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ABSTRACT
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I. INTRODUCTION

In previous papers (1], [2], a model for the analysis of dynamic routing

in networks has been proposed and the principles of an algorithm for the

solution of the resulting dynamic equations have been introduced. The model

gives rise to a linear optimal control problem with linear state and control

inequality constraints and linear integral cost functional. The application

of the maximum principle to this model dictates that the necessary and

sufficient condition for a control law to be optimal is to be the solution of a

certain linear program parametrized by time. Furthermore, it is indicated in

(2] that the conceptual algorithm for the solution of the dynamic problem can

be made implementable for the case when all traffic in the network has a

single destination and there are no priorities, and in this paper we restrict

our attention to this class of problems.

The main purpose of the present paper is twofold. First we introduce a

new interpretation to the (parametrized) linear program that provides the

necessary and sufficient condition for optimality in terms of a weighted

maximal flow problem. It is well known that algorithms for maximal flow

problems are much more efficient than those for general linear programs, so

that this interpretation may offer large computation savings. In our case,

this point of view provides the additional benefit of allowing us to obtain

a series of properties with extensive implications to the development of the

actual algorithm. The introduction of this maximal flow approach is the

subject of Section II.

The second purpose of the present paper is to present an algorithm for

the solution of the optimal control problem. The insight and properties of
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the maximal flow approach developed in Section II together with the main

properties of the problem in [2, Theorem 4] allow us to considerably reduce

the complexity of the algorithm, converting it into an implementable algorithm

for moderate size networks. In Section III the algorithm is introduced,

motivated and applied to an illustrative example, and several concluding

remarks appear in Section IV.

II. THE MAXIMAL FLOW APPROACH

As said before, we restrict our attention to the case of single destina-

tion networks with unity weightings in the cost functional. In addition, we

assume that all the input rates to the network are zero, so that our problem

is to find the optimal control (routing) that empties the network, starting

from a given distribution of backlogged traffic. Theorem 4 in [2] gives

the main properties of the solution and in the present paper we heavily rely

on these results, as well as on the main optimality conditions obtained in

[2, Theorems 1,2].

The dynamic equations, constraints and cost functional for the problem

are [2, Eq. (7)-(11)]:

x(t) = B u(t) ; x(to ) = x ; x(tf) = 0; x(t) 0 (1)

U = {u(t) < c ; u(t) > 0} (2)

tf

J = ft Zxi (t)dt , (3)
0

where B is the incidence matrix of the network and C the capacity vector.
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Necessary and sufficient conditions for a control law u*(t) to be optimal

is to satisfy (1) and also to solve the linear program

min [XT(t)x(t)], all t E [totf], (4)
u(t)EU

where t(t) is a costate vector that satisfies the appropriate backward

dynamic equations [2, Eq. (15)-(19)]. In view of [2, Th'. 4d)], there is no

loss of generality if we restrict our attention to trajectories with non-

positive slopes (forward in time), so that (4) can be rewritten

minTx] , Ue U, x<O (5)

where, for simplicity of notation, we have also suppressed explicit reference

to time. A control vector u s satisfying (1) and (5) is said to be globally

opt ial.

For a given time t and a given trajectory x(-), let B and I denote

the sets of states xi for which xi(t) a 0 and xi(t) > 0 respectively

(named boundary and interior sets). A control vector satisfying (1) and

T.
inQ[ x] , u e U, x i O0 for x i E I (6)

x i - O for xi E B

is said to'be constrained optimal [2, Note 1]. Clearly, every global optimal

control is constrained optimal and (2, TVh. 4c] states that for the case

under consideration the opposite is true as well. Consequently, we can regard

(6) as replacing (5) in the necessary and sufficient conditions for optinality,

and the rest of the present section will be devoted mainly to the analysis of

equation (6).
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First observe that by defining Yi = -xi for xi E I and by explicitly

writing the incidence matrix B and the vector u (see [2, Eq. (1)]), the

minimization problem (6) becomes:

max F = X.y. (7 a)
1 1

1

with constraints

U Z ij + Z: Uki + Yi = Vi: x E I (7b)
k k

- Uij Uki = 0 Vi: Xi E B (7c)
j ~k

yi > O, u E U. (7d)

Now observe that problem (7) is a (weighted) maximal flow problem for a 'net-

work that is obtained from the original network by adding an extra node,

named source s, and links with infinite capacity connecting s to all nodes

i for which xi E I (see Fig. 1). The network of Fig. lb) will be called

the network corresponding to problem (7) or the network corresponding to the

set I. The main idea of the present work is to exploit properties of this

maximal flow problem and algorithms for its solution, in order to obtain

properties and algorithms for the solution of our original dynamic control

problem. The'rest of this section is devoted to the exposition of these

properties.

Theorem 1:

(a) The costates Xi(t) corresponding to states xi(t) E I are strictly

positive.

(b) Any optimal solution of problem (7) with arbitrary positive X's is

also an optimal solution of problem (7) with X. = 1 Vx. E I.
1 1



Proof: a). Assume that x. reaches the boundary (forward in time) at time

T with an optimal slope x i < 0. Now clearly Xi(T) > O, since otherwise

the necessary and sufficient condition (4) says that it is not optimal for

Xi to reach the boundary at T. Moreover, the dynamic equation for costates

corresponding to states travelling on interior arcs [2, Eq. (15)-(17)] is

-.i(t) = 1 and therefore Xi(t) > 0 for all xi(t) E I.

b) Let F1 be the optimal value of problem (7) with Xi = 1 for all

xi E I and let Y* be a solution vector of problem (7) with arbitrary

Xi > 0 for x i E I. Clearly I yl < F1 and, on the other hand, the
1 1 X EI 1

inequality cannot be strict since otherwise, the Maximal Flow Theorem (3]

implies that a path can be found between the source and destination nodes

of the network corresponding to problem (7) on which the flow can be

increased, contradicting the fact that y* solves (7). Consequently,

z y* - F (8)
Xi 1 1
1

implying that Yi is a solution of (7) with X. = 1 Vxi E I.1. 1 i

From now on, and as a result of Theorem 1 we concentrate on problem (7)

with .i = 1, Vxi E I, and use the notations N(I) for the network correspond-

ing to the set I, MFP(I) for the maximal flow problem (7) corresponding to

the set I with Xi = 1, Vxi E I and max(I) for the maximal flow value

corresponding to MFP(I).

Theorem 2:

(a) Suppose there exists two sets of states I and I' such that I c I

and max(I) = max(I'). Then all basic optimal solutions of MFP(.) are

basic optimal solutions of MFP(I'), and all minimal cuts of N(I)

are also minimal cuts of N(I').
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b) For a given set I, if there is no set I' satisfying the conditions in

(a), then a minimal cut of N(I) is (X,X), where.

X = {s} U {xi E I}.

Moreover, when max(I) is achieved, then all links

{(i,k) E N(I) xi e I, x k ¢ I}

have flow equal to the corresponding capacity cik and all links

{(j,i) E N(I) j x i E I, xj I}I

have zero flow.

c) If there exist two sets I and I' such that I c I' and

max(I) = max(I'), then for any set I" holds max(I U r') = max(I'UI").

Proof: a) Take all basic optimal solutions of MFP(I) and add new variables

{Yi > 0, VX i E I'/I} as non-basic variables with value zero. Clearly,

all these solutions satisfy the constraints of MFP(I'). Moreover, since

max I = max I' and the new variables are non-basic, the solutions are also

basic optimal solutions for MFP(I'). Take now all solutions of MFP(I')

satisfying {yj = 0, Vx. E I'/I}. Removing from N(I') the links correspond-

ing to {yj, Vxj e I'/I} will give exactly N(I) hence all minimal cuts

of N(I) are minimal cuts of N(I').

b) Clearly, every node {i l xi E I} belongs to X since there are no upper

bounds on the variables Yi. Now, suppose that there exists a minimal cut

(X',X') such that X' = XUj where xj t I. Then we can add to the network

N(I) a new variable yj > 0 as non-basic with value zero (i.e. a link
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connecting the source with node j with zero flow). But note that

I c (I U xj) and max(l) = max(I U xj) contradicting the assumptions.

By the Maximal-Flow-Min-Cut Theorem [3] and links connecting X with X

have flow equal to their capacity and all Iinks connecting X with X

have no flow.

c) Consider a solution of MFP(I') satisfying {yj O0, Vxj E I'/I}. Part

(a) ensures the existence of such a solution. Now add to the network N(I')

links corresponding to '{ykl xk E I", xk ¢ I' n I"} and achieve maximal

flow in the resulting network N(I" U I') without changing the flow on links

{Yi I Xi £ I'}. Now remove the links {yj Ixj E I'/I, xj I"}. Since

those links have no flow, the maximal flow does not change, therefore

max(I UI") = max(I' U I").

The proof of the next theorem is somewhat long and therefore not

included here:

Theorem 3: [4, Thrms. 3.1, 3.2] Assume that the costates corresponding

to states on the boundary are kept at their leave-the-boundary value (cf.

[2, Thm. 4a]) at all times. Then all costates satisfy Xi(t) = 0 or -1 and

xi( t ) = Xi(t) = 0

if and only if the following hold :

(i) x i(t) EB

(ii) there are no sets I' and I such that xi E I', x i C I, II',

maxI = maxI' and all states in I have left the boundary before

time t backwards in time (i.e. at some time strictly larger than t).
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III. THE ALGORITHM FOR BUILDING THE FEEDBACK CONTROL REGIONS

With the results of Section II, we are ready to introduce the algorithm

that implements the constructive dynamic programming concept introduced in

[2] and builds the feedback control regions that represent the solution to

the optimal dynamic routing problem. In order to obtain a complete character-

ization of the feedback space one has in principle to find all backward

optimal trajectories and the corresponding optimal control vectors. However,

due to the special nature of the problem, the results of [2] and the properties

of Section II of this paper, we can obtain an algorithm that uses only a finite

number of trajectories (as opposed to all optimal trajectories). Furthermore,

the same results allow us to reduce drastically the number of considered

trajectories as well as the number and complexity of the operations needed to

generate the trajectories and to translate them into the feedback control

space. The result is that we obtain an implementable algorithm, at least for

moderate size networks. In what follows we first intuitively explain the

possible reductions and then present the algorithm formally.

The first simplification is obtained by observing that from [2, Thm. 4]

it is enough to consider piecewise linear trajectories with nonpositive

slopes (forward in time) and no breaks between junction points. These can

be represented as trajectories with the property that various sets of state

variables leave the boundary x. = 0 (backwards in time), never return to it

and once a certain set of states leaves the boundary, the optimal control

at the leave-the-boundary time remains optimal until t = -- unless other

states leave the boundary subsequently (backwards in time). Whenever a

certain set of state variables is assigned to leave the boundary, the
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corresponding set of costates that allows this to happen optimally must be

found (and is unique according to [2, Thm. 4a]) and all solutions of the

corresponding problem (7) must be obtained. The set of all these solutions

will determine the corresponding control feedback region (see [2, Example 1]

for illustration). Here, however, we obtain a number of further simplifica-

tions: first, since (7) is a linear program, it is enough to find only its

basic optimal solutions and obtain their convex hull, since all other optimal

solutions are convex combinations of the basic ones; second, Theorem 1

above says that the solutions of problems (7) with X.i = 1, Vxi E I, are

sufficient and there is no need to solve (7) for arbitrary X's; third,

Theorem 2 a) above further reduces the number of problems of type (7) that

need to be considered to those corresponding to sets I for which there is

no set I' such that I c I' and max(l) = max(I'); fourth, the fact that

(7) with Xi = 1 is a maximal flow problem allows us to use maximal flow

algorithms, that are in general much more efficient than general linear

programs.

Next, observe that [2, Thm. 4b) and e)] imply that the particular

instants when sets of variables leave the boundary (backwards in time) are

immaterial and all trajectories with identical sequences of states leaving

the boundary construct the same feedback control region (see also [2, Example 1]).

Consequently, the leave-the-boundary times can be chosen arbitrarily, provid-

ing a further simplification of the algorithm. In addition, we shall show in

Operation 3 of the Algorithm that Theorems 2c and 3 above provide a way for

identifying certain sequences of states leaving the boundary that are redund-

ant in the sense that they generate feedback control regions that can be built

using other sequences. Clearly, the redundant sequences need not be considered,
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providing a further saving in the algorithm. Finally, we may mention that

Theorem 2b) will allow us to reduce the size of the corresponding networks

N(I) on which one needs to work in Operation 2 of the Algorithm.

In what follows we present the algorithm that builds the feedback

control regions. Each step of the algorithm is presented, motivated and

applied to an example network for illustration. The illustrative network

is given in Figure 2.

Operation 1: For each possible subset I of state variables, construct

the corresponding network N(I) and solve the corresponding maximal flow

problem MFP(I) to obtain a first basic optimal solution and the maximal

flow value max(I).

Motivation. As explained before, in order to obtain a complete characteriza-

tion of the feedback space we have, in principle, to consider all possible

trajectories represented by sets of states leaving the boundary (backwards

in time). For each set of states leaving the boundary, the corresponding

costates should be calculated and the corresponding feedback control region

is obtained by finding all solutions to problem (7). In Operation 1, we

consider all possible sets of state variables (there are 2n-1 such sets)

and find a first optimal (extremal) solution to problem (7) for each set,

as well as the corresponding maximal flow value, Note, in addition, that

by Theorem 1 it is enough to find the solutions to problem (7) with .i = 1,

Vx. E I.

Illustration: The networks corresponding to each subset I for the example

network of Figure 2 and their corresponding maximal flow appear in Figure 3.



Operation 2: Identify those sets I of state variables for which there

is no set I' I such that max(I') = max(I). For these sets I use the

method indicated in the Appendix to find all optimal basic solutions of the

corresponding MFP(I).

Motivation: In principle, in order to obtain an exhaustive set of trajector-

ies as required by the Constructive Dynamic Programming Concept [2], there

is need to generate all basic optimal solutions to all MFP(1) determined in

Operation 1. Here, however, we were able to obtain large savings in computa-

tion due to two results. First, obtaining all solutions to a linear program

is an extremely tedious operation even for small dimensions as seen from the

literature [5]-[9]. On the other hand, for the particular type of problems

under consideration here we were able to develop a Maximal-Flow-specific

procedure (see Appendix) that turns out to be especially efficient far

degenerate problems, which is the situation in our case. The second saving

is obtained from Theorem 2a), indicating that it is sufficient to obtain all

basic solutions only to MFP(I) corresponding to those sets I for which

there is no proper overset with the same maximal flow value, thereby reducing

the number of problems to solve. Although we have no analytic expression

for the amount of savings, all examples that we treated provided a great deal

of reduction. Furthermore, observe that Theorem 2b) specifies the minimal

cut corresponding to each MFP and that only the subnetwork above the cut needs

to be considered when finding all solutions, since pivoting under the cut

will not lead to new solutions for Yi, xi E I

Illustration: In the example of Figure 2, we need to consider only the problems

corresponding to the networks (a), (b) and (e) of Figure 3. The different
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solutions are given in Table 1. Note also that by

Theorem la) the basic optimal solutions of MFP{xl,x } and of MFP{x2,x3}

are also basic optimal solutions of MFP{xl,x2,x 3} and those of MFP{xl} and

MFP{x 2} are also basic optimal solutions of MFP{xl,x2}.

Before introducing Operation 3 we may indicate that our goal is to use

representative trajectories in the state space in order to construct feedback

control regions that cover the entire state space. In principle, in order to

ensure complete coverage, one needs to list all possible types of trajector-

ies characterized by sequences of sets of states leaving the boundary.

The number Q(n) of possible trajectories for a network with n states

(n+l nodes) is given by [10]

n r
Q(n) = Z Z (-l)i(r)(r-i)n

r-l i=0 

which turns out to grow as n . The computational complexity of considering

these sequences (in Operation 3) in order to construct feedback control

regions is one of the factors that limits the size of the network that can

be handled by the algorithm with reasonable computation effort. However,

one of the important results that we have been able to obtain by using the

Maximal Flow approach is to develop a criterion in order to discover

redundant sequences in the sense that the feedback control regions generated

by the corresponding trajectories are in fact contained in such regions

generated by another trajectory. The above criterion allows us to check

redundancy before proceeding to Operation 4 and since a large number of

trajectories usually turn out to be redundant, this considerably reduces the

computational requirements of the Algorithm.



Operation 3: List all possible types of trajectories in the state space

by writing down all possible sequences of states leaving the boundary and

delete redundant sequences by using the following criterion: Consider every

pair of sets of states I and I' satisfying I c I' and max(I) = max(I').

every trajectory where at least one state x. E I'/I leaves the boundary

(backwards in time) after all states of I have left the boundary is redund-

ant and can be deleted.

Illustration: For the network of Figure 2 the list of all possible trajector-,

ies appears in Table 2 and all trajectories except 9), 10) and 13) are

redundant. For example, sequences 12) and 8) are redundant with I = {x2,x 3}

and I' = {x1,x2,x3} (the notation is as in Operation 3), sequences 1), 2),

3) are redundant with I = {xl}, I' = {xl,x2} and similarly for the other

sequences.

Motivation: To justify the redundancy criterion, consider the trajectory

l,'I2'..'I,_ m. '.,In, . , where Ii denotes the set of states that are

away from the boundary x = 0 during segment i (backwards in time). Since

we consider only trajectories with states that do not return to the boundary,

we have I1 c 12 C I3 ... . Now assume that the above trajectory satisfies

the criterion in Operation 3 and with the notations of Operation 3, let m, n

be the smallest indices satisfying I c Im and x. E In respectively.

By the assumption in Operation 3 we have m > n. We show that the above trajectory

is redundant by producing another trajectory

I1II2-* I- Rms -* n-l u xj}, In,

such that all feedback control regions constructed by the first trajectory

are also constructed by the second (note that the only difference between the

trajectories is the segment when x. leaves the boundary).
J
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Observe first that, again with the notations of Operation 3, we have

max(I U xj) = max(I' U xj) = max(I') = max(I)

where the equalities follow from Theorem 2c), the fact xj E I' and

max(I') = max(I). This implies, again by Theorem 2c), that

max(In_1 U xj) = max(I U xj U (I n_/I)) = max(I U (fInl/Z)) = max(In_l).

Consequently, In_1 and In,1 U xj satisfy the conditions of Theorem 2a),

i.e. all extremal solutions of MFP(I 1 ) are also extremal solutions of

MFP(In_1 U xj). Moreover, by Theorem 3, the costate functions are identical

for both trajectories, implying that the feedback control region resulting

from the segment corresponding to Inl' in the first trajectory results also

from the segment corresponding to In-1 U xj in the second.

Since the remaining segments of both trajectories are the same, the resulting

feedback control regions are identical and hence the first trajectory is

redundant.

Operation 4: For every remaining trajectory from the list of Operation 3,

and starting with value zero for all costates carry out the following steps

for every segment of the trajectory, starting at the first segment:

(a) Set X i = X i+l Vx i E I.

(b) From among all solutions {y*} of MFP(I) obtained in Operation 2 choose

those that maximize the expression

xiZ

(c) Every solution obtained in (b) determines a ray in the state space and

a corresponding set of controls. Let V be the set of rays determined



by all these solutions and construct the region

RP Co(R U V)/R

where Rp_1 is the feedback control region obtained from the current

step, Rp is the feedback control region obtained in the preceding

step (i.e. from the previous segment of the trajectory) and Co denotes

convex hull (see [13, p. 175]). In the constructed feedback control region any

control from the abovementioned set that does not take the state outside

of the region is optimal.

Illustration: In our three dimensional example of Figure 2, in order to

illustrate the constructed feedback coiftrol regions (that are convex poly-

hedral cones with vertex at the origin [2, Thm. 3] it is easiest to draw

a plane defined by the points with coordinates (0,0,1), (0,1,0), (1,0 0)

(see Fig. 4). The remaining trajectories of Operation 3 are 9), 10), 13)

of Table 2, and the costates to be considered according to Operation 4a)

appear in Table 3. The control that maximize the expression in Operation 4b)

are given in Table 4. Each segment of each trajectory determines a feedback

control region which is drawn in Figure 4 and the pair appearing in the

angular parentheses < > in each region indicates the corresponding

trajectory ana segment respectively. For example in trajectory 9, the first

segment generates the x3 axis and the second one generates the cone

determined by the rays (0,0,1), (0,2/3,2/3), (2/3,0,2/3), excluding the x3

axis. The corresponding optimal controls appear in Table 4.
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Motivation: Since we consider only non-redundant sequences Theorem 3

dictates that every costate is identically 0 when its corresponding

state is on the boundary and grows with slope 1 (backwards in time) when its

state is away from the boundary. Consequently the costates behave as in

Operation 4a). From Theorem lb) follows that all controls optimizing the

expression of Operation 4b) appear in the lists generated by Operation 2

and consequently it is enough to check the value of this expression and

select the controls providing the maximal value.

IV. CONCLUSIONS

In this paper we presented an approach leading to the implementation of

the algorithm suggested in [1], [2] for finding a feedback solution to the

problem of dynamic routing in networks. The linear programs arising from

the necessary and sufficient conditions for optimality were transformed into

maximal-flow-in-network problems and several properties concerning their

solutions were obtained. The properties lead to the development of an

implementable algorithm for building the feedback space for the problem of

dynamic routing in single destination networks with zero inputs and when the

cost functional has no priorities. Two inherent features of the problem

limit the maximal size of the networks for which the algorithm is applicable

under moderate computational resources. The first is the need of considering
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a great amount of piecewise linear trajectories in state space to assure

complete covering of the feedback space. The second is the need for finding

all solutions to the linear programs defined by the above trajectories to

obtain the optimal controls. Taking advantage of the degenerancy of the

linear programs, the algorithm severely reduces the number of trajectories

that have to be considered. In the example of Section III only 3 out of 13

trajectories had to be considered. In [4] an example of a network with four

states is presented in which only 18 out of 75 trajectories have to be

considered. Moreover, a simple method for finding all solutions of the linear

programs was developed. The method is based on pivoting operations on net-

works and in [4] several examples are presented when the largest one consists

of a five states network that lead to 184 different solutions and represent-

ations with a reasonable CPU time (7.41 sec. on an IBM 370/168 computer).
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APPENDIX

The Method for Finding all Solutions to the Linear Programs

The method suggested here is based on techniques of pivoting-on-networks.

The concepts used here can be found in [12]. Recall that Operation 2 of the

algorithm dictates that all optimal solutions have to be found only for those

MFP(I)'s for which there is no set I' = I satisfying max(I') = max(I).

At maximal flow, the corresponding networks N(I) can be reduced to networks

containing only the nodes in X, when (X,X) is the minimal cut close to the

source (see Theorem 2b)). For a reduced network Nr(I) the first (extended)

basic optimal solution is given by:

Yi = bi Vxi E Nr()

uik 0 Vxix k E Nr(I) n N(I)

The links Yi are taken to be basic and the remaining links non-basic.

Starting at these first optimal extended basic solution the method picks

a non-basic link and looks for a cycle formed by basic links and the

considered non-basic link. The existence of such a (unique) cycle is

ensured since every extended basic solution corresponds to a spanning tree

in the network. A pivot is performed on the cycle reaching a new extremal

solution or, if the cycle is degenerate, another representation of the

original extremal solution (i.e., the non-basic link is declared basic, and

a basic link becomes non-basic while the flow on the links of the cycle does

not change). Every new solution or representation is numbered and kept in

memory (if it does not exist there already). The above process is performed

for all non-basic links corresponding to every solution and/or representation

___~~~~_ ~~.~_....~...,..,_...,,.~~....~ *rr~~..~.-- i -;·---·--·-··-·-······-- ····-·-........ .......



in memory until no new solution or representation can be reached. This

ensures that at the end of the process all optimal solutions had been found.

Finally, only one representation per extremal solution is kept.

Note that from two different representations of an extremal solution,

different new extremal solutions can be reached, therefore, it is essential

to consider all the representations of the extremal solutions in the process.

Unfortunately, the number of solutions and representations is not known a

priori; only an upper bound is known since every basic solution corresponds

to a spanning tree of the network (the number of spanning trees of a network

can be calculated), however, not every spanning tree leads to a feasible

basic solution. Therefore, in practice this number is meaningless.

)· I ~ -~- -·-- ~ ~ ~ ~ --
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iiC=B

(a)

(b)

Figure 1 - (a). Original network
(b) Network corresponding to set I
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c12 =1

2 1 22

Cld=2\ C3d=2

Figure 2 - Example network

Max (I)=4 Max (I) =3

(a) I = {xl,x2 ,x3} (b) I = {xl,x 2} (c) I {xl ,x}

Max(I)=4 x(I)=3 o Max(I)=3 x(I)2

2l 2 2~ In · 2~1g a3
0 0

(a) I - {x2 ,x3 } (e) I {x l () I = {x2 } (g) I = {x 3 }

Figure 3 - Maximal Flow of 2N(I)
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(0,0,1)

<9,4>

<9,2>

(0,2/3,2/3)/ 2/3,0,2/3)

<13,1>

(0,3/4,1/4)/ (3/4,0,1/4)

<10,2>/ n\<lo,>

(0,1,0)/ \1,0,0)

<10,1>

Figure 4 - Projection of Feedback Control
Regions
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4

Y1 Y2 Y3 U12u 21 U2 3 Uld U3d

(a) 2+yio 1 i) 2 0 2 0 0 0 2 2

ii) 0 2 2 0 2 0 2 2

iii) 3 0 1 1 0 1 2 2
-2 0 -2

iv) 0 3 1 0 2 1 2 2

v) 2 0 2 1 1 0 2 2

Different solutions vi) 2 1 1 0 0 1 2 2
and Representations: vii) 1 1 2 1 2 0 2 2

18 viii) 1 2 1 1 2 1 2 2

3 Y1 Y2 u12 u 21 u2 3 UId U 3d

Is i) 2 1 0 0 1 2 1

Yl j 2 ii) 3 0 1 0 1 2 1

(b) 2 0 iii) 0 3 0 2 1 2 1

1( )Ij 2iv) 1 2 1 2 1 2 1

-2 0 -1

Different solutions
and Representations:
8

Y3 u"2 u21 U23 Uld U3d

i) 2 0 0 0 0 2
(C) y3 2

-2

Table 1 - Subnetworks and their different
solutions
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1) x1 x2 X3
2) x1 X3 x2
3) x1 x2,x3

5) x2 X3 x1

6) x2 XVoX3

7) X3 x 1 x 2

8) X3 x 2 x 1

9) X3 x1 ,x 2

10) x1'x2 x3

11) Xlx 3 X2

12) x2 ,x3 x1
13) x1,x2,x3

Table 2 - List of trajectories of states
leaving the boundary

Trajectory (from Table 2) First segment Second segment

9 (0,0,1) (1,1,2)

10 (1,1,0) (2,2,1)

13 (1,1,1)

Table 3 - Costate values X = (X1,%2,A3)

Trajectory. First segment Second segment

9 c) i) a) i), ii), v), vii)

10 b) i), ii), iii), iv) a) iii), iv), vi), viii)

13 a) i) - viii)

Table 4 - Controls maximizing expression appearing
in Operation 4b) (entries correspond to
controls determined in Table 1)


