

(cj − i) =
∑

j∈[1,m]

(c′j − i) ≥
∑

j∈[1,m−1]

(cj − i) + c′m − i,

hence cm − i ≥ c′m − i. From μi(c∗) > 0 and c∗i = m we deduce that cm = i.
(Indeed by 1.4(b) we have i ≤ cm; if i < cm, then i + 1 ≤ cm and by 1.4(b) we
have m ≤ c∗i+1 ≤ c∗i = m, hence c∗i+1 = c∗i and μi(c∗) = 0, a contradiction.) Hence
c′m ≤ i. Since c′∗i = m we have also i ≤ c′m (see (b)), hence c′m = i. Thus μi(c

′
∗) > 0.

This completes the proof of (e).

1.5. In this subsection (and until the end of 1.8) we assume that Q = 0. In this
case we write Sp(V ) instead of Is(V ) = G. Let u be a unipotent element of Sp(V ).
We associate to u the sequence c∗ ∈ T whose nonzero terms are the size of the
Jordan blocks of u. We must have μi(c∗) = even for any odd i. We also associate
to u a map εu : {i ∈ 2N; i �= 0, μi(c∗) > 0} → {0, 1} as follows: εu(i) = 0 if
((u − 1)i−1(x), x) = 0 for all x ∈ ker(u − 1)i : V → V and εu(i) = 1 otherwise;
we have automatically εu(i) = 1 if μi(c∗) is odd. Now u �→ (c∗, εu) defines a
bijection between the set of conjugacy classes of unipotent elements in Sp(V ) and
the set S consisting of all pairs (c∗, ε) where c∗ ∈ T is such that μi(c∗) = even
for any odd i and ε : {i ∈ 2N; i �= 0, μi(c∗) > 0} → {0, 1} is a function such that
ε(i) = 1 if μi(c∗) is odd. (See [S, I,2.6]). We denote by γc∗,ε the unipotent class
corresponding to (c∗, ε) ∈ S. For (c∗, ε) ∈ S it will be convenient to extend ε to a
function Z>0 → {−1, 0, 1} (denoted again by ε) by setting ε(i) = −1 if i is odd or
μi(c∗) = 0.

Now let γ, γ′ be as in 1.3. We write γ = γc∗,ε, γ
′ = γc′∗,ε′ with (c∗, ε), (c

′
∗, ε

′) ∈ S.
Let g ∈ γc′∗,ε′ be such that gV∗ = V ′

∗ and let N = g − 1 : V → V . To prove that γ
is contained in the closure of γ′ in G it is enough to show that:

(a) c∗ ≤ c′∗ and that for any i ≥ 1, (b) and (c) below hold:
(b)

∑
j∈[1,i] c

∗
j −max(ε(i), 0) ≥

∑
j∈[1,i] c

′∗
j −max(ε′(i), 0);

(c) if
∑

j∈[1,i] c
∗
j =

∑
j∈[1,i] c

′∗
j and c∗i+1 − c′∗i+1 is odd, then ε′(i) �= 0.

(See [S, II,8.2].) From the definition we see that ci = 2pi for i ∈ [1, σ], ci = 0 for
i > σ and from [L1, 4.6] we see that ε(i) = 1 for all i ∈ {2, 4, 6, . . . } such that
μi(c∗) > 0.

Now (a) follows from [L1, 3.5(a)]. Indeed, in loc.cit., it is shown that for any
i ≥ 1 we have dimN iV ≥ Λi where

Λi =
∑

j≥1;i≤cj

(cj − i) =
∑

j∈[1,c∗i ]

(cj − i).

We have dimN iV =
∑

j≥1;i≤c′j
(c′j − i) =

∑
j∈[1,c′∗i ]

(c′j − i), hence by 1.4(d) the

inequality dimN iV ≥ Λi is the same as the inequality
∑

j∈[1,i] c
∗
j ≥

∑
j∈[1,i] c

′∗
j .

Note also that, by 1.4(d),
(d) we have

∑
j∈[1,i] c

∗
j =

∑
j∈[1,i] c

′∗
j iff dimN iV = Λi.
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1.6. Let i ≥ 1. We show that:
(a) If μi(c∗) > 0 and

∑
j∈[1,i] c

∗
j =

∑
j∈[1,i] c

′∗
j , then ε′(i) = 1.

By 1.4(e) we have μi(c
′
∗) > 0. Since μi(c∗) > 0 we see that i = 2pd for some

d ∈ [1, σ]. If μi(c
′
∗) is odd, then ε′(i) = 1 (by definition, since i is even). Thus

we may assume that μi(c
′
∗) ∈ {2, 4, 6, . . . }. From our assumption we have that

dimN iV = Λi (see 1.5(d)).
Let v1, v2, . . . , vσ be vectors in V attached to V∗, V

′
∗ , g as in [L1, 3.3]. For r ∈ [1, σ]

let Wr,W
′
r be as in [L1, 3.4]; we set W0 = 0, W ′

0 = V . From [L1, 3.5(b)] we see
that N iW ′

d−1 = 0 at least if d ≥ 2; but the same clearly holds if d = 1. We have

vd ∈ W ′
d−1, hence N2pdvd = 0 and

(N2pd−1(vd), vd) = (Npdvd, N
pd−1vd) = ((g − 1)pdvd, (g − 1)pd−1vd)

= (gpdvd, vd) = 1.

(We have used that (vd, g
kvd) = 0 for k ∈ [−pd + 1, pd − 1] and (vd, g

pdvd) = 1; see
[L1, 3.3(iii)].) Thus ε′(i) = 1. This proves (a).

1.7. We prove 1.5(b). It is enough to show that, if ε(i) = 1 and ε′(i) ≤ 0, then∑
j∈[1,i] c

∗
j ≥

∑
j∈[1,i] c

′∗
j + 1. Assume this is not so. Then using 1.5(a) we have∑

j∈[1,i] c
∗
j =

∑
j∈[1,i] c

′∗
j . Since ε(i) = 1 we have μi(c∗) > 0; using 1.6(a) we see

that ε′(i) = 1, a contradiction. Thus 1.5(b) holds.

1.8. We prove 1.5(c). If i is odd, then ε′(i) = −1, as required. Thus we may
assume that i is even. Using 1.5(a) and 1.4(e) we see that c∗i ≤ c′∗i .

Assume first that c∗i = c′∗i . From μi(c∗) = c∗i−c∗i+1, μi(c
′
∗) = c′∗i−c′∗i+1 we deduce

that μi(c∗)− μi(c
′
∗) = c′∗i+1 − c∗i+1 is odd. If μi(c

′
∗) is odd, we have ε′(i) = 1 (since

i is even); thus we have ε′(i) �= 0, as required. If μi(c
′
∗) = 0, we have ε′(i) = −1;

thus we have ε′(i) �= 0, as required. If μi(c
′
∗) ∈ {2, 4, 6, . . . }, then μi(c∗) is odd so

that μi(c∗) > 0 and then 1.6(a) shows that ε′(i) = 1; thus we have ε′(i) �= 0, as
required.

Assume next that c∗i < c′∗i . By 1.5(a) we have
∑

j∈[1,i+1] c
∗
j ≥

∑
j∈[1,i+1] c

′∗
j ;

using the assumption of 1.5(c) we deduce that c∗i+1 ≥ c′∗i+1. Combining this with
c∗i < c′∗i we deduce c∗i − c∗i+1 < c′∗i − c′∗i+1; that is, μi(c∗) < μi(c

′
∗). It follows that

μi(c
′
∗) > 0. If μi(c∗) > 0, then by 1.6(a) we have ε′(i) = 1; thus we have ε′(i) �= 0,

as required. Thus we can assume that μi(c∗) = 0. We then have c∗i = c∗i+1 and we
set δ = c∗i = c∗i+1. As we have seen earlier, we have c∗i+1 ≥ c′∗i+1; using this and the
assumption of 1.5(c) we see that c∗i+1 − c′∗i+1 = 2a+1 where a ∈ N. It follows that
c′∗i+1 = δ − (2a+ 1). In particular, we have δ ≥ 2a+ 1 > 0.

If k ∈ [0, 2a], we have c′δ−k = i. (Indeed, assume that i + 1 ≤ c′δ−k; then by
1.4(b) we have δ−k ≤ c′∗i+1 = δ− (2a+1) hence k ≥ 2a+1, a contradiction. Thus
c′δ−k ≤ i. On the other hand, δ = c∗i < c′∗i implies by 1.4(b) that i ≤ c′δ. Thus
c′δ−k ≤ i ≤ c′δ ≤ c′δ−k, hence c′δ−k = i.)

Using 1.4(b) and c′∗i+1 = δ − (2a + 1) we see that c′δ−(2a+1) ≥ i + 1 (assuming

that δ − (2a + 1) > 0). Thus the sequence c′1, c
′
2, . . . , c

′
δ contains exactly 2a + 1

terms equal to i, namely c′δ−2a, . . . , c
′
δ−1, c

′
δ.

We have i > cδ+1. (If i ≤ cδ+1, then from 1.4(b) we would get δ + 1 ≤ c∗i = δ, a
contradiction.)

Since δ > 0, from c∗i = δ we deduce that i ≤ cδ (see 1.4(b)); since μi(c∗) = 0 we
have cδ �= i hence cδ > i. From the assumption of 1.5(c) we see that dimN iV = Λi
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(see 1.5(d)). Using this and cδ > i > cδ+1 we see that [L1, 3.5] is applicable and
gives that V = Wδ ⊕W⊥

δ and Wδ, W
⊥
δ are g-stable; moreover, g : Wδ → Wδ has

exactly δ Jordan blocks and each one has size ≥ i and g : W⊥
δ → W⊥

δ has only
Jordan blocks of size ≤ i. Since the δ largest numbers in the sequence c′1, c

′
2, . . .

are c′1, c
′
2, . . . , c

′
δ we see that the sizes of the Jordan blocks of g : Wδ → Wδ are

c′1, c
′
2, . . . , c

′
δ. Since the last sequence contains an odd number (= 2a+ 1) of terms

equal to i we see that εg|Wδ
(i) = 1. (Note that (, ) is a nondegenerate symplectic

form on Wδ, hence εg|Wδ
(i) is defined as in 1.5.) Hence there exists z ∈ Wδ such

that N iz = 0 and (z,N i−1z) = 1. This implies that εg(i) = 1; that is, ε′(i) = 1.
This completes the proof of 1.5(c) and also completes the proof of Theorem 1.3
when Q = 0.

1.9. In this subsection we assume that Q �= 0. Let γ, γ′ be as in 1.3. We denote
by γ1, γ

′
1 the Is(V )-conjugacy class containing γ, γ′, respectively; let γ2, γ

′
2 be the

Sp(V )-conjugacy class containing γ1, γ
′
1, respectively. Note that Theorem 1.3 is

applicable to γ2, γ
′
2 instead of γ, γ′ and with G replaced by the larger group Sp(V ).

Thus we have that γ2 is contained in the closure of γ′
2 in Sp(V ) and then, using [S,

II,8.2], we see that γ1 is contained in the closure of γ′
1 in Is(V ). We have γ1 = γ

(see [S, I,2.6]). If γ′
1 = γ′, it follows that γ is contained in the closure of γ′ in G, as

required. If γ′
1 �= γ′, then γ′

1 = γ′ � γ′′ where γ′′ = rγ′r−1 (r is a fixed element in
Is(V )−G). We see that either γ is contained in the closure of γ′ or in the closure
of rγ′r−1. In the last case we have that r−1γr is contained in the closure of γ′. But
r−1γr = γ so that in any case γ is contained in the closure of γ′. This completes
the proof of Theorem 1.3 when Q �= 0.
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