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Abstract—In this paper, we present an approach for designing
feedback controllers for polynomial systems that maximize the
size of the time-limited backwards reachable set (BRS). We
rely on the notion of occupation measures to pose the synthesis
problem as an infinite dimensional linear program (LP) and
provide finite dimensional approximations of this LP in terms of
semidefinite programs (SDPs). The solution to each SDP yields a
polynomial control policy and an outer approximation of the
largest achievable BRS. In contrast to traditional Lyapunov
based approaches which are non-convex and require feasible
initialization, our approach is convex and does not require any
form of initialization. The resulting time-varying controllers and
approximated reachable sets are well-suited for use in a trajectory
library or feedback motion planning algorithm. We demonstrate
the efficacy and scalability of our approach on five nonlinear
systems.

I. INTRODUCTION

Dynamic robotic tasks such as flying, running, or walking
demand controllers that push hardware platforms to their
physical limit while managing input saturation, nonlinear
dynamics, and underactuation. Though motion planning algo-
rithms have begun addressing several of these tasks [19], the
constructed open loop motion plans are typically insufficient
due to their inability to correct for deviations from a planned
path. Despite the concerted effort of several communities, the
design of feedback control laws for underactuated nonlinear
systems with input saturation remains challenging.

Popular techniques for control synthesis rely either on feed-
back linearization [29] or on linearizing the dynamics about
a nominal operating point in order to make Linear Quadratic
Regulator based techniques or Linear Model Predictive Con-
trol [5] applicable. Unfortunately, feedback linearization is
generally untenable for underactuated systems especially in
the presence of actuation limits, and those techniques that
rely on linearizations lead to controllers that are valid only
locally around the operating point. Dynamic Programming and
Hamilton-Jacobi Bellman Equation based techniques [10], [24]
have also been used for feedback control design. However,
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these methods suffer from the curse of dimensionality, and
can require exorbitant grid resolution for even low dimensional
systems [25].

A. Our Contributions

In this paper, we attempt to address these issues and present
an approach for designing feedback controllers that maximize
the time-limited backward reachable set (BRS), i.e. the set
of points that reach a given target set at a specified finite
time. Our approach is inspired by the method presented
in [14], which describes a framework based on occupation
measures for computing the BRS for polynomial systems. In
this paper, we extend this method to the control synthesis
problem. Our contributions are three–fold. First, in Section
II, we formulate the design of the feedback controller that
generates the largest BRS as an infinite dimensional linear
program (LP) over the space of nonnegative measures. Second,
in Section III-A, we construct a sequence of finite dimensional
relaxations to our infinite dimensional LP in terms of semidef-
inite programs (SDPs). Finally, in Section III-B, we prove two
convergence properties of our sequence of finite dimensional
approximations: first that each solution to the sequence of
SDPs is an outer approximation to the largest possible BRS
with asymptotically vanishing conservatism; and second, that
there exists a subsequence of the SDP solutions that weakly
converges to an optimizing solution of our original infinite
dimensional LP.

The result of our analysis is a method capable of designing
feedback controllers for nonlinear underactuated robotic sys-
tems in the presence of input saturation without resorting to
linear analysis. This is valuable for systems with degenerate
linearizations, and can result in considerable improvements in
performance for many practical robotic systems. Our method
could also be used to augment existing feedback motion plan-
ning algorithms such as the LQR-Trees approach presented in
[23], [32], which computes and sequences together BRSs in
order to drive a desired set of initial conditions to some target
set. Our approach could be substituted for the local, linear
control synthesis employed by the aforementioned papers with
the benefit of selecting control laws that maximize the size of
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the BRS in the presence of input saturations. As a result, the
number of trajectories required in a library in order to fill
the space of possible initial conditions could be significantly
reduced. In some cases, a single nonlinear feedback controller
could stabilize an entire set of initial conditions that previously
required a library of locally-linear controllers. We illustrate the
performance of our approach in Section IV on five examples,
whose source code we make available.

B. Relationship to Lyapunov-Based Techniques

Our approach is most comparable to those that use Lya-
punov’s criteria for stability in order to synthesize a controller
that maximizes the region of attraction (ROA) of a particular
target set. These criteria can be checked for polynomial
systems by employing sums-of-squares (SOS) programming.
However, the computation of the ROA and subsequent con-
troller design are typically non-convex programs in this formu-
lation [28]. The resulting optimization programs are bilinear in
the decision variables and are generally solved by employing
some form of bilinear alternation [17], [22]. Such methods are
not guaranteed to converge to global optima (or necessarily
even local optima) and require feasible initializations.

The relationship between our approach and the Lyapunov-
based approaches can be understood by examining the dual of
our infinite dimensional LP, which is posed on the space of
nonnegative continuous functions. This dual program certifies
that a certain set cannot reach the target set within a pre-
specified time for any valid control law. The complement of
this set is an outer approximation of the BRS. This subtle
change transforms the non-convex feedback control synthesis
problem written in terms of Lyapunov’s criteria into the convex
synthesis problem which we present herein. The convexity
of the control synthesis problem we present also has paral-
lels to the convexity observed in [28] during the design of
controllers to achieve global almost-everywhere asymptotic
stability. However, this method is not easily extended to
provide regional certificates, which are of greater practical
utility in robotics since robotic systems are generally not
globally stabilizable.

II. PROBLEM FORMULATION

In this section, we formalize our problem of interest, con-
struct an infinite dimensional linear program (LP), and prove
that the solution of this LP is equivalent to solving our problem
of interest. We make substantial use of measure theory, and the
unfamiliar reader may wish to consult [12] for an introduction.

A. Notation

Given an element y ∈ Rn×m, let [y]ij denote the (i, j)–th
component of y. We use the same convention for elements
belonging to any multidimensional vector space. By N we
denote the non-negative integers, and Nnk refers to those α ∈
Nn with |α| =

∑n
i=1[α]i ≤ k. Let R[y] denote the ring of

real polynomials in the variable y. For a compact set K, let
M(K) denote the space of signed Radon measures supported
on K. The elements of M(K) can be identified with linear

functionals acting on the space of continuous functions C(K),
that is, as elements of the dual space C(K)′ [12, Corollary
7.18]. The duality pairing of a measure µ ∈ (M(K))

p on a
test function v ∈ (C(K))

p is:

〈µ, v〉 =

p∑
i=1

∫
K

[v]i(z)d[µ]i(z). (1)

B. Problem Statement

Consider the control-affine system with feedback control

ẋ(t) = f (t, x(t)) + g (t, x(t))u(t, x), (2)

with state x(t) ∈ Rn and control action u(t, x) ∈ Rm, such
that the components of the vector f and the matrix g are
polynomials. Our goal is to find a feedback controller, u(t, x),
that maximizes the BRS for a given target set while respecting
the input constraint

u(t, x) ∈ U = [a1, b1]× . . .× [am, bm], (3)

where {aj}mj=1, {bj}mj=1 ⊂ R. Define the bounding set, and
target set as:

X =
{
x ∈ Rn | hXi

(x) ≥ 0,∀i = {1, . . . , nX}
}
,

XT =
{
x ∈ Rn | hTi

(x) ≥ 0,∀i = {1, . . . , nT }
}
,

(4)

respectively, for given polynomials hXi
, hTi

∈ R[x].
Given a finite final time T > 0, let the BRS for a particular

control policy u ∈ L1([0, T ]×X,U), be defined as:

X (u) =
{
x0 ∈ Rn |ẋ(t) = f

(
t, x(t)

)
+ g
(
t, x(t)

)
u
(
t, x(t)

)
a.e. t ∈ [0, T ], x(0) = x0, x(T ) ∈ XT ,

x(t) ∈ X ∀t ∈ [0, T ]
}
. (5)

X (u) is the set of initial conditions for solutions1 to Equation
(2) that remain in the bounding set and arrive in the target set
at the final time when control law u is applied. Our aim is to
find a controller u∗ ∈ L1([0, T ] ×X,U), that maximizes the
volume of the BRS:

λ(X (u∗)) ≥ λ(X (u)), ∀u ∈ L1([0, T ]×X,U), (6)

where λ is the Lebesgue measure. u∗ need not be unique. We
denote the BRS corresponding to u∗ by X ∗. To solve this
problem, we make the following assumptions:
Assumption 1. X and XT are compact sets.
Remark 1. Without loss of generality, we assume that U =
{u ∈ Rm | −1 ≤ uj ≤ 1 ∀j ∈ {1, . . . ,m}} (since g can
be arbitrarily shifted and scaled). Assumption 1 ensures the
existence of a polynomial hXi

(x) = CX − ‖x‖22 for a large
enough CX > 0.

1Solutions in this context are understood in the Carathéodory sense, that is,
as absolutely continuous functions whose derivatives satisfy the right hand
side of Equation (2) almost everywhere [4, Chapter 10].
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Fig. 1: An illustration (left) of trajectories (blue) transforming according to
Equation (2) and their corresponding occupation measures (red) at times 0, τ,
and T (purple) transforming according to Equation (18).

C. Liouville’s Equation

We solve this problem by defining measures over [0, T ]×X
whose supports’ model the evolution of families of trajectories.
An initial condition and its relationship with respect to the
terminal set can be understood via Equation (2), but the
relationship between a family of trajectories and the terminal
set must be understood through a different lens. First, define
the linear operator Lf : C1

(
[0, T ]×X

)
→ C

(
[0, T ]×X

)
on

a test function v as:

Lfv =
∂v

∂t
+

n∑
i=1

∂v

∂xi
[f ]i(t, x), (7)

and its adjoint operator L′f : C
(
[0, T ] ×X

)′ → C1
(
[0, T ] ×

X
)′

by the adjoint relation:

〈L′fµ, v〉 = 〈µ,Lfv〉 =

∫
[0,T ]×X

Lfv(t, x)dµ(t, x) (8)

for all µ ∈ M
(
[0, T ] ×X

)
and v ∈ C1

(
[0, T ] ×X

)
. Define

the linear operator Lg : C1
(
[0, T ] ×X

)
→ C

(
[0, T ] ×X

)m
as:

[Lgv]j =

n∑
i=1

∂v

∂xi
[g]ij(t, x), (9)

for each j ∈ {1, . . . ,m} and define its adjoint operator
L′g :

(
C
(
[0, T ]×X

)m)′ → C1
(
[0, T ] × X

)′
according to

its adjoint relation as in Equation (8). Note that Lfv(t, x) +
(Lgv(t, x))u(t, x) is the time-derivative v̇ of a function v.

Given a test function, v ∈ C1 ([0, T ]×X), and an initial
condition, x(0) ∈ X , it follows that:

v(T, x(T )) = v(0, x(0)) +

∫ T

0

v̇ (t, x(t|x0)) dt. (10)

The traditional approach to designing controllers that stabilize
the system imposes Lyapunov conditions on the test functions.
However, simultaneously searching for a controller and Lya-
punov function results in a nonconvex optimization problem
[28]. Instead we examine conditions on the space of measures–
the dual to the space of functions–in order to arrive at a convex
formulation.

For a fixed control policy u ∈ L1 ([0, T ]×X,U) and an
initial condition x0 ∈ Rn, let x(·|x0) : [0, T ] → X be a

solution to Equation (2). Define the occupation measure as:

µ(A×B|x0) =

∫ T

0

IA×B (t, x(t|x0))) dt, (11)

for all subsets A × B in the Borel σ-algebra of [0, T ] × X ,
where IA×B(·) denotes the indicator function on a set A×B.
This computes the amount of time the graph of the solution,
(t, x(t|x0)), spends in A×B. Equation (10) then becomes:

v(T, x(T )) = v(0,x(0)) +

∫
[0,T ]×X

(
Lfv(t, x)+

+ Lgv(t, x)u(t, x)
)
dµ(t, x|x0).

(12)

When the initial state is not a single point, but is a distribution
modeled by an initial measure, µ0 ∈ M(X), we define the
average occupation measure, µ ∈M ([0, T ]×X) by:

µ(A×B) =

∫
X

µ(A×B|x0)dµ0(x0), (13)

and the final measure, µT ∈M (XT ) by:

µT (B) =

∫
X

IB(x(T |x0))dµ0(x0). (14)

Integrating with respect to µ0 and introducing the initial, av-
erage occupation, and final measures, Equation (12) becomes:∫
XT

v(T, x)dµT (x) =

∫
X

v(0, x)dµ0(x)+

+

∫
[0,T ]×X

(
Lfv(t, x) + Lgv(t, x)u(t, x)

)
dµ(t, x). (15)

It is useful to think of the measures µ0, µ and µT as unnor-
malized probability distributions. The support of µ0 models
the set of initial conditions, the support of µ models the flow
of trajectories, and the support of µT models the set of states
at time T .

Next, we subsume u(t, x) into a signed measure
σ+ − σ− defined by nonnegative measures2 σ+, σ− ∈
(M ([0, T ]×X))

m such that:∫
A×B
uj(t, x)dµ(t, x) =

∫
A×B
d[σ+]j(t, x)−

∫
A×B
d[σ−]j(t, x)

(16)
for all subsets A × B in the Borel σ-algebra of [0, T ] × X
and for each j ∈ {1, . . . ,m}. This key step allows us to pose
an infinite dimensional LP over measures without explicitly
parameterizing a control law while allowing us to “back out”
a control law using Equation (16). Equation (15) becomes:

〈µT , v(T, ·)〉 = 〈µ0, v(0, ·)〉+〈µ,Lfv〉+〈σ+−σ−,Lgv〉 (17)

for all test functions v ∈ C1([0, T ] × X). Notice that this
substitution renders Equation (17) linear in its measure com-
ponents. Let δt denote the Dirac measure at a point t and let
⊗ denote the product of measures. Since Equation (17) must

2Note that we can always decompose a signed measure into unsigned measures
as a result of the Jordan Decomposition Theorem [12, Theorem 3.4].



hold for all test functions, we obtain a linear operator equation:

L′fµ+ L′gσ+ − L′gσ− = δT ⊗ µT − δ0 ⊗ µ0, (18)

called Liouville’s Equation, which is a classical result in
statistical physics that describes the evolution of a density of
particles within a fluid [2]. Figure 1 illustrates the evolution
of densities according to Liouville’s Equation. This equation
is satisfied by families of admissible trajectories starting from
the initial distribution µ0. The converse statement is true for
control affine systems with a convex admissible control set,
as we have assumed. We refer the reader to [14, Appendix A]
for an extended discussion of Liouville’s Equation.

D. BRS via an Infinite Dimensional LP

The goal of this section is to use Liouville’s Equation to
formulate an infinite dimensional LP, P , that maximizes the
size of the BRS, modeled by spt(µ0), for a given target set,
modeled by spt(µT ), where spt(µ) denotes the support of a
measure µ. Slack measures (denoted with “hats”) are used to
impose the constraints λ ≥ µ0 and µ ≥ [σ+]j + [σ−]j for
each j ∈ {1, . . . ,m}, where λ is the Lebesgue measure. The
former constraint ensures that the optimal value of P is the
Lebesgue measure of the largest achievable BRS (see Theorem
2). The latter constraint ensures that we are able to extract a
bounded control law by applying Equation (16) (see Theorem
3). Define P as:

sup µ0(X) (P )

s.t. L′fµ+ L′g(σ+ − σ−) = δT ⊗ µT − δ0 ⊗ µ0,

[σ+]j + [σ−]j + [σ̂]j = µ ∀j ∈ {1, . . . ,m},
µ0 + µ̂0 = λ,

[σ+]j , [σ
−]j , [σ̂]j ≥ 0 ∀j ∈ {1, . . . ,m},

µ, µ0, µT , µ̂0 ≥ 0,

where the given data are f, g,X,XT and the
supremum is taken over a tuple of measures
(σ+, σ−, σ̂, µ, µ0, µ̂0, µT ) ∈

(
M
(
[0, T ]×X

))m ×(
M
(
[0, T ]×X

))m×(M([0, T ]×X
))m×M([0, T ]×X

)
×

M(X) × M(X) × M(XT ). Given measures that achieve
the supremum, the control law that maximizes the size of the
BRS is then constructed by finding the u ∈ L1([0, T ]×X,U)
whose components each satisfy Equation (16) for all subsets
in the Borel σ-algebra of [0, T ]×X . Before proving that this
two-step procedure computes u∗ ∈ L1([0, T ] × X,U) as in
Equation (6), define the dual program to P denoted D as:

inf
∫
X

w(x)dλ(x) (D)

s.t. Lfv + Σmi=1[p]i ≤ 0,

[p]i ≥ 0, [p]i ≥ |[Lgv]i| ∀i = {1, . . . ,m},
w ≥ 0,

w(x) ≥ v(0, x) + 1 ∀x ∈ X,
v(T, x) ≥ 0 ∀x ∈ XT

where the given data are f, g,X,XT and the infimum is taken
over (v, w, p) ∈ C1 ([0, T ]×X)×C(X)×(C([0, T ]×X))

m.
The dual allows us to obtain approximations of the BRS X ∗
(see Theorem 4).
Theorem 1. There is no duality gap between P and D.

Proof: Due to space limitations, we omit the proof, which
follows from [1, Theorem 3.10].
Theorem 2. The optimal value of P is equal to λ(X ∗), the
Lebesgue measure of the BRS of the controller defined by
Equation (16).

Proof: Since there is no duality gap between P and D,
it is sufficient to show that the optimal value of D is equal to
λ(X ∗). We do this by demonstrating that D is equivalent to the
dual LP defined in Equation (15) in [14], whose optimal value
is equal to λ(X ∗) [14, Theorem 1]. Note that the constraints
w(x) ≥ v(0, x) + 1, v(T, x) ≥ 0, and w(x) ≥ 0 appear
in both optimization problems. Since the objectives are also
identical, it suffices to show that the first three constraints in
D are equivalent to the constraint Lfv(t, x) + (Lgv(t, x))u ≤
0 ∀(t, x, u) ∈ [0, T ] × X × U . Suppose that the former set
of the three constraints holds. Given u ∈ U , note that Lfv +
(Lgv)u ≤ Lfv+Σmi=1|[Lgv]iui|. Hence, since [p]i ≥ |[Lgv]i|,
Lfv + Σmi=1[p]i ≤ 0, and |ui| ≤ 1 (see Remark 1), we have
the desired result.

To prove the converse, we illustrate the existence of
[p]i(t, x) ≥ 0 that satisfies the three constraints appearing
in D. Let [p]i(t, x) = |Lgv(t, x)]i|, which is a non-negative
continuous function. Clearly, pi ≥ [Lgv]i and [p]i ≥ −[Lgv]i.
To finish the proof, note:

Lfv(t, x) + Σmi=1[p]i(t, x) = sup
u∈U
Lfv(t, x) + Lgv(t, x))u ≤ 0

The solution to P can be used in order to construct the
control law that maximizes the BRS:
Theorem 3. There exists a control law, ũ ∈ L1([0, T ] ×
X,U), that satisfies Equation (16) when substituting in
the vector of measures that achieves the supremum of P ,
(σ+∗, σ−∗, σ̂∗, µ∗, µ∗0, µ̂

∗
0, µ
∗
T ), and is the control law that

maximizes the size of the BRS, i.e. λ(X (ũ)) ≥ λ(X (u)),∀u ∈
L1([0, T ]×X,U). Moreover, any two control laws constructed
by applying Equation (16) to the vector of measures that
achieves the supremum of P are equal µ∗-almost everywhere.

Proof: Note that [σ+∗]j , [σ
−∗]j , and µ∗ are σ-finite for all

j ∈ {1, . . . ,m} since they are Radon measures defined over
a compact set. Define [σ∗]j = [σ+∗]j − [σ−∗]j for each j ∈
{1, . . . ,m} and notice that each [σ∗]j is also σ-finite. Since
[σ+∗]j + [σ−∗]j + [σ̂∗]j = µ∗ and [σ+∗]j , [σ

−∗]j , [σ̂
∗]j ≥ 0,

σ∗ is absolutely continuous with respect to µ∗. Therefore as
a result of the Radon–Nikodym Theorem [12, Theorem 3.8],
there exists a ũ ∈ L1([0, T ] × X,U), which is unique µ∗-
almost everywhere, that satisfies Equation (16) when plugging
in the vector of measures that achieves the supremum of P . To
see that λ(X (ũ)) ≥ λ(X (u)),∀u ∈ L1([0, T ]×X,U), notice
that by construction µ∗T , µ

∗
0, µ
∗, and ũ satisfy Equation (15)



for all test functions v ∈ C1([0, T ]×X). Since µ∗0 describes
the maximum BRS and Equation (15) describes all admissible
trajectories, we have our result.

Next, we note that the w-component to a feasible point of
D is an outer approximation to X ∗. This follows from our
proof of Theorem 2 and Lemma 2 and Theorem 3 in [14].
Theorem 4. X ∗ is a subset of {x | w(x) ≥ 1}, for any
feasible w of the D. Furthermore, there is a sequence of
feasible solutions to D such that the w-component converges
from above to IX∗ in the L1 norm and almost uniformly.

III. NUMERICAL IMPLEMENTATION

The infinite dimensional problems P and D are not di-
rectly amenable to computation. However, a sequence of
finite dimensional approximations in terms of semidefinite
programs (SDPs) can be obtained by characterizing measures
in P by their moments, and restricting the space of functions
in D to polynomials. The solutions to each of the SDPs
in this sequence can be used to construct controllers and
outer approximations that converge to the solution of the
infinite dimensional LP. A comprehensive introduction to such
moment relaxations can be found in [18].

Measures on the set [0, T ]×X are completely determined
by their action (via integration) on a dense subset of the space
C1([0, T ]×X) [12]. Since [0, T ]×X is compact, the Stone-
Weierstrass Theorem [12, Theorem 4.45] allows us to choose
the set of polynomials as this dense subset. Every polynomial
on Rn, say p ∈ R[x] with x = (x1, . . . , xn), can be expanded
in the monomial basis via

p(x) =
∑
α∈Nn

pαx
α,

where α = (α1, . . . , αn) ranges over vectors of non-negative
integers, xα = xα1

1 . . . xαn
n , and vec(p) = (pα)α∈Nn is the

vector of coefficients of p. By definition, the pα are real and
only finitely many are non-zero. We define Rk[x] to be those
polynomials such that pα is non-zero only for α ∈ Nnk . The
degree of a polynomial, deg(p), is the smallest k such that
p ∈ Rk[x].

The moments of a measure µ defined over a real n-
dimensional space are given by:

yαµ =

∫
xαdµ(x). (19)

Integration of a polynomial with respect to a measure ν can
be expressed as a linear functional of its coefficients:

〈µ, p〉 =

∫
p(x)dµ(x) =

∑
α∈Nn

pαy
α
µ = vec(p)T yµ. (20)

Integrating the square of a polynomial p ∈ Rk[x], we obtain:∫
p(x)2dµ(x) = vec(p)TMk(yµ)vec(p), (21)

where Mk(yµ) is the truncated moment matrix defined by

[Mk(yµ)](α,β) = yα+βµ (22)

for α, β ∈ Nnk . Note that for any positive measure µ, the
matrix Mk(yµ) must be positive semidefinite. Similarly, given
h ∈ R[x] with (hγ)γ∈Nn = vec(h) one has∫

p(x)2h(x)dµ(x) = vec(p)TMk(h, yµ)vec(p), (23)

where Mk(h, y) is a localizing matrix defined by

[Mk(h, yµ)](α,β) =
∑
γ∈Nn

hγy
α+β
µ (24)

for all α, β ∈ Nnk . The localizing and moment matrices are
symmetric and linear in the moments y.

A. Approximating Problems

Finite dimensional SDPs approximating P can be obtained
by replacing constraints on measures with constraints on
moments. All of the equality constraints of P can be expressed
as an infinite dimensional linear system of equations which
the moments of the measures appearing in P must satisfy.
This linear system is obtained by restricting to polynomial test
functions (which we note are sufficient given our discussion
above): v(t, x) = tαxβ , [p]j(t, x) = tαxβ , and w(x) = xβ ,
∀α ∈ N, β ∈ Nn. For example, the equality constraint corre-
sponding to Liouville’s Equation is obtained by examining:

0 =

∫
[0,T ]×X

Lf (tαxβ)dµ(t, x) +

∫
[0,T ]×X

Lg(tαxβ)d[σ+]j(t, x)

−
∫

[0,T ]×X

Lg(tαxβ)d[σ−]j(t, x)−
∫
XT

TαxβdµT (x) +

∫
X

xβdµ0(x).

A finite dimensional linear system is obtained by truncat-
ing the degree of the polynomial test functions to 2k. Let
Γ = {σ+, σ−, σ̂, µ, µ0, µ̂0, µT }, then let yk = (yk,γ) ⊂ R
be a vector of sequences of moments truncated to degree 2k
for each γ ∈ Γ. The finite dimensional linear system is then
represented by the linear system:

Ak(yk) = bk. (25)

Constraints on the support of the measures also need to be
imposed (see [18] for details). Let the k-th relaxed SDP
representation of P , denoted Pk, be defined as:

sup y0k,µ0
(Pk)

s.t. Ak(yk) = bk,

Mk(yk,γ) � 0 ∀γ ∈ Γ,

MkXi
(hXi

, yk,γ) � 0 ∀(i, γ) ∈ {1, . . . , nX} × Γ\µT ,
MkTi

(hTi , yk,µT
) � 0 ∀i ∈ {1, . . . , nT },

Mk−1(hτ , yk,γ) � 0 ∀γ ∈ Γ\{µ0, µT , µ̂0},
where the given data are f, g,X,XT and the supremum is
taken over the sequence of moments, yk = (yk,γ), hτ = t(T−
t), kXi

= k − ddeg(hXi
)/2e, kTi

= k − ddeg(hTi
)/2e, and

� 0 denotes positive semi-definiteness. For each k ∈ N, let
y∗k denote the optimizer of Pk, with components y∗k,γ where
γ ∈ Γ and let p∗k denote the supremum of Pk.



The dual of Pk is a sums-of-squares (SOS) program denoted
Dk for each k ∈ N, which is obtained by first restricting the
optimization space in the D to the polynomial functions with
degree truncated to 2k and by then replacing the non-negativity
constraint D with a sums-of-squares constraint [27]. Define
Q2k(hX1

, . . . , hXnX
) ⊂ R2k[x] to be the set of polynomials

q ∈ R2k[x] (i.e. of total degree less than 2k) expressible as

q = s0 +

nX∑
i=1

sihXi , (26)

for some polynomials {si}nX
i=0 ⊂ R2k[x] that are sums of

squares of other polynomials. Every such polynomial is clearly
non-negative on X . Define Q2k(hτ , hX1

, . . . , hXnX
) ⊂

R2k[t, x] and Q2k(hT1 , . . . , hTnT
) ⊂ R2k[x], similarly. Em-

ploying this notation, the k-th relaxed SDP representation of
D, denoted Dk, is defined as:

inf lT vec(w) (Dk)

s.t. − Lfv − 1T p ∈ Q2k(hτ , hX1
, . . . , hXnX

),

p− (Lgv)T ∈ (Q2k(hτ , hX1 , . . . , hXnX
))m,

p+ (Lgv)T ∈ (Q2k(hτ , hX1
, . . . , hXnX

))m,

w ∈ Q2k(hX1
, . . . , hXnX

),

w − v(0, ·)− 1 ∈ Q2k(hX1
, . . . , hXnX

),

v(T, ·) ∈ Q2k(hT1 , . . . , hTnT
),

where the given data are f, g,X,XT , the infimum is taken
over the vector of polynomials (v, w, p) ∈ R2k[t, x]×R2k[x]×
(R2k[t, x])m, and l is a vector of moments associated with the
Lebesgue measure (i.e.

∫
X
w dλ = lT vec(w) for all w ∈

R2k[x]). For each k ∈ N, let d∗k denote the infimum of Dk.
Theorem 5. For each k ∈ N, there is no duality gap between
Pk and Dk.

Proof: This follows from standard results from the theory
of SDP duality and we do not include the full proof here. The
proof involves noting that the moment vectors in SDP, Pk, are
necessarily bounded because of the constraint µ0 + µ̂0 = λ,
and then arguing that the feasible set of the SDP, Dk, has an
interior point. The existence of an interior point is sufficient
to establish zero duality gap [33, Theorem 5].

Next, we construct a technique to extract a polynomial con-
trol law from the solution yk of Pk. Given moment sequences
truncated to degree 2k, one can choose an approximate control
law uk with components [uk]j ∈ Rk[t, x] so that the truncated
analogue of Equation (16) is satisfied. That is, by requiring:∫
[0,T ]×X

tα0xα[uk]j(t, x) dµ(t, x) =

∫
[0,T ]×X

tα0xαd[σ+ − σ−]j ,

(27)
for (α0, α) satisfying

∑n
i=0 αi ≤ k. When constructing a

polynomial control law from the solution of Pk, these linear
equations written with respect to the coefficients of [uk]j
are expressible in terms of y∗k,σ+ , y∗k,σ− , and y∗k,µ. Direct
calculation shows the linear system of equations is:

Mk(y∗k,µ)vec([uk]j) = y∗k,[σ+]j
− y∗k,[σ−]j

. (28)

B. Convergence of Approximating Problems

Next, we prove the convergence properties of Pk and Dk

and the corresponding controllers. We begin by proving that
the polynomial w approximates the indicator function of the
set X ∗. As we increase k, this approximation gets tighter. The
following theorem makes this statement precise.
Theorem 6. For each k ∈ N, let wk ∈ R2k[x] denote
the w-component of the solution to Dk, and let w̄k(x) =
mini≤kwi(x). Then, wk converges from above to IX∗ in the
L1 norm, and w̄k(x) converges from above to IX∗ in the L1

norm and almost uniformly.
Proof: From Theorem 4, for every ε > 0, there exists

a feasible tuple of functions (v, w, p) ∈ C1 ([0, T ]×X) ×
C(X) × (C([0, T ]×X))

m such that w ≥ IX∗ and
∫
X

(w −
IX∗)dλ < ε. Let ṽ(t, x) := v(t, x) − 3εT + 3(T + 1)ε,
w̃(x) := w(x) + 3(T + 3)ε and [p̃]i(t, x) = [p]i(t, x) +
(2ε)/m,∀i = {1, . . . ,m}. Then, Lf ṽ = Lfv − 3ε, ṽ(t, x) =
v(T, x) + 3ε, w̃(x) − ṽ(0, x) = 1 + 6ε, and Lg ṽ = Lgv.
Since the sets X and [0, T ] × X are compact, and by a
generalization of the Stone-Weierstrass theorem that allows
for the simultaneous uniform approximation of a function
and its derivatives by a polynomial [15, pp. 65-66], we are
guaranteed the existence of polynomials v̂, ŵ, [p̂]i such that
‖v̂ − ṽ‖∞ < ε, ‖Lf v̂ − Lf ṽ‖∞ < ε, ‖Lg v̂ − Lg ṽ‖∞ < ε/m,
‖ŵ − w̃‖∞ < ε and ‖[p̂]i − [p̃]i‖∞ < ε/m. It is easily
verified that these polynomials strictly satisfy the constraints
of Dk. Hence, by Putinar’s Positivstellensatz [18] and Remark
1, we are guaranteed that these polynomials are feasible for
Dk for high enough degree of multiplier polynomials. We
further note that ŵ ≥ w. Then,

∫
X
|w̃ − ŵ|dλ ≤ ελ(X),

and thus
∫
X

(ŵ − w)dλ ≤ ελ(X)(3T + 10). Hence, since
w ≥ IX∗ and

∫
X

(w − IX∗)dλ < ε by assumption, it follows
that

∫
X

(ŵ − IX∗)dλ < ε(1 + λ(X)(3T + 10)) and ŵ ≥ IX∗ .
This concludes the first part of the proof since ε was arbitrarily
chosen.

The convergence of wk to IX∗ in L1 norm implies the ex-
istence of a subsequence wki that converges almost uniformly
to IX∗ [3, Theorems 2.5.2, 2.5.3]. Since w̄k(x) ≤ min{wki :
ki ≤ k}, this is sufficient to establish the second claim.
Corollary 1. {d∗k}∞k=1 and {p∗k}∞k=1 converge monotonically
from above to the optimal value of D and P .

Proof: This is a direct consequence of Theorem 1.
Next, we prove that the 1-superlevel set of the polynomial

w converges in Lebesgue measure to the largest achievable
BRS X ∗.
Theorem 7. For each k ∈ N, let wk ∈ R2k[x] denote the
w-component of the solution to Dk, and let Xk := {x ∈ Rn :
wk(x) ≥ 1}. Then, limk→∞ λ(Xk\X ∗) = 0.

Proof: Using Theorem 4 we see wk ≥ IXk
≥ IX∗ . From

Theorem 6, we have wk → IX∗ in L1 norm on X . Hence:

λ(X ∗) = lim
k→∞

∫
X

wkdλ ≥ lim
k→∞

∫
X

IXk
dλ = lim

k→∞
λ(Xk).

But since X ∗ ⊂ Xk for all k, we must have limk→∞ λ(Xk) =
λ(X ∗) and thus limk→∞ λ(Xk\X ∗) = 0.



Finally, we prove a convergence result for the sequence
of controllers generated by (28). For each k ∈ N, let u∗k
denote the controller constructed by Equation (28) using the
optimizers yk of Pk. Let y∗k,µ be the optimizing moment
sequence corresponding to µ.
Theorem 8. Let {µ∗k}∞k=1 be any sequence of mea-
sures such that the truncated moments of µ∗k match
y∗k,µ. Then, there exists an optimizing vector of measures
(σ+∗, σ−∗, σ̂∗, µ∗, µ∗0, µ̂

∗
0, µ
∗
T ) for P , a u∗ ∈ L1([0, T ] ×X)

generated using σ+∗, σ−∗, and µ∗ according to Equation (16),
and a subsequence {ki}∞i=1 ⊂ N such that:∫
[0,T ]×X
v(t, x)

(
[u∗ki ]j(t, x)dµ∗ki(t, x)−[u∗]j(t, x)dµ∗(t, x)

) i→∞−−−→0,

(29)
for all v ∈ C1([0, T ]×X), and each j ∈ {1, . . . ,m}.

Proof: We provide only a sketch of the proof due to
space restrictions. First, note that the set of test functions v
can be restricted to polynomials since the set of polynomials
is dense in C1([0, T ] × X). Further, the construction of u∗ki
from Equation (28) ensures that (29) holds for v up to degree
ki. The rest follows directly from the proof of Theorem 4.7
in [18].

IV. EXAMPLES

This section provides a series of numerical experiments on
example systems of increasing complexity. SDPs were pre-
pared using a custom software toolbox and the modeling tool
YALMIP [20]. For simulations, control laws are taken to be
the saturation of the polynomial law derived by the proposed
method. The programs, whose source code is available for
download3, are solved using SeDuMi 1.3 [31], for the first
three and last examples, and the SDPT3 solver [34], for the
fourth example, on a machine with 8 Intel Xeon processors
with a clock speed of 3.1 GHz and 32 GB RAM.

Additionally, for several of the examples we examine a
different objective wherein we look to drive initial conditions
starting in X to XT at any time t ∈ [0, T ] (commonly
referred to as a “free final time” problem). The analogous
BRS approximation problem is addressed in [14] and the
control synthesis problem follows using our approach in a
straightforward manner. We make clear when we employ this
different objective while describing each of our examples.

A. Double Integrator

The double integrator is a two state, single input system
given by ẋ1 = x2, ẋ2 = u, with u restricted to the interval
U = [−1, 1]. Setting the target set to the origin, XT = {0},
the optimal BRS X ∗ can be computed analytically based on a
minimum time “bang-bang controller” [6, pp. 136]. Note that
this is a challenging system for grid based optimal control
methods, since they require high resolution near the switching
surface of the “bang-bang” control law.

We take the bounding set to be X = {x | ‖x‖2 ≤ 1.62}.
Figure 2 compares the outer approximations of X ∗ for k =

3https://groups.csail.mit.edu/locomotion/software.html
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Fig. 2: An illustration of the convergence of outer approximations and
the performance of controllers designed using our approach for increasing
truncation degree, k, for the double integrator. Solid lines indicate the outer
approximations, defined by wk = 1, for k = 2 (red), k = 3 (green), k = 4
(blue), and the boundary of the true BRS (solid black). Points indicate terminal
states (x(T )) of controlled solutions with x(0) inside the BRS using our
generated feedback control laws uk (colors match the outer approximations).

2, 3, 4. The quality of the approximations increases quickly.
Figure 2 also evaluates the performance of the control laws
uk by plotting the terminal states x(T ) for controlled solutions
starting in X ∗. Even for k = 3, reasonable performance is
achieved. The running times for k = 2, 3, 4 are 0.3s, 0.7s,
and 4.2s, respectively.

B. Ground Vehicle Model

The “Dubin’s car” [11] is a popular model for autonomous
ground and air vehicles and has been employed in a wide
variety of applications [7], [8], [13]. Its dynamics are:

ȧ = v cos(θ), ḃ = v sin(θ), θ̇ = ω, (30)

where the states are the x-position (a), y-position (b) and yaw
angle (θ) of the vehicle and the control inputs are the forward
speed (v) and turning rate (ω). A change of coordinates can
be applied to this system in order to make the dynamics
polynomial [9]. The rewritten dynamics are given by:

ẋ1 = u1, ẋ2 = u2, ẋ3 = x2u1 − x1u2. (31)

This system is also known as the Brockett integrator and is a
popular benchmark since it is prototypical of many nonholo-
nomic systems. Notice that the system has an uncontrollable
linearization and does not admit a smooth time-invariant con-
trol law that makes the origin asymptotically stable [9]. Hence,
this example illustrates the advantage of our method when
compared to linear control synthesis techniques. We solve the
“free final time” problem to construct a time-varying control
law that drives the initial conditions in X = {x | ‖x‖2 ≤ 4}
to the target set XT = {x | ‖x‖2 ≤ 0.12} by time T = 4. In
the Dubin’s car coordinates, the target set is a neighborhood of
the origin while being oriented in the positive a-direction. The
control is restricted to u1, u2 ∈ [−1, 1]. Figure 3 plots outer
approximations of the BRS for k = 5. Figure 4 illustrates
two sample trajectories generated using a feedback controller
designed by our algorithm after transforming back to the
original coordinate system. Solving the SDP took 599 seconds.

https://groups.csail.mit.edu/locomotion/software.html
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Fig. 3: The boundary of X (black line) and the outer approximation of the
BRS (blue line) are shown in the (x1, x3) and (x1, x2) planes. In each plane,
black points indicate initial conditions of controlled solutions with x(T ) ∈
XT (i.e. ‖x(T )‖2 ≤ 0.12), and grey points indicate initial conditions of
solutions ending near the target set (specifically ‖x(T )‖2 ≤ 0.22).
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Fig. 4: A pair of sample trajectories drawn in red generated by our algorithm
for the Dubin’s car system. Each drawn time sample of the car is colored
black with blue–colored tires and grey forward–facing direction. The origin
is marked by a green dot. Each trajectory is initialized at the ‘O’ mark and
terminates at the state where the target set is first reached, which is marked
with an the ‘X’ mark. The trajectory starting in the upper right hand corner
executes a three-point turn to arrive at the desired position and orientation.

C. Torque Limited Simple Pendulum

Next, we consider the torque limited simple pendulum,
described by the equations

ẋ1 = x2, Iẋ2 = mgl sin(x1)− bx2 + u, (32)

where x1 represents the angle θ from upright, x2 represents
the angular rate θ̇, and u represents a torque source at the pivot
constrained to take values in U = [−3, 3]. We take m = 1,
l = 0.5, I = ml2, b = 0.1 and g = 9.8. The bounding set
is defined by x1 ∈ [−π, π) and x2 ∈ [−8, 8]. Our method
can be readily adapted to handle dynamics with trigonometric
dependence on a state, x, so long as the dynamics are
polynomial in sin(x) and cos(x). This is accomplished by
introducing indeterminates c and s identified with sin(x) and
cos(x) and modifying the approach to work over the quotient
ring associated with the equation 1 = c2 + s2 [26].

For this example, we solve the “free final time” problem
by taking T = 1.5, and defining the target set as XT =
{(x1, x2) | cos(x1) ≥ 0.95, x22 ≤ 0.05}. The running time for
the SDP is 11 mins 20 secs for k = 5. Figure 5 plots sample
solutions and summarizes the initial conditions that reach the
target set. Notice that the controller is able to “swing-up” states
close to the downright position to the upright configuration
despite the stringent actuator limits and a short time-horizon.
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Fig. 5: A depiction of the controller performance for k = 5 for the torque
limited simple pendulum. Black regions indicate sampled initial conditions
whose controlled solutions pass through the target set (yellow square). Three
sample solutions are also plotted (red) each with terminal conditions in the
target set. Note the solution starting near (−2, 3.2) passes through zero
velocity — the solution “pumps” to reach the upright position.

D. Planar Quadrotor

Finally, we demonstrate the scalability of our approach on
a six state, two input planarized quadrotor model used in
a various robotic applications [16], [21]. The dynamics are
defined by [30]:

ẍ1 = −(u1 + u2) sin(θ)/m

ẍ2 = −g + (u1 + u2) cos(θ)/m

θ̈ = L(u2 − u1)/I

(33)

where x1, x2, and θ are the horizontal and vertical positions,
and the attitude of the quadrotor, respectively. The control
inputs u1 and u2 are the force produced by the left and
right rotors, respectively, and are bounded to have a thrust
to weight ratio of 2.5. Further, L = 0.25 is the length of
the rotor arm, m = 0.486 is the mass, I = 0.00383 is
the moment of inertia and g = 9.8 is the acceleration due
to gravity. Using a time horizon of T = 4, we solve a
“free final time” problem and require trajectories reach the
target set XT = {x | ‖x‖2 ≤ 0.1}. The bounding set is
X = {x | ‖x‖2 ≤ 1}. We apply the proposed control design
method with k = 2, and handle trigonometric terms in the
same manner as the pendulum example. The SDP takes 49
minutes to solve. The resulting controller is able to stabilize
a large set of initial conditions. Figure 6 illustrates a few
representative trajectories of the closed-loop system.

E. Satellite Attitude Control

Finally, we demonstrate the scalability of our approach on
a more complicated 6 state system with 3 inputs describing
attitude control of a satellite with thrusters applying torques.
The dynamics are defined by

Hω̇ = −Ω(ω)Hω + u, ψ̇ =
1

2
(I + Ω(ψ) + ψψT )ω,

where ω ∈ R3 are the angular velocities in the body-
frame, ψ ∈ R3 represent the attitude as modified Rodriguez
parameters (see [28]), Ω : R3 → R3×3 is the matrix defined
so that Ω(ψ)ω = is the cross product ψ × ω, and H ∈ R3×3
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Fig. 6: Four trajectories drawn in red generated by our algorithm for the planar
quadrotor. Each drawn time sample of the car is colored black with props on
the upward–facing direction. The origin is marked by a green dot.
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Fig. 7: Demonstration of the controller performance for k = 3. Points are
sampled from the bounding set (dashed black) and the set where w(x) ≤ 1
(boundary in blue). To excite coupled dynamics between the angular ve-
locities, initial conditions are chosen from the hyperplane with coordinates
(δ1, δ2) given by δ1 = (ψ1 + ψ2)/

√
2 and δ2 = (ω̇1 + ω̇2)/

√
2. Black

(resp. grey) points indicate initial conditions whose controller solution satisfies
‖x(T )‖ ≤ 0.1 (resp. ‖x(T )‖ ≤ 0.2).

is the inertia matrix. We let H be diagonal with [H]11 = 2,
[H]22 = 1 and [H]33 = 1

2 .
We take the input constraint set as U = [−1, 1]3 and the

origin as a target set. We apply the proposed control design
methods with k = 3. Solving the SDP took approximately 6
hours. Figure 7 examines the controller performance. A set of
initial conditions are sampled from a hyperplane, and those
whose solutions arrive near the target set are highlighted. We
note that a SDP with k = 2 takes only 5 minutes, but yields a
controller and BRS approximations that are slightly inferior,
but still useful in practice.

V. CONCLUSION

We presented an approach for designing feedback con-
trollers that maximize the size of the BRS by posing an infinite
dimensional LP over the space of non-negative measures.
Finite dimensional approximations to this LP in terms of SDPs
can be used to obtain outer approximations of the largest

achievable BRS and polynomial control laws that approximate
the optimal control law. In contrast to previous approaches
relying on Lyapunov’s stability criteria, our method is inher-
ently convex and does not require feasible initialization. The
proposed method can be used to augment existing feedback
motion planning techniques that rely on sequencing together
BRSs in order to drive some desired set of initial conditions to
a given target set. The number of distinct controllers required
by such algorithms could be significantly reduced (potentially
down to a single feedback law) by using our algorithm. By
reasoning about the nonlinear dynamics of a robotic system,
our algorithm should also be able to obtain improved perfor-
mance during dynamic tasks while maintaining robustness.

We are presently pursuing convergence results that guar-
antee the set-wise convergence of the BRS of the controllers
generated via (28) to the largest achievable BRS, which is
stronger than the result in Theorem 8. We are also working to
extend our method to hybrid dynamical systems. Our approach
potentially can address the difficulties that linearization based
approaches face due to the inherent nonlinearities associated
with hybrid systems such as walking robots.
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