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Abstract

A multi-chord, tangentially viewing, vertically displaced, high resolution x–ray spec-
trometer array has been adapted to the Alcator C–Mod tokamak for the purpose
of measuring the impurity rotation profile, in momentum source free plasmas. The
3 spectrometers have used Doppler shifted x–rays to measure the toroidal rotation
velocity. Data taken during Ohmic discharges indicate flat rotation profiles, in both
L–mode and H–mode; with velocities of ∼ − 10 km/s in L–mode and ∼ 35 km/s
in H–mode. The source of this momentum is at the plasma edge, with momentum
diffusion causing the center to rotate. By solving a simple diffusion equation, and
fitting the implied profiles to the data, diffusion coefficients (Dφ,H ∼ 0.100 m2/s, Dφ,L

∼ 0.250 m2/s ) and momentum time scales (τφ,H ∼ 0.080 s, τφ,L ∼ 0.030 s ' τE)
have been simulated. Data taken during ICRF discharges have shown many differ-
ent co–current profile shapes. Flat, co–current rotation profiles have been measured
and linked to EDA H–modes and momentum diffusion. The confinement times and
momentum diffusion coefficients have been found to be similar to those of both the
Ohmic case and for impurity particles. Peaked rotation profiles have been measured
and linked to ELM free H–modes and to diffusion and inward convection of momen-
tum. The confinement times (τφ,H ∼ 0.070 s), momentum diffusion coefficients (Dφ,H

∼ 0.400 m2/s) and convection velocities (vc ∼ 12 m/s), have been simulated with
another simple model. Data taken during ITB discharges have shown rotation profiles
that evolve from flat co–current to hollow, with rotation slightly counter–current in-
side the barrier foot. Radial electric field profiles have been infered using neoclassical
theory; these profiles are found to be highly sheared around the barrier foot. A lower
limit to the gradient of the radial electric field (∂Er/∂r) of ∼ 183 kV/m2 has been
set, and a lower limit on the shearing frequency has been approximated as ωE ' 38
krad/s.
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Chapter 1

Introduction

Alcator C–Mod[1] is a compact high density, high field tokamak, operating at the

Massachusetts Institute of Technology’s Plasma Science and Fusion Center, gener-

ously funded by the United States Department of Energy. C–Mod is one of the

world’s premier fusion experiments.

1.1 Background

1.1.1 Confinement

Fusion engineers’ ability to confine reactor grade plasmas adequately is the single most

important goal of present fusion research. Reduction of the underlying transport

processes which cause energy and particle losses is a major thrust in the tokamak

research. Thus, the formation and sustainment of transport barriers is a topic of

great interest.

Transport barriers generally lead to steep gradients in density, temperature or

pressure. Presently the two most common types of transport barriers are the high

confinement mode (H–mode) edge barriers and internal transport barriers (ITBs).

The H–mode is essentially an edge phenomenon that reduces both outward particle

and energy transport, leading to a very steep pressure gradient just inside the sepa-

ratrix, or last closed flux surface (LCFS). The ITB is a similar reduction in particle
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and energy transport at a location in the core of the plasma[2, 3]. These transport

barriers represent improved confinement modes of plasma operation, and thus are of

great interest to the fusion community.

1.1.2 Rotation and Radial Electric Field

Improved plasma confinement in either the H–mode or the ITB regime is linked to

plasma rotation and the radial electric field. In fact confinement and transport of

energy, particles and momentum are all related. Thus, to understand rotation and

momentum more completely leads to a better understanding of improved plasma

confinement.

Toroidal rotation and the radial electric field are inextricably linked, (some theories

are presented in Chapter 2). The question of whether the rotation is required to induce

the electric field, or the electric field induces the rotation has not and arguably can

not be answered1. The presence of one requires the other as a consequence of the

radial force balance.

The ability to measure the rotation velocity directly, and comparative inability

to measure the radial electric field directly2 makes the rotation velocity the natural

quantity to pursue.

1.1.3 Source Free Measurements

Machines heated with neutral beam injection (NBI), use beams of high energy neu-

tralized atoms (generally H or some isotope thereof) to heat (and fuel) the plasma. A

consequence of this heating is the introduction of momentum into the plasma. That

is, the beams, generally orders of magnitude higher energy than the bulk plasma,

represent a tremendous momentum source.

While interesting to measure, the rotation induced by the heating beams can

1A more pedestrian way of seeing this would be to analogize this question to that of the chicken
and the egg. Which came first...

2The radial electric field can be measured directly with heavy ion beam probes, which C–Mod
does not have.
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possibly obscure the underlying physics of rotation in magnetically confined plasmas.

On many machines the required conditions for improved confinement operation, a

regime of great interest, include heating beams. It is therefore highly desirable to

find a method of measuring plasma rotation in a source–free, improved confinement

mode of operation, in an effort to understand the underlying physics.

Attempts to measure purely plasma rotation effects in beam heated tokamaks

fall in three categories: balanced beam operation, perpendicular beam operation

and the removal of beam effects via data reduction, (previous results are presented

in Chapter 3). All three of these techniques present difficulties. Balanced beam

operation heats the plasma with “equal” amounts of beam power injected in each

direction. This leads to large uncertainties, and due to the high energy of the beams,

very small misalignments or differences in launched beam power could lead to large

momentum inputs. Similar problems are encountered with perpendicular beams.

Moreover, perpendicular beams can lead to a radial electric field and thereby a toroidal

rotation velocity. Removal of beam effects via data reduction has a different set of

problems. This technique requires that the precise values of the beam power and flux,

the neutral density profile, and the plasma temperature and density be well known.

Uncertainties associated with these quantities leave the results of this method sketchy.

Moreover, measurements of this type and their associated calculations don’t allow for

the possibility of some spontaneous plasma rotation. This creates a problem because

H–mode plasmas do spontaneously rotate and generally in a non-negligible fashion3.

Source free measurements can be made in beam heated plasmas, by running the

NBI then shutting it off and measuring the rotation decay time. When the beams are

turned off, the plasma goes back to L–mode and the L–mode momentum confinement

time, (τφL), is measured. However, this method does not allow the H–mode momen-

tum confinement time, (τφH), to be measured with good accuracy or high precision.

In C–Mod, due to the high densities, the x–ray photon counting rates are generally

high enough to measure both the rise time and the decay time, in and out of H–mode,

even during Ohmic plasmas.

3L–mode plasmas also rotate, but generally much less.
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1.1.4 Motivation

C–Mod is a momentum–source–free tokamak. The option to use NBI is not available.

High confinement modes can be achieved either through Ohmic methods or by Ion

Cyclotron Resonance Heating (ICRH).

Previous measurements of the toroidal rotation profile in C–Mod were performed

with spectrometers having very small toroidal view angles. The small angle of view

meant the toroidal rotation velocity profile had high uncertainty at best. The un-

certainty in these measurements has left the radial electric field profile in the plasma

highly uncertain as well.

In other machines with neutral beams, and neutral beam based diagnostics, mea-

suring the profiles of plasma parameters, is technologically simpler. Rotation mea-

surements made with beams use impurity line radiation generally in the visible region

of the spectrum; a great deal of technology has been developed to facilitate measure-

ments in this range of wavelengths. C–Mod does not have high current beams and

the associated beam based diagnostics4. Therefore, obtaining profiles of plasma pa-

rameters must be done by other means.

Although the measurements may be less complete without all the beam based

diagnostics, C–Mod is an ideal tokamak on which to perform rotation and momentum

experiments. High density correlates to improved x-ray signal strength; and by using

only radio frequency and Ohmic heating methods, the machine is momentum–source–

free.

1.2 Goals

There are two main goals in this investigation: first, to contribute to understanding

why H–mode plasmas in C–Mod rotate at all. Second, to generally characterize mo-

mentum transport, (χφ and vc,φ,) the momentum diffusivity and the momentum con-

vection velocity. Specifically, to understand χφ the momentum transport coefficient,

4In any case, the very high densities in C–Mod prohibit great depth of beam penetration, thus
some other means of diagnosis is required.
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and its apparent relation to χi, the heat transport coefficient and D the particle diffu-

sion coefficient. This work represents a new measurement in a momentum–source–free

tokamak, namely profile measurements of both the rise and decay times of toroidal

rotation, following the H–mode transition.

1.3 Outline

This thesis is presented in eight chapters and four appendices. Chapter 1 is the

introduction. Chapter 2 outlines some of the current theories that are either used in

this thesis or relevant to toroidal rotation measurements and momentum confinement.

Chapter 3 gives an account of previous measurements of toroidal rotation on C–Mod

and other tokamaks. The previous results are divided into categories based on the

type of diagnostic and the machine on which it was made. Chapter 4 describes the

experimental setup, the spectrometer, its components and the associated physics.

Chapter 5 presents some of the data taken with the spectrometer during Ohmic

discharges, and some theory to interpret the measurements. Chapter 6 presents data

taken during ICRF heated discharges and some interpretation of these data. Chapter

7 concerns data taken during ITB discharges, and presents some modeling of these

data. In the last chapter, Chapter 8, conclusions are drawn and possible directions

of future work are discussed. Appendix A is a detailed calculation of the expected

line intensities of He–like Ar. Appendix B is a calculation of rate coefficients for the

dominant line population mechanisms. Appendix C is a calculation of the fractional

abundance of argon charge states in coronal equilibrium. Finally, Appendix D has

some calculations of x–ray attenuation in air and beryllium.

1.4 The Alcator C–Mod Tokamak

Alcator C–Mod, the machine, is a compact high field, high density tokamak5, that

has been in operation since 1993[1]. Figure 1-1 is a cross–section of C–Mod; many of

5For much more information on tokamaks in general see ref. [4–7]
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the important components have been labeled. Table 1.1 has some of the important

parameters relevant for Alcator C–Mod. Alcator C–Mod usually runs with a deu-

terium majority plasma therefore the fusion reactions of interest are the D (D T) p

reaction (Eq. 1.1), and the D (D 3He) n reaction (Eq. 1.2).

2D +2 D →3 T +1 H + 4.03MeV (1.1)

2D +2 D →3 He+1 n+ 3.27MeV (1.2)

C–Mod is run with a minority species, generally H, (although sometimes 3He).

This minority is used generally to allow the Ion Cyclotron Range of Frequencies

(ICRF) auxiliary heating.

Figure 1-1: A cross–section of the Alcator C–Mod tokamak, from the original plans.
Many components have been labeled and their weights listed.

What separates C–Mod from most tokamaks is its extremely high particle den-

sities, magnetic fields and RF power densities, (see Table 1.1). Further, C-Mod

currently has exclusively ICRF auxiliary heating power. By late 2003 C–Mod will
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Parameter Symbol Range or Value Units

Toroidal Magnetic Field BT 3.0 – 8.0 Tesla (T)
Plasma Current IP 0.4 – 2.0 Mega-Amps (MA)
Major Radius R 0.68 meters (m)
Minor Radius a 0.22 meters (m)
Central Density ne 0.5 × 1020 – 2.0 × 10 21 per cubic meter (m−3)
Central Temperature Te 0.5 – 5.0 kilo-electron Volts (keV)
Elongation κ 0.9 – 1.8
Triangularity δ ∼ 0.1 – 0.85
RF Power PRF 0 – 6 Mega-Watts (MW)
Plasma Volume ∼ 1.0 m3

Operating Period 1993 – Year of our Lord (AD)

Table 1.1: Some of the relevant parameters for the Alcator C–Mod tokamak.

start to add Lower Hybrid wave launchers for current drive and plasma heating.

C–Mod has host of diagnostics summarized in Table 1.2. The table has been set

up to display the various plasma parameters and then list the diagnostics that make

those measurements. For more thorough coverage of the details of these and other

diagnostics, see the following sources [4, 7–13]

1.5 Units

Unless specifically noted otherwise all units in this thesis are in the System Interna-

tional, SI or MKS. There will be a few places where CGS units are used, and a few

places where the ghastly English units are used, these should be obvious.
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Measurement Symbol Diagnostic region

Electron Density ne Edge Thompson Scattering edge
Core Thompson Scattering core

Reflectometer edge
Langmuir Probes SOL
Plunging Probes SOL

TCI core
High Resolution Z - Meter core & edge

Density Fluctuations ñe PCI edge
BES edge

Reflectometer edge
Impurity Density nI HIREX core

Chromex edge
MCP core & edge

Distribution Function f(x,v, t) Langmuir Probes SOL
ECE core
NPA core

Electron Temperature Te Edge Thompson Scattering edge
Core Thompson Scattering core

HIREX core
GPC core & edge

Langmuir Probes SOL
Plunging Probes SOL

Ion Temperature Ti HIREX core
Neutrons central only
CXRS edge

Toroidal Plasma Rotation Vφ THIREX core
Edge Magnetics q = 1 Surf.

CXRS edge
Edge Plumes edge & SOL

Poloidal Plasma Rotation Vθ HIREX core
Edge Magnetics edge

CXRS edge
H to D ratio H/D Hα and Dα spectroscopy edge

NPA core
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Measurement Symbol Diagnostic region

q – profile q(r) MSE edge
Li Pellet Injection edge & core

Effective Charge Zeff Z – meter edge & core
Plasma Current Ip Rogowski Coils
Toroidal Magnetic Field BT Magnetic Coils
Poloidal Magnetic Field BP E-FIT

Magnetic Fluctuations B̂ Loops edge
Loop Probe

Loop Voltage V` Voltage Loops
Total Radiated Power Prad 2-π Bolometer

Prad (2-D) Bolo Arrays core & edge

Table 1.2: This is a comprehensive list of the diagnostics on C–Mod sorted by the
measurement they make, (continued from page 26).

27



(This page intentionally left blank.)

28



Chapter 2

Rotation Theory

In this chapter some of the theories of plasma rotation will be discussed. It has six

main parts: neoclassical theory, revisited neoclassical theory, subneoclassical theory,

ICRF induced rotation, spontaneous rotation and finally, a brief discussion of the

theory of internal transport barriers (ITBs). Due to the number and magnitude of

the theories presented in this chapter, only the most salient points will be discussed.

The most effort has been given to neoclassical theory, because it is the most well

established, and the most fundamental of all the theories presented here. The other

theories discussed here are relevant in the sense that they attempt to explain ob-

servations under conditions where neoclassical theory is not valid. A final goal of

this chapter is to simply present some of the many theories and approaches that ex-

ist to explain or attempt to explain plasma rotation. Comparison between some of

these theories and data will be presented in later chapters, (Chapters 5 & 6). One

looking for more detail is encouraged to investigate the many references cited in this

chapter[14–48].

In a source free tokamak, the plasma can start to rotate in essentially one (or

a combination) of four ways. First and foremost, by design, a tokamak induces a

current that is carried by the electrons and generates the poloidal Magnetic field.

Conservation of momentum requires the ions to balance the electrons momentum by

rotating in the opposite direction. Second, rotation can be generated by a pressure

gradient as will be shown by neoclassical theory. Thirdly, an electric field can be set
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up in the plasma, again more will be said about this in the discussion of neoclassical

theory. Finally, momentum can originate outside the plasma and be diffused or

convected inward.

2.1 Neoclassical Theory

The two standard presentations of neoclassical theory are the kinetic approach by

Hinton and Hazeltine[14] and the moment approach by Hirshman and Sigmar[15]. In

this thesis the presentation of neoclassical theory will follow the moment approach,

as presented by S. P. Hirshman and D. J. Sigmar[15]. In this section this theory,

and its relevance to the situation in Alcator and impurity rotation, will be reviewed,

following Hirshman and Sigmar[15] and Kim, Diamond and Groebner[16].

2.1.1 Moment Approach

The expressions for the neoclassical poloidal and toroidal rotation velocities are found

from the equilibrium parallel momentum and heat flow balance equations, for one

majority ion and one impurity ion species. Starting with the Vlasov Fokker–Planck

equation, relations for various transport coefficients are derived from the moment

equations that arise from the the first two odd moments,
∫

~vf(~v)dv the force balance

equation and
∫

v2~vf(~v)dv the heat flow balance equation. This has been done in

rigorous detail in Hirshman and Sigmar[15].

2.1.2 Rotation Velocities

If the effects of ion orbit shifts and the individual charge states are neglected, as in

Eqs. (33), (34), (56) and (57) of Ref. [16] (equivalently in Ref. [17]), it is found:

V I
φ =

1

Bθ

[

Er +
(K1 + 3

2
K2 − 1)

e

∂

∂r
Ti −

Ti
eni

∂

∂r
ni

]

(2.1)

V i
φ =

1

Bθ

[

Er +
(K1 − 1)

e

∂

∂r
Ti −

Ti
eni

∂

∂r
ni

]

(2.2)
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V I
θ =

1

Bφ

[

(K1 + 3
2
K2 − 1)

e

∂

∂r
Ti −

Ti
eni

∂

∂r
ni +

Ti
ZIenI

∂

∂r
nI

]

(2.3)

V i
θ =

1

Bφ

K1

e

∂Ti
∂r

(2.4)

where: Bφ is the toroidal magnetic field, Bθ is the poloidal magnetic field, Tk is the

temperature for ion k, nk is the density for ion k, k = I, i denote the impurity ion

and the majority ion species respectively, e is the charge of the electron, Zk is the

charge of the ion k, Er is the radial component of the electric field and K1 and K2

are viscosity matrix coefficients, (given by Eqs. 2.5 and 2.6 respectively). These four

equations are the neoclassical poloidal and toroidal rotation velocities for both the

majority ion and the impurity ion species.

2.1.3 Viscosity Matrix Coefficients

Through the moment approach the matrix solution leads to the coefficients Ki (i =

1, 2). These are required to calculate the toroidal and poloidal rotation velocities. A

full derivation of these Ki’s can be found in Ref. [16]. The coefficients Ki are given

by:

K1 ≡ D−1µi01(
√

2 + α− αβ) (2.5)

K2 ≡ D−1[µi00µ
i
11 − (µi01)

2] (2.6)

where:

D ≡ µi00(µ
i
11 +

√
2 + α− αβ) − (µi01)

2 (2.7)

α ≡ nIZ
2
I

niZ2
i

(2.8)
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β ≡
(

27

4

)2 (
mi

mI

)2(
15

2
+
√

2α
vTi

vTI

)−1

(2.9)

where: mk is the mass of ion k, eZk is the charge of the ion k and vTk
is the thermal

velocity of ion k, (k = I, i). A general relation for these µaij’s, valid over a wide range

of regimes, is given in Ref. [16]. For µ00 and µ11:

µii =
gµ̂Bii

(1 + 2.92ν∗aµ̂
B
ii/µ̂

P
ii)[1 + µ̂Pii/(6ωtaτaaµ̂

PS
ii )]

(2.10)

and for µ01 = µ10 :

µ01 =
5

2
µ00 −K01 (2.11)

where:

K01 =
gK̂B

01

(1 + 2.92ν∗aK̂B
01/K̂

P
01)[1 + K̂P

01/(6ωtaτaaK̂
PS
01 )]

(2.12)

and:

ν∗a =
g

1.46

ωta
v2
Ta
τta

〈B2〉
2〈(b · ∇B)2〉 (2.13)

ωta =
vTa

R0q
. (2.14)

〈B2〉 is the average of the square of the magnetic field, b is the unit vector in the

direction of the magnetic field, B is the vector magnetic field, R0 is the major radius

and q is the safety factor. In Eqs. 2.10 – 2.13 above, τab is given by:

1

τab
=

4

3
√
π

4πnbe
4Z2

aZ
2
b ln Λ

m2
av

3
Ta

. (2.15)

The µ̂Bii , µ̂
P
ij, K̂

PS
01 , etc. are given in Table 1 from Ref. [16], reproduced here as Table

2.1.
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Collisionality Banana Reg. Plateau Reg. Pfirsch–Schlüter Reg.
µ̂00 0.53 + Zeff 3.54 / 2 (3.02 + 4.25 Zeff) / C

K̂01 0.71 + Zeff 10.63 / 2 (12.43 +20.13 Zeff) / C
µ̂11 1.39 + 13 Zeff/4 11.52 / 2 (15.38 + 26.97 Zeff) / C

Table 2.1: The asymptotic dimensionless viscosity coefficients. Here C = 2.23 + 5.23
Zeff + 2.40 Z2

eff . In the the case of the impurity species Zeff should be replaced
everywhere with α from Eq. 2.8. This table was reproduced from Table 1 of Ref.
[16].

2.1.4 Radial Electric Field

If the poloidal rotation is neoclassical, then there is an equivalence between toroidal

rotation and the radial electric field. As can be seen in equations 2.1 and 2.2, the

electric field term plays a critical role in the magnitude and even the direction of the

toroidal rotation velocity.

Rearranging Eq. 2.1, yields:

Er = V I
φBθ −

(K1 + 3
2
K2 − 1)

e

∂

∂r
Ti +

Ti
eni

∂

∂r
ni. (2.16)

This then gives a way to infer the radial component of the electric field in the plasma,

using exclusively measured quantities.

2.2 Revisited Neoclassical Theory

Revisited neoclassical theory is a step from the more fundamental and better es-

tablished neoclassical theory (§2.1). The primary difference of revisited neoclassical

theory is a more thorough treatment of the high collisionality regimes[18]. Trans-

port barriers, both the high confinement (H–mode) edge barrier and the more recent

internal transport barrier (ITB), exhibit gradient scale lengths too short, and too

anisotropic to allow some of the assumptions made in the formulation of neoclassical

theory[18]. Revisited neoclassical theory attempts to deal with the high collisionality

in these regions.
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2.2.1 Parallel Flow Velocity

Revisited neoclassical theory gives, among other things, an expression for the parallel

flow velocity. The improved theory starts by solving Braginskii’s two fluid equations,

and reducing them to a set of four coupled, one dimensional equations[18]. After

many pages of calculations (detailed in [18]), an approximate expression for the ion

flow velocities is given by1:

U
(1)
‖,i = −hφBφ

cT (0)

eB0

(

e

T (0)

∂V (0)

∂ψ
+ (1 + η)

∂

∂ψ
lnN (0)

)

(2.17)

and:

U
(2)
χ,i = 0 (2.18)

where: U
(1)
‖,i and U

(2)
χ,i are the toroidal and poloidal ion rotation velocities, respectively,

hφ is the Jacobian of the transformation r→ (ψ, χ, φ), ψ is the direction of the poloidal

flux, χ is the direction of the poloidal magnetic field and φ is the toroidal angle. The

viscosity coefficient is given by η, and N (0) is the density.

2.2.2 Momentum Evolution Time Scales

Revisited neoclassical theory gives an expression for the expected momentum evo-

lution time scales [18]. There are two orderings that will be considered here, both

consequences of the parallel momentum equation, Eq. (41) from Ref. [18], stated

here as Eq. 2.19, for completeness2:

∮

JB
dχ

2π

[

∇·πi +miNi

(

∂

∂t
+ Ui·∇

)

Ui

]

·n̂ = 0. (2.19)

where: J is the current density, πi is the stress tensor and n̂ is the unit vector along

the field lines.

1Parallel flow velocity, i.e. the toroidal rotation velocity, will be referred to as U
(1)
‖,i ; and poloidal

rotation velocity as U
(2)
χ,i . This is done to remain consistent with the notation in the principal

reference for this section [18].
2Also recast as Eq. (60) in Ref. [18].
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The first of these orderings is the viscous relaxation time of parallel flow:

(τU‖,i
)viscous ∼ ε−2

(

qRνi
ci

)2

τi (2.20)

where: ε is the inverse aspect ratio, q is the safety factor, νi is the collision frequency,

ci is the sound speed, and τi is the confinement time.

The second is the evolution time scale provided as a consequence of finite ion

Larmor radius and ion inertia.

(τU‖,i
)f.l.r. ∼ q−2

L2
ψ

a2
i

τi (2.21)

where: Lψ = 1
ψ(r)

d
dr
ψ(r), and a is the minor radius.

2.3 Subneoclassical Theory

Subneoclassical theory is in some sense more comprehensive than revisited neoclassical

theory, in terms of the orderings. Although more complicated, it is also arguably more

detailed. Depending on the application one must evaluate whether the increased

complication is justified. For completeness this theory will be discussed here; for

more detail consult Ref. [19].

Subneoclassical theory is an extension of revisited neoclassical theory, with the

inclusion of finite Larmor radius and inertial effects, previously left out of revisited

neoclassical theory. Of fundamental importance, is that this theory provides a non-

degenerate ambipolarity constraint, and helps to define Er and Vφ[19].

2.3.1 Ambipolarity Constraint

Subneoclassical theory states that the ambipolarity constraint is linked to momentum

and momentum confinement through the neutrality constraint. Perpendicular particle

diffusion is a random walk process with step size ρL, the Larmor radius. The particle’s

orbit around the field geometry is directly related to the particle’s momentum, by the

neutrality requirement. Charge separation and associated electric field that is set up
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heavily influence the particles momentum. Thus, the particle’s momentum is linked

to the ambipolarity constraint.

This may seem trivial, but it offers an explanation as to why the momentum

confinement time scales and the particle confinement time scales are thought to be

similar. Particles carry momentum, thus momentum confinement must be related to

that of the particles which carry the momentum.

Reference [18] gives what is called the ambipolarity equation, (Eq. 58, Ref. [18]).

Through some substitutions and assuming a circular plasma cross section, it is found

that the momentum confinement time scale τU‖,i
is comparable to the neoclassical

relaxation time of the temperature:

τU‖,i
∼ τTi

∼
[

1 +
Q2

S2

](

Ti
Ereqai

)2

τi (2.22)

where:

Q = 4

(

Uθ,iBφ

B

)

− 5

[

T

eB

∂

∂r
ln(N

√
T )

]

(2.23)

S = 2
(χ‖,i

rN

) B2
θ

B2
(2.24)

with χ‖,i being the parallel heat transport coefficient.

2.3.2 Subneoclassical Heat Flux

Subneoclassical theory redefines the neoclassical and revisited neoclassical heat flux.

(This derivation and the associated result can be found in Ref. [19].) In both neoclas-

sical and revisited neoclassical theory the ordering of terms yielded expressions that

were only valid where the collisionality was high and the spatial gradients of plasma

parameters varied slowly, i.e. long scale lengths, ρi � Ln. This requirement is not

met in the H–mode plasma edge, nor, necessarily, in the ITB region of the plasma

( ρi

Ln
' 1

40
).

Using the ambipolarity equation (Eq. (58), Ref. [18]), and assuming time inde-
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pendent profiles, we can write:

τU‖,i
= − 3.12

(û1 + û2)

τi
q2a2

(

1

Ti

∂Ti
∂r

)2

(2.25)

where:

û1 + û2 = Fνcx +

[

2k − 1.5 − 2

ηi
− 2 − z

p

]

(2.26)

where: û1 and û2 are N0, Ni, Ti, Zeff,i, ṁφ,i, and Jr profiles3, νcx is the charge

exchange cross section, k and p are profile parameters, ηi is the viscosity coefficient,

and:

F (x) = 0.8

(

eB

∂T/∂r

)

R2

rΛ1

(2.27)

where: x is the distance from the LCFS: x ≡ r − rlcfs

Λ1 = 0.19

√
Ai
B

(ZeffN(20),i)
q2R2

T
3/2
i

(

r

Ti

∂Ti
∂r

)−1

(2.28)

with: Ai majority ions’ atomic mass, B in Tesla, N(20),i is the density in units of 1020

m−3 and Ti in eV .

This equation (Eq. 2.25) is another momentum confinement time scale, based

on the subneoclassical heat flux. It should be noted that (û1 + û2) > 0 corresponds

to a linear relaxation of the rotation and (û1 + û2) < 0 corresponds to a linear

acceleration[19].

There now exists a theory that is valid over the entire plasma. The subneoclassical

theory attempts to explain transport even in the steep edge gradients, and the steep

gradient regions of the ITB.

3If the the condition (û1+ û2)
2 ≥ 4û1û2 is satisfied, this implies profiles where ambipolarity could

not be preserved[19].
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2.4 ICRF Induced Rotation

In recent years, much work has been done to explain plasma rotation generated by ion

cyclotron radio frequency (ICRF) waves. In this section some of the current theories

of ICRF driven rotation are outlined.

Ion cyclotron resonance heating (ICRH) can induce nonambipolar minor radial

transport of resonant ions. This can lead to charge separation, and hence a modifi-

cation of the radial electric field profile, this in turn will lead to a toroidal rotation

velocity[20].

During simple, collisionless guiding center motion in a torus the orbit excursions

inward and outward exactly cancel out leading to no net minor radial transport.

This precise balance of particle motion is known as omnigenity. During ICRH this

omnigenity rarely holds.

In a plasma with pressure gradients, the symmetry of Coulomb collisions can be

broken and a net particle transport can arise. This leads to the well known neoclassical

transport (§2.1); it is automatically ambipolar[20].

2.4.1 Perkins’ Theory

Perkins’ theory of ICRH induced rotation assumes a plasma of two components: a

high energy tail and a bulk plasma in thermal equilibrium[21]. The bulk plasma

responds to applied torque via angular momentum diffusion. The high energy ions

lose energy and redistribute themselves by ion–ion pitch angle scattering and drag

collisions. This leads to particle displacements both radially inward and outward,

and can result in net particle loss and thus radial currents. Radial currents in the

energetic tail must be balanced by radial currents in the bulk plasma, creating a

torque density. Energetic particles also directly transfer momentum to the bulk by

collisions[21].

Using the Monte Carlo ORBIT code[22, 23] calculations and predictions of the

induced rotation were made. It was predicted that as the resonance location moved

from the low field side of the plasma to the high field side of the plasma, the induced
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torque and hence the rotation velocity should change direction[21]. Experimentally,

this has been shown not to occur[24].

2.4.2 RF Orbit Shift Theory

In the RF drive theory presented by Chang [20, 25], rotation is driven by a radial

electric field (Er) generated by an ICRF induced radial current (jrfr ). The large

radial dielectric constant of the plasma allows the growth of a plasma return current

(jpr ), which grows until it is equal to −jrfr , thus stopping further growth of the radial

electric field[20].

As the currents grow and take shape the bulk plasma will be subject to both jpr

× Bθ and jpr × Bφ forces, while the resonant ions will be subject to jrfr × Bθ and

jrfr × Bφ forces. Different loss rates between the resonant and nonresonant ions, will

lead to a net input of toroidal angular momentum[20].

The main differences in loss rates arise from asymmetries in trapped particle

orbits, and the growth rates of the inner and outer legs of the orbits, while the

currents (jpr and jrfr ) are transient. Reference [20] also uses the code ORBIT [22, 23],

to make calculations of the guiding center motion of particles and the subsequent jrfr

that arises. The authors then go on to estimate the electric field that will arise and

discuss the development of toroidal rotation, specifically for the Tokamak Fusion Test

Reactor(TFTR). In a later paper, Chang makes estimates of the growth of toroidal

rotation vs. time in C–Mod[25]. It was stated the toroidal rotation would grow like:

〈RVφ〉 = 〈RV 0
φ 〉(1 − e−t/τφ) (2.29)

where 〈RV 0
φ 〉 is the terminal toroidal angular speed. More will be said about this in

Chapter 6 when some data are compared to various theories.

2.4.3 Rotation Drive Theory: RF Tail

A theory for the generation of rotation and current drive by the asymmetric launch-

ing of ICRF power has been proposed by T. Hellsten[26]. A code SELFO, has been
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developed. SELFO self consistently calculates the velocity distribution and the power

deposition using a quasi–linear theory for wave–particle interactions, (velocity distri-

bution calculated with the Monte Carlo code FIDO[27], wave field calculated with

the global wave code LION[28, 29].)

It has been found that waves launched toroidally co–current generate large fast

ion tails. However, waves launched counter–current fail to generate tails with as high

energies; by similar mechanisms as the RF drive theory (§2.4.2), this leads to toroidal

momentum input.

2.5 Spontaneous Plasma Rotation

It has been observed that during Ohmic high confinement modes (Ohmic H–modes),

a plasma will start to rotate in the co-current direction. With no auxiliary power

input, no neutral beam injection or ICRF power input, the possibility of momentum

transfer from either of these sources has been totally removed [30]. The plasma has

been seen to rotate, so a theory to explain this is required. One such theory is the so

called accretion theory.

2.5.1 Accretion Theory

The H–mode equilibria of a tokamak plasma produce steep density and tempera-

ture gradients in the edge of the plasma. These gradients naturally form a steep

pressure gradient which is capable of giving rise to various modes that drive plasma

rotation[31].

Accretion theory is based on the balance of the inflow velocity of the angular

momentum with the outward diffusion from the interior of the plasma column. This

being the premise, the momentum flux which includes both diffusion and convection,

is given by the equation[31]:

ΓJ ' −min

(

J0vJ +DJ
∂J

∂r

)

(2.30)
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where minJ is the momentum density with J = Rvφ. Eq. 2.30 is to be used in the

momentum continuity equation:

min
∂J

∂t
+ ∇ · ΓJ = SJ (2.31)

where SJ is a momentum source at the edge of the plasma. Following the example of

the particle transport model, the ratio of vJ/DJ is an increasing function of radius,

with the specific form:

vJ
DJ

' 2
r

a2
αJ . (2.32)

In the numeric solution of Eq. 2.30, αJ is taken to be a free parameter across the

minor radius of the plasma. Experimental profiles are then matched by varying αJ

to yield a solution, with a constant source term SJ .

Using quasi-linear theory, Coppi shows that electrostatic modes driven by the ion

pressure gradient can produce a momentum inflow that lends merit to the momentum

flux, Eq. 2.30[31].

Considering electrostatic modes in slab geometry of the form:

φ̂ ' φ̃ exp(−iωt+ ikyy + ik‖z) (2.33)

that are localized around a surface x = x0, with a Doppler shifted frequency ω̄ =

ω - k‖v‖(x0). If ω̄ > k‖vthi the perturbed parallel momentum conservation equation

becomes:

min

(

−iω̄ṽ‖ +
−ikyφ̃
B

dv‖
dx

)

= −ik‖p̃i − ik‖enφ̃. (2.34)

Considering (ω̄/k‖
d
dx
v‖) ∼ ( d

dx
pi)/(min) and | d

dx
pi|/(eBn) > |ω̄/ky| then[31]:

ṽ‖ ' −ky
ω̄

φ̃

B

[

dv‖
dx

+
k‖

minω̄

dpi
dx

]

. (2.35)

These equations lead to a dispersion relation for the electrostatic modes which
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can be found in Ref. [31]. Further, a quasi-linear flux can be stated as:

Γk ' −2γk
ω̄k2

〈|v̂(k)
Ex

|2〉
[

min
dv‖
dx

+ 2
k‖
ω̄k

dpi
dx

]

(2.36)

here γk = Im(ω̄k) is the mode growth rate, 〈|v̂(k)
Ex

|2〉 is the mode amplitude, and Dk

= 2γk

ω̄k
2 〈|v̂(k)

Ex
|2〉.

Accretion theory offers an explanation of spontaneous plasma rotation based on

instabilities of electrostatic modes, driven by ion pressure gradients. This theory offers

an explanation why momentum is preferentially transported up the temperature gra-

dient. Further, accretion theory shows similarities between momentum confinement

and particle and energy confinement.

2.5.2 Toroidal Momentum Pinch and Flow Reversal

Spontaneous rotation as a result of fluctuation-induced toroidal stress has been pro-

posed by K.C. Shaing[33]. This theory is motivated by the failure of neoclassical

toroidal stress to explain observed toroidal momentum confinement[33].

This theory determines the toroidal rotation profile, up to a constant, by balancing

the diffusion flux and the pinch-like flux. The constant then turns out to be the U‖0

the rotation velocity on the magnetic axis. U‖0 is then determined by evaluating the

residual stress[33].

Shaing begins his theory from the drift kinetic equation[14], (Eq. (1) from [33]):

∂f

∂t
+ (v‖n̂+ vd) · ∇f +

e

M

∂Φ

∂t

∂f

∂ε
= C(f) (2.37)

where: f is the particle distribution, v‖ is the velocity parallel to the magnetic field,

n̂ = B / B, vd is the drift velocity, Φ is the electrostatic potential, ε = v2

2
+ eΦ

M
is

the particle energy and C(f) is the coulomb collision operator.

At this point it is assumed that only the electrostatic fluctuation induced stress

is of interest. Only the E × B drift velocity is kept in the linearization process[33].

Under these assumptions Eq. 2.37 reduces to:
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v‖n̂ · ∇f0 = C(f0), (2.38)

with the solution:

f0 =
N

π3/2v3
t

exp

(

−v
2

v2
t

− 2eΦ̃

Mv2
t

)

. (2.39)

The next order kinetic equation is:

∂f1

∂t
+ (v‖n̂ + vd) · ∇f1 +

e

M

∂Φ̂

∂t

∂f1

∂ε
+ vd · ∇f0 +

e

M

∂Φ̂

∂t

∂f0

∂ε
= C(f1) (2.40)

which can be solved with the expansion:

f1 = g +
2v‖U‖

v2
t

f0 +
2v2

‖U
2
‖

v4
t

f0 + · · · (2.41)

here g is a localized distribution, U‖ is the parallel flow speed.

Shaing argues, Ref. [33], that the steady state rotation velocity profile satisfies

the equation:

∂

∂ψ
U‖ −

5

2

(

1

T

∂

∂r
T

)

U‖ = 0 (2.42)

with the solution:

U‖ = U‖0

(

T

T0

)
5

2

(2.43)

where 0 denotes quantities on the magnetic axis. To determine the quantities on the

magnetic axis, the inhomogeneous equivalent of Eq. 2.42 must be solved, where the

right hand side is given by R the residual stress.

∂

∂ψ
U‖ −

5

2

(

1

T

∂

∂r
T

)

U‖ = R (2.44)

with the solution:
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U‖ = U‖0

(

T

T0

)
5

2

+

∫ ψ

0

dψ′R

[

T (ψ′)

T (ψ)

]− 5

2

. (2.45)

The magnitude and sign of U‖0 are determined if the boundary conditions are

known. If U‖(ψa) = 0 then:

U‖0 = −
∫ ψa

0

dψ′R

[

T (ψ′)

T (ψ)

]− 5

2

. (2.46)

This theory offers an explanation for the reversal of plasma rotation during the L

→ H transition during Ohmic discharges.

2.6 ITB Theory

This section will touch on the current “State of the Art” for ITB theory, following

Connor, Ref. [34]4.

Current thinking relates the formation of an ITB with the suppression of micro-

turbulence, most likely, through some sort of dynamic bifurcation theory[35–42].

In an ITB the primary transport mechanism has been changed from one of a tur-

bulent nature to a more neoclassical situation. This relative increase in confinement,

reduction in transport, leads to an improved operating regime, with added benefits

of increased plasma pressure, and a large bootstrap current[43, 44].

The suppression of microturbulence is thought to be achieved through shearing in

the E × B flows in the plasma. These E × B flows, around the toroidal and poloidal

directions of the plasma, act to break up smaller turbulent cells that are primarily

responsible for the anomalous transport. The common expression for the influence of

the E × B shear on microturbulence is the shearing frequency[45]:

ωE =
RBθ

B

d

dr

(

Er
RBθ

)

· kθ
kr

(2.47)

4This work is not yet published, so many other references have been included. Connor’s re-
view paper is totally comprehensive, and an excellent source for ITB information, both theory and
experiment.
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where: R is the major radius, B is magnetic field, Er is the radial electric field, and

kθ and kr are poloidal and radial wave numbers, (kθ / kr ∼ 1).

A generally accepted criterion for the E × B shear to suppress turbulence is given

as ω ≥ γ, where γ is the growth rate of the instability causing the turbulence. A

common quantitative measure is γ ' cs
R

, where cs is the sound speed[46, 47].

Low or reversed magnetic shear has also been linked to the reduction in or even

suppression of, drift wave instabilities, their radial extent and the transport for which

they are responsible[34, 48]. Presently, there are indications that the magnetic field

and its profile can also influence the location of the foot of the barrier. Magnetic field

and its profile will prove very important in the development of and operation in, ITB

regimes.

2.7 Chapter Summary

Neoclassical, Revisited neoclassical, Subneoclassical theory, will all be compared to

the results in this thesis. It will be shown that none of these theories adequately

explain the results presented here. These theories have been included for the sake of

completeness. Perhaps these theories could be revised based on the results in later

chapters.

Neoclassical theory is the most fundamental explanation of plasma transport, and

it is from this that many other theories stem. Revisited neoclassical theory is a step

on the way to a theory that adequately treats all regimes of the plasma. By including

effects of regions of high collisionality, the theory properly treats most of the plasma.

Two orderings for the momentum confinement time were presented; first for the

viscous relaxation time and the second as a consequence of the finite Larmor radius

and ion inertia. Subneoclassical theory is a further reordering of neoclassical theory

for various regimes, and modes of operation, it is valid over the widest range of plasma

regimes and for all relevant gradient scale lengths. This is the most comprehensive

because it can be used even in the H–mode pedestal and the ITB region. It is

important to note that neoclassical theory is established and in some sense supported
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by experiment; while both revisited neoclassical theory and subneoclassical theory

are unsubstantiated and unproven by experiment.

ICRF rotation theories explain plasma rotation by generation of currents in the

plasma and the loss of particles by through various asymmetric loss rates. Trapped

particles play a crucial role in the generation of angular momentum. Wide banana

widths can have dramatically different growth rates of their inner and outer orbit legs.

This will lead to asymmetries in the radial transport of resonant and nonresonant

particles as well as trapped and untrapped particles; the differences in loss rates will

lead to a net introduction of angular momentum.

Two theories of spontaneous plasma rotation have been presented here: Coppi’s

accretion theory, and the theory of toroidal momentum pinch and flow reversal, as

given by Shaing. Coppi finds plasma rotation induced by various electrostatic modes

arising from pressure gradients. Shaing explains rotation by fluctuation induced

toroidal stress.

Finally, the theory of ITBs was discussed, following the work of J. W. Connor[34].

ITBs are believed to be most closely linked to the suppression of microturbulence by

E × B shearing. Other important factors include the growth rates of various drift

wave instabilities, and the magnetic field and its profile shape.

46



Chapter 3

Previous Results on Rotation

The tangentially viewing high resolution x–ray spectrometer (THIREX) array on

C–Mod was inspired from a single tangentially viewing high resolution x–ray spec-

trometer on Alcator C, HIREX jr[51]. The experiment was designed to measure

(impurity) toroidal rotation on the plasma axis. This chapter will be divided into

four sections. The first discusses other high resolution x–ray spectroscopic measure-

ments on C–Mod, while the second details similar rotation measurements on other

machines. The third covers other (non-beam based) spectroscopic rotation measure-

ments. Finally, the fourth section details toroidal rotation measurements from beam

based diagnostics. The chapter concludes with a brief chapter summary.

3.1 High Resolution X–Ray Spectrometer Mea-

surements on C–Mod

This section will briefly point out and highlight some of the previous rotation mea-

surements made by high resolution x–ray spectroscopy on C–Mod.

3.1.1 High Resolution X–Ray Spectroscopy on C–Mod

The high resolution x–ray (HIREX) spectrometer array on C–Mod was initially em-

ployed to measure both toroidal and poloidal rotation, ion temperature profiles, im-

purity transport, neutral hydrogen densities, impurity density and for atomic physics
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studies[52]. Since its inception, it has been used to make many rotation measure-

ments[17, 24, 53]

Figure 3-1 is a top view of the HIREX array at B–port. The HIREX array had

five spectrometers (presently 3) with views into the plasma at various angles, these

views could be swept through a range of poloidal angles to make measurements with

different poloidal/radial components. However, the toroidal angle of the measurement

is fixed. The spectrometers are all scanable in wavelength, on a shot to shot basis.

The five spectrometers all had different views. Of the five, some pairs were sym-

metric about the mid–plane and/or the radius of the port. By adding and subtracting

the signals from these various spectrometers the poloidal and toroidal impurity rota-

tion can be determined. The sixth spectrometer, HIREX jr, not in the array, has a

purely tangential view at C–port, (Fig. 3-1).

Figure 3-2 is a view of the HIREX array, in a poloidal cross-section of the machine.

The overlap in the different spectrometer views allow the entire plasma to be viewed

by the spectrometer array.

Figure 3-3 are some data from previous HIREX rotation measurements. The

measurement in the center of the plasma was made with the tangentially viewing

spectrometer located in C–port, again see Fig. 3-1; the error associated with this

measurement is fairly small. The measurements made radially further out, (Fig. 3-3),

were made with the mostly poloidally viewing spectrometers. The error associated

with these measurements are quite large, because the the toroidal angle is quite

small (∼ 6◦). The contribution to the error because of this angle is proportional

to the secant of the toroidal angle of observation. This method of toroidal rotation

measurement was also limited by the long integration time required to get sufficient

counting statistics.
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Figure 3-1: A top view of the old HIREX array on B–port. The views of the spectrom-
eters are almost normal to the surface of the plasma. However, each spectrometer has
a slight toroidal component (∼ 6◦) to its view angle. The array had 5 spectrometers,
two on top of each other on the left (C–port side), and three stacked on top of each
other on the right (A–port side). The spectrometers are vertically scanable, see Fig.
3-2. The original central tangential view can be seen on C–port.
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IGLOO

Figure 3-2: A view of the HIREX array, in a poloidal cross-section. The views of the
individual spectrometers can be swept through a range of angles allowing for a large
area of possible viewing. This is a view of the A–port side of B–port, (i.e. through
B–port looking towards A–port), also see Fig. 3-1 for orientation.
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Figure 3-3: Plotted here is toroidal rotation vs. radius, (Green Circles). The upper
plot is in H-mode before the ITB phase of a discharge, and the lower plot is during the
ITB phase of the discharge. Previous measurements of Vφ have been quite limited.
Further, the data gleaned from the mostly poloidally viewing HIREX array have large
error bars. Plotted over these data, as the solid line, is the rotation profile as calcu-
lated from neoclassical transport theory, with Er= 0. This discrepancy between the
measured and theoretical prediction for the rotation velocity indicates the presence
of a radial electric field. (More on this can be found in Chapter 2: Rotation Theory.)
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3.2 High Resolution X–Ray Measurements on Other

Machines

C–Mod is not the only machine that has used a high resolution x–ray spectrometer

to measure plasma rotation.

3.2.1 High Resolution X–Ray Spectroscopy on DITE

A Johann configuration crystal spectrometer was used on the tokamak DITE to in-

vestigate lines of O and Fe. Measurements were made during 2.1 MW of co-current

neutral beam injection, the plasma was found to rotate around 150 km/s[54]. Fur-

ther, this exceeded the rotation velocity in any other mode of operation by nearly

an order of magnitude[54]. These measurements were enhanced during H0 beam in-

jection. Perpendicular momentum diffusivities, (χ), were calculated and found to

be about 0.6 m2/s, at least an order of magnitude above the expected value from

classical or neoclassical theory.

3.2.2 High Resolution X–Ray Spectroscopy on PDX

The poloidal divertor experiment (PDX)[55] was one of the first machines to use a

bent crystal spectrometer, to measure x–rays emitted from a plasma, for diagnostic

purposes. Vφ measurements were made using Doppler shifted Ti xxi (x–ray) and Ti

xvii (visible) lines. By using both of these lines, Vφ at two radial locations was

measured, (r/a ∼ 0.0 and r/a ∼ 0.5). During NBI, Vφ was found to reach values

near 100 km/s on axis and about 40 km/s at r/a ∼ 0.5. The profile was found to

be peaked. Toroidal rotation decay times were found to be between ∼ 0.080 – 0.180

s, significantly longer than other machines. It was determined that at the time all

existing theories were inadequate to describe the damping rate of Vφ.
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3.2.3 High Resolution X–Ray Spectroscopy on TFTR

High resolution x–ray spectroscopy has been used to measure impurity parameters[56]

on the Tokamak Fusion Test Reactor (TFTR). In TFTR these data were taken using

a Johann geometry bent crystal spectrometer and lines from He–like titanium, (Ti

xxi.) The maximum rotation velocity recorded was 500 km/s, this during a 15

MW deuterium beam injection1. This spectrometer was also a very high resolution

instrument, λ/∆λ = 25 000.

In addition to many atomic physics results, experiments from TFTR showed beam

heated rotation results consistent with expectations from the calculated input torque.

Using the rotation decay after the beams were shut off, an L–mode momentum con-

finement time (τLφ) of about 0.3 s was deduced.

3.2.4 High Resolution X–Ray Spectroscopy on JET

High resolution x–ray spectroscopic measurements have been made on the Joint Eu-

ropean Torus (JET) using a bent crystal spectrometer. Using this spectrometer, the

JET team is able to measure many different spectral lines[57], see Table 3.1. The

spectrometer has very high wavelength resolution λ/∆λ = 20 000, and time reso-

lution of ∼ 20 ms[57]. It is quite difficult to scan the spectrometer in wavelength

though.

Since the spectrometer was installed, it has been used to make toroidal rotation

measurements, predominantly using He–like Ni, (Ni xxvii )[58, 59]. JET has also

made some observations using the spectrometer during the ICRH portion of some

discharges. During plasmas heated exclusively by ICRF waves, rotation has been

seen to change from the Ohmic case by 30 km/s. No profile information has been

taken with this spectrometer, as it is only one single channel.

On JET they have also performed a series of experiments that compared the

rotation frequency of C and Ni, ΩφC and ΩφNi, respectively. They found that the

two frequencies had almost perfect correlation, for the same value of effective minor

115 MW of deuterium beam power represents a substantial momentum input.

53



Ion Crystal hlk λ (Å) θB (◦) 2d (Å) Ri

Cr xxiii quartz 203̄ 2.18 52.45 2.7496 1.80 × 10−5

Cr xxiii Ge 400 2.18 50.43 2.8280 4.65 × 10−5

Ni xxvii quartz 223̄ 1.59 51.57 2.0296 0.41 × 10−5

Ni xxvii Ge 440 1.59 52.67 1.9998 2.13 × 10−5

Ti xxi quartz 103 2.62 52.15 3.3178 0.77 × 10−5

Ar xviii quartz 110 3.73 49.39 4.9130 1.84 × 10−5

Table 3.1: Here is a table of some of the characteristics of the spectrometer on the
JET tokamak, taken from page 240 of reference [57]. For each: h, l, k the Miller
indices of the crystal, λ (Å) the wavelength for which they are computed, θB (◦) the
Bragg angle, 2d (Å) the atomic plane spacing and Ri the integrated reflectivity

radius, (〈ρ〉)[59]. This indicates that both of the impurities were strongly coupled to

the bulk plasma.

The measured timescale for plasma acceleration, has been found to be compara-

ble to Spitzer’s slowing down time[58]. This corresponds to the timescale for both

tail formation and ICRH induced radial diffusion. In later experiments, a correlation

between edge neutral density and both angular rotation frequency and angular mo-

mentum density, was shown[59]. It was also determined that the ion pressure gradient

was the main driving mechanism for toroidal rotation.

3.3 Other Spectroscopic Rotation Measurements

This section will give quick briefs about rotation measurements made on quite a few

other experiments using various spectroscopic means. These should be differentiated

from high resolution x–ray spectroscopic measurements, (§3.1 & §3.2) and from the

beam based spectroscopic measurements, (§3.4).

The measurements presented here have been made with an intrinsic impurity, and

in either the visible or the UV region of the plasma. Measurements of this type could

not be made in Alcator, due to the plasma temperature and density.

Some of the first measurements of plasma rotation in tokamaks were made in the

LT – 3 tokamak[60]. Measurements were made using Doppler shifted lines of ionized

oxygen impurities. The plasma was observed to rotate toroidally with the current,
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at about 5 km/s. The oxygen – oxygen collision frequency was determined to be

much less than the oxygen – hydrogen collision frequency. This implies the impurity

is collisionally coupled to the bulk plasma, parallel to the magnetic field. Thus, the

flow velocity of the two ions should be the same. Poloidal rotation was determined

to be neoclassical, and toroidal rotation was determined to be anomalous.

In the Princeton Large Torus (PLT) rotation was studied using some lines of H i,

C v and Fe xx. Using NBI, peak rotation velocities of ' 120 km/s were found[61].

By using the three aforementioned, lines a three point profile was measured, and it

was found to be quite peaked. Measurements were made, during Ohmic, H0 – beam,

and D0 – beam heating. During Ohmic L–mode plasmas, the rotation was found to

be in the counter-current direction, with a small value ∼ 10 km/s. A beam orbit

code was developed and compared with the data; good agreement was found[61].

Momentum diffusivities (χφ) of ∼ 1 – 3 m2/s were found. Calculations based on

neoclassical theory indicate a central potential of about − 1.2 kV, in the absence of

neutral beam injection. Finally, momentum diffusivity was modeled and found to be

in the range of 1 × 104 – 5 × 104 cm2/s, about two orders of magnitude above the

expected neoclassical value.

Similar measurements were made on the Torus II tokamak using a six channel

grating polychromator, looking at the Doppler shift of the He ii (4685.75 Å) line[62].

The Torus II team found that the plasma had an average toroidal rotation velocity of

1.6 km/s in the co-current direction. They also measured the damping of the rotation

in time. It was found that 10 µs after the heating phase, the plasma rotation had

dropped below detectable levels. These experiments also used the measured poloidal

velocity to calculate the radial electric field (Er). Estimates for Er were made from

neoclassical theory; based on data values of 2.5 – 5 kV/m were found. Toroidal

rotation decay time scale was found to be very short, (τ ∼ 10 µs)

In the JFT-2 tokamak Vφ was measured using Doppler shifted lines of Ti xiv ,

O vii , and C v [63]. These three lines gave a three point toroidal rotation profile

with measurements at r/a of 0.2, 0.4 and 0.6, (Ti, O and C, respectively). Vφ ∼
10 km/s with relatively flat profiles were measured during ∼ 1 MW of NBI power.
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Interestingly, JFT-2 concluded that rotation was not relevant to transport processes

in their tokamak[63].

In the TM–4 tokamak toroidal and poloidal rotation velocity profiles were mea-

sured using Doppler shifted lines of C v , C iii , O v , and Hβ[64]. Vθ profiles were

found to be positive and hollow, peaking around r/a ' 0.7, at Vθ ' 2 km/s. Vφ pro-

files were also found to be hollow. The profile shape was both positive and negative,

peaking at Vφ ' 4 km/s around r/a ' 0.72, with a minimum near the magnetic axis,

of Vφ ' -7 km/s. Both poloidal and toroidal rotation velocities were near zero at the

edge. Rotation velocities were found to be significantly lower than expected based on

neoclassical theory. The toroidal momentum damping time was calculated to be less

than 3 ms, τφ ≡ τt ≤ 0.002 s.

3.4 Beam Based Toroidal Rotation Measurements

High resolution x-ray spectroscopy is not the only method of measuring toroidal

rotation. When a tokamak is outfitted with a complement of neutral beams, it

is fairly easy to make measurements of both the poloidal (Vθ) and toroidal (Vφ)

plasma rotation. Plasma rotation is often measured using charge exchange recombi-

nation spectroscopy (CXRS); it has been well established as a rotation measurement

method[54, 65–71].

The neutral beam provides electrons for the impurities to charge exchange with.

These recombinations emit characteristic photons that are then collected and inter-

preted. The charge exchange process[8] has an energy dependent cross-section. The

relative velocities of the particles and the beam and the view angle can influence the

measurement.

CXRS uses the light emitted from the recombination of the hot plasma impurity

ions with the electrons from the neutrals injected by the beam. An intrinsic impurity

in the plasma, (C, O, &c) is often used to make CXRS measurements. These

impurity ions then exchange charge with the neutrals from the injected beam, and

emit at a characteristic wavelength. These spectral lines are then resolved using a

spectrometer, conveniently enough, often in the visible or near UV region.
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Once the spectra have been gathered and the effects from the view location have

to be taken into account, the rotation velocity, impurity density, and impurity tem-

perature can be unfolded from the spectra. Since the charge exchange process is

energy dependent, the relative energy between the beam and the background ions is

important. Stated differently, ions with velocity components in one direction longi-

tudinally along the beam, will contribute to the spectra differently than ions with

velocity components longitudinally in the opposite direction. In general the CXRS

spectra shape will not be symmetric, and these asymmtries in line shape need to be

accounted for.

From these spectra, one can gather information about the impurity density, the

impurity temperature, and the impurity rotation velocity[72, 73]. With certain as-

sumptions these can be generalized to the majority ions. (see Chapter 2: Rotation

Theory.)

It is important to note that beam based measurements can be highly perturbative.

Beams are more often than not a substantial source of momentum to a plasma.

The alternative to measurements made with heating beams is to use a lower

current diagnostic neutral beam (DNB). C-Mod has been fitted with just such a beam.

The DNB injects hydrogen neutrals radially into the machine, the light emitted by the

ionizing of the beam can then be used for diagnostic purposes. There are three main

diagnostics associated with the beam: beam emission spectroscopy (BES)[74, 75],

motional stark effect (MSE)[76–78], and charge exchange recombination spectroscopy

(CXRS), which has been mentioned above. BES measures density fluctuations by

looking at the fluctuations in the power intensity of emitted light. The MSE measures

magnetic field orientation (BT , BR, BV ), or equivalently, q. It is set up to have

multiple view chords, so it is possible to measure a profile of the magnetic field

orientation, or a q – profile.

3.4.1 Beam Measurements on DIII-D

Many, many measurements of plasma rotation and rotation profiles have been made

on the Doublet III D (DIII-D) tokamak [67, 69, 70, 79–85]. DIII-D uses CXRS mea-
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surements made with a 75 keV hydrogen neutral beam to look at O and He impurities.

The DIII-D team is and has been able to measure toroidal rotation velocities at six

different radial locations both on the high and low field sides of the plasma. Values

of angular speed2 typically between about 0.0 at the edge of the plasma to about 1

× 105 rad/s (∼ 140 km/s) at the magnetic axis have been measured. The profile

shapes have generally been peaked, due to the momentum in the beam. The absolute

magnitude of the angular speed (likewise Vφ) generally about 6 × 104 rad/s – 1 ×
105 rad/s. The values found for the momentum confinement time were quite close

to the energy confinement times, (τφ ∼ τE). Measurements of Vφ, Vθ and Er have

been made at the H–mode transition. DIII-D is also credited with being the first

experiment to see the ITB.

During L–mode, the rotation profile in DIII-D is slightly peaked from the axis out

to about r/a ∼ 0.4 and mostly flat outside of that, co–current everywhere. During

ELMing H–mode discharges, the profile is quite similar, to the L–mode case in both

shape and magnitude. During ELM–free discharges, the profile shape is more peaked,

out to about r/a ∼ 0.6, and the magnitude is about twice as large as the L–mode.[85]

These discharges all have relatively large amounts of input beam power on axis.

The measurements discused here represent just a fraction of those made on DIII-

D. In many respects work done at DIII-D has led the field in rotation research and

measurements. Reference [84] is a comprehensive treatment of measurements made

over the last ten years. Thousands of discharges have been included in this study.

Two of main conclusions from this work are: momentum transport seems anomolous

much greater than predicted by neoclassical theory; and that the correlation between

toroidal momentum and ion thermal energy transport implies that the same physics

governs them both.

2Toroidal rotation velocity Vφ is the product of angular speed (Ωφ) and major radius (R) or Ωφ

= Vφ/R.
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3.4.2 Beam Measurements on JET

The JET team has also made measurements of plasma rotation using CXRS[86].

Using visible light from a C vi transition, the team has been able to measure the ion

temperature and the rotation velocity in up to twelve spatial locations and with 100

ms time resolution. Rotation frequencies as high as 1 × 105 rad/s (' 300 km/s) have

been measured in plasmas with 20 MW of beam power and 2 MW of ICRF power.

Various profile shapes were found, including peaked and fairly flat, depending on the

heating method.

3.4.3 Beam Measurements on TFTR

During some of the TFTR “super shots” (extremely good confinement shots) Vφ

measurements were made using CXRS. TFTR was using up to 15 MW of neutral

beam heating (Einj ' 105 keV ). Observing lines of carbon, 17 point toroidal rotation

profiles were measured. The rotation profiles were found to be highly peaked off axis,

due to the beam injection. Maximum rotation velocities of up to 500 km/s were

found[87]. Finally, momentum diffusivity and effective particle diffusivity were about

the same, (χφ ∼ χeff ).

3.4.4 Beam Measurements on ASDEX

In ASDEX toroidal rotation measurements were made via CXRS using O viii and

C vi impurities[88]. Profiles with 5 radial points have been measured, and profiles

have been found to be peaked. Maximum rotation frequencies of 1 × 105 rad/s (Vφ

' 120 km/s) have been measured in plasmas with up to 2 MW of input NBI power.

Finally, momentum diffusivity and ion diffusivity were about the same, (χφ ∼ χi).

3.4.5 Beam Measurements on JT-60 U

Toroidal rotation measurements have been made in the tokamak JT – 60U, in plasmas

with high power (∼ 20 MW) tangential and near perpendicular NBI[89]. Measure-

ments are made using a near perpendicular diagnostic beam. Using CXRS, looking
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at carbon impurities, they have been able to measure a 15 point profile of the toroidal

rotation velocity. Peaked profiles, with maximum rotation velocities of around 250 –

300 km/s have been measured[90]. It was found that plasmas heated only by near

perpendicular beams would rotate in the counter–current direction, at a velocity of

about 50 km/s. Plasmas that were heated with lower hybrid waves were found to

rotate in the co–current direction[89]. ITBs were formed, and measurements of the

radial electric field, (Er) were made. Finally, momentum diffusivity and ion diffusivity

were about the same, (χφ ∼ χi).

3.4.6 Beam Measurements on Other Machines

Many other devices have also made measurements of plasma rotation using beam

based diagnostics. Two of note are: PBX – M [91] and ISX – B [92]. On PBX –

M, Vφ of 400 km/s was measured with less than 5 MW of neutral beam power. The

profile shape was found to be highly dependent on the configuration of the heating

beams. Momentum diffusivity and effective particle diffusivity were found to be about

the same, (χφ ∼ χeff ). The momentum confinement time, (τφ), was found to vary

between 0.039 and 0.147 s. On ISX – B, the heating beams used were balanced,

so in theory there was no net input of momentum. During Ohmic discharges the

rotation was found to be between 10 km/s in the co–current direction and 10 km/s

in the counter–current direction. During balanced beam configuration the rotation

was found to be between ∼ 25 km/s in the co–current direction and ∼ 25 km/s in

the counter–current direction. Momentum confinement times of ∼ 0.010 – 0.050 s

3.5 Chapter Summary

Many previous high resolution x–ray spectroscopic and toroidal rotation measure-

ments have been made on C–Mod and on other tokamaks, with varying degrees of

success. Some information about measurements on various machines has been sum-

marized in Table 3.2.
High resolution x–ray spectroscopic measurements have been mostly single view

systems. C–Mod originally had one tangentially viewing and five radially viewing
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Tokamak Instrument Vφ (km/s) Profile Heating Notes
(# pts.)

C-Mod HIREX 100 3 ICRH No p Input
LT-3 Doppler (UV) 1 Ohmic Early
TFTR X–ray Spect. 150 1 NBI

CXRS 500 17 NBI 15 MW!
JET X–ray Spect. 100 1 NBI

X–ray Spect. 120 1 NBI & ICRH
X–ray Spect. ∆ Vφ = 30 1 ICRH

CXRS 300 ≤ 12 NBI & ICRH 20 MW & 2 MW
DIII-D CXRS 86 6 NBI
JT – 60U CXRS 300 15 NBI

CXRS 50 15 ⊥ NBI Counter-IP
PBX-M CXRS 400 20 NBI

Table 3.2: This table summarizes the most important previous measurements of
toroidal rotation made on various machines. They are listed by: tokamak the mea-
surements were made on, the type of diagnostic, maximum rotation velocity, number
of points in their profile, the heating scheme and some notes.

spectrometers with slight angles to their views. These angles were so small that they

made the error in the points measured with radially viewing spectrometers quite large.

High resolution x–ray spectroscopic measurements have been made on JET, TFTR,

PDX and DITE. Some of the very early measurements using bent crystals were made

on DITE. The maximum rotation velocity on record was made on TFTR (500 km/s),

with 15 MW of NBI. A two point rotation profile using two lines of ionized Ti was

measured on PDX.

Some of the earliest rotation measurements were made on tokamaks by other

spectroscopic means, specifically LT–3. PLT held the record for the day with Vφ '
120 km/s. This measurement was made using lines of C and Fe.

Thus far, the most detailed toroidal rotation measurements have been made with

neutral beams on TFTR, JET and DIII–D. Multi point profiles have been measured,

and in general data have been found to agree with theory quite well. It is important

to remember that beam based measurements are highly perturbative in terms of the

net input of momentum, even if a balanced beam configuration is used.
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Chapter 4

The Spectrometer

This chapter will detail the experimental setup, including the physics of the measure-

ments and the spectrometer.

4.1 Physics of X–Ray Spectroscopy

4.1.1 Doppler Shift

When a wave source is moving, its velocity has an effect on the wavelength of the

emitted oscillation. This is true of all waves: light, sound, &c.

The non–relativistic approximation to the shift in the wavelength is determined

by the equation:

∆λ

λ0
=
v

c
(4.1)

where ∆λ is the wavelength shift, λ0 is the rest wavelength, v is the velocity of the

source and c is the speed of propagation of the wave. Note: if v → 0 , ∆λ → 0, as it

should. Also, if v > 0 (< 0 ) then and the shift will be to longer (shorter) wavelength,

∆λ > 0 (< 0), which implies the source is moving away from (towards) the observer.

Figure 4-1 shows a Doppler shifted spectrum. The shift in the spectrum shown (∼
0.5 mÅ) corresponds to a source velocity of ' + 43 km/s.
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Figure 4-1: A sample spectrum of the Ar16+ forbidden line, (z) from the HIREX
array. During the L–mode phase of plasmas the rotation is minimal, (red curve),
during the H–mode portion of a discharge the plasma starts to rotate very quickly,
here is a demonstrative Doppler shifted H–mode spectrum (blue curve) over plotted
on an L–mode spectrum, to show the approximate magnitude of the shift. This shift
corresponded to a rotation velocity of + 43 km/s, blue shifted. Note: the intensities
of the two curves have been normalized to the same magnitude. The line intensity in
L–mode is significantly lower than that during the H–mode portion of the discharge.

4.1.2 Doppler Broadening

Any gaseous material with a finite temperature has some distribution function (f(x, v, t)),

i.e. the particles have a distribution of velocities, and thereby thermal speeds; for a

Maxwellian distribution it is of the form:

f(v) = n
( m

2πkT

)1/2

· exp(−1

2
mv2/kT ) (4.2)

where: n is the number density of the particles, m is the particle mass, kT is the

temperature, v is the particle velocity.
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The Doppler shifts of the line radiated by each of these particles, when looked at

as a whole, sum to broaden the line1. This is Doppler Broadening. If we now write

Eq. 4.1 in terms of the measured wavelength and the rest wavelength, and solve for

v we have:

∆λ

λ0
+
λ0

λ0
=
v

c
+ 1 ⇒ v =

c

λ0
(λ− λ0) (4.3)

where: λ = ∆λ + λ0, is the measured wavelength. We now substitute Eq. 4.3 into

Eq. 4.2 and we find:

f(
c

λ0
[λ− λ0]) = n

(

c2m

2πλ2
0kT

)1/2

· exp

[

− (λ− λ0)
2 /

(

2λ2
0kT

c2m

)]

(4.4)

This is the equation for the shape of a spectral line of a material at temperature

kT . This derivation is covered quite nicely, in some detail, in chapter 6 of Ref. [8].

4.1.3 Argon Impurity Injection

Argon is the impurity chosen to inject to make these measurements, in the tempera-

ture range of interest it radiates in an appropriate range of the x–ray spectrum. The

spectrometer on C–port, viewing on the midplane, through the center of the plasma,

looks at the Lyman α doublet of hydrogen–like argon (Ar17+), see Table 4.1. This

spectrum is shown in Fig. 4-2. The spectrometers in F–port and K–port, tangentially

viewing at about r/a ∼ 0.3 and r/a ∼ 0.6, respectively, look at the z(the forbidden)

line and the w (resonance) line, of helium–like argon. The three spectrometers in

B–port, radially viewing, look at the z(the forbidden) line and the w (resonance) line

of He–like argon, see Table 4.1. This spectrum is shown in Fig. 4-3. In fitting the

spectra, the satellite lines, (e.g. k, q, r, etc. of Fig 4-3), need to be accounted for.

Generally, a small portion of the measured spectrum will be analyzed with a fit to

one line and just one or two satellites.

Expected line intensities for He–like Ar have been calculated in Appendix A.

1Of course, the line is made up of a statistically significant collection of photons, from the
individual particles, each of which has it’s own Doppler shift.
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Charge State line Transition λ0 (mÅ)
Ar16+ z 1s2 1S0 – 1s 2s 3S1 3994.4
Ar16+ w 1s2 1S0 – 1s 2s 1P1 3949.4
Ar17+ Ly α1 1s 1S 1

2

– 1s 2p 2P 3

2

3731.1

Ar17+ Ly α2 1s 1S 1

2

– 1s 2p 2P 1

2

3736.5

Table 4.1: The transitions of interest for these measurements, for H – like and He -
like Ar.

To make this calculation requires some detailed information about rate coefficients

and and charge state densities, calculations related to these are in Appendix B and

Appendix C, respectively. In the core of the plasma the temperature range is such

that Ar17+ is generally the most abundant. Further out in the plasma the temperature

range is generally such that Ar16+ is the most abundant.

Figure 4-2: A spectrum for H–like Ar, (Ar17+).
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Figure 4-3: A spectrum for He–like Ar, (Ar16+).

4.2 Experimental setup

4.2.1 Bragg Diffraction

Bragg diffraction is the fundamental physical mechanism at work in this spectrometer.

Figure 4-4 is a sketch of the process of Bragg diffraction.

The condition for Bragg diffraction is:

nλ = 2d sin(θ) (4.5)

where: n is an integer, λ is the wavelength of the light being scattered, d is the

spacing between atoms of the crystal lattice, and θ is the angle of incidence, normal

to the surface of the diffracting structure2. Diffraction requires that d be of order λ,

2In this spectrometer, the angle of incidence must still equal the angle of reflection. However,
constructive interference will occur only for particular angles as given by the Bragg condition, Eq.
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Figure 4-4: A sketch of conditions for Bragg diffraction. When incident light is
scattered from two atoms from the same row, separated by distance a (4-4-a) there
is no net difference in the path lengths of the radiation, however when the light is
scattered from two atoms in different rows of the lattice separated by distance d (4-4-
b) and (4-4-c), there is an increase in the length of one path but not the other. This
increase is 2d · sin(θ), and when this equals an integer number of wavelengths, there is
constructive interference. Figure 4-4-b is for a shorter wavelength and Figure 4-4-c is
for a longer wavelength. (In this figure the angles θ and θ′ are grossly exaggerated.)

(∼ Å, for x–rays) hence the atomic periodicity of a crystal is used as the diffraction

“Grating”.

4.2.2 General Description

HIREX is a von Hamos geometry[93] high resolution x-ray spectrometer system. Fig-

ure 4-6 is a sketch of the geometry. The incoming x–rays are collimated through a

slit, they are then incident upon the crystal. The crystal is cylindrical, (i.e. flat in

the plane into which the wavelength is separated and bent in the direction perpendic-

ular to this plane,) see Fig. 4-6.) This bending generates a focusing of the incoming

x–rays onto the detector, for improved collection. The main advantage of von Hamos

geometry is the compact size. Using a quartz3 crystal as the diffraction element, one

is able to perform spectroscopic analysis on the emitted x–ray radiation from C–Mod

4.5. One could imagine that the condition of path length difference being equal to a integer wave-
length, could also be met by having different angles of incidence and reflection. This is indeed the
case, however it will not be discussed here because it is not the method of crystal diffraction being
used here.

3See the §4.2.4 for more about the quartz crystal.
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[51, 52]. By comparing relative line intensities for the various charge states, one can

determine the electron temperature. The widths of very strong lines can be used

to determine ion temperature [94]. Further, by looking at the Doppler shift for a

given spectral line the relative motion of the impurity that generated that line can

be measured.

The HIREX Array was made up of six different spectrometers. Each of these

spectrometers has two arms, an entrance arm, and a detector arm, Figs. 4-5 and

4-6. The arms are pumped to pressures in the mTorr range using a mechanical

roughing pump4. The entrance arm “looks” into the plasma, through a small slit and a

beryllium window, (§4.2.3). The detector arm comes off the entrance arm, at an angle

determined by the Bragg condition (§4.2.1) of the quartz crystal, (§4.2.4). Located

at the intersection of the two arms is the crystal. At the end of the detector arm is

a delay line proportional counter detector,(§4.2.5). The signal from the detector is

then processed with some electronics,(§4.2.6), and the data are stored and interpreted

with a computer.

4.2.3 Beryllium Windows

For various logistical reasons it is neither wise nor necessary to have the spectrome-

ter vacuum system tied into the same vacuum system as the main vacuum chamber.

First, the main chamber of the tokamak requires Ultra High Vacuum (UHV), pres-

sure < 1 × 10−8 torr, along with which goes very strict requirements for materials,

seals and cleanliness. Second, if for some reason the vacuum is compromised in the

spectrometer, the main chamber and the entire experiment would suffer needlessly.

Further, the maintenance schedule would be tied to that of the main chamber. As a

consequence of this, opportunities to repair and upgrade the spectrometers would be

lost. Thus, a window is required.

Very high purity beryllium was chosen for the window. High purity beryllium will

allow the passage of x-rays, without significant loss and will still make a very good

UHV seal,(See Appendix D).

4Calculations of x–ray attenuation vs. energy and pressure can be found in Appendix D.
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Figure 4-5: The spectrometer geometry, from a top view. Depending on the sense,
(i.e. right handed or left handed,) of the spectrometer, its geometry will either look
like this, or a mirror image of this. The relative angle of the arms, listed as 106◦ can
be changed to sweep through different wavelengths. The bend in the spectrometer is
made of an angled vacuum pipe and a bellows to allow the arm to swing. This arm is
controlled by an electronic actuator and the angle is recorded by a position sensitive
potentiometer.
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Figure 4-6: Drawing of the von Hamos spectrometer geometry, notice the crystal is
curved (grossly exaggerated here), leading to a focusing of the incoming x–rays.
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Figure 4-7: The incident x-rays travel out of the machine through a small flange
and a Be window. They then cross the air gap, made as small as possible to reduce
attenuation, and then into the spectrometer, through a second Be window.

Beryllium has extremely high strength to weight ratio, and very low modulus of

elasticity and very good rigidity [95]. Beryllium’s material properties allow windows

to be made very thin to pass x–rays, yet still withstand 101.4 kPa (760 torr) pressures.

Two of these windows each 0.002 inches thick were used for each spectrometer. These

windows are epoxied onto a stainless steel flange and then mounted to the main

vacuum vessel and to the spectrometer face, see Fig. 4-7. The two flanges are aligned

and held separated by a Teflon spacing plug, not pictured in Fig. 4-7, for clarity5.

This spacer also keeps the spectrometer and the machine electrically isolated.

4.2.4 Quartz Crystal

Quartz was chosen as the crystal for this spectrometer. The spectrometer was de-

signed to cover a wide range of wavelength, (2.8 Å– 4.0 Å). It was desired that the

spectrometer arms be kept at an angle in the range (100◦ – 140◦), while the Bragg

5Both Be and air attenuate x–ray photons. It turns out that the attenuation is quite small,
calculations of attenuation vs. energy have been made in Appendix D for both air and Be.
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condition (Eq. 4.5) was to be satisfied, for the relevant Ar transitions. This range

of angles would insure the spectrometer is both compact and conveniently shaped to

get close to the machine. These conditions then require that the inter-atomic spacing

of the crystal, (d), be in the range 3.11 Å< d < 4.09 Å. The 101̄1 plane of a quartz

crystal has an inter-atomic spacing of 3.3435 Å[96]. Quartz also has excellent reso-

lution, quite good reflectivity and is stable over long time periods. Thus, the quartz

crystal was chosen.

4.2.5 Proportional Counter Detector

To measure the spatial location of the incoming x–rays after dispersion by the crys-

tal, and hence the wavelength, a position sensitive proportional counter detector is

used[97–100]. The detector is made up of small chamber of pressurized krypton and

ethane, another Be window, a multi-wire anode plane, a delay line cathode winding,

and the associated electronics, (see §4.2.6).

When an incident x-ray enters the detector chamber, through the Be window, it

almost immediately collides with a Kr atom, (Fig. 4-8-a). This collision liberates

an electron which is then accelerated towards the anode wire, (Fig. 4-8-b). This

accelerated electron causes a cascade of electrons, towards the anode wire, where

they are collected. This charge on the anode line capacitively couples to the delay

line cathode coil[98]. This image pulse then travels in each direction through the coil

to be counted and compared at either side of the detector, (Fig. 4-8-c). The delay

line is necessary to slow down the pulse to a time scale appropriate for the time to

digital converter (TDC).

4.2.6 Electronics

Figure 4-9 is a rough schematic of the layout of the electronic components used to

process the signal out of the detector. This section will follow the path of the signal

through the electronics.

Each detector needs high voltage (∼ 2 kV ), and four fast amplifiers, two for each
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Figure 4-8: Incident x–rays enter the detector (4-8-a) and collide with a Krypton
atom. The Kr atom is ionized, (4-8-b) and the electron(s) travels to the anode line(s),
which is at high voltage. When the electrons reach the line, they send a small current
pulse (4-8-c) in each direction, (via a delay line cathode plane). In this cartoon, the
line has been simplified to only a single wire, actually it has many loops.

end of the delay line. The detector has a characteristic impedance of ∼ 200 Ω.The

electronics all have characteristic impedance of 50 Ω. Thus, each side of the detector

has a 200 Ω to 50 Ω transformer, followed immediately by a set of fast amplifiers and

attenuators.

Physically, the amplifiers need to be placed as close as possible to the detectors to

minimize signal loss and signal distortion. Each signal comes out of the transformer

and is amplified by the first fast amplifiers, (fixed gain: − 200). The signal is then

inverted and just slightly attenuated6. It then passes through the second set of fast

amplifiers. The final pulses out of the amplifiers are between − 2 V to − 5 V ; they

have a ∼ 2 ns rise time and a 10 ns decay time. The pulse shapes are determined by

the detector itself. To measure the desired wavelengths we use 156 ps time resolution,

the fastest setting on our electronics. These pulses then travel from the physical

location of the spectrometer, (C–port, F–port, &c.) to the main electronics rack near

B–port.

The most important part of the measurement is to measure precisely the delay time

6The fast amplifiers are fixed gain, a single amplifier is not enough amplification and two amps
are too much. The attenuator solves this problem.
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Figure 4-9: Schematic of data acquisition electronics components, for the spectrom-
eters.
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between the arrival of the two pulses, one from each end of the detector. However, if

the pulses are of different shapes, which is almost certainly the case, we need some way

to take this into account properly, and avoid confusion in the arrival times. To solve

this problem the pulses are fed into a constant fraction discriminator (CFD). The

CFD splits the incoming signal into two parts. One part is delayed and subtracted

from a fraction of the undelayed signal. The resulting bipolar constant fraction signal

has a baseline crossover that is almost entirely independent of the input signal height

and shape[12]. The point of zero crossing is then used to locate precisely the signal

in time. These zero crossings are then used to generate logic pulses. The CFD also

sends a logic signal to a scaler, to record the time history of the total count rate.

The logic pulses are then sent to a time to digital converter (TDC). One pulse,

from the given spectrometer, is used as the start trigger of the TDC, while the other

is the stop trigger. The stop trigger passes through a ∼ 100 ns delay line7 to insure

that it will not arrive before the “start” pulse. The time difference between the two

signals is then recorded in a histograming memory module. In this manner, 1024

channel spectra are taken every 50 ms for the spectrometers on B–port, F–port and

K–port, and 512 channel spectra every 20 ms for the spectrometer on C–port.

Once the data are taken, and processed by the electronics, they are fed into a

computer where they are reduced. The reduced data are then stored to disk, where

they can be accessed and further processed via MDS Plus software.

One of the greatest difficulties in making these measurements has been keeping

out stray RF noise. The ICRF system operates at ∼ 80 MHz, (∼ 2 ns period.). This

is precisely the right frequency to seriously distort the pulses out of the detector and

amplifier, and hence the line shape. To prevent this, great lengths were gone to, to

adequately shield the detectors and the transmission lines used to carry the pulse.

Extensive work was also done to limit the amount of RF leakage in the ICRF system.

7For a pulse, the travel time along the entire delay line in the detector is just 75 ns.
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4.3 Tangential HIREX

The tangential HIREX works on precisely the same design as the radially viewing

HIREX spectrometers; the difference is the view of the spectrometers. Figure 4-10

shows the sight lines of all the spectrometers.

4.3.1 Vertical Displacement

The physical size and shape of the horizontal ports on C–Mod limit the range of

possible view angles. It is not possible to have a view angle larger than 36◦ (as

measured from a radius), on any horizontal port. A further constraint on the lines of

sight for the spectrometers was to keep them from crossing to the high field side of the

major radius. This was avoided to simplify the analysis, and to insure that location

of measurement was well known. If the line of sight were to cross the major radius,

the emissivity profile along the line of sight could have multiple peaks. This would

confuse the location and resolution of the measurement, (more on this in Appendix

A.)

By vertically displacing the lines of sight, it is insured that the peak in the emis-

sivity of the x–rays corresponds to the desired radial location of view. Vertical dis-

placement also allows different radii to be viewed tangentially, while still meeting the

physical requirements for angle of view. To allow the spectrometers to be mounted

tangentially, parallel to the midplane and still be vertically displaced, the torsion

cylinder (see Fig. 1-1), had to be modified.

Fig. 4-11 shows the locations of the tangency points of the three vertically dis-

placed, tangentially viewing spectrometers. They are labeled with the port from

which they view. The radial locations mapped to the mid-plane are also shown.

These three views are approximately: in the center of the plasma (C–port, r/a ' 0.0,

0.68 m), at one third of the minor radius (F–port, r/a ' 0.3, 0.775 m), and at two

thirds of the minor radius (K–port, r/a ' 0.6, 0.835 m).
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Figure 4-10: Top view of the Alcator C–Mod tokamak. The tangentially viewing
spectrometers are on ports C, F, and K. The tangential spectrometers all view at the
major radius of the plasma. The K–port and the F–port spectrometers are vertically
displaced, viewing above the midplane.
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Line Kα1 Kα2 Kα′′ Lyα1 Lyα2

λ (mÅ) 3741.296 3744.405 3739.1 3731.105 3736.522

Table 4.2: Potassium (Kα doublet) Calibration lines and the argon Lyman α dou-
blet. The Kα lines were used for an absolute wavelength calibration for the C–Port
spectrometer.

4.3.2 Flux Surface Mapping

The F–port and K–port spectrometers are mounted above the midplane; therefore it is

necessary to map the location of the view along flux surfaces down to the midplane.

This is done with a relatively simple IDL procedure using flux surfaces from the

magnetic equilibrium, as calculated by the EFIT code[101–104]. After each shot,

this mapping is made, automatically, for each spectrometer, at each 20 ms time slice

throughout the discharge. These radial position data are then stored in the MDS

Plus data tree. An example of this mapping can be seen in Fig. 4-11; the positions

mapped to the midplane are indicated with × symbols. It is worth noting that under

normal circumstances, the radii remain constant throughout the current flat top of

the discharge, and unless the plasma has a very large Shafranov shift, major shaping,

or some other peculiarity, the positions are as stated above.

4.3.3 Absolute Wavelength Calibration

Before the run campaign an absolute wavelength calibration was performed, for the

C–port spectrometer. The calibration was achieved using three potassium Kα lines

from a KCl fluorescence source. These lines and the Ar Lyα lines have been tabulated

in Table 4.2. The KCl was excited with a primary x–ray beam from a Cu–anode

source[105]. The F and K port spectrometers’ wavelength calibration was performed

by assuming the plasma velocity profile to be flat during L–mode. This calibration

using the plasma was necessary because no line source was avalible in the aicinity of

the He–like lines used, (see Table 4.1)
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Figure 4-11: A plot of the flux surfaces for a standard shaped C–Mod discharge. The
positions of the various spectrometer views at C, F, and K–ports are overplotted.
The “×” symbols represent the positions mapped to the midplane.
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Chapter 5

Rotation in Ohmic Discharges

Some of the data taken with the tangential high resolution x–ray spectrometer during

Ohmic discharges will be presented in this chapter. It should be restated here that

Ohmic discharges offer a unique opportunity to measure rotation and momentum

parameters with unequivocally no internal momentum source.

5.1 Rotation Profiles in Ohmic L–Modes

In Ohmic L–modes, the rotation profiles are found to be flat, and rotating very slightly

in the counter-current direction.

During the L–mode portion of an Ohmic discharge, the photon counting rate is

often so small that meaningful data can not be gleaned. If the plasma parameters

stay constant during the L–mode portion of the discharge, which they most often do,

it is acceptable to add spectra, and use the new spectrum for the L–mode baseline1.

Using this technique the L–mode time history of the rotation is clearly lost. However,

higher confidence in the L–mode rotation velocity is achieved in return.

1This technique can be used in any type of discharge, provided the plasma parameters are “con-
stant.” More will be said about this in §5.2.2.
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5.1.1 Toroidal Rotation in Standard L–Mode Plasmas

The standard shot in Alcator C–Mod, the most plain or least exotic, often used for

fiducial comparisons, has a density of ne = 1 × 1020 m−1, temperature of Te = 1 keV ,

BT = 5.4 T, Ip = 0.8 MA, PRF = 0, with lower null magnetic geometry. Data taken

during this type of shot have been used to measure the standard toroidal rotation

velocity profile.

The rotation profile for the standard L–mode is assumed to be flat. The inner

most spectrometer rotates at about − 10 km/s. A typical plot of this profile averaged

over an entire shot is shown in Fig. 5-1

Figure 5-1: This is the most basic rotation in a generic Alcator plasma. Plasma
conditions are totally average, the plasma is in L–mode, rotating slightly counter-
current. These data are averaged over the length of the discharge. The counting rate
was rather low, hence the large error bars.

5.1.2 L–Mode Rotation Scaling with Density

The impurity rotation velocity in a frame of reference in which the total momentum

density is zero has been calculated in Ref. [16]. It depends on the plasma density

(ni), the ion temperature(Ti), the loop voltage2 (V`), the plasma charge (Zi) and the

2Based on sign conventions from Refs. [16, 107] the loop voltage is negative here.

82



ion–ion collision time (τii, from Eq. 2.15) [16, 107], by the relation (Eq. (56) from

Ref. [16]):

V‖ = −τiiZieE‖

mi

ZI − Zi
ZI

√
2 + 13α/4

(1 + α)(
√

2 + α)

nimi

nimi + nImI
+

neme

nimi + nImI

σSpitzer
ene

E‖

(5.1)

where the Spitzer resistivity is given by[6]:

σSpitzer '
πe2

√
m

(4πε0)2(kTe)3/2
ln Λ. (5.2)

The second term on the right hand side of Eq. 5.1 is the contribution due to the

electron momentum. This term has been dropped because it is smaller by a factor of

the square root of the mass ratio, ('
√

me

mi
.) When the constants are evaluated, Eq.

5.1 reduces to (Eq. (1) from Ref. [107]):

Vφ = 4.19 × 105f
ZiV`T

3/2
i√

µRni
(m/s) (5.3)

where (Eq. (2) from Ref. [107]):

f =
ZI − Zi
ZI

√
2 + 13α/4

(1 + α)(
√

2 + α)

nimi

nimi + nImI
(5.4)

where Z is ion charge, m is the ion mass, and n is the ion density for the majority

ion (i) or the impurity ion (I), α ≡ nIZ
2
I /niZ

2
i . Equation 5.3 can be rewritten as:

1

ni
= −2.387 × 10−6 VφR

√
µ

fZiV`T
3/2
i

≡ RHS (m3). (5.5)

The bulk ion velocity in the same frame of reference is also given by Eq 5.3, but

with f given by:

f = −ZI − Zi
ZI

√
2 + 13α/4

(1 + α)(
√

2 + α)

nImI

nimi + nImI
. (5.6)

To avoid confusion this will be referred to as fi. Since fi/f = nImI/nimi � 1 the

velocity of the impurities in this reference frame is much greater that the velocity of

83



the bulk ions. For the bulk ions, assuming a nominal impurity density of 1 × 10−4,

Eq. 5.5 can be written as:

1

ni
= 2.387 × 10−6 VφR

√
µ

fiZiV`T
3/2
i

(m3)

= −RHS · nimi

nImI

' −500 ·RHS (m3). (5.7)

During a density scan, rotation data were taken over a wide range of densities for

many ohmic L–mode discharges. In order to take into account the effects of Te and

ne profiles, data have been used to evaluate the right hand side (RHS) of equation

5.5. The result is plotted in Fig. 5-2 versus ne, using the C–port spectrometer data

as V (0).

Figure 5-2: A plot of the right hand side (RHS) of Eq. 5.5 vs. ne. This plot makes
the assumption that the electron density and the ion density are the same. In this
set of shots Zeff ' 1, so this is a valid assumption. Overplotted is the line RHS =
1/ne. The chain curve is the density scaling for the ions, predicted by Eqs. 5.3 & 5.7.

The agreement with the line 1/ne is within error bars. The data are therefore con-

sistent with the bulk ion velocity being zero; the observed negative impurity velocity

reflects, entirely, the difference between the impurity and the bulk ion velocity, caused
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by the balance between the drag and the toroidal electric field. It is also consistent

with there being zero total momentum density.

The data at each radius adhere to this scaling (Eq. 5.1) within error bars, it

is then concluded that this relationship between neoclassical rotation velocity and

density in L–mode is valid over most of the plasma. These data were obtained during

a “piggy back” run, better agreement could perhaps be reached with a dedicated run.

5.2 Rotation Profiles in Ohmic H–Modes

During Ohmic H–modes the plasma rotates in the co–current direction just as it does

in ICRF H–modes[17, 30, 108], although the rotation velocity is, in general, smaller

in magnitude.

The shape of the rotation profile in Ohmic H–mode is fairly flat. From this it

has been inferred that if momentum comes from the edge, it only diffuses into the

plasma; there is no evidence for a velocity pinch mechanism in the inner half of the

plasma during Ohmic plasmas.

Figure 5-3: Rotation profiles in the L–mode phase of the discharge, and the fully
developed H–mode phase of the discharge.
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Figure 5-3 is fairly characteristic of the rotation profiles during both the L–mode

and the H–mode phases of Ohmic discharges. During the L–mode phase the rotation

is flat and counter-current, (§5.1). When the H–mode is fully developed, the profile

is again fairly flat. The Ohmic H–mode rotation velocity has consistently been found

to be 15 km/s < Vφ < 40 km/s, co–current.

5.2.1 Ohmic L → H Transition

Figure 5-4: Time histories of some plasma parameters. From top to bottom: BT (T),
IP (MA), ne (1020 m−3), W (kJ), Te (keV ), and the Emissivity of Dα light (A.U.).

One way to achieve Ohmic H–modes is by ramping the toroidal magnetic field

down. Lowering the toroidal field with a constant plasma current and relatively low

density lowers the H–mode threshold. This can lead to an Ohmic H–mode.

Time histories of some plasma parameters have been plotted in Fig. 5-4. From top

to bottom: toroidal magnetic field in Tesla, plasma current in Megamperes, electron

density in number per cubic meter, the plasma stored energy in kilojoules, electron

temperature in kiloelectron–volts, and the emissivity of Dα light in arbitrary units.

These parameters are for just one of the eight discharges used to create the spectra

for the time history in Fig. 5-5. The discharges were highly reproducible.
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The ramping of the toroidal field can clearly be seen in the BT trace. At approx-

imately 0.9 seconds the electron density and the plasma stored energy both start to

rise and there is a drop in the Dα emission.

Figure 5-5: Time history of toroidal rotation for a plasma(s) going into an Ohmic
H–mode. The outermost channel can clearly be seen to rise first, the inner two seem
to rise together, at a later time. These traces were generated from the average over
8 different plasma shots. (These data have been smoothed in time using “nearest
neighbor” smoothing.)

Figure 5-5 shows the time histories of the three spectrometer channels. The ro-

tation can be seen to start in the outer portion of the discharge, and propagate in.

This will be discussed further, later in this Chapter.

The signature of a plasma going into an H–mode is a drop in the Balmer α

light emitted from deuterium (Dα). Fig. 5-6 is a plot of the time traces for the Dα

emission from the eight discharges that were added together to produce Fig. 5-5. The

sudden precipitous drop is the indication that the plasma has made the transition

into H–mode.

87



Figure 5-6: The transition from L–mode to H–mode for eight different shots as seen
in the emission of Dα light. The deviation, the average, and the standard deviation
for these L → H transitions have been calculated and tabulated, see Table 5.1

5.2.2 Spectra Adding

To use different shots to increase the photon counting statistics it is necessary to make

sure, among other things that the L → H transition occurs at the “same” time in each

shot, really just within the spectrum integration time, (20 ms for this set of shots).

That is, no transition that is going to be used in this spectral adding can deviate from

the average L → H transition time by more than one half of the integration time.

The transition times associated with each shot have been tabulated, and their

average and standard deviation calculated; this information is presented in Table 5.1.

A mean time of transition and a standard deviation in the times of transition have

been calculated as 0.900729 s and 0.00686 s, respectively. The standard deviation of

the L → H times is less than half the integration time of the data acquisition (20

ms/2), so we may add together the spectra from these shots with confidence. In this

case even the maximum deviation from the average (0.009396 s, shot 016) is less than

half of the integration time, so these data can certainly be used together introducing

only negligible error.
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Shot tL−H (s) ∆ tL−H = tL−H - tL−H

016 0.910125 −0.009396
017 0.897553 0.003176
018 0.899616 0.001113
019 0.891583 0.009146
023 0.90988 −0.009151
024 0.895973 0.004756
029 0.905011 −0.004282.
032 0.896093 0.004636

t̄L−H 0.900729 0.0
σtL−H

0.00686 —

Table 5.1: For run 1021016: the shots involved, their associated L → H transition
times (tL→H) and deviation (∆ tH−L). A mean time of transition and a standard
deviation in the times of transition have been included. The standard deviation of
the L → H times is less than half the integration time of the data acquisition, so
we may add together the spectra from these shots with confidence. In this case
even the maximum deviation from the average transition time is less than half of the
integration time.

5.3 Momentum Diffusion Time Scale Measurements

The time scale for momentum diffusion can be inferred from the relative lag in the

rise times of the spectrometers. By watching the rotation velocities on the outermost,

then the middle, and finally the core channels rise, the momentum confinement time

can be measured.

Figure 5-7 shows rotation profiles at different times for the sum of shots shown as

time histories in Fig. 5-5. In this figure it is easy to see that the rotation increases

on the outer most channel (r/a = 0.6, r = 0.835 m) first and then propagates inward.

The rotation on the core spectrometer (r/a = 0.0, r = 0.685 m) and the middle

spectrometer (r/a = 0.3, r = 0.773 m) seem to come up at about the same time.

5.3.1 The Simple Model

In Ohmic H–modes it appears that momentum diffusion is the dominant process. In

this section momentum diffusion will be modeled using a simple diffusion equation.
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Figure 5-7: Rotation profiles at various times for the set of discharges in Figs. 5-4 –
5-6 . The velocity can be seen to rise first at the edge, and then later in the core, this
indicates that the momentum source is at the edge of the plasma, and propagates
into the core by diffusion.

The model will then be compared to some data.

The simplest model for the diffusion of momentum is to assume that momentum

obeys the equation:

∂

∂t
P +

1

r

∂

∂r
rΓP = 0 (5.8)

where:

ΓP = −D ∂

∂r
P (5.9)

and P = nimiV . With the assumptions that V = Vφ and the density profile is flat

(i.e. ∂
∂r
ni = 0.) During H–mode this assumption has been shown to be correct over

most of the plasma, except the pedestal. Equation 5.8 then becomes:

∂

∂t
Vφ −D

[

∂2

∂r2
Vφ +

1

r

∂

∂r
Vφ

]

= 0. (5.10)
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Assuming Eq. 5.10 is separable (with separation constant λi), in cylindrical coordi-

nates, a general solution is[109, 110]:

Vφ = VφT (t)VφR(r) = V0 +

∞
∑

i=1

cje
−λiDtJ0(

√

λir) (5.11)

or toroidal momentum Pφ is:

Pφ = miniVφT (t)VφR(r) = P0 +mini

∞
∑

j=1

cje
−λjDtJ0(

√

λjr) (5.12)

Equations 5.11 and 5.12 are Bessel expansion solutions of Eqs. 5.8 or 5.10 with one

differing from the other by a factor of nimi. One of these together with the assumed

boundary conditions, (at r = a):

fφ =



















0, t < tL→H

P, tL→H ≤ t ≤ tH→L

0, t > tH→L

(5.13)

where: fφ is the momentum or velocity boundary value, uniquely define a solution for

momentum diffusion, with parameters D the diffusion coefficient, P the edge rotation

velocity or edge momentum density, depending on which quantity is being solved for.

In either case the coefficient cj is given by:

cj =

∫ a

0
fφJ0

( zjr

a

)

rdr
∫ a

0

(

J0

( zjr

a

))2
rdr

. (5.14)

The eigenvalues are defined as λi ≡ z2
i / a2, where zi is the ith zero of the Bessel

function J0 and a is the minor radius.

These boundary conditions imply a step function in the edge velocity or momen-

tum, that turns on instantaneously at time t = tL→H (the L → H transition) and

then stays on until the plasma returns to L–mode. The physical interpretation of this

P is a momentum source at the edge of the plasma, most likely it is some source in

the H–mode pedestal, or in the scrape off layer (SOL).

The momentum confinement time (τVφ
) is taken from the time dependent portion
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of the solution: VφT (t) = [exp(−λiDt)] = [1 − exp(−t/τVφ
)]. Thus:

τVφ
=

1

λ0D
. (5.15)

Only λ0 is used, (λ0 =
z20
a2

= 2.4052

0.212 ' 131.157), because it will have the longest time

associated with it and therefore dominates the process.

Figure 5-8: Surface plot of the toroidal rotation velocity versus space and time, as
predicted by the simple model. The locations of the three spectrometers are indicated
in their conventional colors. A small spike upwards at r = 0, t = tL→H , and a small
spike down at r = 0, t = tH→L, can be seen on the surface, these are artifacts of the
truncated series.

Figure 5-8 is a surface plot of Eq. 5.11; the change3 in toroidal rotation velocity

versus minor radius and time. For this calculation the momentum source (P ) was

turned on at the L → H transition (t ' 0.61 s) and turned off at the H → L transition

(t ' 0.81 s). The particle mass is constant and density is assumed to be flat, including

them in this solution will change the absolute value of the solution, but it will not

change the general shape.

Equation 5.11 (equivalently eq. 5.12) is an infinite sum over Bessel functions.

3That is the change between the L–mode value and the H–mode value of toroidal rotation.
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The series was truncated, (191st Bessel zero). There are two results from this lack

of convergence. First, a slight ringing, (a residual oscillation,) left over from the

approximation of convergence. Second, a slight bump on the innermost grid point

at the L → H and H → L transition times, this is because the series of cns is an

alternating one4, and the convergence to 1 is quite slowly. Were this series carried

out to infinity, this ringing and the shift would, of course, disappear.

Figure 5-9 shows the time histories of three spatial slices of the surface, (Fig. 5-8,)

corresponding to the three spectrometer’s view locations. Overplotted in this figure

is the change in the rotation velocity from Ohmic L–mode to H–mode.

Figure 5-9: Time history of Ohmic rotation data with the corresponding traces as
predicted by the simple momentum diffusion model. The diffusion coefficients and
the momentum confinement times for both the L → H (DLH ≡ DH and τLH ≡ τH)
and H → L, (DHL ≡ DL and τHL ≡ τL) transitions are noted on the plot. The data
are plotted here as the change in rotation between L–mode and H–mode. (These data
have been smoothed in time using “nearest neighbor” smoothing.)

Figure 5-10 has some of the plasma parameters for the discharge from which the

data in Fig. 5-9 were taken.

The data and the time traces from the simple model were fitted, using D as a

4If the 192nd zero were used the shifts would be reversed.
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Figure 5-10: Some plasma parameters for the discharge in Figs. 5-8 and 5-9.

free parameter, for the various periods in the discharge. A constant D was chosen

for the H–mode portion of the discharge, and different constant D was chosen for

the L–mode portion of the discharge. The edge rotation velocity P from Eq. 5.11

and the boundary conditions Eq. 5.13 are taken from the data. The final rotation

velocity P is taken from the outermost spectrometer’s rotation value, (P = 32 km/s

in this case.) The L → H and the H → L times are taken from the Dα traces. The

diffusion coefficient D is then varied until the data and the model surface coincide.

Using DLH ≡ DH = 0.100 m2/s and DHL ≡ DL = 0.250 m2/s the fit is quite good.

These diffusion coefficients imply momentum confinement times of τVφ,LH = τLH ≡
τH = 0.076 s and τVφ,HL = τHL ≡ τL = 0.030 s.

It is interesting to note that the time scale of the L → H and H → L transitions

are not the same. The time scale for the transition from L–mode to H–mode is about

2.5 times longer. Stated differently:

τφH
τφL

' 3 ' τEH
τEL

. (5.16)

Similar results have been found on other devices, see Chapter 3.
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The simple model and the assumed boundary conditions seem to do quite a good

job of explaining the observed data. For comparison the time scales from various

theories presented in Chapter 2 have been calculated and are presented in Table 5.2.

R. Neocls. R. Neocls. Subneocls. Subneocls. Simple Model
(τU‖,i

)viscous (s) (τU‖,i
)f.l.r. (s) τU‖,i

(s) τU‖,i
(s) τVφ

(s)

Shot Eq. 2.20 Eq. 2.21 Eq. 2.22 Eq. 2.25 Eq. 5.15 or 6.9

1021016017 9432.4946 0.00227556 3629.3007 233.47253 0.076 (H)
0.030 (L)

Table 5.2: Momentum confinement times from revisited neoclassical theory, subneo-
classical theory, and the simple models fit to data presented in this chapter.

The τφs are short and thus imply anomalous momentum transport, and the dif-

fusivities χφ ≡ D are large, a factor of 50 higher than that predicted by neoclassical

theory, χφ ' ρ2
i νii[82]. A plot of the fitted diffusivities and the expected neoclassical

diffusivities is presented in Fig. 5-11.

Figure 5-11: A plot of the χφ vs. radius, for the fitted diffusivities and that predicted
by neoclassical theory. The top plot is for H–mode, and the bottom plot is for L–
mode.
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5.4 Inferred Radial Electric Field

From neoclassical theory, Eq. 2.16 of §2.1.4 can be used to calculate what the radial

electric field in the plasma must be in order to give these rotation profiles.

Er = V I
φBθ −

(K1 + 3
2
K2 − 1)

e

∂

∂r
Ti +

Ti
eni

∂

∂r
ni (2.16)

Using Eqs. 2.5 – 2.14, and Table 2.1 from §2.1.1, in Chap. 2, we can calculate the

values of the coefficients K1 and K2 throughout the volume of the plasma for all

regimes.

Fig. 5-12 is a plot of the individual terms from equation 2.16. On axis the radial

electric field must be zero. Terms 1, 2 and 3 have been thus been set, identically,

to zero at r/a = 0. These are not measured quantities. It can be seen that the

dominant term is Term 1, (V I
φBθ.) Term 2, (− (K1+ 3

2
K2−1)

e
∂
∂r
Ti,) has the least effect,

it corresponds to V I
θ Bφ.

5 In the above formulation (Eq. 2.16) Term 3 is a density

gradient scale length ( Ti

eni

∂
∂r
ni), it is of the same order as Term 2.

The remaining quantities in Eq. 2.16 are measured during normal plasma oper-

ation. Figure 5-13 shows time histories of the radial electric field at the outer two

spectrometer view locations, the central view has been set to zero. Figure 5-14 shows

the same information in profile form.

It can be seen that the Er profiles are Flat throughout the discharge.

5.5 Error Analysis

5.5.1 Measurement Error

The error associated with these measurements comes from two main sources. Sys-

tematic error associated with the measurement and the error associated with the

Gaussian line fits.

The systematic error, associated with the lack of absolute wavelength calibration

5This can be seen by substituting Eq. 2.3 in for this term. The quantity V I
θ is very small and

offsets the large value of Bφ
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Figure 5-12: The profiles of the three terms that make up the calculation of the

inferred radial electric field. Term 1 ≡ V I
φBθ, Term 2 ≡ − (K1+ 3

2
K2−1)

e
∂
∂r
Ti and Term

3 ≡ Ti

eni

∂
∂r
ni. Each term has been plotted vs. radius in 50 ms steps from before the

H–Mode, throughout its development and back to L–Mode.

Figure 5-13: Time histories of the inferred radial electric field at the view locations
of the three spectrometers.
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Figure 5-14: Profiles of the radial electric field every 50 ms during the evolution of
the H–mode. The profiles are essentially flat throughout the evolution.

has been estimated, by assuming that the L–mode rotation profile deviates from flat

by as much as half of the L–mode offset, (' 4.0 km/s). An absolute calibration was

made for the C–port spectrometer before it was installed, (see §4.3.3.) In this thesis

it has been assumed that the L–mode profile is flat.

The Gaussian line fits are performed by an IDL procedure, the outputs from

which are the Gaussian fit parameters, and the associated standard deviations. These

standard deviations and the “systematic” uncertainty are folded together to generate

a total error for any given rotation velocity datum. A sample calculation has been

made below.

σtotal =
√

σ2
fit + σ2

Systematic (5.17)

This can be stated as:

σtotal =
√

σ2
fit + (4.0)2 (5.18)

For the K–port spectrometer, in Fig. 5-1:
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σtotal =
√

(3.57)2 + (4.0)2 = 5.36(km/s)

The estimate of the systematic drift in the baseline was found by summing spectra

from the L–mode phase of various shots over the course of the campaign, and deter-

mining the weighted average L–mode offset and its standard deviation. Fig. 5-15 is

a plot of this information for a series of shots, the weighted average and standard

deviation have been tabulated in Table 5.3. The L–mode rotation velocity does not

drift noticeably in time. It is concluded that the time dependent systematic error is

within the standard deviation of the L–mode baseline.

Figure 5-15: A plot of the L–mode baseline rotation for 37 different shots throughout
the run campaign. The average offset, the standard deviation of the offset and the
average standard deviation, have been included on the plot, for each spectrometer.

A simple calculation of the detector shift required to produce a 1 km/s shift in the

measured velocity can be made. The detector is 4 cm wide. There are 1024 channels

in this space, each channel corresponds to 17.0 km/s, so6:

6The coefficient of linear thermal expansion of Al, which most of the spectrometer stand is made
out of, is 23.1 µm

K·m [111].
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Spectrometer VTor (km/s) σVtor
(km/s)

C (r/a ' 0.0) -8.684 ± 0.570
F (r/a ' 0.3) -8.281 ± 0.874
K (r/a ' 0.6) -9.095 ± 0.922

Table 5.3: The weighted average and the standard deviation of the offset for the
L–mode baseline, from Fig. 5-15.

0.04

1024 · 17
= 2.29 × 10−6 m

km/s
= 2.29

µm

km/s
.

There is also an uncertainty in the absolute radial position of the measurement.

The error in this value arises from the localization of the view and the peak in the

emissivity, see §4.3.1. Based on the shape of the emissivity profile the uncertainty

in the location is nominally ± 1 cm, ranging between about ∼ 2 cm for the C–port

spctrometer, and ∼ 0.8 cm for the K–port spectrometer.

The calculation for the radial electric field was done in three terms, each of which

has an error associated with it7

σEr
=
√

σ2
Term1 + σ2

Term2 + σ2
Term3 (5.19)

Where:

σTerm1 =
√

B2
θσ

2
Vφ

+ V 2
φ σ

2
Bθ

(5.20)

σTerm2 =
(K1 + 3

2
K2 − 1)

e
σ ∂

∂r
Ti

(5.21)

7A more thorough treatment of the error in this calculation would include covariant terms in the
calculation of the standard deviations σEr

. This has not been done her for two reasons. First, the
correlation between terms is believed to be small, that is deviation in one measured quantity will
not, in general, have a large effect on another measured quantity. This is not necessarily true for
the temperature or density and their respective derivatives. Second, and more importantly, there is
not sufficient data to calculate a statistically significant covariance for either of these terms.
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σTerm3 =

√

(

Ti
eni

∂

∂r
ni

)2
√

1

T 2
i

σ2
Ti

+
1

n2
i

σ2
ni

+
1

(

∂
∂r
ni
)2σ

2
∂
∂r
ni

(5.22)

These errors have been propagated through and overplotted on their respective

terms (Fig. 5-12) and on the electric field profiles, (Fig. 5-14). The largest contri-

bution to the error is the toroidal rotation velocity. The uncertainties in most of the

other quantities are fairly low, (< 10 %.)

Error introduced by taking numerical derivatives present a particular problem,

small deviations in the original data can lead to wildly different values for the deriva-

tive. This was overcome by fitting a spline to the data and then taking the derivative,

numerically, of the fit. The χ2 error statistic of the fit then provides a measure of the

uncertainty in the derivative.

5.5.2 Model Error and Sensitivity

The error in the model fit comes from the fitting of the free parameter: the diffusivity.

The amplitude of the edge source is assumed to be final rotation velocity, as measured

by the outer most spectrometer. While the terminal or edge rotation velocity could

be considered a free parameter, it has not been because the fit is quite dependent on

it. If the H–mode lasts long enough, (a few times τφ) it is quite clear what the value

should be. If the H–mode doesn’t last it can be more difficult to determine what this

value is.

To properly deal with the fit and the uncertainty in the free parameter, a mini-

mization of the χ2 statistic was performed[112]. For a function of two variables, (e.g.

Vφ(r, t),) χ
2 is defined as:

χ2 ≡
∑

i

∑

j

{

1

σ2
ij

[yij − y(xi, xj)]
2

}

. (5.23)

Where: σ2
ij are the experimental variances, yij are the data points, and y(xj, xj) are

the functional fits to the data at points xi and xj, with parameter a. The function

χ2(a) will be minimized with respect to the parameter ak. In this case the parameter
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a is D the diffusivity. When:

dχ2

da
=

d

da

∑

i

∑

j

{

1

σ2
ij

[yij − y(xi, xj)]
2

}

= 0

= −2
∑

i

∑

j

{

1

σ2
ij

[yij − y(xj, xi)]
dy(xi, xj)

da

}

(5.24)

the χ2 error statistic has been minimized and thus the fit optimized. The χ2 error

Statistic has been plotted vs. D, for both the L → H transition, (DH ,) and the H →
L transition, (DL,) in figs. 5-16 and 5-17 respectively.

Figure 5-16: A plot of the χ2 error statistic vs. DH the fitted diffusivity, for the fit
in Figs. 5-8 and 5-9. The fit parameter is almost the absolute minimum of the χ2

curve, thus implying a very good fit of the parameter. It can also be seen that the fit
is quite sensitive to the model parameter D, thus there is high confidence in the fit.

From these figures we can determine that the fit parameter DH should be in the

range 0.060 – 0.150 m2/s, and DL should be in the range 0.100 – 0.400 m2/s.

Finally, a true “goodness of fit” can be calculated using the reduced chi squared,

χ2
ν ≡ χ2

ν
where ν is the degrees of freedom defined as the number of points minus the

number of fit parameters. If χ2
ν = 1, this implies that the fit is optimal, much larger

or much smaller imply a problem with the data or the model, respectively. For the
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Figure 5-17: A plot of the χ2 error statistic vs. DL the fitted diffusivity, for the fit
in Figs. 5-8 and 5-9. The fit parameter is almost the absolute minimum of the χ2

curve, thus implying a very good fit of the parameter. It can also be seen that the fit
is not very sensitive to the model parameter DL.

fit to DH :

χ2
ν ≡

χ2

ν
=

27

22 − 1
= 1.227.

For the fit to DL, χ2
ν = 2.6. The model is quite sensitive to the input free parameter,

(D).

Finally, it should be noted that the terminal rotation velocity is determined from

the data by inspection, not fit as a free parameter. In many discharges, the length of

the H–mode makes this quantity well known. In all the discharges presented in this

chapter and the next, the rotation velocity was within 10% of the terminal velocity

by the end of the H–mode.

Figure 5-18 is three plots showing the sensitivity of the fit to the value P . A

change of 0.1 in the value of P , positive or negative completely under minds the fit.103



Figure 5-18: The three frames show the fit over plotted on the data for the discharge
presented in Figs. 5-8 and 5-9, the fit if the boundary condition P is increased by
10% and the fit if the boundry condition P is decreased by 10%.

5.6 Rotation and Magnetic Geometry

It has been observed that during Ohmic L–mode discharges, in either the double

null or upper null magnetic configuration, occasionally the plasma will start to rotate

spontaneously in the counter current direction. In every observed case the discharge

has been well developed and well evolved in a steady state L–mode and then, spon-

taneously, the rotation drops until the current ramp down begins.

The upper portion of Fig. 5-19 is a time history of the rotation as measured by the

three spectrometers, for one such discharge. The lower portion is the quantity SSEP

from the EFIT code[101–104]. When SSEP is negative the plasma is in the lower

null configuration; when it is positive the plasma is in the upper null configuration.

When it is zero the plasma is in the double null configuration. There is about 1 mm

uncertainty in SSEP.

At about 1.2 s the rotation velocity starts to go strongly counter–current. Figure

5-20 is a plot of the magnetic geometry at 1.2 s. It is interesting to note that at the

peak counter current velocity, the profile remains basically flat.
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Figure 5-19: The upper plot are some data from a discharge when the plasma started
to spontaneously rotate. The profile appears to be flat, that is the rotation velocity at
each radial point measured is about the same. The lower plot is of SSEP (a measure
of the null location) the vertical line shows the approximate time when the plasma
went into double null configuration. (These rotation data have been smoothed in
time using “nearest neighbor” smoothing.)

Figure 5-21 is a plot of the rotation velocity and SSEP for two other discharges

where the rotation drops as the plasma goes into the double null configuration. These

shots were before the spectrometer array had been built, so they only show the core

rotation.

Figure 5-22 is a plot of the time of double null vs. the time the plasma starts to

rotate strongly in the counter current direction, for 14 such discharges. The diagonal

line is y = x. Points that fall on this line imply that the time the rotation drops

corresponds exactly to the time the plasma goes into the double null. Points below

this line imply the double null precedes the rotation drop. Points above this line

would imply the rotation drop precedes the double null.

All the points fall on or below the line y = x, from this causality can be determined.

In this set of shots, the double null always precedes or corresponds to the rotation

drop. No systematic experimental study of this phenomena has yet been performed,
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Figure 5-20: Magnetic geometry for the shot of the rotation traces in Fig. 5-19, at
time equals 1.2 sec.
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Figure 5-21: The upper plot are some data from two discharges when the plasma
started to spontaneously rotate. The lower plot is of SSEP (a measure of the null
location) the vertical line shows the approximate time, for each discharge, when the
plasma went into double null configuration. (These rotation data have been smoothed
in time using “nearest neighbor” smoothing.)

so the number of discharges included is fairly limited.

There are also examples of double null configuration plasmas where the plasma

did not start to rotate, (1020701018). From the above information it is concluded that

the double null or upper null configuration is a necessary but insufficient condition

for this counter–current rotation.

If present theories of H–mode development, linking the H–mode threshold to some

required edge Er, are correct, then this observation could explain the apparent in-

creased H–mode threshold in the double null and upper null configuration. The strong

counter current rotation could lead to velocity and thereby Er shearing, increasing

the relative Er required to cross the H–mode threshold.

5.7 Chapter Summary

This chapter has covered rotation in Ohmic plasmas. First looking at some basic

data from Ohmic L–modes, a background rotation profile for a standard shot was
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Figure 5-22: a plot of the time of double null vs. the time the plasma starts to rotate
strongly in the counter current direction. The diagonal line is y = x.

established. A scaling of toroidal rotation of L–mode plasmas versus the plasma

density was presented. Good agreement with sign, magnitude and ne trend were found

with neoclassical theory. Some data from Ohmic H–modes were then presented. The

flat rotation profile in the Ohmic H–modes lead to the assumption that momentum

diffusion was the only process at work in Ohmic plasmas. This conclusion led to

an attempt to model the time scale for the diffusion of momentum into the plasma.

The time scales were calculated based on a simple diffusion model, with diffusion

coefficients DL ' 0.250 m2/s and DH ' 0.100 m2/s. It was found that momentum

confinement times and energy confinement times were similar in that both went up by

a factor of about 3 between H–mode and L–mode. The momentum confinement times

in H–mode (τφ,H ∼ 0.100 s) and L–mode (τφ,L ' 0.030 s) seem to imply momentum

transport is anomalous, while the diffusion coefficients are more nearly neoclassical.

Finally, Ohmic rotation data dependent on magnetic geometry were presented.
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Chapter 6

Rotation in ICRF Heated

Discharges

One of the features of Alcator C–Mod that makes it very interesting for plasma

physics studies is the high ICRF power density. Alcator is equipped with three ICRF

antennas, capable of launching up to 6 MW of ICRF power. C–Mod has been able

to reach power densities up to 5 MW/m3.

6.1 ICRF Driven H-Modes

ICRF heated H–modes[113] constitute a great deal of the run time in C–Mod. The

ICRF system is quite versatile, capable of launching many MW of power at a few

different frequencies and with a variety of antenna phasings. This makes for many

possible RF configurations and power deposition profiles. It is not surprising that a

great diversity of toroidal rotation profile shapes has been seen under these varied

conditions.

This chapter will focus on two shapes in particular: flat profiles and centrally

peaked profiles. Towards the end of the chapter some of the other profile shapes will

be shown and briefly discussed.
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6.2 Flat Profiles

Many of the rotation profiles measured in ICRF plasmas are flat. Figure 6-1 is an

example of such a profile. Shown here are the averaged L–mode and H–mode portions

of a discharge. As in the Ohmic case, the profile starts out flat during L–mode and

then starts to rise from the outside and finishes, in a fully developed H–mode, with

a flat rotation profile. This can be seen in Fig. 6-2.

Figure 6-1: A rotation profile in an ICRF H–mode. The profile is flat during the L–
mode phase of the discharge. Once the H–mode has formed the profile again becomes
flat. This plot represents the average over three shots 003, 004, 005 from the 1020828
run.

In most instances of flat profiles, measurements of the toroidal rotation after the

L → H transition show the outer channels rising before the core, and thus imply

that the momentum responsible for the rotation originates further out in the plasma

and diffuses in. Figure 6-3 shows time histories of toroidal rotation velocities for a

different discharge. The outer most spectrometer view, shown in blue (r/a ' 0.6),

rises first. Next, the middle channel, shown in green (r/a ' 0.3), rises. Finally, the

core channel, shown in red (r/a ' 0.0) starts to rise.

Figure 6-4 shows time histories of various plasma parameters for this discharge.
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Figure 6-2: Rotation velocity profiles for different times after the L → H transition,
(1.03 s). It can clearly be seen that the velocity speeds up on the outside first, and
propagates inward to the core. The shapes of the intermediate profiles in time imply
that the momentum originates at the edge. The flat final profile implies that the
momentum diffuses in, with no evidence of convection.

Figure 6-3: Rotation measurements for the three spectrometer views vs. time. The
delay in the rotation can clearly be seen. First the outer channel starts to rotate,
then the middle, and lastly the core channel. (These data have been smoothed in
time using “nearest neighbor” smoothing.)
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Figure 6-4: Time histories for some of the plasma parameters for the discharge in
Figs. 6-3, 6-5 & 6-6. From top to bottom: BT (T), IP MA, ne (1020 m−3), PRF

(MW), W (kJ), Te (keV) and Dα emission (A.U.).

6.2.1 The Simple Model: Momentum Diffusion

Following the simple model detailed in Chapter 5, §5.3.1, a solution to the diffusion

equation can be fit to the data.

Figure 6-5 is a surface plot of the solution of the diffusion equation, Eq. 5.10

to match the data in Fig. 6-3. Again, the solution has been taken to be a Bessel

expansion, Eq. 5.11.

Figure 6-6 shows the spatial slices of the surface in Fig. 6-5 at the locations of the

spectrometers views, plotted vs. time, with the data from Fig. 6-3 overplotted. The

diffusion coefficient (D) that was used to fit these data and the implied confinement

time (τVφ
) have been calculated again using Eq. 5.15. In this case the terminal rota-

tion velocity (P , from the boundary conditions) was taken to be 42 km/s. The data

were fit best with a diffusion coefficient D = 0.100 m2/s, which implies a confinement

time τH = 0.076 s.

The values found for momentum purely diffusing into an ICRF heated plasma

were exactly the same as those for the diffusion of momentum into an Ohmic plasma.
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Figure 6-5: A surface of rotation velocity vs. radius and time as predicted by the
simple diffusion model. An analytical solution was found in the form of a Bessel
expansion. When this surface was calculated and plotted, the series was truncated at
191 Bessel modes. Residual oscillations on the solution surface are numeric artifacts.

Both plasmas were making the transition from L–mode to an EDA H–mode.

Figures 6-7 and 6-8 are a second example of rotation data fitted to the simple

diffusion model. Plasma parameters for this discharge are shown in Fig. 6-9.

In this case the values for DVφ
and τVφ

are found to be slightly different, but very

similar. The best fit to the data gives a DVφ,LH = DH = 0.050 m2/s and DVφ,HL = DL

= 0.200 m2/s. These values for the diffusion coefficients give momentum confinement

times: τVφ,LH
= τH = 0.152 s and τVφ,HL

= τL = 0.038 s. In this case the terminal

rotation velocity (P, from the boundary conditions) was taken to be 52 km/s. By

using this model to describe these measurements we have been able to find both the

L–mode and the H–mode momentum confinement times, in a momentum–source–free

tokamak.

The values of DH and τH in this discharge are about a factor of two different

from the Ohmic or the previous ICRF DH and τH values. The values of DL and τL,

however, are just about the same as the Ohmic case. Generally speaking, EDA H–

modes exhibit diffusion coefficients between ∼ 0.050 and ∼ 0.100 m2/s, and L–modes

113



Figure 6-6: Fig. 6-5 projected into the rotation velocity – time plane, with data
overplotted. There is quite a bit of scatter in the raw data, but the trend based on
the simple model fits well with momentum diffusion. The diffusivities (D) and the
time constants (τ) have been calculated for both the L → H and H → L. (These data
have been smoothed in time using “nearest neighbor” smoothing.)

Figure 6-7: A surface plot of rotation velocity vs. radius and time as predicted by
the simple diffusion model. An analytical solution was found in the form of a Bessel
expansion, an infinite series of Bessel functions. When this surface was calculated
and plotted, the series was truncated at 191 Bessel modes.
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show diffusion coefficients of about 0.200 m2/s – 0.250 m2/s. The reason for the

variation in these parameters is not well understood. From theory, these parameters

should vary over the minor radius of the plasma, since a single value is being used to

describe the diffusivity over the entire plasma, this fit parameter only represents an

average value. Slight differences in profile shapes of plasma parameters can lead to

different values for all transport coefficients.

Figure 6-8: Fig. 6-7 projected into the rotation velocity – time plane, with data
overplotted. There is quite a bit of scatter in the data, but the trend based on the
simple model fits well with momentum diffusion. The diffusivities (D) and the time
constants (τ) have been calculated for the L–mode (DHL ≡ DL = 0.200 m2/s; τHL ≡
τL = 0.038 s), and H–mode (DLH ≡ DH = 0.050 m2/s; τLH ≡ τL = 0.152 s), phases
of the discharge. (These data have been smoothed in time using “nearest neighbor”
smoothing.)

Further, in this discharge the L → H transition occurs at about 1.1 s, there is a

step up in the input RF power at about 1.2 s. In both this shot and the shot in Figs.

6-3 – 6-6 the change in the stored energy (∆W ) from the L–mode to the H–mode

was ∼ 43 kJ . In the previous shot (Figs. 6-3 – 6-6) the time for the stored energy to

reach its peak value was ∼ 0.080 – 0.100 s. In this shot, because of the step in the RF

power and time of the L → H transition, the change in the stored energy took about

∼ 0.180 – 0.200 s. Correspondingly, (or perhaps coincidentally,) the fitted τφ,H has
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Figure 6-9: Plasma parameters for discharge in Figs. 6-7 & 6-8

changed by a factor of two. The analysis of this shot most likely is more complicated.

6.2.2 Inferred Radial Electric Field

Fig. 6-10 is a plot of the individual terms from Eq. 2.16. Again, the terms 1, 2 and 3

have been set, identically, to zero at r/a = 0, and these are not measured quantities.

It can be seen that the dominant term is Term 1, (V I
φBθ.) Term 2, (− (K1+ 3

2
K2−1)

e
∂
∂r
Ti,)

has little effect. Term 3, ( Ti

eni

∂
∂r
ni), is practically negligible.

The remaining quantities in Eq. 2.16 are measured during normal plasma oper-

ation. Figure 6-11 shows time histories of the radial electric field at the outer two

spectrometer view locations, the central view has been set to zero. Figure 6-12 shows

the same information in profile form.

It can be seen that like the flat profile Ohmic (EDA) H–mode, the ICRF flat

profile (EDA) H–mode also has a flat Er profile.
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Figure 6-10: The profiles of the three terms that make up the calculation of the

inferred radial electric field. Term 1 ≡ V I
φBθ, Term 2 ≡ − (K1+ 3

2
K2−1)

e
∂
∂r
Ti and Term

3 ≡ Ti

eni

∂
∂r
ni. Each term has been plotted vs. radius for seven 50 ms steps during the

discharge.

Figure 6-11: Time histories of the inferred radial electric field at the view locations
of the three spectrometers.
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Figure 6-12: Profiles of the radial electric field at 50 ms intertals during the discharge.

6.3 Peaked Profiles

Peaked profiles are also very common in C–Mod. Fig. 6-13 shows just one example

of such a profile. Figure 6-14 has some of the plasma parameters for the discharge of

the profile in Fig. 6-13.

6.3.1 The Simple Model: Diffusion and Convection

For the case of peaked rotation profiles, the simple diffusion model fails to predict

the appropriate profile shape. To fit these data, a slightly more complicated model,

diffusion with a convection velocity that depends linearly on the radius, will be used.

Starting with Eq. 5.8:

∂

∂t
P + ∇ · ΓP = 0 (5.8)

where ΓP is now defined as:

ΓP = −D ∂

∂r
P − vcr

a
P (6.1)
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Figure 6-13: The rotation profile in an ICRF H–mode. The profile is flat during the
L–mode phase of the discharge. Once the H–mode has formed the profile becomes
extremely peaked in the core, and the profile is quite steep.

Figure 6-14: Plasma parameters for Fig. 6-13. The vertical line indicates the time of
transition into the first H–mode.
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again: P = nimiV , with the assumptions that V = Vφ and the density profile is

flat ( ∂
∂r
ni = 0). Equation 5.8, in cylindrical coordinates, then becomes:

∂

∂t
Vφ −D

[

∂2

∂r2
Vφ +

(

1

r
+
vcr

aD

)

∂

∂r
Vφ +

2vc
aD

Vφ

]

= 0. (6.2)

Assuming Eq. 6.2 is separable, it has a general solution

Vφ(r, t) =
∞
∑

n=0

Cn
1

r
[e−t/τn ](e−vcr2/4aD)M(λnDa+vc

2vc
),0(vcr

2/4aD) (6.3)

where: M(λnDa+vc
2vc

),0(vcr
2/4aD) are confluent hypergeometric functions, specifically

Whittaker functions[114], and λn are the eigenvalues, determined from the zeros of

the Whittaker functions, (Mκ(λn),0(
vca
4D

) = 0.) The time constants (τn) are determined

by the relation:

τn =
a2

λnD
(6.4)

with the condition: λn−1 < λn, ∀ n ∈ N ⇒ τn−1 > τn, ∀ n ∈ N. Again, assuming an

edge source, the boundary conditions:

V (a, t) =



















0, t < tL→H

P, tL→H ≤ t ≤ tH→L

0, t > tH→L

(6.5)

are imposed.

The radial portion of this solution satisfies the orthogonality condition[115]:

∫ a

0

Vφ,R(
λnr

a
)Vφ,R(

λmr

a
)
2πr

a2
dr = δnm. (6.6)

The coefficients Cn can then be determined by the relation:

Cn =

∫ a

0
f(r)Vφ,R(λnr

a
)rdr

∫ a

0
V 2
φ,R(λnr

a
)rdr

(6.7)

where: f(r) is a function for the initial conditions, in this case zero through out the
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radius, and P at the edge, (r = a.)

In this case the slowest eigenvalue, τ1 ' 70 ms. The higher order modes, (τn, n

≥ 2,) have time scales of 3.5 ms or less, (τ2 ' 3.5 ms [116].) The contribution these

higher order modes make to the solution will be very short lived, less than the first

10 ms, clearly not perceptible with the spectrometer’s current time resolution1.

To model the data, on this relatively long time scale, we can approximate Eq. 6.3

as:

Vφ(r, t) ' C1

[

e−vcr2/2aD − [e−t/τ1 ]
1

r
(e−vcr2/4aD)M(λ1Da+vc

2vc
),0(vcr

2/4aD)

]

(6.8)

with C1 = VTerm = eSP , S is the convection parameter Eq. 6.10, λ1 = 1.57. Equation

6.8 is the first order solution to Eq. 6.2. The higher order modes decay away in well

under 20 ms justifying this approximation[115].

Seguin et. al. [116], determined τ1 could be approximated over a large range of

S, (|S| ≤ 50,) as:

τ1 '
(77 + S2)

(56 + S2)

[

eS − S − 1

4S2

]

a2

D
(6.9)

where, the convection parameter, (S,) is:

S =
avc
2D

. (6.10)

Eqs. 6.8 – 6.10, with D and vc as free parameters, represent an approximate

solution that can be used to fit the data, with a slower than 10 ms time scale.

Figure 6-15 is a surface plot of rotation velocity vs. space and time. This discharge

had two complete L → H, H → L transition cycles, and the surface reflects this. The

surface was generated using DH = 0.400 m2/s and vc = 12 m/s ⇒ τH ' 0.070 s. It

should be noted that the rotation velocity at the edge of the plasma is predicted to be

1To insure that this was true a numeric solution to Eq. 6.2 was also found and it did not differ
from the analytic solution on a 10 ms timescale.
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quite small (P ' 4); this is due to the convection velocity which varies linearly with

radius. The pinch effect on any momentum that originates at the edge is greatest at

the edge of the plasma.

Figure 6-15: A surface plot of toroidal rotation velocity vs. space and time for a
discharge with a peaked rotation profile.

Figure 6-16 is a plot of spatial slices of the surface in Fig. 6-15, that correspond to

the radii of the spectrometer views. Over plotted in this figure are the data from this

shot. The agreement is certainly passable, considering the simplicity of the model.

Figure 6-17 are some of the plasma parameters for the shot in Figs. 6-15 and 6-16.

6.3.2 Momentum Confinement Time

Unfolding the proper time scale for this equation (Eq. 6.3) is slightly more compli-

cated than in the simple diffusion model. Using Eq. 6.9 to calculate the confinement

time for the L → H transition, with DH = 0.400 m2/s and vc = 12 m/s, S = 3.15,

τH ' 0.070 s. This is an ELM free H–mode, the impurity confinement time is known

to be long (τimp ∼ 0.1 s).

The convection parameter S is essentially a measure of the steady state radial

profile shape. The confinement time (τ1) is essentially a measure of the shape of the
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Figure 6-16: A plot of rotation velocity vs. time. Over plotted are the data from this
shot. In the lower portion of the figure are the diffusion coefficients, the confinement
times and the convection velocity used in the diffusion and convection model to fit this
data. (These data have been smoothed in time using “nearest neighbor” smoothing.)

Figure 6-17: Plasma parameters for the discharge in Figs. 6-15 and 6-16.
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time history. The peak value, together with these two parameters (S and τ1) can

uniquely define any Vφ(r, t) surface that satisfies Eq. 6.2. Figure 6-18 is a plot of

τ1 vs. S for various values of both vc and DH . Inset in this figure is a plot of the

steady state profile shape for the convection parameter value fitted to these data, (S

= 3.15.)

Figure 6-18: Confinement time (τ1) vs. Convection Parameter (S). Lines of constant
convection velocity (vc) are plotted in red. Lines of constant diffusivity (D) are
plotted in blue. The asterisk (*) represents the choice of S and τ or vc and DH for
this discharge. The inset figure is a plot of the steady state profile shape, (S = 3.15,)
for the peaked discharge discussed in detail in this chapter, (Figs. 6-15 – 6-17.)

6.3.3 Inferred Radial Electric Field

Fig. 6-19 is a plot of the individual terms from Eq. 2.16. Again, the terms 1, 2 and 3

have been set, identically, to zero at r/a = 0, and these are not measured quantities.

It can be seen that the dominant term is Term 1, (V I
φBθ.) Term 2, (− (K1+ 3

2
K2−1)

e
∂
∂r
Ti,)

has the least effect. Term 3, ( Ti

eni

∂
∂r
ni), is about a factor of 2 less than Term 1.

The remaining quantities in Eq. 2.16 are measured during normal plasma oper-

ation. Figure 6-20 shows time histories of the radial electric field at the outer two
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Figure 6-19: The profiles of the three terms that make up the calculation of the

inferred radial electric field. Term 1 ≡ V I
φBθ, Term 2 ≡ − (K1+ 3

2
K2−1)

e
∂
∂r
Ti and Term

3 ≡ Ti

eni

∂
∂r
ni. Each term has been plotted vs. radius for seven 50 ms steps during the

discharge.

spectrometer view locations, the central view has been set to zero. Figure 6-21 shows

the same information in profile form.

It can be seen that The Er profile is highly sheared in the region r/a 0.3 – 0.6.

These data are consistent with the findings from DIII-D[79].

6.4 Other Shapes

Other variations on the previously mentioned profile shapes have been seen with

the spectrometer array, flatter, more peaked, less peaked, etc. These other profile

shapes could be fitted using this model, by varying the convection velocity and or

the diffusion coefficient. It seems logical that the mechanism that drives the rotation

peaking, has a continuous range. This means that shapes anywhere from flat to fully

peaked would not only be possible, but expected.

In addition to the two shapes focused on in this chapter, a class of hollow profiles

has been seen. A simple model to describe these has not been developed here. Figure
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Figure 6-20: Time histories of the inferred radial electric field at the view locations
of the three spectrometers.

Figure 6-21: Profiles of the radial electric field at 50 ms intervals during the discharge.

126



6-22 is an example of a hollow profile.

Figures 6-23 and 6-24 are examples of some of the other profile shapes that have

been seen.

Figure 6-22: The rotation profile in an ICRF H–mode. The profile is flat during the
L–mode phase of the discharge. Once the H–mode has formed the profile becomes
steep on the outside, and very hollow towards the core.

Originally, it was thought that the location of the peak in the rotation profile

might be linked to the ICRF resonance location. There does seem to be a link, but

it is not totally straight forward. More will be said about this in the future work

section, §8.2

6.5 Comparison With Magnetics

Magnetohydrodynamic reconnection events known as the sawtooth crashes (n = 1, m

= 1 tearing modes) present an alternative method of deciphering some information

about plasma rotation. During a few ICRF heated discharges rotation data from

the magnetics diagnostics[117] are available. Figures 6-25 and 6-26 have the x–ray

rotation data, the simple model, (diffusion or diffusion and convection,) and the

magnetics data plotted together, for the discharges in Figs. 6-6 and 6-16, respectively.
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Figure 6-23: The rotation profile in an ICRF H–mode. The profile is flat during the
L–mode phase of the discharge. Once the ICRF comes on the profile becomes peaked
on axis.

Figure 6-24: The rotation profile in an ICRF H–mode. The profile is flat during the
L–mode phase of the discharge. Once the H–mode has formed the profile becomes
very steep on the outside, and hollow towards the core.
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Figure 6-25: Rotation data vs. time for four radii. The red (r/a ' 0.0), green(r/a '
0.3), and blue (r/a ' 0.6) correspond to the data from the x–ray spectrometers. The
purple data points (r/a ' 0.17) are from the magnetics diagnostics. These data are
essentially the rotation frequency, (here multiplied by 2πR,) at the sawtooth radius,
or the q = 1 surface. The smooth solid curves are from the simple model. These are
the same data as in Fig. 6-6.
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In Fig. 6-6 the x–ray data were shifted down by 8 km/s, (the L–mode baseline.)

The magnetics data also seem to agree quite well with the model, error bars for the

magnetics data are about 50%. Figure. 6-26 is a peaked or ELM–free discharge.

Figure 6-26: Rotation data vs. time for four radii. The red (r/a ' 0.0), green(r/a '
0.3), and blue (r/a ' 0.6) correspond to the data from the x–ray spectrometers. The
purple data points (r/a ' 0.2 = r(q=1)) are from the magnetics diagnostics. The
smooth solid curves are from the simple model. These are the same data as in Fig.
6-6.

6.6 Error Analysis

6.6.1 Measurement Error

Analysis of measurement error in the ICRF case is propagated in the same manner

as in the Ohmic case, §5.5 of Chapter 5.

The analysis of error for the radial electric field was done in the same manner as

in the Ohmic case, §5.5.1 of Chapter 5.

6.6.2 Model Error and Sensitivity

The error in the model fit comes from the fitting of the free parameters. In the case

of the flat profiles, associated with EDA H-mode, (Figs. 6-5, 6-6, 6-7 and 6-8,) the
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diffusivity is the only free parameter. In the case of the ELM-free discharge, (Figs.

6-15 and 6-16,) both the diffusivity and the convection velocity are free parameters.

In this chapter, just as in the last, the “goodness of fit” for the simple diffusion

cases have been checked by minimizing the χ2 error statistic and calculating the

reduced chi squared χ2
ν, (see §5.5.2). Figures 6-27, 6-28 and 6-29 are plots of χ2 vs.

D for the fits in Figs. 6-5, 6-6 (DH) and 6-7, 6-8, (DH) & (DL).

Figure 6-27: A plot of the χ2 error statistic vs. DH the fitted diffusivity, for the fit
in Figs. 6-5 and 6-6. The fit parameter is almost the absolute minimum of the χ2

curve.

For the fit to DH in Figs. 6-5 and 6-6, χ2
ν = 0.785. The χ2 vs. D plot tells us to

expect D to be in the range 0.075 – 0.130 m2/s. For the fit to DH in Figs. 6-7 and

6-8, χ2
ν = 2.79, with DH in the range 0.01 – 0.08 m2/s, and for the fit to DL, χ

2
ν =

7.5, with DL in the approximate range 0.100 – 0.500 m2/s.

The fit for the diffusion and convection model, have also been checked by mini-

mizing the χ2 error statistic. However, the process is slightly different for a fit with

two parameters. The χ2 error statistic is defined just as it was in §5.5.2:

χ2 ≡
∑

i

∑

j

{

1

σ2
ij

[yij − y(xi, xj)]
2

}

. 5.23
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Figure 6-28: A plot of the χ2 error statistic vs. DH the fitted diffusivity, for the fit
in Figs. 6-7 and 6-8. The fit parameter is almost the absolute minimum of the χ2

curve.

Minimizing is then done for each of the parameters, looking for an absolute mini-

mum in the χ2 surface, (or possibly hyper-surface of some sort.) Minimization is then

achieved by taking the partial derivative of χ2 with respect to each of the parameters

ak and solving for zeros, that is:

∂χ2

∂ak
=

∂

∂ak

∑

i

∑

j

{

1

σ2
ij

[yij − y(xi, xj)]
2

}

= 0

= −2
∑

i

∑

j

{

1

σ2
ij

[yij − y(xj, xi)]
∂y(xi, xj)

∂ak

}

(6.11)

This minimization has been done for this fit (ak = D, vc) and the χ2 surface has

been contour plotted in Fig. 6-30.

From the χ2 in Fig. 6-30, the two parameter fit of DH and vc gives a reduced chi

squared of χ2
ν = 1.16. Again, from the χ2 vs. vc, (Fig. 6-31,) and χ2 vs. D, (Fig.

6-32,) plots we deduce that DH should be in the range 0.310 – 0.470 m2/s and vc

could be anywhere between ∼ 10 – 14 m/s.

Figure 6-33 is three plots showing the sensitivity of the fit in Fig.6-3 – 6-6 to the
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Figure 6-29: A plot of the χ2 error statistic vs. DL the fitted diffusivity, for the fit
in Figs. 6-7 and 6-8. The fit parameter is almost the absolute minimum of the χ2

curve. (note: the zero has been suppressed on this plot.))

value of P . Figure 6-34 is three plots showing the sensitivity of the fit in Fig. 6-7

and 6-8 to the value of P . Figure 6-35 is three plots showing the sensitivity of the fit

in Fig. 6-15 and 6-16 to the value of the terminal rotation velocity, (VTerm.) This is

essentially the same as varying P the boundary condition, (P = 4, in this case.)

6.7 Discussion

It was noticed that flat rotation profiles corresponded to EDA H–modes, while peaked

rotation profiles corresponded to Edge Localized Mode free (ELM – free) discharges.

A more thorough quantification of this should be undertaken.

These are quite simple models of the rotation velocity profile in the plasma. Two

very interesting aspects to these models are that they are so simple yet accurate, and

that this is the same behavior as is seen in the transport of particles2.

In the limit that vc → 0, the diffusion and convection model reduces to simple

2This should not be too surprising because it is the particles that carry the momentum.
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Figure 6-30: A contour plot of the χ2 error statistic vs. vc the convection velocity
and DH the fitted diffusivity, for the fit in Figs. 6-15 and 6-16. The fit parameter is
almost the absolute minimum of the χ2 surface.

Figure 6-31: A plot of the χ2 error statistic vs. vc the convection velocity, for the fit
in Figs. 6-15 and 6-16. The fit parameter is almost the absolute minimum of the χ2

curve for this diffusivity.
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Figure 6-32: A plot of the χ2 error statistic vs. DH the fitted diffusivity, for the fit
in Figs. 6-15 and 6-16. The fit parameter is almost the absolute minimum of the χ2

curve for this convection velocity.

Figure 6-33: The three frames show the fit over plotted on the data for the discharge
presented in Figs. 6-3 – 6-6, the fit if the boundary condition P is increased by 10%
and the fit if the boundry condition P is decreased by 10%.
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Figure 6-34: The three frames show the fit over plotted on the data for the discharge
presented in Figs. 6-7 and 6-8, the fit if the boundary condition P is increased by
10% and the fit if the boundry condition P is decreased by 10%.

Figure 6-35: The three frames show the fit over plotted on the data for the discharge
presented in Figs. 6-15 and 6-16, the fit if the terminal rotation velocity VTerm is
increased by 10% and the fit if the terminal rotation velocity VTerm is decreased by
10%.
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R. NC. R. NC. SNC. SNC. Simple Model N.C.
τ In s τU‖,ivis τU‖,if.l.r. τU‖,i

τU‖,i
τVφ

τNC
Shot Eq. 2.20 Eq. 2.21 Eq. 2.22 Eq. 2.25 Eq. 5.15 or 6.9 τφ = 10

λ0ρ2i νii

1021106006 6414 0.0022 2527 162 0.076 0.006 ∼ 0.015

1020830023 2839 0.0035 1688 108 0.038 (L) 0.003 ∼ 0.004

0.152(H) 0.006 ∼ 0.015

1021105019 3713 0.0027 1820 117 0.030 (L) 0.003 ∼ 0.004

0.070 (H) 0.006 ∼ 0.015

Table 6.1: Momentum confinement times from revisited neoclassical theory, subneo-
classical theory, and neoclassical theory for the data presented in this chapter. Also
see Fig. 5-11 for diffusivities.

diffusion. In general one should fit both the diffusion coefficient and the convection

velocity for all the shots and determine vc ' 0 from the fit. If, however, S the

convection parameter, is less than ∼ 0.1 the shape is essentially, indistinguishable

from zero, as far as the spectrometer is concerned. Thus in “flat” discharges, (S ∼
0.1,) we use the case of simple diffusion3, (vc = 0.)

Table 6.1 lists most of the discharges mentioned in this chapter, and the mo-

mentum confinement times as calculated by revisited neoclassical theory (§2.2) sub-

neoclassical theory (§2.3) and the appropriate simple model, either pure diffusion or

diffusion and convection. This information is also plotted, along with the Ohmic

data, in Fig. 6-36, a τ vs. S plot, (similar to Fig. 6-18.) Error bars for these data

were created using the χ2 from §5.5.2 and §6.6.2.

It is worth pointing out that the time dependence that the rotation exhibits in

these ICRF discharges (and the Ohmic discharges as well), has the same time depen-

dence that was predicted by Chang[25] in §2.4.2. i.e.:

Vφ ∝ V 0
φ (1 − e−t/τφ) (6.12)

where V 0
φ is the terminal rotation speed, and it has been assumed that τφ ' τE.

3As per Occam’s razor
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Figure 6-36: Confinement time Eq. 6.9 vs. convection parameter Eq. 6.10 for the
discharges in this and the preceeding chapter. Error bars were generated based on
the χ2 error statistics, and the assumption that “flat” profiles had S ≤ 0.1

6.8 Chapter Summary

In this chapter data have been presented from ICRF heated H–mode discharges. Two

profile shapes have been focused on here, flat profiles and peaked profiles.

Flat profiles have been found to fit a simple model of pure momentum diffusion.

Momentum diffusion coefficients and confinement times have been calculated based

on this model. These profiles correspond to EDA H–modes.

Peaked profiles have been presented and a slightly more complicated model in-

cluding both diffusion and convection was utilized to fit these data. The simple model

seems again to do quite a good job fitting the data, thus offering a simple explanation

for the physical processes at work in the plasma. Momentum diffusion coefficients

and confinement times have been calculated based on this model. These Profiles

correspond to ELM–Free H–modes.

138



Chapter 7

Internal Transport Barrier

Discharges

A very advantageous mode of plasma operation includes Internal Transport Barriers

(ITBs). ITBs lead to improved confinement in the core of the plasma and an en-

hanced bootstrap current fraction[43, 44]. On Alcator C–Mod, ITBs are most easily

recognized by a peaking of the core density1. In many instances this can directly, in

real time, be seen in the visible light emission from a wide angle camera.

Figure 7-1 is a digital photo of a plasma with an ITB, through a wide angle camera

lens. The center of the photo is dominated by the central column of the tokamak.

The view is such that a torus of increased intensity can be seen encircling the central

column; this is the ITB.

When an ITB forms, the characteristic behavior of the toroidal rotation is a drop

in velocity, ultimately leading to a reversal in rotation direction, i.e. eventually a

slightly negative (counter-current) toroidal rotation velocity. The profile tends to

have a mostly hollow shape. The region inside the barrier has zero rotation velocity,

or slightly negative, while the region outside the barrier has a slightly positive toroidal

rotation velocity.

1Discrepancies in the definition of an ITB lead to some ambiguity. Properly, ITBs should be
defined in terms of pressure, not just density or temperature.
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Figure 7-1: A wide angle view of an ITB in C-Mod. The faint ring of more intense
light emission, towards the top of the photo, is the region of the ITB. This view is
from below the midplane. (Photo graciously provided by Dr. Chris Boswell.)

7.1 ICRF Generated Internal Transport Barriers

7.1.1 ICRF ITB Rotation Data

Figure 7-2 are some density profiles at various times during an ITB discharge. During

the ITB the density peaks up by a factor of two or more as compared to the non–ITB

H–mode level. The point where the density drastically changes slope (r/a ∼ 0.5, R

= 0.785 m in this case) is called “the foot” of the barrier.

During the L–mode portion of the discharge the rotation is flat and near zero in

magnitude. As the plasma makes the L → H transition, it starts to rotate in the

co–current direction. Figure 7-3 shows the time histories of the measured rotation.
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Figure 7-2: Density profiles during an ITB discharge. At 0.55 s (blue profile) the
plasma is still in L–mode, the density is flat and the edge pedestal has not yet formed.
At 0.68 s the ICRF heating turns on, and the plasma goes into H–mode, (red profiles)
the edge pedestal has formed, but the core density is flat and relatively low. At about
0.87 s the ITB forms and the density starts to peak. By 1.10 s the core density is a
about a factor of two over the H–mode level, and a factor of four over the L–mode
level.
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Again, the rotation starts at the outside edge of the plasma, and moves in as the

plasma spins up to its H–mode value. Shortly after the H–mode fully develops (∼
0.87 s) the plasma enters the ITB portion of the discharge. At one second into the

discharge the barrier has formed, the density is peaking up (Fig. 7-2), and the toroidal

rotation has started to drop (Fig. 7-3).

Figure 7-3: Toroidal Rotation time histories for the three spectrometers throughout
the evolution of the discharge. VTor in km/s is on the ordinate, and time in seconds
in on the abscissa. The core view (r/a = 0.0) is plotted in red. The middle view (r/a
= 0.3) is plotted in green. The outermost view (r/a = 0.6) is plotted in blue. (These
data have been smoothed in time using “nearest neighbor” smoothing.)

Figure 7-3 has some interesting features. First, the rise in the rotation from the L–

mode to the H–mode phase exhibits the same shape and clear momentum diffusion as

seen in flat ICRF EDA H–modes. One of the requirements for most ITBs on C–Mod

is to first establish an EDA H–mode. Second, after the H–mode is fully developed,

the profile is flat; again this is an EDA H–mode, a flat profile is usually seen. Once

the barrier forms; the rotation starts to drop on the channels inside the barrier, quite

quickly. However, the rotation outside the barrier, although also slowing down, falls

off much more slowly.

Figure 7-4 shows the rotation profiles during the evolution of the H–mode, and
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then later during the formation of the ITB. This is the same information as in Fig.

7-3 displayed vs. radius, to show the lag in the toroidal rotation rise times. The data

plotted in this figure (7-4) confirm previous results, (see §3.1, specifically Fig. 3-3)

plus add a new measurement point outside the foot of the barrier.

Figure 7-4: Rotation profiles for various time slices through out the evolution of the
discharge. VTor in km/s is on the ordinate, and major radius in meters in on the
abscissa. The first time slice is during the L–mode, (shown with a blue line, and
label). The second three time slices are during the H–mode rise in rotation (shown
with a red lines, and labels). The final two time slices are during the ITB phase of
the discharge (shown with green lines and labels). The foot of the density barrier is
at R ' 0.785 m, just out from the F–port spectrometer, (green circles). This is the
same information as in Fig. 7-3. These time slices correspond to those in Fig. 7-2.

The plasma rotation profile starts out flat, perhaps slightly negative. When the

ICRF heating is turned on the plasma goes into H–mode, as seen at 0.68 sec, on the

Dα trace in Fig. 7-5. At this point the plasma starts to rotate in the co–current

direction, with the rotation starting at the edge, and propagating inward. At about

0.87 s the ITB forms, and the rotation inside the barrier can be seen to drop. The

rotation outside of the barrier seems also to decrease in magnitude, but it seems to

drop at a slower rate.

Figure 7-6 is the Ar’s momentum density from the same shot as Figs. 7-2 – 7-5.
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Figure 7-5: Time histories of some plasma parameters. From top to bottom: the
magnetic field, the plasma current, the plasma density, the RF power, the plasma
temperature, and the Dα emission. The first vertical line shows the time of the L →
H transition. The second vertical line shows the time the density starts to peak, and
the ITB forms.

The diffusion of momentum into the plasma during the L → H transition can clearly be

seen. When the barrier forms, the momentum is pushed out of the core of the plasma,

by some outward convection mechanism. This figure has been included because all

the quantities that go into the calculation are known, the rotation velocity, the Ar

density from the brightness, and the mass of Ar. Argon transport is totally governed

by the deuterium transport because the two are strongly collisionally coupled. A

more interesting quantity is the deuterium momentum density.

By combining Eqs. 2.1 and 2.2, and a correction term for the E‖ contribution from

Catto et. al. [118], an equation for the bulk deuterium toroidal rotation velocity, (V i
φ,)

can be found, depending on the Ar rotation velocity (V I
φ ), the temperature gradient

( ∂
∂r
Ti), the poloidal magnetic field (Bθ), the coefficient K2, the total magnetic field

(B), the ion–ion collision frequency (νii), the parallel electric field (E‖ = V`/2πR)

and the ion charge (Zi), in the form:
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Figure 7-6: Ar momentum density vs. time for the shot in Figs. 7-2 – 7-5. The red
trace is the core spectrometer (r/a ' 0.0), the green trace is the middle spectrometer
(r/a ' 0.3) and the blue trace is the outermost spectrometer (r/a ' 0.6). For this
plot the Ar density and ion mass have been folded together with the rotation data to
give the momentum density. After the L → H transition the error is 15% or less.

V i
φ = V I

φ +
3K2

2eBθ

∂

∂r
Ti +

ZieB〈BE‖〉
miνii〈B2〉 CQ (7.1)

where CQ is the constant that arises from the inclusion of trapped particle effects,

(CQ|0.0
' 9.115, CQ|0.3

' 3.150 and CQ|0.6
' 2.239.)2 The dominant term in this

calculation is the impurity rotation velocity V I
φ . The temperature gradient term is

generally negative, but can change sign, ( here K2 ∼ 1.) In this discharge the impurity

rotation velocity is about 40 km/s, the temperature gradient term is of order − 10

km/s and the E‖ term is of order 1 km/s.

On the axis the temperature gradient term becomes indeterminate, ( 3K2

2e
· 0

0
.) To

deal with this we assume Ti ' Ti0 exp(−r2/λ2
T i), which implies ∂

∂r
Ti ' −2r/λT i · Ti.

The poloidal field can be stated as 2πrBθ = µ0

∫

Jφ·dA, which implies Bθ = µ0Jφ0r/2,

2Here CQ ≡ (1 + L)I
[

1
〈〈Q〉〉 + (1 − I)

〈〈

1
Q

〉〉]

, I ' 1 − 1.46ε1/2, L(I, Z) = 0.68(Z−0.38)I
Z2−(0.55Z−0.18)I ,

〈〈Q〉〉 = 0.4 〈〈Q−1〉〉 = 5.4,[118].

145



µ0Jφ0 = 2B0/q0R0. Assuming λT i ∼ 0.06 m:

3K2

2eBθ

∂

∂r
Ti

∣

∣

∣

∣

0.0

' 3K2q0R0Ti
eB0λi

' 6 (km/s)

Figure 7-7 is the D’s momentum density calculated in this manner, for the shot

in this chapter.

Figure 7-7: Deuterium momentum density vs. time for the shot in this chapter. The
red trace is in the core about r/a ' 0.0, the green trace at r/a ' 0.3 and the blue
trace at r/a ' 0.6. For this plot the density and ion mass have been folded together
with the rotation data to give the momentum density. After the L → H transition
the error is 10% or less.

These data were taken from spectra added from three shots (006, 007 and 009)

during this run (1020925xxx). Figure 7-8 plots the Dα brightness trace for these three

shots. The sudden drop is indicative of the L → H transition into EDA H–mode, and

is thus used as the time of transition. Transition times for the three shots, their

average, their deviation from the average and the standard deviation have all been

calculated and are listed in Table 7.1.
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Figure 7-8: Time histories of the Dα emission during the L → H transition for each
of the shots used in the analysis.

Shot tL−H (s) ∆ tL−H = t̄L−H − tL−H

006 0.7087 −0.0216
007 0.6727 0.0135
009 0.6772 0.0090

t̄L−H 0.6862 0.0
σtL−H

0.0196 –

Table 7.1: For run 1020925: the shots involved and their associated L → H transition
times have been tabulated. A mean time of transition and a standard deviation in
the times of transition have been included. The standard deviation of the L → H
times is less than half the integration time of the data acquisition, so we may add
together the spectra from these shots with confidence.
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7.1.2 Inferred Radial Electric Field

Fig. 7-9 is a plot of the individual terms from Eq. 2.16. Again, the terms 1, 2

and 3 have been thus been set, identically, to zero at r/a = 0, and these are not

measured quantities. It can be seen that the dominant term is Term 1, (V I
φBθ.) Term

2, (− (K1+ 3

2
K2−1)

e
∂
∂r
Ti,) has the least effect. Term 3, ( Ti

eni

∂
∂r
ni), is of the same order as

Term 1.

Figure 7-9: The profiles of the three terms that make up the calculation of the

inferred radial electric field. Term 1 ≡ V I
φBθ, Term 2 ≡ − (K1+ 3

2
K2−1)

e
∂
∂r
Ti and Term

3 ≡ Ti

eni

∂
∂r
ni. Each term has been plotted vs. radius at the same six time slices as in

Figs. 7-2 and 7-4.

The remaining quantities in Eq. 2.16 are measured during normal plasma oper-

ation. Figure 7-10 shows time histories of the radial electric field at the outer two

spectrometer view locations, the central view has been set to zero. Figure 7-11 shows

the same information in profile form.

During the ITB the radial electric field becomes highly sheared. (These data are

consistent with the radial electric field profiles found in DIII-D[79, 85].) The inferred

Er(r) in Fig. 7-11 puts a lower limit on the steepness of the profile during the ITB.

One can easily imagine that if a more detailed profile were taken, the points right
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Figure 7-10: Time histories of the inferred radial electric field at the view locations
of the three spectrometers.

Figure 7-11: Profiles of the radial electric field at various times during the discharge.
Note: these profiles are taken at the same time slices as both the density profiles (Fig.
7-2) and the rotation profiles (Fig. 7-4, they are the sum of the terms in Fig. 7-9).
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up to the location of the barrier foot on either side would have drastically differing

values. The Er shear could then be very high. Based on the measured rotation

velocity profile and the electric field profile that is inferred, a statement that the Er

shear is greater than or equal to about 183 kV/m2 (∂/∂r Er ≥ 183 kV/m2) can be

made.

A very simple calculation of the minimum ωE at the foot of the barrier can be

made from Eq. 2.473:

ωE =
RBθ

B

d

dr

(

Er
RBθ

)

. (2.47)

Averaged parameters from the shots, at the locations in question, at t = 1.1 s, are:

Bθ|0.6
= 0.6 T, Bθ|0.5

= 0.63 T, Bθ|0.3
= 0.7 T, Er|0.6

= 3 kV/m, Er|0.3
= − 8 kV/m,

R|
0.6

= 0.83 m, R|
0.5

= 0.81 m , R|
0.3

= 0.77 m and B|
0.5

= 3.8 T. The Bθ values

come from EFIT Equilibrium analysis code[101–104]. It is found:

ωE ≥ RBθ

B

∣

∣

∣

∣

0.5







Er

(RBθ)

∣

∣

∣

0.6

− Er

(RBθ)

∣

∣

∣

0.3

R|
0.6

−R|
0.3






∼ 3.8 × 104rad/s.

Note: this is a “back of an envelope” calculation based on two points, inferred Er

profiles, and a linear slope derivative.

This shearing rate (ωE) can now be compared with the growth rate for some form

of turbulence. In this plasma after the barrier has formed the best comparison could

be made with the growth rate for trapped electron modes (TEM), γ
TEM

a reasonable

estimate for this growth rate is 1.5 × 105 rad/s [119, 120].

The ωE calculated above is about a factor of 4 low to suppress the growth of TEM

mode instabilities. If the shear layer is thinner than the ∼ 6 cm gap between the view

chords, this could still be enough to suppress TEM mode turbulence. It is important

to remember that this measurement does not have the resolution to make a definitive

statement about anything except the minimum shearing frequency. It is certainly

3The factor kθ / kr is generally ∼ 1, thus it is neglected here.
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possible, that the shearing layer is significantly thinner than the ∼ 6 cm gap between

the view chords of the spectrometers. A similar calculation at time t = 1.0 s yields

ωE ' 1.8 × 104 rad/s.

7.2 Error Analysis

7.2.1 Measurement Error

Analysis of rotation measurement error in the ITB case is propagated in the same

manner as in the Ohmic case, §5.5.

For the case of momentum density the error in the density has been folded in,

propagating error with the relation:

σmnV = m
√

(nσVTor
)2 + (σnVTor)2 + 2nVTorσ2

nVTor
' m

√

(nσVTor
)2 + (VTorσn)2

(7.2)

The covariance term has been dropped. The correlation between the density and

the toroidal rotation velocity is low therefore on average the positive deviations will

cancel the negative deviations, and the net contribution will be about zero.

The analysis of error for the radial electric field was done in the same manner as

in §5.5.1 of Chapter 5.

7.3 Chapter Summary

Internal transport barriers are regions of improved confinement in the plasma core,

generally, although not exclusively, formed from H–mode plasmas. During ITBs on

C–Mod the density is seen to peak up over the standard H–mode value in the central

region of the plasma, and the toroidal rotation is seen to drop.

During ICRF heated ITBs the plasma is seen to stop rotating, first in the core,

and later out by the edge. The measured momentum density profile shape implies

that there is a outward momentum convection during the ITB portion of a discharge.
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Based on the measured rotation profiles and the plasma parameters taken from

other diagnostic measurements, the radial electric field was calculated. This calcula-

tion reveals a lower limit on the steepness of the shear in the radial electric field, not

less than 183 kV/m2, or a shearing frequency, ωE ≥ 3.8 × 104 rad/s.
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Chapter 8

Conclusions and Future Work

The final chapter of this thesis will summarize the work presented here, and offer

some suggestions for future directions that might further this experimental study,

and recapitulate the theoretical explanation of the data presented here.

8.1 Summary

This section is a brief summary of the results presented in this thesis. Measurements

of toroidal rotation profiles in a source free tokamak have been made. The absence

of neutral beams and the associated uncertainty they introduce to rotation mea-

surements makes C–Mod the perfect tokamak for performing momentum transport

experiments.

8.1.1 Background

Chapters 2 – 4 detail much of the background required for the experimental study in

this thesis.

Chapter 2 sketched out most of the present theories pertaining to toroidal rotation

in tokamak plasmas[14–48]. Neoclassical theory has been covered in the most detail

because it was used for many of the calculations in later chapters. Other theories

were touched upon, including revisited neoclassical theory and subneoclassical theory.
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Time scales from these theories were compared to data in later chapters. Some

theories of ICRF rotation were discussed, including Perkins’ theory, Chang’s RF drive

theory and Hellsten’s theory. Two theories of spontaneous rotation were discussed.

Finally, some of the theory of ITBs was mentioned.

Chapter 3 reviewed most of the previous toroidal rotation measurements on Alca-

tor and other tokamaks[17, 24, 51–73, 80–83, 86–92]. Most other measurements have

been made using neutral beam injection, and have thus greatly perturbed the plasma’s

momentum.

Chapter 4 outlined the basic layout of the spectrometer array that was used to

make these measurements. This chapter went through the basic physics of the mea-

surement and detailed the hardware of the experimental setup. This chapter also

linked into all of the appendices: atomic physics concerns were discussed in appen-

dices A – C, and the attenuation of x–rays in both air and Be was discussed in

appendix D.

8.1.2 Ohmic Discharges

Chapter 5 presented data taken during Ohmic discharges. During the most basic

Ohmic L–modes the rotation data are found to yield a flat profile rotating slightly

counter current (∼ 8 km/s). Data taken during a density scan showed that the rota-

tion velocity of the impurity ions followed the scaling Vtor ∝ 1/ni. It was consistent

with the bulk ion velocity being zero and the impurity velocity relative to the bulk be-

ing neoclassical. Data taken during Ohmic H–modes were found to have flat rotation

profiles in the co–current direction, with velocities of about ∼ 35 km/s. The rotation

has been observed propagating in from the outer regions of the plasma to the core.

These data were fitted using a simple diffusion model and the diffusion coefficient

(DVφ
) and the diffusion time scale (τVφ

) were calculated, based on this model. Dur-

ing the H–mode phase, the diffusion coefficient (DH) was found to be ∼ 0.100 m2/s

with a corresponding confinement time (τH) of about 0.076 s. After the H–mode to

L–mode transition the diffusion coefficient (DL) was found to be ∼ 0.250 m2/s with a

corresponding confinement time (τL) of about 0.030 s. Values for τφ, τE and τimp can
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be found tabulated in Table 8.1. It was concluded that transport is anomalous, with

diffusivities about a factor of 50 over the expected neoclassical value. Finally, a link

between magnetic geometry and toroidal rotation in Ohmic L–modes was presented.

8.1.3 ICRF Heated Discharges

Chapter 6 presented data taken during ICRF heated discharges. This chapter focused

on two general profile shapes that had been seen during ICRF heated plasmas.

Flat rotation profiles were fit to a simple diffusion model. The agreement was

quite good. The fit was made matching the terminal rotation velocity during ICRF

H–mode and using the diffusion coefficient (D) as a free parameter, found to be D ∼
0.100 m2/s. Once the diffusion coefficient was set the momentum confinement time

(τ) was determined, (τ ∼ 0.076 s). The confinement times for various discharges were

all found to be quite similar to that of the Ohmic H–mode case.

Peaked rotation profiles were also measured. These profiles were fitted using a

slightly more complicated model that included both diffusion and convection. In

this case the terminal rotation velocity was again matched, (P = 63 km/s), and the

diffusion coefficient and the convection velocity were taken to be free parameters, and

were found to be vc ' 12 m/s and DH ' 0.400 m2/s. When the plasma goes back

to L–mode the simple diffusion model solution is used again with DL ' 0.250 m2/s.

Again, the momentum confinement times were calculated and found to be similar to

the simple diffusion case, (τH ∼ 0.070.) The rotation profile data taken during ELM–

free discharges qualitatively agrees with the shape of rotation profiles from DIII-D,

(§3.4.1,) despite the huge momentum input on DIII-D.

These values for L–mode, Ohmic EDA, ICRF EDA and ELM–free H–modes have

been summarized in Table 8.1.

In all cases the results presented here are consistent to within a factor of 2 – 4

with those previously found, (see Chapter 3).
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Shot Type D (m2/s) vc (m/s) τφ (s) τE (s) τimp (s)

L–Mode 0.250 0.0 0.030 0.025 0.020

H–Mode (Ohmic) 0.100 0.0 0.076 ∼ 0.060 0.050

L–Mode (Ohmic) 0.250 0.0 0.030 0.033 0.020

EDA (ICRF) 0.050 – 0.100 0.0 0.152 – 0.076 0.036 0.050 – 0.200

L–Mode 0.200 0.0 0.038 0.025 0.020

ELM–Free (ICRF) 0.400 12 0.070 0.029 > 0.015

L–Mode 0.250 0.0 0.030 0.020 0.020

Table 8.1: Momentum confinement times for the simple models fit to data presented
in Chapter 5 and 6.

8.1.4 ITB Discharges

Chapter 7 presented experimental data taken during ITB discharges. At the onset

of the ITB phase of the discharge, the toroidal rotation was observed to decrease in

magnitude and, if the ITB lasted long enough, reverse direction. Momentum diffusion

time scales were again observed in the flat rotation profiles that proceeded the ITBs.

Calculations of the the radial electric field that would be required to generate

the observed rotation were presented, as calculated from neoclassical theory. This

electric field was used in a very basic estimation of the shearing frequency, (ωE). The

calculation revealed ωE ≥ 3.8 × 104 rad/s.

8.2 Future Work

This thesis has by no means exhaustively investigated toroidal rotation profile mea-

surements on Alcator C–Mod. In fact it has opened doors to many interesting topics

that could be studied further.

8.2.1 DNB Comparison

A natural first setup beyond this thesis would be to compare the x–ray rotation

measurements with some of the data from the CXRS system on C–Mod. Due to the

high densities in C–Mod the CXRS system is only capable of measuring in to about
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r/a ' 0.5, the present views of the spectrometer array view out to r/a ' 0.6. This

region of overlap would allow for comparison of the data from the two diagnostics.

The data sets from both the CXRS and the tangential x–ray array put together would

allow for a much more complete profile measurement, perhaps better elucidating the

physics mechanisms driving plasma rotation.

8.2.2 Additional Views

Additional tangential views close to the ITB foot on either side would help to reveal

the true physics here. The existing three points, although a terrific start to this

investigation, are limited in that they leave a large portion of the plasma as yet

unmeasured.

At this point it seems that non–beam based spectroscopy is the only way to probe

the core of the plasma due to the high density of C–Mod and the limited penetration

depth of the DNB. If a more detailed study of toroidal rotation is to take place, some

other spectroscopic means will need to be employed, or more space will need to be

liberated for x–ray spectroscopic use.

The primary impediment to more tangential x–ray spectrometers at this point is

simply space on the tokamak. A great deal of work was required to alter the torsion

cylinder in order to accommodate the two new views that are the subject of this

thesis. It is doubtful that more space could be made available, but it certainly would

be helpful.

8.2.3 Ohmic ITBs

Although not discussed in this thesis there are data during Ohmic ITBs. A key to

figuring out the ITB may very well lie in the Ohmic ITB. Ohmic ITBs are generated

from Ohmic EDA plasmas. ITBs exhibit a very tight threshold for formation[17].

An ITB is generally formed with off axis ICRH, and it is believed that this power

somehow induces the region of improved transport. But how does this relate to the

Ohmic ITBs, with no ICRF at all? Relating the Ohmic power deposition profile to
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the ICRH power deposition profile might give a hint as to the driving mechanism for

the ITB. X–ray rotation measurements made during both ICRF and Ohmic ITBs will

allow a measurement for comparison.

8.2.4 Detailed Theory

This diagnostic has collected a tremendous amount of data, (almost every shot of

every day since its inception). These data have all been looked at very tersely in

the process of generating rotation velocities out of the raw spectra. Much of the

significant and indicative data have been included here. There is still, however, a

great deal to be analyzed in detail, and these data, in conjunction with the simple

models presented here, could lead to a very detailed theory of plasma rotation.

A theory that either quantifies or disproves the link between ICRF resonance

location and rotation profile peak and magnitude presumably could be established

using data already gathered in conjunction with some more data and RF modeling.

Rotation could be the key to linking Ohmic and ICRF heated ITBs. Presently,

they seem to exhibit the same behavior, but no theory has yet been proposed to

explain why on one hand ICRF is required yet in a different situation the (apparently)

same result can be achieved in an Ohmic plasma.

These analyses could lead to new theories of rotation, momentum, and their be-

havior in a source free tokamak. There are at least three interesting regimes to be

considered, Ohmic discharges, ICRF heated discharges and ITB discharges. The

existing data quite possibly hold the key to some of the more interesting tokamak

operating regimes.
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Appendix A

Expected Line Intensities for

He–Like Ar

This Appendix will go through the calculations for the expected line intensities of

He–like Ar. Much of this appendix was taken from [12, 121, 122].

A.1 Line Intensities

The expected intensity for a given line emitted from a plasma will depend on the

density of that charge state, the density of electrons, population density of the upper

level, the branching ratio, the area of view (more properly the étendue: the product

of the observation area and the solid angle) and the line of sight through the plasma.

The density of the ion, (in this case some charge state of Ar calculated in appendix

C,) depends on the temperature, which in turn depends on the radius in the plasma.

The line intensity (Fik) will be the integral over the line of sight (dl) of the emis-

sivity of the particular line (jik), where i →k is the transition producing said line.

Fik =

∫

l

jikdl (A.1)

The emissivity of a line transition from state i to state k (i → k) is given by:
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jik = neniAik (A.2)

There are predominately in four lines of He–like Ar of interest in this thesis. The

resonance line (w), the forbidden line (z), and two intercombination lines (x and y).

The wavelengths and transitions of these four lines can be found in Table A.1

line Transition λ0 (mÅ)
w 1s2p 1P1 → 1s2 1S0 3949.2 resonance line
x 1s2p 3P2 → 1s2 1S0 3966.0 intercombination line
y 1s2p 3P1 → 1s2 1S0 3969.4 intercombination line
z 1s2s 3S1 → 1s2 1S0 3994.3 forbidden line

Table A.1: The transitions of interest for He–like Ar, in these measurements.

To calculate the expected line intensity, or count rate of the individual lines, the

population processes and mechanisms that drive transitions from the lower levels to

the higher levels must be understood. For each level being considered, an equation

of the form:

1

ne

dnk
dt

=
∑

nlSl − nk
∑

(Sk + αk) +
∑

njαj. (A.3)

describes the time dependent population, (density, nk, nl or nj ), of that level. Si are

the ionization coefficients and αi are the recombination coefficients, for the state (i

= k, l or j), where: k is the state in question, j is any state with higher energy than

k and l is any state with lower energy than k. If the population processes are in a

steady state ionization equilibrium Eq. A.3 reduces to:

nk(Sk + αk) =
∑

nlSl +
∑

njαj (A.4)

⇒ nk =

∑

nlSl +
∑

njαj
(Sk + αk)

. (A.5)

This is simply a particle balance, the left hand side represents everything leaving the

state k and the right hand side represents everthing coming into the state k.
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When all the population and depopulation processes have been taken into account,

the densities of the upper levels that produce the four lines under consideration here,

(w, x, y and z) can be stated in the form of Eq. A.5 as[12]:

nw =
(nHneα

′
c1′ + nHeneS

′
gm′ + nLineS

′
g′m′)Sm′1′ + (nHeS

′
g1′ + nHα

′
c1′)(Am′g + neSm′1′)

Am′g(A1′g + A1′m′) + ne(S1′m′Am′g + Sm′1′A1′g)
ne

(A.6)

nx =
nzSm2 + nHα

′
m2 + nHeS

′
g2

A2g + A2m + neS2m
ne (A.7)

ny =
nzSm1 + nHα

′
m1 + nHeS

′
g1

A1g + A1m + neS1m

ne (A.8)

nz = ne

(

nHe(S
′
gm +

2
∑

k=0

S ′
gk) + nH(α′

cm +
2
∑

k=0

α′
ck) + nLiSg′m −

nHα
′
c1 + nHeS

′
g1

A1g + A1m + neS1m
A1g

−
nHα

′
c2 + nHeS

′
g2

A2g + A2m + neS2m

A2g

)

(

Amg +
neSm1

A1g + A1m + neS1m

A1g +
neSm2

A2g + A2m + neS2m

A2g

)−1

(A.9)

Here Aij are the radiative transition probabilities (given in Table B.3, of Appendix

B), α′
ij is the sum of the recombination rates, both radiative and dielectronic, and Sij

are the rate coefficients for collisional excitation. The indicies of the transitions, g, g ′,

1, m, etc., can be found listed in Table A.21. A full description of the calculation of

these quantities can be found in Appendix B. nH , nHe and nLi represent the densities

of H–like, He–like and Li–like argon, respectively. In Appendix C, these densities

are calculated as fractional abundances of the total argon density assuming coronal

equilibrium.

Figure A-1 is a plot of the expected emissivity profiles for the four He–like Ar

lines (w, x, y and z).

1A diagram of the energy levels has been included as Fig. B-1, in Appendix B, where these
processes will be discussed in more detail.
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Index Symbol Spectroscopic Notation

g 1s2 1S0 He – like Ground Level
g′ 1s22s 2S 1

2

Li – like Ground Level

c continuum All Levels n > 2, i.e. H – like
0 1s2p 3P0

1 1s2p 3P1 y Intercombination Line†

2 1s2p 3P2 x Intercombination Line†

1′ 1s2p 1P1 w Resonance Line†

m 1s2s 3S1 z Forbidden Line†

m′ 1s2s 1S0

Table A.2: Index notation for the n = 2 levels of He-like Ar ions. †: Implies the line
comes from the transition from this level to the ground level, e.g. the transition 1′

→ g, would be w, the resonance line.

Figures A-2 and A-3 are plots of an expected He–like Ar spectrum, from the

emissivities of the individual lines, integrated over the line of sight of a tangential

views of the F–port (r/a ' 0.3) and K–port (r/a ' 0.6) spectrometers, respectively.

The line shape was assumed to be Gaussian. It has also been assumed that the argon

is in thermal equilibrium with the plasma, and thus the line width is related to the

Ar ion temperature.

These spectra show the importance of recombination to the line intensities. At

r/a = 0.6 (Fig. A-2) the forbidden line (z) is more intense than the resonance line

(w), whereas at r/a = 0.3 (Fig. A-3) the resonance line (w) is the more intense of

the two. Essentially population mechanisms of the upper states of the transitions are

temperature dependent. Thus, in the regions where the temperature is lower, (r/a

= 0.6 vs. r/a = 0.3) the z is relatively more intense, because recombination is the

dominant population mechanism for this line. In regions where the temperature is

higher, (r/a = 0.3 vs. r/a = 0.6) the w is more intense.

Fig. A-4 is the model prediction of a He – like Ar spectrum on axis, (r/a = 0.0).

This simulated spectrum can also be compared with the spectrum in Fig. 4-3, a He

– like Ar spectrum taken on axis. Excluding the effects of the satellites that were

ignored in this model, good agreement is found between this model and the measured
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Figure A-1: He–like Ar emissivity profile vs. minor radius, based on the expected
line intensities as calculated in this appendix. The figure includes only the four lines
w, x, y and z.

spectrum.

The emissivity as a function of position along the line of sight for the He–like

resonance line, (w,) and Lα1 from the Lyman alpha doublet for H–like Ar, have been

plotted in Fig. A-5. Some simple trigonometry gives a relation for the minor radial

value as a function of the line of sight position:

rs =

√

(

√

R2
0 + `2s −R0

)2

+ d2
s (A.10)

Where: rs is the minor radial value, of the distance of tangency point, as a function

of the line of sight, (`s,) for spectrometer s ∈ {C, F, K}. R0 is the major radius at

tangency and ds is the vertical displacement of the spectrometer s. Minor radius as

a function of the line of sight has been plotted in Fig. A-6. Figure A-7 is a plot of

the emissivity for the aforementioned lines as a function of minor radius, from this

mapping.

Emissivities for the three lines were integrated over their respective lines of sight

and used to determine the fraction of photons originating in any given region. The
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Figure A-2: A He – like Ar spectrum based on the expected line intensities as calcu-
lated in this appendix, for the spectrometer viewing at (r/a) = 0.6. This spectrum
only includes the four lines we have previously mentioned, the w, x, y and z.

Figure A-3: A He – like Ar spectrum based on the expected line intensities as calcu-
lated in this appendix, for the spectrometer viewing at (r/a) = 0.3. This spectrum
only includes the four lines we have previously mentioned, the w, x, y and z.
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Figure A-4: A He – like Ar spectrum based on the expected line intensities as cal-
culated in this appendix, for a (hypothetical) spectrometer viewing at (r/a) = 0.0.
This spectrum only includes the four lines we have previously mentioned, the w, x,
y and z, the satellite lines have not been included in the calculation.

Figure A-5: Emissivity along the line of sight for the three spectrometers. The C–
port spectrometer views H–like Ar, the F and K–port spectrometers view He–like Ar,
(only the w line has been included here.) The zero of the line of sight is the point of
minimum radius.
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Figure A-6: The mapping from the line of sight to the corresponding minor radius.
The minima in these curves correspond to the vertical displacement of the spectrom-
eters, 0.0 cm, 9.0 cm and 15 cm for C, F and K, respectively.
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bounding radii of the regions for fractions 0.75, 0.90 and 0.95 are indicated as vertical

lines in Fig. A-7, for each of the three spectrometers. For the F–port spectrometer,

0.90 of all photons collected came from a region ∼ 2 cm in width, (± 1 cm).

Figure A-7: By folding together the information in the preceding two figures, (Fig.
A-5 and Fig. A-6,) the emissivity along the sight line can be mapped from the line
of sight to the corresponding minor radial values. The emissivity has been integrated
along the line of sight and from this the regions from which 0.75, 0.90 and 0.95 of the
photons originate have been calculated. Vertical lines indicate the radii corresponding
to the bounds of these regions.
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Appendix B

Rate Coefficients of Dominant

Population Mechanisms

The rate coefficients determine the populations and the rate of transitions in and

out of various charge states. The calculations in this appendix were performed fol-

lowing those of references [12, 121]. These calculations were made assuming He–like

ions. Figure B-1 is an energy level diagram, showing the transitions and population

processes of interest here, (also refer to Table A.2).

B.1 Collisional Excitation

The electron impact excitation rate coefficient from ground state g to excited state

k, with transition energy Egk, is given in[121], as:

Sgk =

(

8kT

πme

)1/2

y2πa
2
0EH

wgEgk

∫ ∞

1

Ω(U)e−yUdU (B.1)

evaluating the constants yields:

Sgk = 8.0 × 10−14Ω̄(y)T−1/2
e e−y (m3s−1) (B.2)
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Figure B-1: Population Processes for n = 2 level of He–like Ar [121]. The figure
includes only those relevant for the four lines w (A1′g), x (A2g), y (A1g) and z (Amg).
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where:

Ω̄(y) = yey
∫ ∞

1

Ω(U)e−yUdU (B.3)

and: y is Egk/Te; Te is the electron temperature in eV ; a0 is the Bohr radius; me is

the rest mass of the electron; EH is the ionization energy of hydrogen (13.6 eV); wg

is the statistical weight of the initial level; U = E/Egk is the ratio of the energy of

the impinging electron to the excitation energy; Ω̄(y) is the collision strength (Ω(y))

averaged over a Maxwellian distribution.

For principal quantum level 2, the excitation energy, Egk is given as:

Egk =
3

4
· 13.6(Z − agk)

2. (B.4)

The screening numbers (agk) can be found in Table B.1.

Ω̄(y) can be approximated by[121]:

Ω̄(y) = A+ (By + Cy2 +Dy3 + E)f(y) + (C +D)y −Dy2 (B.5)

where f(y) is defined as:

f(y) = eyE1(y) (B.6)

E1(y) is the first exponential integral, defined as:

E1(y) =

∫ ∞

1

z−1e−yzdz (B.7)

f(y) can be approximated, to within about 1 %, by:

f(y) = ln(
y + 1

y
) − [0.36 + 0.03(y + 0.01)a]

(y + 1)2
(B.8)

where a = 1/2 if y ≥ 1 and a = −1/2 if y < 1.

The coefficients A, B, C, D and E are taken from Table 1 in Ref. [123]. They

are given in the form A∗ = Z2
gkA, B∗ = Z2

gkB, C∗ = Z2
gkC, D∗ = Z2

gkD and E∗ =
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Z2
gkE. Zgk = Z − agk is the effective charge number of the ion, for the transition g →

k. (The screening numbers, agk, for argon are given in Table B.1.)

Element Z agm′ ag1′ agm ag2 = ag1 = ag0

Ar 18 0.498 0.454 0.553 0.496

Table B.1: Screening numbers for excitation from the ground state of He-like Ar ions.

B.2 Cascade Effects

Contributions from higher (n > 2) excited levels following excitation from the ground

state can occur. When these are taken into account, the total excitation coefficients

are:

S ′
g1′ = 1.05Sg1′ (B.9)

S ′
gm′ = 1.11Sgm′ (B.10)

S ′
gk = 1.065Sgk, k = (0, 1, 2) (B.11)

S ′
gm′ = Sgm + 0.4(Sg2 + Sg1 + Sg0)e

−0.16χz/Te (B.12)

where χz is the ionization energy given by:

χz = −13.6
(Z − ai)

2

n2
z

eV (B.13)

where: Z is the charge of the ion; nz is the principal quantum number of the outer

electron shell, (nz = 1 for He–like ions); ai is the effective screening number, (ai =

0.593 for Ar).
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B.3 Collisional Excitation and De–Excitation Be-

tween n = 2 Excited States

The rate coefficient for the collisional excitation i → k is given in Ref. [121] as:

Seik = 9.28 × 10−13 [aik + bikf(yik)]e
−yik

√
Te(Z − 1)2

(m3s−1) (B.14)

where:

yik =
Eik
Te

=
8.62 × 10−5cik

Te
. (B.15)

The function f(yik) is given by Eq. B.6; Te is the electron temperature, (eV); Eik

is the energy of the transition; and the coefficients aik, bik and cik are given in Table

B.2

The expression for the rate coefficients by proton impact excitation and α-particle

impact excitation are taken from Ref. [121] as:

Sxik = Ax exp(−Bx/Tx)S
e
ik(Te = Tx) (B.16)

where x denotes either p for proton excitation, or α for α-particle excitation; Tp and

Tα are the temperatures of the protons and α–particles, respectively. The coefficients

Ax and Bx for both protons and α–particles are also listed in Table B.2

Z am′1′ am2 am1 am0 bm′1′ bm2 bm1 bm0

18 4.6 5.7 2.2 -0.04 3.2 1.7 0.96 0.33

Z cm′1′ cm2 cm1 cm0 Ap Bp/Z Aα Bα/Z

18 1.748×105 2.567×105 2.251×105 2.176×105 4.80 94.8 3.03 128.9

Table B.2: Parameters for calculation of rate coefficients for collisional transitions
between n = 2 levels of He–like Ar.

Thus, the total excitation rate is:

173



Sik = Seik +
Np

Ne

Spik +
Nα

Ne

Sαik. (B.17)

For each of the excitation processes there is a corresponding de-excitation process.

The rate coefficient for these processes are given as functions of the excitation rate

coefficient:

Ski =

(

wi
wk

)

Sik · exp(Eik/Tx) (B.18)

where again: x = e, p or α; wi and wk are the statistical weights of levels i and

k respectively; Eik is the transition energy of the i → k transition. In Alcator the

contributions due to αs and ps are approximately nothing.

B.4 Radiative Transitions

Rate coefficients Aik for spontaneous transitions i → k are listed in Table B.3, (Table

7 from [121]).

Z Am′g A1′g Amg A2g A1g A1′m′ A2m A1m A0m

18 4.04·108 1.10·1014 4.81·106 3.14·108 1.65·1012 9.50·107 3.41·108 2.66·108 2.43·108

Table B.3: Radiative transition probabilities for n = 2 levels of He-like Ar. Table 7
from [121].

B.5 Radiative Recombination

The total rate coefficient for radiative recombination to level k is:

αr
′

ck = αrck + ∆αrck (B.19)

where αrck is the direct recombination rate and ∆αrck is the recombination rate by

electrons cascading from higher levels (n > 2). The expressions for αrck and ∆αrck as
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given in Ref. [121] are, in units of (m3s−1):

αrcm = 1.4 × 10−20 z
1.8

T 0.4
e

∆αrcm = 3.6 × 10−20 z
2.2

T 0.6
e

(B.20)

αrck = 5.1 × 10−20
(wk

9

) z2.4

T 0.7
e

∆αrck = 2.2 × 10−20
(wk

9

) z2.8

T 0.9
e

(B.21)

αrcm′ = 5.0 × 10−21 z2

T 0.5
e

∆αrcm′

αrcm′

' ∆αrcm
αrcm

(B.22)

αrc1′ = 1.1 × 10−20 z
2.52

T 0.76
e

∆αrc1′

αrc1′
' ∆αrck

αrck
(B.23)

where k denotes one of the three P levels 23Pk. For Ar wk = 1, 3, 5 for k = 0, 1, 2

respectively; z = Z − 1 and Te in in eV.

B.6 Dielectronic Recombination

The rate coefficients for dielectronic recombination, for all n = 2 levels of He–like Ar,

(taken from [121]) are:

αd
′

cm = 5.17 × 10−20Z4T−3/2
e

[

9

1 + 7 × 10−5Z4
exp(−6.80(Z + 0.5)2/Te)

+
27

1 + 8 × 10−5Z4
exp(−8.78Z2/Te) +

380(1 + p)−1

1 + 5 × 10−3Z3
exp(−10.2Z2/Te)

]

(B.24)
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αd
′

cm′ = 5.17 × 10−20Z4T−3/2
e

[

3

1 + 3 × 10−6Z4
exp(−6.80(Z + 0.5)2/Te)

+
0.5

1 + 2.2 × 10−5Z4
exp(−8.78Z2/Te) +

6.3

1 + 5 × 10−3Z3
exp(−10.2Z2/Te)

]

(B.25)

αd
′

ck = 5.17 × 10−20
(wk

9

)

Z4T−3/2
e

[

18

9.5
exp(−6.80(Z + 0.5)2/Te)

+
54

1 + 1.9 × 10−4Z4
exp(−8.78Z2/Te) +

380

1 + 5 × 10−3Z3

p

1 + p
exp(−10.2Z2/Te)

]

(B.26)

αd
′

c1′ = 5.17 × 10−20Z4T−3/2
e

[

12

1 + 6 × 10−6Z4
exp(−6.80(Z + 0.5)2/Te)

+
18

1 + 3 × 10−5Z4
exp(−8.78Z2/Te) +

69

1 + 5 × 10−3Z3
exp(−10.2Z2/Te)

]

(B.27)

where: wk is the statistical weight of the 2p triplet levels; and:

p ' 2.0(Z − 1)0.6T−0.3
e . (B.28)
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Appendix C

Calculation of the Fractional

Abundance of Argon Charge

States in Coronal Equilibrium

The basic assumptions of coronal equilibrium are: that all bound electrons are in

the lowest energy state, all upward transitions are collisional ionizations, all down-

ward transitions are radiative recombinations, and further, that these two transition

processes balance each other. In the core of a tokamak, these assumptions describe

the situation quite well, if transport effects are ignored. Ignoring transport effects is

acceptable in H–mode, but not always in L–mode.

C.1 Coronal Equilibrium

To start, assume that Ar13+ is the lowest ionization stage1. If the plasma is in a state

of ionization equilibrium, the fractional abundance does not vary with time, i.e.

1

ne

dnz
dt

= nz−1Sz−1 − nz(Sz + αz) + nz+1αz+1 = 0 (C.1)

1This assumption will be shown to be sufficient later on in this appendix.
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⇒ nz(Sz + αz) = nz−1Sz−1 + nz+1αz+1 (C.2)

where z = Z− i, nz is the density of the zth charge state, Sz is the ionization rate for

the zth charge state, and αz is the recombination rate for the zth charge state. For

Ar (Z = 18), it is assumed that the lowest charge state of Ar in the plasma is Ar13+.

Using Eq. C.2 for charge states Ar13+ – Ar18+, generates the set of equations:

nAr18+αAr18+ = nAr17+SAr17+ (C.3)

nAr17+αAr17+ + nAr17+SAr17+ = nAr18+αAr18+ + nAr16+SAr16+ (C.4)

nAr16+αAr16+ + nAr16+SAr16+ = nAr17+αAr17+ + nAr15+SAr15+ (C.5)

nAr15+αAr15+ + nAr15+SAr15+ = nAr16+αAr16+ + nAr14+SAr14+ (C.6)

nAr14+αAr14+ + nAr14+SAr14+ = nAr15+αAr15+ + nAr13+SAr13+. (C.7)

The assumption that the lowest charge state is Ar13+, gives the equation:

nAr18+ + nAr17+ + nAr16+ + nAr15+ + nAr14+ + nAr13+ = nAr (C.8)

where nAr is the total density of Ar in the plasma.

This set of equations can then be solved for the fractional abundance (nArz+/nAr)

of any given charge state of Ar. Copious algebra yields:

nAr18+

nAr
=

1

A
(C.9)

nAr17+

nAr
=

α
Ar18+

S
Ar17+

A
(C.10)
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nAr16+

nAr
=

α
Ar18+αAr17+

S
Ar17+SAr16+

A
(C.11)

nAr15+

nAr
=

α
Ar18+αAr17+αAr16+

S
Ar17+SAr16+SAr15+

A
(C.12)

nAr14+

nAr
=

α
Ar18+αAr17+αAr16+αAr15+

S
Ar17+SAr16+SAr15+SAr14+

A
(C.13)

nAr13+

nAr
=

α
Ar18+αAr17+αAr16+αAr15+αAr14+

S
Ar17+SAr16+SAr15+SAr14+SAr13+

A
(C.14)

where:

A = 1 +
αAr18+

SAr17+
+
αAr18+αAr17+

SAr17+SAr16+
+
αAr18+αAr17+αAr16+

SAr17+SAr16+SAr15+
+
αAr18+αAr17+αAr16+αAr15+

SAr17+SAr16+SAr15+SAr14+

+
αAr18+αAr17+αAr16+αAr15+αAr14+

SAr17+SAr16+SAr15+SAr14+SAr13+
. (C.15)

C.2 Ionization Rates

The rate coefficients for ionization by electron impact are given by:

Sz = 3.01 × 10−12T−1/2
e ζzχ

−1
z E1(xz)m

3s−1 (C.16)

taken from [124] where Te is the electron temperature in eV; ζz is the total number

of electrons in the outer shell with principal quantum number nz; χz is given by:

χz = 13.6n−2
z (Z − ai)

2eV. (C.17)

where the coefficients ai are listed in Table C.1, taken from [121].

The independent variable of the function E1(xz) is:
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i 1 2 3 4 5 6
z 17 16 15 14 13 12
ζz 1 2 1 2 3 4
nz 1 1 2 2 2 2
ai −0.040 0.593 1.568 2.139 2.908 0.801
χz 4426 eV 4121 eV 918 eV 855 eV 774 eV 1006 eV

Table C.1: The screening numbers used in the computation of the ionization coeffi-
cients for Ar (Z = 18).

xz = χz/Te = 13.6n−2
z (Z − ai)

2T−1
e (C.18)

where, again, Te is in eV. E1(x) is the first exponential integral:

E1(x) =

∫ ∞

1

z−1e−xzdz (C.19)

which can be approximated, to within about 1 %, by:

E1(x) = e−xf(x) (C.20)

where f(x) is:

f(x) = ln(
x + 1

x
) − [0.36 + 0.03(x+ 0.01)a]

(x + 1)2
(C.21)

where a = 1/2 if x ≥ 1 and a = −1/2 if x < 1

Fig. C-1 is a plot of Sz as a function of temperature.

C.3 Recombination Rates

The recombination rate, αz is made up of two parts, the radiative recombination rate

(αrz) and the dielectronic recombination rate (αdz).

αz = αrz + αdz (C.22)
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Figure C-1: The electron impact ionization rate (Sz) as a function of temperature,
for various charge states of Ar.

The radiative recombination rate has two different regimes: first, for (Z → Z −
1) and (Z − 1 → Z − 2) transitions, and second, for (Z − 2 → Z − 3), (Z − 3 →
Z − 4) and (Z − 4 → Z − 5) transitions.

For the first regime z = 18, 17; the recombination rate given by, (following [125]):

αrz = 3.85 × 10−19(Z − i)2.4T−0.7
e . (C.23)

For the second regime z = 16, 15, 14; the recombination rate is given by, (following

[126]):

αrz = 1.92 × 10−19(Z − i)2n−1
z−1xz−1f(xz−1)gz−1 (C.24)

where: Z − i = z is the charge state, nz is the principal quantum number of the

outer–most electron, xz is the same as was given in Eq. C.18, f(x) is the same
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function as was given in Eq. C.21, and gz is a numerical factor which accounts for

recombination to excited levels given by:

gz ' 1 + 0.37nz + 0.25x0.43
z n1.36

z . (C.25)

Fig. C-2 is a plot of αrz as a function of temperature.

Figure C-2: The radiative recombination rate (αrz) as a function of temperature, for
various charge states of Ar.

The dielectronic recombination rate is given by the expression, from [121]:

αdz = 7.99 × 10−16T−3/2
e

∑

i=1,2

αiZ
βi exp[−0.86γiz

δi/Te] (C.26)

where the coefficients αi, βi, γi and δi are listed in Table C.2, taken from [121]. The

rate coefficients αd18 ≡ 0. In Fig. C-3 αdz is plotted as a function of temperature.

Finally, Figs. C-4 and C-5 are plots of the fractional abundances as a function of

electron temperature, linear and log–log scales respectively. In C-Mod temperatures
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Figure C-3: The dielectronic recombination rate (αdz) as a function of temperature,
for various charge states of Ar.

below about 500 eV correspond to the edge of the plasma. Hence, neglecting all the

charge states below Ar13+ in the calculation of the fractional abundances of the Ar

in the plasma was justified.

It should be noted that during H–mode, the impurity confinement time is long,

thus the Ar has a chance to reach both thermal equilibrium with the surrounding

bulk ion species and ionizational equilibrium. However, during L–mode the impurity

confinement time is often short, in this case the Ar does not always have time to reach

z α1 β1 γ1 δ1 α2 β2 γ2 δ2
Z - 1 0.32 2.183 35 1.652 0.82 2.272 30 1.643
Z - 2 10.5 0.963 45 1.584 16 1.216 37 1.591
Z - 3 0.8 2.362 6.8 1.625 1.5 1.03 3.5 0.795
Z - 4 6.0 1.807 7.8 1.597 5.8 0.975 8.7 0.685

Table C.2: The dielectronic recombination rate parameters for Ar, for Eq. C.26.
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ionization equilibrium before being transported somewhere else in the plasma. This

can lead to Ar ionization states that are inconsistent with the predictions of coronal

equilibrium. Were we to use this spectrometer array to measure plasma parameters

radially further out these effects could play a significant role. However for our regions

of interest this is not a concern.

Figure C-4: The fractional abundance of various Ar charge states as a function of
temperature. Notice above about 500 eV ∼ all the Ar ions are stripped to Ar14+ or
higher.
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Figure C-5: The fractional abundance of various Ar charge states as a function of
temperature, log – log plot. This is the same information as C-4.
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Appendix D

X–Ray Attenuation

Data pertaining to the attenuation of x–rays in air and in Be will be presented in this

Appendix. The fraction of incident photons that makes it through a material with

mass attenuation coefficient µi is given as:

I

I0
= e−µiρd (D.1)

I the photons count after traveling distance d, I0 the incident photon count and ρ

the material density.

There are three different processes that dominate the attenuation in three dif-

ferent regions. In the low energy region, attenuation is dominated by the photo

electric effect, the middle energy region, is dominated by Compton scattering and

the high energy region is dominated by pair creation. The total linear mass atten-

uation coefficient µi for any given material is the sum of attenuation by these three

processes[127, 128].

D.1 Attenuation in Air

The attenuation of incident x–rays due to the air gap and the finite pressure in the

spectrometer is negligible. A plot of the mass attenuation coefficient (µAir) vs. energy

has been reproduced here (Fig. D-1), to justify this assumption. Table D.1 lists the

187



wavelengths and energies of the relevant lines of He–like Ar for reference.

Figure D-1: A plot of the mass attenuation coefficient of air (µAir) as a function
of energy. The region of interest for x–ray photons in this thesis is the low energy
end, dominated by the photo electric effect. Table D.1 lists the energies of the four
previously mentioned Ar16+ lines w, x, y and z

Figure D-2 shows x–ray attenuation vs. pressure in air. The air gap (760 Torr)

between the spectrometer and the machine is about 1 cm, this attenuates less than

20 % of all incident photons. The arms of the spectrometers pumped out to pressures

of order 100 mTorr. The attenuation in the arms is insignificant.

D.2 Attenuation in Be

For completeness we have also included the mass attenuation coefficient of Be (µBe)

as a function of energy (Fig. D-3). The Be windows are so thin (0.002 in) that even

if the attenuation per unit length was significant, the attenuation would not amount

to much, (< 0.003). Beryllium has one of the smallest x–ray attenuation coefficients
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line λ0 (mÅ) Energy (keV)
w 3949.2 4.1122 resonance line
x 3966.0 4.0948 intercombination line
y 3969.4 4.0913 intercombination line
z 3994.3 4.0658 forbidden line

Table D.1: The transitions of interest for He–like Ar, in these measurements. The
energy range for these lines is 4.0 – 4.2 keV.

of any material[95]. This is one more reason why it is so great for UHV and x–ray

windows.

Figure D-2: A plot of the mass attenuation coefficient per unit length (cm), the
exponent of Eq. D.1. This is valid in the spectrometer and the air gap between the
Be windows of the spectrometer and the tangential port. Below about 1 Torr the
attenuation is approximately nothing.
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Figure D-3: A plot of the mass attenuation coefficient of Be (µBe) as a function of
incident photon energy.
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scrape off layer, 91

separatrix, see last closed flux surface
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