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DISJOINABLE LAGRANGIAN SPHERES AND DILATIONS

PAUL SEIDEL

ABSTRACT. We consider open symplectic manifolds which admit dilations (in the sense
previously introduced by Solomon and the author). We obtain restrictions on collections of
Lagrangian submanifolds which are pairwise disjoint (or pairwise disjoinable by Hamiltonian
isotopies) inside such manifolds. This includes the Milnor fibres of isolated hypersurface
singularities which have been stabilized (by adding quadratic terms) sufficiently often.

1. INTRODUCTION

(1a) Motivation. What restrictions are there on collections of pairwise disjoint Lagrangian
submanifolds inside a given symplectic manifold? This is a reasonably natural question, or
rather class of questions, in symplectic topology. One can view it as an attempt to bound the
“size” or “complexity” of the symplectic manifold under consideration, in analogy with the
fact that a closed oriented surface of genus g > 1 can contain at most 3g — 3 pairwise disjoint
simple closed curves in a nontrivial sense (nontrivial means that no curve is contractible,
and no two are isotopic). There is additional motivation for specializing to Lagrangian
spheres, because of their relation with nodal degenerations in algebraic geometry; and from
there possibly further to the three-dimensional case, where collections of disjoint Lagrangian
three-spheres provide the starting point for the surgery construction from [57], itself modelled
on small resolutions of nodal singularities.

By way of example, let’s consider hypersurfaces in projective space, of a fixed degree and
dimension. Starting from a hypersurface with nodal singularities, one obtains a collection of
pairwise disjoint Lagrangian spheres in the corresponding smooth hypersurface, as vanishing
cycles (as an aside, note that since one can choose a hyperplane which misses all the original
nodes, the Lagrangian spheres obtained in this way actually all lie inside an affine smooth
hypersurface). There are numerous constructions of hypersurfaces with many nodes in the
literature, see for instance [9, vol. 2, p. 419] or [35], Section 8.1]. On the other hand, the size of
collections obtained in this way is limited by known upper bounds for the possible number of
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2 PAUL SEIDEL

nodes, such as those derived in [58] using Hodge-theoretic methods. It is an interesting open
question how these bounds compare to the situation for general collections of Lagrangian
spheres. There are reasons to be cautious about proposing a direct relationship. One is the
possible existence of nodal degenerations where the special fibre is not itself a hypersurface,
even though a smooth fibre is (this is certainly an issue in the toy case of algebraic curves:
the maximal number of nodes on a plane curve of degree d, including reducible curves, is
d?/2—d/2 by the Pliicker formula, and that is less than 3g—3 = 3d?/2—9d/2 for d > 5). From
a wider perspective, there are other constructions of Lagrangian spheres (as components of
real loci, or more speculatively in terms of SYZ fibrations) which are not a priori related to
vanishing cycles.

(1b) First observations. Let’s return to the general question as formulated at the outset.
For any oriented closed totally real submanifold L™ in an almost complex manifold M?", the
selfintersection equals the Euler characteristic up to a dimension-dependent sign:

(1.1) (L] [L] = (=1)""D2x (L),

This holds mod 2 without the orientation assumption (there is also a mod 4 version in the
unoriented case, involving the Pontryagin square [39]; but we won’t use it).

Theorem 1.1 (folklore). Fiz some field K. Consider closed totally real submanifolds L C M
such that x (L) is not a multiple of the characteristic char(K). If char(K) # 2, we also assume
that our L are oriented. Let (Ly,...,L,.) be a collection of such submanifolds, which are
pairwise disjoint (or disjoinable by homotopies). Then the classes [L1],. .., [L,] € H,(M;K)
are linearly independent.

That follows directly from ([1.1)), since any relation a;[L1] + - - - + a,[L,] = 0 implies that
(1.2) 0=I[L] (w[Li]+ -+ a[L]) = (=1)""D2a, x(L;) € K,

and x(L;) is nonzero as an element of K by assumption. The limitations of such topolog-
ical methods are clear: C?® contains an embedded totally real three-sphere, hence also (by
translating it) an infinite number of pairwise disjoint such spheres.

Within symplectic topology properly speaking, one can group the existing literature into two
approaches. The first one is quite general in principle, but hard to carry out in practice: it
considers Lagrangian submanifolds as objects of the Fukaya category with suitable properties,
and proceeds via a classification of such objects up to isomorphism. The second approach
is a priori limited to manifolds with semisimple quantum cohomology rings. One could
view the two as related, since in many examples the Fukaya categories of manifolds with
semisimple quantum cohomology are themselves semisimple, hence lend themselves easily to
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a classification of objects. However, the point of the second approach is precisely that one
can bypass an explicit study of the Fukaya category, and instead just use general properties
of open-closed string maps. We will now survey both approaches briefly.

(1c) Classification results for the Fukaya category. Possibly the earliest example of
this strategy is [51, Theorem 1(4)] about cotangent bundles of odd-dimensional spheres (the
resulting statement is in fact a special case of an earlier theorem [30, Théoréme 2|; but the
earlier proof lies outside the scope of our discussion, because it uses a geometric trick specific
to homogeneous spaces). Since then, the state of knowledge about cotangent bundles has
developed considerably [40], 27, B]. Maybe more importantly for our purpose, there is at
least one case other than cotangent bundles which has been successfully analyzed in this
way, namely the Milnor fibres of type (A,,) singularities [5], [54]:

Theorem 1.2 ([54, Theorems 1.1 and 1.2]). Let M?" be the Milnor fibre of the (A,,) sin-
gularity, with n > 3 odd and arbitrary m. Consider Lagrangian submanifolds L C M which
are rational homology spheres and Spin. Then:

(i) [L] € H,(M;Z) is nonzero and primitive.

(11) Two such submanifolds which are disjoint must have different mod 2 homology classes.

The necessary algebraic classification of objects in the Fukaya category of M was carried
out by hand in [5] for m = 2, whereas [54] relied on algebro-geometric results from [30], 29].
As an illustration of the difficulty of obtaining such a classification, note that so far we only

have partial analogues of the results from [30] for the remaining simple singularities, of types
(D) and (E,,) [16].

(1d) Manifolds with semisimple quantum cohomology. Results that fall into this
class can be found in [23] [13] (a significant precursor is [0, [8]). Here is a sample:

Theorem 1.3 (A version of [23, Theorem 1.25]). Let M be a closed monotone symplec-
tic manifold, whose (Z/2-graded) quantum cohomology QH*(M) = H*(M;K), defined over
some algebraically closed field K, is semisimple. Consider monotone Lagrangian submani-
folds L C M which are oriented and Spin (if char(K) = 2, one can drop the Spin assump-
tion). Let (Lq,...,L,) be a collection of such submanifolds, which are pairwise disjoint or
disjoinable by Hamiltonian isotopies.

(i) Suppose that HF*(L;, L;) # 0 for all i. Then r < dim QH"(M), where the right hand
side is the sum of the even Betti numbers (with K-coefficients).
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(ii) In the same situation, suppose that all the [L;] € H,,(M;K) are nonzero. Then they must
be linearly independent.

A short outline of the argument may be appropriate. First, semisimplicity of QH*(M ) means
that its even part splits as

(1.3) QH(M) = D Ku,

iel
where (u;);er is a collection of pairwise orthogonal idempotents. Because the intersection
pairing is nondegenerate, it must be nontrivial on each summand . Fix some L, and
consider the open-closed string map

(1.4) HF*(L,L) — QH**"(M).

Because of its compatibility with the structure of HF*(L, L) as a module over QH"(M),
the image of in even degrees consists of a subset of summands in . Moreover, if
HF*(L, L) is nonzero, the composition of with [, QH°(M) — K is nontrivial, hence
the previously mentioned subset is nonempty. Finally, if HF*(Ly, L) is well-defined and
vanishes, then the images of the open-closed string maps for Ly and L; must be mutually
orthogonal with respect to the intersection pairing (by a form of the Cardy relation, see for
instance [54, Proposition 5.3 and Figure 2|). This implies (i) provided that all Lagrangian
submanifolds involved have minimal Maslov number > 2, so that HF* (Lo, L;) is always well-
defined. To remove that additional assumption, one decomposes QH"(M) into eigenspaces
of quantum multiplication with ¢;(M), and considers the Lagrangian submanifolds with any
given Maslov index 2 disc count separately, using [12] Lemma 6.7].

It is instructive to compare the argument so far with Theorem [I.1] What we have done is to
replace the intersection pairing on H, (M) with that on each summand in considered
separately. The shift to even degrees ensures that the argument can be effective even if n
is odd, but at the same time prevents us from proving that the [L;] are nonzero (which is
indeed false, even for M = S?). Instead, for part (ii) of Theorem one argues as follows.
The class [L] is the image of the unit element in HF°(L, L) under (1.4). In particular, if [L]
is nonzero, then so is HF*(L, L). Now, for a collection (Lq,...,L,) as in the statement of
the theorem, we get a decomposition of QH*(M) into direct summands, and each [L;] must
lie in a different summand, which precludes having any nontrivial relations (in fact, not just
relations over K, but ones with coefficients in QH°(M) as well).

(1e) New results. We now turn to the actual substance of this paper.

Theorem 1.4. Let M**, n > 1 odd, be a (finite type complete) Liouville manifold. This
should satisfy ci(M) = 0, and we choose a trivialization of the anticanonical bundle K,;'.
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Assume that its (Z-graded) symplectic cohomology SH*(M), with coefficients in some field
K, contains a dilation. Then there is a constant N such that the following holds. Consider
closed Lagrangian submanifolds in M which are K-homology spheres and Spin. Suppose that
(Ly,...,L,) is a collection of such submanifolds, which are pairwise disjoint (or disjoinable
by Lagrangian isotopies). Then r < N.

The notion of dilation comes from [56]. The Spin assumption on Lagrangian submanifolds
arises as usual from sign considerations in Floer theory, and one can drop it in char(K) = 2.
That would make no difference in the context of Theorem [I.4], since a homology sphere over a
field of characteristic 2 must be Spin anway. However, one can do a little better by exploiting
fortuitous cancellations. Recall that the (Fs-coefficient) Kervaire semi-characteristic of a
closed manifold of odd dimension n is [33] 13§]

(n—1)/2
(1.5) Xi2(L) = Y dim H'(L;F,) € Fy.

i=0
Semi-characteristics have appeared before in the context of totally real embeddings [I1], but
that has apparently nothing to do with our result, which is the following;:

Theorem 1.5. Let M be as in Theorem and suppose that char(K) = 2. Replace the
topological assumptions on closed Lagrangian submanifolds L C M with the following weaker
ones:

(1.6) HY(L;K)=0 and xi2(L)=1.

Then the same conclusion will hold.

Making the bound N explicit depends on an understanding of the geometry of the dilation. In
particularly simple cases, one may be able to make a connection with the ordinary topology
of M. Here is an instance where that is possible:

Theorem 1.6. Tuke an affine algebraic hypersurface {p(z1,...,2p41) = 0} C C*"1 with
n odd, which has an isolated singular point at the origin. Suppose that the Hessian of the
defining polynomial at the singular point satisfies

(1.7) rank(D?*p,—o) > 3.

Let M be the Milnor fibre of that singularity. Consider Lagrangian submanifolds L C M
which are Q-homology spheres and Spin. If (L1, ..., L,) is a collection of such submanifolds
which are pairwise disjoint (or disjoinable by Lagrangian isotopies), then the classes [L;] €
H,(M;Q) are linearly independent.
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Theorem 1.7. Take M as in Theorem [1.6 Fiz a field K of odd positive characteristic.
Consider Lagrangian submanifolds L C M which are K-homology spheres and Spin. If
(Ly,...,L.) is a collection of such submanifolds which are pairwise disjoint (or disjoinable
by Lagrangian isotopies), then the classes [L;] € H,(M;K) span a subspace of dimension
> r/2 (in particular, by setting r = 1 one sees that each [L;] must be nonero).

Theorem 1.8. Take M as in Theorem but sharpening (1.7)) to rank(D?*p,—¢) > 4. Take
a field K of characteristic 2. If we consider Lagrangian submanifolds L C M which satisfy
(1.6), then the same conclusion as in Theorem holds.

Obviously, (|1.7)) holds if p is triply stabilized, which means that
(1.8) p(2) =22+ 22+ 224+ P2, 2ng1);

and conversely, any polynomial satisfying (1.7]) can be brought into the form (1.8]) by a local
holomorphic coordinate change [9, Vol. I, Section 11.1].

Example 1.9. As a concrete example, take the (Ay,) singularity of odd dimension n > 1.
In that case, we nearly recover Theorem (z) (the missing piece would be an extension of
Theorem to the lowest dimension n = 3, to show that the homology classes are nonzero
mod 2). If (L1, ..., L,) is a collection of Lagrangian Q-homology spheres which are Spin and
pairwise disjoinable, then Theorem together with the fact that the subspace of H,(M;Q)

spanned by ([L41],...,[L.]) must be isotropic for the intersection pairing, yields the bound
1
(1.9) r< {%] .

This is sharp, and much better than what one would get from applying Theorem|[1.9(ii) (which
on the other hand has no counterpart among our results).

In spite of these discrepancies between our results and those of [54] (which could probably be
narrowed by investing more work on both sides), there is a fundamental similarity between
our notion of dilation (giving rise to an infinitesimal symmetry of the Fukaya category) and
the C*-actions used in that paper. We refer interested readers to [55, Lectures 13—-19], where
both viewpoints are considered.

Concerning the comparison with Theorem and other results of that nature, we were un-
able to find a substantial relation between them and our approach. There is some common
philosophical ground, in that both approaches are based on replacing the intersection pairing
in middle-dimensional homology with another one, which has different symmetry properties;
and that for this replacement to work, strong restrictions on the class of symplectic mani-
folds under consideration have to be imposed. However, in Theorem the replacement is
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essentially the even-dimensional cohomology, whereas in our case we remain in the middle
dimension but replace cohomology with a different space, built from symplectic cohomology.

Finally, note that in all our theorems, we have required the (complex) dimension n to be
odd. In fact, the proof of Theorem [1.4 works for all n > 1; and there is an analogue of
Theorem for even n, which involves half of the ordinary Euler characteristic instead of
the semi-characteristic (in the proof, part (ii) of Corollary would be used instead of
(iii), with the rest of the argument remaining the same). Similar remarks apply to Theorems
1.8l However, the resulting statements are not stronger than what one can get in an
elementary way, which means from Theorem [1.1]

(1f) Contents. The structure of this paper is as follows. Section [2| is aimed at readers
interested in the strength and applicability of our results. For that purpose, the main aim is
to understand what dilations are. As one important example, this includes the construction
of dilations on the Milnor fibres appearing in Theorems [I.6HI.8 Very little of this material
is new, but we have tweaked the presentation from [50] slightly to make it more convenient
for our purpose.

Section [3|is aimed at readers primarily interested in seeing the overall structure of the argu-
ment. We introduce a number of additional algebraic structures associated to Hamiltonian
Floer cohomology groups, and state their properties without proof. Those properties, when
combined with the ones introduced in [56], lead directly to the theorems stated above.

In Section [ we flesh out the argument, which largely means specifying the families of Rie-
mann surfaces which give rise to the various (cochain level) operations underlying our con-
structions. Section [5| provides selected technical details.

The last part, Section [6] placed there so as not to interrupt the main expository thread,
mentions some parallel constructions in other parts of mathematics. This is not strictly
necessary for our argument, but can provide additional motivation.

(1g) Acknowledgments. This work benefited from conversations that the author had
with Mohammed Abouzaid, Ailsa Keating, and Ivan Smith. Major expository changes were
made following referees’ reports on the initial version of the manuscript. Partial support was
provided by NSF grant DMS-1005288, and by a Simons Investigator Award from the Simons
Foundation.
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2. BACKGROUND

(2a) Hamiltonian Floer cohomology. Our geometric setup for Floer cohomology is
almost identical to that in [50, Section 3], but we reproduce it to make the discussion more
self-contained.

Setup 2.1. Let (M,wy) be a non-compact symplectic manifold, together with an exhausting
(proper and bounded below) function Hy € C°(M,R). Let Xy be the Hamiltonian vector
field of Hyr. We write Pyy C R for the set of those A such that the 1-periodic orbits of
AX )y are not contained in a compact subset of M. One always has 0 € Py, and X € Py iff
—\ € Py, We will assume throughout that Hyy is such that Py has measure zero (so that in
particular, R\ Py is unbounded); note that this implies that all critical points of Hyy must
be contained in a compact subset.

The other assumptions are of a more technical kind, and needed in order to get the Floer-
theoretic machinery off the ground in the desired form. First of all we assume that M is
exact, meaning that wy = dfy; for some fixed 0pr. We also want it to satisfy ci(M) = 0,
and fiv a trivialization (up to homotopy) of the anticanonical bundle K,' = AZP(TM).

Finally, we need some property that prevents solutions of Floer-type equations from escaping
to infinity. This holds with respect to some fized compatible almost complex structure 1.
Namely, for every compact subset K C M there should be another such subset K C M,
such that the following holds. Suppose that S is a connected compact Riemann surface with
nonempty boundary, vs a real one-form on it such that dvs <0, and u : S — M a solution

of

(2.1) (du — Xy @)™ =0,

where the (0,1)-part is taken with respect to Iy;. Then, what we want is that
(2.2) u(@S) c K — u(S)C K.

Example 2.2. The most important class of examples are (finite type complete) Liouville
manifolds. These are (M,wyr, Or, Hyr) where the Liouville vector field Zyy dual to 0y satis-

fies
(2.3) Zyu.Hy = Hy ooutside a compact subset.

This implies that a sufficiently large level set N = H]\_j (c), ¢ >0, is a closed contact type
hypersurface. Moreover, the part of M lying outside that hypersurface, which is Hy/ ([e, 0)),
can be identified with the positive half of the symplectization of N. With respect to this
identification, Xy is ¢ times the Reeb vector field for 0p/|N. Hence, cPyr NR>C is the set of
periods of Reeb orbits (including multiples).
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One uses an almost complex structure Iy such that dHy o Iny = —05 outside a compact
subset, and derives the required property (2.2) from a mazximum principle argument. Of
course, the condition ci(M) = 0 still has to be imposed separately.

The first step is to define Floer cohomology groups HF*(\) for each A € R\ P,,. To do
that, choose a time-dependent function Hy € C°°(S* x M,R), S' = R/Z, with associated
time-dependent vector field X. This should satisfy H), = AH); outside a compact subset,
and we also require all solutions of
{ z:S'— M,
(2.4)
de/dt = Xy ()

to be nondegenerate. Choose a time-dependent compatible almost complex structure Jy
such that Jy, = I); outside a compact subset of M, and for which all solutions of Floer’s
equation are nondegenerate. Fix an arbitrary coefficient field K. We then define CF*(\) =
CF*(H,, J)) to be the associated Floer complex, which is a finite-dimensional Z-graded
complex of K-vector spaces, with generators (at least up to sign) corresponding bijectively
to solutions of . The differential will be denoted by d. Its cohomology HF*(\) is
independent of (H,, J)) up to canonical isomorphism. Note that its Euler characteristic is
not interesting:

(2.5) X(HF*(\) = x(M) for all A € R\ Py,

Even though Floer cohomology is independent of all choices, we find it convenient to co-
ordinate those choices in a particular way, namely to require that

(26> (Hf)\,tu Ji/\,t) = (—H)\’,t, JA,*I‘,)'
for all . Then, there is a canonical nondegenerate pairing
(2.7) () CF*(\) ® CF*™*(=)\) — K.

We use the same notation for the induced cohomology level pairing, which gives rise to a
Poincaré duality type isomorphism

(2.8) HF*(=)\) = HF*™*()\)Y,

The next observation is that Floer cohomology groups come with continuation maps [4§]

To define these, one takes the cylinder S = R x S with coordinates (s,t), and equips it
with a one-form vg such that vg = Ay dt for s < 0, vg = Ay dt for s > 0, and drvg < 0
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everywhere. One then chooses a perturbation datum, namely a section Kg of the pullback
bundle 7*S — S x M (or equivalently a one-form on S with values in the space of functions
on M), such that Kg = H),; dt for s < 0, Kg = Hy, ; dt for s > 0, and

(2.10) Kg = Hyvs on S x {the complement of some compact subset of M}.

Similarly, let Jg be a family of compatible almost complex structures on M parametrized by
(s,t) € S, such that Jg s, = Jy, ¢ for s <0, Jgs; = Jy, ¢ for s > 0, and

(2.11) Jsst = Iy on S x {the complement of some compact subset of M}.

Assuming that the choices have been made generically, the chain map underlying ({2.9)) is
defined by counting solutions of the associated equation

u:S — M,
(du — YS)O’l = O,

(2.12) '
lim,_, o U(S, ) = Zo,

limg 00 u(s, ) = 1,
where Yy is the one-form on S with values in Hamiltonian vector fields on M, derived from
Kg, and the (0, 1)-part is formed with respect to Js. Outside a compact subset of the target
space M, the Cauchy-Riemann equation in reduces to . Moreover, all possible
limits xg, 7 are contained in a compact subset, by the definition of P,;. These two facts
together with imply that all solutions u are contained in a compact subset.

The maps (2.9)) are independent of all choices, and well-behaved with respect to composition.
This makes HF*()) into a directed system, and one can define

(2.13) HF*(00) = ling, HF*()).

For the next step, take a partial compactification of the cylinder, S = (R x S')U {s = 400}
(which is a Riemann surface isomorphic to the complex plane C). All previous conditions
for s > 0 should now be replaced by ones asking that the relevant data extends smoothly
over s = +00. Note that the number A\ = )y associated to the remaining end s < 0 must
then necessarily satisfy A > 0 (A > 0 because of dvg < 0, and A # 0 since we always ask
that A ¢ Pj). The analogue of yields a cochain in CFY(\), whose cohomology class

(2.14) 1€ HF'(\), A>0,

is independent of all choices, and preserved under continuation maps. One can further
generalize this construction by using the evaluation map at the point s = +oco. By asking
that u(+o00) should go through the stable manifold of an exhausting Morse function on M,
one can construct a chain map from the associated Morse complex to the Floer complex,
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hence a map
(2.15) H*(M;K) — HF*(\), A>0.

This is again canonical and compatible with continuation maps. Moreover, the previously
defined (2.14)) is simply the image of 1 € H°(M;K) under (2.15)). Note that dually in terms
of (2.8]), we have maps into compactly supported cohomology

(2.16) HF*(=\) — H*,(M;K) & Hy,_.(M;K), A> 0.

cpt

The composition

(2.17) HF*(=\) — H*

cpt

(M;K) — H*(M;K) — HF*()\)

can again be identified with the relevant continuation map, by a gluing argument which (like
the construction of the maps (2.15)), (2.16]) in itself) is modelled on those in [42].

Example 2.3. In the situation from Example the limit 15 the symplectic cohomol-
ogy SH*(M) in the sense of [59], which is a symplectic invariant (see also [18] for a closely
related construction). In this situation, if p is the length of the shortest periodic Reeb orbit,
so that (0, u) NPy = 0, one finds that is an isomorphism for A € (0, ). On the other
hand, passing to the limit yields a map

(2.18) H*(M;K) —s SH*(M),

which played a crucial role in early applications to the Weinstein conjecture [59, 60].

The next piece of structure we need is the BV (Batalin-Vilkovisky) operator
(2.19) A HF*(\) — HF*1())

(see [52, Section 8|, [56, Section 3|, or [15, Definition 2.11]). This squares to zero; commutes
with continuation maps (in particular, induces an operation on , for which we use
the same notation); and vanishes on the image of (2.15). The definition uses a family of
equations of type depending on an additional parameter » € S'. The Riemann surface
S, = Rx St is the same for all r, but it comes with a family of one-forms vg,_, inhomogeneous
terms K, , and almost complex structures Jg,.. The precise requirement is that

VSTZ)\dt VST:/\dt
(2.20) Kg, = Hy,dt 3 for s < 0, Ks, = Hy;—,dt 3 for s > 0.
JST,s,t - J)\,t JST,s,t - J)\,t—r

As one sees from this, it is possible (but not really necessary) to choose vg, to be the same
for all 7. On the other hand, it is usually impossible to choose the same Kg, and Jg, for
all r, because that would require H) and J, to be constant in ¢, which is incompatible
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with the transversality requirement for (2.4)). Hence, the parametrized moduli space of pairs
(r,u), where r € S* and u : S — M is a solution of the appropriate equation (2.12)), can
have a nontrivial zero-dimensional part, which one uses to construct the cochain level map

underlying (2.19)).

(2b) Dilations. We have now collected all the ingredients (Floer cohomology, continuation
maps, the element (2.14]), the BV operator) that enter into the following:

Definition 2.4. A dilation is a class B € HF()), for some A > 0, whose image B € HF*())
under the continuation map, for some X > \, satisfies AB = 1.

We will also allow A = oo or A = oo; in particular in the context of Example , where for
A = oo we would be talking about an element of SH'(M) (this is the formulation used in
Theorem |1.4). Note that by definition (2.13), any element of HF*(o0) comes from HF*(\)
for some A > 0, and the same applies to relations between elements, such as the equation
AB = 1. Hence, saying that a solution of AB = 1 exists in HF*(o0) is equivalent to saying
that Definition is satisfied for some finite values of A, A However, for the purpose of the
present paper the quantitative aspect, which means trying to get A (and, less importantly,
5\) to be as small as possible, is also important.

Example 2.5. Take M = T*S", with the standard forms wy = dby;, and a function Hy,
such that Hy(x) = ||z|| is the length (in the standard round metric) outside a compact subset.
This means that, at infinity, Xy is the normalized geodesic flow. The isomorphism [60}, 47, 1]

(2.21) HF*(c0) = SH*(M) 2 H,_.(£S™; K)

with the homology of the free loop space, can be used to show the following [50, Example 6.1
and Example 6.4]:

o T*S' does not admit a dilation for any choice of coefficient field K;
o T%5% admits a dilation iff char(K) # 2;

o T*S™ n > 2, admits a dilation for all choices of coefficient field K.

Let’s focus on the situation where dilations exist. For the general reasons mentioned in
Example the map (2.15) is an isomorphism if 0 < A < 2w. On the other hand, a
Conley-Zehnder index computation shows that in nonnegative degrees, the maps

(2.22) HF*(\) — HF*(c0), * >0,
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are isomorphisms as soon as X > 2w. Hence, one can choose any A = \ > 21 in Definition
which means that the dilation appears at the earliest theoretically possible stage.

We refer to [56, Example 6.4] as well as Example below for further discussion of cotangent
bundles. A very basic way to provide other examples is this:

Example 2.6. Take My and M, be Liouville manifolds, with functions as in Example|2.4.
If My admits a dilation, then so does My x My. This follows from the Kiinneth formula [41].

On the other hand, a look at some classes of Liouville manifolds arising from algebraic
geometry indicates that the existence of dilations is a very restrictive condition.

Example 2.7. Take a smooth hypersurface M C CP"! of degree d > 3, and remove its
intersection with a generic hyperplane. The result is an affine hypersurface M C C** which,
when equipped with the restriction of the standard symplectic form, is unique (depends only
on d) up to symplectic isomorphism. It is Liouville and comes with a trivialization of its
anticanonical bundle, hence belongs to the class of manifolds from Example (in the case
d = 2, which we have excluded, this would lead to the previously studied example M = T*S™).
Toke K to be of characteristic 0. It then turns out that M never admits a dilation. The case
n = 1 is of an elementary topological nature [56, Example 6.1], and we won’t discuss it
further, but we will give a sketch of the proof in the higher-dimensional situation.

Start by taking d = 3 and n > 4. The contact hypersurface N describing the structure of M
at infinity is a circle bundle over the cubic hypersurface in CP™, hence (by weak Lefschetz)
satisfies

(2.23) HY(N;K)=0 forq#0,n—1,n,2n — 1.

There is a Morse-Bott spectral sequence converging to SH*(M), with starting page (similar
to [50, Equation (1)], which would be the analogue for d =n + 2)

H(M;K) p=0,
(2.24) Byt =< HO=2rta(N;K) p <0,
0 p > 0.

In view of and the dimension assumption, it follows that SH*(M) = 0, hence M
cannot admit a dilation (strictly speaking, this part of the argument also requires knowing
that the symplectic cohomology of M is not identically zero, but that it easy to show; for
instance, by exhibiting a Lagrangian sphere inside M ).
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Now consider the affine cubic threefold (d = 3 andn = 3). This is clearly a hyperplane section
of the affine cubic fourfold. Hence, there is a Lefschetz fibration which has the threefold as a
fibre and the fourfold as total space. By [56], Proposition 7.3] (see also Section below for
related results), if the fibre admits a dilation, so must the total space. We apply this argument
in reverse to show that the affine cubic threefold does not admit a dilation. One can iterate
the same argument to reach the corresponding conclusion for the affine cubic surface.

Finally, a degeneration argument shows that the affine hypersurface of degree d can be sym-
plectically embedded into that of degree d + 1. These embeddings are automatically exact if
n > 1. An application of Viterbo functoriality now shows that since cubic hypersurfaces do
not admit dilations, neither do those of higher degree.

Example 2.8. Take a affine algebraic surface {p(z1,29,23) = 0} C C* with an isolated
singularity at the origin (the dimensional restriction is crucial, compare Example below).
From that singularity, one obtains a symplectic four-manifold, its Milnor fibre, which (after
attaching a semi-infinite cone to the boundary) belongs to the class of Liouville manifolds
from Ezxzample . It turns out that if the singularity is not one of the simple ones (not
of ADE type), its Milnor fibre does not admit a dilation (for any choice of coefficient field
K). This can be proved by combining a construction of Lagrangian tori from [32] with results
from singularity theory, as follows.

[32] first considers the simple-elliptic singularities of type Eg, Er, Es (Ps, Xo and Jig in
Arnol’d’s notation [9]), and shows that each of their Milnor fibres contains an exact La-
grangian torus. This implies the desired result, since the existence of a dilation rules out hav-
ing closed exact Lagrangian submanifolds which are Eilenberg-MacLane spaces [50, Corollary
6.3]. Any singularity which is not simple is adjacent to one of the three we have considered
(see e.g. [22, Proposition 10.1 and Table 3]). Adjacence comes with a symplectic embedding
of Milnor fibres |31, Lemma 9.9], and one then argues as in Example . The remaining
case of simple (ADE type) singularities is open at present (except for (A1), where the Milnor
fibre is T*S?).

(2c) Lefschetz fibrations. We want to discuss one more way to construct dilations. This
largely follows [56], Section 7], but we pay a little more attention to the quantitative aspect,
which means to the choice of Hamiltonian functions.

Let (F,wp, 0, Hr, Ir) be as in Setup . Suppose that F' is the fibre of an exact symplectic
Lefschetz fibration

(2.25) m: M — C.
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The definition of such a fibration is as in [56, Definition 7.1] (except that we are a little less
restrictive concerning the kinds of fibres that are allowed; in [56] the fibres were required
to be Liouville manifolds). Take the given function Hr on the fibre. Only its behaviour at
infinity really matters, so we can assume without loss of generality that Hr vanishes on a
large compact subset. Since the Lefschetz fibration is trivial at infinity in fibrewise direction,
there is then a preferred way to extend Hr to a function on M. Define

(226) HM:HF+€HCeCOO(M,R),

where: Hp stands for the previously mentioned extension; Hc(z) = |z — b|?/2 is a function
on the base, pulled back to M (where b € C is some base point, assumed to be close to
infinity, so that the fibration is locally trivial near 7—!(b) = F); and € > 0 is a positive
constant. Similarly, given the almost complex structure I on the fibre, one can construct
(in a non-unique way) a compatible almost complex structure I; on the total space, which
makes 7 pseudo-holomorphic. One can show that M, equipped with these data and with
its given exact symplectic form wy; = df,;, again satisfies the conditions from Setup
To distinguish notationally between fibre and total space, we denote the respective Floer
cohomology groups by HF*(F,\) and HF*(M,\), and similarly for the underlying chain
complexes.

Lemma 2.9. Suppose that 2n = dim(F') > 4. Fiz some u > 0. Then, provided that the
constant € is chosen sufficiently small, we have

(2.27) HF*(M,\) = HF*(F,)), <1,

for all |\ < p. More precisely, if \ is in that range and the right hand side of (2.27)) is
defined, then so is the left hand side, and the isomorphism holds.

This is a simplified version of [50, Lemma 7.2]. Briefly, the Hamiltonian vector field of ([2.26)
satisfies

(2.28) Dr(Xy) = veXc

where: X¢ = i(z — )0,; and ¢ € C°°(M,R=%) is a function which vanishes precisely at the
critical points of 7, and equals 1 outside a compact subset, as well as in a neighbourhood of
7~1(b). By taking € small, one ensures that all one-periodic orbits of X are either contained
in 771(b), or else constant orbits located at the critical points. After a suitable perturbation
to achieve transversality, one finds that as graded vector spaces,

(2.29) CF*(M,\) = CF*(F,\) & P JK[-1 = n].

ze Crit(m

The first summand comes from 1-periodic orbits lying in 771(b) = F, and the second one
from the critical points of 7w, whose Conley-Zehnder index is n+1 > 3. The main remaining
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point is an energy computation [56, Equation (7.6)], which shows that Floer trajectories with
both limits lying in 7—!(b) must entirely be contained in that fibre. A variation of the same
argument shows:

Lemma 2.10. In the situation of Lemma the isomorphisms (2.27)) are compatible with
the BV operator, and with continuation maps. Moreover, for 0 < X < p the following
diagram commutes:

HF*(M,)\) — HF*(F, \)
(2.30) T T £ <1,
H*(M;K) —— H*(F;K)

where the T maps are induced by (2.15)), and the bottom — is the ordinary restriction map.

For later use, it is convenient to formalize one of the applications of these ideas.

Definition 2.11. Let M be a manifold with an exact symplectic structure wy; = dfy; and
a trivialization of K. We say that M has property (H) if there is a compatible almost
complex structure Iy, a function Hyr, and a > 0, such that the following holds:

(i) The conditions of Setup are satisfied;

(ii) 1,200 & P

(111) the map H*(M;K) — HF*(u) is an isomorphism;

(iv) there is an element B € HF'(2p) satisfying AB =1 € HF°(2u).

As a consequence of Lemmas and [2.10] together with a version of [56, Lemma 7.2], one
then has:

Corollary 2.12. Given an exact symplectic Lefschetz fibration, if the fibre has property (H),
then so does the total space.

Example 2.13. Take a hypersurface
(2.31) {p(21,. .., 2n41) = 0} C C*H1

with an isolated singular point at the origin. Let H = {h1z1++ -+ hpy12n01 = 0} C C™ e
a generic hyperplane through the origin. Then, one can make the Milnor fibre of the original
singularity into the total space of an exact symplectic Lefschetz fibration, whose fibre is the
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Milnor fibre of
(2.32) {p(z1,...,2n41) =0} N H C H.

Very roughly speaking, the map which makes up the Lefschetz fibration is constructed from
the linear function z — hyzy + - hyy12n41-

Because of the genericity assumption, if the rank of the Hessian (D?p).—q is less than n+ 1,
then its restriction to H will have the same rank. In particular, if rank((D*p).—o) = n,
then has a nondegenerate singularity at the origin, so its Milnor fibre is T*S™ 1.
By iterating this idea and applying Corollary [2.19 as well as Example one obtains the
following conclusion: the Milnor fibre of has property (H) provided that

3 char(K) # 2,

(2.33) rank((D%p)s=o) 2 {4 char(K) = 2.

(2d) Lagrangian submanifolds. We return to background material in Floer theory, still
within the general framework of Setup 2.1} Throughout, we will consider Lagrangian sub-
manifolds of the following kind:

Setup 2.14. L C M is assumed to be closed, connected, exact, and graded (which implies
that it is oriented). If char(K) # 2, we also assume that L is Spin.

Remark 2.15. If H'(L;K) = 0 for some coefficient field K, then also H'(L;Z) = 0, hence
HY(L;R) = 0. This is easiest to see in converse direction: if H'(L;R) = Hom(H,(L;Z),R)
is nonzero, Hy(L;Z) has a nontrivial free summand, hence H'(L;K) = Hom(H,(L;Z);K)
is monzero for any K. Hence, a Lagrangian submanifold with H'(L; K) = 0 automatically
satisfies the exactness condition from Setup and also admits a grading.

Given a pair (Lg, L;) of such submanifolds, there is a well-defined Floer cohomology group
HF*(Lg, Ly), which is a finite-dimensional graded K-vector space. To define it, one chooses
some Az, 1, € R. Take a time-dependent Hamiltonian Hy, 1,, where the time parameter is
now ¢ € [0, 1], and such that Hy, 1, + = A, 1, Hy outside a compact subset. One additionally
requires that all chords

z:[0,1] — M,
(234) %(O) € Lo, .Z'(l) S Ll,
dl’/dt = XLO,Ll,t<-T)

should be nondegenerate. Correspondingly, take a time-dependent almost complex structure
Jro,, S0 that Jr,r,+ = Ju outside a compact subset, and which makes all solutions of
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Floer’s perturbed pseudo-holomorphic disc equation (with boundary values on Lg, L) non-
degenerate. One then obtains a Floer complex CF*(Ly, L) = CF*(Hp, 1., J1o.1,), Whose
differential we denote by u}do’ 1, following standard practice for Fukaya categories. Its co-
homology HF*(Ly, L) is independent of all choices up to canonical isomorphism. Its Euler
characteristic recovers the intersection number:

(2.35) X(HF*(Lo, L1)) = (=1)"" D2 [Lo] - [L4].

In the special case Ly = L = L, there is a canonical isomorphism

(2.36) HF*(L,L) = H*(L; K).
There is also an analogue of (2.8), namely
(2.37) HF*(Ly, Lo) & HF" *(Lo, Ly)".

Remark 2.16. If Ly # Ly, one can coordinate choices to realize on the chain level,
as in . However, that becomes much harder for Ly = Ly (in view of , this relates
to the issue of implementing a strict chain level Poincaré duality in ordinary topology, with
the additional constraint of having to do so within Floer theory). This will cause a few
complications later on (see Section[f).

Any Lagrangian submanifold (within the class of Setup [2.14] as always) gives rise to an
element

(2.38) [L] € HF"(\), for any A € R\ Py,.

To define this, one considers the Riemann surface with boundary S = (—o0,0] x S!, with
coordinates (s,t). Equip S with a one-form vg such that dvg < 0 everywhere, and vg = Adt
on the region where s < 0. Choose an inhomogeneous term Kg as before, with K¢, =
H), dt for s < 0, and which satisfies the following boundary condition:

(2.39) The dt component of Kg; vanishes on L.

Additionally, choose a family of almost complex structures Jg. One then considers an equa-
tion of type (2.12)) for maps w : S — M, but with boundary values u(9S) C L. Counting
isolated solutions of this equation yields the cochain representative for ([2.38]).

We want to describe some of its properties. First of all, for a fixed L but varying A, the
classes (2.38) are mapped to each other by continuation maps. Moreover, if A > 0, then
[L] is simply the image of the ordinary homology class [L] under the map H[,,(M;K) —

H™"(M;K) — HF"(X). On the other hand, for A < 0, [L] maps to [L] under the map
HE"™(\) — H? (M;K), which means that it is a refinement of the ordinary homology class,

cpt
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in general containing additional information. Finally, these classes are always annihilated by
the BV operator:

(2.40) A[L] = 0.

Roughly speaking, (2.40) is proved as follows. By a gluing argument, A[L] can be defined
directly using a family (S,), r € S*, of Riemann surfaces. These surfaces are all isomorphic
to our previous S = (—o0,0] x S', and the parametrization of the auxiliary data must be
such that Kg, s+ = H) 14, Js, 54 = Irtyr for s < 0. Within this class, one can achieve that
the isomorphism Sy = S, given by rotation with angle 277 is compatible with all the data.

Then, the parametrized moduli space associated to the family (S,) decomposes as a product
with a circle, hence has no isolated points, which implies the desired vanishing result.

In fact, one can generalize the construction of to yield a pair of mutually dual (after
switching the sign of \) open-closed string maps

(2.41) HF*(\) — HF*(L, L),

(2.42) HF*(L,L) — HEF*™™(\).

If one thinks of H*(L;K) instead of HF*(L, L), then the construction can be carried out in

a way similar to (2.15) and ([2.16)), involving an auxiliary Morse function on L. The image
of the unit element in HF°(L, L) = H°(L; K) under (2.42)) recovers (2.38).

(2e) Product structures. Finally, and without any geometric details, we want to review
the product structures on Floer cohomology, starting with the Hamiltonian version (these
go back to [49, [42] for closed symplectic manifolds, with details for Liouville manifolds given
in [44]). First, one has the pair-of-pants product

(2.43) HE*(X2) @ HE* (A1) — HF*(\1 + A2).
This is associative and graded commutative. It is also symmetric with respect to the pairing
induced by ({2.7)), in the sense that

(13, 2021) = (—1)" (29, 2125) = (—1)1" {125, 22)

for x; € HF*()\l), To € HF*(A2)7 T3 € HF*(—)\l — )\2)

Moreover, the product with the element (2.14) yields a continuation map. Using that and
associativity, one can show that there is an induced product on HF*(o0), which makes that

(2.44)

space into a graded commutative unital ring. For A;, Ay > 0, the following diagram involving
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(2.15) commutes:

(2.45) H*(M;K) ® H*(M;K) HF*(\g) @ HF*()\)
cup—productl Lproduct
H*(M;K) HF* (A + Aa).

Similarly, if A\;, Ao < 0 one has a commutative diagram

(2.46) HF*(\y) ® HF*(\,) H:,(M;K) ® H,(M;K)
productt lcup—product
HF* (A, + Ao) H:, (M;K).

(There is also a mixed-sign version, which we omit.)

Maybe more interestingly, Hamiltonian Floer cohomology also carries a Lie bracket
(2.47) [ -] s HE*(A\g) @ HF*(\) — HF* 1\ + Ag).

This can actually be expressed in terms of the product and BV operator, as

(2.48) (29, 21] = A(wox1) — (Axy)xy — (—1)1"2l2y(Axy).

The bracket with vanishes (because of , Al = 0, and the fact that A commutes
with continuation maps; there is also an alternative more direct proof). Finally, one can
show, either from ([2.48]) or directly from the definition, that the bracket commutes with
continuation maps, hence induces a bracket on HF*(oco). In fact, that space acquires the
structure of a BV algebra [52, Section 8].

Returning to (maybe) more familiar territory, the Lagrangian Floer cohomology groups come
with an associative product, the triangle product

(2.49) HF*(Ly, Ly) ® HF*(Lo, Ly) — HF*(Lo, Ls).

For Ly = Ly = Ly = L, this is compatible with the isomorphism . More generally, the
class in HF°(L, L) corresponding to 1 € H°(L;K) under that isomorphism is a two-sided
unit for . On the other hand, the product combined with integration over L yields a
n