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ABSTRACT 

 
Several of the structural components in the superconducting magnet system for the International 
Thermonuclear Experimental Reactor (ITER) experience pulsed, multiaxial loading during 
operation. For components, such as the conductor conduits, with a large population of initial 
flaws, fatigue crack growth analysis (FCGR) is used to evaluate failure. For other, simpler, 
unwelded components, such as pins and bolts in the Central Solenoid assembly, in which flaw 
crack initiation is a dominant factor, S/N data can be used. However, since S/N data is available 
only for uniaxial load conditions, a reliable design code for multiaxial fatigue is necessary.  The 
problem is that none of the existing design codes gives a complete definition for the equivalent 
mean stress in multiaxial fatigue. This paper reviews the existing theories and design codes in 
multiaxial fatigue, and proposes a general definition of equivalent mean stress for multiaxial 
fatigue for the design of ITER and other pulsed structures with multiaxial loads. 
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1.  Introduction 
 
The ITER criteria for magnet design express a preference for using fracture mechanics for 
fatigue qualification, but allow S-N evaluations in specific cases [1]: e.g. “An S-N fatigue curve 
evaluation is appropriate to be used in two situations: (a) where the geometry/material 
microstructure/stress systems are complex and components are small and can be tested as a 
single unit and in sufficient numbers to obtain a representative sample (bolts or dowels are 
typical examples), (b) for the evaluation of non-planar flaws in larger components, where there is 
no possibility of the presence of planar defects and where the characteristic non-planar flaws are 
much smaller than the specimens being tested. The S-N procedure makes allowance for the 
initiation of a true crack from the defect and it is essential that the test specimens are 
representative of the inherent defects in the material and that sufficient tests are made to establish 
a representative sample.” 
 

 Fig. 1  Pin used in the ITER TF intercoil 
structure.  

 
Many ITER mechanical parts experience cyclical multiaxial loading during operation, such as 
pins and bolts in the CS assembly [1-3].  The pins used in ITER are compressed and loaded in 
reverse shear. Pins support the changing vertical loads on the CS and the alternating out-of-plane 
loads in the TF. Several other components also see these complex alternating stress states due to 
the changing Lorentz forces throughout the pulse. 
 
The existing design codes for multiaxial fatigue include ASME, ITER, FIRE, and the German 
code [1, 4-6].  All of them apply criteria, based  on the maximum shear (i.e. Tresca) stress, to 
describe the alternating stress.  As to the mean stress effect, it becomes insignificant if plastic 
deformation occurs during cyclic loading. The main concern of the abovementioned codes are 
engineering structures operating in a  high stress range, where plastic deformation occurs, i.e., 
low cycle fatigue. Therefore, none of the above codes provides a complete definition of mean 
stress for multiaxial fatigue, although the German code gives a definition for the special 
(nonrotating) case of constant principal direction.  Since the ITER parts are designed to operate 
in the elastic region for a long machine life of up to 30,000 cycles, i.e., high cycle fatigue, the 
mean stress effect becomes significant and can not be neglected.  
 
This paper reviews the existing theories and design codes in multiaxial fatigue, and proposes a 
general design code of equivalent mean stress of multiaxial fatigue for ITER. 



 

 5

2.  Failure mechanism of multiaxial fatigue  
 
Extensive research has been performed for multiaxial fatigue [7-21]. It is found that there is no 
universal model or parameters that can strongly correlate a multiaxial fatigue process with its life 
due to the complexity of factors in loading, material and environment.  Most of the recent results 
accept  the critical plane damage model [7-9] (see Fig. 1) to describe the mechanism of 
multiaxial fatigue failure. The critical plane damage model predicts that fatigue cracks nucleate 
and grow on critical planes in material subjected to cyclically multiaxial loading, and the damage 
is produced by the shear stress/strain τ  on the critical planes, while the tensile mean stress nσ  
normal to the critical plane enhances the damage and therefore reduces fatigue life.  
 

    
 
The mathematical expression of this model as a stress based criterion is summarized in [7-9] as: 
 

)(Nfk n =+∆ στ ,          (1) 
 
where τ∆ is the shear stress range on the critical plane, k  is an experimentally determined 
constant,  nσ  is the normal stress to the critical plane, and )(Nf is a function of fatigue life.  
 
The critical plane has to be determined by a combination of experiments and analysis for each 
specific material and operation condition. However, the literature shows that, in most cases 
[7,8,10], the critical plane is the plane either with maximum shear stress or with octahedral shear 
stress, while the  principal stress model [10] only applies in a few cases, such as cast iron, 
discussed below. Three models of critical planes are shown in Table 1, where the 3 principal 
stresses are defined as 321 σσσ >> .  Table 1 lists, for each critical plane model, the shear stress 
τ  acting on the critical planes and the tensile stress nσ normal to the critical plane.   
 
The critical plane model is well established in the academic community, but it is not practical in 
engineering design because of the difficulties in finding the critical plane for each specific 
material and operating condition. Therefore, several engineering approaches are proposed as 
more practical tools for engineering design. 
 
 
 

nσ  

Fig. 2 Critical plane 
damage model 

Cyclic load 

Cyclic load 

Critical plane 

τ∆
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Table 1  Different models of critical plane 
Critical plane 
model 

Shear stress τ acting on the critical plane Normal stress nσ on the 
critical plane 

Maximum shear  
plane (Tresca) 2

31 σσ
τ

−
=tresca  

2
31 σσ

σ
+

=tresca  

Octahedral 
shear plane 
(Von Mises) 

( ) ( ) ( )2
13

2
32

2
213

1 σσσσσστ −+−+−=oct 3
321 σσσ

σ
++

=oct  

Principal stress 
shear plane 

2/1στ =p  2/1σσ =p  

 
 
3.  Engineering approach 
 
A large and adequate test data base is available for uniaxial fatigue. Therefore, the engineering 
approach to solving the multiaxial fatigue problem is, based on critical plane models, to find the 
equivalent uniaxial fatigue parameters, i.e. the equivalent alternating stress and the equivalent 
mean stress. These are then applied to one of three experimental equations - either Gerber’s, 
Goodman’s or Soderberg’s [13] – in order to estimate the fatigue life. 
 
3.1  Equivalent alternating stress 
 
The equivalent alternating stress is related to the shear stress range τ∆ acting on the critical 
plane. Table 2 lists the equivalent uniaxial alternating stresses derived from the shear stress on 
the critical plane, where the 3 principal stresses are defined as 321 σσσ >> , and the subscripts 
“a” and “range” represent stress amplitude and range respectively. The equivalent uniaxial stress 
is the uniaxial stress under which the shear stress on the critical plane can be obtained.  The 
literature [10-11,13] shows that, in most cases, the von Mises and Tresca stresses give a good 
estimation.  Sawert [10] summarizes the biaxial fatigue data for steel, and finds that the von 
Mises stress criterion gives the best fit, the Tresca stress criterion gives a close and always 
conservative prediction, and the principal stress criterion is only valid in the first quadrant.  All 
of the existing design codes [1, 4-6] apply the model of maximum shear (Tresca) to describe the 
equivalent uniaxial alternating stress.  Note that the maximum shear range on the critical plane is 
determined by the cyclic stress components, and the static stress components only affect the 
mean on the critical plane. For example, if the highest and lowest principle stresses are constant 
with time, they can not be considered simultaneously in the equations used in Table 2 to 
determine the equivalent alternating stress. 
 
Table 2   Equivalent alternating stress derived from shear stressτ on critical plane 

Critical plane model Equivalent uniaxial alternating stress altσ  
 

Maximum shear plane 
(Tresca) 

31 σσσ −=tresca  

minmax )()( trescatrescarange σσσ −=  

2/rangealt σσ =  
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Octahedral shear plane 

(Von Mises) ( ) ( ) ( )2
13

2
32

2
212

1
aaaaaaalt σσσσσσσ −+−+−=  

Principal stress shear plane 
aalt 1σσ =  

 
3.2   Equivalent Mean stress 
 
The test results indicate that the tensile stress normal to the critical plane increases the fatigue 
damage, while the compressive stress normal to the critical plane decreases the fatigue damage 
[7, 10]. The equivalent uniaxial mean stress is related to the tensile/compressive stress normal to 
the critical planes [14-21]. Equivalent mean stress definitions for three different models are listed 
in Table 3. The equivalent uniaxial mean stress is the uniaxial stress under which the normal 
stress acting on the critical plane can be obtained.  Therefore, the equivalent mean stress is only 
related to those stresses which control the normal stress acting on the critical plane. 
 
Table 3   Equivalent mean stress derived from normal stress on critical plane 

Critical plane model Equivalent uniaxial 
mean stress 

 

Equation No. 

Maximum shear plane 
(Tresca) 

meanmean )( 31 σσσ +=  
(non-proportional loading) 

meanmeanmean 31 σσσ +=  
(proportional loading) 

(2) 

Octahedral shear plane 
(Von Mises) 

meanmean )( 321 σσσσ ++=  
(non-proportional loading) 

meanmeanmeanmean 321 σσσσ ++=  
(proportional loading) 

(3) 

Principal 
stress shear plane 

meanmean 1σσ =  (4) 

 
Proportional loading means that the ratio of the normal and shear stresses is invariant with time. 
Nonproportional loading is the more general case that permits arbitrary stress histories. Sines 

[10] analyzed the test data from 5 different test resources, and suggested using Eq. 3 for the 
equivalent mean stress.  Based on the critical plane model, either Eq. 2 or Eq. 3 can successfully 
explain the test results listed in Table 4.  However, Eq. 3 does not handle the special case well in 
which hydrostatic loads are significant. Therefore, Eq. 2 will be preferred over Eq. 3 in proposed 
code statement. Eq. 4, based on the principal stress model is not accepted as a general criterion, 
because it only applies for very limited cases, such as that of cast iron, discussed below.  
 
Table 4  Summary of  Sines’ case analysis using either Eq. 2 or Eq. 3 
Cases Sum of mean  Predicted effect  on 

fatigue damage 
Test data for effect on
fatigue damage 

Axial alternating  
Tensile mean 

Positive  Increase  Increase  

Axial alternating Negative  Decrease  Decrease  
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Compressive mean 
Torsion alternating 
Torsion mean 

Zero None None 

Bending alternating 
Torsion mean 

Zero  None None 

Torsion alternating 
Tension mean 

Positive  Increase Increase 

 
 
4.  The equivalent mean stress of multiaxial fatigue with constant principal direction 
 
Extensive discussion has been under way for establishing the evaluation procedure of the mean 
stress effect for multiaxial fatigue.  For the case of constant principal direction, it is widely 
accepted to apply the German code,[6] which is based on the Tresca mean stress model.  The 
maximum shear plane is determined by finding the largest shear stress range, and the normal 
stress acting on the maximum shear plan is obtained from the sum of mean of the 2 principal 
stresses determining the maximum shear stress. 
 
 4.1  Design Code statement 
 
For any case in which the directions of the principal stresses at the point being considered do not 
change during a cycle, the steps stipulated in (a) through (d) below shall be taken to determine 
the mean equivalent stress meanσ .   
(a) Principal stresses. Calculate the values of the three principal stresses at the key time points of  
for the complete stress cycle. These are designed as 1σ , 2σ , 3σ  for later identification.  
(b) Stress differences. Determine the stress differences 2112 σσ −=S , 3223 σσ −=S , and 

1331 σσ −=S  at each key time point. 
(c) Maximum stress difference range.  Determine the maximum stress difference range during 
one cycle as ( )min

31
max
31

min
23

max
23

min
12

max
12

minmax ,,max SSSSSSSS ijij −−−=−  .  The determination of the 

maximum  stress difference minmax
ijij SS − is used only for the purpose of determining i and j, the 

axes to use in (d) below. 

(d) Mean equivalent stress is defined [6] as [ ]minmax )()(
2
1

jijimean σσσσσ +++= .   In case of 

proportional loading,   the above expression reduces to  jmeanimeanmean σσσ += . 
 
4.2  Example of the German code application in the multiaxial fatigue with constant principal 
direction 
    

Table 5a   Initial stress data 
Stress Component @ Time Point A 

(MPa) 
@ Time Point B 

(MPa) 
xσ  3 1 

yσ  -20 -2 
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zσ  40 5 

xyτ  0 0 

yzτ  0 0 

zxτ  0 0 

 
            Table 5b  Step “a” to calculate principal stresses 

Principal stresses 
Stress Component 

@ Time Point A (MPa)) @ Time Point B 
(MPa)) 

1σ  40 5 

2σ  3 1 

3σ  -20 -2 

  
   Table 5c  Step “b” to calculate stress differences 

Principal stresses 
Stress Component 

@ Time Point A 
(MPa)) 

@ Time Point B 
(MPa)) 

12S  37 4 

23S  23 3 

31S  -60 -7 

    
   Table 5d  Step “c” to determine the maximum stress difference range as 

Calculation  Note 
MPaSS 33min

12
max

12 =−  

MPaSS 20min
23

max
23 =−  

MPaSS 53min
31

max
31 =−  

min
31

max
31 SSMax −=  

This step identifies which pair of principal stresses to 
be used in the next step; in this case, the ‘answer’ to 
step c is: i,j = 1 and 3 

 
   Table 5e   Step “d” to calculate the mean equivalent as 

Calculation  Note 
MPameanmeanmean 5.1131 =+= σσσ The means are taken from the values in table 

5b: 
5.222/)540(1 =+=meanσ ,  

112/)220(3 −=−−=meanσ  

5.1131 =+= meanmeanmean σσσ  
 
 
5.  The equivalent mean stress of multiaxial fatigue with varying principal direction 
 
For the case of varying principal direction, there is no commonly accepted procedure to evaluate 
the mean stress. As the principal direction is rotated during one stress cycles,  it is hard to track 
the rotation path of each principal direction at each moment in time. Therefore, the mean 
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equivalent stress should be determined based on all six stress components. In addition, the shear 
damage is not concentrated in one single shear plane rather than spreading over many shear 
planes. A further comment  [2] suggested that there must be a continuity between the varying 
and constant principal direction methods.  In this section, a new procedure is developed.  It is 
based on Tresca mean stress model, and can be applied universally for both the varying and 
constant principal directions. 
 
5.1   Method 1 vs. method 2 of ASME code 
 
The ASME code [4] defines 3 steps to calculate the equivalent alternating stress for the case of 
constant principal stress direction as: 
 
Method 1: constant principal stress direction 
(a) Calculate the 3 principal stresses 321 ,, σσσ ; 
(b) Calculate the stress differences between each pair of  the principal stresses as 2112 σσ −=S , 

3223 σσ −=S , and  1331 σσ −=S ; 
(c) Calculate the ranges of the stress differences during one stress cycle as 1212 SSr ∆= ,  

2323 SSr ∆= , and 3131 SSr ∆= ,  and the largest stress difference range is ijrij SS ∆=  . The 

equivalent alternating stress is the half of the largest stress difference range rijalt SS ⋅= 5.0 . 
 
The ASME code also defines a second method to calculate the equivalent alternating stress for 
the case of varying principal stress directions, designated here as Method 2: varying principal 
stress direction.  Method 2 begins by calculating the stress range from the original 6 stress 
components, and then proceeds to calculate the principal stresses for the stress ranges.   
 
We can prove that, for the case of constant principal direction, both methods are equivalent. 
Therefore, the ASME definition for the case of varying principal direction is an extension of 
method 2 for the constant principal direction.  The method that we will propose for calculating 
the equivalent mean stress with varying principal direction uses the same logic as the Method 2 
used by ASME for defining the equivalent alternating stress with varying principal direction. 
 
Assume that a stress tensor ( xzyzxyzyx τττσσσ ,,,,,  ) is applied to a body.  The following 
equation holds for a principal stress σ acting on a principal plan:[22] 
 

0=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

−−−
−−−
−−−

n
m
l

zyzxz

yzyxy

xzxyx

σσττ
τσστ
ττσσ

 ,       (5) 

 
where:  l, m, n are the 3 direction cosines of the angles between the principal stress σ and the 
x,y,z axes. σ is a principal stress, σ1, σ2, or σ3, so equation 5 represents 9 equations, used for 
solving the 9 values of l, m, and n for the three principal stresses. 
 



 

 11

The direction cosines l, m, n can not be all zero.  Therefore, the matrix at left must be zero, 
which leads to the following equation to evaluate the 3 principal stresses: 
 

( ) ( )
( ) 02 222

22223

=−−−+−

−−−+++++−

xyzxzyyzxxzyzxyzyx

xzyzxyzxzyyxzyx

τστστστττσσσ

στττσσσσσσσσσσσ
 .   (6) 

 
Since the matrix in Eq. 5 is degenerate, the direction cosines for each principal stress must be 
obtained by solving Eq.5  with the constraint that: 
 

1222 =++ nml .          (7) 
 
When the directions of the principal stresses are known, the principal stresses can be obtained by 
the simpler equation: 
 

nlmnlmnmlnmlf zxyzxyzyxij τττσσσσσ 222),,,( 222 +++++== .      (8)  
 
Assume that, according to method 1, the equivalent alternating stress is found to be: 
 

315.0 ralt SS = ,   and           (9) 
 

( )133131 σσ −∆=∆= SSr ,   or         (10) 
 

1331 σσ ∆−∆=rS           (11) 
 
where:  
 

),,,( 1111 nmlf ijσσ ∆=∆   and         (12) 
 

),,,( 3333 nmlf ijσσ ∆=∆ .         (13) 
 
Since the principal stress is a linear function of all 6 stress components according to Eq. 8, for 
the case of constant principal direction we have  
 

111111
2

1
2

1
2

1

1111

222

),,,(

lnnmmlnml

nmlf

zxyzxyzyx

ij

τττσσσ

σσ

∆+∆+∆+∆+∆+∆=

∆=∆
    and  (14) 

 

333333
2

3
2

3
2

3

3333

222

),,,(

lnnmmlnml

nmlf

zxyzxyzyx

ij

τττσσσ

σσ

∆+∆+∆+∆+∆+∆=

∆=∆
   (15) 
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Eqs. 11, 14, and 15 are the theoretical basis for using method 2 to calculate the equivalent 
alternating stress.  
 
The German code applies method 1 to evaluate the equivalent mean stress for the case of 
constant principal stress.  According to the Tresca model, the equivalent mean stress is   
 

meanmeanmeanS 13 σσ += .           (16) 
 
However, again using Eq. 8,  we have 
 

[ ] ),,,(),,,( 1111111 nmlfnmlfmean meanijijmean σσσ == ,  and    (17) 
 

[ ] ),,,(),,,( 3333333 nmlfnmlfmean meanijijmean σσσ == , or    (18) 
 

111111
2

1
2

1
2

11 222 lnnmmlnml mzxmyzmxymzmymxmean τττσσσσ +++++=    and (19) 
 

333333
2

3
2

3
2

33 222 lnnmmlnml mzxmyzmxymzmymxmean τττσσσσ +++++= .  (20) 
 
where σmean = 0.5 (σmax+σmin) for either the Method 1 or 2, and the same rule applies to 
calculate the means of all stress components: σmx, σmy, σmz, τmxy, τmyz, and τmzx.  Eqs.  19 and 20 
are the basis for the Method 2, which can be extended to the case of varying principal direction 
in line with the ASME treatment for alternating stress. 
 
 
 5.2   Proposed procedure and code statement of the mean stress for the varying principal 
direction 
 
The proposed procedure starts from the original six stress components.    First calculate the stress 
range for each stress component between time A and time B as: 
 
 )()( AB iirangei σσσ −= .           (21) 
 
The principals of the stress range can be obtained by inserting Eq. 21 for each stress range 
component into Eq. 6.   The direction cosines for each principal stress range can be calculated by 
using combined Eqs. 5 and 7.   
 
Take the differences between each pair of the stress ranges to find the maximum difference, 
which is then divided by 2 to obtain the equivalent alternating stress amplitude.  
 
The next step is to find the mean stresses for each six stress component, as 
 

[ ] 2/)()( AB iimeani σσσ += .         (22) 
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The principals of the stress means and their direction cosines can be obtained by using the same 
procedure as discussed above.   
 
The final step is critical.  One has to pick up 2 out of the 3 means to add up for the equivalent 
mean stress.  The 2 mean stresses must have the same direction cosines with those which 
determine the maximum stress difference.  
 
The mean stress for each principal stress range can also be obtained alternatively by: 
 

nlmnlmnml mzxmyzmxymzmymxm τττσσσσ 222222 +++++= .      (23) 
 
The following is the proposed code statement for the case of varying principal direction.  Since 
the case of constant principal direction is a special case of varying principal direction, the 
proposed code can be used universally for either constant or varying principal direction. 
 
For any case in which the directions of the principal stresses at a point change during the stress 
cycle, the mean equivalent stress meanS  shall be calculated based on the six time-dependent 
stress components as described below in (a) to (h).  
(a) Consider the value of the six stress components zxyzxyzyx τττσσσ ,,,,,  as a function of time 
for the complete stress cycle.  
(b) Find the stress ranges for each stress component during the completed stress cycle, e.g., 

rzxryzrxyrzryrx τττσσσ ,,,,, . 

(c) Calculate the three principal stress ranges 321 ,, rrr σσσ  and the direction cosines l, m, n for 
each principal based on the six stress range components rzxryzrxyrzryrx τττσσσ ,,,,, .   

(e)  Take the differences between each pair of principal stress ranges 2112 rrrS σσ −= ,  

3223 rrrS σσ −= , and 1331 rrrS σσ −= . The largest principal stress range difference is defined 
as ( )312312 ,,max rrrrij SSSS =  , which have the corresponding direction cosines as (l,m,n)i and 
(l,m,n)j. The equivalent alternating stress is half of the largest stress range difference  

rijalt SS ⋅= 5.0 . 
(f) Find the mean stress for each stress component during the completed stress cycle, e.g., 

mzxmyzmxymzmymx τττσσσ ,,,,, . 
(g) Calculate the three principal mean stresses 321 ,, mmm σσσ  and the direction cosines l, m, n 
for each principal mean stress based on the six mean stress components 

mzxmyzmxymzmymx τττσσσ ,,,,, .   
 
The principal mean stress with given direction cosines can also be calculated alternatively by 
using 

nlmnlmnml mzxmyzmxymzmymxm τττσσσσ 222222 +++++=  
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(h) Determine the equivalent mean stress as the sum of the 2 principal means which have the 
same direction cosines (l,m,n)i and (l,m,n)j with those which determine the maximum stress 
range difference : mjmimeanS σσ += .  
 
5.3  Example of application 
 
An example for the varying principal stress direction is shown below. 
 
   Table 6a  Step “a”  Initial stress component data  

Stress Component Time Point A 
(MPa) 

Time Point B 
(MPa) 

xσ  5 0 

yσ  -25 -3 

zσ  50 -6 

xyτ  3 0 

yzτ  5 0 

zxτ  2 0 
 
 

Table 6b  Step “b” To find stress range for each stress component 
Stress Range 
Component 

Stress Range Value 
(MPa) 

axσ  -5 

ayσ  22 

azσ  -56 

axyτ  -3 

ayzτ  -5 

azxτ  -2 
 
 

Table 6c  Step “c” To calculate principal stresses range 
Principal Stress Range 
component 

Stress Range Value 
(MPa) 

Direction Cosine 

1aσ  -56.4 (0,0,1) 

2aσ  -5.2 (1,0,0) 

3aσ  22.6 (0,1,0) 
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Table 6d  Step “d” To calculate stress range differences 
Principal Stress 
Component 

Stress Range Difference 
(MPa) 

Direction Cosine 

12aσ  51.2 (0,0,1), (1,0,0) 

23aσ  27.8 (1,0,0), (0,1,0) 

13aσ  -79 (0,1,0), (0,0,1), 
 

Step “e” to find the maximum stress range difference 
The maximum stress range difference is MPaa 7913 −=σ  with a pair of direction cosines of 

(0,1,0) and (0,0,1). The equivalent alternating stress amplitude is half the maximum stress range 
difference:  MPaaa 5.392/13 −== σσ . 
 

Table 6e  Step “f” To find mean stress for each stress component 
Mean Stress 
Component 

Mean Stress Value 
(MPa) 

mxσ  2.5 

myσ  -14 

mzσ  22 

mxyτ  1.5 

myzτ  2.5 

mzxτ  1 
 

Table 6f  Step “g” To calculate principal mean stresses 
Principal Mean Stress 
Component 

Mean Stress Value 
(MPa) 

Direction Cosines 

1mσ  22.2 (0,0,1) 

2mσ  2.56 (1,0,0) 

3mσ  -14.3 (0,1,0) 
 

Step “h” to find the equivalent mean stress 
The equivalent mean stress is the sum of the 2 mean stresses with the same direction cosines in 
the step e:   MPammmean 9.731 =+= σσσ  with direction cosines (0,0,1), (0,1,0). 
 

Table 6f’  Step “g’” Principal mean stresses from Eq. 23 
Direction Cosines Principal Mean Stress 
(0,0,1) 1mσ =22.23 
(0,1,0) 3mσ =-14.29 

 
Eq. 23 can be applied alternatively to obtain the required principal mean stresses:  
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nlmnlmnml mzxmyzmxymzmymxm τττσσσσ 222222 +++++=  .   (23) 
 
The results are listed in Table 6f’, and the exactly same result with that in Step “h” is obtained: 
 MPammmean 9.731 =+= σσσ  

 
However, in some cases, if the direction cosines in the step “g” (principal means) are not 
consistent with those in step “e” (maximum stress range difference), Eq. 23 must be used to 
obtain required principal mean stresses with the same direction cosines against those of 
maximum stress range differences. 
          
5.4  Comparison check 
 
As a universally applicable procedure, it must be in agreement with those of constant principal 
directions.  Again use the same stress values listed in Table 6a,  but assume constant principal 
direction. 
 

Table 7a  Initial stress data 
Stress Component  Time Point A 

(MPa) 
Time Point B 

(MPa) 
xσ  5 0 

yσ  -25 -3 

zσ  50 -6 

xyτ  3 0 

yzτ  5 0 

zxτ  2 0 
 

Table 7b  Calculate principal stresses for each time moment 
Principal Stress  Time point A 

(MPa) 
Time point B 
(MPa) 

1σ  -25.6 (0,1,0) -3 (0,1,0) 

2σ  5.15 (1,0,0) 0  (1,0,0) 

3σ  50.47 (0,0,1) -6 (0,0,1) 
Note:  the direction cosines must be compared to find the right match  

of each principal stress at 2 time moments 
 

Table 7c  Calculate principal stresses ranges and means 
Principal 
Stress  

Range (MPa) Mean (MPa) Direction 
Cosines 

1σ  22.6 -14.3 (0,1,0) 

2σ  -5.15 2.57 (1,0,0) 

3σ  -56.47 22.23 (0,0,1) 
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The pair with maximum stress difference is MPaa 791313 −=−= σσσ  with direction cosines of 
(0,1,0), (0,0,1).   Therefore the equivalent stress amplitude is half of the maximum stress 
difference MPaaa 5.392/13 −== σσ   
 
The equivalent mean stress is the sum of the 2 means with the same direction cosines of the pair 
of stresses to determine the maximum stress difference MPammmean 9.731 =+= σσσ  with 
direction cosines (0,0,1), (0,1,0).  Note that the results, one using the code for the constant 
principal and another one using the code for varying principal direction, are identical.   

 
5.5  Exceptions to the proposed mean stress definition[10] 
 
The above code statements are based on Eqs. 2, the Tresca mean stress model.  Literature also 
indicates that Eq. 3, the Von Mises mean stress model can also be used. However, there are some 
exceptions, where only the model of maximum principal stress is applicable, e.g.,  the multiaxial 
fatigue on a cast iron specimen.  It is found that the test data of multiaxial fatigue on the cast iron 
specimens fall nearer to the maximum principal stress criterion than to the maximum shear 
criterion. The mechanism is explained by Sines.  Many flakes of graphite exist in the 
microstructure of the cast iron. Since the flakes of graphite carry little stress, they behave like 
porosity in the structure.  Similar to crack growth behavior in most structural materials, the crack 
initiation caused by each flake and their combination is mostly governed by the maximum 
principal stress.  
 
 
6.   Case study of the proposed mean stress definition 
 
The proposed mean stress definition is applied in different cases listed in Table 8, and produces 
reasonable results for all these cases. 
 
Table 8  Case applications of the proposed mean stress definition 
Multiaxial fatigue case 
(solid line 1σ ,  dot-dash line 2σ ,  dash line 3σ  ) 

Mean defined by 
mmm 31 σσσ +=  

Logically or 
tested true mean  

 

Positive Positive 

 

Zero  Zero  

Negative  Negative 

 

Zero  Zero  Pure shear 

Pure compression

Reversal  

Pure tension 
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Zero Zero 

Zero  Zero  

Zero Zero 

 
Note that, for the last case, if the fatigue failure is controlled by the maximum shear model, the 
result is zero since the normal stress acting on the maximum shear plane is zero although a small 
compression is acting on a non-critical shear plane. 
 
 
7.  Fatigue life evaluation for a pin subjected to rotating loads 
 
As an application example, consider a pin made of stainless steel 316LN in the ITER CS 
assembly. The pin is part of a proposed vertical support system that utilizes 9 toroidally oriented 
shear pins that are clamped by preloaded bolts. The pin is subjected to rotating shear and 
compression during operation.  Let us determine the equivalent alternating stress according to 
ASME B&PV, and the equivalent mean stress according to this proposal. 
 
Figure 3 gives 3 stress components (Sy, Sz, Syz) at the pin as a function of load step, in which A 
and B  represent 2 extreme time points during one cycle.  For this case, x is the radial direction 
and y is the vertical direction. The original stresses are listed in Table 9a: 
 

Table 9a  Initial stress components of the pin 
Stress Component @ Time Point A 

(MPa) 
@ Time Point B 

(MPa) 
xσ  0 0 

yσ  -23 -16 

zσ  -91 -96 

xyτ  0 0 

yzτ  -55.4 44 

zxτ  0 0 

Symmetric 
shear

Triaxial  
(nonproportional) 
loading 

Asymmetric 
shear 
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Fig. 3  Stresses at ITER CS gravity support pin, 
well preloaded, as a function of load step,  A and B 
represent two extreme time points. Syz is the same 
as τyz in Table 9a 
 
The stress ranges in Table 9b for each stress component are obtained by taking the difference of 
each stress component between the 2 extreme time points A and B, as listed in Table 9a.  The 
principal stress ranges in Table 9c are then calculated from the stress range of 6 stress 
components, using the techniques discussed above. 
 

Table 9b:  The range for each stress component 
Stress Range 
Component 

Stress Range Value 
(MPa) 

axσ  0 

ayσ  7 

azσ  -5 

axyτ  0 

ayzτ  99.4 

azxτ  0 

 
Table 9c:  Principals of stress range 

Principal Stress Range 
component 

Stress Range Value 
(MPa) 

Direction Cosine 

1aσ  100.58 (0, 0.728, 0.685) 

2aσ  0. (1, 0, 0) 

3aσ  -98.58 (0, 0.685, -0.728) 

 

 
Fig. 4  Location of a  Pinned Joint Utilized in 
One of the Proposed CS Structural Support 
Concepts  

A B



 

 20

The maximum stress range difference is MPaa 16.19913 =σ  with a pair of direction cosines of 
(0, 0.728, 0.685) and (0, 0.685, -0.728). The equivalent stress amplitude is half the maximum 
stress range difference.  MPaaa 58.992/13 == σσ . 
 
Then, let us discuss the mean stress evaluation.  Table 9d lists the mean stress for each stress 
components in Table 9a.  
 

Table 9d:  Mean stress for each stress component 
Mean Stress 
Component 

Mean stress value 
(MPa) 

mxσ  0 

myσ  -19.5 

mzσ  -93.5 

mxyτ  0 

myzτ  -5.7 

mzxτ  0 

 
For this example, it is found that the direction cosines of principal means are not consistent with 
those of maximum stress range difference in Table 9c.  Therefore,  Eq. 23 is applied to evaluate 
the required principal means.  The results are listed in Table 9e. 
 

Table 9e  Principal mean stresses from Eq. 23 
Direction Cosines Principal Mean Stress 
(0, 0.728, 0.685) 1mσ = -59.96 
(0, 0.685, -0.728) 3mσ = -53.04 

 
We now have the equivalent mean stress according to the suggested code statement:   
 

MPammmean 11331 −=+= σσσ  
 
The Soderberg relation (Eq. 24) [13] is then applied to account for the combined alternating and 
mean stress effects on the equivalent fatigue stress σfs:   
 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

=

y

m

a
fs

σ
σ

σ
σ

1

          (24) 

 
where aσ  , yσ  and mσ  are the equivalent stress amplitude, yield stress, and mean stress 

respectively (MPa). fsσ  is the  equivalent fatigue stress at load ratio R=-1 to be used with an 
S/N curve for calculation of lifetime. 



 

 21

For the pin made of stainless steel 316LN,  MPay 1235≈σ .   Substituting MPaa 58.99=σ  

and MPam 113−=σ  into Eq. 24 gives  the equivalent R=-1 stress or MPafs 23.91=σ .  
Apparently, the compressive mean stress reduces the effective applied stress amplitude.  
Substituting MPafs 23.91=σ into S-N curve of this alloy at 4K gives fatigue life no less that 106 

cycles.  For ITER, the life requirement is for 30000 of these cycles. ITER criteria requires a 
margin of  the more conservative of a factor  2 on stress or 20 on life. This is the same as for 
ASME. Thus we would enter a R= -1 SN curve (shown below)  for the appropriate temperature, 
at an alternating stress of  2 * 91.23 = 182.5 MPa , and the pin design satisfies the criterion. 
 

  
Finally, let us check the rotation feature of the stresses in Table 9a.  Tables 9f and 9g give the 3 
principal stresses and their direction cosines at time point A and B respectively. Comparing 
Table 9f to 9g indicates that the principal directions rotate from the time point A to the time point 
B.  Since each principal stress rotation path is not tracked during typical database,  it is hard to 
apply the German code for further calculation of the equivalent alternating and mean stresses. 
 

Table 9f principal stresses at time point A of the pin 
Stress Component @ Time Point A 

(MPa) 
Direction Cosines 

1σ  -122 (0, 0.488, 0.873) 

2σ  0. (1, 0, 0) 

3σ  8 (0, 0.873, -0.488) 

 
 
 
 
 

316 LN Life as a Function of Alternating Stress and R Value 
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Fig. 5  R=-1 4K 316 LN Fatigue Data, Developed from Measure R=.1 
Measured data, and the Solderberg Relation (5) 



 

 22

Table 9g principal stresses at time point B of the pin 
Stress Component @ Time Point B 

(MPa) 
Direction Cosines 

1σ  -115 (0, 0.405, -0.915) 

2σ  0. (1, 0, 0) 

3σ  3.46 (0, 0.915, 0.405) 

 
 
8. Conclusions 
 
Existing theories and design codes have been reviewed. The mean stress effect can not be 
neglected when a material is operated in the elastic range, e.g., in ITER structure design. 
 
A German structural standards code that has been gaining international acceptance is adopted, 
using a maximum shear critical plane model to define the equivalent mean stress of multiaxial 
fatigue with a constant principal direction. However, some example shows that it is hard to apply 
directly for the case of varying principal direction. 
 
For the more general case of varying principal stress direction, the equivalent mean stress is 
determined by a more complex method. The mean stresses of all 6 stress and shear components 
are calculated, before calculating the principal mean stresses. A universally applicable procedure 
to evaluate the equivalent mean stress is developed, based on a Tresca mean stress model. The 
key is that the user must determine the direction cosines for each principal stress, stress range, 
maximum stress difference, and mean stress.  The sum of the 2 mean stresses that are added to 
find the equivalent mean stress must be the normal stress acting on the maximum shear plane, 
i.e., they must have the same direction cosines as the two stress ranges that determine the 
maximum stress difference.  
  
The proposed procedure generates identical results with German procedures for cases with 
constant principal directions.  It is also found that the proposed procedure can be applied very 
well to most special cases, including uniaxial, biaxial fatigues, and static combined cyclic 
loading. One exception comes when the fatigue failure mechanism is not controlled by the 
maximum shear plane model, as with cast iron. 
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