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Power law Pólya’s urn and fractional Brownian motion

Alan Hammond∗ and Scott Sheffield†

Abstract

We introduce a natural family of random walks Sn on Z that scale to fractional
Brownian motion. The increments Xn := Sn − Sn−1 ∈ {±1} have the property that
given {Xk : k < n}, the conditional law of Xn is that of Xn−kn , where kn is sampled
independently from a fixed law µ on the positive integers. When µ has a roughly
power law decay (precisely, when µ lies in the domain of attraction of an α-stable
subordinator, for 0 < α < 1/2) the walks scale to fractional Brownian motion with
Hurst parameter α+1/2. The walks are easy to simulate and their increments satisfy
an FKG inequality. In a sense we describe, they are the natural “fractional” analogues
of simple random walk on Z .

1 Introduction

Fractional Brownian motion is a one-parameter family of stochastic processes, mapping the
real line to itself, that are the only stationary-increment Gaussian processes that, for some
fixed H > 0, are invariant under the space-time rescalings S → Y of the form Yt = c−HSct

with c > 0. The parameter H is called the Hurst parameter, and may take any value in
(0, 1). Fractional Brownian motion SH : (0,∞) → R with Hurst parameter H satisfies

E(SH
s SH

t ) =
1

2

(

|t|2H + |s|2H − |t− s|2H
)

,

or, equivalently,
E(|SH

t − SH
s |2) = |t− s|2H , SH

0 = 0.

The process satisfies E
(

SH
t

)

= 0 for all t ∈ R. When H = 1/2, it is Brownian motion,
whose increments are of course independent. If H > 1/2, increments over two given disjoint
intervals are positively correlated, while they have negative correlation if H < 1/2.
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Fractional Brownian motion was first considered by Kolmogorov [16] as a model of turbu-
lence, and there is a now large literature treating this family of processes, e.g. as models in
mathematical finance, and developing their stochastic calculus [19]. The stated characteri-
zation of fractional Brownian motion may permit this family of processes to be considered as
at least slightly canonical. However, there are only a few examples of members of the family
arising as a scaling or continuum limit of a discrete model (other than Brownian motion
itself). The fractional Brownian motion with Hurst parameter 1/4 arises as a scaling limit
for the tagged particle in a one-dimensional symmetric exclusion process [2]. For general
values of H ∈ (0, 1), fractional Brownian motion has been exhibited as a scaling limit of an
average of a mixture of independent random walks, each walk having a decay rate for the
correlation of its increments, which rate is selected independently from a law that depends
on H [11]. In this paper, we present a simple discrete random walk that scales to fractional
Brownian motion. The process may be considered to be a discrete counterpart to fractional
Brownian motion.

In finance applications, as a model for the drift adjusted logarithm of an asset price,
fractional Brownian motion retains much of the simplicity of ordinary Brownian motion (sta-
tionarity, continuity, Gaussian increments) but dispenses with independence of increments,
thereby allowing for “momentum effects” (i.e., increment positive correlations), which have
been observed empirically in some markets. One hypothesis is that momentum effects result
from market inefficiencies associated with insider trading; if an event occurs of which the
market is unaware, insider trading may cause the asset price to change gradually, over a
period of time, instead of all at once — initially because of trades by individuals with privi-
leged knowledge, later by a larger number of market participants. These ideas are discussed
further in [13], where a model based on shocks of this form is shown to be arbitrage free
and and to have fractional Brownian motion as a scaling limit. (We will comment further
on the possibility of arbitrage for fractional Brownian motion in Section 1.2.) See also [3],
which uses “investor inertia” to explain models in which drift-adjusted logarithmic price is
a stochastic integral of fractional Brownian motion. Momentum effects appear naturally in
the random walks we introduce: i.e., it will be easy to see why an “event” (the sampling of
an increment of the walk at one point in time) has an influence on the expectation of future
increments.

An informal description of the walk is as follows. Let µ be a given law on the natural
numbers (which we take to exclude zero). The walk associated with law µ has increments,
each of which is either −1 or 1. Independent samples kn of µ are attached to the vertices of
Z. The sequence of increments

{

Xk : k ∈ N
}

is such that, given the values
{

Xk : k < n
}

, Xn

is set equal to the increment Xn−kn obtained by looking back kn steps in the sequence. The
walk is then defined by adding the successive increments from some fixed number. We remark
that the notion of determining the value Xn of a process at time n by looking a random
number of steps into the past also appears in some of the urn models and reinforced random
walk models studied and surveyed by Pemantle in [20]. Recall that in the traditional Pólya’s

2



urn process, the value of Xn represents the color of the nth ball added to an urn, and the
conditional law of Xn given the past is that of a uniform sample from {X1, X2, . . . , Xn−1} .
Our Xn differs from the Pólya’s urn process in that the past is infinite and the uniform
sample is replaced by one having a power law distance in time from the present.

This description of the walk is a rough one, because it would require some initial condition
to construct it. We will turn to a Gibbs measure formulation for a precise mathematical
description. Fixing the law µ , we write Gµ for the random directed spanning graph on Z

in which each vertex z has a unique outward pointing edge pointing to z − kz , where kz is
sampled independently according to the measure µ . We call z − kz the parent of z . The
ancestral line of z is the decreasing sequence whose first element is z and each of whose
terms is the parent of the previous one.

A law λ on functions mapping Z to {−1, 1} is said to be a µ-Gibbs measure provided
that, for any half-infinite interval R =

{

x, . . . ,∞
}

, the conditional law of λ on R , given
its values in Rc , is given by sampling Gµ and assigning to any element of R the value
assigned to its most recent ancestor in Rc . We will write X = Xλ : N → {−1, 1} for a
realization of the law λ . (In general, a shift invariant probability measure on {−1, 1}Z that
has a specified conditional law for X0 given {Xk : k < 0} is called a g -measure for that
specification [7, 14, 15]. One may view µ-Gibbs measures as g -measures for a particular
specification. We will not make use of this more general framework here.)

A µ-Gibbs measure is called extremal if it cannot be written as an average of two
distinct µ-Gibbs measures. There are at least two extremal µ-Gibbs measures, whatever
the choice of µ : those that assign unit mass to either the constant function equal to +1
or to −1. If µ is such that the great common denominator of values in its support is 1,
then the number of components in Gµ is either equal almost surely to one or to ∞ . (We
furnish a proof of this assertion in Lemma 2.1.) If Gµ has infinitely many components, then
a one-parameter family

{

λp : p ∈ [0, 1]
}

of extremal Gibbs measures may be defined as
follows. To sample from λp , first sample Gµ and then independently give each component
of Gµ a value of 1 (with probability p) or −1 (with probability 1 − p). Then assign all of
the vertices in that component the corresponding value.

Perhaps surprisingly, for such laws µ , any Gibbs measure is a mixture of these ones:

Proposition 1 Let µ denote a probability measure on N =
{

1, 2, . . .
}

the greatest common
denominator of whose support is equal to one. If Gµ has one component almost surely, then
there are no extremal µ-Gibbs measures other than the two trivial ones, λ0 and λ1 . If Gµ

has infinitely many components almost surely, then the space of extremal Gibbs measures is
the family

{

λp : p ∈ [0, 1]
}

.

From this result, it is not hard to conclude that if the greatest common denominator of the
support of µ is some k 6= 1, and λ is an extremal µ-Gibbs measure, then the restriction of
λ to points in kZ+ a, for each a ∈ {0, 1, . . . , k − 1} , will be an extremal µ-Gibbs measure
of the type described in Proposition 1, and that these measures will be independent for
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different values of a (though p may depend on a). Hence, there is no real loss of generality
in restricting to the case that the greatest common denominator is 1, as we do in Proposition
1 (and throughout most of the remainder of this paper).

Next, we define the measures µ that we will use for most of this paper.

Definition 1.1 Let µ denote a probability measure on N. For α ∈ (0,∞), we say that
µ ∈ Γα if there exists a slowly varying function L : (0,∞) → (0,∞) for which

µ
{

n, . . . ,∞
}

= n−αL
(

n
)

(1.1)

for each n ∈ N. Recall that by slowly varying is meant

lim
u→∞

L
(

u(1 + r)
)

L(u)
= 1, (1.2)

for any r > 0.

Note that if we required L to be a constant function, then the measures satisfying the
first condition would be simply those for which µ{n, . . . ,∞} is a constant times n−α . The
generalization to slowly varying L is quite natural, for the following reason. Let Rµ denote
the random set

{
∑j

i=1Xi : j ∈ N
}

of values assumed by partial sums of an independent
sequence of samples Xi of the law µ . (Clearly, −1 times the ancestral line of 0 has the
same law as Rµ .) Then it turns out that when α ∈ (0, 1), the random set ǫRµ converges in
law as ǫ → 0 to the range of a stable subordinator with parameter α if and only if µ ∈ Γα

(Theorem 8.3.1 of [6]). Indeed, there is a sizable literature on probability distributions with
power law decays up to a slowly varying function [6]. However, throughout this paper, when
a result is stated for all µ ∈ Γα , the reader may find it easier on a first reading to focus on
the special case that L is constant.

Our next result relates the decay rate of the tail of µ to the number of components in
Gµ .

Proposition 2 Let µ ∈ Γα for some α ∈ (0,∞). If α > 1/2, then Gµ almost surely has
one component, while, if α < 1/2, then Gµ almost surely has infinitely many.

To any µ-Gibbs measure λ , we associate a random walk S = Sλ : Z → Z by setting
S(0) = 0 and S(n) =

∑n
i=1X(i) for n > 0, and S(n) = −

∑−1
i=−nX(i) for n < 0. We

extend the domain of S to R by linearly interpolating its values between successive integers.
We now ready to state our main result. Essentially, it says that, for S the random

walk associated to an extremal µ-Gibbs measure for a choice of µ ∈ Γα , the time-scaled
process S(nt), further rescaled by subtracting its mean and multiplying by a deterministic
n-dependent factor, converges to fractional Brownian motion with Hurst parameter α+1/2.

This normalizing factor is written below as c̃n− 1

2
−αL(n). The explicit form for the constant

c̃ will be explained by the proof of Lemma 3.1, in which the asymptotic variance of Sn is
determined.
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Theorem 1.1 For α ∈ (0, 1/2), let µ ∈ Γα . Let L : (0,∞) → (0,∞) be given by (1.1).
Define c̃ > 0 by means of

c̃2 =

∑∞
i=0 q

2
i

2p(1− p)
α
(

2α + 1
)

Γ
(

1− 2α
)2
Γ
(

2α
)

cos
(

πα
)

, (1.3)

where qi = P
(

i ∈ Rµ

)

for i ≥ 1, and q0 = 1. Then, for each p ∈ (0, 1), there exists a
sequence of couplings Cn of the process

Sn
p : (0,∞) → R : t → c̃n− 1

2
−αL(n)

(

Sλp

(

nt
)

− n(2p− 1)t
)

and fractional Brownian motion Sα+1/2 with Hurst parameter α + 1/2 such that, for each
T > 0 and ǫ > 0,

lim
n→∞

Cn

(

||Sn
p − Sα+1/2||

L∞

(

[0,T ]
) > ǫ

)

= 0. (1.4)

1.1 Discussion regarding Theorem 1.1

In light of Theorem 1.1, it is tempting to argue that the random walks we construct are
in some sense the canonical fractional analogs of simple random walk on Z. To make this
point, we note that any random walk on Z (viewed as a graph) has increments in {−1, 1} ,
which means that its law, conditioned on {Xn : n < M} for some fixed M , is determined
by the value of E[Xn|{Xk : k < n}]. If we assume stationarity of increments and we further
posit that E[X0|{Xk : k < 0}] has a simple form — say, that it is a monotonically increasing
linear function of {Xk : k < 0} — then we have

E[Xn|{Xk : k < n}] =
∞
∑

i=1

piXn−i

for some pi ≥ 0 with
∑

pi ≤ 1. It is not hard to show that if
∑

pi < 1, the process scales to
ordinary Brownian motion. We are therefore left with the case

∑

pi = 1, which corresponds
to the walks we consider with µ({i}) = pi .

It seems plausible that any µ for which the conclusion of the theorem holds (with the

normalizing factor c̃n− 1

2
−αL(n) replaced by some deterministic function of n) must be a

member of Γα . Similarly, it seems highly plausible (in light of (3.19)) that the closely
related assertion that the variance of Sn is n2α+1 (multiplied by a slowly varying function)
implies µ ∈ Γα . We will not prove either of these statements here.

We see that the model undergoes a phase transition at the value α = 1
2
. We remark

that, while there are no non-trivial µ-Gibbs measures for µ ∈ Γα with α > 1/2, there
is nonetheless a further phase transition at the value α = 1, which is the maximal value
for which an element µ ∈ Γα may have infinite mean. Indeed, suppose that we define the
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walk associated to a measure µ by instead specifying its domain to be the positive integers
and then making the following adjustment to the existing definition. As previously, we take
{

kn : n ∈ N
}

to be a sequence of independent samples of the measure µ , and, in the case
that n − kn ≥ 0, we continue to set the increment Xn to be equal to Xn−kn . In the other
case, we choose this increment to be +1 or −1 with equal probability, independently of
previous such choices. Then it is easily seen that the walk takes infinitely many steps of each
type if and only if µ has infinite mean.

Finally, we mention that the decomposition of Z into components provided by Proposi-
tion 2 with a choice of µ ∈ Γα with α < 1/2 has something in common with the following
process, discussed in [1]. A system of particles, one at each element of Z, are labelled, each
by its location at an initial time t = 0. Each pair of adjacent particles consider swapping
locations at an independent Poisson sequence of times, but do so only if the higher-labelled
particle lies on the right-hand-side in the pair just before the proposed swap. Each particle
behaves as a second class particle in a totally asymmetric exclusion process, begun from an
initial condition in which only sites to its left are occupied; as such, each has an asymptotic
speed, which is a random variable having the uniform law on [0, 1]. Defining a convoy to be
the collection of locations inhabited at time zero by particles that share a common speed,
([1]) shows that the convoy containing the origin is almost surely infinite, has zero density,
and, conditionally on the speed of the particle beginning at the origin, is a renewal process.
As such, the collection of convoys provides a partition of Z that has some similarities with
Gµ , when it has infinitely many components.

1.2 Further comments

In financial contexts, where fractional Brownian motion may serve as a model of evolving
prices or preference strengths, it is particularly natural to aim to simulate its future trajectory
given some fixed past. The discrete model that we introduce is very well suited to this
problem, because, given the past, N subsequent steps of the process may be sampled in
time O(N) (neglecting logarithmic corrections arising due to random number generation). In
comparison, fast Fourier transform methods for approximately sampling fractional Brownian
motion necessarily take at least O(N logN) time.

Mandelbrot and Van Ness introduced a representation of fractional Brownian as a weighted
average of white noise. The representation of fractional Brownian motion stated in footnote
3 on page 424 of [18] inspires has a natural discrete counterpart, in which a weighted avarge
of independent ±1 coin tosses is used. However, the walks obtained in this way do not
have ±1 increments and are not as simple to generate as those of this paper. In regard to
discretizations of fractional Brownian motion, we mention [22], that introduces a random
walk approximation and shows its weak convergence to fractional Brownian motion.

The question of whether (and what kind of) arbitrage is admitted in financial models
based on fractional Brownian motion or geometric fractional Brownian motion has been
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explored at some length in the finance literature. Fractional Brownian motion is not a
semi-martingale: if the class of admissible trading strategies is large enough (and allows a
potentially unbounded number of trades at arbitrarily small intervals) then one can indeed
construct strategies that that admit positive return with probability one [21]. Even if such
strategies involve trading that is too frequent to be practical, their existence complicates the
construction of consistent derivative pricing models. A good deal of literature has addressed
ways in which transaction costs, other strategy restrictions, or minor modifications to the
model can be imposed to make the arbitrage opportunites go away. See [4] for a survey of
this literature that clarifies how the presence or absence of arbitrage depends on the precise
choice of admissible trading strategies. We note that in a simple discrete model such as ours
— where the walk goes up or down by a unit increment at every discrete time step and all
possible finite-length trajectories have positive probability — one cannot have arbitrage in
the strong sense, so these particular subtleties are not relevant to us. It remains interesting,
however, to think about the market efficiency implications of our model, and we present
some preliminary thoughts on this subject in the appendix.

1.3 Structure of the paper

Section 2 is devoted to the analysis of µ-Gibbs measures, and the proofs of Propositions 1
and 2 are presented there. In section 3, we turn to the convergence of the discrete process
to fractional Brownian motion, proving Proposition 3, which shows convergence in finite
dimensional distributions of the rescaled walk to the continuous process. A useful tool
here is an explicit asymptotic formula for the variance of the walk, which is presented in
Lemma 3.1. In Section 4, we prove a correlation inequality applicable to any extremal Gibbs
measures in Proposition 4, and then apply it to improve the topology of convergence to yield
the L∞ -small coupling given in Theorem 1.1.

The discrete processes that we introduce form a natural counterpart to fractional Brow-
nian motion, and we are hopeful that they may serve as a tool for the analysis of the
continuous process. They also appear to have various discrete relatives that are candidates
for further enquiry. We take the opportunity to discuss this by presenting several open prob-
lems, in Section 5. We end with an appendix that describes potential economic and financial
applications of the model.
Acknowledgments. We thank Yuval Peres for suggesting that the walks in question may
converge to fractional Brownian motion. We thank S.R.S. Varadhan for discussions relating
to regular variation.

2 The space of Gibbs measures

We now prove the first two propositions. We begin with two simple lemmas.
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Lemma 2.1 Let µ be a measure on the positive integers, the greatest common denominator
of its support being equal to one. Then Gµ has either one component almost surely, or
infinitely many almost surely.

Proof. We write Ai for the ancestral line of i ∈ Z. Let mn = P
(

A0 ∩ An 6= ∅
)

. We now
argue that if infnmn > 0, then Gµ has one component almost surely. If m := infnmn > 0,
we may find gn ∈ N such that the ancestral lines from 0 and n meet at some integer
exceeding −gn with probability at least m/2. If the ancestral lines A0 and An fail to meet
in {−gn, . . .} , then we sample them until each first passes −gn , at f1 and f2 , say. Without
loss of generality, f1 < f2 . Conditional on A0∩An∩

{

−gn, . . .
}

= ∅ , and on f1 and f2 , the
probability that A0 ∩An ∩

{

f1− gf2−f1, . . . , f1
}

6= ∅ is at least m/2. Iterating, we construct
a sequence of intervals each of which has a probability at least m/2 of containing a point
in A0 ∩ An , conditionally on its precedessors not doing so. We see that the ancestral lines
indeed meet almost surely.

If mn → 0 subsequentially, then we will show that there exists a sequence
{

ni : i ∈ N
}

such that
P

(

Ani
∩
⋃

j<i

Anj
= ∅

)

≥ 1− i−2. (2.5)

This suffices to show that Gµ has infinitely many components almost surely, by the Borel-
Cantelli lemma. To construct the sequence, for i ∈ N, set qi = P

(

0 ∈ Ai

)

. Then, whenever
n > l > 0,

P

(

A0 ∩An 6= ∅
)

≥ P

({

A0 ∩ An 6= ∅
}

∩
{

n− l ∈ An

})

= P

(

A0 ∩An 6= ∅
∣

∣

∣
n− l ∈ An

)

P

(

n− l ∈ An

)

= P

(

A0 ∩ An−l 6= ∅
)

P

(

n− l ∈ An

)

so that
mn ≥ mn−lql. (2.6)

It follows readily from g.c.d.supp(µ) = 1 that qj > 0 for all sufficiently high j ∈ N.
Supposing that we have constructed an increasing sequence {n1, . . . , ni−1} for which qnj

> 0

for j < i, choose ni > ni−1 satisfying qni
> 0 and mni

∑i−1
j=1 q

−1
nj

≤ i−2 . Note then that

P

(

Ani
∩
⋃

j<i

Anj
6= ∅

)

≤
i−1
∑

j=1

P

(

Ani
∩Anj

6= ∅
)

≤ mni

i−1
∑

j=1

q−1
nj

≤ i−2,

the second inequality by (2.6). In this way, we construct a sequence satisfying (2.5). �

Proof of Proposition 1. The case that Gµ has one component almost surely is trivial.
Let µ be a probability measure on N whose support has greatest common denominator

one, and for which Gµ has infinitely many components almost surely. Let λ denote a µ-
Gibbs measure. For m ∈ Z, set σm = σ

{

Xi : i < m
}

. By the backwards martingale
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convergence theorem (Section XI.15 of [8]),

pn,−∞ = lim
m→−∞

λ
(

Xn = 1
∣

∣σm

)

∈ σ−∞ :=
⋂

m<0

σm (2.7)

exists λ-a.s. Note that it is an almost sure constant, because λ is extremal.
We will now argue that

pn,−∞ = pm,−∞ λ-a.s. (2.8)

We will denote the common value by p.
To show (2.8), let a, b ∈ supp(µ), a 6= b. Consider firstly the case that |b − a| divides

|n−m| . For k ∈ N, we enumerate the ancestral line Ak =
{

k = x0(k), x1(k), . . .
}

emanating
from k in decreasing order. We define a coupling Θ of An and Am . At any given step
l ∈ N, the initial sequences

{

x0(n), . . . , xl(n)
}

and
{

x0(m), . . . , xl(m)
}

have been formed.
If xl(m) 6= xl(n), then we set xl+1(m) − xl(m) = −q , where q has law µ . If q 6∈ {a, b} ,
then we take xl+1(n) − xl(n) = −q also. If q ∈ {a, b} , then we take xl+1(n) − xl(n) to
have the conditional distribution of a sample of µ given that its value belongs to {a, b} . If
xl(m) = xl(n), we simply take xl+1(m)− xl(m) = xl+1(n)− xl(n) = −q .

The sequence of differences
{

xl(m) − xl(n) : l ∈ N
}

performs a random walk with
independent jumps, a jump equal to zero with probability 1− 2µ

{

a
}

µ
{

b
}

, and, otherwise,
with equal probability to be −|b−a| or |b−a| , until the walk reaches 0. The walk beginning
at a multiple of |b − a| , the sequence of differences reaches zero, and then remains there,
almost surely, by the recurrence of one-dimensional simple random walk.

If |b − a| does not divide |n − m| , we begin by sampling initial segments of the two
ancestral lines

{

x0(n), . . . , xj(n)
}

and
{

x0(m), . . . , xj(m)
}

, where j is the stopping time

j = inf
{

k ∈ N : |b− a| divides |xk(n)− xk(m)|
}

,

which is almost surely finite, because g.c.d.supp(µ) = 1. Indeed, this finiteness easily follows
from the positivity of qj for all sufficiently high j . The coupling demonstrates that, given
ǫ > 0, there exists l sufficiently negative that, σl -a.s.,

∣

∣

∣
λ
(

Xn = 1
∣

∣

∣
σl

)

− λ
(

Xm = 1
∣

∣

∣
σl

)
∣

∣

∣
< ǫ,

from which (2.8) follows.
We learn then that, for any n ∈ Z,

λ
(

Xn = 1
)

= EλP
(

Xn = 1
∣

∣σ−∞

)

= Epn,−∞ = p.

Let L ⊆ N be finite. Set

sL = λ
(

Ai, i ∈ L, are not pairwise disjoint
)

.
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For m, l ∈ Z, m < l , let vl,m = supAl∩
{

. . . , m
}

denote the first element in the ancestral
line of l that is at most m. For L ⊆ N finite with m < inf L, write vL,m =

{

vl,m : l ∈ L
}

for the locations of ancestors of elements of L that are at most m whose child is at least
m+ 1.

For ǫ > 0, set

gǫ,L = sup
{

m < inf L : svL,m
< ǫ

}

.

Noting that
{
∣

∣vL,m
∣

∣ : m < inf L
}

is a non-decreasing sequence that assumes a common value
for all sufficiently high negative choices of m, we find that gǫ,L > −∞ , λ-a.s.

For ǫ > 0 and j, k ∈ Z, k < j , write

Ω
(ǫ)
k,j =

{

ω ∈ {−1, 1}{−∞,...,k} : λ
(

Xj = 1
∣

∣

∣

(

. . . , Xk

)

= ω
)

∈
(

p− ǫ, p+ ǫ
)

}

.

Note that, for all ǫ > 0 and j ∈ N,

lim
k→−∞

λ
(

Ω
(ǫ)
k,j

)

= 1, (2.9)

by (2.7) and (2.8). Given L ⊆ N finite, set

jǫ,L = sup
{

k < inf L : λ
(

Ω
(ǫ)
k,l

)

> 1− ǫ for each l ∈ L
}

,

so that jǫ,L > −∞ for each ǫ > 0 and finite L ⊆ N, by (2.9).

Let k ∈ Z and ω ∈ {−1, 1}{−∞,...,k} . Define
{

Y
(ω)
k,l : l ≥ k + 1

}

by constructing an
independent collection of ancestral lines (that do not coalesce on meeting) from the elements
of

{

l ∈ Z : l ≥ k + 1
}

, stopping each line on its arrival in
{

l ∈ Z : l ≤ k
}

. For each

l ≥ k+1, we set Y
(ω)
k,l equal to the ω -value of the vertex at the end of the stopped ancestral

line emanating from l .
Let qǫ,L = jǫ,vL,gǫ,L

. Set Ω∗
ǫ =

⋂

l∈vL,gǫ,L

Ω
(ǫ)
qǫ,L,l

, and note that λ
(

Ω∗
ǫ

)

≥ 1− |L|ǫ.

Note further that, conditionally on vL,gǫ,L and for any ω ∈ {−1, 1}{−∞,...,qǫ,L} for which

λ
(

Xl = 1
∣

∣

(

. . . , Xqǫ,L

)

= ω
)

∈
(

p− ǫ, p+ ǫ
)

for each l ∈ vL,gǫ,L , the set of values
{

Yqǫ,L,l : l ∈ vL,gǫ,L
}

are independent, each being equal
to +1 with probability at least p− ǫ and at most p+ ǫ.

The labelling
{

Xi : i ∈ L
}

is determined by the set of values
{

Xi : i ∈ vL,gǫ,L
}

. However,

for each ω ∈ {−1, 1}{...,qǫ,L} and for any finite set σ ⊆ Z for which vL,gǫ,L = σ is possible,

TV

(

(

(

Xl : l ∈ vL,gǫ,L
)

∣

∣

∣
vL,gǫ,L = σ,

{

. . . , Xqǫ,L

}

= ω
)

,
(

Y ω
jǫ,σ,l : l ∈ σ

)

)

≤ sσ.

Note that the right-hand-side is at most ǫ, because vL,gǫ,L = σ is possible. By taking ǫ > 0
arbitrarily small, we obtain the result. �
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Definition 2.1 Let µ denote a probability distribution on N. Let Rµ denote the random set
{
∑j

i=1Xi : j ∈ N
}

of values assumed by partial sums of an independent sequence of samples
Xi of the law µ. When such a measure µ has been specified, we will write pn = µ{n} and
qn = P

(

n ∈ Rµ

)

. We adopt the convention that q0 = 1.

Lemma 2.2 Let α ∈ (0, 1) and let µ ∈ Γα .

1. We have that
⌊x⌋
∑

n=0

qn ∼
1− α

Γ(2− α)Γ(1 + α)
xαL(x)−1,

where f ∼ g means limx→∞
f(x)
g(x)

= 1.

2. Moreover, the sum
∞
∑

n=0

q2n

converges if α ∈ (0, 1/2) and diverges if α ∈ (1/2, 1).

Proof. Let p, q : [0,∞) → [0,∞], given by

p(λ) =
∞
∑

n=0

pn exp
{

− λn
}

and

q(λ) =
∞
∑

n=0

qn exp
{

− λn
}

,

denote the Laplace transforms of these two sequences. We will analyze these transforms,
(and, in later arguments, the Fourier transforms) of such sequences by means of some Taube-
rian theorems. A Tauberian theorem asserts that a sequence (in our case) has a given rate
of decay if and only if its Laplace or Fourier transform has a corresponding asymptotic be-
haviour close to zero. Additional hypotheses, such as regular variation of the sequence (and,
correspondingly, the transform), are required.

We will make use of two basic results concerning slowly varying functions. Firstly, the
uniform convergence theorem (Theorem 1.2.1 of [6]) states that, if L : (0,∞) → (0,∞) is
slowly varying, then

L
(

λx
)

L
(

x
) → 1, (2.10)

uniformly on each compact λ-set in (0,∞). Secondly, Potter’s theorem (Theorem 1.5.6 of
[6]) states in part that, for any slowly varying function L : (0,∞) → (0,∞) that is bounded

11



above and below on any compact interval in (0,∞), and for any ǫ > 0, there exists C = Cǫ

such that, for all x, y > 0,

L(y)

L(x)
≤ Cmax

{

(

y/x
)ǫ
,
(

y/x
)−ǫ

}

. (2.11)

From
{

pn : n ∈ N
}

∈ l1 , the function p is differentiable on (0,∞), with

d

dλ
p(λ) = −

∞
∑

n=0

npn exp
{

− λn
}

. (2.12)

Setting U : (0,∞) → (0,∞) according to U(x) =
∑⌊x⌋

n=0 npn , it follows from U(x) =
∑⌊x⌋

j=1

∑⌊x⌋
i=j pi , (1.1), (2.10) and (2.11) that U(x) ∼ α

1−α
x1−αL(x), x → ∞ . A special case

of Karamata’s Tauberian theorem (Theorem 1.7.1 of [6]) states that, if
{

an : n ∈ N
}

is a
sequence of non-negative numbers, l : (0,∞) → (0,∞) is slowly varying, and c, ρ ≥ 0, then
the following are equivalent:

⌊x⌋
∑

n=1

an ∼
c

Γ(1 + ρ)
xρl(x), x → ∞,

∞
∑

n=1

ane
−λn ∼ cλ−ρl

(

λ−1
)

, λ → 0+.

Applying the theorem in the present case, we learn that

∞
∑

n=1

npne
−λn ∼

α

1− α
Γ
(

2− α
)

λα−1L
(

1/λ
)

, λ → 0+.

By (2.12), 1− p(λ) ∼ Γ(2−α)
1−α

λαL
(

1/λ
)

, λ → 0+ , since
∫ λ

0
tα−1L

(

t−1
)

dt ∼ α−1λαL
(

λ−1
)

, by
means of (2.10) and (2.11). Noting that the Laplace transforms of the two sequences are

related by q =
(

1− p
)−1

, we learn that

q(λ) ∼
1− α

Γ
(

2− α
)λ−αL

(

1/λ
)−1

, λ → 0+. (2.13)

The reverse implication in Karamata’s Tauberian theorem then yields the first statement of
the lemma.

From (2.13) and

q(λ) ≤
(

∞
∑

n=0

exp
{

− 2λn
}

)1/2(
∞
∑

n=0

q2n

)1/2

≤ λ−1/2
(

∞
∑

n=0

q2n

)1/2

,

12



(the first inequality is Cauchy-Schwarz; the second inequality holds for λ > 0 small enough),
we find that

∑∞
n=0 q

2
n diverges, if α > 1/2.

Set

P (t) =

∞
∑

n=0

pn exp
{

itn
}

and

Q(t) =
∞
∑

n=0

qn exp
{

itn
}

to be the Fourier transforms of the two sequences.
From µ ∈ Γα with α ∈ (0, 1), we learn from Theorem 1 of [12] that

1− ReP (t) ∼ µ(t,∞)Γ(1− α) cos
(

απ/2
)

as t ↓ 0

and
ImP (t) ∼ tan

(

απ/2
)

(

1− ReP (t)
)

as t ↓ 0,

whence
∣

∣

∣
1− P (t)

∣

∣

∣
∼ Γ

(

1− α
)

tαL
(

t−1
)

as t ↓ 0, (2.14)

if µ(t,∞) = t−αL(t). Similarly,

∣

∣

∣
1− P (2π − t)

∣

∣

∣
∼ Γ

(

1− α
)

tαL
(

t−1
)

as t ↓ 0.

From Q = (1 − P )−1 , we find that, for any constant C > Γ(1 − α)−1 , there exists c > 0
such that

|Q(t)| ≤ Ct−αL(1/t)−1 (2.15)

for 0 < t < c, and, similarly,

|Q
(

2π − t
)

| ≤ Ct−αL(1/t)−1. (2.16)

From the support of µ having greatest common denominator one, |P (λ)| < 1 for λ ∈ (0, 2π).
By the continuity of P : (0,∞) → C,

sup
{

|P (λ)| : λ ∈ [c, 2π − c]
}

≤ 1− c, (2.17)

for c > 0 small.
By Parseval’s identity,

∞
∑

n=0

q2n =
1

2π

∫ 2π

0

|Q(t)|2dt,

13



which, by (2.15), (2.16) and (2.17) is finite, provided that α < 1/2. �

Proof of Proposition 2. Let α > 0 and µ ∈ Γα . Let n,m ∈ N satisfy n < m. We wish
to show that, if α > 1/2, then n and m lie in the same component of Gµ , while, in the case
that α < 1/2, there is a positive probability (depending on m− n) that they lie in different
components.

Let R
(1)
µ and R

(2)
µ be independent samples of Rµ . It is easily seen that n and m almost

surely lie in the same component of Gµ if and only if E
(
∣

∣

{

n− R
(1)
µ

}

∩
{

m− R
(2)
µ

}
∣

∣

)

= ∞ .
Moreover, if there exists some pair (m,n) ∈ Z2 for which this expectation is infinite, then
clearly, it is infinite for all such pairs. Hence, there exists one component of Gµ precisely
when E

∣

∣R1
µ∩R2

µ

∣

∣ is infinite. This expectation is equal to
∑∞

n=1 q
2
n , so the result follows from

Lemma 2.2(ii). �

3 Convergence to fractional Brownian motion

In this section, we establish that the walk has a fractional Brownian motion scaling limit in
the sense of finite dimensional distributions:

Proposition 3 Let µ ∈ Γα , for some α ∈ (0, 1/2). Recall the constant c̃ = c̃(p) for p ∈

(0, 1) from (1.3). Then, for each p ∈ (0, 1), the process (0,∞) → R : t → cn− 1

2
−αL(n)

(

Sλp

(

nt
)

−

n(2p− 1)t
)

converges weakly (in the sense of finite dimensional distributions) as n → ∞ to

fractional Brownian motion with Hurst parameter α + 1/2.

In preparation for the proof, let X : Z → {−1, 1} be a sample of λp , and let S : Z → Z be
the random walk satisfying S(0) = 0 and Sn − Sn−1 = Xn for each n ∈ Z. It is our aim
to show that Sn is approximately normally distributed, when n is chosen to be high. We
begin by finding an explicit expression for the variance of Sn .

Lemma 3.1 We have that

Var
(

Sn

)

∼
4p(1− p)Kα

(

|Q|2
)

0

n2α+1L(n)−2,

where
(

|Q|2
)

i
=

∑∞
j=0 qjqi+j denotes the i-th Fourier coefficient of |Q|2 , and where

Kα =
1

2α(2α+ 1)

(

Γ
(

1− 2α
)2
Γ
(

2α
)

cos
(

πα
)

)−1

.

Proof. We begin by showing that

VarSn =
4p(1− p)
(

|Q|2
)

0

(

2

n
∑

i=1

(

n− i
)(

|Q|2
)

i
+ n

(

|Q|2
)

0

)

. (3.18)
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(In fact, (3.18) holds, more generally, for any µ for which Gµ has a.s. infinitely many
components.) To do so, write T1, . . . Tr(n) for the trees having non-empty intersection with
{

1, . . . , n
}

. Then

Var
(

Sn

)

= 4p(1− p)E

r(n)
∑

i=1

∣

∣

∣
Ti ∩

{

1, . . . , n
}

∣

∣

∣

2

= 4p(1− p)

n
∑

i=1

n
∑

j=1

P

(

Ai ∩ Aj 6= ∅
)

.

Note that, for i < j ,

E

(

Ai ∩ Aj

)

=
∞
∑

k=0

qkqj−i+k =
(

|Q|2
)

j−i
,

and also that

E
(

Ai ∩ Aj

)

= P
(

Ai ∩ Aj 6= ∅
)

∞
∑

i=0

q2i = P
(

Ai ∩Aj 6= ∅
)(

|Q|2
)

0
,

since we adopt the convention that q0 = 1. Hence,

Var
(

Sn

)

=
4p(1− p)
(

|Q|2
)

0

n
∑

i=1

n
∑

j=1

(

|Q|2
)

|j−i|
,

whence, (3.18). By (3.18), it suffices to show that

n
∑

i=1

(

n− i
)(

|Q|2
)

i
∼ Kαn

2α+1L(n)−2, (3.19)

because Lemma 2.2(ii) implies that
(

|Q|2
)

0
< ∞ . To this end, note that, by (2.14) and

Q = (1− P )−1 ,
∣

∣Q(t)
∣

∣ ∼ Γ(1− α)−1t−αL
(

t−1
)−1

,

so that
|Q(t)|2 ∼ Γ(1− α)−2t−2αL

(

t−1
)−2

,

By Theorem 4.10.1(a) of [6], using |Q(t)|2 ∈ R,

n
∑

i=1

(

|Q(t)|2
)

i
∼

(

Γ
(

1− 2α
)2
Γ
(

2α
)

cos
(

πα
)

)−1n2αL(n)−2

2α
.
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It follows that

n
∑

i=1

(

n− i
)(

|Q|2
)

i
∼

(

Γ
(

1− 2α
)2
Γ
(

2α
)

cos
(

πα
)

)−1

n2α+1L(n)−2

∫ 1

0

(1− x)x2α−1dx.

Evaluating the integral, we obtain (3.19). �

Proof of Proposition 3. There being a unique stationary Gaussian process SH : R → R

with covariances given by E|SH
t |2 = t2α+1 , it suffices, in light of Lemma 3.1, to establish that

Sn has a distribution that is asymyptotically Gaussian. We will make use of the following
notation. For M ∈ Z, set σM =

{

Xi : i < M} . Let XM
n and SM

n denote the expected
values of Xn and Sn respectively given σM . (Note that XM

n is the expected value of Xk

where k is the first element in the ancestral line of n that is less than M .) Clearly, XM
n and

SM
n are martingales in M , and SM

n = Sn when n ≥ M . We will establish that Sn has an
asymptotically Gaussian law by applying the martingale central limit theorem to SM

n . This
will require showing that SM

n has small increments compared to its total size and a use of a
long-range near-independence argument to show that the sum of the conditional variances
of the increments is concentrated. We now state the martingale central limit theorem in the
form that we require. See Theorem 7.2 in Chapter 7 of [10], and the remark following its
proof, for a derivation.

Definition 3.1 We say that Xn,m,Fn,m , n ≥ 1, 1 ≤ m ≤ kn is a martingale difference ar-

ray if Xn,m ∈ Fn,m and E
(

Xn,m

∣

∣Fn,m−1

)

= 0 for 1 ≤ m ≤ kn . Let Vn =
∑kn

i=1 E
(

X2
n,m

∣

∣Fn,m−1

)

.

Theorem 3.1 Suppose that
{

Xn,m,Fn,m

}

is a martingale difference array. Let Xn,0 ∈ Fn,0 ,

n ∈ N. Set Sn =
∑kn

j=0Xn,j . Assume that, for some sequence ǫn → 0,

•
(

EVn

)−1∣
∣Xn,m

∣

∣

2
≤ ǫn for all m ∈ {1, . . . , kn}

•
(

EVn

)−1
Var

(

Xn,0

)

≤ ǫn for n sufficiently high,

• Vn

EVn
→ 1, in probability.

Then E(Vn)
−1/2Sn converges in distribution to the normal distribution of mean zero and unit

variance.

We will apply the result in the following way. Let
{

ǫn : n ∈ N
}

be a given sequence
converging to zero. Let

{

kn : n ∈ N
}

be a sequence satisfying

Var
(

S−kn
n

)

≤ 2−1ǫn
4p(1− p)Kα

(|Q|2)0
n2α+1L(n)−2, (3.20)

where the constant Kα is specified in Lemma 3.1. We in addition assume that kn ≥ Cn for
each n ∈ N, and for some large constant C > 0. We choose as martingale difference array,
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Xn,0 = S−kn
n , Fn,0 = σ−kn for each n ≥ 1, and Xn,i = S−kn+i

n − S−kn+i−1
n , Fn,i = σ−kn+i for

each n ≥ 1 and 1 ≤ i ≤ kn + n.
Clearly, we must verify that the hypotheses of Theorem 3.1 hold. The first column of

the martingale difference array has been chosen to meet the second condition listed in the
theorem, as we now confirm. Note that

EVn = Var
(

Sn − Skn
n

)

. (3.21)

By (3.20) and Lemma 3.1, we see that

Var
(

S−kn
n

)

≤ 2−1ǫnVarSn

(

1 + o(1)
)

. (3.22)

Using Var(Sn) = Var(Sn − S−kn
n ) + Var(S−kn

n ) and (3.21), we obtain VarS−kn
n ≤ ǫnEVn for

n sufficiently high, which is indeed the second hypothesis of Theorem 3.1.
The general martingale difference term takes the form Sm

n − Sm−1
n , for some n ≥ 1 and

m ≤ n. A basic observation is that, for any M < n,

XM+1
n −XM

n =
(

XM −XM
M

)

qn−M , (3.23)

where qi (as in Definition 2.1) denotes the probability that the vertex i has 0 as an ancestor.
As stated earlier, XM

n is the expected value of the value observed by tracing back the
ancestral line in a sample of Gµ from n, until an ancestor with index strictly less than M
is reached. The difference in the above equation, then, is due to the event that the ancestral
line reaches M .

If n ≥ 1 and m < 0, note that Sm+1
n − Sm

n =
∑n

i=1

(

Xm+1
i −Xm

i

)

, so that (3.23) yields

Sm+1
n − Sm

n =
(

Xm −Xm
m

)

Fm
n , (3.24)

where we define Fm
n =

∑n
i=1 qi−m . In the case where n ≥ 1 and m ∈ {0, . . . , n− 1} , on the

other hand,

Sm+1
n − Sm

n =
n−1
∑

i=m

(

Xm+1
i −Xm

i

)

=
(

Xm −Xm
m

)

n−1
∑

i=m

qi−m,

by the convention that q0 = 1. We record this as

Sm+1
n − Sm

n =
(

Xm −Xm
m

)

n−m−1
∑

i=0

qi. (3.25)

Note also that, for any m ∈ Z,

Var
(

Xm −Xm
m

∣

∣

∣
σm

)

= 4Pm

(

1− Pm

)

,
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where Pm is defined to be P
(

Xm = 1
∣

∣σm

)

and may be written
(

Xm
m + 1

)

/2. The definition
of Vn and the expressions (3.24) and (3.25) now give the formula

Vn =
−1
∑

M=−kn

(

F n
M

)2
Var

(

XM −XM
M

∣

∣σM

)

+
n

∑

m=1

(

n−m
∑

l=1

ql

)2

Var
(

Xm −Xm
m

∣

∣

∣
σM

)

,

which may be written

Vn = 4
−1
∑

M=−kn

PM(1− PM)
(

F n
M

)2
+ 4

n
∑

m=1

Pm(1− Pm)
(

n−m
∑

l=1

ql

)2

. (3.26)

As such, the following lemma shows that the third hypothesis of Theorem 3.1 is satisfied in
the present case.

Lemma 3.2 Setting c0 = 4E
(

PM(1− Pm)
)

,

4

−1
∑

M=−kn

PM(1− PM)
(

F n
M

)2
= c0

−1
∑

M=−kn

(

F n
M

)2
(

1 + E1(n)
)

,

where E1(n) → 0 in probability. We have further that

n
∑

m=1

Pm(1− Pm)
(

n−m
∑

l=1

ql

)2

= c
n

∑

m=1

(

n−m
∑

l=1

ql

)2 (

1 + E2(n)
)

.

where E2(n) → 0 in probability.

The ergodic theorem might be used to prove a concentration inequality of this sort. We prefer,
however, to derive it directly, from a second moment estimate. We begin by observing the
following.

Lemma 3.3 Set
Zi = Var

(

Xi −X i
i

∣

∣σi

)

= 4Pi(1− Pi),

and write
ρl,m = E

(

ZlZm

)

− E
(

Zl

)

E
(

Zm

)

.

Then, for each ǫ > 0, there exists K0 ∈ N such that |l −m| ≥ K0 implies that |ρl,m| < ǫ.

Proof. For i ∈ Z and k ∈ N, set X i
i,k =

∑k
j=1 µ{j}Xi−j . Note that

∣

∣X i
i −X i

i,k

∣

∣ ≤
∞
∑

j=k+1

µ{j} =
(

k + 1
)−α

L(k + 1). (3.27)
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For i, j ∈ Z and k ∈ N, set

Ri,j,k =
{

i−1
⋃

m=i−k

Am ∩

j−1
⋃

n=j−k

An = ∅
}

,

where recall that we write An for the ancestral line of n ∈ Z. Shortly, we will show that, for
each ǫ > 0 and k ∈ N, there exists n0 ∈ N such that, if i, j ∈ Z satisfy |i− j| ≥ n0 , then

λ
(

Ri,j,k

)

< ǫ. (3.28)

For now, we show that this suffices for the proof of the lemma.
Note that, for any i, j ∈ Z and k ∈ N for which |i − j| ≥ k , if Y ∈ σ

{

Xi−k, . . . , Xi−1

}

and Z ∈ σ
{

Xj−k, . . . , Xj−1

}

E

(

Y Z
∣

∣

∣
Ri,j,k

)

= E

(

Y
∣

∣

∣
Ri,j,k

)

E

(

Z
∣

∣

∣
Ri,j,k

)

. (3.29)

Note that

E

(

Pi(1− Pi)Pj(1− Pj)
)

= E

(1 +X i
i

2

)(1−X i
i

2

)(1 +Xj
j

2

)(1−Xj
j

2

)

= E

(1 +X i
i,k

2

)(1−X i
i,k

2

)(1 +Xj
j,k

2

)(1−Xj
j,k

2

)

+O
(

k−αL(k)
)

= E

(

(1 +X i
i,k

2

)(1−X i
i,k

2

)(1 +Xj
j,k

2

)(1−Xj
j,k

2

)
∣

∣

∣
Ri,j,k

)

+O(ǫ) +O
(

k−αL(k)
)

= E

(

(1 +X i
i,k

2

)(1−X i
i,k

2

)
∣

∣

∣
Ri,j,k

)

E

(

(1 +Xj
j,k

2

)(1−Xj
j,k

2

)
∣

∣

∣
Ri,j,k

)

+O(ǫ) +O
(

k−αL(k)
)

=

(

E

(1 +X i
i,k

2

)(1−X i
i,k

2

)

+O
(

λ
(

Rc
i,j,k

)

)

)

(

E

(1 +Xj
j,k

2

)(1−Xj
j,k

2

)

+O
(

λ
(

Rc
i,j,k

)

)

)

+O(ǫ) +O
(

k−αL(k)
)

= E

(1 +X i
i

2

)(1−X i
i

2

)

E

(1 +Xj
j

2

)(1−Xj
j

2

)

+O(ǫ) +O
(

k−αL(k)
)

,

the second equality by (3.27), the third by |i− j| ≥ n0 and (3.28), the fourth by (3.29), and
the sixth by (3.27) and (3.28). Thus, for any ǫ > 0, there exists n0 ∈ N such that, if i, j ∈ Z

satisfy |i− j| ≥ n0 , then

Cov
(

Pi(1− Pi), Pj(1− Pj)
)

< ǫ.

19



This completes the proof of the lemma, subject to verifying (3.28). Note that, for this, it
suffices to show that, for any ǫ > 0, there exists n0 ∈ N such that, if i, j ∈ Z satisfy
|i− j| ≥ n0 , then λ

(

Ai ∩ Aj 6= ∅
)

< ǫ. To see this, note that, for i < j ,

λ
(

Ai ∩Aj 6= ∅
)

≤ E
(

Ai ∩ Aj

)

=
∞
∑

n=0

qnqn+i−j ≤
(

∞
∑

n=0

q2n

)1/2(
∞
∑

n=0

q2n+i−j

)1/2

,

so that Lemma 2.2(ii) yields the desired conclusion. �

Proof of Lemma 3.2. To verify the first claim, we aim to show that

VarYn = o
(

(

EYn

)2
)

, (3.30)

where here we write

Yn = 4
−1
∑

M=−kn

PM(1− PM)
(

F n
M

)2
.

We will require

max−kn<M<0

(

F n
M

)2

∑−1
M=−kn

(

F n
M

)2 → 0 (3.31)

as n → ∞ .
Indeed, by computing the second moment of Yn , (3.30) follows from (3.31) by means of

Lemma 3.3.
We turn to proving (3.31). Recall that we supposed that kn ≥ Cn, with C > 0 a large

constant. Note that

−1
∑

M=−kn

(

F n
M

)2
=

kn
∑

m=1

(

n
∑

i=1

qi+m

)2

≥
n

∑

m=1

(

n
∑

i=1

qi+m

)2

≥ cn2α+1L(n)−2,

with c > 0 a constant satisfying c <
(

2(1−α)
Γ(2−α)Γ(1+α)

)2

, and the latter inequality by Lemma

2.2(i), (2.10) and (2.11). For 0 ≤ m ≤ ⌊Cn⌋ and a constant C0 >
2(1−α)

Γ(2−α)Γ(1+α)

n
∑

i=1

qi+m ≤ C0n
αL(n)−1,

by Lemma 2.2(i) and (2.10). We learn that

max−kn<M<0

(

F n
M

)2

∑−1
M=−⌊Cn⌋

(

F n
M

)2 ≤ C2c−1n−1. (3.32)
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To treat the bound on F n
M for −kn < M < −n, note that, if m > n, then either

n
∑

i=1

qi+j ≥ 2−1

n
∑

i=1

qi+m for each j ∈
{

m− n/2, . . . , m
}

or
n

∑

i=1

qi+j ≥ 2−1
n

∑

i=1

qi+m for each j ∈
{

m+ 1, . . . , m+ n/2
}

,

the first alternative holding provided that at least one half of the sum
∑n

i=1 qi+m is contained
in its first ⌊n/2⌋ terms. From this, we conclude that, for any M < −n,

(

F n
M

)2

∑−1
M=−∞

(

F n
M

)2 ≤ 8n−1
(

1 + o(1)
)

,

whence
(

F n
M

)2

∑−1
M=−kn

(

F n
M

)2 ≤ 10n−1,

by increasing the value of kn ∈ N if necessary. This completes the proof of (3.31).
We have verified the first claim of the lemma, since it evidently follows from (3.30),

subject to proving the lemma that follows.
The second claim is proved analogously. The analog of (3.32) is

max1≤m≤n

(

∑n−m
l=1 ql

)2

∑n
m=1

(

∑n−m
l=1 ql

)2 , (3.33)

which follows from the inequality

(

n−1
∑

l=1

ql

)2

≤ Cn2αL(n)−2,

which is a consequence of Lemma 2.2(i), and the bound

n
∑

m=1

(

n−m
∑

l=1

ql

)2

≥ cn2α+1L(n)−2,

which follows from Lemma 2.2(i) and (2.10). �

It remains to show that the first hypothesis of Theorem 3.1 holds. Recalling (3.24), we

see that, for −kn < M < 0,
∣

∣SM+1
n − SM

n

∣

∣

2
≤ 4

(

F n
M

)2
, whose right-hand-side is o

(

EVn

)

by
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(3.31), (3.26) and Lemma 3.2. For 0 ≤ m < n, we use (3.25) to find that
∣

∣Sm+1
n − Sm

n

∣

∣

2
≤

4
(
∑n−m

l=1 ql
)2
. However, this right-hand-side is at most 4cn2αL(n)−2 by Lemma 2.2(i). From

the discussion after (3.22), we know that EVn ≥
(

1 − ǫn
)

VarSn for n sufficiently high, so
that 4cn2αL(n)−2 ≤ O

(

n−1
E(Vn)

)

by Lemma 3.1. Thus, the first hypothesis of Theorem 3.1
is indeed satisfied. �

4 The FKG inequality and convergence in L∞

This section is devoted to the remaining step in the proof of Theorem 1.1, namely, to im-
proving the topology in our convergence result.

Proposition 4 Let µ be any probability measure on N, and let λ be any extremal µ-Gibbs
measure. Let X, Y ∈ L2

(

λ
)

be two increasing functions, where {−1, 1}Z is given the natural
poset structure. Then X and Y are not negatively correlated under λ.

Proof. Note that Cov
(

X, Y
)

≥ 0 if and only if

Var
(

X + Y
)

≥ Var
(

X
)

+Var
(

Y
)

. (4.34)

For any Z ∈ L2
(

λ
)

, we write

Z =
∑

n∈Z

(

E
(

Z
∣

∣σn

)

− E
(

Z
∣

∣σn−1

)

)

, (4.35)

where σn is the σ -algebra generated by coordinates with index strictly less than n. In regard
to (4.35), note that the maps L2(λ) → R : Z → E(Z|σn) that project functions onto their
mean given σn form an increasing sequence of projections in the Hilbert space L2(λ). The
identity (4.35) expresses Z as a sum of differences of the successive projections. As such, this
is a sum of orthogonal vectors in L2(λ). The sum of a countable collection of orthogonal
vectors in a Hilbert space has finite norm if and only if the sum of the squares of the norms
of these vectors is finite. The norm of the sum has a square given by the sum of the squares
of the norms of the constitutent vectors. From this, we obtain

Var(Z) =
∑

n∈Z

E
(

E
(

Z
∣

∣σn

)

− E
(

Z
∣

∣σn−1

))2
.

We find then that

Var(Z) =
∑

n∈Z

Eσn−1
Var

(

E
(

Z
∣

∣σn

)

− E
(

Z
∣

∣σn−1

)

)

. (4.36)

Note that, in the summand on the right-hand-side of (4.36), Var denotes a conditional
variance: the data in σn−1 is fixed, and the relevant randomness arises from the bit with
index n− 1.
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Given σn−1 , each of X and Y does not decrease if we condition on the value of the n-th
coordinate to be 1, and does not increase if this value is conditioned to be −1. Thus,

Var
(

E
(

X + Y
∣

∣σn

)

− E
(

X + Y
∣

∣σn−1

)

)

≥ Var
(

E
(

X
∣

∣σn

)

− E
(

X
∣

∣σn−1

)

)

+Var
(

E
(

Y
∣

∣σn

)

− E
(

Y
∣

∣σn−1

)

)

,

σn−1 -a.s. Taking expectation over σn−1 and summing yields (4.34) by means of (4.36). �

Definition 4.1 Recall that S0 = 0, Si =
∑i

j=1Xj if i > 0, and Si = −
∑−1

j=iXj if i < 0,
where Xi = Xnλp(i). For l < m, write

Al,m = max
i∈{l,...,m}

(

Si − (2p− 1)i
)

−
(

Sl − (2p− 1)l
)

and
Bl,m = max

i∈{l,...,m}

(

Si − (2p− 1)i
)

−
(

Sm − (2p− 1)m
)

Lemma 4.1 There exists a constant C0 > 0 such that, for each ǫ > 0, there exists n0 =
n0(ǫ) such that, for n ≥ n0 ,

P

(

A0,n >
(

C0 + 50c̃−1
√

log
(

ǫ−1
)

)

n1/2+αL(n)−1

)

< ǫ,

where the constant c̃ = c̃(p) was defined in (1.3).

Proof. We write An = A0,n and Bn = B0,n . For n ∈ N, set h(n) = 3c̃−1
√

log
(

ǫ−1
)

n1/2+αL(n)−1 .

We begin by establishing the following statements. For any ǫ > 0, there exists n0 = n0(ǫ)
such that, if n ≥ n0(ǫ), then, for any K > 0,

P

(

Bn > K + h(n)
)

≥ ǫ =⇒ P
(

An > K
)

≥ 1− ǫ (4.37)

and
P
(

An > K + h(n)
)

≥ ǫ =⇒ P

(

Bn > K
)

≥ 1− ǫ. (4.38)

Note that An is an increasing and Bn a decreasing random variable. As such, supposing
that P

(

Bn > K + h(n)
)

≥ ǫ and P
(

An ≤ K
)

≥ ǫ, then

P

({

Bn > K + h(n)
}

∩
{

An ≤ K
})

= P

(

Bn > K + h(n)
)

P

(

An ≤ K
∣

∣

∣
Bn > K + h(n)

)

≥ P

(

Bn > K + h(n)
)

P

(

An ≤ K
)

≥ ǫ2,
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the first inequality by means of Proposition 4. However, An −Bn = Sn − (2p− 1)n, so that

P

(

Bn −An > h(n)
)

= P

(

n−1/2−αL(n)c̃
(

Sn − (2p− 1)n
)

< −3
√

log
(

ǫ−1
)

)

< ǫ2,

the inequality valid for n sufficiently high, because Proposition 3 implies that n−1/2−αL(n)c̃
(

Sn−
(2p − 1)n

)

converges in distribution to a Gaussian random variable of mean zero and unit
variance. In this way, we establish (4.37), with (4.38) following similarly.

We now show that there exists αn ∈ (0,∞) such that, for ǫ > 0 and n ≥ n0(ǫ),

P

(

An ∈
(

αn − 3h(n), αn + 3h(n)
)

)

≥ 1− 2ǫ (4.39)

and

P

(

Bn ∈
(

αn − 3h(n), αn + 3h(n)
)

)

≥ 1− 2ǫ. (4.40)

To this end, set
K(n) = sup

{

k ∈ (0,∞) : P
(

An > k
)

≥ ǫ
}

− ǫ/2. (4.41)

Note that P
(

An > K(n)
)

≥ ǫ and P
(

An > K(n) + ǫ
)

< ǫ. The first inequality forces
P
(

Bn > K(n)− h(n)
)

≥ 1− ǫ by means of (4.38), which gives

P
(

An > K(n)− 2h(n)
)

≥ 1− ǫ. (4.42)

by (4.37). We now set αn = K(n) − h(n) and note that, if ǫ < h(n), then (4.39) holds.
Indeed, these choices for αn and ǫ, alongside P (An > K(n) + ǫ) < ǫ, yield

P
(

An > αn + 2h(n)
)

< ǫ. (4.43)

The bounds (4.42) and (4.43) imply that

P (αn + 2h(n) ≥ An ≥ αn − h(n)) ≥ 1− 2ǫ,

whence (4.39). Note now that P
(

Bn ≥ αn + 2h(n) + ǫ
)

< ǫ: for otherwise, (4.37) would
imply that P

(

An > αn + h(n) + ǫ
)

≥ 1− ǫ, contradicting our assumption. We see that

P

(

Bn ∈
(

αn, αn + 2h(n) + ǫ
)

)

≥ 1− 2ǫ,

whence (4.40).
We set rn = αnn

−1/2−αL(n). We claim that, for any K ∈ N, there exists n0 ∈ N such
that n ≥ n0 implies

rKn ≤ 2K−1/2−αrn + 20c̃−1
√

log
(

ǫ−1
)

+ 24c̃−1
√

log
(

ǫ−1
)

K−1/2−α. (4.44)
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From this, we will argue that

sup
n∈N

rn ≤ C0 + 40c̃−1
√

log
(

ǫ−1
)

(4.45)

for some C0 > 0. Indeed, fixing K ∈ N in (4.44) high enough that 2K−1/2−α < 1, we find
that the limsup of rm along the subsequence

{

m = Kn : n ∈ N
}

is at most (20 + 12 +

1)
(

c̃−1
√

log
(

ǫ−1
))

. Note then that
{

An : n ∈ N
}

is a random process whose increments are

in absolute value at most one. Thus, the definition (4.41) implies that |αm −αn| ≤ |m− n| .
From this, we obtain the above bound on the limsup of rm over all m ∈ N (with an arbitrarily
small addition to the value 33); and thus (4.45).

In tandem with (4.39), (4.45) yields

P

(

An >
(

C0 + 49c̃−1
√

log
(

ǫ−1
)

)

n1/2+αL(n)−1

)

≤ 2ǫ,

from which the statement of the lemma follows. To derive (4.44), note that

AKn ≤ max
j∈{1,...,K−1}

(

Sjn −
(

2p− 1
)

jn
)

+ max
j∈{0,...,K−1}

Ajn,(j+1)n. (4.46)

By the convergence for finite-dimensional distributions stated in Proposition 3, we have that,
for each ǫ > 0, there exists n0 = n0(ǫ) such that, for n ≥ n0 ,

P

(

max
j∈{1,...,K−1}

(

Sjn −
(

2p− 1
)

jn
)

> 3c̃−1
√

log
(

ǫ−1
)

n1/2+αL(n)−1
)

<
(

K − 1
)

ǫ.

Note also that
P

(

max
j∈{0,...,K−1}

Ajn,(j+1)n ≥ αn + 3h(n)
)

≤ 2Kǫ,

by (4.39). From (4.46), then,

P

(

AKn > 3c̃−1
√

log
(

ǫ−1
)

n1/2+αL(n)−1 + αn + 3h(n)
)

≤
(

3K − 1
)

ǫ (4.47)

for n ≥ n0(ǫ). Choosing ǫ > 0 to satisfy (3K − 1)ǫ ≤ 1− 2ǫ, from (4.47) and the inequality
arising from (4.39) by the substitution of Kn for n, we see that

3c̃−1
√

log
(

ǫ−1
)

n1/2+αL(n)−1 + αn + 3h(n) ≥ αKn − 3h
(

Kn
)

Rearranging, and by L : (0,∞) → (0,∞) being a slowly varying function, we obtain (4.44).
�

Proof of Theorem 1.1. We will make use of:
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Lemma 4.2 There exists a constant C ∈ (0,∞) such that, for any ǫ0 > 0 sufficiently small
and for δ > 0,

lim sup
n→∞

P

(

sup
k=0,...,⌊ǫ−1

0
⌋

Ak⌊ǫ0n⌋,(k+1)⌊ǫ0n⌋ > δn1/2+αL(n)−1
)

≤ C
(

ǫ−1
0 +1

)

exp
{

−
c̃2

2 · 502
δ2ǫ

−1/2−2α
0

}

.

Remark. An analogous bound holds for the counterpart of Al,m , in which the maximum
taken in the definition is replaced by a minimum.
Proof. Note that (2.11) implies that, for n sufficiently high,

n1/2+αL(n)−1 ≥ ǫ
−1/4−α
0

(

ǫ0n
)1/2+α

L
(

ǫ0n
)−1

.

The probability that we must estimate is bounded above by

(

ǫ−1
0 + 1

)

P

(

A0,⌊ǫ0n⌋ ≥ δǫ
−1/4−α
0

(

ǫ0n
)1/2+α

L
(

nǫ0
)−1

)

Setting ǫ > 0 in Lemma 4.1 according to C0 + 50c̃−1
√

log
(

ǫ−1
)

= δǫ
−1/4−α
0 , we obtain that

the last displayed expression is at most

(

ǫ−1
0 + 1

)

exp
{

−
c̃2

502

(

δǫ
−1/4−α
0 − C0

)2}

≤ C
(

ǫ−1
0 + 1

)

exp
{

−
c̃2

2 · 502
δ2ǫ

−1/2−2α
0

}

for some constant C > 0, for ǫ0 small, and for n sufficiently high. �

For the proof of the theorem, it suffices to construct, for each ǫ > 0, a sequence
{

Cǫ
n : n ∈ N

}

of couplings Sn
p and Sα+1/2 for which

lim
n→∞

Cǫ
n

(

||Sn
p − Sα+1/2||

L∞

(

[0,T ]
) > ǫ

)

= 0, (4.48)

for then we may find an increasing sequence
{

ni : i ∈ N
}

such that

sup
n≥ni

C2−i

n

(

||Sn
p − Sα+1/2||

L∞

(

[0,T ]
) > 2−i

)

< 2−i,

for each i ∈ N, and set Cm = C2−km

m , where km is the maximal ni that does not exceed m;
note that km → ∞ ensures that this sequence of couplings is as the statement of the theorem
demands. A coupling Cǫ

n suitable for (4.48) may be obtained by the use of Proposition 3 to
couple the values of Sn

p and Sα+1/2 at points of the form
{

iǫT : i = 0, . . . , ⌊ǫ−1⌋+1
}

, so that
the maximum difference |Sn

p − Sα+1/2| at such points tends to zero in probability under Cǫ
n .

We then use Lemma 4.2, and the remark following its statement, as well as Sα+1/2 being
uniformly continuous on [0, T ] to verify (4.48). �
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5 Open problems

• It would be interesting to find the negatively correlated fractional Brownian motions,
with Hurst parameter H ∈ (0, 1/2), as scaling limits of variants of the discrete processes
that we consider. A natural first guess is the walk arising from the model in which each
vertex of Z is given the opposite sign of its parent in Gµ , instead of the same sign.
However, it is quite possible that this gives rise to Brownian motion as a scaling limit
of the associated walk. A more promising candidate discrete model is one in which the
vertices in each component of Gµ — ordered with respect to the natural ordering of
Z — are given values that alternate between 1 and −1, independently choosing one
of the two ways of doing this, each with probability 1/2.

• As mentioned in the discussion following the statement of Theorem 1.1, we believe
that the theorem is sharp. We pose the problem to show that if a measure µ on N is
such that the conclusion of Theorem 1.1 holds, with some deterministic function of n
playing the role of c̃n−1/2−αL(n), then µ ∈ Γα . An important step here would be to
show that, if the measure µ is such that the variance of Sn is a slowly varying multiple
of n2α+1 , then µ ∈ Γα .

• Define Γ̃α according to Definition 1.1, with the alteration that µ is supported on Z and
is symmetric about 0, and let µ ∈ Γ̃α for some α ∈ (0,∞). Consider a voter model
in dimension one, in which voters reside at the elements of Z. Each voter at a given
time has an affiliation to one of two political parties. At any given moment t ∈ Z of
time, each voter selects the resident at a displacement given by an independent sample
of µ , and inherits the affiliation that this resident held at time t − 1. (A continuous
time variant, where opinions are imposed on a voter at a Poisson point process of
times, may also be considered.) We propose the problem of considering the set of
equilibrium measures of this process as an analogue of the family

{

λp : p ∈ [0, 1]
}

and seeking a counterpart to Theorem 1.1. The two unanimous configurations are
always equilibrium measures, and we anticipate that mixtures of these are the only
such measures exactly when α ≥ 1 (and the condition g.c.d.(µ) = 1 is satisfied). This
is because the transmission histories of the affiliation held by two voters will almost
surely coincide in the distant past precisely when a discrete time random walk with
step distribution µ almost surely reaches zero. The case α = 1 corresponds to the step
distribution of the x-displacement of a two-dimensional simple random walk between
its successive visits to the x-axis; such a walk is recurrent, but only “marginally so”,
pointing to the value of α = 1 being critical for the problem.

• Let d ≥ 2. For any measure µ whose support is contained in the integer lattice Z
d , the

random Zd -spanning graph structure Gµ may be defined. Consider a law µ that has a
regularly decaying heavy tail. For example, we might insist that µ

(

Bc
n

)

= n−αL
(

||n||
)

,
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where L : (0,∞) → (0,∞) is slowly varying. Here, Bn =
{

x ∈ Zd : ||x|| ≤ n
}

. If µ is
chosen to be “symmetric”, in the sense that µ{x} = µ{y} whenever x = y , it is not
hard to show that all the components of Gµ are finite, each containing a unique cycle.
Choices of µ supported in a half-plane

{

x1 < 0
}

will give rise to infinite components,
however. This raises the question of finding a phase transition in α for uniqueness
of the infinite component for some family of measures µ supported in the strict half-
plane

{

x1 < 0
}

. In fact, the discussion in the preceding problem already addresses this
problem in a certain guise. To obtain the voter model problem, we take d = 2, write
points in the plane in the form (t, x), take µ to be supported on the line

{

x = −1
}

,

with µ{−1, ·} ∈ Γ̃α . Naturally, we might take d > 2. In this case, in seeking a result
analogous to Theorem 1.1, we would seek to show that, for regularly varying laws µ
whose decay is slow enough to ensure that the transition histories of distinct voters may
be disjoint, the affiliation “white noise” in the time-slice

{

t = constant
}

at equilibrium
is given by a fractional Gaussian field.

• Theorem 1.1 states that fractional simple random walk and fractional Brownian motion
may be coupled to be close in L∞ on compact sets under rescaling of the discrete
walk. One might seek to quantify this, investigating how quickly ǫ may be taken
to 0 in the limit of high n in (1.4), for some coupling Cn . The analogue for simple
random walk and its convergence to Brownian motion is the celebrated Komlos-Major-
Tusnady theorem [17], one case of which states that simple random walk may be
coupled with asymptotic probability one to a Brownian motion with a uniform error
in the first n steps of at most a large constant multiple of logn. Quantifying the rate
of convergence could be useful if we would like to compare the stochastic difference
equation driven by the fractional discrete process and its continuous analogue driven by
fractional Brownian motion, the latter having been extensively studied. (See [5, 9, 19]
for treatments of the stochastic calculus of fractional Brownian motion.)

A Market interpretation

This section was added in response to referee’s question about whether there was a market-
based “story” to go with our random walk model. We will not address the empirical question
of whether our construction describes actual markets. The literature on market-increment
autocorrelations is too vast (searches for market momentum or mean reversion turn up
hundreds or thousands of articles per year) to summarize here. Instead, we offer a few very
general observations in response to a simpler question: if an asset’s price were described by
one of our random walks (for some µ), what kind of story would explain it? Could one
reconcile the story with (some form of) market efficiency? The first story to spring to mind
is the following:
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Story 1: Peer-influenced decisions. Many decisions involve the consultation (conscious
or otherwise) of people who made a similar decision recently. Jeans or khakis? Buy or
rent? State or private school? If the decision probability is a monotone linear function of
previous decisions, one can represent this by having individuals copy (with some probability)
a randomly chosen previous decision. The time elapsed since that decision is random (and a
power law is not unreasonable). The cumulative number of decisions of one type, minus the
number of the other type, is thus one of the random walks described in this paper.

This story might explain why some of a firm’s fundamentals (market share, revenue, etc.)
would correspond to our model for some µ . It does not explain momentum effects in asset
prices, however, since one should be able to foresee these effects and price them in.

In classical finance, asset prices are martingales with respect to the risk neutral probability
(assuming no interest, a point we return to later). This may in fact be taken as the definition
of risk neutral probability. In models with ±1 increments, the risk neutral probability
measure is that of the simple random walk. (Let us assume that the probability of an
up step, conditioned on the past, is always strictly between zero and one.) Assuming no
arbitrage, the price of a derivative is its expected value in this measure. Because of this
simplicity, models with ±1 increments are especially natural to work with.1

The interesting question is the following: why do risk neutral and true probability differ?

Note: Discrepancies between true probability and risk neutral probability do not neces-
sarily imply market inefficiency. However, they are most plausible if the discrepancy is small.
(If a trader could get a 5000 percent return with probability .99 in one year, this would
be hard to reconcile with market efficiency.) In our model, this suggests using a µ that
decays slowly. In the classical capital asset pricing model (CAPM) these discrepancies are
explained by the asset’s correlation with so-called systemic risk: when the price goes down,
the so-called market portfolio is generally likely to go down also; the demand for money in
that scenario is greater because people are risk averse. In the simplest CAPM story, all
investors hold some combination of risk free assets and the market portfolio.

Story 2: Inhomogeneous market portfolio. Suppose that one population of traders
tends to enter and leave the market for apparently irrational reasons. Another population of
“savvy traders” holds a time inhomogenous “savvy market portfolio,” including long and short
positions that vary in time. This group makes money in expectation by holding this portfolio
(twelve percent per year, say), while the other traders make less money in expectation.

The behavior of the savvy traders in the above story makes perfect sense, but we have

1Any continuous model Xt can be interpreted as having ±1 increments if one changes time parameteri-
zation: simply define times tk such that Xtk

is an integer for each k and tk+1 is the first time after tk that a
distinct integer is reached. Then Nk := Xtk

has ±1 increments. One can even approximate a discontinuous
jump process by using a probability measure in which Nk is likely to sometimes go up or down several steps
in a row.

29



not explained the actions of the “less savvy” group. Let us suppose that the asset price is 10
today and has gone up recently, so that it now has a .52 chance to be 11 tomorrow, and a
.48 chance to be 9 tomorrow. Or suppose the asset price has dropped recently and now has
a .48 to chance to be 11 tomorrow and a .52 to be 9. In each case, it is clear why a savvy
trader would take the side of the bet with positive expectation. Under certain parameters, it
is also reasonable to suppose that such investors are too risk averse or otherwise constrained
to bid the price all the way up or down to tomorrow’s expected value. But who is taking the
negative-expectation side of the bet? One can think of many stories, but here is one that
fits our model.

Story 3: Anti-momentum trading. Less savvy traders tend to sell after the price goes up
(“profit taking”) and buy after the price goes down (“bargain hunting”). In other words, they
systematically bet against the momentum strategy. Each less savvy trader decides whether
to hold a stock during a period of time by looking at price changes in the recent past. The
probability that the less savvy trader takes the “less savvy” position is a linear function of
these prior changes. The amount this skews the price is approximately linear in the number
of less savvy traders taking the anti-momentum strategy.

This story suggests a rather paradoxical conclusion. Market returns may exhibit positive
autocorrelation (momentum) precisely because the less savvy investors think or feel that they
should exhibit negative autocorrelation (mean reversion). Indeed, the fact that the savvy
investors tend to earn higher returns essentially implies that whatever strategy the less savvy
investors employ tends to be wrong.

We note a couple of other (possibly complementary, possibly second-order) stories:

Story 4: Variable interest rate. The presence of interest affects the definition of risk
neutral probability. The interest-discounted asset price (not the asset price itself) is the
martingale. Even if the rate of interest earned per time unit is constant or very slowly
varying, it may become non-constant when time is parameterized by the number k of integer
price changes. Perhaps when the price has gone up recently, people trade more slowly (so
that the interest per tick is higher). This leads to momentum affects when one parameterizes
time by k .

Story 5: Non-liquidity/inefficiency. There is inefficiency, but the market is too small
for the arbitrage opportunities to be very valuable. There may be times at which price history
indicates a high likelihood of a rise or fall in future prices, but (for whatever reason) the
volume of trading at these times is not sufficient to attract arbitrageurs.

Finally, we remark that if a market were to exhibit momentum on the scale of days and
mean reversion on the scale of several months, this could be modeled with a variant of our
walks, where one samples j according to µ and copies the increment j steps previously (for
some range of j values) or the opposite of that increment (for another range of j values).
The stories described above make sense for these variants as well. However, we stress, in
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conclusion, that the extent to which any of the above stories is, in actual markets, correct is
an empirical matter well beyond the scope of this work.

References

[1] Gideon Amir, Omer Angel and Benedek Valko. The TASEP speed process.
arXiv:0811.3706v1.

[2] Richard Arratia. The motion of a tagged particle in the simple symmetric exclusion
system on Z . Ann. Probab., 11(2):362–373, 1983.

[3] Erhan Bayraktar, Ulrich Horst, and Ronnie Sircar. A limit theorem for financial markets
with inert investors. Math. Oper. Res., 31(4):789–810, 2006.

[4] C. Bender, T. Sottinen and E. Valkeila. Arbitrage with fractional Brownian motion?
Theory Stoch. Process. 13 (2007), no. 1-2, 2334.

[5] Francesca Biagini, Yaozhong Hu, Bernt Oksendal and Tusheng Zhang. Stochastic cal-
culus for fractional Brownian motion and applications. Springer-Verlag London Ltd.,
London, 2008.

[6] N. H. Bingham, C. M. Goldie, and J. L. Teugels. Regular variation, volume 27 of Ency-
clopedia of Mathematics and its Applications. Cambridge University Press, Cambridge,
1987.

[7] M. Bramson, S. Kalikow. Nonuniqueness in g -functions. Israel J. Math. 84, 153-160,
1993.

[8] J.L. Doob. Measure Theory. Number 143 in Graduate Texts in Mathematics. Springer-
Verlag, New York, 1994.

[9] Tyrone E. Duncan, Yaozhong Hu and Bozenna Pasik-Duncan. Stochastic calculus for
fractional Brownian motion. I. Theory. SIAM J. Control Optim., 38(2):582–612 (elec-
tronic), 2000.

[10] Richard Durrett. Probability: theory and examples. Duxbury Press, Belmont, CA,
second edition, 1996.
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