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ABSTRACT

Thermal conduction is an important energy transfer and damping mechanism in astrophysical flows. Fourier’s law,
in which the heat flux is proportional to the negative temperature gradient, leading to temperature diffusion, is
a well-known empirical model of thermal conduction. However, entropy diffusion has emerged as an alternative
thermal conduction model, despite not ensuring the monotonicity of entropy. This paper investigates the differences
between temperature and entropy diffusion for both linear internal gravity waves and weakly nonlinear convection.
In addition to simulating the two thermal conduction models with the fully compressible Navier–Stokes equations,
we also study their effects in the reduced “soundproof” anelastic and pseudoincompressible (PI) equations. We
find that in the linear and weakly nonlinear regime, temperature and entropy diffusion give quantitatively similar
results, although there are some larger errors in the PI equations with temperature diffusion due to inaccuracies in
the equation of state. Extrapolating our weakly nonlinear results, we speculate that differences between temperature
and entropy diffusion might become more important for strongly turbulent convection.
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1. INTRODUCTION

In astrophysical fluid dynamics, important processes rou-
tinely occur on very disparate length and timescales. Often,
systems are driven on length scales orders of magnitude larger
than the dissipation length scale. Astrophysicists have turned
to numerical simulations to attempt to gain insight into these
complicated, nonlinear systems. The inability to simulate the
full range of spatial and temporal scales of a system has led to
an ever-growing set of approximations, each of which has its
own advantages and disadvantages.

For instance, the Navier–Stokes equations admit fast sound
waves, which place strong restrictions on the time step of low
Mach number flow when using an explicit time-integration
scheme. However, by removing the sound waves from the
system of fluid equations, a “soundproof” set of equations need
not resolve the fast sound timescale. These approximations
range from the Boussinesq approximation, which assumes
a constant-density fluid, and the anelastic (AN) equations
(Batchelor 1953; Ogura & Phillips 1962), which assume small
thermodynamic perturbations about a background state, to the
pseudoincompressible (PI) equations (Durran 1989; Almgren
et al. 2006), which allow for order unity thermodynamic
perturbations in all quantities except the pressure. In Brown
et al. (2012, hereafter B12) and Vasil et al. (2013, hereafter
V13), we show that certain ideal formulations of the AN
(e.g., Lantz 1992; Braginsky & Roberts 1995) and PI (e.g.,
Durran 1989) equations reproduce internal gravity wave (IGW)
eigenfunctions and frequencies better than other formulations.

In this paper, we turn to nonideal behavior in these different
equation sets, focusing on thermal conduction. Thermal conduc-

tion plays a role in damping IGWs in the radiative zones of stars
and in setting the ferocity of convection (presumably related to
the Rayleigh number, the ratio of driving to damping on large
scales) in the convection zone of stars. However, thermal con-
duction in convection is most important on length scales much
smaller than the driving scale. Thus, simulations either replace
thermal conduction by algorithmic numerical conduction (e.g.,
the Athena code, Gardiner & Stone 2008; Stone et al. 2008) or an
explicit conduction term that acts on much larger length scales
than in the physical system (e.g., Clune et al. 1999; Brun et al.
2004; Nonaka et al. 2010). Simulations with a reduced dynamic
range are feasible with current computational resources.

When increasing the strength of thermal conduction (and
similarly viscosity) to remove small scales from the system, one
has to decide how to model the neglected small scales. One
perspective is to run a direct numerical simulation (DNS), in
which one uses the real damping processes that act on small
scales. In this case, thermal conduction is modeled by Fourier’s
law of conduction (Fourier 1822):

QT = −κT ∇T , (1)

where Q is the heat flux, κT is the conductivity, and T is the
temperature. This leads to temperature diffusion. However, it is
computationally infeasible to use the microscopic diffusivities
of many physical systems, so the diffusivities must be artificially
increased. Thus, even a DNS employs a certain subgrid scale
(SGS) model of thermal conduction.

Another perspective is to use an SGS model to describe how
the unresolved small scales influence thermal conduction. In
this case, the unresolved convective heat flux can be represented
by a conductive heat flux. Although there are many SGS models
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(e.g., Lesieur 1990), one particularly popular model is the en-
tropy diffusion model (used extensively in AN simulations, e.g.,
Clune et al. 1999, and also occasionally in fully compressible
(FC) simulations; Chan & Sofia 1986, 1989):

QS = −κS∇S, (2)

where S is the entropy. In this paper, we compare the temperature
diffusion and entropy diffusion models. Glatzmaier (1984)
argues that the heat liberated by an eddy is given by the local
entropy gradient. Braginsky & Roberts (1995) argue for the
“engineering approach” that the flux of entropy should be linear
in the entropy gradient (though not necessarily parallel to it).
Practically speaking, perhaps the most important feature of
entropy diffusion is that it does not require the calculation of
the pressure perturbation, which can be advantageous for the
AN equations.

Calkins et al. (2014a) has recently calculated the onset of
convection in AN simulations with either temperature diffusion
or entropy diffusion, as well as in FC Navier–Stokes simula-
tions with temperature diffusion. They find that the AN and
Navier–Stokes equations with temperature diffusion have al-
most identical behavior, provided the background entropy gra-
dient is close to adiabatic. However, they only find “qualitative”
rather than “quantitative” agreement between the temperature
diffusion and entropy diffusion models.

The remainder of the paper is structured as follows. First, in
Section 2.1, we show that entropy diffusion can lead to non-
monotonicity of entropy. We state the various equations we use
in Section 2.2 (and describe their numerical implementation in
Appendix D). Next we study thermal damping of IGWs, both nu-
merically (Section 3) and analytically (Section 4). In Section 5,
we describe convective steady states for each of our equation
sets with either temperature or entropy diffusion. Finally, Sec-
tion 6 summarizes our results, discusses its connection with
other work, and suggests future paths of inquiry.

2. PRELIMINARIES

2.1. Motivation

A fundamental law of equilibrium statistical mechanics is that
the total entropy of a closed system increases monotonically
with time. This is encapsulated in the entropy equation for an
inviscid FC fluid:

ρT
dS

dt
= ∇ · κT ∇T , (3)

where ρ, T , and S are the density, temperature, and specific
entropy of the fluid, and d/dt = ∂t + u · ∇ denotes the material
derivative where u is the fluid velocity. We will assume that the
heat flux is proportional to ∇X, for X = S, T , and take κX to be
the constant of proportionality: Q = −κX∇X. For temperature
diffusion (X = T ), κT is the conductivity. Using the continuity
equation, this can be rewritten as

∂ρS

∂t
= −∇ ·

[
ρSu − κT

T
∇T

]
+ κT

|∇T |2
T 2

. (4)

Assuming boundary conditions that ensure that the term in the
total divergence on the right-hand side (RHS) of Equation (4) is
zero on the boundaries (e.g., no penetration and no heat flux),
the volume integral of Equation (4) shows that entropy increases
monotonically with time:

∂

∂t

∫
V

ρS dV =
∫

V

κT

|∇T |2
T 2

dV � 0. (5)

However, if we instead use entropy diffusion in Equation (3),

ρT
dS

dt
= ∇ · κS∇S, (6)

the entropy per volume instead evolves according to

∂ρS

∂t
= −∇ ·

[
ρSu − κS

T
∇S

]
+ κS

∇S · ∇T

T 2
. (7)

Again assuming boundary conditions such that the term in the
total divergence is zero on the boundaries, the volume integral
of Equation (7) is

∂

∂t

∫
V

ρS dV =
∫

V

κS

∇S · ∇T

T 2
dV. (8)

The ∇S · ∇T term is not positive definite, so there is no
guarantee that entropy increases monotonically with time.
Although we focus only on temperature diffusion and entropy
diffusion, the only heat flux that will monotonically increase
entropy is proportional to ∇T (Landau & Lifshitz 1959).10

This paper investigates the effects of this modification of the
second law of thermodynamics for linear waves and weakly
nonlinear convective equilibria.

2.2. Model Equations

We break the thermodynamic variables into background and
fluctuating parts, e.g., S = S+S ′. The background fields are time
independent and satisfy hydrostatic and thermal equilibrium:

∇P = gρ, (9)

∇ · Q = 0, (10)

where P is the pressure, g is the gravitational acceleration, and
Q is the heat flux. This paper studies the effects of varying the
form of Q. To simplify the problem, we assume the fluid to be
an ideal gas with a constant ratio of specific heats γ . We make
extensive use of the linearized thermodynamic relations:

P ′

P
= ρ ′

ρ
+

T ′

T
, (11)

S ′

CP

= P ′

γP
− ρ ′

ρ
. (12)

2.2.1. Fully Compressible Equations

The FC equations are

ρ (∂t u + u · ∇u) + ∇P = gρ − ∇ · Π, (13)

∂tρ + u · ∇ρ + ρ∇ · u = 0, (14)

∂tS + u · ∇S = − 1

ρT
∇ · Q − 1

ρT
Πij ∂xi

uj , (15)

10 The most general heat flux that monotonically increases entropy is
Qi ∼ −Mij ∂T /∂xj , where Mij is a symmetric rank 2 tensor. For instance, in
relatively collisionless plasmas, the heat flux is carried by electrons that follow
magnetic field lines. Thus, the heat flux is in the direction of the local magnetic
field, Q ∼ −bb · ∇T , where b is the unit vector in the direction of the
magnetic field (e.g., Spitzer 1962; Balbus 2000). In this case, Mij = bibj is
symmetric, so entropy will increase monotonically.
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where repeated indices are summed over, Πij is the viscous
stress tensor,

Πij = −μ

(
∂xi

uj + ∂xj
ui − 2

3
δij∇ · u

)
, (16)

and δij is the Kronecker delta.
To study waves, we solve the linearized, inviscid, FC equa-

tions. We subtract off hydrostatic equilibrium and thermal
equilibrium (Equations (9) and (10)) and linearize the thermo-
dynamic variables (Equations (11) and (12)). To use notation
consistent with B12, we pick S ′ and � ′ = P ′/ρ as our thermo-
dynamic variables. Then the FC equations take the form

∂t u + ∇� ′ − � ′∇
(

S

CP

)
= −g

S ′

CP

, (17)

∂tS
′ + u · ∇S = − 1

ρT
∇ · Q′, (18)

u · ∇
(

S

CP

)
+ u · ∇ log ρ + ∇ · u

= − 1

cs
2 ∂t�

′ − 1

ρT CP

∇ · Q′, (19)

where cs
2 = γP/ρ is the adiabatic sound speed. These equa-

tions support sound waves because they include the ∂t�
′/cs

2

term in Equation (19). Also note that thermal conduction ap-
pears in both thermodynamic equations.

2.2.2. Pseudoincompressible Equations

The PI equations (see V13) assume that sound waves rapidly
equilibrate pressure fluctuations, so the pressure fluctuations are
small (O(P Ma2), where Ma is the Mach number) when averaged
over a sound crossing time. The pressure fluctuations must be
retained in the pressure gradient term in the momentum equation
to keep the flow from building large pressure fluctuations, but
they must be dropped everywhere else. The PI equations are

ρ (∂t u + u · ∇u) + β∇
(

π ′

β

)
= gρ ′ − ∇ · Π, (20)

∂tρ + u · ∇ρ + ρ∇ · u = 0, (21)

u · ∇P + γP∇ · u = − 1

CV

∇ · Q − 1

CV

Πij ∂xi
uj , (22)

where β = P
1/γ

and CV is the specific heat at constant volume.
In the equation of state, P is replaced by P , i.e., T = T (ρ, P )
and s = s(ρ, P ). The variable π ′ is the O(P Ma2) correction to
the background pressure.

The linearized, inviscid PI equations are very closely re-
lated to the linearized, inviscid FC equations; the � ′ term in
Equation (19) is dropped,

∂t u + ∇� ′ − � ′∇
(

S

CP

)
= −g

S ′

CP

, (23)

∂tS
′ + u · ∇S = − 1

ρT
∇ · Q′, (24)

u · ∇
(

S

CP

)
+ u · ∇ log ρ + ∇ · u = − 1

ρT CP

∇ · Q′, (25)

and the PI equations use the modified equation of state (compare
to Equation (12)),

S ′

CP

= −ρ ′

ρ
. (26)

2.2.3. Anelastic Equations

The AN equations (see B12) were first used in astrophysics
to remove sound waves from convection simulations. Efficient
convection almost entirely erases an unstable entropy gradient.
Thus, the AN equations are derived in the limit that ∇(S/CP ) ∼
O(Ma2/Lz) � 1, where Lz is the vertical (or radial) length of
the convection zone. Furthermore, the AN equations assume
that all thermodynamic fluctuations are O(Ma2), and thus the
linearized thermodynamic relations (Equations (11) and (12))
can be used. The AN equations can be written as

∂t u + u · ∇u + ∇� ′ = −g
S ′

CP

− ∇ · Π, (27)

∂tS
′ + u · ∇S ′ + u · ∇S = − 1

ρT
∇ · Q′ − 1

ρT
Πij ∂xi

uj , (28)

u · ∇ log ρ + ∇ · u = 0. (29)

Having already linearized the thermodynamics, these equations
bear a striking similarity to the linearized FC and PI equations,
although they include the nonlinear u · ∇u and u · ∇S ′ terms.
The ∇S/CP terms in the momentum equation and constraint
equation have been dropped, as well as the heating terms on
the RHS of the constraint equation (which can be justified by
dimensional analysis).

The linearized, inviscid AN equations are

∂t u + ∇� ′ = −g
S ′

CP

, (30)

∂tS
′ + u · ∇S = − 1

ρT
∇ · Q′ (31)

u · ∇ log ρ + ∇ · u = 0. (32)

3. LINEAR WAVE MODES: NUMERICS

We solve for IGW eigenmodes with different thermal conduc-
tion models using Dedalus11 (K. J. Burns et al., in preparation).
Dedalus is a general framework for studying partial differen-
tial equations, including eigenvalue problems, boundary value
problems, and initial value problems (i.e., simulations). It uses
the τ spectral method to solve nearly arbitrary equation sets
including algebraic constraints and complex boundary condi-
tions. This flexibility allows us to specify the linear eigenvalue
problem for IGWs in all three equation sets discussed above,
with different thermal conduction models, all within the same
code. In all cases, we use a two-dimensional (2D) Cartesian
domain with a Fourier grid in the horizontal (x) direction and
a Chebyshev grid in the vertical (z) direction. In Section 5, we
use Dedalus to evolve the nonlinear versions of these equation

11 For more information and links to the source code, see dedalus-project.org.
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Figure 1. Damping rates and oscillation frequencies of gravity wave modes
of the FC, PI, and AN equations, using either T or S diffusion. The first 30
radial and horizontal modes are shown for each equation set. The modes with
lowest mode number are at the bottom of the plot. Moving up and to the left
corresponds to increasing the vertical mode number (m), and moving up and to
the right corresponds to increasing the horizontal mode number (n).

(A color version of this figure is available in the online journal.)

sets in time, and in Appendix D we specify the exact equations
as entered into the code.

We use a polytrope background field:

T = T0
Lz + H − z

H
, (33)

ρ = ρ0

(
Lz + H − z

H

)n

, (34)

P = P0

(
Lz + H − z

H

)n+1

, (35)

where ρ0, T0, P0 are constants satisfying ρ0T0 = P0, Lz is
the box height, and H is the local scale height at the top of
the box. The variable n is the polytropic index and satisfies
g = −T0(n + 1)/H ez. We nondimensionalize the system by
setting ρ0 = T0 = P0 = H = 1. We take γ = 5/3, so any
n > 1.5 corresponds to stable stratification—we pick n = 2.
We take the box size to be (Lx,Lz) = (78.3, 26.1), which
corresponds to ≈6.6 density scale heights, the number of density
scale heights in the solar radiative zone. The vertical resolution
is typically 128 grid points and modes (no dealiasing is needed
for linear calculations).

This background satisfies thermal equilibrium only when
using temperature diffusion with a constant κT . We assume
that the background fields and the perturbation fields conduct
heat differently. Various authors (e.g., Braginsky & Roberts
1995; Clune et al. 1999; Jones et al. 2009) have argued that the
heat conduction acting on the perturbation fields is actually
an SGS effect from unresolved turbulent motions, and thus
it is different from the microphysical heat conduction acting
on the background fields. In our calculations, the background
fields conduct heat using temperature diffusion with a constant
κT ; we use different choices for the conduction model for
the perturbation fields. The equations remain consistent as the
perturbations never feed back onto the background fields.

The wave perturbations evolve according to the equations
described in Sections 2.2.1–2.2.3. We use two forms for Q′,

Q′
T = −χT ρ∇T ′, (36)

Q′
S = −χSρT ∇ S ′

CP

, (37)

0
2
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PI
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− 60
− 40
− 20
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AN T
AN S

PI T
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FC S

Figure 2. Percent error in oscillation frequencies and damping rates between
different equations and thermal conduction models and the FC equations with T
diffusion, e.g., (ωAN;T −ωFC;T)/ωFC;T. The modes have n = 1 but with varying
vertical mode number m; these are the modes with the largest errors. The percent
error in oscillation frequency depends only on the equation set, not on the model
of thermal conduction.

(A color version of this figure is available in the online journal.)

where χT = χS = 10−5 are taken to be constant, which implies
a constant diffusivity throughout the domain. Such a small
diffusivity ensures that all modes are weakly damped. We will
refer to these two thermal conduction models as T diffusion and
S diffusion. Our boundary conditions are w = 0 (the vertical
velocity) and Qz = 0 at z = 0 and z = Lz and periodic in
the horizontal direction. The eigenmodes depend on horizontal
and vertical wave numbers. We define the (n,m) mode to be the
mode with horizontal wavenumber kx = 2πn/Lx and m extrema
in the vertical direction (with vertical wavenumber defined as
kz = 2πm/Lz). The variables n and m are the mode’s horizontal
and vertical mode numbers, respectively. The total wavenumber
of a mode is k = √

k2
x + k2

z .
The linear eigenfunctions vary in time as exp(−iω − Γt),

where ω is the oscillation frequency and Γ is the damping rate.
Figure 1 shows eigenvalues of the different equation sets with
either T or S diffusion. To ensure the accuracy of the eigenvalues,
we compare the damping rate, Γ, to the analytic expression of the
damping rate given in Equations (47) and (48) and the analogous
expressions in Appendices A and B. In all cases, the discrepancy
is less than 1% and typically is less than 0.01%.

The damping rates and oscillation frequencies match very
well for the different equation sets and conduction models,
particularly for large kH . For small kH , there are some
discrepancies in both damping rates and oscillation frequencies.
Figure 2 shows the percent error in the oscillation frequency and
damping rate with respect to the eigenvalues of the FC equations
with T diffusion. The relative errors are plotted for the modes
(1,m), with m ranging from 1 to 30.

The largest errors in damping rate occur for the PI equations
with T diffusion, where the damping rate is underestimated by
half for the (1, 1) mode; interestingly, the PI equations with S
diffusion seem to agree more closely with the true damping
rate. This may be because the PI equations do not use the
full linearized equation of state to calculate the temperature
(compare Equations (11) and (12) to Equation (26)).

For the AN equations, the error in damping rate is always
less than 20%. For all of the models described here, the relative
errors are less than 10% for mode numbers greater than 10
(or 4 if we neglect the PI equations with T diffusion). The FC
equations with S diffusion have relative errors of less than 1% for
mode numbers greater than 11, whereas the AN equations with S
diffusion have relative errors of less than 1% for mode numbers
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greater than 9 (which is much better than the AN equations with
T diffusion).

Overall, there is little difference in the damping rates between
T diffusion and S diffusion. We will explain this by studying the
linear problem analytically in Section 4.

In addition to errors in damping rates, there are also small
(several percent) errors in oscillation frequency associated with
using different equation sets. Although the PI equations have
the largest relative error (almost 7%) for the (1, 1) mode, the
AN equations have more persistent errors as the vertical mode
number increases.

As shown in B12 and V13, the ideal linear eigenvalues differ
more among the different equation sets in spherical geometry
than in plane-parallel geometry. Furthermore, in spherical ge-
ometry, the eigenfunctions also differ between equation sets.
These suggest that differences between damping rates (which
depend on the eigenfunctions, as shown in Section 4) and oscil-
lation frequencies will be larger in spherical geometry than in
plane-parallel geometry. However, the differences in spherical
geometry will also become small for kH � 1.

Nonlinear damping can also be an important damping mech-
anism, especially for modes with low linear damping rates. Via
nonlinear interactions, low wavenumber gravity waves can cou-
ple and transfer energy to higher wavenumber gravity waves
(e.g., Weinberg et al. 2012). The energy in high-wavenumber
modes can then be damped via dissipative effects, e.g., ther-
mal conduction. Thus, it is possible that the low wavenumber
modes that have the largest discrepancies in linear damping
rates could still be damped at the correct rate in fully nonlinear
simulations—if the damping is dominated by nonlinearities.

4. LINEAR WAVE MODES: ANALYTICS

In the previous section, we demonstrated that IGWs have
very similar damping rates with either T or S diffusion. To
better understand why this is the case, we study the linear
IGW problem analytically. We use different approximations to
render the problem tractable. First, we derive the eigenvalue
equation in the large wavenumber limit. Second, we assume
dissipation is weak and derive an expression for the damping
rate. The numerical results presented above in Section 3 satisfy
this weak dissipation assumption. We only include the details of
the calculations for the AN equations; the (similar) main results
for the FC and PI equations can be found in Appendices A
and B, respectively. We find that T and S diffusion give the same
damping rate because T and S are approximately proportional
to one another in the large wavenumber limit.

4.1. Large Wavenumber Limit

We derive the eigenvalue equation for the AN equations (see
Appendices A and B for the eigenvalue equations for the FC and
PI equations, respectively) for both T and S diffusion. In the limit
of kH � 1, these eigenvalue equations are equivalent, which
implies that T and S diffusion will give the same eigenfunctions
and eigenvalues.

To simplify the expressions, we will drop all terms
with derivatives on background quantities, which are order
(kH )−1 � 1. In this limit, the eigenvalue equation for the AN
equations using T diffusion is

[
1 +

iκT

ρCP ω
∇2 +

iκT

ρCP ω

γ − 1

γ

g

T
∂z

]
∇2w = −k2

⊥N
2

ω2
w,

(38)

where N
2 = g∂zS/CP is the squared buoyancy (Brunt–Väisälä)

frequency. The eigenvalue equation using S diffusion is

[
1 +

iκS

ρT ω
∇2

]
∇2w = −k2

⊥N
2

ω2
w. (39)

Note that ∇2 � (g/T )∂z because g/T ∼ H−1. Thus, the
two eigenvalue equations are equivalent under the identification
κS = κT T /CP . This shows that T and S diffusion will have the
same eigenfunctions and eigenvalues in the limit of large kH ,
as can be seen in Figure 1.

4.2. Damping Rates and the Weak Dissipation Limit

By manipulating the equations of motion, the damping rate
can be expressed as a ratio of volume averages of the eigen-
functions. In this section, we focus on the AN equations; the
analogous results for FC and PI equations are in Appendices A
and B, respectively. Dotting the momentum equation (Equa-
tion (30)) with ρu gives an energy equation

∂t

(
1

2
ρ|u|2

)
= ∇ · (ρu� ′) +

gρ

CP

S ′w. (40)

The vertical velocity is given by the entropy equation
(Equation (31))

w = −∂tS
′

∂zS
− 1

ρT ∂zS
∇ · Q′. (41)

Using this relation, we can rewrite the energy equation in the
form

∂tE + ∇ · F = −θ, (42)

where

E = 1

2
ρ|u|2 +

1

2

gρ

CP

(∂zS)−1S ′2, (43)

F = ρu� ′ +
g

T ∂zS

S ′

CP

Q, (44)

θ = − Q · ∇
(

g

T ∂zS

S ′

CP

)
, (45)

are the wave energy, the energy flux, and the change of wave
energy due to thermal conduction, respectively.

The damping rate (of the perturbations) Γ is

Γ = 〈θ〉
2 〈E〉 , (46)

where 〈·〉 denotes a volume average. For T and S diffusion, the
expressions for θ are

θT = κT ∇
(

gS ′

CP T ∂zS

)
· ∇

(
T

S ′

CP

+
γ − 1

γ
� ′

)
, (47)

θS = κS∇
(

gS ′

CP T ∂zS

)
· ∇S ′. (48)

These expressions follow directly from the equations of motion
and contain no approximations. They are used to check the
numeric damping rates calculated in Figure 1.

In Equation (47), we have rewritten T ′ as a function of S ′
and � ′ using the linearized equation of state (Equations (11)
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and (12)). The variable T ′ comprises a part that is proportional
to S ′ and a part that is proportional to � ′. We will show below
that if kH � 1, the � ′ term is much smaller than the S ′ term.
Thus, T ′ and S ′ are well aligned and give the same damping
rate.

If we assume g/(T ∂zS) is constant (as is the case for a plane-
parallel polytrope atmosphere), then θS is positive definite,
proving that there are no overstable modes with S diffusion.
By contrast, θT cannot be shown to be positive definite, leaving
open the possibility of overstable IGWs. For the FC and PI
equations, neither θS nor θT can be shown to be positive definite
(see Appendices A and B). Lou (1990) searched extensively
for overstable IGWs using the FC equations with temperature
diffusion in a polytrope atmosphere, but found none. We also
have not found any overstable IGWs.

Next we calculate the relative sizes of the different terms
in Equations (47) and (48) by solving for the eigenfunctions.
To simplify the calculation, we will use the weak dissipation
limit. For sufficiently small dissipation, the eigenfunctions are
very well approximated by the ideal eigenfunctions, which can
be solved for analytically if we use the WKB approximation
(assuming kH � 1).

The ideal eigenvalue equation (see, e.g., B12) is

ω2(k2
⊥ − ∂2

z

)
w − ω2∂z((∂z log ρ)w) = N

2
k2
⊥w. (49)

The lowest-order WKB approximation to the solution is

w ≈ A√
ρkz

exp

(
−

∫ z

z0

kz(z
′) dz′

)
, (50)

where A = w(z0)
√

ρkz is the amplitude and kz(z) satisfies

k2
z = k2

⊥

(
N

2

ω2
− 1

)
. (51)

The entropy and pressure perturbations are related to one
another via

S ′ = −i
w∂zS

ω
, (52)

� ′ = iω

k2
⊥

(∂zw + w∂z log ρ) ≈ ω2 − N
2

ωkz

w, (53)

where the approximation is dropping terms of order (kzH )−1

and smaller.
The ratio of the S ′ contribution to θT to the � ′ contribution

to θT is ∣∣∣∣∣T S ′

CP

∣∣∣∣∣
∣∣∣∣� ′

γ

∣∣∣∣
−1

=
(

cs
2k2

⊥
ω2

)(
∂z

(
S

CP

)
kz

)
. (54)

Using that cs
2 ∼ N

2
H 2 and that ω � N for gravity waves, one

can show that this ratio is of order kH , which is assumed to
be much larger than one.12 Thus, θT is dominated by entropy
diffusion. Furthermore, the leading-order (in kzH ) expressions
for � ′ and S ′ are out of phase, so upon volume integration,
cross terms such as ∇� ′ · ∇S ′ are smaller than the leading-
order term |∇S ′|2 by (kzH )−2. Similarly, the volume average

12 Near the cores of stars, we instead have cs
2 ∼ N

2
r2. In this case, the ratio

is of order kzr � 1.

of terms like S ′∇T · ∇S ′ are also of order (kzH )−2 because S ′
and ∂zS

′ are out of phase to the leading order.
The leading-order contributions to θT and θS are

θT ≈ gκT

C2
P ∂zS

|∇S ′|2, (55)

θS ≈ gκS

CP T ∂zS
|∇S ′|2. (56)

For perturbations with kzH � 1, we have that thermal diffusion
and entropy diffusion are equivalent under the identification
κS = κT T /CP .

A key assumption in the above argument is that ω � N , which
was used to show that the ratio of the S ′ contribution to θT to the
� ′ contribution to θT (Equation (54)) is order kH � 1. This is
satisfied for gravity waves but not for sound waves. For sound
waves, the first term on the RHS of Equation (54) is order one,
so the � ′ contribution to θT is larger than the S ′ contribution to
θT by order kH . This suggests that T and S diffusion give very
different results for sound waves (see Appendix C).

4.3. FC and PI Equations

Although we have only shown the results for the AN equa-
tions, similar results hold for the FC and PI equations. In
Appendix A, we show that for the FC equations the T and
S diffusion eigenvalue equations reduce to one another if we
assume kH � 1 and that damping is weak. Unlike the AN
equations, there are differences between T and S diffusion for
strongly damped modes (which are no longer waves). We also
derive analytic expressions for the damping rates.

In Appendix B, we carry out the same analysis as above for the
PI equations. It is straightforward to show that the PI equations
will give the same damping rates using either T or S diffusion,
assuming kH � 1. This is because T and S diffusion in the PI
equations only differ by a factor of T , which can be absorbed
into κ in the limit kH � 1.

5. STEADY NONLINEAR CONVECTIVE SOLUTIONS

We present nonlinear simulations of convection using the FC,
PI, and AN equations with both the T and S diffusion models.
Near the onset of convection, unstable modes saturate as steady
convective rolls. For sufficiently small driving (Ra), these are
stable. However, as the driving of the system (Ra) increases,
the rolls become unstable to oscillatory motions. The accuracy
of the stable convection states is an important nonlinear test
of the different equation sets and thermal conduction models.
We restrict our investigation to two dimensions because the
convection solutions are more susceptible to oscillatory motions
in three dimensions.

We solve for convective steady states using Dedalus by
integrating the equations of motion forward in time. The
background state is a polytrope (Equations (33)–(35)) with
polytropic index

n = 1.5 − ε. (57)

Recall that an adiabatic background has n = 1.5; by setting
n slightly smaller than 1.5, we are imposing a slightly supera-
diabatic stratification. We set ε = 10−5. This implies that the
background entropy gradient is

∂z

(
S

CP

)
= − ε

Lz + 1 − z
. (58)
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Mixing-length theory suggests that the Mach number squared
is proportional to the entropy gradient, so we choose to fix the
entropy gradient in order to fix the Mach number. The convective
steady states described in this paper have Mach numbers of
about 10−3.

As above, we assume that the perturbation fields conduct
heat differently from the background fields. To satisfy thermal
equilibrium, we assume that the background fields are acted
upon by temperature diffusion with a constant κT . Again,
it is consistent to use a different conduction model for the
perturbations, provided that the perturbation fields never feed
back onto the background fields.

For the perturbation fields, we use a constant diffusivity χ :

Q′
T = −χT ρ∇T ′, (59)

Q′
S = −χSρT ∇ S ′

CP

. (60)

Similarly, for viscosity, we use a constant diffusivity ν:

μ = ρν. (61)

In both cases, ρ is replaced by ρ for the AN equations.
We can now define the Rayleigh number, the ratio of driving

to dissipation in the system,

Ra = ΔSgL3
z

CP νχ
, (62)

where ΔS/CP = ε log(Lz + 1) is the entropy jump across the
domain (recall that in our nondimensionalization g = n + 1).
Below, we study how convective steady states vary as a function
of Ra. All simulations have Pr = ν/χ = 1. We find that
when Pr < 1, there are very few convective steady states
because the convection is strongly susceptible to oscillatory
instabilities. Thus, to compare the convection for Pr < 1
in different models would require a study of the (temporal)
statistical properties of the flow, which is beyond the scope of
this paper. However, we do not expect our results to change
qualitatively for low Pr convection (note that our linear wave
results are at a Pr = 0). Recent work by Calkins et al. (2014b)
shows substantial differences in the onset of rapidly rotating
convection between the FC and AN equations with Pr < 1.
However, there is no indication that such differences persist in
the nonrotating limit.

For simulations with Pr > 1, we do find some convective
steady states. In this case, viscosity is a more dominant damping
mechanism than thermal conduction, so we expect smaller
differences between the conduction models. For sufficiently
high Pr, the thermal boundary layers become unstable and there
are no longer steady convective states.

To maintain the background entropy gradient, we use the
boundary conditions S ′ = 0 on the top and bottom. Our other
boundary conditions are u = 0 on the top and bottom, and all
variables are periodic in the horizontal direction. Our vertical
boundary conditions are artificial; a more physical boundary
condition would be to add stably stratified layers on either side
of the convection zone. We do not implement this type of back-
ground state because it greatly complicates the problem. In real
systems, convective plumes penetrate into the stably stratified re-
gions, which in turn affects the whole convective state. However,
for stiff interfaces, the penetration is small (Rogers & Glatzmaier
2005; Brummell et al. 2002), suggesting that there might not be
significant differences between a convective–radiative boundary
and a solid wall.

Note that w = 0 on the top and bottom are redundant
equations for the horizontally averaged (n = 0) mode when
using the AN equations. Furthermore, there is a gauge freedom
in the definition of π ′ for the PI equations and � ′ for the AN
equations. Thus, when using the PI or AN equations, for the
horizontally averaged mode (n = 0), we use the boundary
conditions w = 0 on the bottom boundary and π ′ or � ′ = 0
on the top boundary. In fact, the PI equations are inconsistent
for u = 0 on the top and bottom and periodic in the horizontal
directions. This can be verified by integrating the constraint
equation: the left-hand side (LHS) is zero for these boundary
conditions, but the RHS is generally nonzero. Physically, this is
because heating causes the fluid to expand, so there must be a
way for the fluid to leave the box.

The simulations are run in a box with aspect ratio three, i.e.,
Lx = 3Lz, with three different heights: Lz = 10, 30, and 100.
This corresponds to about 3, 5, and 7 density scale heights, re-
spectively. We use a resolution of 96 grid points in each direc-
tion, with two-thirds dealiasing (i.e., 64 modes). We represent
the solution as a Fourier series in the x direction and a Cheby-
shev series in the z direction. For several cases, we ran with a
resolution of 192 grid points (128 modes) in each direction and
found that the results were virtually identical. To time step the
equations, we use an implicit–explicit SBDF2 method (Ascher
et al. 1995; Wang & Ruuth 2008). The time step is given by
the smaller of 0.3u · Δx−1, where Δx−1 is the inverse local grid
spacing, and 5×10−5 χ/L2

z . The latter timescale almost always
sets the time step and was chosen to ensure that the simulations
are extremely well resolved temporally.

We do not base our timestep size on the sound speed for the
simulations of the FC equations (all equation sets are solved with
the same timestep size). This is because we are able to implicitly
time step the sound waves and are thus not limited by the sound
speed Courant–Friedrichs–Lewy (CFL). A similar approach was
used by Viallet et al. (2011, 2013), although they use an iterative,
nonlinear implicit solve, whereas we only treat linear terms
implicitly. This is significant because the typical rms Mach
number of our nonlinear strongly stratified convection is 10−3,
and explicitly following the sound waves would increase the
computation cost by approximately 103, which would make low
Mach number convection prohibitively expensive to simulate.
The greater complexity of the FC equations (see Appendix D)
makes them a factor of two slower than the AN simulations
(the PI equations run at about the same speed as the FC
equations).

The simulations are initialized by random, low-amplitude
density perturbations (FC and PI equations) or entropy pertur-
bations (AN equations). The system is evolved forward in time
until a convective steady state is found. We assume we are in a
steady state if the volume-averaged kinetic energy changes by
less than a factor of 10−4 over 1000 iterations. For higher Ra,
we sometimes did not find a steady-state solution; instead, the
system evolves into a periodically varying state. In this case, we
restart the simulation with different random initial conditions.
If several different random initial conditions lead to periodi-
cally varying states, we stop the search. Of course, our limited
search of initial conditions does not prove that there is no steady
state for certain parameters, but it does suggest that the basin
of attraction of a hypothetical steady-state solution is likely
limited.

Sometimes we found multiple convective steady states. The
most common state consists of two pairs of convective rolls. To
facilitate comparison between different states, we only consider
steady states consisting of two pairs of convective rolls (see
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 3. Steady convective states for the FC equations, varying the thermal conduction model, Ra, and Lz. The color depicts the total entropy (background plus
perturbations); the convective layers are fairly adiabatic with a sharp boundary layer at the top of the domain. The color scale is chosen such that white corresponds
to the entropy at the bottom of the domain, and red (blue) is 30% greater (less) than this value. The arrows show the flow field. Each steady state is labeled with the
equation set, the thermal conduction model (T or S diffusion), the Rayleigh number, and the vertical length of the domain. In all cases, Lx = 3Lz. Panels (a)–(c) use
the FC equations with T diffusion and Lz = 100 but varying Ra from 4 × 103 to 4 × 105. Panels (d)–(f) use the FC equations with S diffusion and Ra = 4 × 104 but
varying Lz from 10 to 100.

(A color version of this figure is available in the online journal.)

(a)

(b)

(c)

(d)

Figure 4. Steady convective states for different equations and thermal conduction models, with Ra = 4 × 104 and Lz = 100. The quantities plotted and labeling are
the same as for Figure 3, except that the red (blue) colors correspond to 50% greater (less) than the entropy value at z = 0. In all cases, Lx = 3Lz. Panels (a) and (b)
use the T diffusion with the FC and AN equations, respectively. These plots are virtually identical. Panel (c) shows the convective steady state for the FC equations
with S diffusion; the results for the AN and PI equations with S diffusion are virtually identical and not shown. Panel (d) shows the convective steady state for the PI
equations with T diffusion.

(A color version of this figure is available in the online journal.)

Figures 3 and 4). If we changed the horizontal periodicity of
the domain, the aspect ratio of the convective cells would likely
stay close to the aspect ratio described here because this is the
preferred aspect ratio of the system.

Figure 3 plots several convective steady states using the FC
equations. We vary Ra in panels (a)–(c), fixing Lz = 100 and
using T diffusion. As Ra increases, the boundary layer at the
top of the domain decreases in size, and the flow and entropy
become more asymmetric. The downflows between convective

rolls become sharper as Ra increases. At an Ra somewhat higher
than 4 × 105, the downflows become so sharp that they become
unstable to an oscillatory instability.

In the bulk of the fluid, upflows carry high-entropy fluid, and
downflows carry low-entropy fluid. However, things become
more complicated in the upper boundary layer for highly strati-
fied convection, where sometimes high-entropy fluid rests above
downflows, and low-entropy fluid rests above upflows (see panel
(a)). This could be due to two effects. First, viscous heating
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increases the entropy near the downflows where there are sharp
velocity gradients. Second, because of the large stratification
near the top of the box, upflows produce diverging flows that
dilute entropy, whereas downflows produce converging flows
that concentrate entropy.

Panels (d)–(f) show convective steady states with S diffusion
for fixed Ra = 4 × 104, but with increasing Lz. Increasing Lz

also decreases the thickness of the boundary layer (relative to
the box size) at the top of the domain. Note that as Lz increases,
the critical Ra (at which convection begins) also increases. Thus,
Ra/Rac is decreasing with increasing Lz, which might naively
lead one to believe that the boundary layer thickness should
increase with increasing Lz, the opposite of what we find.

However, these convective steady states are in some ways
consistent with the idea that convection only occurs on the local
scale height. In all cases, the local scale height is ≈1 near the
top of the box. This corresponds to 1/10 of the domain when
Lz = 10, but 1/100 of the domain when Lz = 100. Thus, the
upper boundary layer might be influenced by the local scale
height near the top of the box. The convective rolls also seem to
have size ∼ Lz, which is similar to the scale height at the bottom
of the domain. However, there are no features on intermediate
scales, even for Lz = 100, which contains seven density
scale heights.

In Figure 4, we vary the equations and thermal conduction
model, fixing Ra = 4 × 104 and Lz = 100. Panels (a) and (c)
correspond to panels (b) and (f) in Figure 3. The FC and AN
equations with T diffusion (panels (a) and (b)) look virtually
identical. There are slight differences between the FC equations
with T and S diffusion (panels (a) and (c)): the upper boundary
layer is slightly smaller for S diffusion.

However, there are substantial differences between the steady
state for the PI equations with T diffusion (panel (d)) and the
other three steady states. The entropy variation with height is
very different for the PI steady state: the entropy is much larger
at the top of the box than the rest of the domain. It might appear
that the convective steady state does not satisfy the S ′ = 0
boundary condition at the top of the domain. However, this
is only because there is an extremely thin boundary layer at
the top of the domain that is well resolved in the simulation
but is smaller than the resolution of the image. Also, the flow
pattern looks very different, with less asymmetry between the
upflows and downflows than in the FC and AN simulations. The
convective steady states were virtually identical for the FC and
AN equations using T diffusion and all three equation sets with S
diffusion. The only equations that show strong differences from
the others are the PI equations with T diffusion.

To more quantitatively compare the different convective
steady states, we plot the rms Re in Figure 5. We define the
rms Re to be

Rerms =
√

〈|u|2〉Lz

ν
. (63)

Note that we were not able to find convective steady states for
high Ra for some of the low Lz boxes and with the PI equations
with T diffusion.

The T and S diffusion models produced very similar results
for the FC and AN equations. For all three Lz, the difference
in Rerms at the lowest Ra was less than 1% and at the highest
Ra was ≈4%. In contrast, the PI equations with T diffusion
have convective steady states that are rather different (note
that the PI equations with S diffusion give results practically
indistinguishable from the FC or AN equations with S diffusion).
Although the differences in Rerms between the FC and PI

0
5

10
15
20
25
30
35
40
45

FC/ AN, T

FC/ PI/ AN, S

PI, T

Figure 5. Rerms (Equation (63)) of convective steady states as a function of Ra
(Equation (62)) for different equation sets, thermal conduction models, and box
sizes Lz. Solid lines show results for the FC and AN equations with T diffusion,
dotted lines show results for the FC, PI, and AN equations with S diffusion,
and dot–dashed lines show results for the PI equations with T diffusion. Blue,
yellow, and red lines show results for Lz = 10, 30, and 100, respectively (recall
that Lx = 3Lz). The different equation sets that have been grouped together
have differences in Rerms of less than 1% (and typically less than 0.01%) for
each Ra and Lz shown. Although the T and S diffusion models track each other
fairly well for the FC and AN equations, the PI equations with T diffusion have
convective steady states with low Rerms, especially for highly stratified domains.

(A color version of this figure is available in the online journal.)

equations with T diffusion are <5% for all Ra for Lz = 10,
at high Ra, the differences grow to 15% for Lz = 30 and 35%
for Lz = 100. These results are consistent with the similarity
and differences between the convective steady states shown in
Figure 4.

It might seem odd that the PI equations seem to be substan-
tially different from the FC and AN equations with T diffusion
but virtually identical to the FC and AN equations with S dif-
fusion. The difference lies in the PI equation of state (Equa-
tion (26)), in which P is replaced by P . For low Mach number
convection, ρ ′/ρ, P ′/P , and S ′/CP are all O(Ma2). However,
the PI equation of state assumes that ρ ′/ρ and S ′/CP are O(1)
but that P ′/P ∼ O(Ma2). Thus, the PI equation of state intro-
duces inaccuracies in thermodynamic variables.

When using S diffusion, the equation of state is in some sense
“not used.” Summing the PI continuity equation (Equation (21))
and the PI constraint equation (Equation (22)) and using the PI
equation of state (26), one can show that S ′

PI and S ′
AN satisfy the

same equation. However, when using T diffusion, the equation
of state must be used to relate T ′

PI to other thermodynamic
quantities. In this case, there are differences in T ′

PI and T ′
AN

because the latter depends on the pressure perturbation.

6. CONCLUSION

This paper examines the differences between the temperature
diffusion and entropy diffusion models of thermal conduction
for three different equations sets: the FC equations, the PI
equations, and the AN equations. We study both damping rates
of linear IGW modes and the properties of low Rayleigh number
convective steady states.

Overall, we find little difference between temperature diffu-
sion and entropy diffusion, provided that the conductivities are
related by

κT = T κS/CP . (64)

Using a different relation between κT and κS will cause
differences between the temperature and entropy diffusion
models, just as there are differences between temperature
diffusion using two different conductivities. Although entropy
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diffusion could lead to nonmonotonicity of the total entropy,
in practice, it generally does not because the ∇S field is often
aligned with the ∇T field (Section 4.2). The only way to ensure
that entropy will increase monotonically is to use temperature
diffusion (Landau & Lifshitz 1959).

Temperature and entropy diffusion give the same linear, IGW
damping rates for all three equation sets, provided that kH � 1,
i.e., that the wavelength is shorter than the density scale height.
For kH � 1, we find modest differences between damping
rates for different equation sets and thermal conduction models
(see Figure 1). The longest wavelength modes we studied (≈6.6
density scale heights) have damping-rate errors of ∼20% for
the AN equations (with either thermal conduction model) and
PI equations with entropy diffusion, but errors of ∼50% for the
PI equations with temperature diffusion. We believe that the
large errors in the PI equations with temperature diffusion are
due to inaccuracies in the PI equation of state (which assumes
that the pressure perturbations are much smaller than the density
and entropy perturbations and can be dropped).

We also calculate convective steady states using Dedalus
(Section 5). The flexibility of Dedalus allows us to study the
FC, AN, and PI equations all within the same framework.
Furthermore, by implicitly time stepping sound waves, we are
able to take the same time step in FC calculations as the AN and
PI calculations (despite having Mach numbers of 10−3). Because
the implementation of the FC equations is more complicated
than the implementation of the AN equations, we find that the
FC simulations run about half as fast as the AN simulations. The
PI simulations run at about the same speed as the FC simulations.

For Rayleigh numbers above the instability threshold of
convection but below the onset of oscillatory instabilities, we
find many convective steady states for box sizes ranging from
three density scale heights to seven density scale heights.
The convective steady states are essentially identical for the
FC equations and AN equations with temperature diffusion;
similarly, the convective steady states are essentially identi-
cal for all three equation sets using entropy diffusion. Fur-
thermore, these two classes of steady states are very similar
(Figure 5). However, the PI equations with temperature diffu-
sion find convective steady states with much lower rms Reynolds
number than the other equations and with very different convec-
tion patterns (Figure 4). We again attribute the difference to the
incorrect equation of state, which does not correctly calculate
the temperature perturbation for low Mach number convection.
The differences are largest for the most strongly stratified do-
mains because the convective rolls have the longest wavelengths
(kH � 1).

In a similar analysis, Calkins et al. (2014a) calculate the
critical Rayleigh number for the onset of convection for the FC

equations (with temperature diffusion) and the AN equations
with both temperature and entropy diffusion, also including the
effects of rotation. They also find that the AN and FC equations
with temperature diffusion give nearly identical results in the
low Mach number limit (when the background is very close to
adiabatic). They find much larger differences between entropy
and temperature diffusion than we do. This is likely because
their entropy diffusion model diffuses T S ′, unlike our own that
diffuses S ′. Diffusing T S ′ is equivalent to using temperature
diffusion in the PI equations, which we have shown can produce
substantial errors for highly stratified domains.

Although we find only minor differences between temper-
ature and entropy diffusion for linear internal waves and low
Rayleigh number convective steady states, there is no guaran-
tee that these different thermal conduction models will continue
to give similar results in the strongly nonlinear regime. In the
future, we plan to investigate the effects of different thermal con-
duction models on strongly nonlinear wave breaking and high
Rayleigh number convection. Our present results show that the
differences between temperature and entropy diffusion in con-
vective steady states grow as the Rayleigh number increases,
with entropy diffusion overestimating the velocities in the con-
vective steady states. Perhaps this indicates that at the very
high Rayleigh numbers of stellar convection, there are substan-
tial and important differences between temperature and entropy
diffusion.
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APPENDIX A

EIGENVALUE EQUATIONS AND DAMPING RATES FOR FULLY COMPRESSIBLE EQUATIONS

The eigenvalue equations for the FC equations are somewhat more complicated than for the AN equations. We again drop all terms
of order (kH )−1 � 1. The eigenvalue equation for T diffusion is

[
ω2

(
1 − i

κT ∇2

ωCP

)2

∇2 +
ω4

cs
2

(
1 − i

χT ∇2

ρCP ω

) (
1 − i

γ κT ∇2

ρCP ω

)

− g

CP

(
1 − i

κT ∇2

ρCP ω

) (
∂zS

(
∇2

⊥ +
ω2

cs
2

)
+ iω

γ − 1

cs
2

κT

ρ
∇2∂z

)]
w = 0. (A1)
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The eigenvalue equation for S diffusion is[
ω2

(
1 − i

κS∇2

ρT ω

)(
∇2 +

ω2

cs
2

)
− g

∂zS

CP

(
∇2

⊥ +
ω2

cs
2

)]
w = 0. (A2)

Unlike the eigenvalue equations for the AN equations, these are not equivalent. This is partially because sound waves are affected
differently by temperature and entropy diffusion. The IGWs with kH � 1 have the property

k2 � ω2

cs
2 . (A3)

If we use this relation, the eigenvalue equation with T diffusion is[
ω2

(
1 − i

κT ∇2

ρCP ω

)
∇2 − g

CP

(
∂zS∇2

⊥ + iω
γ − 1

cs
2

κT

ρ
∇2∂z

)]
w = 0, (A4)

whereas the eigenvalue equation with S diffusion is[
ω2

(
1 − i

κS∇2

ρT ω

)
∇2 − g

∂zS

CP

∇2
⊥

]
w = 0. (A5)

These equations are still not equivalent because of the last term in Equation (A4). It cannot be shown to be small in comparison to
∂zS∇2

⊥ unless κT is assumed to be small. For weakly damped waves, the eigenvalue equations are equivalent under the identification
κS = T κT /CP . However, for strongly damped modes (which are no longer wave-like), we expect larger differences.

One can show that the perturbation energy for the FC equations is

E = 1

2
ρ|u|2 +

1

2

gρ

CP ∂zS
S ′2 +

1

2

ρ

cs
2 � ′2, (A6)

and the T and S diffusion damping terms are

θT = κT ∇
(

gS ′

CP T ∂zS
+

� ′

T CP

)
· ∇

(
T

S ′

CP

+
γ − 1

γ
� ′

)
, (A7)

θS = κS∇
(

gS ′

CP T ∂zS
+

� ′

T CP

)
· ∇S ′. (A8)

For weak dissipation, both S ′ and � ′ can be related to w by

S ′ = − i
w∂zS

ω
, (A9)

� ′ = iω
∂zw + 1

γ
(∂z log p) w

ω2

cs
2 + k2

⊥
≈ ω2 − N

2

ωkz

w, (A10)

where the approximation is dropping terms of order (kzH )−1 and smaller. This implies that the S ′ contribution is much larger than
the � ′ contribution to θT and θS : ∣∣∣∣T S ′

CP

∣∣∣∣
∣∣∣∣� ′

γ

∣∣∣∣
−1

=
(

cs
2k2

z

ω2 − N
2

)(
∂z

(
S

CP

)
kz

)
, (A11)

∣∣∣∣gS ′

∂zS

∣∣∣∣|� ′|−1 = gHk2
z

ω2 − N
2

1

kzH
. (A12)

Using the IGW eigenvalue equation and that cs
2 ∼ N

2
H 2, one can show that both of these terms are order (kH )−1.

The leading-order contributions to θT and θS are

θT ≈ gκT

C2
P ∂zS

∣∣∇S ′∣∣2
, (A13)

θS ≈ gκS

CP T ∂zS

∣∣∇S ′∣∣2
. (A14)

Thus, for perturbations with kzH � 1 and weak dissipation, we have that thermal diffusion and entropy diffusion are equivalent
under the identification κS = κT T /CP .
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APPENDIX B

EIGENVALUE EQUATIONS AND DAMPING RATES FOR PSEUDOINCOMPRESSIBLE EQUATIONS

Recall that for the linearized PI equations T ′ = T S ′/CP . This makes temperature and entropy conduction extremely similar. In
the limit kH � 1, the eigenvalue equation for T diffusion is[

ω2

(
1 − i

κT

ρCP ω
∇2

)
∇2 − g∂z

S

CP

∇2
⊥

]
w = 0. (B1)

The eigenvalue equation for S diffusion is [
ω2

(
1 − i

κS

ρT ω
∇2

)
∇2 − g∂z

S

CP

∇2
⊥

]
w = 0. (B2)

These are equal to each other when κS = κT T /CP . This shows that T and S diffusion are equivalent for the PI equations as long as
kH � 1, irrespective of the strength of thermal conduction.

The expression for the perturbation energy is

E = 1

2
ρ |u|2 +

1

2

gρ

CP ∂zS
S ′2, (B3)

and the thermal and entropy damping terms are

θT = κT ∇
(

gS ′

CP T ∂zS
+

� ′

T CP

)
· ∇

(
T

S ′

CP

)
, (B4)

θS = κS∇
(

gS ′

CP T ∂zS
+

� ′

T CP

)
· ∇S ′. (B5)

This is very similar to the FC expressions, except that T ′ = T S ′/CP because there is no � ′ term in the equation of state. In the limit
of kH � 1, these two expressions are equivalent because

∇
(

T
S ′

CP

)
≈ T

CP

∇
(
S ′) . (B6)

APPENDIX C

THERMAL CONDUCTION AND SOUND WAVES

In this paper, we focus on the differences in IGW damping rates between equation sets and thermal conduction models. However,
the FC equations also admit sound waves. Here we demonstrate, using Dedalus, the substantial differences in sound wave damping
when using either T or S diffusion.

We solve the linear FC equations for the same background and parameters as in Section 3. We check the damping rate of each mode
against the analytic result given in Appendix A. The sound waves are much harder to resolve than IGWs; thus, some of our sound
wave damping rates disagree with the analytic damping rates by as much as 20% (with a vertical resolution of 256 modes). However,
the differences between T and S diffusion are much larger than this, so we have not repeated the calculation at higher resolution to
reduce the errors.

In Figure 6, we plot the damping rates and oscillation frequencies for sound wave modes, using either T or S diffusion. Although
the damping rate increases with increasing k (and increasing oscillation frequency) for T diffusion, the damping rate stays about
constant for S diffusion. The oscillation frequencies between the modes agree well because they are only weakly damped.

For sound waves, the damping rate using S diffusion becomes increasingly inaccurate as k increases. This is the opposite result
as for IGWs. Although the dominant contribution to T ′ is S ′ for IGWs, the dominant contribution to T ′ is the pressure perturbation
� ′ for sound waves. In Section 4, we show that the ratio of the � ′ contribution to T ′ to the S ′ contribution to T ′ decreases with
increasing k if the modes follow the IGW dispersion relation, but it increases with increasing k if the modes follow the sound wave
dispersion relation.

Physically, this is because sound waves are almost adiabatic waves. In the absence of gravity, they are completely adiabatic. On the
other hand, because they are pressure-driven waves, they have large pressure perturbations, which correspond to large temperature
perturbations. Thus, sound waves are much more efficiently damped with T diffusion than S diffusion.

APPENDIX D

EQUATION IMPLEMENTATION IN DEDALUS

Dedalus solves systems of equations that are first order in z. Time derivatives are here discretized using an implicit–explicit scheme;
equations are written such that terms on the LHS of the equals sign are temporally discretized implicitly (i.e., the term is evaluated
in the future), and terms on the RHS of the equals sign are temporally discretized explicitly (i.e., the term is only evaluated in the
present or past). Only linear terms can be treated implicitly, although they are not required to be.

12
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0 2 4 6 8 10 12 14

FC T
FC S

Figure 6. Damping rates and oscillation frequencies of sound wave modes of the FC equations, using either T or S diffusion. The first 10 radial and horizontal modes
are shown. Each cluster of modes (most visible at high oscillation frequency) corresponds to a single horizontal mode number. The oscillation frequency increases
with increasing wavenumber.

(A color version of this figure is available in the online journal.)

D.1. Fully Compressible Equations

We implement the FC equations with temperature diffusion as

∂tw + ∂zT
′ + T ∂zϒ′ + T ′∂z log ρ − ν

[
∂2
xw + ∂zwz + 2∂z log ρwz +

1

3
(∂xuz + ∂zwz) − 2

3
∂z log ρ (∂xu + wz)

]

= −T ′∂zϒ′ − u∂xw − wwz + ν

[
uz∂xϒ′ + 2wz∂zϒ′ + ∂xw∂xϒ′ − 2

3
∂zϒ′ (∂xu + wz)

]
, (D1)

∂tu + ∂xT
′ + T ∂xϒ′ − ν

[
∂2
xu + ∂zuz + ∂z log ρ (uz + ∂xw) +

1

3

(
∂2
xu + ∂xwz

)]

= −T ′∂xϒ′ − u∂xu − wuz + ν

[
2∂xu∂xϒ′ + ∂xw∂zϒ′ + uz∂zϒ′ − 2

3
∂xϒ′ (∂xu + wz)

]
, (D2)

∂tϒ′ + w∂z log ρ + ∂xu + wz = −u∂xϒ′ − w∂zϒ′, (D3)

∂tT
′ + w∂zT + (γ − 1)T (∂xu + wz) − χ

CV

(
∂2
xT ′ − ∂zQ̃

′
z − Q̃′

z∂z log ρ
)

= −u∂xT
′ − w∂zT

′ − (γ − 1)T ′(∂xu + wz) +
χ

CV

(
∂xT

′∂xϒ′ − Q̃′
z∂zϒ′)

+
ν

CV

[
2(∂xu)2 + (∂xw)2 + u2

z + 2w2
z + 2uz∂xw − 2

3
(∂xu + wz)

2

]
, (D4)

Q̃′
z + ∂zT

′ = 0, (D5)

S ′

CP

− T ′

γ T
+

1

CP

ϒ′ = 1

γ

[
log

(
1 +

T ′

T

)
− T ′

T

]
, (D6)
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wz − ∂zw = 0, (D7)

uz − ∂zu = 0. (D8)

In these equations, u and w are the horizontal and vertical velocity, respectively. The temperature field is decomposed as T = T + T ′,
the density field is decomposed as log ρ = log ρ + ϒ′, and the entropy field is decomposed as S = S +S ′. The normalized vertical heat
flux Q̃′

z is the vertical component of the heat flux divided by χρ. Equations (D1) and (D2) are the vertical and horizontal momentum
equations respectively, Equation (D3) is the continuity equation, and Equation (D4) is the equation for temperature. Equation (D5)
defines the heat flux, Equation (D6) is the fully nonlinear equation of state, and Equations (D7) and (D8) define quantities that
have second vertical derivatives within our first-order system. These are equivalent to Equations (13)–(15). Note that the entropy
perturbation solved for in the equation of state (Equation (D6)) is only used to enforce the S ′ = 0 boundary condition. The momentum
equations and the temperature equation have nonlinear diffusion terms that are treated explicitly.

For the FC equations with entropy diffusion, Equations (D4) and (D5) are replaced by

∂tT
′ + w∂zT + (γ − 1) T (∂xu + wz) − χ

CV

(
T ∂2

x

S ′

CP

− ∂zQ̃
′
z − Q̃′

z∂z log ρ

)

= −u∂xT
′ − w∂zT

′ − (γ − 1) T ′ (∂xu + wz) +
χ

CV

(
T ∂x

S ′

CP

∂xϒ′ − Q̃′
z∂zϒ′

)

+
ν

CV

[
2 (∂xu)2 + (∂xw)2 + u2

z + 2w2
z + 2uz∂xw − 2

3
(∂xu + wz)

2

]
, (D9)

Q̃′
z + T ∂z

S ′

CP

= 0. (D10)

Note that χ , ν, and γ are assumed to be constant. In both conduction models, we solve for the variables
u, uz, w,wz, ϒ′, T ′, S ′, andQ̃′

z.

D.2. Pseudoincompressible Equations

Our implementation of the PI equations with temperature diffusion is

∂tw + ∂z�
′ + �∂zϒ′ − � ′∂z

S

CP

− ν

[
∂2
xw + ∂zwz + 2∂z log ρwz +

1

3
(∂xuz + ∂zwz) − 2

3
∂z log ρ (∂xu + wz)

]

= −� ′∂zϒ′ − u∂xw − wwz + ν

[
uz∂xϒ′ + 2wz∂zϒ′ + ∂xw∂xϒ′ − 2

3
∂zϒ′ (∂xu + wz)

]
, (D11)

∂tu + ∂x�
′ + �∂xϒ′ − ν

[
∂2
xu + ∂zuz + ∂z log ρ (uz + ∂xw) +

1

3

(
∂2
xu + ∂xwz

)]

= −� ′∂xϒ′ − u∂xu − wuz + ν

[
2∂xu∂xϒ′ + ∂xw∂zϒ′ + ∂zϒ′uz − 2

3
∂xϒ′ (∂xu + wz)

]
, (D12)

∂tϒ′ + w∂z log ρ + ∂xu + wz = −u∂xϒ′ − w∂zϒ′, (D13)

w∂z log P + γ (∂xu + wz) − χ

CV T

(
∂2
xT ′ + ∂zT

′
z + T ′

z∂z log ρ
)

= χ

CV T

[
∂xT

′∂x exp ϒ′ +
(
∂2
xT ′ + ∂zT

′
z + T ′

z ∂z log ρ
) (

exp(ϒ′) − 1
)

+ T ′
z∂z exp(ϒ′)

]
+ ν

exp(ϒ′)
CV T

[
2 (∂xu)2 + (∂xw)2 + u2

z + 2w2
z + 2uz∂xw − 2

3
(∂xu + wz)

2

]
, (D14)

T ′ + T ϒ′ = T (exp(−ϒ′) − 1 + ϒ′), (D15)

T ′
z − ∂zT

′ = 0, (D16)
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wz − ∂zw = 0, (D17)

uz − ∂zu = 0. (D18)

Equations (D11) and (D12) are the vertical and horizontal momentum equations, respectively, Equation (D13) is the continuity equa-
tion, and Equation (D14) is the constraint equation. Equation (D15) is the fully nonlinear equation of state, and Equations (D16)–(D18)
define quantities that have second vertical derivatives within our first-order system. These are equivalent to Equations (20)–(22). Note
that the momentum equations and the constraint equation have nonlinear diffusion terms that are treated explicitly.

For the PI equations with entropy diffusion, Equations (D14)–(D16) are replaced by

w∂z log P + γ (∂xu + wz) +
χ

CV T

[
T ∂2

x ϒ′ − ∂zQ̃
′
z − Q̃′

z∂z log ρ
]

= − χ

CV T

[
T ∂xϒ′∂x exp(ϒ′) +

(
T ∂2

x − ∂zQ̃
′
z − Q̃′

z∂z log ρ
)
(exp(ϒ′) − 1) − Q̃′

z∂z exp(ϒ′)
]

+ ν
exp(ϒ′)
CV T

[
2(∂xu)2 + (∂xw)2 + u2

z + 2w2
z + 2uz∂xw − 2

3
(∂xu + wz)

2

]
, (D19)

Q̃′
z + T ∂zϒ′ = 0. (D20)

The variables here have the same meaning as for the FC equations. The only additional variables are � and � ′. These are defined

as follows. Call the PI pressure perturbation π ′, and recall that β = P
1/γ

. Define π by

β∇
(

π

β

)
= gρ, (D21)

and define π = π + π ′. Then � is defined as � = π/ρ, and we can split it up as � = � + � ′. We have that � satisfies the equation

β∇
(

�

β

)
+ �∇ log ρ = g. (D22)

In the PI equations, entropy is proportional to ϒ′, so the entropy boundary condition becomes ϒ′ = 0 on the top and bottom of the
domain. For the PI equations with temperature diffusion, we solve for the variables u, uz, w,wz,�

′, ϒ′, T ′, and T ′
z , and for the PI

equations with entropy diffusion, we solve for the variables u, uz, w,wz,�
′, ϒ′, and Q̃′

z.

D.3. Anelastic Equations

Our implementation of the AN equations with temperature diffusion is

∂tw + ∂z�
′ − g

S ′

CP

− ν

[
∂2
xw + ∂zwz + 2∂z log ρwz +

1

3
(∂xuz + ∂zwz) − 2

3
∂z log ρ (∂xu + wz)

]
= −u∂xw − wwz, (D23)

∂tu + ∂x�
′ − ν

[
∂2
xu + ∂zuz + ∂z log ρ (uz + ∂xw) +

1

3

(
∂2
xu + ∂xwz

)] = −u∂xu − wuz, (D24)

∂tS
′ + w∂zS − χ

[
∂2
x

S ′

CP

+
1

CP T
∂2
x� ′ − 1

T
∂zQ̃

′
z − 1

T
Q̃′

z∂z log ρ

]

= −u∂xS
′ − w∂zS

′ +
ν

T

[
2 (∂xu)2 + (∂xw)2 + u2

z + 2w2
z + 2uz∂xw − 2

3
(∂xu + wz)

2

]
, (D25)

Q̃′
z + T ∂z

S ′

CP

+
S ′

CP

∂zT +
1

CP

∂z�
′ = 0, (D26)

∂xu + wz + w∂z log ρ = 0, (D27)

wz − ∂zw = 0, (D28)

uz − ∂zu = 0. (D29)
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Equations (D24) and (D23) are the vertical and horizontal momentum equations, respectively, and Equation (D25) is the entropy
equation. Equation (D26) defines the heat flux, and Equation (D27) is the constraint equation. Equations (D28) and (D29) define
quantities that have second vertical derivatives within our first-order system.

For the AN equations with entropy diffusion, Equations (D25) and (D26) are replaced by

∂tS
′ + w∂zS − χ

[
∂2
x

S ′

CP

− 1

T
∂zQ̃

′
z − 1

T
Q̃′

z∂z log ρ

]

= −u∂xS
′ − w∂zS

′ +
ν

T

[
2 (∂xu)2 + (∂xw)2 + u2

z + 2w2
z + 2uz∂xw − 2

3
(∂xu + wz)

2

]
, (D30)

Q̃′
z + T ∂z

S ′

CP

= 0. (D31)

The variables used here have all been defined for the FC and PI equations. One difference, however, is that � ′ is now a different
pressure-type variable. Calling the AN pressure perturbation P ′, � ′ = P ′/ρ. This is different from the definition of � ′ used in the
PI equations. In both conduction models, we solve for the variables u, uz, w,wz,�

′, S ′, and Q̃′
z.
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