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DISJOINABLE LAGRANGIAN SPHERES AND DILATIONS

PAUL SEIDEL

Abstract. We consider open symplectic manifolds which admit dilations (in the sense

previously introduced by Solomon and the author). We obtain restrictions on collections of

Lagrangian submanifolds which are pairwise disjoint (or pairwise disjoinable by Hamiltonian

isotopies) inside such manifolds. This includes the Milnor fibres of isolated hypersurface

singularities which have been stabilized (by adding quadratic terms) sufficiently often.

1. Introduction

(1a) Motivation. What restrictions are there on collections of pairwise disjoint Lagrangian

submanifolds inside a given symplectic manifold? This is a reasonably natural question, or

rather class of questions, in symplectic topology. One can view it as an attempt to bound the

“size” or “complexity” of the symplectic manifold under consideration, in analogy with the

fact that a closed oriented surface of genus g > 1 can contain at most 3g−3 pairwise disjoint

simple closed curves in a nontrivial sense (nontrivial means that no curve is contractible,

and no two are isotopic). There is additional motivation for specializing to Lagrangian

spheres, because of their relation with nodal degenerations in algebraic geometry; and from

there possibly further to the three-dimensional case, where collections of disjoint Lagrangian

three-spheres provide the starting point for the surgery construction from [57], itself modelled

on small resolutions of nodal singularities.

By way of example, let’s consider hypersurfaces in projective space, of a fixed degree and

dimension. Starting from a hypersurface with nodal singularities, one obtains a collection of

pairwise disjoint Lagrangian spheres in the corresponding smooth hypersurface, as vanishing

cycles (as an aside, note that since one can choose a hyperplane which misses all the original

nodes, the Lagrangian spheres obtained in this way actually all lie inside an affine smooth

hypersurface). There are numerous constructions of hypersurfaces with many nodes in the

literature, see for instance [9, vol. 2, p. 419] or [35, Section 8.1]. On the other hand, the size of

collections obtained in this way is limited by known upper bounds for the possible number of
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2 PAUL SEIDEL

nodes, such as those derived in [58] using Hodge-theoretic methods. It is an interesting open

question how these bounds compare to the situation for general collections of Lagrangian

spheres. There are reasons to be cautious about proposing a direct relationship. One is the

possible existence of nodal degenerations where the special fibre is not itself a hypersurface,

even though a smooth fibre is (this is certainly an issue in the toy case of algebraic curves:

the maximal number of nodes on a plane curve of degree d, including reducible curves, is

d2/2−d/2 by the Plücker formula, and that is less than 3g−3 = 3d2/2−9d/2 for d ≥ 5). From

a wider perspective, there are other constructions of Lagrangian spheres (as components of

real loci, or more speculatively in terms of SYZ fibrations) which are not a priori related to

vanishing cycles.

(1b) First observations. Let’s return to the general question as formulated at the outset.

For any oriented closed totally real submanifold Ln in an almost complex manifold M2n, the

selfintersection equals the Euler characteristic up to a dimension-dependent sign:

(1.1) [L] · [L] = (−1)n(n+1)/2χ(L).

This holds mod 2 without the orientation assumption (there is also a mod 4 version in the

unoriented case, involving the Pontryagin square [39]; but we won’t use it).

Theorem 1.1 (folklore). Fix some field K. Consider closed totally real submanifolds L ⊂M

such that χ(L) is not a multiple of the characteristic char(K). If char(K) 6= 2, we also assume

that our L are oriented. Let (L1, . . . , Lr) be a collection of such submanifolds, which are

pairwise disjoint (or disjoinable by homotopies). Then the classes [L1], . . . , [Lr] ∈ Hn(M ;K)

are linearly independent.

That follows directly from (1.1), since any relation a1[L1] + · · ·+ ar[Lr] = 0 implies that

(1.2) 0 = [Li] · (a1[L1] + · · ·+ ar[Lr]) = (−1)n(n+1)/2ai χ(Li) ∈ K,

and χ(Li) is nonzero as an element of K by assumption. The limitations of such topolog-

ical methods are clear: C3 contains an embedded totally real three-sphere, hence also (by

translating it) an infinite number of pairwise disjoint such spheres.

Within symplectic topology properly speaking, one can group the existing literature into two

approaches. The first one is quite general in principle, but hard to carry out in practice: it

considers Lagrangian submanifolds as objects of the Fukaya category with suitable properties,

and proceeds via a classification of such objects up to isomorphism. The second approach

is a priori limited to manifolds with semisimple quantum cohomology rings. One could

view the two as related, since in many examples the Fukaya categories of manifolds with

semisimple quantum cohomology are themselves semisimple, hence lend themselves easily to
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a classification of objects. However, the point of the second approach is precisely that one

can bypass an explicit study of the Fukaya category, and instead just use general properties

of open-closed string maps. We will now survey both approaches briefly.

(1c) Classification results for the Fukaya category. Possibly the earliest example of

this strategy is [51, Theorem 1(4)] about cotangent bundles of odd-dimensional spheres (the

resulting statement is in fact a special case of an earlier theorem [36, Théorème 2]; but the

earlier proof lies outside the scope of our discussion, because it uses a geometric trick specific

to homogeneous spaces). Since then, the state of knowledge about cotangent bundles has

developed considerably [40, 27, 3]. Maybe more importantly for our purpose, there is at

least one case other than cotangent bundles which has been successfully analyzed in this

way, namely the Milnor fibres of type (Am) singularities [5, 54]:

Theorem 1.2 ([54, Theorems 1.1 and 1.2]). Let M2n be the Milnor fibre of the (Am) sin-

gularity, with n ≥ 3 odd and arbitrary m. Consider Lagrangian submanifolds L ⊂ M which

are rational homology spheres and Spin. Then:

(i) [L] ∈ Hn(M ;Z) is nonzero and primitive.

(ii) Two such submanifolds which are disjoint must have different mod 2 homology classes.

The necessary algebraic classification of objects in the Fukaya category of M was carried

out by hand in [5] for m = 2, whereas [54] relied on algebro-geometric results from [30, 29].

As an illustration of the difficulty of obtaining such a classification, note that so far we only

have partial analogues of the results from [30] for the remaining simple singularities, of types

(Dm) and (Em) [16].

(1d) Manifolds with semisimple quantum cohomology. Results that fall into this

class can be found in [23, 13] (a significant precursor is [6, 8]). Here is a sample:

Theorem 1.3 (A version of [23, Theorem 1.25]). Let M be a closed monotone symplec-

tic manifold, whose (Z/2-graded) quantum cohomology QH ∗(M) = H∗(M ;K), defined over

some algebraically closed field K, is semisimple. Consider monotone Lagrangian submani-

folds L ⊂ M which are oriented and Spin (if char(K) = 2, one can drop the Spin assump-

tion). Let (L1, . . . , Lr) be a collection of such submanifolds, which are pairwise disjoint or

disjoinable by Hamiltonian isotopies.

(i) Suppose that HF ∗(Li, Li) 6= 0 for all i. Then r ≤ dim QH 0(M), where the right hand

side is the sum of the even Betti numbers (with K-coefficients).
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(ii) In the same situation, suppose that all the [Li] ∈ Hn(M ;K) are nonzero. Then they must

be linearly independent.

A short outline of the argument may be appropriate. First, semisimplicity of QH ∗(M) means

that its even part splits as

(1.3) QH 0(M) =
⊕
i∈I

Kui,

where (ui)i∈I is a collection of pairwise orthogonal idempotents. Because the intersection

pairing is nondegenerate, it must be nontrivial on each summand (1.3). Fix some L, and

consider the open-closed string map

(1.4) HF ∗(L,L) −→ QH ∗+n(M).

Because of its compatibility with the structure of HF ∗(L,L) as a module over QH ∗(M),

the image of (1.4) in even degrees consists of a subset of summands in (1.3). Moreover, if

HF ∗(L,L) is nonzero, the composition of (1.4) with
∫
M

: QH 0(M)→ K is nontrivial, hence

the previously mentioned subset is nonempty. Finally, if HF ∗(L0, L1) is well-defined and

vanishes, then the images of the open-closed string maps for L0 and L1 must be mutually

orthogonal with respect to the intersection pairing (by a form of the Cardy relation, see for

instance [54, Proposition 5.3 and Figure 2]). This implies (i) provided that all Lagrangian

submanifolds involved have minimal Maslov number > 2, so that HF ∗(L0, L1) is always well-

defined. To remove that additional assumption, one decomposes QH 0(M) into eigenspaces

of quantum multiplication with c1(M), and considers the Lagrangian submanifolds with any

given Maslov index 2 disc count separately, using [12, Lemma 6.7].

It is instructive to compare the argument so far with Theorem 1.1. What we have done is to

replace the intersection pairing on Hn(M) with that on each summand in (1.3) considered

separately. The shift to even degrees ensures that the argument can be effective even if n

is odd, but at the same time prevents us from proving that the [Li] are nonzero (which is

indeed false, even for M = S2). Instead, for part (ii) of Theorem 1.3 one argues as follows.

The class [L] is the image of the unit element in HF 0(L,L) under (1.4). In particular, if [L]

is nonzero, then so is HF ∗(L,L). Now, for a collection (L1, . . . , Lr) as in the statement of

the theorem, we get a decomposition of QH ∗(M) into direct summands, and each [Li] must

lie in a different summand, which precludes having any nontrivial relations (in fact, not just

relations over K, but ones with coefficients in QH 0(M) as well).

(1e) New results. We now turn to the actual substance of this paper.

Theorem 1.4. Let M2n, n > 1 odd, be a (finite type complete) Liouville manifold. This

should satisfy c1(M) = 0, and we choose a trivialization of the anticanonical bundle K−1
M .
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Assume that its (Z-graded) symplectic cohomology SH ∗(M), with coefficients in some field

K, contains a dilation. Then there is a constant N such that the following holds. Consider

closed Lagrangian submanifolds in M which are K-homology spheres and Spin. Suppose that

(L1, . . . , Lr) is a collection of such submanifolds, which are pairwise disjoint (or disjoinable

by Lagrangian isotopies). Then r ≤ N .

The notion of dilation comes from [56]. The Spin assumption on Lagrangian submanifolds

arises as usual from sign considerations in Floer theory, and one can drop it in char(K) = 2.

That would make no difference in the context of Theorem 1.4, since a homology sphere over a

field of characteristic 2 must be Spin anway. However, one can do a little better by exploiting

fortuitous cancellations. Recall that the (F2-coefficient) Kervaire semi-characteristic of a

closed manifold of odd dimension n is [33, 38]

(1.5) χ1/2(L) =

(n−1)/2∑
i=0

dimH i(L;F2) ∈ F2.

Semi-characteristics have appeared before in the context of totally real embeddings [11], but

that has apparently nothing to do with our result, which is the following:

Theorem 1.5. Let M be as in Theorem 1.4, and suppose that char(K) = 2. Replace the

topological assumptions on closed Lagrangian submanifolds L ⊂M with the following weaker

ones:

(1.6) H1(L;K) = 0 and χ1/2(L) = 1.

Then the same conclusion will hold.

Making the bound N explicit depends on an understanding of the geometry of the dilation. In

particularly simple cases, one may be able to make a connection with the ordinary topology

of M . Here is an instance where that is possible:

Theorem 1.6. Take an affine algebraic hypersurface {p(z1, . . . , zn+1) = 0} ⊂ Cn+1, with

n odd, which has an isolated singular point at the origin. Suppose that the Hessian of the

defining polynomial at the singular point satisfies

(1.7) rank(D2pz=0) ≥ 3.

Let M be the Milnor fibre of that singularity. Consider Lagrangian submanifolds L ⊂ M

which are Q-homology spheres and Spin. If (L1, . . . , Lr) is a collection of such submanifolds

which are pairwise disjoint (or disjoinable by Lagrangian isotopies), then the classes [Li] ∈
Hn(M ;Q) are linearly independent.
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Theorem 1.7. Take M as in Theorem 1.6. Fix a field K of odd positive characteristic.

Consider Lagrangian submanifolds L ⊂ M which are K-homology spheres and Spin. If

(L1, . . . , Lr) is a collection of such submanifolds which are pairwise disjoint (or disjoinable

by Lagrangian isotopies), then the classes [Li] ∈ Hn(M ;K) span a subspace of dimension

≥ r/2 (in particular, by setting r = 1 one sees that each [Li] must be nonero).

Theorem 1.8. Take M as in Theorem 1.6, but sharpening (1.7) to rank(D2pz=0) ≥ 4. Take

a field K of characteristic 2. If we consider Lagrangian submanifolds L ⊂ M which satisfy

(1.6), then the same conclusion as in Theorem 1.7 holds.

Obviously, (1.7) holds if p is triply stabilized, which means that

(1.8) p(z) = z2
1 + z2

2 + z2
3 + p̃(z4, . . . , zn+1);

and conversely, any polynomial satisfying (1.7) can be brought into the form (1.8) by a local

holomorphic coordinate change [9, Vol. I, Section 11.1].

Example 1.9. As a concrete example, take the (Am) singularity of odd dimension n > 1.

In that case, we nearly recover Theorem 1.2(i) (the missing piece would be an extension of

Theorem 1.8 to the lowest dimension n = 3, to show that the homology classes are nonzero

mod 2). If (L1, . . . , Lr) is a collection of Lagrangian Q-homology spheres which are Spin and

pairwise disjoinable, then Theorem 1.6, together with the fact that the subspace of Hn(M ;Q)

spanned by ([L1], . . . , [Lr]) must be isotropic for the intersection pairing, yields the bound

(1.9) r ≤
[
m+ 1

2

]
.

This is sharp, and much better than what one would get from applying Theorem 1.2(ii) (which

on the other hand has no counterpart among our results).

In spite of these discrepancies between our results and those of [54] (which could probably be

narrowed by investing more work on both sides), there is a fundamental similarity between

our notion of dilation (giving rise to an infinitesimal symmetry of the Fukaya category) and

the C∗-actions used in that paper. We refer interested readers to [55, Lectures 13–19], where

both viewpoints are considered.

Concerning the comparison with Theorem 1.3 and other results of that nature, we were un-

able to find a substantial relation between them and our approach. There is some common

philosophical ground, in that both approaches are based on replacing the intersection pairing

in middle-dimensional homology with another one, which has different symmetry properties;

and that for this replacement to work, strong restrictions on the class of symplectic mani-

folds under consideration have to be imposed. However, in Theorem 1.3 the replacement is
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essentially the even-dimensional cohomology, whereas in our case we remain in the middle

dimension but replace cohomology with a different space, built from symplectic cohomology.

Finally, note that in all our theorems, we have required the (complex) dimension n to be

odd. In fact, the proof of Theorem 1.4 works for all n > 1; and there is an analogue of

Theorem 1.5 for even n, which involves half of the ordinary Euler characteristic instead of

the semi-characteristic (in the proof, part (ii) of Corollary 3.12 would be used instead of

(iii), with the rest of the argument remaining the same). Similar remarks apply to Theorems

1.6–1.8. However, the resulting statements are not stronger than what one can get in an

elementary way, which means from Theorem 1.1.

(1f) Contents. The structure of this paper is as follows. Section 2 is aimed at readers

interested in the strength and applicability of our results. For that purpose, the main aim is

to understand what dilations are. As one important example, this includes the construction

of dilations on the Milnor fibres appearing in Theorems 1.6–1.8. Very little of this material

is new, but we have tweaked the presentation from [56] slightly to make it more convenient

for our purpose.

Section 3 is aimed at readers primarily interested in seeing the overall structure of the argu-

ment. We introduce a number of additional algebraic structures associated to Hamiltonian

Floer cohomology groups, and state their properties without proof. Those properties, when

combined with the ones introduced in [56], lead directly to the theorems stated above.

In Section 4 we flesh out the argument, which largely means specifying the families of Rie-

mann surfaces which give rise to the various (cochain level) operations underlying our con-

structions. Section 5 provides selected technical details.

The last part, Section 6, placed there so as not to interrupt the main expository thread,

mentions some parallel constructions in other parts of mathematics. This is not strictly

necessary for our argument, but can provide additional motivation.

(1g) Acknowledgments. This work benefited from conversations that the author had

with Mohammed Abouzaid, Ailsa Keating, and Ivan Smith. Major expository changes were

made following referees’ reports on the initial version of the manuscript. Partial support was

provided by NSF grant DMS-1005288, and by a Simons Investigator Award from the Simons

Foundation.
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2. Background

(2a) Hamiltonian Floer cohomology. Our geometric setup for Floer cohomology is

almost identical to that in [56, Section 3], but we reproduce it to make the discussion more

self-contained.

Setup 2.1. Let (M,ωM) be a non-compact symplectic manifold, together with an exhausting

(proper and bounded below) function HM ∈ C∞(M,R). Let XM be the Hamiltonian vector

field of HM . We write PM ⊂ R for the set of those λ such that the 1-periodic orbits of

λXM are not contained in a compact subset of M . One always has 0 ∈ PM ; and λ ∈ PM iff

−λ ∈ PM . We will assume throughout that HM is such that PM has measure zero (so that in

particular, R \ PM is unbounded); note that this implies that all critical points of HM must

be contained in a compact subset.

The other assumptions are of a more technical kind, and needed in order to get the Floer-

theoretic machinery off the ground in the desired form. First of all we assume that M is

exact, meaning that ωM = dθM for some fixed θM . We also want it to satisfy c1(M) = 0,

and fix a trivialization (up to homotopy) of the anticanonical bundle K−1
M = Λtop

C (TM).

Finally, we need some property that prevents solutions of Floer-type equations from escaping

to infinity. This holds with respect to some fixed compatible almost complex structure IM .

Namely, for every compact subset K ⊂ M there should be another such subset K̃ ⊂ M ,

such that the following holds. Suppose that S is a connected compact Riemann surface with

nonempty boundary, νS a real one-form on it such that dνS ≤ 0, and u : S → M a solution

of

(2.1) (du−XM ⊗ νS)0,1 = 0,

where the (0, 1)-part is taken with respect to IM . Then, what we want is that

(2.2) u(∂S) ⊂ K =⇒ u(S) ⊂ K̃.

Example 2.2. The most important class of examples are (finite type complete) Liouville

manifolds. These are (M,ωM , θM , HM) where the Liouville vector field ZM dual to θM satis-

fies

(2.3) ZM .HM = HM outside a compact subset.

This implies that a sufficiently large level set N = H−1
M (c), c � 0, is a closed contact type

hypersurface. Moreover, the part of M lying outside that hypersurface, which is H−1
M ([c,∞)),

can be identified with the positive half of the symplectization of N . With respect to this

identification, XM is c times the Reeb vector field for θM |N . Hence, cPM ∩R>0 is the set of

periods of Reeb orbits (including multiples).
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One uses an almost complex structure IM such that dHM ◦ IM = −θM outside a compact

subset, and derives the required property (2.2) from a maximum principle argument. Of

course, the condition c1(M) = 0 still has to be imposed separately.

The first step is to define Floer cohomology groups HF ∗(λ) for each λ ∈ R \ PM . To do

that, choose a time-dependent function Hλ ∈ C∞(S1 ×M,R), S1 = R/Z, with associated

time-dependent vector field Xλ. This should satisfy Hλ,t = λHM outside a compact subset,

and we also require all solutions of

(2.4)

{
x : S1 −→M,

dx/dt = Xλ,t(x)

to be nondegenerate. Choose a time-dependent compatible almost complex structure Jλ
such that Jλ,t = IM outside a compact subset of M , and for which all solutions of Floer’s

equation are nondegenerate. Fix an arbitrary coefficient field K. We then define CF ∗(λ) =

CF ∗(Hλ, Jλ) to be the associated Floer complex, which is a finite-dimensional Z-graded

complex of K-vector spaces, with generators (at least up to sign) corresponding bijectively

to solutions of (2.4). The differential will be denoted by d. Its cohomology HF ∗(λ) is

independent of (Hλ, Jλ) up to canonical isomorphism. Note that its Euler characteristic is

not interesting:

(2.5) χ(HF ∗(λ)) = χ(M) for all λ ∈ R \ PM .

Even though Floer cohomology is independent of all choices, we find it convenient to co-

ordinate those choices in a particular way, namely to require that

(2.6) (H−λ,t, J−λ,t) = (−Hλ,−t, Jλ,−t).

for all λ. Then, there is a canonical nondegenerate pairing

(2.7) 〈·, ·〉 : CF ∗(λ)⊗ CF 2n−∗(−λ) −→ K.

We use the same notation for the induced cohomology level pairing, which gives rise to a

Poincaré duality type isomorphism

(2.8) HF ∗(−λ) ∼= HF 2n−∗(λ)∨.

The next observation is that Floer cohomology groups come with continuation maps [48]

(2.9) HF ∗(λ1) −→ HF ∗(λ0), λ0 ≥ λ1.

To define these, one takes the cylinder S = R × S1 with coordinates (s, t), and equips it

with a one-form νS such that νS = λ0 dt for s � 0, νS = λ1 dt for s � 0, and dνS ≤ 0
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everywhere. One then chooses a perturbation datum, namely a section KS of the pullback

bundle T ∗S → S×M (or equivalently a one-form on S with values in the space of functions

on M), such that KS = Hλ0,t dt for s� 0, KS = Hλ1,t dt for s� 0, and

(2.10) KS = HMνS on S × {the complement of some compact subset of M}.

Similarly, let JS be a family of compatible almost complex structures on M parametrized by

(s, t) ∈ S, such that JS,s,t = Jλ0,t for s� 0, JS,s,t = Jλ1,t for s� 0, and

(2.11) JS,s,t = IM on S × {the complement of some compact subset of M}.

Assuming that the choices have been made generically, the chain map underlying (2.9) is

defined by counting solutions of the associated equation

(2.12)


u : S −→M,

(du− YS)0,1 = 0,

lims→−∞ u(s, ·) = x0,

lims→+∞ u(s, ·) = x1,

where YS is the one-form on S with values in Hamiltonian vector fields on M , derived from

KS, and the (0, 1)-part is formed with respect to JS. Outside a compact subset of the target

space M , the Cauchy-Riemann equation in (2.12) reduces to (2.1). Moreover, all possible

limits x0, x1 are contained in a compact subset, by the definition of PM . These two facts

together with (2.2) imply that all solutions u are contained in a compact subset.

The maps (2.9) are independent of all choices, and well-behaved with respect to composition.

This makes HF ∗(λ) into a directed system, and one can define

(2.13) HF ∗(∞)
def
= lim−→λ HF ∗(λ).

For the next step, take a partial compactification of the cylinder, S = (R×S1)∪{s = +∞}
(which is a Riemann surface isomorphic to the complex plane C). All previous conditions

for s � 0 should now be replaced by ones asking that the relevant data extends smoothly

over s = +∞. Note that the number λ = λ0 associated to the remaining end s � 0 must

then necessarily satisfy λ > 0 (λ ≥ 0 because of dνS ≤ 0, and λ 6= 0 since we always ask

that λ /∈ PM). The analogue of (2.12) yields a cochain in CF 0(λ), whose cohomology class

(2.14) 1 ∈ HF 0(λ), λ > 0,

is independent of all choices, and preserved under continuation maps. One can further

generalize this construction by using the evaluation map at the point s = +∞. By asking

that u(+∞) should go through the stable manifold of an exhausting Morse function on M ,

one can construct a chain map from the associated Morse complex to the Floer complex,
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hence a map

(2.15) H∗(M ;K) −→ HF ∗(λ), λ > 0.

This is again canonical and compatible with continuation maps. Moreover, the previously

defined (2.14) is simply the image of 1 ∈ H0(M ;K) under (2.15). Note that dually in terms

of (2.8), we have maps into compactly supported cohomology

(2.16) HF ∗(−λ) −→ H∗cpt(M ;K) ∼= H2n−∗(M ;K), λ > 0.

The composition

(2.17) HF ∗(−λ) −→ H∗cpt(M ;K) −→ H∗(M ;K) −→ HF ∗(λ)

can again be identified with the relevant continuation map, by a gluing argument which (like

the construction of the maps (2.15), (2.16) in itself) is modelled on those in [42].

Example 2.3. In the situation from Example 2.2, the limit (2.13) is the symplectic cohomol-

ogy SH ∗(M) in the sense of [59], which is a symplectic invariant (see also [18] for a closely

related construction). In this situation, if µ is the length of the shortest periodic Reeb orbit,

so that (0, µ)∩PM = ∅, one finds that (2.15) is an isomorphism for λ ∈ (0, µ). On the other

hand, passing to the limit yields a map

(2.18) H∗(M ;K) −→ SH ∗(M),

which played a crucial role in early applications to the Weinstein conjecture [59, 60].

The next piece of structure we need is the BV (Batalin-Vilkovisky) operator

(2.19) ∆ : HF ∗(λ) −→ HF ∗−1(λ)

(see [52, Section 8], [56, Section 3], or [15, Definition 2.11]). This squares to zero; commutes

with continuation maps (in particular, induces an operation on (2.13), for which we use

the same notation); and vanishes on the image of (2.15). The definition uses a family of

equations of type (2.12) depending on an additional parameter r ∈ S1. The Riemann surface

Sr = R×S1 is the same for all r, but it comes with a family of one-forms νSr , inhomogeneous

terms KSr , and almost complex structures JSr . The precise requirement is that

(2.20)

νSr = λ dt

KSr = Hλ,tdt

JSr,s,t = Jλ,t

 for s� 0,

νSr = λ dt

KSr = Hλ,t−rdt

JSr,s,t = Jλ,t−r

 for s� 0.

As one sees from this, it is possible (but not really necessary) to choose νSr to be the same

for all r. On the other hand, it is usually impossible to choose the same KSr and JSr for

all r, because that would require Hλ and Jλ to be constant in t, which is incompatible
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with the transversality requirement for (2.4). Hence, the parametrized moduli space of pairs

(r, u), where r ∈ S1 and u : S → M is a solution of the appropriate equation (2.12), can

have a nontrivial zero-dimensional part, which one uses to construct the cochain level map

underlying (2.19).

(2b) Dilations. We have now collected all the ingredients (Floer cohomology, continuation

maps, the element (2.14), the BV operator) that enter into the following:

Definition 2.4. A dilation is a class B ∈ HF 1(λ), for some λ > 0, whose image B̃ ∈ HF ∗(λ̃)

under the continuation map, for some λ̃ ≥ λ, satisfies ∆B̃ = 1.

We will also allow λ̃ =∞ or λ =∞; in particular in the context of Example 2.2, where for

λ = ∞ we would be talking about an element of SH 1(M) (this is the formulation used in

Theorem 1.4). Note that by definition (2.13), any element of HF ∗(∞) comes from HF ∗(λ)

for some λ > 0, and the same applies to relations between elements, such as the equation

∆B = 1. Hence, saying that a solution of ∆B = 1 exists in HF ∗(∞) is equivalent to saying

that Definition 2.4 is satisfied for some finite values of λ, λ̃. However, for the purpose of the

present paper the quantitative aspect, which means trying to get λ (and, less importantly,

λ̃) to be as small as possible, is also important.

Example 2.5. Take M = T ∗Sn, with the standard forms ωM = dθM , and a function HM

such that HM(x) = ‖x‖ is the length (in the standard round metric) outside a compact subset.

This means that, at infinity, XM is the normalized geodesic flow. The isomorphism [60, 47, 1]

(2.21) HF ∗(∞) = SH ∗(M) ∼= Hn−∗(LS
n;K)

with the homology of the free loop space, can be used to show the following [56, Example 6.1

and Example 6.4]:

• T ∗S1 does not admit a dilation for any choice of coefficient field K;

• T ∗S2 admits a dilation iff char(K) 6= 2;

• T ∗Sn, n > 2, admits a dilation for all choices of coefficient field K.

Let’s focus on the situation where dilations exist. For the general reasons mentioned in

Example 2.3, the map (2.15) is an isomorphism if 0 < λ < 2π. On the other hand, a

Conley-Zehnder index computation shows that in nonnegative degrees, the maps

(2.22) HF ∗(λ) −→ HF ∗(∞), ∗ ≥ 0,
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are isomorphisms as soon as λ > 2π. Hence, one can choose any λ̃ = λ > 2π in Definition

2.4, which means that the dilation appears at the earliest theoretically possible stage.

We refer to [56, Example 6.4] as well as Example 3.14 below for further discussion of cotangent

bundles. A very basic way to provide other examples is this:

Example 2.6. Take M0 and M1 be Liouville manifolds, with functions as in Example 2.2.

If M0 admits a dilation, then so does M0×M1. This follows from the Künneth formula [41].

On the other hand, a look at some classes of Liouville manifolds arising from algebraic

geometry indicates that the existence of dilations is a very restrictive condition.

Example 2.7. Take a smooth hypersurface M̄ ⊂ CP n+1 of degree d ≥ 3, and remove its

intersection with a generic hyperplane. The result is an affine hypersurface M ⊂ Cn+1 which,

when equipped with the restriction of the standard symplectic form, is unique (depends only

on d) up to symplectic isomorphism. It is Liouville and comes with a trivialization of its

anticanonical bundle, hence belongs to the class of manifolds from Example 2.2 (in the case

d = 2, which we have excluded, this would lead to the previously studied example M ∼= T ∗Sn).

Take K to be of characteristic 0. It then turns out that M never admits a dilation. The case

n = 1 is of an elementary topological nature [56, Example 6.1], and we won’t discuss it

further, but we will give a sketch of the proof in the higher-dimensional situation.

Start by taking d = 3 and n ≥ 4. The contact hypersurface N describing the structure of M

at infinity is a circle bundle over the cubic hypersurface in CP n, hence (by weak Lefschetz)

satisfies

(2.23) Hq(N ;K) = 0 for q 6= 0, n− 1, n, 2n− 1.

There is a Morse-Bott spectral sequence converging to SH ∗(M), with starting page (similar

to [50, Equation (1)], which would be the analogue for d = n+ 2)

(2.24) Epq
1 =


Hq(M ;K) p = 0,

H(5−2n)p+q(N ;K) p < 0,

0 p > 0.

In view of (2.23) and the dimension assumption, it follows that SH 1(M) = 0, hence M

cannot admit a dilation (strictly speaking, this part of the argument also requires knowing

that the symplectic cohomology of M is not identically zero, but that it easy to show; for

instance, by exhibiting a Lagrangian sphere inside M).
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Now consider the affine cubic threefold (d = 3 and n = 3). This is clearly a hyperplane section

of the affine cubic fourfold. Hence, there is a Lefschetz fibration which has the threefold as a

fibre and the fourfold as total space. By [56, Proposition 7.3] (see also Section 2c below for

related results), if the fibre admits a dilation, so must the total space. We apply this argument

in reverse to show that the affine cubic threefold does not admit a dilation. One can iterate

the same argument to reach the corresponding conclusion for the affine cubic surface.

Finally, a degeneration argument shows that the affine hypersurface of degree d can be sym-

plectically embedded into that of degree d + 1. These embeddings are automatically exact if

n > 1. An application of Viterbo functoriality now shows that since cubic hypersurfaces do

not admit dilations, neither do those of higher degree.

Example 2.8. Take a affine algebraic surface {p(z1, z2, z3) = 0} ⊂ C3 with an isolated

singularity at the origin (the dimensional restriction is crucial, compare Example 2.13 below).

From that singularity, one obtains a symplectic four-manifold, its Milnor fibre, which (after

attaching a semi-infinite cone to the boundary) belongs to the class of Liouville manifolds

from Example 2.2. It turns out that if the singularity is not one of the simple ones (not

of ADE type), its Milnor fibre does not admit a dilation (for any choice of coefficient field

K). This can be proved by combining a construction of Lagrangian tori from [32] with results

from singularity theory, as follows.

[32] first considers the simple-elliptic singularities of type Ẽ6, Ẽ7, Ẽ8 (P8, X9 and J10 in

Arnol’d’s notation [9]), and shows that each of their Milnor fibres contains an exact La-

grangian torus. This implies the desired result, since the existence of a dilation rules out hav-

ing closed exact Lagrangian submanifolds which are Eilenberg-MacLane spaces [56, Corollary

6.3]. Any singularity which is not simple is adjacent to one of the three we have considered

(see e.g. [22, Proposition 10.1 and Table 3]). Adjacence comes with a symplectic embedding

of Milnor fibres [31, Lemma 9.9], and one then argues as in Example 2.7. The remaining

case of simple (ADE type) singularities is open at present (except for (A1), where the Milnor

fibre is T ∗S2).

(2c) Lefschetz fibrations. We want to discuss one more way to construct dilations. This

largely follows [56, Section 7], but we pay a little more attention to the quantitative aspect,

which means to the choice of Hamiltonian functions.

Let (F, ωF , θF , HF , IF ) be as in Setup 2.1. Suppose that F is the fibre of an exact symplectic

Lefschetz fibration

(2.25) π : M −→ C.
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The definition of such a fibration is as in [56, Definition 7.1] (except that we are a little less

restrictive concerning the kinds of fibres that are allowed; in [56] the fibres were required

to be Liouville manifolds). Take the given function HF on the fibre. Only its behaviour at

infinity really matters, so we can assume without loss of generality that HF vanishes on a

large compact subset. Since the Lefschetz fibration is trivial at infinity in fibrewise direction,

there is then a preferred way to extend HF to a function on M . Define

(2.26) HM = HF + εHC ∈ C∞(M,R),

where: HF stands for the previously mentioned extension; HC(z) = |z − b|2/2 is a function

on the base, pulled back to M (where b ∈ C is some base point, assumed to be close to

infinity, so that the fibration is locally trivial near π−1(b) ∼= F ); and ε > 0 is a positive

constant. Similarly, given the almost complex structure IF on the fibre, one can construct

(in a non-unique way) a compatible almost complex structure IM on the total space, which

makes π pseudo-holomorphic. One can show that M , equipped with these data and with

its given exact symplectic form ωM = dθM , again satisfies the conditions from Setup 2.1.

To distinguish notationally between fibre and total space, we denote the respective Floer

cohomology groups by HF ∗(F, λ) and HF ∗(M,λ), and similarly for the underlying chain

complexes.

Lemma 2.9. Suppose that 2n = dim(F ) ≥ 4. Fix some µ > 0. Then, provided that the

constant ε is chosen sufficiently small, we have

(2.27) HF ∗(M,λ) ∼= HF ∗(F, λ), ∗ ≤ 1,

for all |λ| < µ. More precisely, if λ is in that range and the right hand side of (2.27) is

defined, then so is the left hand side, and the isomorphism holds.

This is a simplified version of [56, Lemma 7.2]. Briefly, the Hamiltonian vector field of (2.26)

satisfies

(2.28) Dπ(XM) = ψεXC

where: XC = i(z − b)∂z; and ψ ∈ C∞(M,R≥0) is a function which vanishes precisely at the

critical points of π, and equals 1 outside a compact subset, as well as in a neighbourhood of

π−1(b). By taking ε small, one ensures that all one-periodic orbits of Xλ are either contained

in π−1(b), or else constant orbits located at the critical points. After a suitable perturbation

to achieve transversality, one finds that as graded vector spaces,

(2.29) CF ∗(M,λ) ∼= CF ∗(F, λ) ⊕
⊕

x∈Crit(π) K[−1− n].

The first summand comes from 1-periodic orbits lying in π−1(b) ∼= F , and the second one

from the critical points of π, whose Conley-Zehnder index is n+ 1 ≥ 3. The main remaining
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point is an energy computation [56, Equation (7.6)], which shows that Floer trajectories with

both limits lying in π−1(b) must entirely be contained in that fibre. A variation of the same

argument shows:

Lemma 2.10. In the situation of Lemma 2.9, the isomorphisms (2.27) are compatible with

the BV operator, and with continuation maps. Moreover, for 0 < λ < µ the following

diagram commutes:

(2.30)

HF ∗(M,λ)
∼= // HF ∗(F, λ)

H∗(M ;K)

OO

∼= // H∗(F ;K)

OO
∗ ≤ 1,

where the ↑ maps are induced by (2.15), and the bottom → is the ordinary restriction map.

For later use, it is convenient to formalize one of the applications of these ideas.

Definition 2.11. Let M be a manifold with an exact symplectic structure ωM = dθM and

a trivialization of K−1
M . We say that M has property (H) if there is a compatible almost

complex structure IM , a function HM , and a µ > 0, such that the following holds:

(i) The conditions of Setup 2.1 are satisfied;

(ii) µ, 2µ /∈ PM ;

(iii) the map H∗(M ;K)→ HF ∗(µ) is an isomorphism;

(iv) there is an element B ∈ HF 1(2µ) satisfying ∆B = 1 ∈ HF 0(2µ).

As a consequence of Lemmas 2.9 and 2.10, together with a version of [56, Lemma 7.2], one

then has:

Corollary 2.12. Given an exact symplectic Lefschetz fibration, if the fibre has property (H),

then so does the total space.

Example 2.13. Take a hypersurface

(2.31) {p(z1, . . . , zn+1) = 0} ⊂ Cn+1

with an isolated singular point at the origin. Let H = {h1z1 + · · ·+hn+1zn+1 = 0} ⊂ Cn+1 be

a generic hyperplane through the origin. Then, one can make the Milnor fibre of the original

singularity into the total space of an exact symplectic Lefschetz fibration, whose fibre is the
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Milnor fibre of

(2.32) {p(z1, . . . , zn+1) = 0} ∩H ⊂ H.

Very roughly speaking, the map which makes up the Lefschetz fibration is constructed from

the linear function z 7→ h1z1 + · · ·hn+1zn+1.

Because of the genericity assumption, if the rank of the Hessian (D2p)z=0 is less than n+ 1,

then its restriction to H will have the same rank. In particular, if rank((D2p)z=0) = n,

then (2.32) has a nondegenerate singularity at the origin, so its Milnor fibre is T ∗Sn−1.

By iterating this idea and applying Corollary 2.12 as well as Example 2.5, one obtains the

following conclusion: the Milnor fibre of (2.31) has property (H) provided that

(2.33) rank((D2p)z=0) ≥

{
3 char(K) 6= 2,

4 char(K) = 2.

(2d) Lagrangian submanifolds. We return to background material in Floer theory, still

within the general framework of Setup 2.1. Throughout, we will consider Lagrangian sub-

manifolds of the following kind:

Setup 2.14. L ⊂ M is assumed to be closed, connected, exact, and graded (which implies

that it is oriented). If char(K) 6= 2, we also assume that L is Spin.

Remark 2.15. If H1(L;K) = 0 for some coefficient field K, then also H1(L;Z) = 0, hence

H1(L;R) = 0. This is easiest to see in converse direction: if H1(L;R) = Hom(H1(L;Z),R)

is nonzero, H1(L;Z) has a nontrivial free summand, hence H1(L;K) = Hom(H1(L;Z);K)

is nonzero for any K. Hence, a Lagrangian submanifold with H1(L;K) = 0 automatically

satisfies the exactness condition from Setup 2.14, and also admits a grading.

Given a pair (L0, L1) of such submanifolds, there is a well-defined Floer cohomology group

HF ∗(L0, L1), which is a finite-dimensional graded K-vector space. To define it, one chooses

some λL0,L1 ∈ R. Take a time-dependent Hamiltonian HL0,L1 , where the time parameter is

now t ∈ [0, 1], and such that HL0,L1,t = λL0,L1HM outside a compact subset. One additionally

requires that all chords

(2.34)


x : [0, 1] −→M,

x(0) ∈ L0, x(1) ∈ L1,

dx/dt = XL0,L1,t(x)

should be nondegenerate. Correspondingly, take a time-dependent almost complex structure

JL0,L1 so that JL0,L1,t = JM outside a compact subset, and which makes all solutions of
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Floer’s perturbed pseudo-holomorphic disc equation (with boundary values on L0, L1) non-

degenerate. One then obtains a Floer complex CF ∗(L0, L1) = CF ∗(HL0,L1 , JL0,L1), whose

differential we denote by µ1
L0,L1

following standard practice for Fukaya categories. Its co-

homology HF ∗(L0, L1) is independent of all choices up to canonical isomorphism. Its Euler

characteristic recovers the intersection number:

(2.35) χ(HF ∗(L0, L1)) = (−1)n(n+1)/2[L0] · [L1].

In the special case L0 = L1 = L, there is a canonical isomorphism

(2.36) HF ∗(L,L) ∼= H∗(L;K).

There is also an analogue of (2.8), namely

(2.37) HF ∗(L1, L0) ∼= HF n−∗(L0, L1)∨.

Remark 2.16. If L0 6= L1, one can coordinate choices to realize (2.37) on the chain level,

as in (2.7). However, that becomes much harder for L0 = L1 (in view of (2.36), this relates

to the issue of implementing a strict chain level Poincaré duality in ordinary topology, with

the additional constraint of having to do so within Floer theory). This will cause a few

complications later on (see Section 4).

Any Lagrangian submanifold (within the class of Setup 2.14, as always) gives rise to an

element

(2.38) [[L]] ∈ HF n(λ), for any λ ∈ R \ PM .

To define this, one considers the Riemann surface with boundary S = (−∞, 0] × S1, with

coordinates (s, t). Equip S with a one-form νS such that dνS ≤ 0 everywhere, and νS = λdt

on the region where s � 0. Choose an inhomogeneous term KS as before, with KS,s,t =

Hλ,t dt for s� 0, and which satisfies the following boundary condition:

(2.39) The dt component of KS,0,t vanishes on L.

Additionally, choose a family of almost complex structures JS. One then considers an equa-

tion of type (2.12) for maps u : S → M , but with boundary values u(∂S) ⊂ L. Counting

isolated solutions of this equation yields the cochain representative for (2.38).

We want to describe some of its properties. First of all, for a fixed L but varying λ, the

classes (2.38) are mapped to each other by continuation maps. Moreover, if λ > 0, then

[[L]] is simply the image of the ordinary homology class [L] under the map Hn
cpt(M ;K) →

Hn(M ;K) → HF n(λ). On the other hand, for λ < 0, [[L]] maps to [L] under the map

HF n(λ)→ Hn
cpt(M ;K), which means that it is a refinement of the ordinary homology class,
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in general containing additional information. Finally, these classes are always annihilated by

the BV operator:

(2.40) ∆[[L]] = 0.

Roughly speaking, (2.40) is proved as follows. By a gluing argument, ∆[[L]] can be defined

directly using a family (Sr), r ∈ S1, of Riemann surfaces. These surfaces are all isomorphic

to our previous S = (−∞, 0] × S1, and the parametrization of the auxiliary data must be

such that KSr,s,t = Hλ,t+r, JSr,s,t = Jλ,t+r for s� 0. Within this class, one can achieve that

the isomorphism S0
∼= Sr given by rotation with angle 2πr is compatible with all the data.

Then, the parametrized moduli space associated to the family (Sr) decomposes as a product

with a circle, hence has no isolated points, which implies the desired vanishing result.

In fact, one can generalize the construction of (2.38) to yield a pair of mutually dual (after

switching the sign of λ) open-closed string maps

HF ∗(λ) −→ HF ∗(L,L),(2.41)

HF ∗(L,L) −→ HF ∗+n(λ).(2.42)

If one thinks of H∗(L;K) instead of HF ∗(L,L), then the construction can be carried out in

a way similar to (2.15) and (2.16), involving an auxiliary Morse function on L. The image

of the unit element in HF 0(L,L) ∼= H0(L;K) under (2.42) recovers (2.38).

(2e) Product structures. Finally, and without any geometric details, we want to review

the product structures on Floer cohomology, starting with the Hamiltonian version (these

go back to [49, 42] for closed symplectic manifolds, with details for Liouville manifolds given

in [44]). First, one has the pair-of-pants product

(2.43) HF ∗(λ2)⊗ HF ∗(λ1) −→ HF ∗(λ1 + λ2).

This is associative and graded commutative. It is also symmetric with respect to the pairing

induced by (2.7), in the sense that

(2.44)
〈x3, x2x1〉 = (−1)|x3|〈x2, x1x3〉 = (−1)|x1|〈x1x3, x2〉
for x1 ∈ HF ∗(λ1), x2 ∈ HF ∗(λ2), x3 ∈ HF ∗(−λ1 − λ2).

Moreover, the product with the element (2.14) yields a continuation map. Using that and

associativity, one can show that there is an induced product on HF ∗(∞), which makes that

space into a graded commutative unital ring. For λ1, λ2 > 0, the following diagram involving
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(2.15) commutes:

(2.45) H∗(M ;K)⊗H∗(M ;K) //

cup-product
��

HF ∗(λ2)⊗ HF ∗(λ1)

product
��

H∗(M ;K) // HF ∗(λ1 + λ2).

Similarly, if λ1, λ2 < 0 one has a commutative diagram

(2.46) HF ∗(λ2)⊗ HF ∗(λ1) //

product

��

H∗cpt(M ;K)⊗H∗cpt(M ;K)

cup-product

��
HF ∗(λ1 + λ2) // H∗cpt(M ;K).

(There is also a mixed-sign version, which we omit.)

Maybe more interestingly, Hamiltonian Floer cohomology also carries a Lie bracket

(2.47) [·, ·] : HF ∗(λ2)⊗ HF ∗(λ1) −→ HF ∗−1(λ1 + λ2).

This can actually be expressed in terms of the product and BV operator, as

(2.48) [x2, x1] = ∆(x2x1)− (∆x2)x1 − (−1)|x2|x2(∆x1).

The bracket with (2.14) vanishes (because of (2.48), ∆1 = 0, and the fact that ∆ commutes

with continuation maps; there is also an alternative more direct proof). Finally, one can

show, either from (2.48) or directly from the definition, that the bracket commutes with

continuation maps, hence induces a bracket on HF ∗(∞). In fact, that space acquires the

structure of a BV algebra [52, Section 8].

Returning to (maybe) more familiar territory, the Lagrangian Floer cohomology groups come

with an associative product, the triangle product

(2.49) HF ∗(L1, L2)⊗ HF ∗(L0, L1) −→ HF ∗(L0, L2).

For L0 = L1 = L2 = L, this is compatible with the isomorphism (2.36). More generally, the

class in HF 0(L,L) corresponding to 1 ∈ H0(L;K) under that isomorphism is a two-sided

unit for (2.49). On the other hand, the product combined with integration over L yields a

nondegenerate (and graded symmetric) pairing

(2.50) HF ∗(L1, L0)⊗ HF n−∗(L0, L1)
product−−−−→ HF n(L0, L0) ∼= Hn(L0;K)

∫
L0−−→ K,

which reproduces (2.37).
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3. The main argument

(3a) Degree one classes and twisting. We will now explain how to prove our main

results, Theorems 1.4–1.8, using certain additional structures on Floer cohomology groups.

Those structures build on the ones described in Section 2, but go a little further. For the

moment, we will state their existence and properties without proofs, and instead concentrate

on what those properties imply. Some of the necessary details were carried out in [56], and

the rest will be provided in Sections 4–5 below. Throughout, we work in the context from

Setup 2.1. We fix some µ > 0 such that µ /∈ PM , 2µ /∈ PM , and a class B ∈ HF 1(2µ), which

can be arbitrary for now.

Associated to B is a twisted version of Floer cohomology, which we denote by H̃∗. It fits

into a long exact sequence

(3.1) · · · → HF ∗−1(−µ)
−B−→ HF ∗(µ) −→ H̃∗ −→ HF ∗(−µ)

−B−→ HF ∗+1(µ)→ · · ·

Here, by −B we mean the multiplication map x 7→ −Bx in the sense of (2.43). The

existence of H̃∗ should not come as a surprise: on the chain complex level, one takes a chain

map representing the multiplication map, and then H̃∗ is the cohomology of its mapping

cone. More importantly, there is a pairing

(3.2) I : H̃∗ ⊗ H̃2n−∗ −→ K.

This can be partly understood in terms of the natural duality (2.7) between HF ∗(±µ). More

precisely, the statement is the following:

Lemma 3.1. Take x̃0, x̃1 ∈ H̃∗. Suppose that in the long exact sequence (3.1), x̃1 is the

image of some x1 ∈ HF ∗(µ), and that x̃0 maps to ξ0 ∈ HF ∗(−µ). Then

(3.3) I(x̃0, x̃1) = −〈ξ0, x1〉.

(A parallel statement holds with the roles of x̃0 and x̃1 reversed.)

Corollary 3.2. I is nondegenerate.

Proof. Suppose that x̃0 lies in the nullspace, so I(x̃0, x̃1) = 0 for all x̃1. By Lemma 3.1,

the image of x̃0 in HF ∗(−µ) must vanish, which means that x̃0 itself comes from a class

x0 ∈ HF ∗(µ). But then, the corresponding formula with the two entries reversed shows that

〈ξ, x0〉 = 0 for all ξ ∈ HF ∗(−µ) which satisfy Bξ = 0. Because of the commutativity of the

product and its cyclic symmetry (2.44), the multiplication maps

(3.4)
B : HF k(−µ) −→ HF k+1(µ),

B : HF 2n−k−1(−µ) −→ HF 2n−k(µ)
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are dual (up to signs) with respect to (2.8). It follows that x0 itself lies in the image of

multiplication by B, hence x̃0 vanishes. �

Lemma 3.1 does not describe I fully, and indeed there is an extra ingredient that enters into

its definition, which is related to the failure of (2.43) to be commutative on the chain level.

One can see an indirect sign of that extra ingredient in the following symmetry formula:

Lemma 3.3. Take classes x̃0, x̃1 ∈ H̃∗, and denote their images in HF ∗(−µ) by ξ0, ξ1. Then

(3.5) I(x̃0, x̃1) + (−1)|x̃0|I(x̃1, x̃0) = 〈B, [ξ0, ξ1]〉.

Looking slightly ahead to the case of dilations, this implies the following:

Corollary 3.4. In the situation of Lemma 3.3, suppose that ∆B = 1 ∈ HF 0(2µ), and that

∆ξ0 = 0, ∆ξ1 = 0. Let λ0, λ1 ∈ H∗(M ;K) be the images of ξ0, ξ1 under (2.16). Then

(3.6) I(x̃0, x̃1) + (−1)|x̃0|I(x̃1, x̃0) = λ0 · λ1,

where the right hand side is the standard intersection pairing.

Proof. In view of (4.15), one can rewrite (3.5) as

(3.7) I(x̃0, x̃1) + (−1)|x̃0|I(x̃1, x̃0) = 〈B,∆(ξ0ξ1)〉 − 〈B, (∆ξ0)ξ1 + (−1)|ξ0|ξ0(∆ξ1)〉.

Under our assumptions, the last two terms on the right hand side vanish. Because of the

general compatibility of the BV operator with the pairing 〈·, ·〉, the remaining term equals

〈∆B, ξ0ξ1〉 = 〈1, ξ0ξ1〉, which is also the integral of the image of ξ0ξ1 in H∗cpt(M ;K). Using

(2.46), one now converts this into a standard intersection number. �

(3b) Improved intersection numbers. We will now summarize some of the material

from [56], and then simplify it further for our purpose. Under the open-closed string map

(2.41), the given B ∈ HF 1(2µ) gives rise to a class in HF 1(L,L) ∼= H1(L;K). Suppose that

this class vanishes. One can then equip L with some additional structure, which makes it

into a B-equivariant Lagrangian submanifold, denoted by L̃. To make the definition precise,

one needs to choose a cochain representing B, and then consider its image under the chain

level realization of the open-closed string map; the additional structure is a cochain bounding

that image. The possible choices of B-equivariant structures on L form an affine space over

HF 0(L,L) ∼= H0(L;K) = K (for more details, see [56, Section 4] and Section 4 below).

The B-equivariance property allows us to introduce a secondary open-closed string operation,

which takes on the form of an endomorphism

(3.8) ΦL̃0,L̃1
: HF ∗(L0, L1) −→ HF ∗(L0, L1)
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for any pair (L̃0, L̃1) of B-equivariant Lagrangian submanifolds. These endomorphisms were

defined in [56, Equation (4.4)], where their basic properties were established. In particular

[56, Equation (4.9)]:

Lemma 3.5. The maps (3.8) are derivations with respect to the product (2.49).

Corollary 3.6. ΦL̃,L̃ acts trivially on HF 0(L,L) ∼= H0(L;K) ∼= K. �

These endomorphisms can be used to define a refined intersection number [56, Definition 4.3],

written formally as a function of a parameter q. It assigns to a pair (L̃0, L̃1) the expression

(3.9) q 7−→
∑
σ

qσχ(HF ∗(L0, L1)σ),

where σ runs over elements of the algebraic closure K̄; and HF ∗(L0, L1)σ is the corresponding

generalized eigenspace of (3.8) inside HF ∗(L0, L1)⊗K K̄, whose Euler characteristic we take.

Setting q = 1 recovers the ordinary intersection number via (2.35). For our purpose, what

is relevant is the first piece of information beyond that, expressed formally as the derivative

of (3.9) at q = 1:

Definition 3.7. For B-equivariant Lagrangian submanifolds L̃0, L̃1, the supertrace (Lef-

schetz trace) of (3.8) will be denoted by

(3.10)

L̃0 • L̃1 = Str(ΦL̃0,L̃1
)

=
∑
k

(−1)kTr(Φk
L̃0,L̃1

) =
∑
σ

σ χ(HF ∗(L0, L1)σ) ∈ K.

The first equality in (3.10) is the definition (and shows that L̃0•L̃1 lies in K ⊂ K̄). The others

are reformulations, spelling out the notion of Lefschetz trace in two equivalent ways. The

notation Φk
L̃0,L̃1

stands for the degree k part, meaning the action of ΦL̃0,L̃1
on HF k(L0, L1).

Because the definition is based on Floer cohomology, the following is obvious:

Corollary 3.8. If L0 and L1 are disjoinable by a Hamiltonian isotopy, then L̃0 • L̃1 = 0. �

For a B-equivariant Lagrangian submanifold, there is a class

(3.11) [[L̃]] ∈ H̃n,

which maps to [[L]] under the map H̃∗ → HF ∗(−µ) from (3.1). The details, like the definition

of H̃∗ itself, are not difficult, see Section 4 below. The following relation between (3.10) and

the pairing (3.2) is the main insight of this paper:

Theorem 3.9. I([[L̃0]], [[L̃1]]) = (−1)n(n+1)/2L̃0 • L̃1.
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This is in fact a form of the Cardy relation, similar in principle to that in [2] (see also [25] and

[54, Section 5b]), but involving the class B and the equivariant structures on the Lagrangian

submanifolds as auxiliary data.

(3c) Consequences. From now on, let’s impose the condition that B should be a dilation

(meaning that one sets λ = 2µ in Definition 2.4, with some arbitrary λ̃). Then [56, Equation

(4.16)]:

Lemma 3.10. ΦL̃,L̃ acts as the identity on HF n(L,L) ∼= Hn(L;K) ∼= K.

By combining this with the derivation property (Lemma 3.5) and looking at the pairing

(2.50), we get [56, Corollary 4.6]:

Corollary 3.11. Under the duality isomorphism (2.37), ΦL̃1,L̃0
corresponds to the dual of

id − ΦL̃0,L̃1
.

This has the following implications for (3.10):

Corollary 3.12. (i) L̃1 • L̃0 = (−1)n+1L̃0 • L̃1 + (−1)n(n−1)/2[L0] · [L1].

(ii) If n is even, 2(L̃ • L̃) = χ(L), where for char(K) > 0, the right hand side is the Euler

characteristic reduced mod char(K). If char(K) = 2, one finds that χ(L) must be even, and

then there is a refined equality L̃ • L̃ = χ(L)/2 ∈ K.

(iii) If n is odd and char(K) = 2, then L̃ • L̃ = χ1/2(L) is the semi-characteristic (1.5).

(iv) If L is a K-homology sphere, L̃ • L̃ = (−1)n.

Proof. (i) is an immediate consequence of Corollary 3.11 and (2.35).

(ii) The first statement follows from (i) by setting L̃1 = L̃0 = L̃. For the more refined

statement in char(K) = 2, note that Corollary 3.11 implies that the generalized eigenspaces

of ΦL̃,L̃ satisfy

(3.12) HF ∗(L,L)σ ∼= HF ∗(L,L)1−σ,

where the isomorphism is one of Z/2-graded vector spaces. Because we are in characteristic

2, σ 6= 1 − σ for all σ ∈ K̄, hence (3.12) always relates different eigenspaces. This implies

that the total dimension of Floer cohomology, hence also its Euler characteristic, must be

even. More precisely, we have

(3.13) (−1)n(n+1)/2χ(L)/2 =
∑
σ∈S

χ(HF ∗(L,L)σ) ∈ Z,
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where on the right hand side we use a subset S of eigenvalues which contains exactly one

out of each pair {σ, 1 − σ}. Reducing both sides mod 2 removes the sign on the left hand

side, and allows one to write the right hand side as

(3.14)
∑
σ∈S

σ χ(HF ∗(L,L)σ) + (1− σ)χ(HF ∗(L,L)1−σ) = L̃ • L̃.

(iii) Write Φk
L̃,L̃

for the action on degree k cohomology. By Corollary 3.11,

(3.15) Tr(Φk
L̃,L̃

) + Tr(Φn−k
L̃,L̃

) = dimHk(L;K) mod 2.

Therefore,

(3.16) L̃ • L̃ =

(n−1)/2∑
k=0

Tr(Φk
L̃,L̃

) + Tr(Φn−k
L̃,L̃

) = χ1/2(L).

(iv) Follows immediately from Corollary 3.6 and Lemma 3.10. �

With Theorem 3.9 as well as Corollaries 3.8 and 3.12 as our main tools, we now proceed to

establish the main results.

Proof of Theorem 1.4. Let (L1, . . . , Lr) be a collection of Lagrangian submanifolds as in the

statement of the theorem (in fact, we do not strictly speaking need them to be pairwise

disjoinable, but only that HF ∗(Li, Lj) = 0 for i 6= j). Each Li is automatically exact, can be

equipped with a grading, and can also be made B-equivariant; all this because H1(Li;K) = 0.

By Corollary 3.8 and Corollary 3.12(iv), we have

(3.17) L̃i • L̃j =

{
(−1)n i = j,

0 i 6= j.

In view of Theorem 3.9, this means that the classes [[L̃i]] must be linearly independent, which

yields the desired bound r ≤ N , with N = dim H̃n. �

It is worth while to discuss the bound we have just obtained a little further. Let ρ be the

rank of either of the maps (3.4) for k = n. Because they appear as connecting maps in (3.1),

we get

(3.18) dim H̃n = 2(dim HF n(µ)− ρ).
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Lemma 3.1 shows that the image of HF n(µ) inside H̃n is a half-dimensional subspace which

is isotropic for I. Because (3.17) is nondegenerate, the intersection of the subspace spanned

by the [[L̃i]] with any isotropic subspace can be at most of dimension r/2. Moreover, if K ⊂ R,

then (3.17) is definite, hence any such intersection must be actually 0. This implies that:

Corollary 3.13. In the situation of Theorem 1.4, the classes ([[L1]], . . . , [[Lr]]) must span a

subspace of HF n(−µ) of dimension ≥ r/2. If K ⊂ R, that bound can be improved to r,

meaning that ([[L1]], . . . , [[Lr]]) are actually linearly independent. �

Proof of Theorem 1.5. This uses the same argument as Theorem 1.4, except that the non-

triviality of the diagonal entries in (3.17) is now a consequence of Corollary 3.8(iii). �

Proof of Theorem 1.6. As explained in Example 2.13, these manifolds M have property (H).

The argument from Corollary 3.13 applies, and shows that the [[Li]] are linearly independent

in HF n(−µ). But by the dual of Definition 2.12(iii), the map HF n(−µ)→ Hn
cpt(M ;K) is an

isomorphism, and we know that it maps [[Li]] to the ordinary homology class [Li]. Hence,

the [Li] are themselves linearly independent. �

Proof of Theorem 1.7. This is the same as for Theorem 1.6, with the weaker bound coming

from Corollary 3.13. �

Proof of Theorem 1.8. This is the same as for Theorem 1.7, except that as in the proof of

Theorem 1.5, we use Corollary 3.8(iii) to obtain (3.17) �

Example 3.14. Let M = T ∗L be the cotangent bundle of a three-dimensional lens space

L = L(p, q), and take char(K) = 0. As in Example 2.5, one has

(3.19) SH ∗(M) ∼= H3−∗(LL;K).

In particular, the direct summand of SH ∗(M) coming from contractible loops is isomorphic

to H3−∗(LS
3;K)Z/p, and one can use that to show that M admits a dilation, compare [56,

Example 6.4]. To be more precise, take a Hamiltonian such that HM(x) = ‖x‖ at infinity,

with respect to the round metric. Then, again following Example 2.5, for all sufficiently large

µ one has

(3.20) HF 3(µ) ∼= SH 3(M) ∼= H0(LL;K) ∼= Kp.

The proof of Theorem 1.4 then yields an upper bound of 2p for the number of pairwise

disjoinable Lagrangian K-homology spheres in M .
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This behaviour (linear growth in p) may seem far off the mark, in view of the nearby La-

grangian conjecture, but it can be motivated as follows. One can enlarge the Fukaya category

by admitting Lagrangian submanifolds (still as in Setup 2.14) equipped with flat K-vector

bundles ξL → L. The analogue of (2.36) in that context is that Floer cohomology reproduces

ordinary cohomology with local coefficients:

(3.21) HF ∗((L, ξ0), (L, ξ1)) ∼= H∗(L; HomK(ξ0, ξ1)).

All our results apply to such objects as well. In the current example, suppose that we take

K = C. The zero-section L admits flat complex line bundles (ξ0, . . . , ξp−1), which have

holonomy 1, e2πi/p, . . . , e2πi(p−1)/p around a fixed generator of π1(L) ∼= Z/p. The resulting

objects of the enlarged Fukaya category behave formally like pairwise disjoinable Lagrangian

homology spheres:

(3.22) HF ∗((L, ξi), (L, ξj)) ∼=

{
H∗(L;C) i = j,

0 otherwise.

This gets us within a factor of 2 of the upper bound derived above.

Alternatively, one could use K = R, where our upper bound can be improved to p using

Corollary 3.13. However, ξi is isomorphic to ξp−i as a real flat vector bundle. Hence, the

number of non-isomorphic indecomposable flat bundles is [p/2] + 1, which is still not sharp

(except for the case p = 2, which is L = RP 3).

At this point, our remaining tasks are: the precise definition of the pairing (3.2), with the

proof of its properties (Lemmas 3.1 and, less importantly for our purpose, Lemma 3.3); and

the proof of Theorem 3.9.

4. Chain level operations

(4a) General framework. The structure of operations on Floer cochain complexes is gov-

erned by the geometry of a certain class of Riemann surfaces. To bring out this structure

clearly, we temporarily suppress many of the technical details, and proceed in a style rem-

iniscent of TCFTs (Topological Conformal Field Theories, compare e.g. [19]). Of course,

many examples have already occured in Section 2, even though at that point we did not

attempt to put them in a common framework.
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Setup 4.1. Take S = S̄ \ Σ, where S̄ is a compact Riemann surface with boundary, and Σ

is a finite set of points, which may include both

(4.1)

{
interior points Σcl = Σ \ ∂S̄ and

boundary points Σop = Σ ∩ ∂S̄.

The case where S itself is closed is excluded. At each point of Σcl , we want to have additional

structure, namely a preferred tangent direction (a nonzero tangent vector on S̄ determined

up to positive real multiples). We further assume that the points of Σ have been divided into

inputs and outputs, denoted by Σin and Σout . Write

(4.2)
Σcl ,out = Σcl ∩ Σout , Σcl ,in = Σcl ∩ Σin ,

Σop,out = Σop ∩ Σout , Σop,in = Σop ∩ Σin .

Additionally, S should come with a real one-form νS ∈ Ω1(S) such that

(4.3)


dνS ≤ 0 everywhere,

dνS = 0 near Σ,

νS|∂S = 0 near Σop,

where the last condition means that νS|∂S ∈ Ω1(∂S) vanishes at points close enough to Σop.

This allows us to associate to each point ζ ∈ Σ a real number λζ ∈ R. Namely, for ζ ∈ Σcl ,

we define λζ by integrating νS along a small loop around ζ; this winds clockwise if ζ is an

input, and anticlockwise if it is an output. For ζ ∈ Σop, we define λζ by integrating νS along

a small path going from one component of ∂S close to ζ to the other one; as before, the

winding direction is clockwise for inputs and anticlockwise for outputs.

So far, we have considered the Riemann surfaces by themselves. Adding target space data

is done as follows:

Setup 4.2. Fix a target manifold as in Setup 2.1. Moreover, for each pair (L0, L1) of

Lagrangian submanifolds as in Setup 2.14 fix a number λL0,L1 ∈ R (it is possible, but not

necessary, to set all these numbers to 0).

For ζ ∈ Σcl , we then require that λζ /∈ P. We also want to have a Lagrangian submanifold

LC associated to each boundary component C ⊂ ∂S. For any point ζ ∈ Σop, this determines

a pair of Lagrangian submanifolds (Lζ,0, Lζ,1). If ζ is an input, then Lζ,0 is associated to the

component of ∂S preceding ζ in the boundary orientation, and Lζ,1 to the successive one;

whereas if ζ is an output, the convention is opposite. Given that, we require that

(4.4) λζ = λLζ,0,Lζ,1 for ζ ∈ Σop.
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Assume that Floer cochain complexes CF ∗(λ) and CF ∗(L0, L1) have been defined (the latter

definition involves the constants λL0,L1 , even though the outcome is independent of that

choice up to quasi-isomorphism). The operation associated to a single S as in Setup 4.1, 4.2,

is a chain map

(4.5)
⊗

ζ∈Σcl,in

CF ∗(λζ)⊗
⊗

ζ∈Σop,in

CF ∗(Lζ,0, Lζ,1) −→
⊗

ζ∈Σcl,out

CF ∗(λζ)⊗
⊗

ζ∈Σop,out

CF ∗(Lζ,0, Lζ,1)

of degree n(−χ(S̄) + 2|Σcl ,out |+ |Σop,out |).

Remark 4.3. The distinction of points of Σcl into inputs and outputs is only a formality:

turning one into the other amounts to applying (2.7) to the associated maps (4.5). The same

is not quite true for Σop, because we do not have a strict chain level duality underlying (2.37),

see Remark 2.16.

As mentioned at the start of our discussion, several constructions from Section 2 fall into

this general category (or rather, the underlying cochain level structures do):

Continuation maps (2.9). As already described in our original discussion of these maps,

the relevant Riemann surface is S = R × S1, with ζ0 = {s = −∞} considered as output,

and ζ1 = {s = +∞} as input. The one-form is chosen so that the real numbers associated

to the two points of Σ are the λ0, λ1 appearing in (2.9). The tangent directions at both

points are chosen to point along the line {t = 0} (since S has a rotational symmetry, the

coordinate-independent part of this choice is the fact that the two tangent directions point

towards each other).

Unit elements (2.14). These have S = (R× S1) ∪ {s = +∞} ∼= C, with the only remaining

point ζ = {s = −∞} being an output. As before, our convention is to choose the tangent

vector at ζ to point along {t = 0} (but this time, this choice has no coordinate-independent

meaning).

Duality for Lagrangian Floer cohomology (2.37). Take S = R × [0, 1] with boundary con-

ditions L0, L1, but where both ends are taken to be inputs. This defines a chain map

CF ∗(L1, L0)⊗CF n−∗(L0, L1)→ K, which gives rise to a nondegenerate pairing on cohomol-

ogy.

Hamiltonian Floer cohomology classes associated to Lagrangian submanifolds (2.38). For

these, one takes S = (−∞, 0]×S1, which has a single boundary component labeled with the

Lagrangian submanifold L. We again choose {t = 0} as the tangent direction at the point

ζ = {s = −∞} (but this has no intrinsic meaning, just as in the case of the unit elements).

Note that because there is no restriction on νS|∂S, the condition that dνS ≤ 0 everywhere
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does not place any constraint on the number λ = λζ ∈ R \ PM . We denote the resulting

cochain representative of [[L]] by

(4.6) φ1,0
L ∈ CF n(λ).

Open-closed string maps (2.41), (2.42). We denote the underlying cochain level maps by

(4.7)
φ1,1
L : CF ∗(λ) −→ CF ∗(L,L),

φ̌1,1
L : CF ∗(L,L) −→ CF ∗+n(λ).

Both of them are defined using isomorphic Riemann surfaces, namely a disc with one interior

and one boundary puncture. For φ1,1
L , the convention is that the preferred tangent direction

at the interior puncture (which is an input) points towards the boundary puncture (which is

an output). For φ̌1,1
L , the roles of input and output are exchanged, and we also require that

the tangent direction should point in the opposite way (away from the boundary puncture).

Remark 4.4. Since the induced cohomology level maps (2.41), (2.42) are dual, by introducing

separate chain level models we are allowing a certain amount of redundancy. The fact that

we find it convenient to do so is an effect of the asymmetry first pointed out in Remarks 2.16

and Remark 4.3.

Pair-of-pants product (2.43): We denote the underlying cochain map by

(4.8) ^ : CF ∗(λ2)⊗ CF ∗(λ1) −→ CF ∗(λ1 + λ2).

The underlying Riemann surface S is a three-punctured sphere (two inputs, one output).

To fix the conventions more precisely, we identify S̄ with the standard round sphere, and

then take the punctures to be equidistributed along the equator. The tangent direction at

each puncture goes towards the next one, where the convention is that for the expression

〈x3, x2 ^ x1〉, the punctures are cyclically ordered in a way that corresponds to (x1, x2, x3).

By definition, the one-form νS is necessarily closed.

One can arrange the choices so that (2.44) is strictly realized on the cochain level, meaning

that

(4.9)
〈x3, x2 ^ x1〉 = (−1)|x3|〈x2, x1 ^ x3〉 = (−1)|x1|〈x1 ^ x3, x2〉
for x1 ∈ CF ∗(λ1), x2 ∈ CF ∗(λ2), x3 ∈ CF ∗(−λ1 − λ2).

This is technically unproblematic because cyclic permutations act freely on all possible triples

(λ1, λ2, λ3) (which is a consequence of the requirement that λk 6= 0); hence, what (4.9) is

asking is merely that we should coordinate the choices associated to two different geometric

situations, in parallel with (2.6).
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Triangle product (2.49): The chain map underlying this product is written as

(4.10) µ2
L0,L1,L2

: CF ∗(L1, L2)⊗ CF ∗(L0, L1) −→ CF ∗(L0, L2).

To define it, one takes S to be a disc with three boundary punctures.

Remark 4.5. The formalism built above does not accommodate maps which mix ordinary

(Morse or singular) cochains and Floer complexes, such as (2.15), (2.16) and (2.36). This

is acceptable for our purpose, since standard properties of those maps are all we need.

The next level of sophistication concerns operations induced by C∞-families of Riemann

surfaces (each as in Setup 4.1, 4.2) parametrized by a compact oriented manifold R. The

simplest situation is where R is closed. In that case, the associated operation is a chain

map as in (4.5), but whose degree is lower by dim(R). Two examples of this have occurred

previously:

BV operator. The chain level structure underlying (2.19) will be written as

(4.11) δ : CF ∗(λ) −→ CF ∗−1(λ).

Take a family (Sr) parametrized by r ∈ S1 = R/Z. As a Riemann surface, Sr = R × S1

is independent of r, and so is the one-form νSr = λ dt . The preferred tangent direction at

s = −∞ corresponds to t = r, while that at s = +∞ corresponds to t = 0. Equivalently,

S̄ = CP 1 with two marked points, and the tangent direction at one of those points rotates

anticlockwise with r, while the other is constant (up to isomorphism, the choice of which

marked point to use for each behaviour is irrelevant).

Lie bracket (2.47). One can define this in terms of a family of three-punctured spheres

parametrized by S1, where the tangent directions vary with the parameter. However, we

prefer to break up the parameter space into two intervals, and correspondingly to write the

bracket as a sum of two terms (4.14), see below.

Remark 4.6. At this point, the importance of the choice of tangent directions at points

of Σcl has hopefully become clear: if those directions were irrelevant, both the BV operator

and the bracket would have to vanish (which is indeed what happens for closed symplectic

manifolds).

A slightly more complicated situation occurs when the parameter space R is a compact

manifold with boundary (or corners). In that case, the resulting operation is still a map

whose degree is dim(R) lower than in (4.5). However, instead of being a chain map, it is

a nullhomotopy for the operation associated to ∂R (or, in the case where R has corners,
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r = 0 tangent directions

output

input 2

output

input 2

r = 1

input 1input 1

rotate anticlockwise
at output, clockwise
at inputs

Figure 1.

for the sum of operations associated to the codimension one boundary faces). Here is one

important example of such an operation:

Homotopy commutativity. Consider a family (Sr) of Riemann surfaces parametrized by

r ∈ R = [0, 1]. Each Sr is the standard sphere with three marked points equidistributed

along the equator, exactly as in the definition of the pair-of-pants-product. In fact, for r = 1

we use exactly the setup (one-forms, tangent directions) from (4.8). For r = 0 we use the

pullback of that by the automorphism of the sphere which swaps the two input points and

preserves the output point. This clearly defines the operation (x1, x2) 7→ (−1)|x2|·|x1|x1 ^ x2.

As r varies from 0 to 1, all tangent directions perform a half-turn: anticlockwise for the

output, clockwise for the inputs (Figure 1).

From our general setup, it then follows that the resulting operation

(4.12) ∗ : CF ∗(λ2)⊗ CF ∗(λ1) −→ CF ∗−1(λ1 + λ2)

satisfies

(4.13) d(x2 ∗ x1) + dx2 ∗ x1 + (−1)|x2|x2 ∗ dx1 = x2 ^ x1 − (−1)|x2| |x1|x1 ^ x2.

In other words, this is a secondary product which ensures the homotopy commutativity of

^. One can symmetrize ∗ to produce a bilinear chain map of degree −1, which is the chain

level version of (2.47):

(4.14) [x2, x1] = x2 ∗ x1 + (−1)|x1| |x2|x1 ∗ x2.

Remark 4.7. As this example demonstrates, the presence of an operation (4.11) of degree

−1 means that special care must be taken when defining secondary operations. There are

many more families which interpolate between S0 and S1, but where the tangent directions

rotate by different amounts (in π + 2πZ). This corresponds to adding integer multiples of

δ(x2 ^ x1), (δx2) ^ x1 or (−1)|x2|x2 ^ δx1 to (4.12). Each of those modified operations

would satisfy (2.48), but they are substantially different from each other.
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Finally, one can allow non-compact parameter spaces R as long as the behaviour at infinity is

tightly controlled. Namely, there must be a compactification R̄ to a manifold with corners.

As one approaches the boundary, the Riemann surfaces Sr must stretch along tubular or

strip-like ends, resulting in “broken surfaces” associated to points of R̄ \ R. A general

description of the allowed behaviour would be quite lengthy, and we prefer a case-by-case

discussion. For the most part, we will only encounter the unproblematic special case where

R is one-dimensional. There are also two two-dimensional instances relevant to us, one of

which we will mention now (though its role in our overall argument is relatively minor).

Relation between BV operator and Lie bracket. Consider the cochain level version of (2.48),

(4.15) δ(x2 ^ x1)− (δx2) ^ x1 − (−1)|x2|x2 ^ (δx1)− [x2, x1] = nullhomotopic.

Geometrically, let’s combine two copies of the interval defining (4.12) (one with reversed

orientation) to get a family over S1, which defines (4.14). Having done that, each term on

the left hand side of (2.48) corresponds to a particular family (three of them “broken”; these

are drawn in Figure 2) parametrized by a circle. Unsurprisingly, to relate them, one can

use a two-dimensional compactified parameter space R̄ which is a genus zero surface with

four boundary components. Removing three of the boundary circles yields a non-compact

surface R. One can construct a family (Sr) of surfaces parametrized by r ∈ R, with the

following properties. Over ∂R ∼= S1 this reproduces the family underlying (4.14); while, as

one approaches any one of the three components of ∂R̄ \ ∂R, the surfaces Sr are stretched

along tubular ends.

To show the existence of this two-dimensional family, consider all possible ways of choosing

tangent directions at the three marked points on the equator of the sphere. The moduli

space of all such choices can be identified with (S1)3, in particular its first homology is Z3.

If we move slightly inwards from each of three circles of R̄ \R, which means gluing together

the components of the “broken” surfaces from Figure 2, we get three circles in our moduli

space, whose homology classes are (0, 1, 0), (1, 0, 0) and (0, 0,−1), respectively. On the other

hand, combining two copies of the interval from Figure 1 yields a circle in the homology

class (1, 1,−1). Hence, there is a surface in moduli space which has these four circles (with

the orientation of the last one reversed) as boundaries. It is not difficult to see, given the

known topology of the moduli space, that the topology of this surface can be taken to be

the R̄ described above (actually, a surface with a different topology would do as well for our

purpose). This argument is not new, being part of the general derivation of BV structures

as operads associated to moduli spaces [28].

(4b) Secondary open-closed string maps. We now turn to the operations which are

central to our argument, and which go beyond those previously described in Section 2. The
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first two of these have the following form:

φ2,0
L : CF ∗(λ1) −→ CF ∗+n−1(λ0),(4.16)

φ1,2
L0,L1

: CF ∗(λ)⊗ CF ∗(L0, L1) −→ CF ∗−1(L0, L1).(4.17)

Their basic properties are:

dφ2,0
L (x) + (−1)nφ2,0

L (dx) = φ̌1,1
L (φ1,1

L (x))− (−1)n|x|x ^ φ1,0
L ,(4.18)

µ1
L0,L1

(φ1,2
L0,L1

(x, a)) + φ1,2
L0,L1

(dx, a) + (−1)|x|φ1,2
L0,L1

(x, µ1
L0,L1

(a))

= µ2
L0,L1,L1

(φ1,1
L1

(x), a)− (−1)|a|·|x|µ2
L0,L0,L1

(a, φ1,1
L0

(x)).
(4.19)

Remark 4.8. The analogue of the cohomology level relation expressed by (4.18) in ordinary

topology would be the fact that for i : L ↪→ M , pullback followed by pushforward is cup

product with the Poincaré dual class of L:

(4.20) i!i
∗ = [L] : H∗(M) −→ H∗+n(M).

Let’s look at φ2,0
L in more detail. On the right hand side of (4.18), φ1,1

L uses CF ∗(λ1); φ̌1,1
L

uses CF ∗(λ0); and φ1,0
L ∈ CF n(λ0 − λ1). Of course, we assume tacitly that all those Floer

complexes are defined, but otherwise the situation is unlike (2.9) in that no relation between

λ0 and λ1 needs to hold. The underlying family of Riemann surfaces is parametrized by

R = R. Each Sr is a disc with two interior punctures, carrying a closed one-form νSr
which has integral λ0 around the input puncture, and λ1 around the output puncture (hence∫
∂Sr

νSr = λ0 − λ1). Moreover, we assume that the preferred tangent direction at the input

puncture points towards the output puncture, while the tangent direction at the output

puncture points away from the input puncture. As r → −∞, the two punctures collide,

leading to bubbling off of a three-punctured holomorphic sphere. We equip that sphere

with the additional structures associated to ^, and the remaining once-punctured disc with
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those for φ1,0
L . In the other limit r →∞, the punctures move apart, and the disc is therefore

stretched out into two discs joined at the boundary; we equip those with the structures

associated to φ1,1
L and φ̌1,1

L , respectively. See Figure 3 for a more precise picture of the limits

(the dotted line merely indicates in which way the interior punctures are paired up).

The map φ1,2 is maybe more familiar. It is the second component (after φ1,1) of a chain

map, first mentioned in [50], from CF ∗(λ) to the Hochschild cochain complex of the Fukaya

category of M . As such, if x is a cocycle then φ1,2(x, ·) expresses the “centrality” of the

elements φ1,1(x). The underlying family of Riemann surfaces is again parametrized by R = R.

Each Sr is a disc with two boundary punctures and one interior puncture. We prefer to think

of it as Sr = (R× [0, 1])\{(0, tr)}, where the position of the interior puncture satisfies tr → 0

for r → −∞ and tr → 1 for r → +∞. The preferred tangent direction at that puncture is

vertical up for r � 0, vertical down for r � 0, and rotates anticlockwise by π between those

two extremes. The one-forms νSr are again closed. As r → ±∞, the surfaces split into two

components: one of them is a disc with three boundary punctures (with the same data used

to define µ2
L0,L1,L1

respectively µ2
L0,L0,L1

), and the other one is a disc with one interior and

one boundary puncture (exactly as in φ1,1
L0

respectively φ1,1
L1

); see Figure 4.

(4c) Cardy relations. Next, we consider operations induced by annuli. Those for a single

annulus are not particularly interesting, since they can be decomposed into products and

open-closed string maps up to chain homotopy. Instead, we want to look at a one-parameter
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family of annuli, which leads to maps

ψ0,1
L0,L1

: CF 1(L1, L1) −→ K,(4.21)

ψ̌0,1
L0,L1

: CF 1(L0, L0) −→ K,(4.22)

satisfying

ψ0,1
L0,L1

(µ1(a)) = (−1)n(n−1)/2Str(µ2
L0,L1,L1

(a, ·))− (−1)n〈φ1,0
L0
, φ̌1,1

L1
(a)〉,(4.23)

ψ̌0,1
L0,L1

(µ1(a)) = (−1)n(n−1)/2Str(µ2
L0,L0,L1

(·, a))− 〈φ1,0
L1
, φ̌1,1

L0
(a)〉.(4.24)

In the last term on the right hand side of (4.23), we take φ1,0
L0
∈ CF n(−λ) for some λ ∈ R,

and pair it with the result of applying φ̌1,1
L1

: CF ∗(L1, L1) → CF ∗+n(λ). Note that even

though λ does not appear in the notation (4.21), the definition of ψ0,1
L0,L1

depends on it. The

same applies to (4.22).

Remark 4.9. As a heuristic check on the signs, let a ∈ CF 0(L1, L1) be a cocycle represent-

ing the identity. Then the supertrace of multiplication is the Euler characteristic of Floer

cohomology, and on the other hand, [φ̌1,1
Lk

(a)] = [φ1,0
Lk

]. Vanishing of the right hand side of

(4.23) then recovers (1.1). A similar argument applies to (4.24).

Remark 4.10. The two operations are related in the following way. Suppose that L0 6= L1.

One can then arrange that CF ∗(L0, L1) and CF ∗(L1, L0) are strictly dual, see Remark 2.16.

Moreover, one can arrange that a limited analogue of (4.9) holds for the triangle product,
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namely

(4.25) 〈a3, µ
2
L0,L0,L1

(a2, a1)〉 = (−1)|a1|(n−|a1|)〈µ2
L1,L0,L0

(a1, a3), a2〉 :

CF ∗(L1, L0)⊗ CF ∗(L0, L1)⊗ CF ∗(L0, L0) −→ K.

This implies that for any a ∈ CF ∗(L0, L0),

(4.26) Str(µ2
L1,L0,L0

(a, ·)) = (−1)nStr(µ2
L0,L0,L1

(·, a)).

Once one has arranged that, it follows that (−1)nψ0,1
L1,L0

− ψ̌0,1
L0,L1

is a chain map. One can

show that it is actually nullhomotopic.

ψ0,1
L0,L1

is defined using a family (Sr) of Riemann surfaces parametrized by R = R. Each Sr
is an annulus with the two boundary sides labeled (L0, L1). The L1 side carries a boundary

puncture, and the one-form νSr is closed. As usual in Cardy-type relations, the conformal

structure of the annulus varies with r. As r → −∞, we have S̄r ∼= [0, lr]× S1 with lr →∞.

In the limit, we get a degeneration with two punctured disc components. We equip those

components with the structures used to define φ1,0
L0

and φ̌1,1
L1

, respectively. In particular, these

surfaces carry nontrivial closed one-forms, and therefore νSr is still nontrivial for r � 0. As

r → +∞, Sr degenerates into a disc with three boundary punctures, corresponding to µ2,

and that disc is glued to itself by matching the first input to the output (see Figure 5). The

idea for ψ̌0,1
L0,L1

is the same: we will not write down the details, but see Figure 6.

(4d) A higher relation. We continue with L0, L1 as before. Define a map

(4.27) CF 1(2µ) −→ K
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as the sum of the following six expressions:

(4.28)

(i) CF 1(2µ)
φ2,0L1−−→ CF n(µ)

〈φ1,0L0
,·〉

−−−−→ K,

(ii) CF 1(2µ)
φ1,1L1−−→ CF 1(L1, L1)

ψ0,1
L0,L1−−−−→ K,

(iii) x 7−→ Str(φ1,2
L0,L1

(x, ·)) multiplied by (−1)n(n−1)/2+1,

(iv) CF 1(2µ)
φ1,1L0−−→ CF 1(L0, L0)

ψ̌0,1
L0,L1−−−−→ K multiplied by (−1),

(v) CF 1(2µ)
φ2,0L0−−→ CF n(µ)

〈φ1,0L1
,·〉

−−−−→ K multiplied by (−1)n+1,

(vi) 〈·, φ1,0
L0
∗ φ1,0

L1
〉 multiplied by (−1)n.

These map dx to, respectively

(4.29)

(i) (−1)n〈φ1,0
L0
, φ̌1,1

L1
(φ1,1

L1
(x))〉 − 〈φ1,0

L1
^ φ1,0

L0
, x〉,

(ii) (−1)n+1〈φ1,0
L0
, φ̌1,1

L1
(φ1,1

L1
(x))〉+ (−1)n(n−1)/2Str(µ2

L0,L1,L1
(φ1,1

L1
(x), ·)),

(iii) (−1)n(n−1)/2Str(µ2
L0,L0,L1

(·, φ1,1
L0

(x)))− (−1)n(n−1)/2Str(µ2
L0,L1,L1

(φ1,1
L1

(x), ·)),

(iv) 〈φ1,0
L1
, φ̌1,1

L0
(φ1,1

L0
(x))〉 − (−1)n(n−1)/2Str(µ2

L0,L0,L1
(·, φ1,1

L0
(x))),

(v) (−1)n〈φ1,0
L0
^ φ1,0

L1
, x〉 − 〈φ1,0

L1
, φ̌1,1

L0
(φ1,1

L0
(x))〉,

(vi) 〈x, φ1,0
L1
^ φ1,0

L0
〉+ (−1)n+1〈x, φ1,0

L0
^ φ1,0

L1
〉.

Hence their sum maps dx to zero.

Proposition 4.11. (4.27) is nullhomotopic.
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Unsurprisingly, the proof of this involves constructing a two-parameter family of Riemann

surfaces, which are annuli with one interior puncture (rather than a boundary puncture as

in ψ0,1, ψ̌0,1). The compactified parameter space is a hexagon, whose sides correspond to

the six expressions above. We have represented the degenerations associated to the six sides

graphically in Figure 7, and those that happen at the corners in Figure 8. In principle, the

construction of such a family is not hard: suppose that we go around the boundary of the

hexagon and glue together all the components in Figure 7. This yields a family of annuli over

with an interior puncture and tangent direction at that puncture. Identify each such annulus

topologically with S1 × [0, 1], so that the interior puncture is at (0, 1/2) (this identification

is unique up to isotopy). Then, as we go around the boundary of the hexagon, the total

rotation number of the tangent direction is zero (we have a rotation by π in (vi) and by −π
in (iii), because for the latter the boundary orientation is opposite to the one chosen for the

parameter space of φ1,2). This allows one to fill in the family over the interior of the hexagon.

There are a few noteworthy points, in particular concerning the boundary side (vi), which

unlike all others consists of surfaces with three components. We postpone further discussion

of this to Section 5b.

Remark 4.12. The observation made in Remark 4.7 applies here as well. For instance,

suppose that we replace part (vi) of (4.28) with the a priori equally plausible

(4.30) − 〈·, φ1,0
L1
∗ φ1,0

L0
〉.

The resulting version of (4.27) would still be a chain map, but the analogue of Proposition

4.11 fails. Instead, the map CF 1(2µ)→ K defined in this way would be chain homotopic to

(4.31) ± 〈[φ1,0
L0
, φ1,0

L1
], ·〉 ' ±〈φ1,0

L0
^ φ1,0

L1
, δ(·)〉.

In particular, if we plug in a cocycle representing a dilation, the outcome would be the or-

dinary intersection number L0 · L1. Geometrically, choosing (4.30) corresponds to taking a

family of surfaces over the boundary of the hexagon for which the preferred tangent directions

rotate by a nonzero degree, hence which can’t be extended over the interior of the hexagon.

(4e) Defining the pairing. We now have all the ingredients necessary to flesh out the

discussion from Section 3. We choose B ∈ HF 1(2µ) and a representing cocycle β ∈ CF 1(2µ).

Define a chain complex

(4.32)
C̃∗ = CF ∗(−µ)⊕ CF ∗(µ),

d̃(ξ, x) =
(
dξ, dx− β ^ ξ

)
.
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The cohomology of (4.32) is the graded vector space previously denoted by H̃∗. The long

exact sequence (3.1) is obvious from the definition. Next we introduce a pairing

(4.33)
ι : C̃∗ ⊗ C̃2n−∗ −→ K,

ι((ξ0, x0), (ξ1, x1)) = 〈x0, ξ1〉 − (−1)|ξ0|〈x1, ξ0〉+ 〈β, ξ0 ∗ ξ1〉.
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Let’s show that this is a chain map: for any (ξ1, x1) and (ξ0, x0) whose degrees add up to

2n− 1,

(4.34)

ι((dξ0, dx0 − β ^ ξ0), (ξ1, x1)) + (−1)|ξ0|ι((ξ0, x0), (dξ1, dx1 − β ^ ξ1))

= 〈dx0, ξ1〉+ (−1)|ξ0|〈x0, dξ1〉 − (−1)|ξ1|〈x1, dξ0〉 − 〈dx1, ξ0〉

− 〈β ^ ξ0, ξ1〉+ 〈β ^ ξ1, ξ0〉+ 〈β, dξ0 ∗ ξ1 + (−1)|ξ0|ξ0 ∗ dξ1〉

= 〈β,−ξ0 ^ ξ1 + ξ1 ^ ξ0 + dξ0 ∗ ξ1 + (−1)|ξ0|ξ0 ∗ dξ1〉
= 〈β,−d(ξ0 ∗ ξ1)〉 = 0.
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The induced cohomology pairing is (3.2), and we will now establish its basic properties as

stated there.

Proof of Lemma 3.1. The assumption means that x̃1 can be represented by a cochain of the

form (0, x1), in which case indeed ι((ξ0, x0), (0, x1)) = −(−1)|ξ0|〈x1, ξ0〉 = −〈ξ0, x1〉. �

Proof of Lemma 3.3. This is clear from the definition:

(4.35)
ι((ξ0, x0), (ξ1, x1)) + (−1)|ξ0|ι((ξ1, x1), (ξ0, x0)) = 〈β, ξ0 ∗ ξ1 + (−1)|ξ0|ξ1 ∗ ξ0〉

= 〈β, [ξ0, ξ1]〉,

where the second equality holds by our definition of the bracket (4.14). �

Next, we recall the precise definition of B-equivariant Lagrangian submanifold from [56,

Definition 4.2]. This is a pair L̃ = (L, γL) consisting of a Lagrangian submanifold L (as usual,

with the conditions from Setup 2.14) together with an element γL ∈ CF 0(L,L) satisfying

(4.36) µ1(γL) = φ1,1
L (β).

Two B-equivariant structures on a fixed L are considered to be equivalent if the γL differ by

a coboundary. We can associate to each B-equivariant Lagrangian submanifold a cocycle

(4.37) (ξ, x) =
(
φ1,0
L , (−1)n+1φ2,0

L (β) + φ̌1,1
L (γL)

)
∈ C̃n.

To see that this is closed under the differential (4.32), one uses: that φ1,0
L is a cocycle; the

basic property (4.18) of φ2,0
L ; that β is a cocycle; that φ̌1,1

L is a chain map of degree n; and

finally (4.36). The cohomology class of (4.37) is the previously introduced (3.11). As stated

there, the image of [[L̃]] under the map H̃n → HF n(−µ) is indeed [[L]] = [φ1,0
L ].

Remark 4.13. Suppose that we change [γL] by a multiple of the identity class in HF 0(L,L).

Then (4.37) changes by a cocycle homologous to the corresponding multiple of (0, φ1,0
L ). On

the cohomology level, this means that [[L̃]] changes by a multiple of the image of the standard

fundamental class [L] under Hn
cpt(M ;K)→ Hn(M ;K)→ HF n(µ).

Given two B-equivariant Lagrangian submanifolds, we have a chain map [56, Equation (4.4)]

(4.38)
φL̃0,L̃1

: CF ∗(L0, L1) −→ CF ∗(L0, L1),

φL̃0,L̃1
(a) = φ1,2

L0,L1
(β, a)− µ2

L0,L1,L1
(γL1 , a) + µ2

L0,L0,L1
(a, γL0).

The induced map on cohomology is the endomorphism ΦL̃0,L̃1
from (3.8).



DISJOINABLE LAGRANGIAN SPHERES AND DILATIONS 43

Proof of Theorem 3.9. From the definition (4.38) and (4.23), (4.24), we get

(4.39)

(−1)n(n+1)/2Str(φL̃0,L̃1
)

= (−1)n(n+1)/2
(

Str(φ1,2
L0,L1

(β, ·))− Str(µ2
L0,L1,L1

(γL1 , ·)) + Str(µ2
L0,L0,L1

(·, γL0))
)

= (−1)n(n+1)/2Str(φ1,2
L0,L1

(β, ·))− (−1)nψ0,1
L0,L1

(φ1,1
L1

(β))− 〈φ1,0
L0
, φ̌1,1

L1
(γL1)〉

+ (−1)nψ̌0,1
L0,L1

(φ1,1
L0

(β)) + (−1)n〈φ1,0
L1
, φ̌1,1

L0
(γL0)〉.

We know from Proposition 4.11 that the image of β under (4.27) is zero, which means that

(4.40) (−1)n(n+1)/2Str(φ1,2
L0,L1

(β, ·))− (−1)nψ0,1
L0,L1

(φ1,1
L1

(β)) + (−1)nψ̌0,1
L0,L1

(φ1,1
L0

(β))

= −〈φ1,0
L1
, φ2,0

L0
(β)〉+ 〈β, φ1,0

L0
∗ φ1,0

L1
〉+ (−1)n〈φ1,0

L0
, φ2,0

L1
(β)〉.

With that in mind, one rewrites (4.39) as

(4.41)
(−1)n(n+1)/2Str(φL̃0,L̃1

) = 〈(−1)n+1φ2,0
L0

(β) + φ̌1,1
L0

(γL0), φ
1,0
L1
〉

− (−1)n〈(−1)n+1φ2,0
L1

(β) + φ̌1,1
L1

(γL1), φ
1,0
L0
〉+ 〈β, φ1,0

L0
∗ φ1,0

L1
〉.

The right hand side is exactly the result of applying (4.33) to the cocycles (4.37). �

5. Selected technical aspects

(5a) Pseudo-holomorphic map equations. We want to describe briefly how the Floer-

theoretic apparatus from Section 2 should be extended in order to cover the operations

introduced in Section 4. There is nothing particularly original about this. Besides the

classical references for operations in the Hamiltonian [49, 42, 52, 44] and Lagrangian [24,

20] flavours of Floer theory, there is now a considerable amount of literature concerning

the combination of the two [50, 7, 14, 4, 2, 45]. Among the last-mentioned group, [2] is

particularly close to our concerns.

To begin, let’s slightly rigidify the class of Riemann surfaces under consideration (this will

not make any essential difference, since all the families which we have considered previously

can be adapted without any issues to this framework; indeed, there is a general fact ensuring

that this can be done, which however would take too long to formulate properly).

Setup 5.1. Take a Riemann surface as in Setup 4.1. We want to make additional choices

of distinguished coordinates near the punctures. For the interior punctures, these choices are
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tubular ends

(5.1)

{
εζ : (−∞, 0]× S1 −→ S, ζ ∈ Σcl ,out ,

εζ : [0,∞)× S1 −→ S, ζ ∈ Σcl ,in .

More precisely, the εζ are proper holomorphic embeddings with lims→±∞ εζ(s, ·) = ζ, chosen

in such a way that the distinguished tangent direction points along the arc {εζ(s, 0)}. We

introduce a slightly stricter version of (4.3), requiring that near infinity on each tubular end,

(5.2) ε∗ζνS = λζ dt .

The analogue for the boundary punctures are strip-like ends

(5.3)

{
εζ : (−∞, 0]× [0, 1] −→ S, ζ ∈ Σop,out ,

εζ : [0,∞)× [0, 1] −→ S, ζ ∈ Σop,in ,

and we again require that (5.2) should hold.

Additional data are now chosen as in the construction of continuation maps (2.9). This means

first of all, a section KS of the pullback bundle T ∗S → S ×M . It should satisfy (2.10), and

reduce to Hλζ ,tdt on each tubular end, and to HLζ,0,Lζ,1,tdt on each strip-like end. Addi-

tionally, we require that if ξ is tangent to some component C ⊂ ∂S, then KS(ξ)|LC = 0;

this is the generalization of (2.39). The second piece of data is a family JS of compati-

ble almost complex structures parametrized by S, again satisfying the analogue of (2.11),

and reducing to Jλζ ,t respectively to JLζ,0,Lζ,1,t on the ends. By using the section YS of

Hom(TS, TM)→ S ×M associated to KS, one writes down the appropriate generalization

of (2.12):

(5.4)


u : S −→M,

u(C) ⊂ LC for each component C ⊂ ∂S,

(du− YS,z)0,1 = 0,

lims→±∞ u(εζ(s, t)) = xζ(t).

The limits xζ are appropriate trajectories (either 1-periodic orbits or chords). Exactness

guarantees an a priori bound on the energy, and (2.2) provides the necessary C0-bound

(showing that solutions u cannot escape to infinity in M). Moreover, for a generic choice of

(JS, KS) (in fact, even a generic choice of KS with arbitrary fixed JS), the moduli space of

solutions of (5.4) is regular.

For a single surface S, this is all one needs: counting points in the zero-dimensional moduli

spaces of solutions of (5.4) defines the chain map (4.5). In the case of a family (Sr)r∈R
with compact parameter space R is similar, one proceeds in the same way, but where all
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the auxiliary structures are chosen to be smooth in R. Of course, in applications where R

has boundary, the structures associated to points r ∈ ∂R are usually related to previously

defined operations, but that does not interfere with regularity.

Example 5.2. In the definition of (4.12), the Riemann surface Sr = S itself is the same for

all r, but the tubular ends rotate in dependence of the parameter value r ∈ R = [0, 1], and

hence (KSr , JSr) must vary with r. To obtain the required equation (4.13), one has to fix the

choices at the endpoints: for r = 0 one uses the auxiliary data which enter the construction

of (4.8), and for r = 1 the pullback of the same data by an automorphism of S.

The case of non-compact R is a little more difficult. For a single parameter r ∈ R =

R, one has points r = ±∞ ∈ R̄ which correspond to “broken” surfaces, and the Sr for

|r| � 0 are obtained from those by a gluing construction (gluing together either strip-like

or tubular ends). A simple solution would be to choose the data (KSr , JSr) for |r| large to

be ones inherited from those for r = ±∞ through the gluing process. However, to ensure

transversality, one generally has to allow a further perturbation, which however needs to

decay sufficiently swiftly in the limit r → ±∞. For technical simplicity, it is convenient to

use perturbations that are zero on the ends as well as the “thin” pieces of Sr, which are

what remains from the ends used up in the gluing process. For a description of the necessary

conditions, we refer to [53, Section 9] (this covers only discs with boundary punctures, but

the overall strategy is the same in all cases). For higher-dimensional R, the main additional

difficulty is to properly understand the gluing processes which describe the structure of R

near infinity. This is straightforward for (4.15). The remaining case is sufficiently important

for our purpose to merit a more detailed discussion, which is our next task.

(5b) The two-parameter family. We will now construct in detail the parameter space

for the family of Riemann surfaces which appears in Proposition 4.11 (see Figures 7, 8). The

construction combines ideas of [34] (the Kimura-Stasheff-Voronov compactification) and [37]

(real Gromov-Witten theory).

To begin with, take the moduli space R of annuli with one interior marked point, and let

R̄ be its Kimura-Stasheff-Voronov (KSV) compactification. Points of R̄ parametrize objects

(up to isomorphism) of the following kind. Let S̄ be a nodal marked Riemann surface with

boundary, which is a degeneration of an annulus with one interior marked point. Here,

“nodal Riemann surface with boundary” means that

(5.5) S̄ =
⋃
i∈I

S̄i,
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where the irreducible components S̄i are compact Riemann surfaces, possibly with boundary.

These components are glued together at boundary nodes and interior nodes, to form (5.5).

In addition, we require that one of these components should carry an interior marked point,

which is not one of the nodes. The KSV structure is the following: let ζ ∈ S̄ be an interior

node, with preimages ζ± ∈ S̄i± . Then, we want to have a distinguished direction (a nonzero

vector specified up to positive real multiples),

(5.6) R+ · δζ ⊂ Tζ−S̄i− ⊗C Tζ+S̄i+ .

Finally, there is a stability condition, which says that the group of automorphisms of S̄

preserving all the preferred directions (5.6) should be finite; in our particular case, this

implies that the automorphism groups are actually trivial. An isomorphism class of stable

S̄ determines a point of R̄. As usual, there is a stratification by topological type, with each

stratum being an open manifold; the main stratum (an annulus) and the codimension 1

strata are shown in Figure 9.

One general feature of KSV-type spaces is that they come with a continuous map to the

corresponding Deligne-Mumford space. This map is defined by forgetting (5.6) and then

collapsing the components that become unstable. In our case, a stratum-by-stratum analysis

shows that no information is lost either by forgetting (5.6) or by collapsing components.

Hence, the map to the corresponding real Deligne-Mumford space is bijective, and therefore

a homeomorphism. Conversely, one can take this as a definition of the topology of R̄, starting

with the familiar topology of the real Deligne-Mumford space as described in [37] (see also

[21, Figure 10]). In fact, while we’re about it, we will carry over the differentiable structure

(as a two-dimensional manifold with corners) as well.

We can choose the following additional data smoothly over R̄: a tangent direction at the

marked point, and moreover at each interior node, tangent directions to the preimages ζ±,

whose tensor product equals R+ · δζ . More precisely, we first want to make the choices on

the boundary strata exactly as indicated in Figure 9, and then extend the choice of tangent

direction at the marked point smoothly over the interior.

The hexagon in Figure 7, which we denote by R̂ from now on, is the real blowup of R̄ at the

corner between boundary sides (i) and (v). We pull back the family of (nodal) surfaces by

the projection R̂→ R̄, and then change the previously introduced tangent directions at the

interior marked point as follows. Along boundary side (iii) (with its boundary orientation),

rotate the tangent direction gradually by a total angle of −π. As a result, we get the opposite

tangent direction along boundary sides (iv) and (v), and finally compensate this by rotating

by +π along the new boundary side (vi) created by the blowup. The outcome can then again
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Figure 9.

be extended over the interior (this extension is obviously not the pullback of the previous

one on R̄), yielding tangent directions as in Figure 7.

We need to consider the geometry near the new boundary side (vi) in more detail. Let S0

be the three-punctured sphere, with tubular ends

(5.7)
ε+,0 : (−∞, 0]× S1 −→ S0,

ε+1, ε+,2 : [0,∞)× S1 −→ S0

which are compatible with the choices of tangent directions used to construct (4.8). Let S1

be a disc with one interior puncture, with its tubular end ε−,1 : (−∞, 0] × S1 → S1. We

assume that this is rotationally symmetric, meaning that each nontrivial automorphisms of



48 PAUL SEIDEL

S1 maps ε−,1(s, t) to ε−,1(s, t + θ), for some constant θ. Let S2 be another disc of the same

kind, with its end ε−,2. Gluing together these three surfaces with length parameters (l1, l2)

and angle parameters (θ1, θ2) means to identify

(5.8)
ε+,1(s, t) ∼ ε−,1(s− l1, t+ θ1) for (s, t) ∈ [0, l1]× S1,

ε+,2(s, t) ∼ ε−,2(s− l2, t+ θ2) for (s, t) ∈ [0, l2]× S1.

It is understood that we have first removed all but a finite piece of the ends in question. If we

are only interested in the resulting Riemann surfaces, the choice of θk is irrelevant because

of the rotational symmetry of the disc. However, later on when the surfaces come equipped

with additional data (JSk , KSk) breaking that symmetry, the angle parameters will matter.

In Figure 9, a coordinate neighbourhood of the corner point between sides (i) and (v) is

parametrized by (w1, w2) ∈ (−δ, 0]2 for some small δ > 0, corresponding to choices of gluing

lengths lk = − log(−wk). The logarithms come from the standard complex coordinates on

the smoothing of a nodal Riemann surface, compare e.g. [53, Section 9e]. We now pass to the

real blowup, which near the new boundary side (vi) has coordinates (w, r) ∈ (−δ, 0]× [0, 1]

related to the previous ones by w1 = w cos(πr/2), w2 = w sin(πr/2). Keeping this and the

r-dependent rotation of the strip-like ends from Figure 1 in mind, one finds that the gluing

parameters are now given by

(5.9)
l1 = − log(−w cos(πr/2)), θ1 = r/2− 1/2,

l2 = − log(−w sin(πr/2)), θ2 = r/2− 1/2.

In words, as we go from the boundary side (vi) inwards, both nodes are being smoothed,

but at rates which reflect where on the boundary we started. Moreover, there is a rotational

twist which varies linearly along the boundary. In our application, S0 comes with the r-

dependent datum (JS0,r, KS0,r) underlying (4.12); and S1, S2 with the data that define φ1,0
L1

and φ1,0
L0

, respectively. The choice of θ1, θ2 in (5.9) ensures that these are compatible with the

gluing process. One chooses corresponding data on the glued surfaces as before. Given that,

(by now) standard compactness and gluing arguments apply to the resulting parametrized

moduli space. This forms the core of the proof of Proposition 4.11.

(5c) Signs and supertraces. The last technical topic which we wish to expand on is a

sign issue. Again, this is not new: it represents a small part of the more comprehensive

discussion in [25, Section 25].

We start by recalling some index theory that enters into the construction of signs in Floer

theory. Our presentation follows [53, Section 11], but an equivalent account (with different

terminology) can be found in [26, Chapter 8]. Let (V 2n, ωV ) be a symplectic vector space,

with a compatible complex structure JV and complex volume form ηV . A linear Lagrangian
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brane Λ in V is an oriented linear Lagrangian subspace equipped with a grading and a Spin

structure. The grading is a number αΛ ∈ R such that exp(πiαΛ) = ηV (v1 ∧ · · · ∧ vn) ∈ S1

for any oriented orthonormal basis (v1, . . . , vn) of Λ. The Spin structure is a principal

homogeneous space for the group Spinn together with an isomorphism between its reduction

to SOn and the standard frame bundle of Λ. In the same way, one defines the notion of

family of linear Lagrangian branes parametrized by some space.

Let S be a compact Riemann surface with boundary, together with an ordering of its bound-

ary circles. Suppose that this surface comes with a family Λ = {Λz} of linear Lagrangian

branes parametrized by z ∈ ∂S. Consider the standard Cauchy-Riemann operator with

totally real boundary conditions:

(5.10)

∂̄S : E0
S −→ E1

S,

E0
S = {v ∈ W k,2(S, V ) : v(z) ∈ Λz for z ∈ ∂S},

E1
S = W k−1,2(S, V )

for some k ≥ 1. This is elliptic, and its determinant line

(5.11) det(∂̄S) = λtop(coker(∂̄S)∨)⊗ λtop(ker(∂̄S))

is independent of the choice of k up to canonical isomorphism (as usual for determinant

lines, we do not distinguish between two isomorphisms whose quotient is a positive number).

Following [53, Section 11] one can construct a preferred trivialization

(5.12) det(∂̄S) ∼= R

as follows. The prototypical case is where S is a disc, and Λ is constant. In that case,

∂̄S is onto and its kernel consists of constant sections, yielding det(∂̄S) = λtop(Λ). If the

Spin structure is trivial, one uses the given orientation of Λ to get (5.12), while for the

other Spin structure one uses the opposite trivialization. The case where S is a disc and

Λ is arbitrary can be reduced to this by deformation. Finally, one deals with general S by

degeneration, more concretely by shrinking boundary-parallel circles to nodes. All but one

of the irreducible components of the resulting nodal surface are discs, to which the previous

argument applies (using their ordering to put the trivializations together). The remaining

irreducible component is closed, and one uses the canonical orientation of complex vector

spaces to trivialize its determinant line (as well as for the remaining data needed to glue the

components together).

Remark 5.3. Applying an even permutation to the ordering of boundary circles does not

affect (5.12), but an odd permutation changes it by a Koszul sign obtained by exchanging the

order of two operators (5.10) associated to discs. Since those operators both have index n,

the sign is (−1)n.
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Example 5.4. Take two discs D0, D1 with marked boundary points z0 ∈ ∂D0, z1 ∈ ∂D1,

and boundary conditions Λ0,Λ1 which are locally constant near the marked points, and such

that Λ0,z0 = Λ1,z1. One can then glue together the two to a disc D with boundary conditions

Λ. Gluing theory for elliptic operators identifies the determinant line of the ∂̄D with that of

the restriction of ∂̄D1 ⊕ ∂̄D0 to the subspace where {v0(z0) = v1(z1)} (which makes sense for

k > 1). We can deform that condition linearly to {v0(z0) = 0}, which yields

(5.13) det(∂̄S) ∼= det(∂̄S1)⊗ λtop(Λ∨0,z0)⊗ det(∂̄S0).

By the general convention for determinant lines [53, Equation (11.3)], if (v1, . . . , vn) is an

oriented basis of Λ0,z0, then λtop(Λ∨0,z0) should be trivialized using v∨n∧· · ·∧v∨1 . If one uses that

to cancel the middle term on the right hand side of (5.13), the outcome is an isomorphism

det(∂̄S) ∼= det(∂̄S1)⊗ det(∂̄S0) compatible with (5.12).

Example 5.5. Let S be an annulus, with constant boundary conditions (Λ0,Λ1) along the

boundary circles, where the two Lagrangian subspaces intersect transversally. The operator

(5.10) is invertible, hence det(∂̄S) ∼= R tautologically. Now suppose that we have another

pair (Λ′0,Λ
′
1) satisfying the same transversality condition. If one deforms one pair into the

other, the resulting isomorphism between determinant lines differs from the tautological triv-

ializations by a sign which comes from the Maslov index for paths [46] of the deformation

reduced mod 2. Equivalently, if we choose orientations, the sign is given by the difference of

intersection numbers,

(5.14) (−1)Λ0·Λ1−Λ′0·Λ′1 .

Supposing that all boundary conditions carry linear brane structures (with trivial Spin struc-

tures), let’s compare the tautological trivialization with the one defined previously, as part

of our general process. To do that, one degenerates S to two discs S0, S1, with constant

boundary conditions Λ0,Λ1, and which are identified with each other along interior points

z0, z1. Linear gluing theory yields an isomorphism

(5.15) R = det(∂̄S) ∼= λtop(V ∨)⊗ det(∂̄S0)⊗ det(∂̄S1),

which is induced by the isomorphism ker(∂̄S0) ⊕ ker(∂̄S1) → λtop(V ), (v0, v1) 7→ v0 − v1.

The ordering of the terms in (5.15) reflects the fact that the boundary components of ∂S

are assumed to be ordered according to (Λ0,Λ1), and the general conventions for (5.15) (in

contrast, the ordering in (5.13) was a choice we made freely when introducing that gluing

process). If we use the given orientations of the Λk and the complex orientation of V , then

the determinant of that isomorphism is

(5.16) (−1)n+Λ0·Λ1 .
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Hence, this is the sign by which the tautological trivialization of det(∂̄S) differs from the one

constructed in (5.12). Note that this is compatible with (5.14).

Example 5.6. Take S again to be an annulus, with the same constant boundary condition Λ

along both boundary components (and trivial Spin structures). We want to consider two ways

of trivializing det(∂̄Λ). The first one is to deform the boundary conditions to Λ0 = eaJV Λ,

Λ1 = Λ for some small a > 0. This deforms the operator into an invertible one, and we use

the tautological trivialization of its determinant line. Note that this choice of deformation

amounts to

(5.17) Λ0 · Λ1 = (−1)n(n+1)/2.

The second possibility is to think of the annulus as obtained by starting with a disc S ′ and

gluing together two boundary points z′0 and z′1. By proceeding as in Example 5.4, one gets

(5.18) det(∂̄S) ∼= λtop(Λ∨)⊗ det(∂̄S′) ∼= R,

where the last isomorphism uses the fact that the ∂̄-operator on S ′ becomes invertible when

restricted to the subspace where v(z′0) = 0; or equivalently, it uses the orientation of Λ and

(5.12). Explicit computation (compare [25, Section 25.4.1]) shows that these two trivializa-

tions agree.

Comparing Examples 5.5 and 5.6 yields the following. Suppose that we have an annulus S

with general boundary conditions. One can trivialize ∂̄S either by degenerating it to two

discs glued to each other along interior points, or else by degenerating it to a disc glued

to itself along boundary points. The first method recovers (5.12); the second one yields a

result differing from that by (−1)n(n−1)/2, which comes from inserting (5.17) into (5.16). This

discrepancy (which appears in [25], and was pointed out to the author by Abouzaid) is at

the root of the signs appearing in connection with supertraces in all our formulae.

More explicitly, consider the right hand side of (4.23) and (4.24). We get a (−1) in front of

〈φ1,0, φ̌1,1(a)〉 because this is the boundary point r = −∞ of the compactified parameter space

R̄ = R ∪ {±∞}, hence counts negatively. The supertrace term carries the sign (−1)n(n−1)/2

explained above. The final Koszul sign (−1)n is obviously due to the ordering of L0 and

L1, as in Remark 5.3, but we can’t fully satisfactorily explain its role without going into the

geometric orientation conventions that enter into the definition of the simpler operations (φ1,0

and φ̌1,1), which is beyond our scope here. Similar remarks apply to (4.28), with the added

complication that the boundary terms themselves are given by families of Riemann surfaces

over suitable one-dimensional spaces R, giving rise to additional Koszul signs associated to

the position of TR in the ordering of the various operators. Luckily, the conceptually most

important term (iii) is also the one whose signs can be explained very simply: it comes with
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a (−1)n(n−1)/2 as before, plus an additional (−1) because the identification of the parameter

space underlying φ1,2
L0,L1

with the real line is the opposite of the boundary orientation of the

hexagon. The last-mentioned (−1) also appears in terms (iv) and (v), see the arrows in

Figure 7. Finally, we should point out that the (geometric) construction of the hexagon

shows that the sum of the six boundary terms must be a chain map. We know this to be

true algebraically (by relying on the properties of the simpler operations), and that provides

a nontrivial consistency check on (4.28).

6. Analogies

(6a) Topology. Within classical topology, one can introduce a construction which shares

some of the formal properties of our main theory (however, the BV operator is trivial in this

context, so there are no analogues of dilations). We outline this briefly, hoping that it can

be useful in providing additional intuition. To make the similarities stand out, we will allow

overlaps in the notation, which is therefore inconsistent with the rest of the paper (as well

as with Section 6b); the reader has been warned!

Let M be an oriented manifold, together with a class B ∈ H1(M ;K) for some field K,

represented by a singular 1-cocycle β. We consider closed connected oriented submanifolds

L ⊂ M equipped with a 0-cochain γL : L → K such that dγL = β|L. The pair (L, γL) is

written as L̃. Given two such submanifolds of complementary dimension and which intersect

transversally, define

(6.1) L̃0 • L̃1 =
∑

p∈L0∩L1

±(γL1(p)− γL0(p)) ∈ K,

where ± is the local sign with which p contributes to the ordinary intersection number

L0 ·L1. Changing γLk by a constant will change (6.1) by a corresponding multiple of L0 ·L1.

Moreover, the following symmetry formula holds:

(6.2) L̃1 • L̃0 + (−1)codim(L0) codim(L1)L̃0 • L̃1 = 0.

One can show that (6.1) is invariant under isotopies (if one carries over the γLk appropriately),

hence the transverse intersection assumption is not really needed. Along the same lines, one

does not need embedded submanifolds: smooth manifolds mapped to M in an arbitrary way

will do.

Example 6.1. Let M be the two-punctured plane, and L the immersion of the circle drawn

in Figure 10. There is an obvious nontrivial choice of B whose pullback to L vanishes on

the cohomology level, but not on the cochain level. Namely, take the integral of B around a

loop winding around either puncture to be 1. Then, the values of γL at the two preimages of
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Figure 10.

the self-intersection point differ by 1. If one considers the intersection of L with a slightly

perturbed version of itself, the contribution of each intersection point to (6.1) vanishes unless

the intersection comes from two different branches of L crossing each other. Therefore, there

are two points which give a nontrivial contribution. Those two points have different signs, but

at the same time they have the opposite sign of γL1(p) − γL0(p). Hence, their contributions

add up to

(6.3) L̃ • L̃ = 2.

One can think of (6.1) as a twisted intersection pairing. This is most easily explained for

closed M and a finite field K = Fp. Consider the cyclic p-fold covering M̃ → M associated

to B. Choose a triangulation of M , and lift it to M̃ . The simplicial cochain complex C∗(M̃)

with K-coefficients comes with an action of the covering group, which turns it into a free

module over K[q]/qp − 1 = K[q]/(q − 1)p. Consider

(6.4) C̃∗
def
= C∗(M̃)⊗K[q]/qp−1 K[q]/(q − 1)2.

Bearing in mind that C∗(M̃) ⊗K[q]/qp−1 K[q]/(q − 1) = C∗(M) is the analogous complex for

M , we find that the cohomology H̃∗ of (6.4) sits in a long exact coefficient sequence

(6.5) · · · → H∗(M ;K) −→ H̃∗ −→ H∗(M ;K)→ · · ·

where the boundary map is the product with B. Define a pairing ι on C∗(M̃) by

(6.6) ι(x̃0, x̃1) =
∑
j

j
∫
M̃

(q−jx̃0)x̃1,

where: the sum is over all j ∈ Fp; q−jx̃0 is the pullback by the covering transformation

corresponding to −j; (q−jx̃0)x̃1 is the cup-product; and
∫
M̃

is the pairing with the simplicial

fundamental cycle. This satisfies

(6.7) ι(qx̃0, x̃1) = ι(x̃0, x̃1) +
∫
M
x0x1,
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where the xj ∈ C∗(M) are pushdowns of x̃j. Hence,

(6.8)
ι((q − 1)2x̃0, x̃1) = ι(q2x̃0, x̃1)− 2ι(qx̃0, x̃1) + ι(x̃0, x̃1)

= ι(x̃0, x̃1) + 2
∫
M
x0x1 − 2ι(x̃0, x̃1)− 2

∫
M
x0x1 + ι(x̃0, x̃1) = 0.

The same holds on the other side, allowing one to descend to the quotient (6.4). Denote the

induced pairing on cohomology by I : H̃∗ ⊗ H̃n−∗ → K. Given a submanifold L ⊂ M as

before, writing β|L = dγL yields a lift of L to M̃ , hence defines a class [[L̃]] ∈ H̃∗. Standard

topological arguments show that the pairing I applied to those classes recovers (6.1), in

parallel with Theorem 3.9.

(6b) Algebraic geometry. There is another and somewhat closer analogy, coming from

mirror symmetry, in which the counterpart of Hamiltonian Floer cohomology is the Hochschild

(co)homology of an algebraic variety (more precisely, the counterpart of B lies in Hochschild

cohomology, but the space H̃∗ is constructed using Hochschild homology).

Let M be a smooth quasi-projective variety of dimension n over C, which comes with a

vector field B ∈ Γ(M,TM). Define a sheaf of commutative dg algebras

(6.9)
C̃∗ = Ω−∗[t]/t2 = Ω−∗ ⊕ tΩ−∗,

dC̃ = −t iB.
In words, these are algebraic differential forms with the grading reversed, with an added copy

indexed by a formal variable t of degree 0; and the differential is −t times the contraction

with the vector field B. The hypercohomology H̃∗ of (6.9) sits in a long exact sequence

(6.10) · · · →
⊕
p−q=∗

Hp(M,Ωq) −→ H̃∗ −→
⊕
p−q=∗

Hp(M,Ωq)
−iB−−→ · · ·

Let E be a coherent sheaf on M . Suppose that this can be equipped with a partial connection,

which allows one to differentiate sections in B-direction. Formally, such a partial connection

is given by a sheaf homomorphism ∂E : E → E such that ∂E(fφ) = f∂E(φ) + (B.f)φ for

any function f and section φ. Let J1(E) be the one-jet sheaf. One can think of the partial

connection equivalently as an O-module map J1(E) → E which fits into a commutative

diagram

(6.11) 0 // Ω1 ⊗ E //

iB⊗idE

��

J1(E)

partial connection
��

projection // E

��

// 0

0 // E
idE // E // 0 // 0.
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We denote by Ẽ the datum consisting of E together with ∂E. The boundary map associated

to the diagram (6.11) is a class in

(6.12) At(Ẽ) ∈ Ext1(E, {Ω1 iB−→ O} ⊗ E) ∼= H0(M, {Ω1 iB−→ O} ⊗Hom∗(E,E)),

where the complex {Ω1 → O} is placed in degrees {−1, 0}, and Hom∗(E,E) are local derived

endomorphisms (an object of the bounded derived category; it agrees with the usual endo-

morphism sheaf if E is locally free). One can map (6.12) to H0(M, C̃∗ ⊗Hom∗(E,E)), take

the exponential with respect to the dga structure and then the trace Hom∗(E,E)→ O. The

outcome is a class

(6.13) Ch(Ẽ) ∈ H0(M, C̃∗).

By looking at the top line of (6.11), one sees that the image of (6.12) in H1(M,Ω1 ⊗
Hom∗(E,E)) ∼= Ext1(E,Ω1⊗E) is the Atiyah class [10]. Hence, the t = 0 truncation of (6.13)

is the Atiyah-Chern character of E. This motivates our choice of notation.

Given two coherent sheaves Ẽ0, Ẽ1 with partial connections, we get an induced partial con-

nection on Hom∗(E0,E1). That (considered as an endomorphism of the sheaf) induces an

endomorphism of the hypercohomology

(6.14) H∗(M,Hom∗(E0,E1)) ∼= Ext∗(E0,E1),

which we denote by ΦẼ0,Ẽ1
. We remind the reader that Hom∗(E0,E1) is the derived version

of the local Hom, hence an object of the bounded derived category. This ensures that (6.14)

is true even though E0 is not usually locally free; on the other hand, it means that when

talking about a partial connection on Hom∗(E0,E1), we are implicitly using a generalization

of the previously introduced definition. Suppose now that E0,E1 have compact support, so

that (6.14) is of finite total dimension, and define

(6.15) Ẽ0 • Ẽ1 = Str(ΦẼ0,Ẽ1
) ∈ C.

Example 6.2. As an important special case, one can consider a vector field B which gen-

erates an action of the multiplicative group C∗ on M . A C∗-equivariant coherent sheaf has

a canonical partial connection (in fact, partial connections are the infinitesimal analogue of

equivariance, which is the origin of the terminology we have carried over to the main body

of the paper). Given two C∗-equivariant sheaves, ΦẼ0,Ẽ1
is the infinitesimal generator of the

induced C∗-action on Ext∗(E0,E1). The equivariant Mukai pairing is

(6.16)
∑
σ

qσχ(Ext∗(E0,E1)σ) ∈ C[q, q−1].

where Ext∗(E0,E1)σ is the part on which the C∗-action has weight σ, and as usual, χ is the

Euler characteristic. Then (6.15) is the derivative at q = 1.
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Conjecture 6.3. Suppose that M is projective. Then there is a nondegenerate pairing on

H̃∗, which when applied to the classes (6.13) recovers (6.15).

This is a plausible analogue of Theorem 3.9. In the case B = 0, it can be reduced to the

Cardy condition from [43] (see also [17, Theorem 16] for a proof in a more abstract context).

It is possible that similar methods would lead to a proof in general, but that is somewhat

outside the scope of this paper.

The analogue of the dilation condition is to suppose that M is Calabi-Yau, which means

that it comes with a complex volume form η, and that our vector field B satisfies LBη = −η
(this is only possible if M is noncompact). Recall that for compactly supported sheaves, we

have a canonical nondegenerate Serre duality pairing

(6.17) Extn−∗(E0,E1 ⊗ Ωn)⊗ Ext∗(E1,E0) −→ K.

If we denote by Ω̃n the sheaf Ωn equipped with the partial connection given by the Lie

derivative LB, then (6.17) implies that

(6.18) Ẽ0 • (Ẽ1 ⊗ Ω̃n) = (−1)n+1Ẽ1 • Ẽ0.

On the other hand, using the trivialization of Ωn given by η, one sees that

(6.19) Ẽ0 • (Ẽ1 ⊗ Ω̃n) = Ẽ0 • Ẽ1 − χ(Ext∗(E0,E1)).

Comparing the two expressions yields the counterpart of Corollary 3.12(i) for (6.15):

(6.20) Ẽ1 • Ẽ0 = (−1)n+1Ẽ0 • Ẽ1 + (−1)nχ(Ext∗(E0,E1)).
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