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ON FIELDS OF RATIONALITY FOR AUTOMORPHIC REPRESENTATIONS

SUG WOO SHIN AND NICOLAS TEMPLIER

Abstract. This paper proves two results on the field of rationality Q(π) for an automorphic representa-
tion π, which is the subfield of C fixed under the subgroup of Aut(C) stabilizing the isomorphism class of
the finite part of π. For general linear groups and classical groups, our first main result is the finiteness
of the set of discrete automorphic representations π such that π is unramified away from a fixed finite
set of places, π∞ has a fixed infinitesimal character, and [Q(π) : Q] is bounded. The second main result
is that for classical groups, [Q(π) : Q] grows to infinity in a family of automorphic representations in
level aspect whose infinite components are discrete series in a fixed L-packet under mild conditions.

1. Introduction

1.1. Modular form case. Let Sk(N) be the space of cuspforms of weight k ≥ 2 and level Γ0(N) with
N ≥ 1. Suppose that f ∈ Sk(N) is an eigenform under the Hecke operator {Tp} with eigenvalue ap(f) ∈ C
for each prime p ∤ N . It is well known that {ap(f)}p∤N are algebraic integers and that they generate a finite
extension of Q (in C), to be denoted Q(f). The field Q(f) encodes deep arithmetic information about
f and is of our main concern here. To wit the significance of Q(f), the Eichler-Shimura construction
associated to a weight 2 form f a GL2-type abelian variety of dimension [Q(f) : Q] as a quotient of
the Jacobian of the modular curve X0(N). Moreover the two-dimensional l-adic Galois representations
associated to f are realized with coefficients in the completions of Q(f) at finite places.

We are interested in two aspects of Q(f). The first question is on the growth of Q(f) in a family of
modular forms f with increasing level. Let Fk(N) be the set of normalized cuspidal eigenforms of weight
k ≥ 2. These are eigenforms for all Tp (p ∤ N) and define

Fk(N)≤A := {f ∈ Fk(N) : [Q(f) : Q] ≤ A}, A ∈ Z≥1.

Serre has proved the following theorem, which serves as a prototype for one of our main results.

Theorem 1.1. ([54, Thm 5]) Fix k ≥ 2 and a prime p. Then lim
N→∞,

(N,p)=1

|Fk(N)≤A|/|Fk(N)| = 0.

Let us briefly recall Serre’s argument. The key point is to show that
∣∣{ap(f) : f ∈ Fk(N)≤A

}∣∣ <∞. (1.1)

This follows from the fact that ap(f) is an algebraic integer which is the sum of a Weil p-number of
weight k − 1 and its complex conjugate. The condition [Q(f) : Q] ≤ A implies that [Q(ap(f)) : Q] ≤ A,
so such a Weil number is a root of a monic polynomial in Z[x] whose degree and coefficients are bounded
only in terms of p, k, and A. Clearly there are only finitely many such polynomials, hence (1.1). Finally
Theorem 1.1 is deduced from (1.1) by using a trace formula argument.

Serre then asked in [54, §6.1] whether the same type of result would be true without requiring some
auxiliary prime p to be coprime to the level. (For instance is the above result valid if the limit is taken
along the sequence N = 2, (2 ·3)2, (2 ·3 ·5)3, ...?) In our paper we generalize Theorem 1.1 to higher rank
classical groups and partially settles Serre’s question in the generalized setting for a sequence of levels
N → ∞ such that there exists a prime whose order in N grows to infinity. Moreover we improve on the
rate of decay of the quotient as in Theorem 1.1 by a logarithmic order.

Another aspect of Q(f) is in relation to a finiteness result. Let us begin with recalling a deep theorem of
Faltings, who also proved a stronger version in which “up to isogeny” is replaced with “up to isomorphism”
(the Shafarevich conjecture).

Theorem 1.2. ([20, Thm 5]) Fix n ∈ Z≥1 and a finite set of primes S. Then there are only finitely
many abelian varieties of dimension n having good reduction outside S up to isogeny.
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The Shimura-Taniyama conjecture, as confirmed by Wiles and Breuil-Conrad-Diamond-Taylor, trans-
lates the case n = 1 of the above theorem into a finiteness result about modular forms: namely there are
only finitely many newforms f such that [Q(f) : Q] = 1 which are contained in F2(N) for some level N
whose prime divisors are all contained in S. With this motivation an automorphic analogue of the above
finiteness theorem will be pursued in this paper.

To formulate and make progress toward the problems raised in this subsection we are going to introduce
some definitions, concepts, and conjectures before stating the main results.

1.2. C-algebraic automorphic representations. Algebraicity of automorphic forms and represen-
tations has been studied by Shimura, Waldspurger, Harder, Harris, and many other mathematicians.
Regarding automorphic representations of GLn the definition of algebraicity was first formulated by
Clozel [13] and recently extended to arbitrary connected reductive groups by Buzzard and Gee [8]. In
fact one main point of their paper is to distinguish between the two possible definitions of algebraicity,
namely C-algebraicity and L-algebraicity, the former generalizing Clozel’s notion. In this article our at-
tention is restricted to C-algebraic representations mainly because these are expected to be exactly the
ones having number fields as their fields of rationality. (There is also W-algebraicity recently suggested
by Patrikis [44], but again C-algebraicity is believed to be the exact condition to ensure the finiteness of
the field of rationality over Q.)

To be precise let G be a connected reductive group over Q. To avoid vacuous statements we assume
throughout the paper that the rank of the groups under consideration is at least one. Let π = ⊗vπv =
π∞ ⊗ π∞ be an automorphic representation of G(A). Here π∞ and π∞ denote the finite and infinite
components. We say that π is C-algebraic if, loosely speaking, the infinitesimal character of π∞ is
integral after a shift by the half sum of all positive roots (for some thus for all choices of positivity on
the set of roots). When σ is a field automorphism of C, let (π∞)σ denote the G(A∞)-representation
on the underlying vector space of π∞ twisted by a σ-linear automorphism. For any π define its field of
rationality as the field of the definition of its isomorphism class, i.e.

Q(π) := {z ∈ C : σ(z) = z, ∀σ ∈ Aut(C) s.t. (π∞)σ ≃ π∞}. (1.2)

The following was conjectured by Clozel (for G = GLn) and Buzzard-Gee.

Conjecture 1.3. π is C-algebraic if and only if Q(π) is finite over Q.

It is worth noting that in the special but subtle case of Maass cusp forms for GL2 over Q, Sarnak [48]
classified the forms with integer coefficients, showing in particular that they are C-algebraic (i.e. Laplace
eigenvalue being 1/4), and made a remark on the transcendence of Q(π).

According to the conjecture C-algebraic representations are the most suitable for studying questions on
the growth of fields of rationality. To obtain unconditional results, we show that Q(π) is a number field for
cohomological representations π, which form a large subset inside the set of C-algebraic representations,
by adapting an argument of Clozel using arithmetic cohomology spaces. See §2.2 below. Note that if G
is semisimple then any π such that π∞ is a discrete series is always cohomological.

1.3. Conjectures. Let us highlight two interesting conjectures that we were led to formulate during our
investigation of fields of rationality for automorphic representations. Some partial results and remarks
are found in the next subsection as well as in the main body of our paper.

The first conjecture, a small refinement of the well-known Fontaine-Mazur conjecture, is not directly
concerned with field of rationality but rather with integrality of local parameters (e.g. Satake parameters
or Frobenius eigenvalues of a Galois representation). The question arises naturally as a weak form of
integrality is needed to answer a generalization of Theorem 1.1.

Conjecture 1.4. Let F be a number field and ρ : Gal(F/F ) → GLn(Ql) a continuous irreducible
representation unramified outside finitely many places. The following are equivalent:

(i) ρ is de Rham at every place v|l with nonnegative Hodge-Tate weights (adopting the convention
that the cyclotomic character has Hodge-Tate weight −1).

(ii) the Weil-Deligne representation associated with ρ at every finite place v ∤ l is integral and pure
of weight w ∈ Z which is independent of v,

(iii) ρ appears as a subquotient of Hi
ét(X ×F F ,Ql) for some proper smooth scheme X over F and

some i ∈ Z≥0.

The motivation for the conjecture comes from our effort to obtain Theorem 1.7 below (which general-
izes Theorem 1.1), where we need a version of the statement that ap(f) is an algebraic integer. We derive
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a partial result toward Conjecture 1.4 (Proposition 4.1) for the Galois representations arising from (con-
jugate) self-dual automorphic representations by exploiting the fact that they appear in the cohomology
of Shimura varieties. This serves as a crucial ingredient in the proof of Theorem 1.7.

The second conjecture is on the finiteness of automorphic representations with bounded field of ra-
tionality. It is an automorphic analogue of (the isogeny version of) the Shafarevich conjecture and its
analogue for Galois representations formulated by Fontaine and Mazur ([22, I.§3]). Theorem 1.6 below
partially confirms the conjecture.

Conjecture 1.5. Fix A ∈ Z≥1, S a finite set of places of F containing all infinite places, and an
infinitesimal character χ∞ for G(F ⊗Q R). Then there are only finitely many discrete automorphic
representations π of G(AF ) with infinitesimal character χ∞ such that πS is unramified and [Q(π) : Q] ≤
A.

1.4. Main results. Let us make it clear at the outset that our results concerning quasi-split classical
(i.e. symplectic, orthogonal1, or unitary) groups rely on Arthur’s endoscopic classification [2] and its
analogue for unitary groups due to Mok [42]. (However our finiteness theorem for general linear groups,
cf. Theorem 1.6 below, is unconditional.) The classification is based on some unproven assertions on the
stabilization of the twisted trace formula for GLn and a little more, which are hoped to be proved in the
near future. So we are making the same hypotheses as Arthur does in his work. (Also see [4, 1.18] and
the footnote around Hypothesis 4.8 for a discussion of the hypotheses.) We only deal with quasi-split
groups mainly because the analogous theorems for inner forms are not complete (see the last chapter of
[2] for a sketch), but our argument should apply equally well to the inner forms. With this in mind we
have written the argument in such a way that our main theorems remain true for non-quasi-split classical
groups with little change in the proof once the necessary classification becomes available. As a matter of
fact, Theorem 1.7 in case (i) is almost an unconditional theorem for (not necessarily quasi-split) unitary
groups thanks to the base change results for cohomological representations in [36]. (Unlike Arthur’s
work, the latter are not conditional on the full stabilization of the twisted trace formula or any other
hypotheses.)

Our first main result is a finiteness theorem for automorphic representations with bounded field of
rationality. It is worth emphasizing that we allow arbitrary infinitesimal characters (e.g. those corre-
sponding to C-algebraic Maass forms in the case of GL2 over Q) even including transcendental ones (in
which case the set of π is expected to be empty by Conjecture 1.3).

Theorem 1.6. (Theorems 5.18, 5.19) Conjecture 1.5 is true for general linear groups and quasi-split
classical groups.

Our second main result is on the growth of field of rationality in a family of automorphic representa-
tions. We work with a quasi-split classical group G over Q for simplicity (in the main body G is over
any totally field) and introduce a family in level aspect with prescribed local conditions as in [58]. Let
nx ∈ Z≥1, ξ be an irreducible algebraic representation of G over C whose highest weight is regular, S0

be a finite set of finite primes (which could be empty so that no local condition may be imposed), and

f̂S0 be a well-behaved function on the unitary dual of G(QS0). The family in question is a sequence

Fx = F(nx, f̂S0 , ξ), x ∈ Z≥1 such that nx → ∞ as x→ ∞,

where each Fx consists of discrete automorphic representations π of G which, loosely speaking, has level

nx, weight ξ, and prescribed local conditions at S0 by f̂S0 . Then each Fx is a finite set whose cardinality
|Fx| tends to infinity as x→ ∞. Actually in our formulation Fx is a multi-set in that each π is weighted
by the dimension of the fixed vectors of π∞ under the principal congruence subgroup of level nx. (See
§6.1 for the precise definition of Fx and |Fx|.) For A ∈ Z≥1 define

F≤A
x := {π ∈ Fx : [Q(π) : Q] ≤ A}.

Note that we have [Q(π) : Q] < ∞ for every π ∈ Fx since π is cohomological in that π∞ ⊗ ξ has non-
vanishing Lie algebra cohomology. We prove a theorem roughly saying that the field of rationality grows
generically in the family {Fx}x≥1 in the case (i) or (ii) below. Note that (ii) includes the level sequence
2, (2 · 3)2, (2 · 3 · 5)3, (2 · 3 · 5 · 7)4, ... for instance. Unfortunately neither (i) nor (ii) includes the sequence
2, 2 · 3, 2 · 3 · 5, ...

1As we will never deal with the usual (disconnected) orthogonal groups, special orthogonal groups will be called orthog-
onal groups in favor of simpler terminology. We will be precise where we have to be.
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Theorem 1.7. (Theorems 6.1, 6.6) Let G 6= {1} be a quasi-split classical group, or a non-quasi-split
unitary group. Suppose there exists a prime p 6∈ S0, at which G is unramified, such that either

(i) (nx, p) = 1 for all but finitely many x, or
(ii) ordp(nx) → ∞ as x→ ∞.

Then for every A ∈ Z≥1, limx→∞
|F≤A

x |
|Fx|

= 0. Moreover let Sunr be the number of primes p satisfying (i)

(which could be infinite) and such that G is unramified at p. Put Runr :=
∑
p∈Sunr

rankGQp
. Then

|F≤A
x | = O(|Fx|/(log |Fx|)R), ∀R ≤ Runr.

Especially pleasing features of the theorem are that some arbitrarily high ramification can be treated
as seen in (ii) and that the upper bound has a logarithmic power-saving. The case (ii) seems to be new
already in the case of modular forms while the logarithmic saving generalizes [46, 24]. It would be nice
to prove (or disprove) the theorem without (i) and (ii). We can do it under some restrictive hypotheses
(which are too special to be discussed here) but do not know any general type of result.

It is natural to ask whether |F≤A
x | = O(|Fx|δ) for some δ < 1 for a level-aspect family Fx (whose level

nx → ∞) for an arbitrary reductive group G, cf. Question 6.5 below. This is already challenging for
G = GL(2) [54, p.89]. The above theorem does not achieve this. However we do provide a nearly optimal
answer under a hypothesis on {nx}x≥1 (Corollary 6.8). Let G be a group as in Theorem 1.6 and suppose
that {nx}x≥1 is supported on a finite set S of finite primes in the sense that for all but finitely many x,
every prime divisor of nx is in S. Then |F≤A

x | = O(1). This is actually an easy corollary of Theorem 1.6.
Again no condition on infinitesimal characters at ∞ is needed (so it applies to C-algebraic Maass forms
when G = GL2 for instance).

In the following we sketch the proof of Theorem 1.6 and Theorem 1.7. Both theorems take local
finiteness results as key inputs. The former theorem in the case of GLn uses

Proposition 1.8. Fix A ≥ 1 and a prime p and an integer n ≥ 2. There exists a constant C = C(A, p, n)
such that every irreducible smooth representation of GLn(Qp) with [Q(πp) : Q] ≤ A has conductor ≤ C.
(Here Q(πp) is the field of rationality for πp defined as in (1.2).)

For the proof of the proposition we pass to the Galois side via the local Langlands correspondence and
examine the representation of the inertia group. Note that a suitable normalization of the local Langlands
correspondence preserves the field of rationality. Since the inertia representation must have finite image,
it is possible to conclude with some elementary representation theory and ramification theory for local
fields. Once the proposition is in place, Theorem 1.6 is an easy consequence of Harish-Chandra’s finiteness
theorem for automorphic forms.

Theorem 1.7 requires a more arithmetic kind of local finiteness theorem. When G is a quasi-split
classical group, we show the following far-reaching generalization of the finiteness of Weil numbers (§1.1)
to the case for higher rank groups allowing arbitrary ramification at p.

Proposition 1.9. (Corollary 5.7) Fix A ≥ 1, a prime p, and an irreducible algebraic representation ξ of
G. Then the set of irreducible tempered representations πp of G(Qp) with [Q(πp) : Q] ≤ A which may be
realized as the p-components of discrete ξ-cohomological automorphic representations π of G(A) is finite.

A crucial input in the proof is the properties of the Galois representations associated with π concerning
weight and integrality, which we justify along the way. The integrality here is the same kind as in
Conjecture 1.4.(ii). In fact this consideration led us to formulate the conjecture. To associate Galois
representations, work of Arthur and Mok is applied to transfer π to a suitable general linear group, and
the field Q(π) has to be kept track of during the transfer. To this end we check the nontrivial fact
that the transfer from G to the general linear group is rational in the sense that it commutes with the
Aut(C)-action on the coefficients. It would be of independent interest that a similar argument would
show that many other endoscopic transfers are rational (sometimes with respect to the Aut(C/F )-action
for a number field F ).

Both (i) and (ii) of Theorem 1.7 are deduced from Proposition 1.9 via the theorem (proved earlier by
us in [57] and [58]) that πp’s are equidistributed with respect to the Plancherel measure for G(Qp). The
equidistribution reduces the proof to showing that the set in Proposition 1.9 has negligible Plancherel
measure in the subset of the unitary dual of G(Qp) consisting of representations whose levels are at most
(the p-part of) nx. Part (i) results from the fact that the Plancherel measure is atomless when restricted
to the unramified unitary dual. The saving by (log |Fx|)R in the denominator comes from the quantitative
Plancherel equidistribution theorem [58] and a uniform approximation of characteristic functions in the
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unramified unitary dual by Hecke functions of bounded degree. For part (ii) observe that the condition
there implies that the mass of the set in Proposition 1.9, which may not be zero since some points may
correspond to discrete series, becomes negligible relative to the mass of the level ≤ nx part of the unitary
dual as ord(nx) → ∞.

1.5. Organization. Section 2 introduces basic notions such as C-algebraic, C-arithmetic, and cohomo-
logical automorphic representations as well as the field of rationality for local and global representations,
and then builds background materials. The key result is that cohomological representations are C-
algebraic and strongly C-arithmetic, indicating that a good playground to study field of rationality is the
world of cohomological representations. We included many supplementary results which do not play roles
in proving main theorems but are interesting in their own right. Section 3 is mainly local and Galois-
theoretic. We prove the fundamental proposition that a Weil-Deligne representation with bounded field
of rationality has bounded ramification and transfer the result to the automorphic side via the local
Langlands correspondence for GLn. Section 4 is global in nature and draws deep facts from both Galois
and automorphic sides. It is shown that the Galois representations associated with (conjugate) self-dual
automorphic representations of GLn are pure and integral. The remainder of Section 4 is concerned
with the twisted endoscopic transfer and classification theorems for quasi-split classical groups relative
to GLn. This is where Arthur’s work is invoked. Section 5 proves key local finiteness results to be used
in the proof for main theorems. The basic strategy is to prove something for GLn and transfer the result
to classical groups or vice versa. To play this game the rationality of endoscopic transfer as proved in
§5.2 is essential. The culmination of Section 5 is the finiteness theorems in §5.5. In the last Section 6 we
prove several results on the field of rationality for families of automorphic representations in level aspect
and conclude with remarks on counting elliptic curves and some outlook.

1.6. Acknowledgments. We are grateful to Wee Teck Gan, Peter Sarnak, Jean-Pierre Serre and David
Vogan for their helpful comments and the referee for a careful reading. The authors acknowledge support
from the National Science Foundation under agreements No. DMS-1162250 and DMS-1200684.

1.7. Notation and convention.

• k denotes an algebraic closure of k for any field k.
• Resk′/k denotes the Weil restriction of scalars from a finite extension field k′ to k.
• Ind and n-ind denote the unnormalized and normalized inductions from parabolic subgroups,
respectively.

• F is a number field, ΓF := Gal(F/F ), and WF is the Weil group.
• qv denotes the cardinality of the residue field and Frobv is the geometric Frobenius element at
v if v is a finite place of F ,

• S∞ is the set of all infinite places of F ,
• AF is the ring of adèles over F ; ASF is the restricted product of Fv for all v /∈ S; A∞

F := AS∞

F .
• G is a connected reductive group over F ,

• Ĝ is the dual group, LG is the L-group.
• G(Fv)

∧ is the unitary dual of G(Fv).
• Irr(G(Fv)) denotes the set of isomorphism classes of irreducible smooth representations of G(Fv).
Write Irrtemp(G(Fv)) (resp. Irr

ur(G(Fv))) for the subset consisting of tempered (resp. unramified
- for a choice2 of a hyperspecial subgroup of G(Fv) if it exists) representations.

• ρ ∈ X∗(T )⊗ZQ is the half sum of all positive roots when a choice is made of a maximal torus T
and a Borel subgroup B such that T ⊂ B (ρ is also viewed as the half sum of all positive coroots
on the dual side, cf. §2.1 below).

• H(H, k) denotes the k-algebra of locally constant compactly supported functions on H where
H is a locally compact totally disconnected group and k is a field, and HU (H, k) the sub k-
algebra of bi-U -invariant functions where U is an open compact subgroup of H . (For instance
H = G(A∞

F ) or H = G(Fv) in the notation above.)
• Given G as above, hyperspecial subgroups Uhs

v are fixed at finite places v outside the set Sram

of finitely many v such that G is ramified over Fv. We identify H(G(A∞
F ), k) with the restricted

tensor product ⊗′
v∤∞H(G(Fv), k) with respect to HUhs

v
(G(Fv), k) and decompose an irreducible

admissible representation π of G(A∞
F ) as π = ⊗′

v∤∞πv. We speak of unramified representations

at finite places v /∈ Sram with respect to Uhs.

2Such a choice will always be implicit whenever we mention unramified representations in this article.
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• ϕv : WFv
× SL2(C) → LG (v finite) and ϕv : WFv

→ LG (v infinite) are notation for local
L-parameters; the associated local L-packets are denoted LP (ϕv) (in the cases where the local
Langlands correspondence is established).

• Fix a field embedding Q → C and Ql → C for each prime l once and for all.
• All twisted characters (and intertwining operators for θ defining them) are normalized as in
Arthur’s book.

2. Field of rationality

The reader may want to compare the contents of our §2.1 and §2.2 to §3.1 and §7 of [8].

2.1. C-algebraicity and coefficient fields. Let π = ⊗′
vπv be an automorphic representation of G(AF ).

Let S be a finite set of places of F containing S∞. We recall the definition of C-algebraicity from [8,
Def 3.1.2] (generalizing the notion of algebraicity in [13]). For each infinite place v of F , denote by
ϕπv

:WFv
→ LG the associated parameter via the local Langlands correspondence ([37]).

Definition 2.1. For v|∞, πv is C-algebraic if there exists a maximal torus T̂ of Ĝ satisfying ϕπv
(WC) ⊂

T̂ ×WC with the property that ϕπv
|WC

: WC → T̂ (via any R-embedding σ : Fv →֒ C, after projecting

down to T̂ ) belongs to ρ + X∗(T̂ ), where ρ is the half sum of all positive coroots in T̂ with respect to

a Borel subgroup B̂ containing T̂ . (The latter property is independent of the choice of σ, T̂ , and B̂.
See [8, 2.3].) We say that πv is regular if ϕπv

|WC
is not invariant under any nontrivial element of the

Weyl group for T̂ in Ĝ. If πv is C-algebraic (resp. regular) for every infinite place v then π is said to be
C-algebraic (resp. regular).

We remark that when G = GLn, our notion of π being algebraic (resp. regular) coincides with the
one in [13]. For the next definition we introduce a twist of a complex representation. For τ ∈ Aut(C)
and a complex representation (Π, V ) of a group Γ, denote by Πτ the representation of Γ on V ⊗C,τ−1 C
via Π⊗ 1.

Definition 2.2. The field of rationality Q(πS) is the fixed field of C under the group {τ ∈ Aut(C) :
(πS)τ ≃ πS}. If S = S∞, simply write Q(π) for Q(πS∞). For a finite place v of F , Q(πv) is defined to be
the fixed field under the group {τ ∈ Aut(C) : πτv ≃ πv}.

An easy observation is that Q(π) is the composite field of Q(πv) for all finite v (as a subfield of C).

Remark 2.3. Here is another possible notion of rationality, which will not be used in this paper. We
say that π is defined over a subfield E of C if there exists a smooth E[G(A∞

F )]-module π∞
E such that

π∞
E ⊗E C ≃ π∞. Similarly πv is said to be defined over E for a finite place v if there exists a smooth
E[G(Fv)]-module πv,E such that πv,E ⊗E C ≃ πv. If π (resp. πv) is defined over E then clearly Q(π)
(resp. Q(πv)) contains E. A natural question is whether π (resp. πv) can be defined over Q(π) (resp.
Q(πv)) itself. If πv is unramified, it is not hard to see that πv is defined over E (independently of the
choice of a hyperspecial subgroup of G(Fv)) if and only if E ⊃ Q(πv), cf. [8, Lem 2.2.3, Cor 2.2.4]. The
authors do not know whether the analogue holds for general generic πv or π∞. In the case of G = GLn,
this has been shown in [13] using the theory of new vectors.

Remark 2.4. Let v be a finite place of F where πv is unramified. It is in general false that the Satake
parameters of πv are defined over Q(πv) (let alone Q(π)) in the sense of [8, Def 2.2.2] due to an issue
with the square root of qv.

Definition 2.5. For a finite v, we say πv is C-arithmetic if Q(πv) is finite over Q. An automorphic
representation π is C-arithmetic if Q(πS) is finite over Q for some finite set S containing S∞. It is
strongly C-arithmetic if Q(π) is finite over Q.

Remark 2.6. Our C-arithmeticity is equivalent to that of [8]. It is reasonable to believe that π is C-
arithmetic if and only if it is strongly C-arithmetic, but the only if part does not seem easy to prove
directly. At least when G is a torus it can be verified that C-arithmeticity is equivalent to strong C-
arithmeticity. Indeed the only if part is true if G is a split torus by strong approximation. If G is a
general torus the proof is reduced to the split case via a finite extension F ′/F splitting G by employing
the fact (see the proof of the theorem 4.1.9 in [8]) that G(F ) and the image of G(A∞

F ′) under the norm
map together generate an open and closed subgroup of G(A∞

F ) of finite index.
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Remark 2.7. Even if πv is C-arithmetic at every finite v, it may happen that π is not C-arithmetic. For
instance when G = GL1 over Q and π = | · |1/2, we have Q(πp) = Q(p1/2) for each prime p so πp is

C-arithmetic. However Q(πS) is an infinite algebraic extension of Q. Note that | · |1/2 is not C-algebraic.

In general there is no reason to expect that Q(π) is finite or algebraic over Q. In this optic the
significance of C-algebraicity stems from Conjecture 2.8 below. An expectedly equivalent conjecture was
formulated in [8, Conj 3.1.6], where they put C-arithmetic in place of strongly C-arithmetic. When G
is a torus, the two versions of the conjecture are indeed equivalent (Remark 2.6), so our conjecture is
known to be true by [8, Thm 4.1.9] based on work of Weil and Waldschmidt.

Conjecture 2.8. π is C-algebraic if and only if it is strongly C-arithmetic.

We remark that there are other reasons why C-algebraic automorphic representations stand out. One
reason is that C-algebraicity is a natural necessary condition in the cuspidal case (and not too far from
being a sufficient condition) to contribute to cohomology, cf. Lemma 2.14 below. Another reason is that
l-adic Galois representations are expected to be associated with C-algebraic representations, cf. [8, Conj
5.3.4]. (In a simpler way Galois representations should also be attached to L-algebraic representations,
which differ from C-algebraic ones by “twisting”. See Conjectures 3.2.1 and 3.2.2 of [8].)

C-algebraicity and C-arithmeticity are preserved under unnormalized parabolic induction. (Compare
with [8, Lem 7.1.1] and the paragraph above it.)

Lemma 2.9. Let M be a Levi subgroup of an F -rational parabolic subgroup P of G. Let ΠM be an
automorphic representation of M(AF ). Suppose that Π is an irreducible subquotient of the unnormalized

induction IndGP (ΠM ). Then ΠM is C-algebraic if and only if Π is C-algebraic. If ΠM is C-arithmetic
(resp. strongly C-arithmetic) then so is Π.

Remark 2.10. The lemma is in fact purely local and the same argument proves the analogue forM(F ⊗Q

R)-representations. For normalized induction, one can prove similar statements with L- in place of C-.

Proof. We may assume F = Q by reducing the general case via restriction of scalars. Let T be a maximal
torus of M over C and B a Borel subgroup of G over C containing T . Put BM := M ∩ B. Then

ρ, ρM ∈ X∗(T ) ⊗Z Q are defined. Let χΠM,∞
(resp. χΠ∞

) denote the character of X∗(T̂ ) = X∗(T )
associated to ϕΠM,∞

(resp. ϕΠ∞
) as in Definition 2.1 well-defined up to W (M,T )-conjugacy (resp.

W (G, T )-conjugacy). Let λΠM,∞
(resp. λΠ∞

) denote the infinitesimal character of ΠM,∞ (resp. Π∞).
The condition of the lemma tells us that λΠ∞

and λΠM,∞
+(ρ− ρM ) are in the same W (G, T )-orbit in

X∗(T ) ⊗Z C. On the other hand, λΠM,∞
and χΠM,∞

are in the same W (M,T )-orbit and similarly λΠ∞

and χΠ∞
are in the same W (G, T )-orbit ([62, Prop 7.4]). Therefore if ΠM is C-algebraic then so is Π.

We check that Π is strongly C-arithmetic if ΠM is strongly C-arithmetic. Let S be the finite set of
places (including S∞) outside which ΠM is unramified. The assumption tells us that Πv is a subquotient

of IndGP (ΠM,v) at every finite place v. Hence Πσv is a subquotient of IndGP (Π
σ
M,v) at every v for every

σ ∈ Aut(C). (The latter implication fails if normalized induction was used and if σ does not fix q
1/2
v .)

For v /∈ S and σ ∈ Aut(C/Q(ΠM )) we see that Πv and Πσv are isomorphic as both of them are the unique

unramified subquotient of IndGP (ΠM,v). For finite v ∈ S, Πv is C-arithmetic since σ ∈ Aut(C/Q(ΠM ))

permutes the finitely many irreducible subquotients of IndGP (Π
σ
M,v). Therefore Q(Π) is contained in the

finite field extension of Q(ΠM ) generated by Q(Πv) for v ∈ S, hence Π is strongly C-arithmetic.
The above proof also shows that if ΠM is C-arithmetic then Π is C-arithmetic. �

2.2. Rationality for cohomological representations. Temporarily let G be a connected reductive
group over Q. Let π be an automorphic representation of G(A). Let K∞ be a subgroup of G(R) whose
image in Gad(R) is a maximal compact subgroup. Let K0

∞ be the neutral component of K∞ with
respect to the real topology. Let Q be a parabolic subgroup of G(C) with Levi component K∞,C. Put
g := LieG(C) and q := LieQ(C).

Definition 2.11. We say that π is cohomological (resp. ∂-cohomological) if Hi(g,K0
∞, π∞ ⊗ ξ) 6= 0

(resp. Hi(q,K0
∞, π∞ ⊗ ξ) 6= 0) for some i ≥ 0 and some irreducible algebraic representation ξ of G(C)

(resp. K∞,C). In this case π is said to be ξ-cohomological (resp. ξ-∂-cohomological).

Lemma 2.12. If G = GLn then every cuspidal regular C-algebraic automorphic representation π of
G(AF ) is cohomological.

Proof. Follows from [13, Lem 3.14]. �
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Remark 2.13. If π∞ is an arbitrary regular C-algebraic representation of GLn(R), GLn(C), or a product
thereof, then there is no reason for π∞ to have non-vanishing cohomology as in Definition 2.11. What
makes the above lemma work is the condition that π∞ is (essentially) tempered, which is implied by the
cuspidality of π, cf. [13, Lem 4.9].

From now on, let F be a number field and G a connected reductive group over F . By applying the
above definition to ResF/QG we define K∞, Q, g, q and make sense of (∂-)cohomological representations.
In light of the above remark, a sensible generalization of Lemma 2.12 would be the following assertion: For
any connected reductive group G over F , every cuspidal regular C-algebraic automorphic representation
of G(AF ) is cohomological if its infinite component is tempered. (For a general G the latter condition is
not a consequence of global cuspidality. Early counterexamples are due to Kurokawa, Howe and Piatetski-
Shapiro.) We believe that the assertion is true but were not able to verify it. In the converse direction
we have

Lemma 2.14. Any cohomological automorphic representation π of G(AF ) is C-algebraic.

Proof. We may assume F = Q. Let T be a maximal torus over C and B a Borel subgroup of G over C
containing T . Let λξ∨ ∈ X∗(T ) be the highest weight vector for ξ∨ with respect to (B, T ) where ξ is as

above. Let χπ∞
∈ X∗(T̂ ) ⊗Z C = X∗(T ) ⊗Z C be the character determined by ϕπ∞

|WC
as in Definition

2.1. Then χπ∞
is well-defined up to W (G, T )-conjugacy. If π is ξ-cohomological then the infinitesimal

character of π∞ is the same as that of ξ∨, namely λξ∨ + ρ. Hence χπ∞
and λξ∨ + ρ are in the same

W (G, T )-orbit ([62, Prop 7.4]). We conclude that χπ∞
− ρ ∈ X∗(T ) independently of the choices so far

and that π∞ is C-algebraic. �

Roughly speaking, cohomological (cuspidal) automorphic representations are important in that they
are realized in the Betti cohomology (or étale cohomology via comparison theorem) of locally symmetric
quotients associated with G. This plays a fundamental role in Clozel’s work forG = GLn, cf. Remark 2.16
below. In work of Blasius-Harris-Ramakrishnan (cf. Proposition 2.19 below) they prove C-arithmeticity
by realizing cuspidal automorphic representations in the coherent cohomology of Shimura varieties, which
is possible for ∂-cohomological representations.

We would like to show C-arithmeticity for a large class of cohomological representations by realizing
them in the Betti cohomology of locally symmetric quotients with coefficient sheaves defined over number
fields. This must be well known to experts, the idea being similar to [63] and [13], but we provide some
details as there does not seem to be a handy reference for the general case.

For any sufficiently small open compact subgroup U ⊂ G(A∞
F ), consider the manifold

SU (G) := G(F )\G(AF )/UK0
∞

with finitely many connected components. Let ξ be an irreducible algebraic representation of ResF/QG
over C and denote by Lξ the associated local system of C-vector spaces on SU (G). (By abuse of notation
we omit the reference to U in Lξ.) Such a ξ admits a model ξE over a number field E (so that ξE⊗EC ≃ ξ)
and one can use the highest weight theory to show that Lξ also admits a model Lξ,E , a local system of
E-vector spaces. For i ≥ 0 define

Hi(S(G),Lξ) := lim
−→
U

Hi(SU (G),Lξ) (2.1)

and similarly Hi(S(G),Lξ,E). The usual Hecke action equips Hi(S(G),Lξ) (resp. Hi(S(G),Lξ,E)) with
the structure of admissible C[G(A∞)]-module (resp. E[G(A∞)]-module), where admissibility corresponds
to the fact that Hi(SU (G),Lξ) = Hi(S(G),Lξ)U is finite dimensional.

Much work has been done to decomposeHi(S(G),Lξ) by means of automorphic representations. When
SU (G) are compact, Matsushima’s formula does the job. Results in the general case are due to Franke,
Harder, Li, Schwermer and others. This enables us to show C-arithmeticity for cuspidal representations.

Proposition 2.15. Let π be a cuspidal ξ-cohomological automorphic representation of G(AF ). Then

(i) π∞ is a G(A∞
F )-module direct summand of Hi(S(G),Lξ) for some i ≥ 0.

(ii) π is strongly C-arithmetic.

Remark 2.16. Clozel has shown this for general linear groups ([13, Th 3.13, Lem 3.14, 3.15]). We are
adapting his ideas to the case of arbitrary reductive groups. (See also the last paragraph of §7 in [8] for
the case of trivial coefficients.)
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Remark 2.17. When G = GLn we know moreover that Q(π) is a totally real or CM field, cf. [44, Cor
6.2.3]. The argument requires to know the subtle point that twists of π∞ by Aut(C) are finite parts
of automorphic representations of G(AF ). As this is not known in general, it seems difficult to check
whether Q(π) is a totally real or CM field for an arbitrary reductive group. However see Proposition
2.19.(ii) below.

Proof. Part (i) follows from the description of the cuspidal part of Hi(S(G),Lξ) via Lie algebra coho-
mology ([51, (13.6)], [23]). Note that the cuspidal part is a direct summand, cf. page 242 of [51]. Part
(ii) can be shown by arguing as in the proof of [13, Prop 3.16]. The argument is sketched here for the
convenience of the reader.

Let U =
∏
v∤∞ Uv ⊂ G(A∞

F ) be a sufficiently small open compact subgroup such that (π∞)U 6= 0. Then

(π∞)U is a direct summand ofHi(SU (G),Lξ) and moreover irreducible as aHU (G(A
∞
F ),C)-module. (This

follows from the irreducibility criterion of [21, p.179].) Since the field of definition is the same for π∞ as
a G(A∞

F )-module and for (π∞)U as a HU (G(A
∞
F ),C)-module, it is enough to show that the isomorphism

class of (π∞)U is fixed under a finite index subgroup of Aut(C).
We start by finding a model of (π∞)U on a Q-vector space. Burnside’s theorem implies that irre-

ducible HU (G(A
∞
F ),C)-module subquotients of Hi(SU (G),Lξ) and those of the HU (G(A

∞
F ),Q)-module

Hi(SU (G),Lξ,E⊗EQ) correspond bijectively.3 In particular there is an irreducibleHU (G(A
∞
F ),Q)-module

subquotient W of Hi(SU (G),Lξ,E ⊗E Q) such that W ⊗Q C ≃ (π∞)U . Since σ ∈ Gal(Q/E) induces a

σ-linear self-automorphism of Hi(SU (G),Lξ,E ⊗E Q) as a HU (G(A
∞
F ),Q)-module, the induced action

permutes the irreducible subquotients of Hi(SU (G),Lξ,E⊗EQ) (the point being that HU (G(A
∞
F ),Q) has

a natural Q-structure). We see from the finite-dimensionality of the latter space that the isomorphism
class of W is fixed by a finite index subgroup of Gal(Q/E) as desired. �

Corollary 2.18. Let M be a Levi subgroup of an F -rational parabolic subgroup of G. Any automorphic
representation of G(AF ) appearing as a subquotient of an unnormalized parabolic induction of a cuspidal
cohomological automorphic representation of M(AF ) is C-algebraic and strongly C-arithmetic.

Proof. Immediate from Lemma 2.9, Lemma 2.14 and Proposition 2.15. �

In the rest of this subsection we briefly recall some results of Blasius, Harris and Ramakrishnan for
the sake of completeness, even though their results will not be used in this paper. Under a restrictive
hypothesis (cf. [5, §0.1]), namely that ResF/QG is of hermitian symmetric type so that G(F ⊗Q R)/K∞

admits a G(F ⊗Q R)-invariant complex structure, the three authors have shown:

Proposition 2.19. Keep the hypothesis in the above paragraph. Let π be any automorphic representation
of G(AF ) such that π∞ is a nondegenerate limit of discrete series or a discrete series representation of
G(F ⊗Q R) whose restriction to the maximal R-split torus of (ResF/QG)(R) is algebraic. Then

(i) any such π is ∂-cohomological, C-algebraic and
(ii) if π is moreover cuspidal then Q(π) is either a totally real or a CM field (in particular π is

strongly C-arithmetic).

Remark 2.20. One can extend part (ii) beyond the cuspidal case by applying Lemma 2.9 as it was done
in Corollary 2.18.

Proof. This is Theorems 3.2.1 and 4.4.1 of [5] except for the C-algebraicity of π, which is easy to deduce
from the description of the infinitesimal character of π∞ in [5, Thm 3.2.1] by an argument as in the proof
of Lemma 2.14. Note that a subfield of a CM field is either totally real or CM. �

2.3. Satake parameters under functoriality. Let H and G be connected reductive groups over a
number field F . We form their L-groups using the full Galois group over F rather than a finite Galois
group or the Weil group. (Later we use the Weil group in the case of even orthogonal groups. In that
case the material of this subsection can still be adapted. See §4.2.) Let η : LH → LG be an L-morphism.

Let (B̂H , T̂H) (resp. (B̂, T̂ )) be a pair of a Borel subgroup of Ĥ (resp. Ĝ) and a maximal torus contained

in it. We may choose (B̂, T̂ ) such that η(T̂H) ⊂ T̂ (and η(B̂H) ⊂ B̂ but the latter is unnecessary for us).

These data determine ρH ∈ 1
2X∗(T̂H) and ρ ∈ 1

2X∗(T̂ ) as the half sums of all positive coroots in T̂H and

T̂ , respectively. Moreover η induces η∗ : X∗(T̂H) → X∗(T̂ ).

3Consider the Jordan-Hölder quotients M1, ...,Mk of Hi(SU (G),Lξ,E ⊗E Q). By Burnside’s theorem, the Q-algebra

morphism from HU (G(A∞

F
),Q) to EndQ(Mj) is onto. So the Jordan-Hölder quotients remain irreducible after ⊗QC.
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Definition 2.21. An L-morphism η : LH → LG is said to be C-preserving if ρ− η∗(ρH) at each v|∞
belongs to X∗(T̂ ) (rather than just 1

2X∗(T̂ )).

In view of Definition 2.1, a C-preserving L-morphism carries L-packets of C-algebraic representations
to L-packets of C-algebraic representations at infinite places. The C-preserving property does not depend
on the choice of maximal tori and Borel subgroups. Indeed one can go between different maximal tori in

Ĥ (resp. Ĝ) by conjugation. Moreover if T̂H is fixed, another choice of B̂H changes ρH by a Weyl group

element wH for Ĥ , but clearly wHρH − ρH ∈ X∗(T̂H) so ρ − η∗(ρH) is shifted by an element of X∗(T̂ )

(rather than just 1
2X∗(T̂ )). A similar argument shows the independence of the choice of B̂ as well.

The aim of this subsection is to show that for a C-preserving L-morphism, the transfer of unramified
representations is compatible with twisting by field automorphisms of C. We begin with some preparation.
Let S be a finite set of places of F containing S∞ such that H , G and η are unramified whenever v /∈ S.
From now on assume v /∈ S. Let Av be a maximal Fv-split torus of G, and Tv be the centralizer of Av in
G over Fv. Let Bv be a Borel subgroup of G containing Tv. Define ρv ∈ 1

2X∗(Av) to be the half sum of

all Fv-rational Bv-positive roots relative to Av. Write q
1/2
v for the positive square root of qv. Denote by

sgnσ,ρv : Tv(Fv) → {±1} a character defined via the following composite map

Tv(Fv) → Tv(Fv)/Tv(Ov) ≃ X∗(Av) → {±1}
where λ ∈ X∗(Av) is sent to λ(̟v) ∈ Tv(Fv)/Tv(Ov) under the isomorphism in the middle and to

(σ(q
1/2
v )/q

1/2
v )〈λ,2ρv〉 ∈ {±1} under the last map. (In particular sgnσ,ρv (λ) = 1 if either q

1/2
v ∈ Q or

〈λ, ρv〉 ∈ Z.) Likewise AH,v, TH,v, BH,v, ρH,v and sgnσ,ρH,v
are defined for H . Write δ

1/2
Bv

: Tv(Fv) → R×
>0

for the modulus character, which factors through the character λ 7→ (q
1/2
v )〈λ,2ρv〉 from X∗(Av) to R×

>0.

Lemma 2.22. Suppose v /∈ S and let χv : Tv(Fv) → C× be a continuous character. If πv ∈ Irrur(G(Fv))

is a subquotient of n-ind
G(Fv)
Bv(Fv)

(χv) then for every σ ∈ Aut(C), πσv is a subquotient of n-ind
G(Fv)
Bv(Fv)

(χσv ⊗
sgnσ,ρv ). The exact analogue holds true for H.

Proof. Recall that the unnormalized parabolic induction commutes with σ-twisting, cf. Lemma 2.9. So
πσv is an unramified subquotient of the following representation: all inductions below are from Bv(Fv) to
G(Fv).

n-ind(χv)
σ = Ind(χv ⊗ δ

1/2
Bv

)σ = Ind(χσv ⊗ (δ
1/2
Bv

)σ) = n-ind(χσv ⊗ (δ
1/2
Bv

)σ/δ
1/2
Bv

)).

By definition (δ
1/2
Bv

)σ/δ
1/2
Bv

= sgnσ,ρv . Since a principal series representation has a unique unramified
subquotient, the first part of the lemma follows. The argument for H is the same. �

We have that η is unramified at v /∈ S, so it comes from a map on Frv-cosets Ĥ ⋊ Frv → Ĝ ⋊ Frv,

again denoted η. The Satake isomorphism provides a canonical bijection between the set of Ĝ-conjugacy

classes in Ĝ⋊Frv (resp. (Ĥ-conjugacy classes in Ĥ ⋊Frv) with Irrur(G(Fv)) (resp. Irr
ur(H(Fv))). Write

η∗ : Irrur(H(Fv)) → Irrur(G(Fv))

for the map induced by η.

Lemma 2.23. Let v /∈ S and suppose that η : LH → LG is an L-morphism with finite kernel. (So η is
unramified.) Then there exists N ∈ Z>0 such that every fiber of η∗ has cardinality at most N .

Remark 2.24. The N in the lemma can be chosen independently of v. For this observe that the order of
the Weyl group in G is clearly bounded independently of v and that the size of the kernel of ηT,∗ is also

uniformly bounded since there are only finitely many Frv-actions on T̂H,v and T̂v as v varies (up to Weyl
group actions).

Proof. Obviously the proof is reduced to the case where η is injective, which will be assumed throughout.
Let LBH,v be a Borel subgroup of LH relative to the base field Fv (see [6, §3] for this and other related

notions in the proof). Then B̂H,v := LBH,v ∩ Ĥ is a Borel subgroup of Ĥ . Since η(B̂H,v) is a closed

solvable subgroup of Ĝ, it is contained in some Borel subgroup B̂v of Ĝ. Then the normalizer LBv of

B̂v in LG is a Borel subgroup of LG. Let iH : LBH,v →֒ LH and i : LBv →֒ LG denote the inclusions.

Write T̂H,v and T̂v for the maximal tori in B̂H,v and B̂v. The normalizer LTH,v of T̂H,v in LBH,v is a Levi
subgroup of LBH,v, and similarly we have a Levi subgroup LTv of LBv. We can identify LTH,v and LTv
with the L-groups for minimal Levi subgroups TH,v and Tv of H and G over Fv, respectively. Clearly
we have η(LBH,v) ⊂ LBv and so η(LTH,v) ⊂ LTv. Denote the induced map LTH,v → LT by ηT . Notice
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that i, iH and ηT are unramified. We have a commutative diagram as below on the left, which induces a
commutative diagram on the unramified spectra.

LTH,v
ηT

//

iH
��

LTv

i

��
LH

η
// LG

, Irrur(TH,v(Fv))
ηT,∗

//

iH,∗

��

Irrur(Tv(Fv))

i∗

��

Irrur(H(Fv))
η∗

// Irrur(G(Fv))

(2.2)

We know ([6, §10.4]) how to describe i∗ and iH,∗ using parabolic induction: i∗(χv) is the unique unramified
subquotient of n-ind(χv) and the analogue is true for iH,∗. According to the well known classification of
unramified representations, we know firstly that i∗ and iH,∗ are surjective and secondly that the fiber of
i∗ (resp. iH,∗) has cardinality at most the order of the Weyl group for Tv in G (resp. for TH,v in H). This
order can be bounded uniformly in v. On the other hand ηT,∗ has finite fibers. Indeed [6, §9.4] identifies
ηT,∗ with a group homomorphism

T̂H,v/(Frv − 1)T̂H,v → T̂v/(Frv − 1)T̂v

(Frv denoting the geometric Frobenius action), and the above map has finite kernel ([6, §6.3, (2)]). All
in all, the fibers of η∗ are finite.

�

Lemma 2.25. Suppose that η : LH → LG is C-preserving. Let v /∈ S. For each πH,v ∈ Irrur(H(Fv)),

(i) (η∗πH,v)
σ = η∗(π

σ
H,v).

(ii) Q(η∗πH,v) ⊂ Q(πH,v).
(iii) If η has finite kernel and N is as in Lemma 2.23 then [Q(πH,v) : Q(η∗πH,v)] ≤ N !.

Proof. Let us prove (i). Adopt the setting in the proof of the last lemma. The first observation is that
when H = TH and G = T are tori, (i) follows from the fact that η∗ is naturally defined over Q since an

algebraic map LTH → LT corresponds to a Frv-equivariant map X∗(T̂H) = X∗(TH) → X∗(T̂ ) = X∗(T ).
Now consider the general case. For simplicity of notation only in this proof, we use n-ind to mean the
unique unramified subquotient of the normalized induction. Now by surjectivity of iH,∗ write πH,v =

iH,∗(χH,v) = n-indHBH,v
(χH,v) for a smooth character χH,v : TH,v(Fv) → C×. Put χv := ηT,∗(χH,v). From

the case of tori we know that
ηT,∗(χ

σ
H,v) = χσv .

Using Lemma 2.22 and the commutativity of (2.2) we compute

(η∗πH,v)
σ = (η∗iH,∗χH,v)

σ = (i∗χv)
σ = n-ind(χv)

σ = n-ind(χσv ⊗ sgnσ,ρv ). (2.3)

Similarly, noting in addition that ηT,∗ is a homomorphism,

η∗(π
σ
H,v) = η∗(iH,∗(χH,v)

σ) = η∗(iH,∗(χ
σ
H,v ⊗ sgnσ,ρH,v

) (2.4)

= n-ind(ηT,∗(χ
σ
H,v ⊗ sgnσ,ρH,v

)) = n-ind(ηT,∗(χ
σ
H,v)⊗ ηT,∗(sgnσ,ρH,v

)) = n-ind(χσv ⊗ sgnσ,η∗(ρH,v)).

Since η is C-preserving, sgnσ,ρv = sgnσ,η∗(ρH,v) and thus the proof of (i) is complete.

Part (ii) is clear from (i). To verify (iii), put πv := η∗πH,v. By (i), πσv ∈ η−1
∗ (πv) for every σ ∈

Aut(C/Q(πv)). This yields a homomorphism from Aut(C/Q(πv)) to the permutation group on η−1
∗ (πv).

Since |η−1
∗ (πv)| ≤ N , the kernel has finite index at most N !. This proves (iii). �

Corollary 2.26. Keep the assumptions of Lemma 2.25.

(i) Let v /∈ S. If πH,v ∈ Irrur(H(Fv)) is C-arithmetic then η∗πH,v is C-arithmetic. The converse
is true if there is a constant κ such that every fiber of η∗ : Irrur(H(Fv)) → Irrur(G(Fv)) has
cardinality at most κ.

(ii) Let πH and π be automorphic representations of H(AF ) and G(AF ) such that πv = η∗(πH,v) for
all v /∈ S. If πH is C-arithmetic then so is π.

Proof. Immediate from (ii) and (iii) of Lemma 2.25. �

Remark 2.27. Compare our results with the lemmas 6.2 and 6.3 of [8], where it is shown that any L-
morphism η : LH → LG carries L-algebraic (resp. L-arithmetic) representations to L-algebraic (resp.
L-arithmetic) representations. (It is worth noting that they use Galois groups to form the L-groups; it
can fail to be true if Weil groups are used.) One could try to derive our results in §4.2 directly from their
results by twisting but this is not automatic for two reasons: some groups lack twisting elements (in the
sense of [8, §5.2]) and some others admit no L-algebraic representations at all.
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3. Purity and rationality of local components

The contents of this section are purely local and the following notation will be used.

• K is a finite extension of Qp with residue field Fq, OK is its integer ring, and FrobK is the
geometric Frobenius element in Gal(Kur/K).

• WK and IK are the Weil and inertia groups of K,
• Ω is an algebraically closed field of characteristic 0 with the same cardinality as C (usually Ω is
taken to be C or Ql for a prime l),

• FrobK ∈ WK/IK is the geometric Frobenius element,
• v :WK → Z is defined as WK ։WK/IK ≃ Z where the last isomorphism carries FrobK to 1,
• | · |WK

:WK → Q× is a character given by τ 7→ q−v(τ).
• sc(π) denotes the supercuspidal support of π ∈ Irr(G(K)).

3.1. Pure Weil-Deligne representations. Our basic definitions are based on those of [60, p.471].
Their definition is slightly more general in that the weight is allowed to be a real number. For our
purpose it suffices to consider only integral weights.

A Weil-Deligne representation (or WD representation for simplicity) of WK (over Ω) is a triple
(V, ρ,N) where V is a finite dimensional Ω-vector space, ρ : WK → GL(V ) is a group homomorphism
such that ρ(IK) is finite, and N ∈ EndΩ(V ) is a nilpotent operator such that ρ(τ)Nρ(τ)−1 = |τ |WK

N . It
is said to be unramified if ρ(IK) is the identity and N = 0, Frobenius semisimple (or “F-ss” for short)
if ρ is semisimple, and irreducible if ρ is irreducible and N = 0. Let (V, ρ,N)F-ss := (V, ρss, N) denote
the Frobenius semisimplification of (V, ρ,N), where ρss is defined as follows: Fix a lift φ ∈ WK of FrobK
and let ρ(φ) = su be the Jordan decomposition with semisimple part s. Then ρss(φnτ) := snρ(τ) for all
n ∈ Z and for all τ ∈ IK , which defines ρss independently of the choice.

Let n ∈ Z≥1. For a continuous l-adic representation r : Gal(K/K) → GLn(Ql), there is a standard
way (depending on whether l 6= p or l = p) to associate a Weil Deligne representation WD(r) of WK as
explained on pp.467-470 of [60]. (One can view WD as a functor on appropriate categories.)

We recall the key definitions about purity. Let w ∈ Z. A q-Weil number (resp. integer) of weight
w is an algebraic number α (resp. an algebraic integer α) such that |ι(α)| = qw/2 for any field embedding
ι : Q →֒ C. A WD representation (V, ρ,N) of WK is strictly pure of weight w if every eigenvalue of the
image under ρ of some (hence every) lift of FrobK is a q-Weil number of weight w. We say that (V, ρ,N)
is mixed if there exists an increasing filtration of sub WD representations {FiliV }i∈Z on V such that
FiliV = 0 if i ≪ 0, FiliV = V if i ≫ 0 and griV := FiliV/Fili+1V is strictly pure of weight i for every
i ∈ Z. A mixed (V, ρ,N) admits a unique filtration such that N(FiliV ) ⊂ Fili−2V . Let us say (V, ρ,N) is
pure of weight w if it is mixed and if N i : grw+iV → grw−iV is an isomorphism for every i with respect
to the unique filtration just mentioned. More generally let w be a finite multi-set such that the elements
of w are distinct integers w1, ..., wr with multiplicities m1, ...,mr. Then (V, ρ,N) is said to be pure of

weight w if V = ⊕ri=1(Vi, ρi, Ni) with each (Vi, ρi, Ni) being pure of weight wi and of dimension mi. (If
so, we have in particular |w| = m1 + · · ·+mr = dimV .) Finally a mixed (V, ρ,N) is integral if for some
(hence every) lift φ ∈ WK of FrobK , every eigenvalue of φ on V is an algebraic integer (so that every
eigenvalue of φ on griV is a q-Weil integer of weight i).

The above definitions are motivated by Deligne’s weight-monodromy conjecture in its integral form
(cf. [16], [47, Conj 0.3, 0.5]). The conjecture is equivalent to the one without Frobenius semisim-
ple/semisimplification in the statement.

Conjecture 3.1. (cf. [47, Conj 0.3, 0.5]) Let l be any prime (which could be equal to p). Let (V, ρ,N) be
an F-ss WD representation on a Ql-vector space. If (V, ρ,N) is a subquotient ofWD(Hi

ét(X×KK,Ql))F-ss
for some proper smooth scheme X over K then it is pure of weight i and integral.

It is worth noting that when X has a proper smooth integral model over OK and l 6= p, the conjecture
is known by Deligne’s work on the Weil conjectures. In that case the WD representation below is
unramified and strictly pure of weight i. In the non-smooth (bad reduction) case the conjecture is known
when dimX ≤ 2 by Rapoport and Zink and in some special cases, for instance for certain Shimura
varieties. A recent breakthrough by Scholze ([50]) provides a proof for any complete intersection in a
projective smooth toric variety. The converse of Conjecture 3.1, which is not as deep as the original
conjecture, also seems true. (A proof was announced by Teruyoshi Yoshida but has not appeared in print
at the time of writing.)

Motivated by Conjecture 3.1 (as well as its converse) and the Fontaine-Mazur conjecture ([22, Conj 1],
also see [59, Conj 1.3]), we speculate on the following global conjecture, which in particular slightly refines
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the conjecture by Fontaine and Mazur in a sign aspect. More precisely, their conjecture says that (i) and
(iii) below are equivalent if nonnegativity is dropped in (i) and a Tate twist of cohomology is allowed in
(iii). The conjecture can be stated for all primes l simultaneously in the language of compatible systems,
cf. [59].

Conjecture 3.2. Let F be a number field and ρ : Gal(F/F ) → GLn(Ql) a continuous semisimple
representation unramified outside finitely many places. The following are equivalent.

(i) ρ is de Rham at every place v|l with nonnegative Hodge-Tate weights.4

(ii) the WD representation associated with ρ at every finite place v is integral and pure of weight w,
which is independent of v, has entries in Z and satisfies |w| = n.

(iii) ρ appears as a subquotient of ⊕i≥0H
i
ét(X ×F F ,Ql) for some proper smooth scheme X over F .

When ρ is furthermore irreducible, we may replace the condition in (ii) with “integral and pure of
weight w for some w ∈ Z”, and the condition in (iii) with “...a subquotient of Hi

ét(X ×F F ,Ql) for some
i ≥ 0...”. (For a given ρ the corresponding w and i are expected to be equal, cf. Conjecture 3.1.)

In Proposition 4.1 below we derive a partial result toward Conjecture 3.2 from the well known results
concerning the construction of Galois representations from automorphic representations. That result will
be a key to the finiteness result of §5.3, where the role of integrality will become clear. This was our
original motivation. However Conjecture 3.2 is interesting in its own right and we plan to discuss it in
more on some other occasion.

Remark 3.3. Part (ii) may be equivalent to (ii)′ below, allowing to exclude finitely many v:

(ii)′ the WD representation associated with ρ at almost every finite v is pure and integral.

Conjecture 2.8 suggests that it would also be equivalent to:

(ii)′′ the WD representation associated with ρ at (almost) every finite v is integral and has its field
of rationality contained in some number field E independent of v.

Remark 3.4. We are reduced to a more standard conjecture if we get rid of “with nonnegative Hodge-Tate
weights” in (i), “integral” in (ii) and allow a Tate twist in (iii). In this form we already mentioned that
the equivalence of (i) and (iii) is exactly the Fontaine-Mazur conjecture.

Remark 3.5. The implication (iii)⇒(i) is known by results of p-adic Hodge theory (the solution of the
Cpst conjecture and comparison of filtrations in complex and p-adic Hodge theories) and the fact that

the Hodge filtration on Hi
ét(X ×F C,Ql) has jumps only in nonnegative indices with respect to any field

embedding F →֒ C. According to Conjecture 3.1, (iii) should imply (ii). Finally we remark that (i)⇔(ii)
may be viewed as the arithmetic analogue of Conjecture 2.8.

Remark 3.6. When ρ is associated with a (classical) cuspidal holomorphic eigenform f =
∑

n≥1 anq
n

of weight k ∈ Z≥1 with a1 = 1 so that an are algebraic integers for all n ≥ 1, then (under a suitable
normalization) ρ satisfies (i), (ii) and (iii) with Hodge-Tate weights 0 and k−1. Now assume that an ∈ Z
for all n. The equivalence (i)⇔(ii)′, applied to the twist of ρ by the cyclotomic character, amounts to the
assertion that f is ordinary, i.e. ap is a p-unit for infinitely many primes p.

It is useful to know a preservation property under base field extensions.

Lemma 3.7. Let ρ̃ = (V, ρ,N) be a WD representation of WK , and L/K be a finite extension. Then
ρ̃|WL

is pure (resp. integral) if and only if ρ̃ is pure (resp. integral).

Proof. Straightforward. (The preservation of purity is Lemma 1.4.2 of [60]). �

Given (V, ρ,N) as above and s ∈ Z≥1, one constructs a new Weil-Deligne representation

Sps(V ) := (V s, ρ| · |s−1
WK

⊕ · · · ⊕ ρ| · |WK
⊕ ρ,N)

such that N : ρ| · |iWK

∼→ ρ| · |i−1
WK

for i = 1, ..., s − 1 and N = 0 on ρ. Note that Sps(V ) is uniquely
determined up to isomorphism. If (V, ρ,N) is pure of weight w then Sps(V ) is pure of weight w + s− 1.

Lemma 3.8. Let n ≥ 1 and (V, ρ,N) be an n-dimensional F-ss WD representation of WK . Then there
exist

• m ∈ Z≥1, s1, ..., sm ∈ Z≥1 and
• a collection of irreducible ni-dimensional F-ss WD representations (Vi, ρi, 0), i = 1, ...,m,

4In our convention the cyclotomic character has Hodge-Tate weight −1 (rather than 1).
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such that V = ⊕mi=1Spsi(Vi). Moreover if (V, ρ,N) is pure of weight w ∈ Z then each Vi is strictly pure
of weight w − si + 1.

Proof. The first assertion follows from the standard fact that any indecomposable F-ss WD representation
is of the form Sps(V ) for an irreducible F-ss WD representation V . If (V, ρ,N) is pure of weight w then
so is each Spsi(Vi). From this and the definition of Spsi(Vi) it is elementary to verify that Vi is strictly
pure of weight w − si + 1. �

Pure Weil-Deligne representations enjoy a remarkable rationality property of importance to us.

Lemma 3.9. A pure F-ss WD representation (V, ρ,N) of WK (of some weight w ∈ Z) has a number
field as a field of rationality.

Proof. By Lemma 3.8 it suffices to treat Sps(V ) when (V, ρ, 0) is an irreducible F-ss WD representation
which is strictly pure of weight w ∈ Z. Clearly Sps(V ) can be defined over the same number field over
which (Vi, ρi, Ni) is defined. Hence we are further reduced to showing that (V, ρ, 0) has a number field as
a field of rationality when it is irreducible and strictly pure of some weight w ∈ Z.

It is enough to verify that the trace function T := tr ρ : WK → Ω has image contained in a finite
extension of Q in Ω. Fix a lift φ ∈ WK of FrobK . The eigenvalues of ρ(φ), say λ1, ..., λn, are contained
in a finite Galois extension E of Q as they are Weil numbers. We will show that there exists d ≥ 1 such
that for every m ≥ 0,

ρ(φmτ)d = ρ(φm)d.

Then for every τ ∈ WK , the eigenvalues of ρ(τ) are contained in the set of α ∈ Ω such that αd ∈
{λm1 , ..., λmn } for some m ≥ 1. The set of such α clearly generates a finite extension of E, in which T (WK)
must be contained.

Let us show the existence of d as above. For A,B ∈ GLΩ(V ) we write AB for BAB−1. The homomor-
phism τ 7→ φτφ−1 induces a homomorphism θ : φZ → Aut(IK/IK∩ker(ρ)). Put i := |IK/IK∩ker(ρ)| <∞
and j := |Aut(IK/IK ∩ ker(ρ))|. Then ρ(τ)i = 1 and ρ(τ)ρ(φ

j ) = ρ(τ) for all τ ∈ IK . Then (using

ρ(τ)ρ(φ
j ) = ρ(τ) and ρ(τ)i = 1 in the second and third equalities, respectively)

ρ(φmτ)ijρ(φm)−ij = ρ(τ)ρ(φ
m)ρ(τ)ρ(φ

2m) · · · ρ(τ)ρ(φijm)

=
(
ρ(τ)ρ(φ

m)ρ(τ)ρ(φ
2m) · · · ρ(τ)ρ(φjm)

)i
= 1.

(3.1)

Hence we get the desired d by putting d := ij.
�

Later we would like to utilize some results of Arthur, in which local L-parameters are used in place
of Weil-Deligne representations. We recall the standard way to go between the two. Recall that a local
L-parameter for GLn(K) is a continuous homomorphism

ϕ :WK × SL2(C) → GL(V )

for an n-dimensional C-vector space V such that ϕ|WK
is semisimple and ϕ|SL2(C) is an algebraic repre-

sentation. For such a ϕ one associates a WD representation WD(ϕ) := (V, ρ,N) such that

ρ(τ) = ϕ

(
τ,

(
|τ |1/2WK

0

0 |τ |−1/2
WK

))
, N = ϕ

(
1,

(
0 1
0 0

))
.

The association ϕ 7→WD(ϕ) defines a bijection between the set of equivalence classes of L-parameters for
GLn(K) and the set of isomorphism classes of n-dimensional Frobenius semisimple WD representations.
(In fact it is a categorical equivalence.) In fact the L-parameter ϕ can be defined over any Ω in place
of C and the various definitions for WD representations at the beginning of §3.1 carry over to ϕ. For
instance ϕ gives rise to a pure WD representation if and only if ϕ|WF

is strictly pure of integral weight
in the sense defined earlier.

3.2. Twists of the Local Langlands correspondence. Let recK denote the local Langlands bijection
for GLn(K) as in [28] (cf. [30]) so that for each irreducible smooth representation π of GLn(K), recK(π)
denotes the associated n-dimensional Frobenius semisimple Weil-Deligne representation of WK . Here
both representations are considered on C-vector spaces. We introduce a different normalization

LK(π) := recK(π) ⊗ | · |−(n−1)/2
WK

.
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It was shown in [28, Lem VII.1.6.2] that

LK(πσ) = LK(π)σ, ∀σ ∈ Aut(C/Q). (3.2)

(To be precise [28] shows (3.2) up to semisimplification, i.e. disregarding N , but this easily implies (3.2)
without semisimplification.) Hence recK(πσ) = recK(π)σ for all σ ∈ Aut(C/Q(q1/2)).

Lemma 3.10. Let π be an irreducible smooth representation of GLn(K) (on a C-vector space). If LK(π)
is pure of weight w ∈ Z then Q(π) is finite over Q.

Proof. Immediate from Lemma 3.9 and (3.2). �

3.3. Bound on field of rationality implies bound on ramification. For j ∈ R≥0 let IjK denote
the j-th ramification subgroup of IK with respect to the upper numbering. Similarly for any Galois
extension M of L (which are extensions of K), we write Gal(M/L)j and Gal(M/L)j for the upper and
lower numbering ramification subgroups of Gal(M/L). Denote by dep and cond the depth and conductor,
which are defined for WD representations ofWK as well as irreducible smooth representations of GLn(K).
The depth of a WD representation (V, ρ,N) may not be as standard as the others so we recall it here:

dep(V, ρ,N) is defined to be the infimum among the elements j ∈ R≥0 such that ρ(IjK) is trivial. The
infimum is actually attained and the depth is a rational number.

The following lemma will play a key role in the proof of finiteness results of §5.5. In the proof all
extensions of E (which is a subfield of C) are considered in C.

Lemma 3.11. 5 Fix n ∈ Z≥1 and A ∈ Z≥1. There exists d = dn,K,A ∈ R≥0 (depending on n, A and
K) such that for every n-dimensional F-ss WD representation (V, ρ,N) whose field of rationality is an
extension of Q of degree ≤ A,

dep(V, ρ,N) ≤ d.

Proof. Consider the representation ρ|IK : IK → GL(V ) with finite image. Let E be the field of rationality
of (V, ρ,N). By (3.2), ∧iρσ ≃ ∧iρ for all σ ∈ Aut(C/E). We take the trace and see that the degree n
characteristic polynomial of ρ(τ) has coefficients in E. Hence each eigenvalue λ of ρ(τ) for τ ∈ IK , which
are roots of unity, must be contained in a finite extension of E of degree ≤ n, so in a finite extension of
Q of degree ≤ nA. Let f be the least common multiple of the order of λ as λ runs over all eigenvalues
of ρ(τ) for τ ∈ IK (i.e. the least power f ≥ 1 such that λf = 1). In particular ρ(τf ) is a semisimple
element with all eigenvalues equal to 1, i.e. the identity element.

Put µ≤nA :=
⋃

[E′′:Q]≤nA

µ∞(E′′) where µ∞(E′′) denotes the set of all roots of unity in E′′. One sees

from an elementary theory of cyclotomic fields that µ≤nA is a finite set (its cardinality is the least common
multiple of m ∈ Z≥1 such that ϕ(m) ≤ nA, where ϕ is the Euler totient function). We have f ≤ |µ≤nA|,
an upper-bound which by construction depends only on n and A.

The finite group H := IK/ kerρ is equipped with an embedding ρ : H →֒ GL(V ) induced by ρ. Let E′

be the finite extension of Q obtained by adjoining all f -th roots of unity. As H has exponent dividing f ,
Brauer’s theorem ([52, §12.3, Th 24]) implies that ρ is defined over E′, i.e. there exists a representation
ρ′ : H →֒ GL(VE′) on an E′-vector space VE′ such that ρ′ ⊗E′ C ≃ ρ as H-representations.

Now choose any prime l relatively prime to f , and a place w of E′ above l. Denote by kw the residue
field of E′ at w. The l-adic representation ρ′ : H →֒ GLn(E

′
w) has a model over GLn(OE′

w
) in the sense

that the model becomes isomorphic to ρ′ after extending scalars to E′
w.

6 We denote the model by the
same symbol ρ′. The kernel of the map ♭ : GLn(OE′

w
) → GLn(kw) taking matrix entries modulo the

maximal ideal of OE′
w
is a pro-l group, which must have trivial intersection with H . Hence ♭ ◦ ρ′ is an

injection H →֒ GLn(kw). The upshot is that

|IK/ kerρ| = |H | divides |GLn(kw)|. (3.3)

The cardinality |GLn(kw)| can be made to depend only on nA. Indeed f and E′ depend only on nA
by construction. By choosing the minimal prime l coprime to f , and w above l minimalizing |kw|, we
arrange that the cardinality |GLn(kw)| depends only on nA, cf. (3.4) below.

5After furnishing the proof of the lemma, we found that a proof had been given to an essentially same problem by [22,
§4.(a)]. We note two differences. First we work with the field of rationality rather than the field of definition. Second we
obtain an explicit bound on dn,A,K which is not immediately available from [22]. We also mention an analogous result for

crystalline representations, cf. [9, §4].
6This is true even for continuous l-adic representations of any profinite group. The main point is that the OE′

w
-module

generated by finitely many translations of an OE′
w
-lattice is still an OE′

w
-lattice.
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Now it is enough to verify the existence of d ∈ Z≥0 with the following property:

Gal(L/K̂ur)d = {1}
for all finite Galois extension L of K̂ur such that [L : K̂ur] divides |GLn(kw)|, where K̂ur denotes the
completion of the maximal unramified extension of K. This is a standard exercise. Indeed, writing eL
(resp. eK) for the absolute ramification index of L (resp. K) so that elements of L× take valuations

exactly on 1
eL

Z (if p is normalized to have valuation 1), we know that Gal(L/K̂ur)d′ = {1} for all

d′ > eL/(p− 1) by [53, IV.2, Exercise 3.c]. The same is certainly true for d′-th upper numbering group
since the latter is identified with d′′-th lower numbering group for some d′′ ≥ d′. Since eL ≤ |GLn(kw)|eK ,
we conclude that the choice of d = |GLn(kw)|eK/(p− 1) satisfies the desired property.

�

Corollary 3.12. Fix n,A ∈ Z≥1. There exists d ∈ Z≥0 (depending on n and K) such that for every
C-algebraic π ∈ Irr(GLn(K)) satisfying [Q(π) : Q] ≤ A, we have that

dep(π) ≤ d, cond(π) ≤ dn.

Proof. Keeping (3.2) in mind, we apply Lemma 3.11 to find d ∈ Z≥0 such that for every π as above, the
WD representation LK(π) := (V, ρ,N) has depth at most dn,A. Since dep(π) = dep(V, ρ,N) by [70, Th
2.3.6.4], we see that dep(π) ≤ d. The assertion on conductor holds true with f := dn thanks to Lemma
3.13 below.

�

The following lemma may be well known but we present a proof here.

Lemma 3.13. For every π ∈ Irr(GLn(K)), cond(π) ≤ n · (dep(π) + 1).

Proof. Let (V, ρ,N) := LK(π). Since recK and thus LK preserve conductor, we obtain from the formula
for the Artin conductor of (V, ρ,N) that

cond(π) = codim
(
V IK

)N=0
+

∫ ∞

0

codimV I
j
Kdj.

Each codimension is certainly less than n and by definition the integral is supported on the interval
0 ≤ j ≤ dep(V, ρ,N). The inequality again follows.

�

It is worth emphasizing that the constructive nature of the proof of Lemma 3.11 makes it possible to
find an explicit bound in that lemma (and also in Corollary 3.12). The first step of the proof was to
adjoin all roots of unity of degree ≤ n[E : Q]. This yields the explicit bound f ≤ |µn[E:Q]| ≤ (2n[E : Q])!.
To obtain an effective bound of better quality we establish the following result.

Lemma 3.14. For each n ≥ 1 there is a constant cn > 0 such that the following holds. For any number
field E let F be the finite extension of E generated by all the roots of unity that are of degree ≤ n over
E. Then

[F : E] ≤ cn[E : Q]

Proof. We have F = E(ζN ) for some N ≥ 1. Write N =
∏

pr ||N

pr. It is not difficult to show that φ(pr)

divides n![E : Q] but we shall derive a more precise estimate below.
Since the extensions E(ζpr ) are linearly disjoint over E,

[F : E] =
∏

pr ||N

[E(ζpr ) : E].

Let E(p) := E ∩Q(ζpr ). Then similarly [E : Q] ≥∏p|N [E(p) : Q].

Since Q(ζpr ) is Galois, it is linearly disjoint from E over E(p). Thus we have [Q(ζpr ) : E(p)] = [E(ζpr ) :
E] and therefore

φ(pr) = [E(ζpr ) : E][E(p) : Q].

Since [E(ζpr ) : E] ≤ n we can deduce the inequality

[E(ζpr ) : E]

[E(p) : Q]
≤ min

(
φ(pr), n,

n2

φ(pr)

)
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Taking a product we deduce the estimate

[F : E]

[E : Q]
≤
∏

pr||N

min

(
φ(pr), n,

n2

φ(pr)

)
≤ cn.

In the last inequality we could extend the product to all prime numbers and the choice cn = nn is
admissible. This concludes the proof. �

Using the Lemma 3.14 we have the bound f ≤ cnA in the proof of Lemma 3.11. Since there is a prime
between f and 2f (if f ≥ 2) by Chebyshev’s theorem, we can choose the prime l < 2f . On the other
hand [kw : Fl] ≤ [Q(µf ) : Q] ≤ f , hence |GLn(kw)| ≤ n2lf ≤ n2(2f)f . So a value

d =
eK
p− 1

AOn(A)

is admissible for the conclusion of Lemma 3.11 to hold. Actually we shall establish an improved bound
using a more efficient argument:

Lemma 3.15. (i) Let H be a finite subgroup of GLn whose traces generate a field E with [E : Q] ≤ A.
The order of a p-Sylow of H is at most ≤ cn,pA

n for some constant cn,p depending only on n and p.
(ii) In the statement of Lemma 3.11 the constant

dn,K,A ≤ cn,KA
n (3.4)

is admissible, where cn,K depends only on n and K.

Proof. (i) Let Hp be a p-Sylow subgroup of H . By a result of Roquette, the Schur indices of Hp are 1
if p 6= 2 and 1 or 2 if p = 2 (see [69] for a direct proof using the Hasse invariant). Since the traces of
elements of Hp ⊂ H are in E, this shows that the representation Hp ⊂ GL(V ) can be realized over E if

p 6= 2 and over E(
√
−1) if p = 2.

There remains the problem of estimating the order of a finite p-group Hp inside GLn(E) where E is
a number field. Minkowski obtained optimal bounds when E = Q. The method can be extended to a
general number field E and Schur gave a different proof using character theory. Serre [55] treated the
case of an arbitrary E. If p 6= 2, then:

log |Hp|
log p

≤ m
⌊n
t

⌋
+

⌊
n

pt

⌋
+

⌊
n

p2t

⌋
+ · · ·

where t = [E(ζp) : E] and m ∈ Z≥1 is the largest integer such that ζpm ∈ E(ζp). There are some subtle
modifications if p = 2 to get a sharp bound, but this is not relevant for us since we are interested in the
behavior for A large.

Certainly φ(pm) ≤ [E(ζp) : Q] ≤ tA. Therefore there is a constant cn depending on n such that
|Hp| ≤ cn(tA)

n
t . In particular |Hp| ≤ cn,pA

n for some constant cn,p depending only on n and p.
(ii) This relies on the basic structure of the inertia group IK . For any Galois extensionM of L and any

integer j ≥ 1, the quotients Gal(M/L)j/Gal(M/L)j+1 can be identified with an additive subgroup of the
residue field of M . Since these are abelian group of p-power order we have that Gal(M/L)1 is a p-group
([53, IV.2, Corollary 3]). We are in position to apply the assertion (i). Then similarly to Lemma 3.11 we
can conclude the proof of the estimate (3.4). �

4. Automorphic representations of classical groups

In this section we recall the endoscopy and the associated Galois representations for automorphic
representations of symplectic, orthogonal and unitary groups. A key input is the integrality proposition
in §4.1 coming from an arithmetic geometry study of Shimura varieties.

4.1. Galois representations associated to automorphic representations. Let n ∈ Z≥1. Let F+

be a totally real field and consider the following two cases:

(CM) F is a CM quadratic extension of F+ with complex conjugation c (so that F+ = F c=1) or
(TR) F = F+.

Let Π be a regular C-algebraic cuspidal automorphic representation of GLn(AF ) such that Π∞ has the
same infinitesimal character as an irreducible algebraic representation Ξ of ResF/QGLn. The highest
weight for Ξ may be written as a(Ξ) = (aσ,i)σ∈HomQ(F,C), 1≤i≤n with aσ,i ∈ Z, viewed as a character of
the standard diagonal torus of ResF/QGLn. We further assume in each of the above cases that

(CM) Π∨ ≃ Π ◦ c.
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(TR) Π∨ ≃ Π⊗ (det ◦χ) for χ : F×\A×
F → C× such that χv(−1) is the same for every v ∈ S∞.

In case (CM), fix a subset Φ+ ⊂ HomQ(F,C) such that Φ+
∐

Φ+◦c = HomQ(F,C) (called a CM-type).
Recall that various notation and notion about WD representations were introduced in §3.1 and the twist
of the local Langlands correspondence LFv

(Πv) in §3.2.
Proposition 4.1. There exists a family of l-adic representations (for varying l)

{Rl,ιl(Π) : Gal(F/F ) → GLn(Ql)}l,ιl , l is a prime and ιl : Ql ≃ C

such that for every finite place v of F ,

LFv
(Πv) = ιlWD(Rl,ιl(Π)|Gal(Fv/Fv)

)F-ss,

LFv
(Πv) is a pure Weil-Deligne representation of weight n−1, and Πv are essentially tempered. Moreover

there exists s(Π∞) ∈ Z (depending only on Π∞ and F ) such that for every finite v, LFv
(Πv)| · |−s(Π∞)/2

is integral.

Remark 4.2. When v /∈ S and v ∤ l, the proposition tells us that LFv
(Πv) is unramified, strictly pure of

weight n− 1 and the eigenvalues of Frobv on LFv
(Πv) are qv-Weil numbers of weight n− 1 which become

algebraic integers after multiplying q
s(Π∞)
v .

Remark 4.3. A more elementary method seems available in some cases by exploiting the integral structure
on the space of algebraic modular forms (cf. [25]) on classical groups which are compact at infinity, without
the need of arithmetic geometry and Galois representations. We have not adopted it here as we do not
know how to cover all cases with that approach.

Proof. Except for the last assertion the proposition is a result of combined effort: See [3, Th A] as well
as [56, Th 1.2], [12, Th 1.4], [11, Th 1.1] and [10, Th 1.1].

The last assertion on integrality remains to be justified. The main idea is that the Galois repre-
sentation Rl(Π) = Rl,ιl(Π) of the proposition is essentially realized in the cohomology of a certain
(n − 1)-dimensional compact Shimura variety Sh to which some general results in arithmetic geometry
(such as [47, Cor 0.6.(1)]) apply. A precise argument requires us to import lots of notation and various
pieces of results. For any difficulty caused by this to read our proof we apologize. We will recall at least
some of the important notation and facts as we go along.

In case (TR) it is possible to choose a CM quadratic extension L of F and an algebraic Hecke character
φ : L×\A×

L → C× such that φφc = χχc and BCL/F (Π) is cuspidal. (One can make a choice to ensure
cuspidality by arguing as in §1 of [14].) Then Π′ := BCL/F (Π) ⊗ φ is conjugate self-dual, regular and
C-algebraic. Thus the proof of the integrality assertion is reduced to case (CM) for L and Π′ via Lemma
3.7.

From now on we put ourselves in case (CM). Starting with the case where n is odd, we will derive
the integrality result as a consequence of [56] and [60]. It is desirable to reconcile notation with [56] at
the outset to avoid confusion. Only in this proof G denotes the unitary similitude group as in [56]. Our
Π corresponds to Π1 in that paper. The notation Π there, designating a representation of G(AE), will
be written as Π′ here. (So the finite part of the representation Π′ of G(AE) ≃ GL1(AE) × GLn(AF )
descends to the finite part of an automorphic representation of G(A).)

Since integrality may be checked after a series of finite cyclic base changes (Lemma 3.7) we may and
will assume that conditions (i)-(v) of §6.1 and the five assumptions at the start of §7.1 in [56] are satisfied.
In particular F contains an imaginary quadratic field E. Fix an embedding τE : E →֒ C and choose Φ+

to be the set of F →֒ C extending τE . Recall that (aσ,i)σ∈Hom(F,C),1≤i≤n is associated with Ξ. Choose

a Hecke character ψ : E×\A×
E → C× as in [56, Lem 7.2], cf. [28, Lem VI.2.10]. The proof in the

latter reference shows that ψ∞(z) = τE(z)
a0 , where a0 := −∑σ∈Φ+,1≤i≤n aσ,i. Let ξ be the irreducible

algebraic representation of G×QC ≃ GL1(C)×
∏
σ∈Φ+ GLn(Fσ) of highest weight (a0, (aσ,i)σ∈Φ+,1≤i≤n).

Put

dσ := max
1≤i≤k

(max(0, aσ,i)), sσ :=
∑

1≤i≤k

|aσ,i − dσ|, tξ := a0 +
∑

σ∈Φ+

kdσ, mξ =
∑

σ∈Φ+

(sσ + kdσ),

and s(Π∞) := 2tξ −min(0, a0). Note that s(Π∞) depends only on the data defining Π∞. One can check
that 2tξ −mξ = 2a0 +

∑
σ,i aσ,i, cf. [28, p.98], [60, p.476].

Consider the étale cohomology

Hn−1
ét (Sh,Lξ) := lim

−→
U⊂G(A∞)

Hn−1
ét (ShU ×F F ,Lξ)
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as U runs over sufficiently small open compact subgroups ofG(A∞). The limit is aQl[G(A
∞)×Gal(F/F )]-

module, which is admissible (resp. continuous) with respect to the G(A∞)- (resp. Gal(F/F )-)action.
For small enough U , Hn−1

ét (ShU ×F F ,Lξ) is finite dimensional and

Hn−1
ét (ShU ×F F ,Lξ) = aξH

n−1+mξ

ét (Amξ ×F F ,Ql(tξ))
where aξ is an idempotent of [60, pp.476-477], which gives rise to an element of the Chow group

CHn−1+mξ(ShU ×F ShU )Q. (The subscript Q indicates that the coefficient ring is taken to be Q.) On the

other hand, Hn−1
ét (ShU ×F F ,Lξ) is the direct sum


 ⊕

BC(πS,∞)≃(Π′)S,∞

Rn−1
l (π∞)⊗ (π∞)U


⊕


 ⊕

BC(πS,∞)≇(Π′)S,∞

Rn−1
l (π∞)⊗ (π∞)U


 (4.1)

where the first (resp. second) sum runs over π∞, the finite part of discrete automorphic representations
of G(A), such that BC(πS,∞) ≃ (Π′)S,∞ holds (resp. does not hold). According to [56, Cor 6.8], there

is a positive integer CG and a Gal(F/F )-representation R̃′
l(Π

′) such that CGR̃
′
l(Π

′) = ⊕π∞Rn−1
l (π∞)

where the sum is taken over the same set as in the first sum of (4.1). The corollary 6.10 of [56] tells us
that Rl(Π) in the proposition is given by

Rl(Π) := R̃′
l(Π

′)⊗ recl(ψ). (4.2)

The decomposition (4.1) allows us to find an idempotent bξ in the Chow group CHn−1(ShU ×F ShU )Q
such that CG · R̃′

l(Π
′) ≃ bξH

n−1
ét (ShU ×F F ,Lξ), equivariant for the Gal(F/F )-action. (First, find an

idempotent separating each π∞-part as in the proof of the lemma 2.3 in [60]. Then one uses a Hecke
algebra element which acts with trace 1 on each π∞ such that BC(πS,∞) ≃ (Π′)S,∞.) Write cξ for

the pullback of bξ along the projection from Amξ

U × Amξ

U to ShU × ShU . Since Hj
ét(ShU ×F F ,Lξ) for

j 6= n − 1 is linearly independent from (π∞)K for any π∞ as in (4.1) by [56, Cor 6.5.(i)], we may

construct a correspondence Γ coming from CH(Amξ ×Amξ)Q such that Γ acts on Hj
ét(Amξ ×F F ,Ql(tξ))

as cξ ◦ aξ if j = n − 1 + mξ and 0 if j 6= n − 1 + mξ. By construction we have an isomorphism of

Gal(F/F )-representations

CG · R̃′
l(Π

′)(−tξ) ≃ Γ ·Hn−1+mξ

ét (Amξ ×F F ,Ql).
Finally we apply the argument of [47, Prop 3.5],7 noting that his condition (3) is satisfied for Γ as

above. The conclusion is that any lift φv of Frobv on H
n−1+mξ

ét (Amξ

U ×F F ,Ql) has algebraic integers

as eigenvalues. Hence the WD-representations associated with Hn−1
ét (ShU ×Fv

F v,Lξ)(−tξ) as well as

R̃′
l(Π

′)(−tξ)|Gal(Fv/Fv)
are integral. By (4.2), WD(Rl(Π)(−tξ) ⊗ rec(ψ)−1|Gal(Fv/Fv)

) is integral. We

have

LFv
(Πv)| · |−s(Π∞)/2

v = ιlWD(Rl,ιl(Π)|Gal(Fv/Fv)
)F-ss| · |−s(Π∞)/2

v

= ιlWD(Rl(Π)(−tξ)⊗ rec(ψ)−1|Gal(Fv/Fv)
)⊗ ιlWD(rec(ψv)

−1| · |min(0,a0)
v ).

SinceWD(rec(ψv)
−1|·|−max(0,a)

v ) is integral by Lemma 4.4 below we are done with verifying the integrality

of LFv
(Πv)| · |−s(Π∞)/2

v when n is odd.
It remains to justify integrality when n is even. The argument is essentially the same as above,

so it would suffice to point out what modifications are needed. In this case we put ourselves in the
setting of [11], which shows that Rl(Π)

⊗2 is realized up to an explicit twist in H2n−2
ét (X,Lξ) for the

(2n − 2)-dimensional Shimura varieties therein. By arguing as above, we obtain s(Π∞) ∈ Z such

that WD(Rl(Π)
⊗2|Gal(Fv/Fv)

)| · |−s(Π∞)
v is integral at every finite place v. But the latter implies that

WD(Rl(Π)|Gal(Fv/Fv)
)| · |−s(Π∞)/2

v is integral as well.

�

Lemma 4.4. Let F be any number field and ψ : F×\A×
F → C× a Hecke character. At each infinite

place v, suppose that there are some mv ∈ Z≤0 and some continuous character F×
v → C× such that

ψv(z) = τv(z)
mv for all z ∈ (F×

v )0. Then for every finite place v and every uniformizer ̟v of Fv,
ψv(̟v) is an algebraic integer.

7The difference is that Saito considers the whole H
n−1+mξ

ét
of A

mξ

U
×F F whereas we argue only on its subrepresentation.

Still it is easy to adapt his argument to our situation.
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Proof. There exists an open compact subgroup U of ÔF =
∏
w∤∞O×

w such that ψ|U ≡ 1. Fix a finite

place v and a uniformizer ̟v. By strong approximation there exists a ∈ F× such that a ∈ ̟vU in

(A∞
F )×. Since a ∈ ÔF , a is an algebraic integer. Now

ψv(̟v) = ψ∞(a) = ψ∞(a)−1 = ±
∏

w|∞

τw(a)
−mv

where the sign comes from the character F×
∞/(F

×
∞)0 with values in {±1}. The lemma follows. �

4.2. Quasi-split classical groups. Later on several results will be established concerning automorphic
representations of quasi-split8 classical groups. To this end we would like to introduce basic data for
symplectic, orthogonal, and unitary groups. Let F+ be a totally real field. We take F to be F+ in
the symplectic and orthogonal cases and a CM quadratic extension of F+ in the unitary case. Both G
and G below will be connected reductive quasi-split groups over F+. Let us suppress the choice of the
symplectic, symmetric, or hermitian pairings.

Define c ∈ Gal(F/F+) to be the identity if F = F+ and the nontrivial element if F 6= F+. For
n ≥ 1 let Jn denote the matrix with (−1)i in (i, n + 1 − i)-th entry for 1 ≤ i ≤ n and zeros off the

anti-diagonal. Write θn (resp. θ̂n) for the automorphism g 7→ Jn
tg−cJ−1

n of ResF/F+GLn over F+ (resp.

g 7→ Jn
tg−1J−1

n of GLn(C)). The standard embedding of a symplectic, special orthogonal, or general
linear group will be denoted std.

In all cases below n ∈ Z≥1, G = ResF/F+GLn (which is just GLn except the unitary case), θ = θn ∈
AutF+(G), θ̂ = θ̂n ∈ AutF+(Ĝ), s ∈ Ĝ, and η : LG →֒ LG is an L-morphism. We will describe G, s, and
η case-by-case. Only for even orthogonal groups, we use the Weil group form of an L-group in order to
accommodate a half-integral twist, which is needed for η to be C-preserving.

(i) symplectic groups: n is odd, G = Spn−1, s = 1,

η = (std, id) : SOn(C)× ΓF →֒ GLn(C)× ΓF .

(ii) orthogonal groups: n is even, s = 1,
(a) type B: G = SOn+1, s = 1,

η = (std, id) : Spn(C)× ΓF →֒ GLn(C)× ΓF .

(b) type D: let δ ∈ F×/(F×)2 be the discriminant of the underlying quadratic form and
Fδ := F (δ1/2).

• G = SOn, δ = 1 so that G is a split group, s = 1, η0 = (std, id) : Spn(C) × ΓF →֒
GLn(C)× ΓF and define

η : SOn(C)×WF →֒ GLn(C)×WF , η := η0| · |1/2

where | · | is the modulus character on WF .
• G = SOn, δ 6= 1 so that G is a non-split group, LG = SOn(C)⋊ ΓF (with ΓF acting
through Gal(Fδ/F ) on SOn(C) via order 2 outer automorphism); s = diag(−In, In),
η0 : SOn(C) ⋊ ΓF →֒ GLn(C) × ΓF is an extension of the standard embedding
SOn(C) →֒ GLn(C) defined on page 51 of [68] (the map Lξ in case d− = n, d+ = 1,
and δ− = δ 6= 1). Define

η : SOn(C)⋊WF →֒ GLn(C)×WF , η := η0| · |1/2.
(ii)’ This is a subcase of (ii); in case (ii)(a) it is the same as above; in case (ii)(b) further assume

that δ = 1 if n/2 is even and δ 6= 1 if n/2 is odd.
(iii) unitary groups: G = Un, s = 1, LG = GLn(C) ⋊ ΓF+ (with ΓF+ acting through Gal(F/F+) =

{1, c}, the c-action being θ̂n),θ = θn,

η : GLn(C)× ΓF →֒ (GLn(C)×GLn(C)⋊ ΓF , g × γ 7→ (g, Jn
tg−1J−1

n )⋊ γ.

Set ǫ := 0 in case (i), (ii)(a) and (iii) and ǫ := 1 in case (ii)(b). This auxiliary constant accounts for
the modulus character in the definition of η.

The reason for introducing (ii)’ is the following: a classical group G over F+ admits discrete series at
real places (equivalently admits compact maximal tori) exactly when G belongs to (i), (ii)’ or (iii). In

8The analogous results for non quasi-split groups are sketched in the last chapter of [2] but might require a few more
years for a complete proof.
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each of (i), (ii) and (iii), (G, s, η) is a twisted endoscopic datum for G ⋊ 〈θ〉 in the sense of [35], cf. [2,
§1.2] for symplectic and orthogonal groups. Observe that in all cases

G(AF+) = GLn(AF ).

Lemma 4.5. Put ourselves in (i), (ii) or (iii) as above. Let v be an infinite place of F+ as above.

• If ϕv : WF+
v

→ LG is regular (i.e. the restriction ϕv|W
F+

v

is not invariant under any nontrivial

Weyl element, cf. Definition 2.1) then ηϕv is also regular.
• η is C-preserving (Definition 2.21).

Proof. Both assertions are checked by explicit computations with root data. We will verify the first

assertion in case (i) and leave it to the reader in the other cases. We may choose maximal tori T̂ and

T̂ of G and GLn and Z-bases {ei} and {fj} for the cocharacter groups (1 ≤ i ≤ n−1
2 , 1 ≤ j ≤ n) and

such that η restricts to T̂ →֒ T̂ inducing ei → fi − fn+1−i on the cocharacter groups. It suffices to show

that every regular element of X∗(T̂ )⊗Z C
× maps to a regular element of X∗(T̂)⊗Z C

×. Let
∑

i aiei with
ai ∈ C× be regular. Since the Weyl group is generated by permutation of the indices i and sign changes
ei → −ei, the regularity means that ai’s are distinct and that ai 6= 0. Then the image

∑
i ai(fi− fn+1−i)

has the property that the coefficients of fj ’s are all distinct, i.e. has trivial stabilizer under the Weyl
group action in GLn. This shows that regularity is preserved under η in case (i).

It is easy to compute the half sum of positive roots to verify C-preservation in each case. We only

deal with case (ii)(b) to explain the role of the extra half-power twist there. Choose T̂ , T̂, {ei} and {fj}
(1 ≤ i ≤ n/2, 1 ≤ j ≤ n) similarly such that η0 induces ei → fi− fn+1−i on X∗(T̂ ) → X∗(T̂). The Borel
subgroups can be chosen such that the half sum of positive roots is ρG = (n/2 − 1)e1 + (n/2 − 2)e2 +
· · · + en/2−1 for G (resp. ρGLn

= n−1
2 f1 + n−3

2 f2 + · · · + 1−n
2 fn). So η0(ρG) = (n/2 − 1)(f1 − fn) +

· · · + (fn/2−1 − fn/2+1), and η(ρG) = η0(ρG) +
1
2 (f1 + f2 + · · · + fn). Hence ρGLn

− η(ρG) has integral
coefficients in fj ’s, showing that η is C-preserving (but note that η0 is not).

�

Lemma 4.6. Assertions (i), (ii) and (iii) of Lemma 2.25 hold true in the even orthogonal case (ii)(b)
(even though η does not satisfy the hypothesis in that lemma).

Proof. The same argument in the proof of (i) in Lemma 2.25 for η0 : LG→ LG �

4.3. Twisted endoscopic transfer for classical groups. We would like to recall elements of local
twisted endoscopy at a non-archimedean place v of F+ as these will be important to us. (The correspond-
ing theory at archimedean places is well known.) Kottwitz, Langlands and Shelstad ([38], [35]) defined
transfer factors ∆v(γG, γG) for all strongly regular semisimple elements γG ∈ G(F+

v ) and γG ∈ G(F+
v )

at every place v of F+. In fact we will use the Whittaker normalization of transfer factors, to be de-
noted ∆Wh

v , which were defined in [35, §5.3] in the quasi-split case.9 We say that φv ∈ C∞
c (G(F+

v )) is a
∆Wh
v -transfer of fv ∈ C∞

c (G(F+
v )) if

STO
G(F+

v )
δ (fv) =

∑

γ∼stδ

∆Wh
v (γ, δ)O

G(F+
v )

γ (φv). (4.3)

for every pair (γG, γG) of strongly regular semisimple elements. The proof of the fundamental lemma by
Ngô, Waldspurger and others (see [43], [64], [66], [67]) ensures that a ∆Wh

v -transfer of fv exists for every
fv as above.

Proposition 4.7. In cases (i), (ii) and (iii) of the previous subsection,

∆Wh
v (γG, γG) ∈ Q (4.4)

for all strongly regular semisimple elements γG ∈ G(F+
v ) and γG ∈ G(F+

v ). (In fact ∆Wh
v (γG, γG) ∈

{0,±1} with the exception of (ii)(b).)

Proof. We will only sketch the argument. Since ∆Wh
v differs from ∆0 of [35, §5.3] by ±1 ([35, p.65]) it

suffices to prove the claim for ∆0. The transfer factors for classical groups were computed in [68]. In
the cases of interest, it is shown that the transfer factor ∆I∆II∆III belongs to {0,±1} for (G, s, η) as
in (i), (ii)(a), (iii) and for (G, s, η0) as in (ii)(b). (See the cases of twisted linear groups in [68, §1.10],

9∆Wh
v depends on the extra choice of Whittaker data of §5.3 of [35], which will be chosen globally. The reference to

this choice will be suppressed as the transfer factors are only affected by sign, cf. page 65 of loc. cit., and do not affect the
asserted rationality of transfer factors.
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noting that χ is a character of order dividing 2 in the odd twisted linear case and that µ− and µ+ may
be chosen to be trivial in the case of base change for unitary groups.) Note that Waldspurger suppressed
∆IV in his formulas but the transfer factor ∆0 is ∆I∆II∆III∆IV . In case (i), (ii)(a) and (iii) we see
∆IV = 1 following the definition of [35, §4.5], so the values of ∆0 range in {0,±1}. In case (ii)(b) ∆IV is
a nontrivial function involving a half-power of the modulus character (cf. [35, (4.5.1)]) so ∆0 for (G, s, η0)

takes values in Q(q
1/2
v ) but replacing η0 with η twists the transfer factor by an extra half-power of the

modulus character. As a result ∆0 with respect to (G, s, η) has values in Q. �

From here until §6.5 we will restrict our attention to cases (i) and (ii) above. Case (iii) is excluded until
there only because our understanding of representations of unitary groups is still limited. Nevertheless
we will treat all three kinds of classical groups on an equal footing at the expense of burdening notation
(e.g. we distinguish between F and F+, which is unnecessary in (i) and (ii)) so that the results in this
article apply to unitary groups as soon as the analogue of [2] for unitary groups is worked out. In fact our
results already produce some partial results in the case of unitary groups by appealing to the progress
on twisted endoscopy (base change) for unitary groups in [34], [41], and [36] among others.

To use results for automorphic representations on quasi-split classical groups as in [2] (symplectic and
orthogonal) and [42] (unitary), we assume10

Hypothesis 4.8. Suppose that the twisted trace formula for GLn and twisted even orthogonal groups
can be stabilized in the sense of [2, Hypo 3.2.1] and [42, Hypo 4.2.1].

Even though we do not to strive to extract an optimal partial result from the current knowledge, see
§6.5 for some unconditional results not replying on the above hypothesis in case G is unitary. Now recall
from §4.2 that ǫ = 0 unless in case (ii)(b) where ǫ = 1.

Proposition 4.9. For every (finite and infinite) place v of F+, every fv ∈ C∞
c (G(F+

v )), every ∆Wh
v -

transfer φv ∈ C∞
c (G(F+

v )) of fv, and every tempered L-parameter ϕv : WF+
v
× SL2(C) → LG, we have

an identity ∑

πv∈L̃P (ϕv)

Θπv
(φv) = ΘΠv,θ(fv), where Πv = rec−1(ηϕv)| · |ǫ/2 (4.5)

for a unique finite subset L̃P (ϕv) of Irrtemp(G(F+
v )) (independent of fv and φv). The subsets L̃P (ϕv)

give a partition of Irrtemp(G(F+
v )) where L̃P (ϕv) and L̃P (ϕ

′
v) coincide exactly when ηϕv is equivalent to

ηϕ′
v as L-parameters for G(F+

v ) (and are disjoint otherwise).

Remark 4.10. Even though this would be clear to the reader, let us clarify the meaning of Πv in the
proposition when v splits as wwc in F , which can only happen in the unitary case (then G(F+

v ) is a
general linear group). Then Fv = F ⊗F+ F+

v ≃ Fw × Fwc , thereby one may write Πv = Πw ⊗ Πwc . On
the other hand, ηϕv :WF+

v
×SL2(C) → GLn(C)

Hom
F+ (F,C) determines an L-parameter Φw for GLn(Fw)

and an L-parameter Φwc for GLn(Fwc). Then Πv = rec−1(ηϕv) is defined by Πw = rec−1(Φw) and
Πwc = rec−1(Φw) in the usual sense. Actually in this case, Πv = πv ⊗ πv where πv is the unique member

of L̃P (ϕv). Similarly if v = wwc in F in the setting of Corollary 4.16, we interpret LFv
(Πv) and | · |v as

LFw
(Πw)⊗ LFwc (Πwc) and | · |w| · |wc , respectively.

Remark 4.11. The set L̃P (ϕv) is the local L-packet for ϕv except when G is an even orthogonal group,
in which case it is a union of one or two L-packets. See the discussion above and below the theorem 1.5.1

of [2]. Our notation L̃P (ϕv) corresponds to his Π̃φ.

Remark 4.12. Arthur also proved that when ϕv is a non-tempered A-parameter, the analogue of (4.5)
holds true if Θπv

(φv) are summed with suitable signs. We will not need this for our theorems.

10One can be optimistic that the hypothesis will become unnecessary before long. At the time of revision, Waldspurger
has released a series of five preprints (more to come) on the stabilization of the general twisted trace formula. For an extra
careful reader, we remark that both [2] and [42] depend on the papers [A25] and [A26] of [2], which have not appeared up to
now, and that the proof of the weighted fundamental lemma has not been completely written up, cf. footnote in Appendix
A of [4]. Proposition 8.2.5 of [42] asserts that Ban’s result, cited as [Ban] there and proved only for split groups, extends to
quasi-split unitary groups but this appears to be a nontrivial point to be justified. Arthur, as well as Mok, refers to work in
progress by Mezo and Shelstad on twisted endoscopy for real groups and by Waldspurger on the local twisted trace formula.
This seems fine: The former is basically addressed in the preprints cited as [Me] and [S8] in [2]; they have been updated or
expanded since Arthur’s book was published. The latter appeared in the preprint “La formule des traces locales tordue”.
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Proof. This is part of the main local theorem by Arthur (Theorems 1.5.1 and 2.2.1 of [2]) when G is
symplectic or orthogonal and by Mok (Theorems 2.5.1 and 3.2.1 of [42]) when G is unitary.

�

The above proposition tells us that for each πv ∈ Irrtemp(G(F+
v )) there is a unique (up to equivalence)

tempered L-parameter ϕv such that πv ∈ L̃P (ϕv). In this case we will write

η∗(πv) := rec−1(ηϕv)| · |ǫ/2, (4.6)

cf. (4.5). Namely η∗ : Irrtemp(G(F+
v )) → Irrtemp(G(F+

v )) denotes the local functorial lifting given by η.

Proposition 4.13. There exists mG ∈ Z≥1 such that for every finite place v and every tempered L-

parameter ϕv, |L̃P (ϕv)| ≤ mG. To be explicit, one can choose mG = 2n.

Proof. When G is symplectic or orthogonal, the theorem 2.2.1.(b) of [2] says that there is a bijection

between L̃P (ϕv) and the set of characters on the group Sϕv
(denoted Sψ in therein). According to [2,

(1.4.9)] Sϕv
is an abelian group whose order divides 2n so the proposition follows. In the case of unitary

groups one argues similarly using [42, (2.4.14)]. �

Now we summarize some results on the global functoriality for classical groups that we will need. (A
good number of cases also follow from the method of converse theorem and integral representations but
we do not discuss them here). We will cite only [2] (which treats symplectic/orthogonal groups) in the
remainder of this subsection without further comments on the unitary group case, believing that the
reader understands by now that the completely analogous results in the latter case can be found easily
in [42].

Let us introduce some new notation, which is mostly consistent with that of [2] but not always. Write

Ψ̃ell(GLn) for the set of quadruples
ψ = (r, {(ni,Πi, νi)}ri=1)

(in which (ni,Πi, νi) are unordered relative to the index i) where

• r ∈ Z≥1, ni ∈ Z≥1, νi ∈ Z≥1,
∑r
i=1 niνi = n,

• Πi are cuspidal automorphic representations of GLni
(AF ), and such that Π∨

i ≃ Πci for every i
and Πi ≇ Πj for ever pair i 6= j.

Let Ẽell(GLn) denote the set of isomorphism classes of (twisted) endoscopic data for G⋊ 〈θ〉 as defined
in [2, §1.2]. Whether we are in case (i), (ii) or (iii), (G, s, η) belongs to Ẽell(GLn). (In case (iii) our η
corresponds to the L-morphism ξχ+ of [42]. His ξχ−

is not used in our paper.) According to a classification
of self-dual parameters as in [2, §1.2], there is a natural decomposition

Ψ̃ell(GLn) =
∐

H∈Ẽell(GLn)

Ψ̃2(H)

so that ψ belongs to Ψ̃2(H) if, loosely speaking, it satisfies the characterizing properties of the parameters
coming from H . See the paragraph preceding [2, (1.4.7)].

Let us explain the construction of local parameters from ψ ∈ Ψ̃ell(GLn). Put LF+
v

:=WF+
v
× SL2(C)

if v ∤ ∞ and LF+
v
:=WF+

v
if v|∞. Define

ψv : LF+
v
× SL2(C) → LG

to be the L-parameter for G(F+
v ) given by ⊕ri=1rec(Πi) ⊗ Symνi−1(C2), where each direct summand is

the exterior tensor product of rec(Πi) on LF+
v

and Symνi−1(C2) on SL2(C). If ψ ∈ Ψ̃2(G) then it is a

nontrivial theorem that ψv (or an isomorphic parameter thereof) factors through only η : LG →֒ LG and
no embedding of other elliptic endoscopic groups. (See the theorem 1.4.2 and the discussion above (1.5.3)
in [2].) This determines ψ♭v : LF+

v
× SL2(C) → LG such that ηψ♭v ≃ ψv canonically up to Out(G)-action.

(The outer automorphism group has order 1 or 2. See [2, §1.2] for details.) It turns out that ψv always

lands in Ψ̃+
unit(G(F

+
v )) in the notation of Arthur, which is designed to accommodate local components of

discrete automorphic representations of G. The precise definition of Ψ̃+
unit(G(F

+
v )) is not needed for our

purpose so not recalled here.
Now we turn to the purely local setting and explain some local inputs beyond the tempered objects

to be used in this paper. Arthur associates to each ψv ∈ Ψ̃+
unit(G(F

+
v )) (which may not come from a

global parameter ψ) a finite set Π̃ψv
consisting of finite length G(F+

v )-representations by extending the

definition of tempered L-packets, i.e. Π̃ψv
is the tempered L-packet (cf. paragraph above Proposition



24 SUG WOO SHIN AND NICOLAS TEMPLIER

4.13) if ψv is a tempered L-parameter. Although Π̃ψv
is designed to play the role of local A-packets, it

should be noted that members of Π̃ψv
may be reducible or non-unitary. Let us define ÃP (ψv) to be the

set consisting of irreducible subquotients of the members of Π̃ψv
.

Proposition 4.14. Consider cases (i), (ii), or (iii) of §4.2. Suppose that π is a discrete automor-
phic representation of G(AF+) unramified outside a finite set S. Then there exists a unique ψ =

(r, {(ni,Πi, νi)}ri=1) ∈ Ψ̃2(G) such that

(i) πv ∈ ÃP (ψv) at every place v of F+,
(ii) If πv is tempered and all νi are trivial then η∗(πv) = ⊞

r
i=1Πi,v| · |ǫ/2 at each place v of F+,

(iii) at every finite place v /∈ S, πv is isomorphic to the unramified member of ÃP (ψv), which is
unique (relative to the fixed hyperspecial subgroup Uhs

v ).

Remark 4.15. In case some νi is nontrivial so that we are in the nontempered case, one knows from [2]
only an equality of infinitesimal characters (i.e. supercuspidal support when v is a finite place) in (ii).
If we knew the Ramanujan conjecture for general linear groups, it would be enough assume in (ii) only
that νi are trivial.

Proof. The first assertion is implied by [2, Th 1.5.2]. In (ii) η∗(πv) is characterized by Proposition 4.9,
so the assertion follows from (2.2.3) of [2].

The last assertion is deduced from the theorem 1.5.1 of [2], which implies that ÃP (ψv) possesses at
most one unramified representation. (One can identify πv a little more explicitly. When πv is unramified,

ψv is also unramified (i.e. all Πi are unramified at v). Then ÃP (ψv) contains a local L-packet for the
unramified L-parameter given by ψ, cf. [2, Prop 7.4.1], so πv is the one corresponding to the latter
L-parameter via the unramified Langlands correspondence.)

�

Corollary 4.16. In the setting of Proposition 4.14, let ψ = (r, {(ni,Πi, νi)}ri=1) be the associated data to
π and suppose that π is ξ-cohomological. Then there exists s(ξ) ∈ Z≥0 depending only on G and ξ such
that

• for every finite place v, LFv
(Πi,v| · |

ǫ+ni−n

2 )| · |−s(ξ)/2v is pure of weight s(ξ)+n−1−ǫ and integral.

If moreover the highest weight of ξ is regular then

• πv are tempered at all places v,
• ηϕπv

are pure WD representations of weight −ǫ for all finite places v,
• ηϕπv

are unramified and strictly pure of weight −ǫ if v /∈ S.

Proof. Let us begin by proving the first assertion. Proposition 4.14.(i) at infinite places implies, by the
comparison of infinitesimal characters, that ηψw|WFw

is isomorphic to the direct sum over all infinite

places w of F of the L-parameter for Πi,w restricted to WFw
. (Of course Fw ≃ C for w|∞.) Since π

is ξ-cohomological thus regular and C-algebraic, Lemma 4.5 implies that ηψw is a regular C-algebraic

parameter. From this it follows that Πi,w| · |
ǫ+ni−n

2 at w|∞ are regular and C-algebraic. One deduces
from Proposition 4.1 that there exists s(Πi,∞) ∈ Z≥0 depending only on the infinite component Πi,∞ of

Πi such that LFy
(Πi,y| · |

ǫ+ni−n

2 )| · |−s(Πi,∞)/2
y is pure of weight s(Πi,∞) + n− 1− ǫ and integral for each

1 ≤ i ≤ r for every finite place y of F . Clearly there are only finitely many WFw
-subrepresentation of

ηψw|WFw
, so the number of all possible infinitesimal characters for Π1,w, ...,Πr,w is finite at each w|∞.

Since there are only finitely many irreducible representations of GLm(R) or GLm(R) with fixed m ∈ Z≥1

and fixed infinitesimal character, there are only finitely many possibilities for Πi,∞. The proof of the first
assertion is complete as soon as s(ξ) is taken to be the maximum of s(Πi,∞) over all possible {Πi,∞}1≤i≤r.

Now suppose that the highest weight of ξ is regular. According to a standard result on Lie algebra
cohomology, πv at v|∞ must be discrete series to be ξ-cohomological. Considering infinitesimal characters

for ψv at v|∞, we see that νi = 1 for all 1 ≤ i ≤ r. Since Πi| · |
ǫ+ni−n

2 is of type (TR) or (CM) for each
i, Proposition 4.1 tells us that Πi,v are essentially tempered at all finite places v. Since Πi,v is already

known to be unitary, Πi,v is tempered. Hence ψv is tempered and ÃP (ψv) is nothing but the tempered

L-packet L̃P (ψv|L
F

+
v

) at each v ∤ ∞, cf. Proposition 4.9. In particular πv ∈ ÃP (ψv) is tempered. Since

ηϕπv
= ⊕ri=1rec(Πi,v)| · |ǫ/2 = ⊕ri=1LF+

v
(Πi,v| · |

ǫ+ni−n

2 )| · |n−1
2 , v ∤ ∞,

Proposition 4.1 and Remark 4.2 allow us to verify the properties of ηϕπv
in the corollary.

�
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5. Finiteness results

The first two subsections prove local finiteness results for unramified and arbitrary representations.
After stating a global finiteness conjecture (Conjecture 5.10 below) for C-algebraic representations with
bounded coefficient fields in a fairly general setting, we establish the conjecture for general linear groups
and quasi-split classical groups.

5.1. Finiteness for unramified representations. Put ourselves in the setting of §4.2.
Lemma 5.1. Fix s ∈ Z≥0, A ∈ Z≥1, and a finite place v of F+. There are only finitely many πv ∈
Irrur(G(F+

v )) such that

• LF+
v
(η∗πv)| · |−s/2v is strictly pure of weight n− 1 + s− ǫ and integral and

• [Q(πv) : Q] ≤ A.

Proof. Since the map η∗ : Irrur(G(F+
v )) → Irrur(G(F+

v )) has finite fibers (Lemma 2.23) it suffices to

prove the finiteness of the set of Πv ∈ Irrur(GLn(Fv)) such that LF+
v
(Πv)| · |−s/2v is strictly pure of weight

n− 1 + s and integral with [Q(Πv) : Q] ≤ A. A first observation is that any Πv = η∗πv for πv as in the
lemma lands in the set just defined, where the inequality follows from Lemma 2.25.(ii). Next consider
the bijection S : Irrur(GLn(Fv)) → (C×)n/Sn coming from the Satake isomorphism for GLn. Then each

complex number appearing in S (Πv| · |
−(n−1+s−ǫ)

2
v ) must be a root of an (irreducible) monic polynomial

xm + am−1x
m−1 + · · ·+ a0 with

1 ≤ m ≤ A, am−1, ..., a0 ∈ Z (5.1)

by integrality and the bound on [Q(Πv) : Q]. The condition on purity and weight (“Weil bounds”) implies

that |λ|v ≤ q
−(n−1+s−ǫ)

2
v for all roots λ ∈ C of the above polynomial, imposing a constraint

|ai|v ≤
(
m

i

)
q

−(n−1+s−ǫ)
2

v , ∀0 ≤ i ≤ m− 1. (5.2)

As there are only finitely many polynomials satisfying (5.1) and (5.2), we are done. �

5.2. Rationality of endoscopic transfer. Keep the notation of the previous subsection. We start by
studying the behavior of the functorial lifting η∗ relative to automorphisms of C.

Proposition 5.2. Let πv ∈ Irrtemp(G(F+
v )). Then

η∗(π
σ
v ) = (η∗πv)

σ, ∀σ ∈ Aut(C). (5.3)

If moreover Q(πv) is finite over Q then

(i) Q(η∗πv) is also finite over Q.
(ii) Q(πv) contains Q(η∗πv) and is contained in a finite extension of Q(η∗πv) of degree at most mG!.

In particular [Q(η∗πv) : Q] ≤ [Q(πv) : Q] ≤ mG! [Q(η∗πv) : Q].

Remark 5.3. Only the left inequality in (ii) will be needed in our main results. The proposition extends
Lemma 2.25 from unramified (possibly non-tempered) representations to tempered representations in the
case of classical groups.

Proof. Put Πv := η∗πv. Since (i) is an immediate consequence of (ii), it suffices to verify (ii).
When πv is tempered, we would like to verify (5.3). For any fv ∈ C∞

c (G(F+
v )) let φv ∈ C∞

c (G(F+
v ))

be its ∆Wh
v -transfer. For every σ ∈ Aut(C) we obtain from Proposition 4.7 and (4.3) that

STO
G(F+

v )
δ (fσv ) =

∑

γ∼stδ

∆Wh
v (γ, δ)O

G(F+
v )

γ (φσv ).

Hence φσv is a KLS-transfer of fσv . On the other hand, twisting (4.5) by σ leads to an identity

ΘΠσ
v ,θ

(fσv ) =
∑

η∗(ρv)=Πv

Θρσv (φ
σ
v ). (5.4)

Plugging in fσ
−1

v and φσ
−1

v in place of fv and φv (noting that fσ
−1

v is a ∆Wh
v -transfer of φσ

−1

v ) we derive

ΘΠσ
v ,θ(fv) =

∑

η∗(ρv)=Πv

Θρσv (φv). (5.5)
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Comparing with ΘΠσ
v ,θ(fv) =

∑
η∗(ρv)=Πσ

v
Θρv(φv), cf. (4.5), we obtain an equality of stable characters

(evaluated on elements of C∞
c (G(F+

v )))
∑

η∗(ρv)=Πv

Θρσv =
∑

η∗(ρv)=Πσ
v

Θρv (5.6)

since ∆Wh
v -transfers of C∞

c (G(F+
v )) generate the space of stable distributions on G(F+

v ). (In the language

of Remark 1 below Theorem 2.2.1 of [2], the map f̃ 7→ f̃G is onto.) Then (5.6) holds true also as the
equality of finite character sums. Since Θπσ

v
appears as a summand on the left hand side, it should also

on the other side by linear independence of characters. We have established (5.3).
Formula (5.3) readily implies that if σ ∈ Aut(C/Q(πv)) then Πσv = η∗(π

σ
v ) = η∗πv = Πv. Therefore

Q(Πv) ⊂ Q(πv) and in particular Q(Πv) is finite over Q.
Now if σ ∈ Aut(C/Q(Πv)) then η∗(π

σ
v ) = Πσv = Πv. One deduces from (5.6) that πv, π

σ
v ∈ η−1

∗ (Πv).
Thereby one obtains a group homomorphism

Υ : Aut(C/Q(Πv)) → Perm(η−1
∗ (Πv)), Υ(σ) : πv 7→ πσv

where Perm(·) denotes the permutation group. Since |η−1
∗ (Πv)| ≤ mG by Proposition 4.13, the kernel

of Υ has index ≤ mG! in Aut(C/Q(Πv)). Then the fixed field of kerΥ is a finite extension of Q(Πv) of
degree ≤ mG! and contains Q(πv). The proof of (ii) is finished. �

Remark 5.4. Alternatively (5.3) may be proved using a global argument (explained to us by Wee Teck
Gan): Reduce to the case where πv is a discrete series. When πv is discrete, globalize πv to a π. Consider
η∗(π) and η∗(π

σ) (assumed isobaric). By comparing η∗(π)
σ and η∗(π

σ) at almost all unramified places,
one deduces from strong multiplicity one that η∗(πv)

σ = η∗(π
σ
v ) at the place v of interest. (Use Clozel’s

result that the Langlands quotient is compatible with σ.)

5.3. Sparsity of arithmetic points in the unitary dual.

Proposition 5.5. Fix A ≥ 1, a finite place v of F+, an open compact subgroup Kv ⊂ G(F+
v ) and an

irreducible algebraic G∞-representation Ξ. The set of Πv ∈ Irr(G(F+
v )) satisfying (i) and (ii) below is

finite:

(i) Πv appears as the v-component of some Ξ-cohomological isobaric representation Π = ⊞
s
i=1Πi of

G(AF+) such that Πi are cuspidal and Π∨
i ≃ Πci ⊗ (det ◦χi) for χ : F×\A×

F → C× such that
χv(−1) is the same for every v ∈ S∞,

(ii) [Q(Πv) : Q] ≤ A.

Remark 5.6. Since C-algebraicity is incompatible with ⊞ (which is locally the Langlands quotient for the

normalized induction), Π being C-algebraic implies not Πi but Πi| · |
ni−n

2 is C-algebraic in condition (i).

Proof. By (ii) and Corollary 3.13 the depth (or conductor) of Πv is bounded, so the set of Πv is contained
in finitely many Bernstein components. We may show that the set of Πv satisfying (i) and (ii) is finite in
each Bernstein component B. Suppose Π0

v ∈ B satisfies (i) and (ii). Write LF+
v
(sc(Π0

v)) = ⊕ki=1Vi where
Vi are irreducible WD representations. For any other Πv ∈ B,

LF+
v
(sc(Πv)) = ⊕ki=1Vi ⊗ unr(λi)

where unr(λi) : GL1(F
+
v ) → C× is the unramified character mapping every uniformizer of F+

v to λi ∈ C×.
Since Q(⊕ki=1Vi) ⊂ Q(Π0

v) (cf. (3.2)), we have [Q(⊕ki=1Vi) : Q] ≤ A. Put E := Q(V1)Q(V2) · · ·Q(Vk).

Since Gal(Q/Q(⊕ki=1Vi)) acts on {V1, ..., Vk} (a multi-set) as permutations,

[E : Q] ≤ k!A ≤ n!A.

Consider the action of Gal(Q/E) on the unordered set {Vi⊗unr(λi)}ki=1. Clearly there exists an extension
E′/E of degree ≤ k! such that Gal(Q/E′) fixes the isomorphism class of Vi⊗unr(λi) for every i. Observe
that every λ ∈ C× such that Vi ⊗ unr(λ) ≃ Vi satisfies λ

n = 1. (For this consider the equality of the
determinants.) Setting E′′ := E(µn), we conclude that Gal(Q/E′′) fixes λi for every i. In particular

[Q(λi) : Q] ≤ k!n!ϕ(n)A, ∀1 ≤ i ≤ k. (5.7)

By (i) and Proposition 4.1 there exists s > 0 (depending on Ξ) such that for every Πv ∈ B satisfying (i)
and (ii), LF+

v
(sc(Πv))| · |−s/2 is pure of weight s+(n−1) and integral. (To deduce this, apply Proposition

4.1 to each Πi| · |
ni−n

2 , cf. Remark 5.6.) As Lemma 3.8 applies to the present situation with all si in the
lemma equal to 1, we see that both Vi| · |−s and Vi| · |−s⊗unr(λi) are strictly pure of weight in s+(n− 1)
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and integral. We claim that λi is a Weil qv-number of weight 0 such that q
s+(n−1)
v λi is integral. Indeed,

for any any eigenvalue ω of a lift of geometric Frobenius on Vi, we know from the above that q
s+n−1

2
v /ω

and ωλi are integral. In view of the integrality of q
s+(n−1)
v λi and (5.7), an argument as in Lemma 5.1

shows that there are only finitely many λi with these properties. Therefore the set of Πv as above is
finite.

�

Let G be as in (i), (ii) or (iii) of §4.2. Recall that Arthur and Mok associate to πv ∈ Irrtemp(G(F+
v )) a

tempered L-parameter ϕπv
:WF+

v
×SL2(C) → LG. In a standard manner this extends to the construction

of all L-packets via Langlands quotients. Now we are about to state a result providing a crucial input
for the main results of §6.1.
Corollary 5.7. Fix A ≥ 1 and an irreducible algebraic ResF+/QG-representation ξ. Suppose that ξ has

regular highest weight. Then the set of πv ∈ Irrtemp(G(F+
v )) satisfying the two properties below is finite.

(i) πv appears as the v-component of some ξ-cohomological discrete automorphic representation π
of G(AF+),

(ii) [Q(πv) : Q] ≤ A.

Remark 5.8. In particular the set of such πv is measurable with respect to the Plancherel measure on
G(F+

v )∧. We caution the reader that its measure may not be zero. Indeed it has positive Plancherel
measure precisely when it contains discrete series.

Remark 5.9. The regularity assumption on ξ should be unnecessary for the corollary to be true. We
imposed it for simplicity and also for the reason that the same hypothesis will be in place for applications
in Section 6.

Proof. Let C(ξ, A) be the set of πv as above. We need to show |C(ξ, A)| <∞. Since η∗ is a finite-to-one
map, we will be done if η∗ is shown to map C(ξ, A) into the union of the sets of Proposition 5.5 for some
Ξ, where Ξ depends only on ξ.

Each πv ∈ C(ξ, A) is the v-component of some π as in the corollary. Let ψ = (r, {(ni,Πi, νi)}ri=1 be
the data associated with π and put

Π := ⊞
r
i=1

(
(Πi ⊗ | · |

1−νi
2 )⊞ (Πi ⊗ | · |

3−νi
2 )⊞ · · ·⊞ (Πi ⊗ | · |

νi−1

2 )
)
⊗ | · |ǫ/2.

The infinitesimal character of πv at each infinite place v of F+ is the same as that of ξ∨v , where ξ = ⊗v|∞ξv
is a tensor product of irreducible representations with regular highest weights. Remark 4.15 tells us that
this infinitesimal character transfers via η to that of Πv. The regularity on the former implies via the
explicit description of η that the infinitesimal character of Πv is the same as that of (the tensor product
of two) irreducible algebraic representations of G of regular highest weight. In particular νi must be all
trivial in ψ.

So Π = ⊞
r
i=1Πi| · |ǫ/2 and Πv = η∗(πv) by (ii) of Proposition 4.14, cf. Remark 4.15. Thanks to

Proposition 5.2 we know [Q(Πv) : Q] ≤ A, which is (ii) of Proposition 5.5. It remains to verify (i) of that
proposition. This is clear except possibly the property that Π is cohomological (for some Ξ), which we
now explain. Since π∞ is ξ-cohomological it is regular C-algebraic. This implies that Π∞ = η∗(π∞) is also
regular C-algebraic (for GLn) by Lemma 4.5 (and the sentence right below Definition 2.21). Now Lemma
2.12 tells us that Π∞ is Ξ-cohomological for some Ξ. Moreover Ξ is determined by the infinitesimal
character of Π∞ hence also by that of π∞, or just by ξ. We are done.

�

5.4. A finiteness conjecture. We think this is a good place to state an interesting finiteness conjecture
on automorphic representations in the spirit of the Shafarevich conjecture (Theorem 1.2). Earlier Fontaine
and Mazur proposed the analogue of the Shafarevich conjecture for l-adic Galois representations ([22,
I.§3]). While their conjecture is still mostly open in dimension > 1 to our knowledge, we are able to verify
our conjecture in many cases including G = GLn. This opens up the possibility for an automorphic proof
of Fontaine-Mazur’s finiteness conjecture via the Langlands correspondence. At the moment we are unable
to get many cases of their conjecture since the correspondence is established in only limited cases. We
wish to return to this problem in the future.

In the conjecture G is allowed to be an arbitrary connected reductive group over any number field F .
Let Sram be the finite set of finite places v such that G×F Fv is ramified (i.e. either non-quasi-split over
Fv or non-split over any finite unramified extension of Fv.) Recall that hyperspecial subgroups outside
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Sram are fixed as in §1.7 once and for all, and unramified representations are considered with respect to
this data. Denote by Z(g) the center of the universal enveloping algebra of LieG(F ⊗Q C).

Conjecture 5.10. Fix A ∈ Z≥1, S a finite set of places of F containing Sram and all infinite places, and
a C-algebra character χ∞ : Z(g) → C. Then the set of discrete automorphic representations π of G(AF )
with the following properties is finite:

• πS is unramified,
• π∞ has infinitesimal character χ∞, and
• [Q(π) : Q] ≤ A.

Remark 5.11. To state a more modest conjecture, one may replace the condition [Q(π) : Q] ≤ A by the
condition that Q(π) is contained in a fixed finite extension of Q in C.

Remark 5.12. Since there are up to isomorphism only finitely many π∞ with a fixed infinitesimal character
χ∞, one may replace the above condition on the infinitesimal character by the condition that π∞ is
isomorphic to a fixed irreducible G(F ⊗R C)-representation π0

∞.

Remark 5.13. The π as in the conjecture should be C-algebraic according to the “if” part of Conjecture
2.8, which may well belong to the realm of transcendental number theory and would be difficult to
check. Fortunately we can still verify the conjecture in many cases without a priori knowledge that π is
C-algebraic. cf. §5.5 below.

Remark 5.14. It should be stressed that no bound on ramification is imposed at places in S. (Otherwise
the conjecture would be uninteresting.) Such a bound is only a consequence of the condition that
Q(π) ⊂ E, at least in the setting of §5.5 below. The conjecture is certainly false if the condition Q(π) ⊂ E
is omitted, as it is often well known that there are infinitely many discrete automorphic representations
if arbitrary ramification is allowed at one place, cf. [57].

Remark 5.15. On the Galois side (as opposed to the automorphic side) the analogues of the Fontaine-
Mazur finiteness conjecture for complex and mod l Galois representations have been proposed and inves-
tigated by [1] and [33]. The result of Anderson-Blasius-Coleman-Zettler [1] is as follows: Given a number
field K, there are finitely many complex representations of the Weil group WK of bounded degree and
bounded Artin conductor (their proof uses Jordan theorem that finite subgroups of GL(d,C) are virtually
abelian). Their result confirms some very special cases of the Fontaine-Mazur finiteness conjecture.

5.5. Results on the finiteness conjecture. The aim of this section is to prove Conjecture 5.10 in
some important cases. Namely the conjecture will be established first in the case of general linear groups
taking Lemma 3.3 and Harish-Chandra’s finiteness theorem (Proposition 5.16 below) as crucial inputs,
and next in the case of classical groups via functorial transfer to general linear groups.

Proposition 5.16. For any C-algebra character χ∞ : Z(g) → C and for any open compact subgroup U
of G(A∞

F ), the set of isomorphism classes of discrete automorphic representations π of G(AF ) satisfying
the following is finite.

• π∞ has a nonzero U -fixed vector and
• π∞ has infinitesimal character χ∞.

Remark 5.17. We are using a weaker version of Harish-Chandra’s theorem in that our attention is re-
stricted to the discrete automorphic spectrum.

Proof. The proposition results immediately from Harish-Chandra’s theorem 1 in [27]. (The proof in loc.
cit. for semisimple groups is extended to the case of reductive groups as explained in [7, Th 7.4].) �

Theorem 5.18. Conjecture 5.10 is true in the case of G = GLn for any n ∈ Z≥1 and any ground field
F .

Proof. Suppose that π satisfies the condition of Conjecture 5.10. Corollary 3.12 tells us that πv has
bounded conductor (depending only on A, Fv and n) at every v ∈ S. Therefore the cardinality of such
π is finite by Proposition 5.16. �

Theorem 5.19. Conjecture 5.10 is true for quasi-split classical groups as in (i), (ii) and (iii) of §4.2 (if
Hypothesis 4.8 is assumed).
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Proof. Write C(G,S, χ∞, A) for the set of Conjecture 5.10 (but we adopt the notation of §4.2 in this
proof, so F+ plays the role of F in the conjecture). Consider the association

C(G,S, χ∞, A) → Ψ̃2(G)
π 7→ ψ = (r, {(ni,Πi, νi)}ri=1

as in Proposition 4.14. Since π is unramified outside S, the associated Πi enjoys the same property
for every i. Since η is C-preserving by inspection, Lemma 2.25, Proposition 4.14.(iii), and the strong
multiplicity one theorem imply that Aut(C/Q(π)) permutes the set {Π1, ...,Πr}. Hence there exists some
E ⊃ Q(π) with [E : Q(π)] ≤ r! such that Aut(C/E) fixes all Π1, ..., Πr. Note that [E : Q] ≤ r![Q(π) :
Q] ≤ n!A.

Let us make some observation about infinitesimal characters. It is standard that χ∞ corresponds

to a collection of complex L-parameters ϕχ∞,w : WC → Ĝ where w runs over the infinite places of F .

For each infinite place v of F+, it follows from πv ∈ ÃP (ψv) that ψv|W
F

+
v

is isomorphic to ϕχ∞,w up

to Out(Ĝ)-action when v|w. Let Xv be the set of all infinitesimal characters of GLm(F ⊗F+ F+
v ) with

1 ≤ m ≤ n corresponding to a W
F+

v

-subrepresentation of ηψv|W
F

+
v

at each v|∞. Clearly X :=
∏
v|∞Xv

is a finite set. Proposition 4.14, cf. the proof of Corollary 4.16, tells us that the infinitesimal character
of Πi,v belongs to Xv.

Let D(GL≤n, S,X, n!A) be the set of cuspidal automorphic representations Π of GLm(AF ) with 1 ≤
m ≤ n which are unramified outside S, have the infinitesimal character of Π∞ in X , and satisfy [Q(Π) :
Q] ≤ n!A. According to Theorem 5.18, D(GL≤n, S,X, n!A) is a finite set. We have seen that for any

(r, {(ni,Πi, νi)}ri=1 ∈ Ψ̃2(G) coming from π ∈ C(G,S, χ∞, A), every Πi belongs to D(GL≤n, S,X, n!A).

Hence the image of C(G,S, χ∞, A) in Ψ̃2(G) is finite. The the proof boils down to showing that each

fiber of the arrow C(G,S, χ∞, A) → Ψ̃2(G) is finite. This is a consequence of Proposition 4.14.(iii): If
π is in the preimage of ψ then πv at every finite place v /∈ S is determined to the unique unramified

member of ÃP (ψv). For each v ∈ S or v|∞, πv must lie in the finite set ÃP (ψv).
�

6. Growth of fields of rationality in automorphic families

Let G be a quasi-split classical group as in (i), (ii)’ or (iii) of §4.2 from here up to §6.4. In particular
F+ denotes the base field of G. Note that this is different from the convention of [58], which will be
frequently cited in this section, where F is the base field. (We restrict from (ii) to (ii)’ since we need
results from [58] established under the assumption that G has discrete series at the real places of F+.) In
§6.5 we concisely explain how the earlier part of this section can be adapted to obtain an unconditional
result for (non-quasi-split) unitary groups. Throughout this section it is assumed that G is nontrivial so
that the absolute rank of G is at least one.

6.1. Growth of fields of rationality in level aspect. We start by recalling the level-aspect families
Fξ(Ux) of automorphic representations of G(AF+) of weight ξ and level subgroups Ux as in [58, §9.3] or
[57].

Let Ux be a sequence of level nx-subgroups of G(A
∞
F+). Here nx is a sequence of integral ideals of OF+

such that N(nx) := [OF+ : nx] → ∞. When G is a split group over F , the sequence Ux is defined as

Ux = ker(G(OF+) → G(OF+/nx))

using the Chevalley group scheme for G over Z. In general we refer to [58, §8] for the precise definition
via Moy-Prasad filtrations. We have a product decomposition Ux =

∏
v∤∞ Ux,v such that each Ux,v is a

compact open subgroup of G(F+
v ). Set Uvx :=

∏
w∤∞,w 6=v Ux,w.

A variant of the level sequence would be a tower of bounded depth in the sense of [15], which corre-
sponds to Ux+1 ⊂ Ux or nx | nx+1. But here we prefer to work more generally with the condition that
N(nx) → ∞.

Let ξ be an irreducible algebraic representation of ResF+/QG over C, which can be viewed as a

representation of
∏
v|∞G×F+ F+

v where v runs over infinite places of F+ (see §2.2). In this section we

assume, except for Corollary 6.8, that the highest weight for every representation of G×F+ F+
v induced

by ξ is regular. The regularity assumption is made mainly because the equidistribution theorems as in
[57] and [58] rely on it. (This is why we also made the assumption earlier for simplicity, cf. Remark 5.9).

Let S0 be a (possibly empty) finite set of places disjoint from nx for all x. Let f̂S0 be a well-behaved
function on the unitary dual of G(F+

S0
) in the sense of [49, §7] and [58, §9.1]. (Such functions are very
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useful in prescribing interesting local conditions. Namely we can impose that πS0 belongs to a bounded
measurable subset of G(F+

S0
)∧ whose boundary has zero Plancherel measure and whose image in the

Bernstein variety (Θ(G) in [49, pp.164-165]) has compact closure. In fact there is essentially no loss of

generality in assuming that f̂S0 is a characteristic function of such a subset.) Henceforth we will assume

that µ̂pl
S0
(f̂S0) > 0 and that f̂S0 takes nonnegative real values on the unitary dual.

Let Fx := F(Ux, f̂S0 , ξ) be the set (or family) of discrete automorphic representations π of G(AF+)
such that

• πS0 belongs to the support of f̂S0 , i.e. f̂S0(πS0) 6= 0,
• π∞ has a nonzero Ux-fixed vector and
• π∞ is ξ-cohomological (Definition 2.11).

To be precise this is a multi-set with a density function aFx
(π) as in [45], [57, §3.3] and [58, §9.2]. In

the present case we have for all π ∈ Fx,
aFx

(π) := mdisc(π)f̂S0(πS0) dim((πS0,∞)U
S0
x ) (6.1)

where mdisc(π) is the multiplicity of π in the discrete automorphic spectrum. The exact nature of the
formula for aFx

(π) does not play an explicit role in what follows but is needed in [58], which we are going

to cite from there. Note that it is non-negative and if f̂S0 is a characteristic function, it takes integral
values. The cardinality of a subset of the multi-set Fx is considered in the obvious sense. For instance
|Fx| is defined to be the number of π’s in Fx counted with multiplicities aFx

(π).

Theorem 6.1. Let v 6∈ S0 be a fixed place of F+ such that either

(i) Ux,v is maximal hyperspecial for all but finitely many x, or
(ii) ordv(nx) → ∞ as x→ ∞,

Then |{π ∈ Fx : [Q(πv) : Q] ≤ A}|/|Fx| tends to 0 as x→ ∞.

Remark 6.2. We recall that the case G = GL(2)Q under assumption (i) is due to Serre [54], see Theo-
rem 1.1.

Proof. We have seen in Corollary 4.16 that πv is tempered for all π ∈ Fx. We are in position to apply
Corollary 5.7 which implies that the set Zur (resp. Z) of all πv ∈ G(F+

v )∧,ur (resp. πv ∈ G(F+
v )∧) for

π ∈ Fx with [Q(πv) : Q] ≤ A is finite. For part (i), concerning Zur, we could use alternatively the easier
fact that there are only finitely many associated Weil numbers (Lemma 5.1). Since Zur and Z are finite,
they are certainly a µ̂pl

v -regular relatively compact subset of G(F+
v )∧.

We will follow the notation of [58] and all measures are chosen as in that paper. We have

|{π ∈ Fx : [Q(πv) : Q] ≤ A}| = |{π ∈ Fx : πv ∈ Zur}|

=
τ ′(G) dim ξ

vol(Uvx )
µ̂x(Zur),

(6.2)

where τ ′(G) is the volume of G(F+)\G(AF+)/AG,∞, and µ̂x(Zur) is the automorphic counting measure
for Fx. (See §6.6 and (9.5) with S0 = {v} and S1 = ∅ in [58].) The same as (6.2) holds true for x ≫ 1
with Z in place of Zur. (We want x ≫ 1 so that every member of Z has level at most nx at v.) A
key ingredient for both (i) and (ii) is the automorphic Plancherel equidistribution theorem [58, Cor 9.22]
(also see [57, Thm 4.4]), stating that limx→∞ µ̂x(Zur) = µ̂pl

v (Zur) and the same for Z in place of Zur.

(i) According to [58, Cor 9.25], limx→∞
τ ′(G) dim ξ
vol(Uv

x )|Fx|
= 1. Hence the limit in the theorem is nothing but

µ̂pl
v (Zur), which is zero. (Note that Zur is a finite subset of the unramified unitary dual which is a torus

of positive dimension and the restriction of the Plancherel measure is absolutely continuous with respect
to the Lebesgue measure.)

(ii) By [57, Prop 5.2] and its extension to the setting of [58] by the same argument, we have

lim
x→∞

τ ′(G) dim ξ

vol(Ux)|Fx|
= 1. (6.3)

(The corollary 9.25 of [58] cannot be applied as it assumes that nx is prime to v. Note that (6.3) is
consistent with the formula in the proof of (i), in which case vol(Ux,v) = 1.) Therefore

lim
x→∞

τ ′(G) dim ξ

vol(Uvx )|Fx|
µ̂x(Z) = lim

x→∞
vol(Ux,v)µ̂x(Z) = 0

since we have that vol(Ux,v) → 0 from that ordv(nx) → ∞. (Note that µ̂x(Z) tends to µ̂pl
v (Z), which

may not be zero due to discrete series in Z but has bounded value.) The proof is concluded. �
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Remark 6.3. It would be interesting to improve on the condition that Ux,v be maximal hyperspecial.
This is a question of Serre [54, §6.1] in the GL(2) case. The main obstruction is the presence of square-
integrable representations πv ∈ Z with π ∈ Fx. The proof doesn’t extend to these representations because
µ̂pl(πv) > 0.

For convenience we introduce the multi-set

F≤A
x := {π ∈ Fx : [Q(π) : Q] ≤ A}.

It is to be understood that if π ∈ F≤A
x then π appears with the same multiplicity aFx

(π) in F≤A
x . This

way we make sense of |F≤A
x |.

Corollary 6.4. Under the same assumptions, |F≤A
x |/|Fx| tends to 0 as x→ ∞.

Proof. Obviously [Q(πv) : Q] ≤ [Q(π) : Q]. �

6.2. Quantitative estimates. One may wonder about the precise size of F≤A
x relative to that of Fx.

For instance, the following generalizes another Serre’s question for families of modular forms (Remarques
2 below Théorème 6 of [54]).

Question 6.5. Does there exist δ < 1 such that |F≤A
x | = O(|Fx|δ)?

As a weaker variant (cf. Remark 5.11), for a fixed finite extension E of Q in C one may ask whether
there exist δ < 1 such that |{π ∈ Fx : Q(π) ⊂ E}| = O(|Fx|δ). We establish the following estimate
towards a positive answer to Question 6.5. Define Sunr to be the set of finite places v of F+ such that
Ux,v is hyperspecial at v for all large enough k. Let Runr be the sum of the F+

v -ranks of G(F+
v ) for all

v ∈ Sunr (it could be infinity).

Theorem 6.6. Suppose that Sunr is not empty (but it could be an infinite set). Then, as x→ ∞,

|F≤A
x | ≪R

|Fx|
(log |Fx|)R

, (6.4)

for all R ≤ Runr.

Example 6.7. In a typical example if Ux is a principal congruence subgroup of prime level nx then the
set Sunr contains all finite places and Runr is infinite: the statement holds for all R > 0 which is an
indication for an affirmative answer to Question 6.5 in this case. If Runr ≥ 1 is finite then it is best to
choose R = Runr. Note that the possibility Runr = 0 is excluded from the proposition because Sunr is
not empty; this is the case discussed in Remark 6.3.

Proof. We fix a finite set of unramified places S1 ⊂ Sunr disjoint from S0. Let R be a rectangle in

G(F+
S1
)∧,unr,temp. Lemma 6.16 yields the existence of φS1 ∈ Hunr(G(F+

S1
))≤cκ which is such that φ̂κ

approximates the characteristic function of R. (The definition of Hunr(G(F+
S1
))≤cκ is recalled in §6.4

below. The constant c > 0 depends on a choice fixed once and for all for G.)
Applying the automorphic Plancherel theorem with error bound [58, Thm 9.16] to the family Fx, we

deduce that for all integer κ ≥ 1,

µ̂Fx,S1(R) = µ̂pl
S1
(R) +O(qAl+Blκ

S1
|Fx|−Cl) +O(κ−R).

where Al, Bl, Cl > 0 are absolute constants and R ≥ 0 is the sum of the ranks of G(F+
v ) for v ∈ S1. Note

that by choosing S1 ⊂ Sunr arbitrary large, the integer R is arbitrary large subject to the condition that
R ≤ Runr.

The optimal choice is κ = O(log |Fx|), which yields

µ̂Fx,S1(R) = µ̂pl
S1
(R) +O((log |Fx|)−R). (6.5)

Note that the constant in the remainder term does not depend on R. In particular R can be chosen to

be a single element in which case µ̂pl
S1
(R) = 0 since the Plancherel measure is atomless. We deduce that

the following estimate holds for any finite set Z in G(F+
S1
)∧,unr,temp,

µ̂Fx,S1(Z) ≪ |Z|
(log |Fx|)R

.

We apply this to the set

Z := {πS1 : π ∈ Fx, [Q(π) : Q] ≤ A},
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since it follows as before from Corollary 5.7 (or alternatively from Lemma 5.1 and the first assertion of
Corollary 4.16) that Z is a finite set. Thus we can conclude the proof of the proposition since

|{π ∈ Fx : [Q(π) : Q] ≤ A}| ≪ |Fx|µ̂Fx,S1(Z).

�

We now consider the case where the automorphic family admits ramification at only finitely many fixed
places S. Theorem 6.6 applies for any R > 0 since Runr is infinite, but we can prove a stronger bound.
Indeed Theorem 5.18 may be rephrased as a strong answer to Question 6.5. For this it is unnecessary
to assume that the highest weight of ξ is regular (thus π∞ may not be a discrete series). In fact we will
prescribe a condition at infinity which is weaker than the ξ-cohomological condition. For a C-algebra
morphism Z(g) → C (cf. §5.5) and an open compact subgroup Ux ⊂ G(A∞

F+), define F(Ux, χ∞) to be the
set of discrete automorphic representations π of G(AF+) such that (for the corollary it is unimportant to
think of F(Ux, χ∞) as a multi-set, i.e. the multiplicity of each member may be taken to be one)

• (π∞)Ux 6= 0,
• π∞ has infinitesimal character χ∞.

Corollary 6.8. Fix A ∈ Z≥1. Let G be either

• G = GLn over an arbitrary number field F or
• G is a quasi-split classical group of (4.2) over a totally real field F .11

Suppose that there exists a finite set S such that for every x, the level subgroup Ux has the form Ux =
US,xU

S,∞, where US,∞ is a product of hyperspecial subgroups of G(Fv) for all finite v /∈ S. Then there
is a constant C = C(A,G, χ∞, S) such that for all x

|{π ∈ F(Ux, χ∞) : [Q(π) : Q] ≤ A}| ≤ C.

Proof. Immediate from Theorems 5.18 and 5.19. �

For instance when G = GL2 over Q, the theorem applies to C-algebraic automorphic representations
arising from Maass forms, namely those with Laplace eigenvalue 1/4. It is worth comparing our results
in this subsection with previous work in the case of elliptic curves:

Remark 6.9. We briefly discuss the most basic case of G = GL(2)Q, weight 2 and Q(π) = Q (that is
A = 1). See also the remarks following [54, Théorème 7]. Modular forms of weight two with integer
coefficients are attached to elliptic curves and thus more precise results than (6.4) are available.

For an integer N ∈ Z≥1, let Ell(N) be the number of isogeny classes of elliptic curves over Q of
conductor N . The following is currently known [17, §3.1]:

X
5
6 ≪

∑

1≤N≤X

Ell(N) ≪ǫ X
1+ǫ.

On the other hand, by counting S-integral points on curves of given genus, it is shown by Helfgott–
Venkatesh [29, §4.2] that Ell(N) = O(N δ) for some δ < 1

2 , improving earlier bounds by Evertse, Silverman
and Brumer. The numerical value is improved further in [19] into δ = 0.169 . . ..

6.3. Order of growth. It follows from Theorem 6.1 that there are automorphic representations πx ∈ Fx
such that [Q(πx) : Q] → ∞ as x → ∞. It is interesting to study the order of growth of [Q(πx) : Q] as
x → ∞. We establish the following which generalizes a result of Royer [46, Thm 1.1] in the case of
G = GL(2)Q. By the degree of a Weil number α (or any algebraic number) we will mean [Q(α) : Q].

Proposition 6.10. Let assumptions be as in (i) in Theorem 6.1. Then as x → ∞ there exists an
automorphic representation πx ∈ Fx such that

[Q(πx) : Q] ≫ (log logN(nx))
1
2 . (6.6)

Proof. Consider the set of local representations πv ∈ G(F+
v )∧,unr as πv ranges over Fx. We see from (6.5)

that there are ≫ logN(nx) distinct such representations πv. On the other hand the number of qv-Weil

integers of weight 1 and degree ≤ d is at most q
O(d2)
v . (The O(d2)-bound is easily seen from the argument

of the last paragraph in the proof of Lemma 5.1.) �

11For uniformity of notation we write F rather than F+ here.
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In the depth aspect, that is under condition (ii) in Theorem 6.1, we can also give a lower bound for the
order of growth. Suppose that nx is supported on a fixed finite set of primes. Then using the estimate
in (3.4) we can deduce that there exists πx ∈ Fx such that

[Q(πx) : Q] ≫ (logN(nx))
1
n .

We have removed a logarithm compared with the order of growth (6.6) obtained in the level aspect.
The remainder of this subsection is devoted to discuss the case of G = GL(2)Q and weight 2 forms,

where interestingly there is another method to establish the bound (6.6). This is based on the following
result about curves over finite fields which is of independent interest.

Proposition 6.11 (Serre [54, §7]). There are only finitely many curves over Fq whose Jacobian is
isogenous to a product of abelian varieties of dimension at most d.

The method of Serre is effective, see [54, p. 93] for the example of q = 2 and d = 1. It doesn’t produce
immediately an explicit upper-bound in general but there have been several works in this direction, in
particular we quote the following.

Proposition 6.12 (Elkies–Howe–Ritzenthaler [18]). Let S ⊂ [0, π] be a finite set. If C/Fq is a curve of
genus g with Frobenius angles in S, then

g ≤ 23|S|2q2|S| log q.
The proof of Proposition 6.11 and of the effective bounds such as in Proposition 6.12 is based on

trigonometric inequalities. Precisely one uses the fact that there are θj ∈ [0, π], 1 ≤ j ≤ g, such that

q
1
2 eiθj (and also q

1
2 e−iθj) are q-Weil integers of weight 1 and

2q
n
2

g∑

j=1

cos(nθj) ≤ qn + 1, for any integer n ≥ 1.

(The θj are the Frobenius angles and this holds because the right-hand side of the inequality minus the
left-hand side is equal to #C(Fqn), the number of points of C over Fqn .)

The Proposition 6.12 implies the following effective estimate in the case of simple isogeny factors of
dimension at most d.

Corollary 6.13. If the Jacobian of a curve of genus g over Fq is isogenous to a product of abelian
varieties of dimension at most d, then

g ≤ qq
O(d2)

.

The underlying constant in O(d2) is absolute (independent of q and d2).

Example 6.14. Let q = p be a prime number and r ∈ Z≥1. The Fermat curve

Cr : X
pr+1 + Y p

r+1 + Zp
r+1 = 0

is such that all eigenvalues of Frobenius are 2r-th roots of −pr (see [26]). Thus Jac(Cr) is isogenous to a

product of abelian varieties over Fp of dimension at most 4r. On the other hand Cr has genus pr(pr−1)
2 .

Also it may be verified that the exponent of the class group Jac(C)(Fp) is ≤ pr+1, which is asymptotically
the square-root of the genus and may be compared with (6.7) below. Note that Cr is a hermitian curve
over Fp2r and it is a maximal curve in the sense that Cr(Fp2r ) is of cardinality 1 + p2r + 2gpr which
achieves equality in the Weil bound.

In fact the same result as in Corollary 6.13 was established around 2000 by A. de Jong using a different
method. We would like to thank de Jong for explaining his result to us which had remained unpublished.

Alternative proof of the Corollary. (de Jong). A theorem of Madan-Madden [39] states that the exponent
E of the class group of a curve C of genus g over Fq satisfies

E ≫
(

g

log3 g

) 1
4

. (6.7)

(Note that their arguments do apply uniformly in q and thus the above multiplicative constant is absolute,
though this is not explicitly stated in their paper. Precisely it can be verified that each estimate in their
proof improves when q gets large)

On the other hand let Frq be the q-th power Frobenius endomorphism of Jac(C) and let P ∈ Z[X ]
be its minimal monic polynomial. Note that P has integral coefficients because Frq is an element of the
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endomorphism ring of Jac(C) which is an order in a semisimple algebra. Since Frq is a semisimple endo-
morphism by Tate’s theorem, P (Frq) acts as 0 on Jac(C). Since Frq acts as the identity on Jac(C)(Fq),
we deduce that P (1) ∈ Z acts as 0 on Jac(C)(Fq). Therefore

E | P (1).
The polynomial P divides the product of the characteristic polynomials of Frobenius on the abelian
varieties which are the simple isogeny factors of Jac(C). By assumption these abelian varieties have

dimension ≤ d and there are qO(d2) isogeny classes of them by counting the Weil q-integers of weight 1
given via Honda-Tate theory, cf. the proof of Proposition 6.10. Thus

P (1) ≤ qq
O(d2)

.

Note that P (1) 6= 0 because Frq is always a non-trivial endomorphism. Combining the three estimates
we conclude the proof of the proposition. �

Alternative proof of Proposition 6.10 for G = GL(2)Q in weight 2. Consider the modular curve X0(N)
which is a smooth algebraic curve over Q of genus g0(N). Let (Ai)i∈I be the simple isogeny factors of
its Jacobian J0(N), counted with multiplicity, so that there exists an injective isogeny

∏
i∈I Ai →֒ J0(N)

over Q ([40, Prop 10.1]). By the theorem of Eichler-Shimura we are reduced to finding a lower bound for
the maximal dimension

d := max
i∈I

dimAi.

Suppose that the fixed prime p does not divide N . From now on we work over Qp and with a small
abuse of notation we still write X0(N), J0(N) and Ai for their base change X0(N)⊗Q Qp, J0(N)⊗Q Qp
and Ai ⊗Q Qp respectively.

There exists an integral model X0(N) over Zp and its reduction modulo p is smooth irreducible over
Fp. Also there exists a relative Picard scheme J0(N) which is a smooth abelian group scheme over Zp.
The generic fiber J0(N) ⊗Zp

Qp can be identified with J0(N). Since J0(N) has good reduction at p,
the Néron–Ogg–Shafarevich criterion tells us that Ai has good reduction at p for each i ∈ I. Let Ai

denote the integral model of Ai over Zp which is an abelian scheme. By the property of a Néron model,
the injection

∏
i∈I Ai →֒ J0(N) extends to an injection

∏
i∈I Ai →֒ J0(N). (The latter is an injection

because the kernel is flat over Zp with trivial group scheme as the generic fiber.) As an injection between
abelian schemes of the same dimension, it is also an isogeny.

Reducing modulo p we find that J0(N)⊗Zp
Fp is isogenous to the product

∏
i∈I

Ai ⊗Zp
Fp. Each simple

isogeny factor of J0(N) ⊗Zp
Fp is a factor of Ai ⊗Zp

Fp for some i ∈ I. In particular all isogeny factors
of J0(N)⊗Zp

Fp have dimension ≤ d.
Since X0(N) ⊗Zp

Fp is an irreducible smooth curve of genus g0(N) whose Jacobian can be identified
with J0(N)⊗Zp

Fp we are in position to apply Proposition 6.13 which yields

g0(N) ≤ pp
O(d2)

.

Since g0(N) ≍ N as N → ∞, this concludes the proof of Proposition 6.10 for G = GL(2)Q. �

6.4. Uniform approximation in the unitary dual. In this subsection we record some lemmas on
approximation by functions in the local Hecke algebra of bounded degree. Only in this subsection let G
be a connected reductive group over a p-adic field K. Write Uhs for a fixed hyperspecial subgroup of
G(K) and ΩK for the Weyl group for G relative to K.

We begin with the classical problem of approximating periodic functions by trigonometric polynomials.
The following result is a version with sharp constants that comes from the work of Beurling in the 1930’s
and rediscovered by Selberg in the context of the large sieve inequality. We identify T = R/Z with the
unit circle S1 inside C. Thus a trigonometric polynomial is viewed as an element of C[z, z−1.

Lemma 6.15 (Vaaler [61]). Let f be a function on T of bounded variation V (f) ∈ R≥0. For every integer
κ ∈ N there are trigonometric polynomials P±

κ of degree κ such that P−
κ ≤ f ≤ P+

κ and
∫

T

P+
κ − P−

κ =
V (f)

κ+ 1
. (6.8)

In particular ||P±
κ ||1 ≤ ||f ||1 + V (f)

κ+1 by the triangle inequality. Also the n-th coefficients of P±
κ are

uniformly bounded by ≪ V (f)
|n| for all n 6= 0.
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Proof. This is [61, Thm 19] where it is also shown that the constants are sharp if f is a sign function.
We briefly recall the the construction of the polynomials:

P±
κ (z) =

∑

|n|≤κ

[
Ĵ

(
n

κ+ 1

)
f̂(n)± n

(2κ+ 2)
K̂

(
n

κ+ 1

)
ĝ(n)

]
zn,

for all z ∈ T. Here f̂(n) (resp. ĝ(n)) are the Fourier coefficients of f (resp. the variation function of f).
The Beurling functions J and K are entire of exponential type 2π with Fourier transform:

Ĵ(t) := πt(1 − |t|) cot(πt) + |t|, K̂(t) := 1− |t|, |t| < 1.

The properties of J and K and some arguments in Fourier analysis imply the first two assertions of the

lemma. Since f̂(n), ĝ(n) ≪ V (f)
|n| for all n 6= 0, we deduce the third and final assertion on the decay of

coefficients. �

The Satake isomorphism induces a topological isomorphism G(K)∧,unr,temp ≃ Âc/ΩK where Âc ≃ Tr

is a complex torus with r theK-rank of G. For φ ∈ Hunr(G(K)) we write φ̂ for the corresponding function

on the real torus Âc or its quotient Âc/ΩK . The truncated Hecke algebra Hunr(G(K))≤κ is defined in
[58, §2] so that the following holds (which is all we need to know here): there exists a constant c > 0
(depending on a fixed choice of basis in the character group of a maximal torus in G over K) such that

for every κ ∈ Z>0, the set of φ ∈ Hunr(G(K)) such that φ̂ is a (ΩK -invariant) polynomial of degree ≤ κ

on Âc contains Hunr(G(K))≤κ/c and is contained in Hunr(G(K))≤cκ. (Use [58, §2.4] to see this.)

Lemma 6.16. Let c > 0 be as above. For every integer κ ≥ 1, and every rectangle R ⊂ G(K)∧,unr,temp,

there is a Hecke function φκ ∈ Hunr(G(K))≤cκ such that φ̂κ ≥ 0 on G(K)∧,unr,temp, φ̂κ ≥ 1 on R while

µ̂pl(φ̂κ) ≪ µ̂pl(R) + κ−r and |φκ| ≪ 1. Here r is the rank of G(K).

Proof. We can apply Lemma 6.15 to the characteristic function 1I of any interval I of T, in which case
the total variation is V (1I) = 2. Then it is not difficult to deduce the following statement in higher
dimension. Let R = I1× . . .× Ir be a rectangle in Tr. There are trigonometric polynomials P±

κ of degree
≤ κ in r variables such that P−

κ ≤ 1R ≤ P+
κ and
∫

Td

P+
κ − P−

κ ≪ κ−r. (6.9)

We choose φ̂κ to be the ΩK-average of P+
κ . Then φκ ∈ Hunr(G(K)) giving rise to φ̂κ via the Satake

isomorphism belongs to Hunr(G(K))≤cκ. Note that the first two assertions follow from the inequality
1R ≤ P+

κ .

The estimate of µ̂pl(φ̂κ) follows from (6.9) and the fact that the Plancherel density on G(K)∧,unr,temp

given by Macdonald formula is uniformly bounded below (see [58, Prop. 3.3]). In other words we used

that the Lebesgue measure on Âc/ΩK is absolutely continuous with respect to the Plancherel measure.

The Harish-Chandra Plancherel formula φ(1) = µ̂pl(φ̂) holds for all smooth functions φ thus in par-
ticular for all φ ∈ Hunr(G(K)). In the unramified case (see [65, Thm VIII.1.1] for the general case) we
have more generally the relation

φ(g) =

∫

G(K)∧,unr,temp

φ̂(π)Mπ(g)dµ̂
pl(π), g ∈ G(K), (6.10)

where Mπ(g) = (v◦, gv◦) is a spherical matrix coefficient of π, that is v◦ is a unit Uhs-fixed vector in the
representation space Vπ . Let us justify formula (6.10) by computing the trace of π(φ) ◦π(g)−1 on Vπ and
the Plancherel formula for φ(1). Note that π(φ) has image in Cv◦ because φ is left Uhs-invariant. Using
also the right Uhs-invariance, we infer that

π(φ)w = φ̂(π)(w, v◦)v◦

for all vector w ∈ Vπ . Thus π(φ)g−1v◦ = φ̂(π)Mπ(g)v◦. Since π(φ) ◦ π(g)−1 maps Vπ into Cv◦, this

implies that its trace is φ̂(π)Mπ(g).
From (6.10) we deduce that |φκ(g)| ≤ φκ(1) for all g ∈ G(K). Thus we deduce from the estimate for

µ̂pl(φ̂κ) that |φκ| ≪ 1. �
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6.5. The case of unitary groups. In this subsection let G be a unitary group as in §4.2 or its inner form
and assume that [F+ : Q] ≥ 2. We would like to explain unconditional results on the growth of field of
rationality which are already available from our current knowledge. Let us be brief; eventually complete
unconditional results for non quasi-split unitary (resp. symplectic/orthogonal) groups will follow from
our earlier arguments once the unitary group analogue of [42] (resp. [2]) is extended to inner forms and
Hypothesis 4.8 is verified.

We assert below that Theorem 6.1.(i) and Theorem 6.6 hold true for unitary groups without any
hypothesis. Let Fx = F(Ux) be a level aspect family constructed for G, now a unitary group, as in §6.1.
Let us define Sunr and Runr for G and Fx as in Theorem 6.6.

Theorem 6.17. Suppose that the highest weight of ξ is regular, that [F+ : Q] ≥ 2, and that Sunr 6= ∅ so
that Runr is defined. Then for all R ≤ Runr,

|F≤A
x |/|Fx| ≪R |Fx|/(log |Fx|)R, as x→ ∞.

The argument is the same as in Theorem 6.6 (also see Theorem 6.1). The theorem relies on some of
the earlier results, which we need to justify for unitary groups, but this is not so complicated as we are
concerned only with the unramified local components here. The necessary results are provided by [36,
Cor 5.3], especially the weaker analogue of Proposition 4.14 (here “weaker” means that no information
is available at finitely many v where π, η or the extension F/F+ is ramified at v). In Corollary 4.16,
only the first assertion is needed and derived from the latter substitute. Then the methods of proof
for Theorems 6.1 and 6.6 justify Theorem 6.17 once it is noted that the final main ingredients, namely
Lemma 5.1 and the level-aspect Plancherel equidistribution theorem with error terms ([58]), are still valid
for unitary groups.

6.6. Concluding remarks. As we have noted earlier, the arguments and main results of this paper
should apply to non-quasi-split classical groups as soon as the work [2] and [42] are extended to those
groups. There are several directions in which our work may be generalized. An obvious problem is to deal
with other reductive groups. As for the growth of field of rationality, we raised the question of removing
the hypotheses from Theorem 1.7 and power saving in Question 6.5. Any quantitative refinement such
as power saving would be of arithmetic significance, already in the case of weight 2 modular forms and
field of rationality Q, cf. Remark 6.9. Another widely open question is how much of §6 remains valid for
families in the weight aspect (for instance as defined in [58]). In this respect even the case of modular
forms is still unsolved (Maeda’s conjecture). Note that the finiteness of Weil numbers in the argument
for Theorem 1.1 fails if weight grows to infinity. Finally we would like to mention Hida’s recent study of
field of rationality (“Hecke field” in his terminology) for p-adic families of modular forms and arithmetic
applications ([31], [32]), providing a perspective different from ours.
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