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Abstract

The increase in plasma performance associated with turbulence suppression via flow
shear in magnetically confined fusion plasmas has been well documented. Currently,
the standard methods for both generating and measuring plasma rotation involves
neutral beam injection (NBI). In the large, high density plasmas envisaged for next
generation reactors, such as ITER, NBI will be considerably more difficult than in
current experiments. As a result, there is a need to identify alternative methods for
generating and measuring plasma flows. In an effort to meet these needs, a high reso-
lution x-ray crystal spectrometer capable of making spatially resolved measurements
has been designed, built, installed and operated on the Alcator C-Mod tokamak. By
taking advantage of toroidal symmetry and magnetic flux surface mapping it is pos-
sible to perform spectral tomography with a single fan of views. This combination of
spatially resolved spectra and tomographic techniques has allowed for local measure-
ment of a number of plasma parameters from line integrated x-ray spectra for the first
time. In particular these techniques have been used to measure temporally evolving
profiles of emissivity, charge state densities, rotation velocities, electron temperature,
ion temperature, as well as radial electric field over most of the plasma cross section
(r/a < 0.9). In this thesis three methods for the generation of flows without the use
of NBI are identified; intrinsic rotation in enhanced confinement modes, lower hybrid
wave induced rotation and ICRF mode conversion flow drive. Each of these methods
is discussed in detail with reference to how they might be used in next generation
tokamaks.
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Chapter 1

Introduction

One of the fundamental problems facing the magnetic confinement fusion community

is the reduction in performance associated with plasma turbulence. In present exper-

iments, turbulence is the limiting factor on temperature and density gradients which

in turn limit the rate of fusion energy production. Although much remains to be done,

progress has been made both theoretically and experimentally on understanding and

characterizing this turbulence.

An example of this improved understanding is the recognition of the importance

of rotation on plasma performance. Strong plasma rotation can help stabilize de-

structive magneto-hydrodynamic instabilities (resistive wall modes, RWMs [1], [2])

while gradients in rotation can improve confinement by suppressing turbulence[3],[4].

In many experiments the rotation profiles associated with improved performance are

generated through the use of neutral beam injection (NBI) [5]. Unfortunately this ap-

proach may prove impractical in the large, high density plasmas envisioned for next

generation devices such as ITER [6], [7]. As a result, there is a need to develop al-

ternatives to NBI for driving strong plasma rotation. Significant self generated flows

have been observed on a number of tokamaks [8] suggesting that it may be possible

to reap the benefits of rotation without the use of NBI. Furthermore, chapters 7 and

8 of this thesis discuss recent observations of significant flow drive by wave heating.

While these alternative approaches to flow generation have been receiving in-

creased study in recent years, they remain poorly understood theoretically and sparsely



measured experimentally. This paucity of measurement can be explained by the fact

that the standard method for measuring rotation profiles is active charge exchange

spectroscopy with NBI. The neutral beams involved generally represent large sources

of external momentum making it very difficult to study intrinsic flows. Passive x-ray

spectroscopy has been used to diagnose intrinsic rotation without the use of pertur-

bative beams but is often limited to a just of few line-integrated measurements.

To address the need for rotation profile measurements without the use of neutral

beams, a new type of x-ray crystal spectrometer has been developed. This instrument

combines the passive nature of standard x-ray spectroscopy with the ability to make

spatial resolved measurements. The contents of this thesis are divided between two

broad themes. The first involves the theory and design of imaging x-ray crystal

spectrometers. The second deals with plasma flows experiments made possible by

the expanded diagnostic capabilities of the new instrument.

1.1 Outline

This thesis is divided into 9 chapters and 7 appendices. The topic of imaging x-ray

crystal spectrometers is addressed in chapters 2, 3 and 4. Specifically, chapter 2

summarizes the physics of such an instrument and how to go about designing one.

Chapter 3 describes the imaging x-ray crystal spectrometer that was designed and

built to obtain the data for the second half of this thesis. Chapter 4 describes how

plasma parameters can be inferred from the line emission spectra the aforementioned

spectrometer was designed to measure.

Chapters 5 through 8 focus on the study of tokamak plasma flows in the absence

of external momentum input from neutral beams. Chapter 5 provides an overview of

rotation theories and discusses them in the context of rotation measurements made to

date. Chapter 6 describes intrinsic rotation in enhanced confinement regime plasmas.

Chapters 7 and 8 cover recent measurements of rotation drive by lower hybrid waves

and mode converted ICRF1 waves, respectively. The final chapter, Chapter 9, briefly

summarizes the key findings of the thesis and outlines some possible directions for

'Ion cyclotron range of frequency



future work. Appendix A provides details on the line emission spectra of hydrogen-

and helium- like argon. Appendix B outlines the calculation of the x-ray transmission

through the helium-air mixture present in the spectrometer housing. Appendix C

consists of calculations of interspecies thermal equilibration times. This appendix

also provides evidence of the strong thermal coupling between impurity and bulk ions

in Alcator C-Mod plasmas and discusses the conditions under which temperature

separation between ions and electrons is to be expected. Appendix D covers the

concept of instrumental temperature and describes a novel technique for determining

the resolving power of a spectrometer. Appendix E discusses the separation of ion and

impurity parallel flows in tokamak plasmas. Appendix F provides a summary of the

variables used in the multi-machine intrinsic rotation database as well as derivations

of approximate expressions for the average ion mass, and the acoustic sounds speed.

Appendix G discusses how toroidal rotation can be generated through asymmetries

in momentum diffusivity.

1.2 The Alcator C-Mod Tokamak

The spectrometer that is the focus of the first part of this thesis was installed on

the Alcator C-Mod tokamak at the MIT Plasma Science and Fusion Center. Alcator

C-Mod is a compact tokamak designed to operate at the high magnetic field and

densities envisaged for burning plasmas on reactors such as ITER and DEMO. Figure

1.1 shows isometric and cross sectional views of the device while table 1.1 summarizes

its key parameters.

Alcator C-Mod is the ideal device for conducting research on the twin goals of this

thesis, namely the development of high resolution imaging x-ray spectroscopy and

intrinsic rotation studies. High resolution x-ray spectroscopy is made easier by the

enormous amount of line radiation emitted by the high density discharges produced

on Alcator C-Mod 2. Furthermore Alcator C-Mod does not use NBI for heating which

allows for the study of intrinsic plasma rotation on every discharge.

2For a fixed impurity fraction, radiated power is proportional to the square of electron density



Figure 1-1: The Alcator C-Mod tokamak

1.3 Units

The units used throughout this thesis are in the system international, SI, and specifi-

cally MKS. The one exception is that temperatures are quoted in electron volts (where

leV - 11,600 'K) since writing and reading sentences like "the plasma was heated to

60,000,000 oK" is somewhat cumbersome.

~-: ::::;: '- -::~0-'-



Table 1.1: Alcator C-Mod Facility Parameters

Parameter Value/Range
Major Radius R - 0.68 m
Minor Radius a ~ 0.22 m
Plasma Volume V lm 3

Plasma Surface Area S - 7m 2

Maximum Toroidal Field BT < 8 T
Maximum Plasma Current I, < 2 MA
Elongation e < 1.9
Triangularity 6 < 0.85
Maximum Toroidal Field Pulse length 5 s >> TCR

Ion Cyclotron RF source Power 8 MW, 50 to 80 MHz
Lower Hybrid RF Source Power 3 MW, 4.6 GHz
Collisionality range 0.05 < v* < 10
Normalized pressure /N < 1.8
Absolute Plasma Pressure < 0.2 MPa (volume average)
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Chapter 2

Imaging X-ray Crystal

Spectrometers

High resolution measurements of line radiation from partially ionized atoms have

been used to diagnose fusion plasmas for a number of years[9]. While this method

has been successfully employed on a variety of experiments, its usefulness has been

limited by the lack of spatial localization associated with the line integrated nature

of the measurement.

The problem of spatial localization can be overcome if spectra from multiple lines

of sight are available. The general problem of inferring local quantities from a set

of line integrated measurements is not unique to plasma physics. Indeed, the entire

discipline of tomography was developed to address it. The analytic methods required

for performing spectro-spatial tomographic inversions of line emission spectra have

been known for some time ([10], [11]). These techniques had not been applied to

x-ray data, however, due to the difficulties associated with simultaneously measuring

a large number of high resolution spectra, each with its own view through the plasma.

Even a relatively modest tomographic scheme requires of order 10 lines of sight. If

a separate spectrometer is required for each line of sight, then these requirements

become extremely onerous in port space, funds and labor.

In their 1999 paper, B.S. Fraenkel and M. Bitter [12] proposed a novel solution to

this problem. By using a spherically bent crystal and a 2d x-ray detector arranged



in the Johann configuration [13], it is possible to obtain multiple lines of sight from a

single spectrometer. Early attempts to implement such a solution were frustrated by

the lack of a large area x-ray detector capable of handling the high count rates nec-

essary for useful measurements of rapidly evolving plasmas [14]. Recently, however,

just such a detector was developed at the PSI in Switzerland. It is this dramatic im-

provement in x-ray detector technology that has made high resolution imaging x-ray

spectroscopy of fusion plasmas practical.

This chapter will describe various concepts and considerations essential to the

design of a high resolution image x-ray crystal spectrometer.

2.1 Bragg Reflection

X-ray crystal spectrometers are based on the principle that the regular spacing of

atoms in a crystal lattice can be used as a diffraction grating. Bragg reflection takes

place when the distance traveled by photons reflecting off adjacent layers of a crystal

is an integral multiple of the photon wavelength. This gives rise to constructive

interference of the reflected waves as shown figure 2-1. From this diagram one can

readily derive the famous Bragg condition:

nA = 2d sin Ob (2.1)

This expression relates the resonant angle, Ob, to the wavelength of the photons,

A, the inter-atomic spacing of the crystal, d, and the order of reflection, n. The inter-

atomic spacing of crystals is typically a few angstroms[15]. Figure 2-2 shows how a

flat crystal, a slit and a position sensitive x-ray detector can be arranged to form a

spectrometer (angles have been exaggerated for illustrative purposes).

Note that all the photons reaching a given point on the detector have the same

Bragg angle. Since there is a one-to-one correspondence between 0 and A via the

Bragg condition, it follows that the intensity measured at a point on the detector is

from photons of a specific wavelength.
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Figure 2-1: Bragg Reflection

Even for a perfectly unblemished crystal, the infinitely precise one-to-one relation

between A and Ob implied by the Bragg relation is only approximate. In reality, there

is a small range in angle for which there is significant constructive interference. This

fact is illustrated in what has come to be known as a rocking curve [16]. The rocking

curve plots reflected intensity against the deviation angle from the wavelength given

by the Bragg condition. An example rocking curve for a calcite crystal is shown in

figure 2-3.

The narrower the width of the rocking curve, the sharper the resonance. In figure

2-3 we see that the rocking curve has a full width at half maximum (FWHM) of

-15 arc seconds. As will be seen in the next section, the finite width of the rocking

curve can often be neglected when dealing with bent crystal spectrometers due to the

inherent focusing imperfections of spherical mirrors.

2.2 Johann Spectrometers

Although the arrangement depicted in figure 2-2 is easy to implement, it suffers

from two principal draw backs. Firstly, the presence of the slit significantly reduces

throughput. Secondly, the spectrometer only provides a single line of sight. The
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Figure 2-2: A simple flat crystal spectrometer

throughput problem can be resolved by bending the crystal in the plane of the spec-
trometer as shown in figure 2-4.

The dashed line in figure 2-4 is referred to as the Rowland circle and has a diameter
equal to the radius of curvature of the crystal. Using simple geometric arguments it
can be shown that all rays from a given point on the Rowland circle to any point
on the crystal will have the same angle of incidence (with respect to the crystal
surface). Due to the 1-to-1 relationship between angle of incidence and A implied by
the Bragg condition, each point on the Rowland circle will correspond to a specific
wavelength. Unlike the flat crystal spectrometer described above, there is no slit
in this arrangement which gives rise to greatly increased throughput. In the flat
crystal spectrometer described previously, photons measured a specific location on
the detector are reflected off only a small portion of the crystal. Therefore, variations
in crystal quality can lead to distortions of the measured spectra. With a curved
crystal, however, this problem is mitigated by the fact that any given point on the
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Figure 2-3: Rocking curve of a calcite crystal[17]. The dashed line shows a calculated
rocking curve in which absorption by the crystal is neglected.

detector is measuring photons reflected by every part of the crystal. It should be noted

that there are practical limitations on the minimum radius of curvature for a crystal.

Although there is variation between crystal types, having a radius of curvature - 1

m or less can lead to substantial broadening of the rocking curve. This limitation on

the radius of curvature sets a lower bound on the size of bent crystal spectrometers.

2.2.1 Spherically Bent Crystal Optics

The spectrometer depicted in figure 2-4 provides only a single line of sight. If instead

of a cylindrically bent crystal, a spherically bent crystal is used then the spectrometer

will have spatial resolution in the meridional plane (i.e. the direction perpendicular

to the spectrometer plane). In such a spectrometer all photons that arrive at the

detector below the meridional plane must have originated above this plane and vice

versa. The optical properties of spherical mirrors can be difficult to visualize due

to the fact that the horizontal (meridional) and vertical (sagittal) focal lengths are

different [18]. The meridional and sagittal focus are given by:

fm = R, sin b (2.2)
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f, = - f/ cos 20b (2.3)

where is Ob the Bragg angle, R, is the radius of curvature of the crystal and fm and f,
are respectively, the meridional and sagittal focal lengths. An example of the peculiar

focusing properties of a spherically bent mirror is depicted in figure 2-5.

2.2.2 Spatial Resolution

Figure 2-6 shows the spatial imaging properties of a Johann spectrometer. If the

height of the crystal is doubled, so too is the height of the ray bundle at every point

along the line of sight. From figure 2-6 it can be seen that the spatial resolution of a

given spectrometer arrangement is approximately:

AX = s - L d (2.4)I I
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Figure 2-5: The spherically bent crystal optics of a Johann spectrometer. If the ray
bundle is rotated about the axis of symmetry (OB), an ellipse will be traced out on
the detector plane (red line).

Since the throughput of the spectrometer is proportional to the area of the crystal,

there is a fundamental trade off between throughput and spatial resolution. For fixed

crystal height the spatial resolution can be improved by having the meridional focus

as close as possible to the plasma. This can be accomplished through judicious choice

of the Bragg angle, crystal radius of curvature, and the distance between the plasma

and the crystal.

From equation 2.3 we see that for Bragg angles less than 450, the sagittal rays

are diverging. If spatial resolution is important, diverging sagittal rays should be

avoided, which argues for choosing a Bragg angle > 45 o

2.2.3 Detector Alignment

For optimal focusing, the x-ray detectors should be tangent to the Rowland sphere.

Since the surface of x-ray detectors are generally planar, they cannot be tangent to the

Rowland sphere everywhere. The detectors can be arranged to mitigate this focusing

error by using the alignment scheme shown in figure 2-7.
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Figure 2-6: Spatial resolution for an imaging Johann spectrometer. The sagittal and
meridional focal lengths (f, and fm) are given by equation 2.2 and 2.3. Lcp is the
distance between the crystal and the plasma.

This figure shows a relatively straightforward way to arrange multiple planar de-
tectors such that the center of each detector is tangent to the Rowland sphere. The
wedge angle, a, can be determined from geometrical considerations and is given by
a = 90 - Ob.

2.2.4 Johann Error and Spectral Resolution

As mentioned in the previous section, the spherically bent crystals used in a Johann
spectrometer do not perfectly focus all photons of a specified wavelength to a single
point on the detector. This focusing imperfection gives rise to a limit on the spectral
resolution of a Johann spectrometer referred to as the Johann error[19]. Physically the
Johann error leads to spatial smearing of photons of a given energy on the detector.
This is shown graphically in figure 2-8. The extent of this smearing can be calculated
from figure 2-8 using straightforward geometric arguments and is given by[19]:

12coSOb
6xj = 1R (2.5)8Rc

where, 6xj is the Johann error, 1 is the width of the crystal, Ob is the Bragg angle
and R, is the crystal radius of curvature. This expression demonstrates that the
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Figure 2-7: Optimal arrangement of 3 detector modules such that their centers are
tangent to the Rowland sphere.

Johann error can be made arbitrarily small by reducing the width of the crystal.

This illustrates a fundamental trade-off between throughput (proportional to the

area of the crystal) and spectral resolution (inversely proportional to the width of

the crystal). It is also worth noting that the Johann error is smaller at larger Bragg

angles. Therefore, Bragg angles of greater than 45 o have the dual benefit of reduced

Johann error and enhanced spatial resolution.

The resolving power of a Johann spectrometer can also be influenced by the finite

width of the detector's pixels. Clearly, if the pixel width, 6xp is much larger than

6xj, then the resolving power will not depend on the Johann error at all. If the pixel

width and the Johann error are of similar magnitudes then their combined effect can

be approximated by adding the two lengths in quadrature, i.e.

x (6x) 2 + (6Xp ) 2 (2.6)

Using the Bragg condition, it can readily be shown that the resolving power of a
crystal spectrometer is given by
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Figure 2-8: Geometric construction showing the origins of the Johann focusing error.

Xo tan Ob= tan (2.7)
AA dO

Making the substitution 60 = 6x/fm and plugging in the above expression for 6x

gives,

A- 8 s tan Ob)2 (2.8)

For example, plugging in Rc = 1.5m, Ob = 60 , 1 = 5cm and assuming a negligible

pixel size gives a resolving power of -20,000 1.

2.3 Emission Line Selection

The design of a Johann spectrometer for diagnosis of a fusion plasma begins with the

selection of the impurity emission lines to be measured. Noble gases are commonly

chosen because they are chemically inert and their concentration in the plasma can

'For comparison the natural broadening of L, for argon is Ao,/AA = 2.04 x 105



be easily controlled. The choice of specific noble gas depends primarily on the tem-

perature range of the plasma to be diagnosed. For any given impurity, the hydrogen

and helium like charge states have relatively simple spectra with several well studied

and strong emission lines. Furthermore, they tend to be the dominant charges states

over a broad range in temperature. These properties make line emission from H- and

He-like charges states ideal for spectroscopic analysis. Figure 2-9 shows the fractional

abundance of the H- and He-like charge states in coronal equilibrium for helium, neon,

argon and krypton as a function of electron temperature.
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Figure 2-9: Fractional charge state abundances for various noble gases in coronal

equilibrium. Fully stripped charge states are in depicted in solid lines, H-like in
dashed, He-like in dash-dot and Ne-like in dash-dot-dot.

Figure 2-9 makes clear that for the temperature range of interest in Alcator C-

Mod plasmas (0.5-6kev), neon is fully stripped except in the relatively cool edge

region. Argon, on the other hand, has H- and He-like as the dominant charge states.

Krypton could plausibly be used for diagnosing the core, but because of its relatively

high atomic number (ZKr = 36, ZA, = 18) it is considerably more perturbative than

argon for the same absolute density (it both radiates considerably more power, and



more significantly dilutes the ion density). These considerations make argon the ideal

non-native diagnostic impurity species for Alcator C-Mod plasmas (The details of the

H-, and He-like argon spectra are covered in appendix A).

2.4 Crystal Selection

Once the spectral range has been determined, the Bragg condition then sets a con-

straint on the relationship between the Bragg angle and the 2d spacing of the crystal

to be used. To have the improved spatial resolution associated with converging merid-

ional rays requires a Bragg angle greater than 450 . However, Bragg angles of more

than - 80 o become problematic because of interference of the incoming rays with the

detectors (for a Bragg angle of 90 o the incoming and reflected rays are coincident).

This range of - 450 < Ob < 800 for the Bragg angles then imposes limits on the al-

lowable 2d spacing of the crystal. Although the Bragg angle is a continuous variable

and can take on any value in the range mentioned above, the available 2d spacing of

suitable crystals is discrete. A fairly comprehensive list of commonly used crystals

can be found in reference [15].

2.5 Chapter Summary

This chapter has outlined the basic physical principles underlying crystal spectroscopy

in general and imaging Johan spectrometers in particular. The basic design process

of such a spectrometer has been covered and can be summarized as follows:

* The temperature range influences the selection of trace impurity

* The impurity selection influences with wavelength region

* The crystal is chosen to accommodate the selected wavelength region

- 2d spacing of the crystal sets the Bragg angle ( OB < 45ird for improved

spatial and spectral resolution).



- Height of crystal influences throughput and spatial resolution.

- Width of crystal influences throughput and spectral resolution (through

the Johann error)

* The choice of crystal radius of curvature sets the meridional and sagittal foci

- Larger radius of curvature reduces magnification

- Trade-off between spectral coverage and resolution
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Chapter 3

The Spatially Resolving High

Resolution X-ray Spectrometer:

Hirex-Sr

3.1 Design Criteria

An imaging x-ray spectrometer of the Johann type has been designed, built, installed

and operated on the Alcator C-Mod tokamak. This instrument has been dubbed

the Hirex-Sr spectrometer'. The goals of this project were to enhance the diagnostic

capabilities of the Alcator C-Mod program and demonstrate the feasibility of using

an imaging x-ray crystal spectrometer as a practical diagnostic for fusion plasmas. In

order to accomplish these goals the spectrometer had to:

1. Image the entire plasmas cross section

2. Have sufficient signal to make measurements on a time scale shorter than the

energy, momentum and particle confinements times (i.e. < 20 ms).

3. Have sufficient spectral coverage to measure emission lines in the range 3.94A <

A < 4.00A for measurement of He-like argon emission lines
1Hirex is a contraction of "HIgh REsolution X-ray", while Sr is a reference to its ability to make

spatially resolved measurements



3.72 < A < 3.80 for measurement of H-like argon emission lines

4. Have sufficient spectral resolution to measure the minute Doppler shifts of emis-

sion lines associated with plasma rotation down to the km/s range (A/AA -

10,000).

5. Have a spatial resolution of - 1 cm to capture the subtleties of radial variation

in Alcator C-mod plasmas.

3.2 Design Constraints

All design projects are fundamentally about managing constraints and making trade

offs between competing requirements. As has already been mentioned, there are fun-

damental trade offs between spatial, spectral and temporal resolution. Furthermore,
the design of the spectrometer was significantly constrained by the shape and size

of Alcator C-Mod ports, as well as the available space in and around the reactor.

Given the constraints summarized above, it was determined that separate pairs of

crystals and detectors would be needed for the two spectral ranges of interest (i.e.

one crystal-detector pair for the He-like argon spectra and another for the H-like ar-

gon spectra). In effect this meant designing two separate spectrometers contained in

a single housing.

The requirement to image the entire plasma cross section meant using one of the

10 racetrack shaped radial ports on Alcator C-Mod. This however, was at odds with

the desire to give the spectrometer a line of sight with a large tangential component

to allow for measurement of toroidal rotation. Furthermore the spectrometer had

to be designed in such a way that it did not interfere with existing diagnostics. To

allow for a greater understanding of the complex relationship between the many

trade offs involved in the spectrometer design, specialized software was written. This

software package used dozens of design decisions as inputs and calculated the resulting

spectrometer layout and performance metrics. It was also capable of performing ray

tracing calculations to identify interferences between the spectrometer lines of sight



and other diagnostics in the tokamak. This code made it possible to compare hundreds

of competing designs and select the one that satisfied all the spatial constraints while

maximizing the spectrometer's performance characteristics. Figure 3-1 shows the

layout of the final spectrometer design and how it interfaces with Alcator C-Mod.

Top View

Side View
A L

hd=
23cm

Detectors

Figure 3-1: Top view a), and side view b), of the Hirex-Sr spectrometer as installed
on Alcator C-Mod

Although the central view of the spectrometer is only 8' off-radial, the toroidal

component of the line of sight is sufficient to make toroidal rotation measurements.

Having views of both the top and bottom of the plasma cross section makes it possible

to distinguish between line shifts caused by poloidal and toroidal rotation.

= -70cm



3.3 Component Descriptions

The following section provides a detailed description of the critical components of the

imaging x-ray crystal spectrometer.

3.3.1 Crystals

For both the H-like and He-like spectrometers, (102)-quartz was chosen as the dis-

persive elements. This crystal cut has a precisely known 2d spacing of 4.56215A

which gives Bragg angles of 55.5' and 60.50 for the H-like and He-like spectrometer,

respectively. In addition to having a convenient 2d spacing, (102)-quartz is relatively

inexpensive, has good bending properties and high reflectivity. To achieve the de-

sired radius of curvature, a glass substrate is ground and polished to the appropriate

dimensions. When the relatively thin (-0.15 mm) quartz crystal is placed on the

substrate, it is bent to the same radius of curvature as the substrate and is held in

place via contact forces. The H-like crystal has a diameter of 50 mm and a radius of

curvature of 1385 mm, while the He-like crystal is rectangular (64 mm in width, 27

mm in height). Some of the specifications/properties of the H-like crystal assembly

are summarized below:

Table 3.1: Crystal Specifications

Diameter 50mm
Spherical curvature 1300 - 20mm
Substrate thickness 30 - 1mm on the edge
Quartz Thickness 0.15 - 0.01 mm
Quartz surface parallelism < 10 arc sec
Contacting voids < 20% crystal area

3.3.2 X-ray Detectors

A total of four Pilatus [20] 100k x-ray detector modules are used in the spectrometer,

three to image the He-like spectra and one for the H-like spectra. Each module



consists of a 487 x 196 array of x-ray sensitive hybrid-pixels (0.172 mm x 0.172 mm)

operating in single-photon counting mode. Each pixel acts as a single channel analyzer

with a low level discriminator and its own 20 bit counter, allowing each pixel to

perform photon counting at rates up to 1 MHz. This approach gives rise to a dynamic

range and maximum count rate many orders of magnitude higher than is possible

using conventional x-ray CCDs or multi wire proportional counters. Count rates of up

to , 1 x 105/s have been measured on pixels exposed to line radiation from centrally

viewing chords, while combined count rates for the three He-like viewing modules

as high as 1 x 109/s have been recorded. For comparison, a recently constructed

state-of-the-art 2D multi-wire proportional counter [21] has a maximum count rate

of , 5 x 105/s over an area of 10cm x 30cm.

The thermal noise that gives rise to dark current in conventional detectors is at

energies well below the lower level discriminator threshold. As a result, this thermal

noise does not increment the pixel counters and no dark current is recorded. The

detectors were fabricated in the UMC (Taiwan) 0.25 micron radiation tolerant pro-

cess [22]. Unpublished tests have demonstrated that the devices show no significant

degradation after exposures to well beyond 10 MRad of 8 keV x-rays. All the modules

can be read out simultaneously in less than 3ms, which allows for a frame rate of 200

Hz at a 40% duty cycle. The key detector specifications are summarized in the table

below.

3.3.3 Detector Mounting

The spatial and viewing constraints imposed by other diagnostics and the reactor

meant that the detector modules were not quite wide enough to image the entire He-

like argon spectrum using the alignment scheme described in the previous chapter.

The full spectrum could be imaged, however, if the detectors were arranged in the

manner shown in figure 3-3.

This figure shows how the detector arrangement can be modified to increase the

acceptance angle of the detector (and hence increase the spectral coverage). The

increased spectral coverage comes at the cost of an increase in focusing error. In this



Table 3.2: Detector Specifications

Sensor Type Reverse biased silicon diode array
Sensor Thickness 320 pm
Pixel Size 172mrn x 172upm
Format 487 x 195 - 94, 965 pixels
Area 83.8mm x 33.5mm
Dynamic Range 20 bits (1:1,048,576)
Count Rate Per Pixel > 2 x 106 x-rays/s
Energy Range 3-30 keV
Energy Resolution - 500eV
Adjustable Threshold range 2-20 keV
Readout Time 2.7 ms
Maximum Frame Rate 300 Hz
Point Spread Function 1 pixel
External Trigger/gate 5V TTL
Power Consumption 15 W
Dimensions 275 x 146 x 85mm
Weight 1 kg

particular case, the advantage of imaging the entire He-like argon spectra warrants

the modest reduction in spectral resolution associated with this alternative detector

arrangement. 3D CAD drawings and a photograph of the mounting structure for the

He-like detectors is shown in figure 3-4. This alignment gives rise to the slight gaps

between detector visible in figure 3-4.

3.3.4 Alignment Stages

The crystals and detectors require alignment with sub millimeter precision. This was

accomplished through a combination of manual and computer controlled positioning

stages, a summary of which is given in table 3.3.

3.3.5 Base Plate & Housing

All of the spectrometer's optical components and detectors are mounted directly

onto a 1" thick aluminum base plate. This base plate was precision planed and serves



Figure 3-2: A single Pilatus 100k x-ray detector module

as an optical table to allow for the precise alignment of the spectrometer's optical

components. Although this spectrometer was optimized to measure spectra of H- and

He-like argon, the base plate was designed to allow for a wide range of Bragg angles

(45 < 9 b <- 65 o, see figure 3-5).

For the energy range of interest (- 3keV), x-rays are strongly attenuated by air.

Conventionally this problem is overcome by evacuating the spectrometer housing,

however, due to the large size of the spectrometer a vacuum housing would have

been extremely bulky. Furthermore, operating in vacuum would put a great deal of

stress on the baseplate complicating optical alignment. To avoid these problems the

spectrometer was designed to operate in a helium atmosphere. For the average path

length through the spectrometer (~ 1.2 m), a mixture of 99% helium and 1% air

absorbs about 20% of the incident ~ 3 keV x-rays. More details on this topic can be

found in appendix B. To minimize the level of air impurity, helium is continuously

flowed through the spectrometer at a slight over pressure. This ensures the helium
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Figure 3-3: Modified detector arrangement to increase spectral coverage

will be flowing out of any leaks in the housing (as opposed to air leaking in). The

seal between the housing and the base plate is provided by a single O-ring that lies

in a groove machined into the base plate (see figure 3-6).

The helium inflow valve is located at the top of the housing while the out flow

valve is located at the bottom. Since helium is lighter than air this arrangement does

not require an inefficient "pump and purge" approach to obtaining a high purity He

environment. In practice it was possible to reduce the air impurity to < 1% with only

slightly more than one replacement volume of helium. In addition to the helium flow

valves, the spectrometer housing was fitted with a release valve to guard against over

pressurization. The spectrometer lid has 4 ports that allow for access to the various

internal components, electronics feedthroughs and the mounting of an isolation glove.



Figure 3-4: CAD drawings and a photograph of the He-like argon detectors and their
support structure.

Table 3.3: Alignment Stages

Component Direction of Motion Control Type Comments
Crystals Vertical Manual Vertical alignment control

Yaw Computer Bragg Angle control
Pitch/Roll Manual Vertical angular alignment control

Detectors Vertical Manual H-like module only
Horizontal Computer Controls crystal-detector distance
Yaw Computer Controls tangency to Rowland Circle

3.3.6 Spectrometer-Reactor Interface

A beryllium window is used to separate the ultra high vacuum environment of the

fusion reactor from the helium atmosphere of the spectrometer. Beryllium was chosen

for it high strength and excellent x-ray transmission characteristics. The beryllium

window is 4" in diameter and 0.001" thick. This window is mounted on a 0.02"

thick beryllium hexagonal support grid which is in turn mounted on 6" stainless steel

conflat flange. It has been calculated that this window has a transmission coefficient

of - 40 % for 3.1 kev x-rays.
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Figure 3-5: A top down view of the spectrometer showing all of the optical components
and their arrangement on the base plate.

An engineering drawing of the window assembly is shown in figure 3-7. This

assembly is leak tight to 1x10e-9 std cc/sec He, is bakeable to 1500C, and capable of

supporting a differential pressure of 1 atm from either side.

In the event of a sudden failure of the Be-window, the helium from the spectrom-

eter would rush into the reactor. This could both damage the spectrometer and lead

to air contamination of the reactor. To guard against this possibility a 10" gate valve

was installed between the beryllium window and the reactor. The gate valve was

programmed to close when the local pressure rose above 10 mTorr. Figure 3-8 shows

a CAD drawing of the spectrometer as installed on B-port.



Figure 3-6: Isometric view of the spectrometer's optical components

3.4 Chapter Summary

This chapter has given a brief overview of a prototype high resolution imaging x-ray

crystal spectrometer that has been installed on the Alcator C-Mod tokamak. This

spectrometer is the most technologically advanced of its kind ever built, and (as

will be described in the next chapter) the first capable of producing tomographically

inverted profiles of various plasmas parameters.
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Figure 3-7: Engineering drawing of the beryllium window separating the helium at-
mosphere of the spectrometer from the vacuum environment of the reactor.

Figure 3-8: The Hirex-Sr spectrometer on B-port
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Chapter 4

Inferring Plasma Parameters from

Line Emission Radiation

The previous chapter was concerned with how a spherically bent crystal spectrometer

can be used for high resolution measurement of line emission. This chapter will focus

on methods used to infer various plasma parameters based on line emission spectra.

4.1 Doppler Shifts

When an electron transitions from an excited state to a lower energy level a photon

is emitted. The frequency of this photon is proportional to the difference in energy

between the initial and final state of the transitioning electron. If the emitting atom

is moving with respect to the spectrometer, then the wavelength of the measured

photon will be Doppler shifted such that

1+ v/c
m = v/c (4.1)

1 - v/c

where Am is the measured wavelength, Ao is the rest wavelength, c is the speed of

light in vacuum and v is the relative velocity between the source & detector.

For the temperature range of interest in Alcator C-Mod plasmas (< 6keV) the

thermal speeds of ion and impurities are of order a 100 km/s. Since these speeds are



much less than c the following non-relativistic approximation to equation 5.16 can be

used

A - (4.2)
,Ao c

where AA is the difference between the measured and rest wavelengths. The speed of

light is so large that even seemingly high velocities of order 10km/s give rise to very

small fractional changes in frequency, hence the need for high resolution spectroscopy.

Equation 4.2 indicates that there is a one-to-one correspondence between wave-

length and velocity. Therefore the shape of an emission line spectrum provides a direct

measurement of the distribution function of the emitting atoms in the direction along

the line of sight of the spectrometer. By taking moments of this distribution function

one can calculate the density, velocity and temperature of the population of emitting

atoms using the following equations,

n= f (U)d3- (4.3)

V If f(W)d'3 
f  (4.4)

T_2!
T - / mv 2f()d 3 J (4.5)

3n J

where f is the distribution function, n is the density, V is the fluid velocity, and T

is the scalar temperature. It would be highly desirable to have such information for

the bulk hydrogen in a fusion plasma. Unfortunately, since hydrogenic species have

only one proton, they can not be simultaneously magnetically confined and have a

bound electron. One way to circumvent this problem is to inject a small amount of

impurity atoms into the plasma. Since impurity atoms can be partially ionized it is

possible for them to be both magnetically confined (due to their net positive charge)

and still have bound electrons that will give rise to line emission.



4.2 Line Ratio Measurements

For the range of temperatures and densities in tokamak plasmas the emissivity of a

given line can often be approximated by:

E= - nineFi(Te) [ph/m 3 /s] (4.6)

where E is the emissivity of the line, n, is the electron density, ni is the density of the ith

charge state and F is a function that captures the electron temperature dependence

associated with all the atomic physics processes that give rise to the excited states in

question. If the emissivity of an emission line is dominated by a single charge state

then equation 4.6 simplifies to

E _' nineFi(Te) (4.7)

If two lines can be found for which the emissivity is dominated by the same charge

state then the ratio of their emissivities is give by

E6 nineF,(Te)
R - F(Te) (4.8)

62 nin1F2(Te)

In such cases the dependence on charge state density cancels and the ratio only

depends on the functions F and F2 both of which are functions of only electron

temperature. These functions can be determined by atomic physics modeling and

are well known for many atomic systems over a wide range in temperatures. If there

happens to be a one-to-one relationship between R (the ratio of the local emissivities)

and T then it is then possible to infer the electron temperature.

This approach can be generalized by taking the ratio of sums of lines that all

depend on the same charge state. For example:

3 E F (Te)n EF(T)

R = - 3 (4.9)
Ek Fk Te) n Fk Te)

k k k



Again, the ratio R depends only on known functions of Te. These measurements

have typically lacked accuracy because they are often based on the ratio of the line

averaged emission instead of the ratio of local emissivities. By using the ratio of

the local emissivities determined by a tomographic inversion (described in the next

section), it is possible to make measurements of the electron temperature much more

accurately than would otherwise be possible.

4.3 Data Analysis

The previous two sections describe how information about a plasma can be inferred

by the line radiation that it emits. There are many steps, however, that are required

to extract local plasma parameters from the raw spectral data. These steps are:

wavelength calibration, multi-line fitting, and spectral tomography, brief summaries

of which are given below.

4.3.1 Wavelength Calibrations

Due to the nature of spherically bent crystal optics, lines of constant A trace out

elliptical curves on the detector plane (see figure 4-1). This curvature results from

the intersection of the Bragg cone of a given wavelength with the planar surface of the

x-ray detector modules. The first step toward calculating plasma parameters from

raw spectra is correcting for this curvature, i.e. obtaining a spectral calibration. The

standard way to calibrate a spectrometer is to expose the instrument to a radiation

source with 2 or more lines of known wavelength in the spectral range of interest.

The location of the lines on the detector can then be used to define a wavelength

calibration.

The lack of convenient x-ray sources in the wavelength regions of interest (3.1

keV) requires that the plasma itself be used as a calibration source. Wavelength

calibrations are obtained by running locked mode discharge in which non-rotating

tearing modes act as a brake on toroidal rotation[23]. In the absence of rotation,

emission lines are not Doppler shifted and an accurate spectral calibration can be



obtained by using previously published wavelength of known emission lines. That the

locked mode breaking drives the toroidal rotation to zero on Alcator C-Mod plasmas

has been verified by independently calibrated spectrometers[24].

The wavelength calibration is accomplished by fitting an ellipse to two emission

lines on each detector. To fit an ellipse to the curve of an emission line it is first

necessary to generate a set of points that represents the location of the emission line

centroids in the plane of the detector. This is accomplished by performing a multi

line least squares fit to each row of the image. Figure 4-1 shows a raw image from the

central module of the He-like detector array, taken during a locked mode discharge.

The dashed lines represent the ellipse of best fit to the w and z lines.
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Figure 4-1: Raw image of
lines of constant A

the He-like argon spectra showing the elliptical curve of

Figure 4-2 shows the residual of one of these elliptical fits. From this figure we see

that the standard deviation of the residual is on the order of 1/100th of a pixel. It is

also clear that the residual is dominated by coherent structure, rather than photon



statistics. The cause of this structure has yet to be determined but may be due

to variation in pixel sensitivity, artifacts introduced by the multi-line fitting routine

or non-zero rotation profiles during locked mode discharges. A shift of 1/ 10 0th of a
pixel corresponds to a central plasma rotation velocity of approximately 500 m/s or
equivalently - 10 pA.
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Figure 4-2: Residual of the
He-like detector array

elliptical fit to the 'z' line from the central module of the

The fact that the centroid of a line can be determined to such a small fraction

of a pixel is interestingly (and counter-intuitively) due to finite line widths. If the

width of an emission line is much smaller than a, pixel, then all of the intensity from

that line will be deposited onto a single pixel. In this case the centroid of the line

can only be determined to within + half a pixel. If, however, the intensity of a line is

distributed over many pixels, then the uncertainty in the centroid will be dominated

not by the pixel width but by statistical considerations. Given enough photons, the

error in the centroid of a line associated with counting statistics can be driven well

below the + half a pixel level, as is shown here.



Once each pixel has been assigned a wavelength, the intensity data is mapped

from the [x, y] pixel space to the [A, Z] space, where A is the assigned wavelength

and Z refers to the height of the pixel in the spectrometer reference frame. Figure

4-3 shows the data from figure 4-1 remapped to [A, Z] space. Note that in the [A, Z]
space the curvature of the line has been removed, while the boundaries of the image

are now ellipses.
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Figure 4-3: Curvature correction:
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4.3.2 Multi-line Fitting

Before spectral tomographic techniques can be applied one must first isolate the signal

of an emission line from the signal of any neighboring lines. This can be accomplished

by performing multi-line least squares fits to the spectral data.
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Figure 4-4: Examples of multi-line fits to He-like argon spectra

Figure 4-4 shows chord integrated He-like argon spectra (and satellites) from two

sight lines through the plasma (left) and raw images from the 3 detector modules

viewing the He-like spectra (right). The total multi-line fits are shown in solid blue

while the intensities associated with individual lines are shown in dashed red. The

greater widths of the lines in the centrally viewing spectrum compared to those in the



edge spectrum reflect the difference in ion temperature between these two locations

in the plasma. More details on both the H- and He-like argon spectra can be found

in appendix A.

The He-like detector array has a total of 1461 rows of pixels (487 per module)

but these rows do not all provide independent views through the plasma. This is

the result of the finite spatial resolution of the spectrometer described in chapter 2.

An upper estimate of the number of independent spatial chords can be calculated by

dividing the height of the plasma by the spatial resolution of the spectrometer. For

the He-like Argon arm of Hirex-Sr the spatial resolution is -7 mm (see equation 2.4

with f, = 2.43 m, L = 3.06 m and d = 28mm). Since the height of the plasma is

-70 cm, this gives approximately -100 independent lines of sight (considerably less

than the number of pixel rows). In this situation, binning the data in the spatial

direction will improve the quality of the multi-line fits' without significant reductions

in spatial resolution. In practice, it has been found that less than 100 spatial channels

are required to capture the spatially varying features of the central portions of Alcator

C-Mod plasmas. It has been found that having two spatial channels per sub-module,

for a total of 48 spatial channels, generally provides a good balance between spatial

resolution and the amount of signal per spectra.

4.3.3 Spectral Tomography

Spectral tomographic techniques can be used to infer local plasma quantities from

the measured chord integrated spectra. For the densities and temperatures typical in

magnetic confinement fusion plasmas, the Doppler effect dominates the broadening of

soft x-ray emission lines. If the electron and ion distribution functions are Maxwellian,

then the spectral brightness measured at the spectrometer can be expressed as:

B- dl ex - (4.10)
i)w(l) 2w (1)

'Multi-line fitting is non-linear in the sense that the sum of spectral fits is not equal to the fit
of spectral sums. In general, one obtains more accurate results by first summing spectra and then
fitting them. This constitutes a trade-off between spatial resolution and signal per spectra.



where B is the spectral brightness of the jth chord, I is the distance along the line of

sight, I is the unit vector along the line of sight, Eo is the emissivity, w is the full width

half maximum (FWHM), Ao is the unshifted wavelength, c is the speed of light, and

v is the impurity velocity. As described in more depth in references [10] and [11], it is

possible to generate a set of linear equations relating the spectral moments of chord

integrated spectra to the kinetic profiles of the emitting species. The nt h spectral

moment is defined as

SJ dA(A - Ao) "B (4.11)

Using this definition, the first three moment equations (i.e. n=0,1,2) are given by

Mo dl e(1) (4.12)

MI' = dl V- -(1)] c(1) (4.13)

2 dl[))2 o(1)2 (4.14)

The n = 0 equation, or the zeroth equation, relates the line integral of emissivity

to the measured brightness. The n = 1 equation relates the centroid of the measured

line shape, MI,j, to the line integral of the emissivity weighted by the dot product

of the impurity velocity with the line of sight. The second moment of the spectral

shape (n=2) is also a weighted line integral of the emissivity. The weighting in this

case depends both on line shift and line broadening, w(l), given by

w(1)2 =A l (4.15)
mi C2

where T and mi are the temperature and mass, respectively, of the emitting species.

Equations 4.12 through 4.14 constitute a coupled set of linear equations relating

the first three spectral moments to the emissivity, velocity and temperature of the

emitting species. A completely general 3D tomographic scheme would require a very



large number of lines of sight from multiple directions. The fact that tokamak plasmas

are toroidally symmetric and that co, Vi and Ti can be expressed in terms of flux

functions reduces the complexity of the problem tremendously. In particular, these

considerations make it possible to perform spectral tomographic measurements with

a single fan of views.

A general approach has been developed to solve the system of moment equations

described above for the case of a toroidally symmetric plasma 2. The starting point for

this approach is to project all lines of sight onto a poloidal plane thereby reducing the

problem from three spatial dimensions to two. The integral equations are then recast

as matrix equations by dividing the poloidal plane into rectangular volume elements.

For each line of sight, a spatial weighting is then calculated for all the volume elements.

Using magnetic flux surface reconstructions it is then possible to remap the spatial

weightings from [R,Z] coordinates3 in the poloidal plane to normalized minor radius,

p - r/a. This step effectively reduces the problem from two spatial dimensions to

one. The spatial weightings only need to be calculated once since the spectrometer

is not moving with respect to the reactor. The mapping from [R,Z] to p, however,

needs to be recalculated at every time step due to the temporally evolving nature of

magnetic flux surfaces throughout a discharge. The majority of computation time

is spent on this flux surface remapping although the weightings for all 48 spatial

channels, on a 100x100 grid, for 100 time points can be completed in under a minute

on a personal workstation. Since an Alcator C-Mod shot cycle is typically c 20

minutes this relatively short computation time allows for between shot analysis of the

data.

For an arbitrary three dimensional velocity field the 1st moment equation would

be impossible to solve with a single fan of views. However, for a plasma satisfying

radial force balance, with no radial velocity and a divergence-free flow, the velocity

field is constrained to the following form [25]

2The spectral tomographic inversion algorithm described here was developed and implemented

by M. L. Reinke as part of the GENIE (GENeral Impurity Emissivity) Code.
3Here R is the major radius, Z is the vertical distance with respect to the horizontal mid-plane, a

is minor radius and r is the distance to the magnetic axis when mapped to the outboard mid-plane.



v = u(q)B + w(')R

where B is the magnetic field vector, R is the major radius, 4 is the toroidal unit

vector, V) is poloidal magnetic flux, and u and w are arbitrary functions of q. The

Hirex-Sr spectrometer has mixed toroidal and poloidal views which allows for the

simultaneous measurement of both toroidal and poloidal rotation. This can be un-

derstood by first considering the line of sight directly viewing the magnetic axis. The

line shifts for this spatial channel will always be dominated by toroidal flows (since

the line of sight is effectively perpendicular to the poloidal direction). Spatial chan-

nels viewing above and below the magnetic axis, however, will observe line shifts in

opposite directions for poloidal flows but in the same direction for toroidal flows. It

is this difference that makes it possible to distinguish between the two types of flows.

4.4 Example Profiles

Applying the techniques described in the previous section it is possible to infer profiles

of emissivity, charge-state densities, electron temperature, rotation velocities, ion

temperature and radial electric field. Examples of such inversion are presented in the

subsections that follow.

4.4.1 Emissivity Profiles

Local emissivity profiles are generated based on the inversion of the 0 th moment

(i.e. brightness) of an emission line. Figure 4-5 shows a contour plot of emissivity

inversions of the He-like argon 'z' line for an entire discharge. Early in the discharge

we see that the emissivity profile of this line is peaked on axis and is core localized

(i.e. the bulk of emission is at a normalized minor radius of p < 0.5). The application

of ICRF heating (t = 0.7 s) raises the plasma temperature leading to a substantial

broadening of the emissivity profile. Additionally, the peak of the emissivity profile is

seen to shift off-axis. This hollowing out of the emissivity profile results from the core

(4.16)
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Figure 4-5: Emissivity contour plot of the w line from the He-like argon spectra.

temperature being so hot that the He-like charge state is "burning through". Figure

4-6 shows the same data as figure 4-5 in the form of a surface plot. This surface plot

highlights the extent of the hollowing out of the emissivity profile during the high

temperature portion of the discharge.

The tomographic inversion method described in the previous section assumes that

emissivity is constant on magnetic flux surfaces. If this assumption is violated the
resulting emissivity inversions represent flux surfaced averaged emissivities. It is pos-

sible to partially test the assumption that emissivity is a flux function by comparing

inverted emissivity profiles of the top and bottom of the plasma. This test is only

partial because it is only sensitive to up/down, as opposed to in/out, asymmetries.

Figure 4-7 compares inverted emissivity profiles with data from just the top (red) and
just the bottom (blue) of the plasma. An inversion based on all the data (i.e. the
top and bottom) is also plotted (dashed black). The fact that all the curves are in
close agreement suggests that there is no significant up/down emissivity asymmetry
in this discharge.
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Figure 4-6: Emissivity surface plot of the w line from the He-like argon spectra.
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Figure 4-7: Comparison of inverted 'z' line emissivity profiles of the top (solid red)
and the bottom (solid blue) of the plasma. The dashed black line is the result of an
emissivity inversion of all the data.



4.4.2 Charge State Density Profiles

Given profiles of emissivity, electron density and temperature, one can use atomic

physics modeling to calculate the density of the charge state that gives rise to mea-

sured emission lines. For the density and temperature ranges present in Alcator C-

Mod plasmas collisional radiative models are a reasonable approximation. Example

emissivity and charge state density profiles calculated using this method are shown

in Figure 4-8 (The atomic physics rates used were generated by the Flexible Atomic

Code[261). In this figure we see that both the Li- and He-like argon density profiles

are hollow (i.e. peaked off-axis). This is another example of a charge state being

"burned through", as described in the previous section. The evolution of charge state

density profiles such as these can be used to determine impurity transport coefficients.

4.4.3 Electron Temperature Profiles

As discussed in the previous chapter, the emissivity ratio of judiciously chosen emis-

sion lines can be used to infer electron temperatures. In practice, a "judicious" choice

has the following characteristics:

1. The relationship between electron temperature and the emissivity ratio of the

lines in question should be single valued.

2. The emission from all of the lines in question should be dominated by the same

charge state.

3. To avoid introducing cross calibration errors all lines in the chosen ratio (both

numerator and denominator) should be measured on the same detector.

4. There should be as little overlap as possible between the spectral ranges of the

line(s) in the numerator and denominator.

For the He-like argon spectra the ratio of the w & n > 4 satellite lines to that of the

n = 3 satellite lines provides the optimal balance between the often conflicting criteria

summarized above. The satellite lines are populated predominantly by dielectronic
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satellites and +15 from q, r & a). Figure reproduced from reference [27].



recombination from He-like argon whereas the w line is populated predominantly by
electron impact excitation of the same charge state. Figure 4-9 shows the regions
of the He-like spectra associated with this particular line ratio measurement. The
relationship between this ratio and electron temperature is shown in figure 4-10.
Note that the analysis presented here does not included radiative recombination rates.
Therefore using this approach when radiative recombination is important can lead to
inaccuracies in the inferred electron temperature.
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Figure 4-9: Line
ments.

ratios from He-like argon spectra for electron temperature measure-

Using the function shown in figure 4-10, one can readily calculate the electron

temperature based on measured intensity ratios. To get an accurate local measure-

ment of the electron temperature it is necessary to take the ratio of local emissivities

as opposed to the line integrated brightnesses. Figure 4-11 compares the inferred

electron temperature profiles based on line integrated brightnesses (open circles) and

local emissivity profiles (solid blue). The large difference between the line integrated
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Figure 4-10: Ratio of the intensity of the w & n > 4 satellite lines to the n = 3
satellite lines as a function of electron temperature[28].

brightness data and independent electron temperature measurements demonstrates

the value of performing the tomographic inversion. The difference between the line-

integrated and tomographically inverted data may explain the long standing discrep-

ancies between some line ratio measurements from Electron Beam Ion Traps (EBIT)

and tokamak plasmas [29]. It should be noted that accurate Te inversions from the

particular line ratios used here become impractical at electron temperatures above

-3 keV due to the blending of the n=3 lines with the n>4 lines.

4.4.4 Toroidal Rotation Profiles

Figure 4-12 shows an example of inverted toroidal rotation profiles in a discharge

with strong radio frequency (RF) heating. Shortly after the application of the RF

heating, a reversal of toroidal rotation is observed, from the counter-current to co-

current direction. Later in the discharge, the plasma transitions into a regime of

higher confinement (H-mode) and an increase in core rotation is observed. Figure 4-

13 shows the toroidal rotation frequency evolution for a different RF heated discharge

. . . . . . . . . . . .
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Figure 4-11: Electron temperature profiles based on line integrated brightness ratios
(open circles) and inferred local emissivities (solid blue line). Independent measures
of the electron temperature profile from electron cyclotron emission (squares) and
Thomson scattering (triangles) are also shown. Figure reproduced from reference [27]



in the form of a surface plot. Again we see the characteristic rotation inversion from

the counter- to co-current direction after the application of strong heating. Chapters

6, 7 and 8 provide much more detail on a variety of toroidal rotation phenomena

observed in Alcator C-Mod and other tokamaks.
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Figure 4-12: Contour plot showing the rotation profile evolving during an RF heated
plasma. Time histories of the line averaged density, central electron temperature and
RF heating power are also shown. Figure reproduced from reference [27]

4.4.5 Ion Temperature Profiles

In Alcator C-Mod plasmas the deuterium-argon energy equilibration time (- 10s of

ps) is much shorter than the energy confinement time ('10s of ms). This implies that

the argon and deuterium temperatures are well coupled and therefore, the measured

argon temperature is also a measure of the main ion temperature. A more compre-

hensive treatment of impurity-ion thermal coupling is given in appendix C. Figure
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Figure 4-13: Surface plot of the toroidal rotation frequency evolution in an RF heated
discharge. The "water level" in this plot indicates where the rotation frequency is zero
(i.e. portions of the surface plot above the water level indicate co-current rotation).



4-14 shows an example of inferred ion temperature profiles based on the inversion of

argon line emission. In this discharge the application of ICRF power at 0.7 s leads to

rapid heating of the plasma, a transition to H-mode and the onset of large sawtooth

oscillations. The ion temperature profile is seen to peak strongly at the beginning of

the H-mode and then gradually decrease. At 1.5 s the RF power is switched off and

shortly thereafter the plasma back transitions into L-mode at which point the plasma

cools rapidly. Figure 4-15 shows the same ion temperature data as figure 4-14 in the

form of a surface plot. This figure helps to highlight the difference in profile shape

between the L-mode and H-mode portions of the discharge.

Figure 4-16 shows a comparison of temperature profiles for a plasma in which

the electrons and ions are well coupled thermally. The solid red line is the result

of consolidating the independently measured temperature profiles from 4 different

emission lines (w and z from He-like argon and the Lyman-doublet from H-like argon).

Figure 4-17 a) shows Ti profile data from the He-like w line based on line aver-

aged data (blue diamonds) and a tomographic inversion (red line). The normalized

emissivity profile for the w line is shown in panel b). This figure is an example of

the general principle that the error associated with line averaged data is substantially

larger in regions of the plasma where the emissivity profile is hollow (i.e < 0). Con-

versely, the good agreement in the outer portion of the plasma demonstrates that line

averaged data can give accurate results in regions of the plasma where the emissivity

profile is peaked (~ > 0).

4.4.6 Radial Electric Field Profiles

Direct measurement of the radial electric field is possible using heavy ion beam

probes[30], however, these measurements are very difficult and have only been per-

formed on a limited number of tokamaks. An alternative approach to determining

the radial electric field is to use the radial pressure balance equation,

VP
Er = + VOBO - VBO (4.17)
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Figure 4-14: Contour plot showing the ion temperature as a function of normalized
minor radius and time in an RF heated plasma. Time histories of the line averaged
density b), central electron temperature c), and RF heating power d) are also shown.
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Figure 4-15: Surface plot of the ion temperature profile for the same discharge de-
picted in 4-14.

where Er is the radial electric field, P is the pressure, ni is the density, Zi is the

charge of the species in question, V and V4 are the poloidal and toroidal rotation,

respectively, and Be and BO are the poloidal and toroidal magnetic field, respectively.

Since radial pressure balance is satisfied for all species in the plasma, measurement

of impurity flows and pressure, coupled with magnetic measurements, can be used

to calculate the radial electric field. This technique has been used successfully with

charge exchange recombination diagnostics on a number of tokamaks [31]. In general

all three terms in equation (4.17) can contribute significantly to the radial electric

field. In the particular case of He-like argon in the central region of Alcator C-

Mod plasmas it has been found that the toroidal rotation term (VoBe) dominates the

diamagnetic ( v) and the poloidal rotation (VBO) terms. The relative contribution

of the diamagnetic term can be more clearly seen by rewritten it as,

Vp T
- L- 1  (4.18)

Zient Ze

where L - is the inverse pressure gradient scale length. The combination of a large ZiP _~__ll~.l^c.,.,c, ~,~T
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for highly ionized argon and moderate gradient scale lengths means that the diamag-

netic term tends to be relatively small. In almost all discharges the measured argon

poloidal rotation velocity is within error bars of zero and therefore, as stated above,
the toroidal rotation term tends to dominate radial pressure balance. Although the
poloidal rotation is small, it can have a significant effect on the radial electric field

because it is multiplied by the toroidal field. Even a modest 1 km/s poloidal flow gives

rise to a contribution of - 5 kV/m to Er. As a result, the uncertainty in the poloidal

rotation measurement tends to dominate the uncertainty of the inferred radial electric

field. Figure 4-18 shows a radial electric field profile for an Alcator C-Mod discharge

based on the method outlined above. The modest contribution from the diamagnetic

term is plotted on the same scale for comparison.
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Figure 4-18: Plot of the radial electric field profile. The total radial electric field is
shown in blue, while the contribution from the diamagnetic term is shown in red.

Figure 4-19 shows the radial electric field profile based on x-ray argon data in the
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core region and boron charge exchange data in the pedestal. The error bars on the x-

ray data are based on a characteristic uncertainty of 3 km/s of poloidal rotation. The

fact that measurements from two different impurities agree so well is strong evidence

that the various assumptions that went into this analysis are valid. Figure 4-20 shows

the evolution of the E, profile for an entire discharge. Shortly after the application

of ICRF heating (- 0.7 s), the plasma transitions from L-mode to H-mode. As this

transition takes place the radial electric field is seen to change from negative (radially

inward) during the L-mode phase to positive (radially outward) during the H-mode

phase.
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Figure 4-19: Comparison of radial electric field measurements from Hirex-Sr and
charge exchange spectroscopy (CXRS).

4.5 Chapter Summary

This chapter has outlined the basic physical mechanisms that imbue spectra of line

radiation with a wealth of information about the plasma from which it is emitted.

Specifically, Doppler shifted x-ray line radiation provides detailed information on the
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Figure 4-20: Er Profile evolution Through An L-H transition

distribution function of the emitting impurity. Knowledge of the impurity distribution

function can be used to determine charge state density profiles, impurity rotation

velocities and ion temperatures. Electron temperature profiles can be determined

by taking advantage of the temperature dependence of emission lines from the same

charge state. These quantities when combined with magnetic field measurements and

the radial pressure balance equation allow for the calculation of the radial electric field.

Obtaining localized (as opposed to line averaged) measurements of these quantities

requires spectral tomographic techniques be used. The profiles shown in this chapter

represent the first ever demonstration of spectral tomographic inversions of x-ray line

emission data.



Chapter 5

Rotation Theory

Many theories have been developed to explain the wide variety of rotation phe-

nomenology that has been observed in tokamak plasmas. These theories can be

broadly grouped into three categories: Classical, wave induced and turbulence based.

Here classical refers to theories in which Coulomb collisions are responsible for all

cross field transport. Wave induced rotation refers to those theories that are based

on interactions between plasmas and externally applied waves, such as ion cyclotron

range of frequency waves (ICRF). Turbulence based flow theories, as the name sug-

gests, rely on plasma turbulence to drive and/or redistribute momentum in a plasma.

A brief overview of the main theories in each of these categories is given in the sections

that follow.

5.1 Neoclassical Rotation Theory

Neoclassical rotation theory has the distinction of being the most cited and most fre-

quently contradicted of all rotation theories. There have been many publications in

which non-neoclassical rotation and/or momentum transport has been reported [24] [32].

The discrepancy between neoclassical theory (NCT) and experiment is not due to er-

rors in the derivation of the theory, but rather our inability to produce plasmas in

which the assumptions of NCT are valid. Specifically, NCT does not take into account

turbulence effects which typically dominate cross field transport nor does it allow for



radial gradients on the same spatial scale as the gyroradius. If future devices are

capable of producing plasmas in which turbulence is largely suppressed, then we may

expect the rotation to be approximately neoclassical in regions of modest plasma

gradients.

Expressions for the neoclassical poloidal and toroidal rotation can be derived using

the moment approach of Hirshman and Sigmar [33]. The neoclassical poloidal rotation

velocities for the main ions and a trace impurity are given by (equations 33 and 34

in reference [25] ):

- 1 1 BB(5.1)

1 K 1 Zi TI 1 BB (5.2)V9 - VT'Pi [(Ki + 2 T ZiTiLp (5.2)2 2 LT Lp, Z Ti L (B2)

where Lz1 is the gradient scale length of x (i.e. dlnx/dr), VT is the ion thermal

velocity (= /2Ti/m), pi is the ion Larmor radius (- mivT,/ZeB) and K1 and K2

are viscosity matrix coefficients given by the comically nested set of equations below.

K = D-'u (v + a - a3) (5.3)

K2 = D- 1 [PO4 - (i1)2 (5.4)

where

D -o (i', +v/ + ai - a,3) - (it0)2 (5.5)

and

-= (5.6)
ni Z2

4 mi ( 2 yr



An approximate formula for p0 and pa1 valid over a range of collisionality regimes is

given by

B

(1 + 2.92V*ap E/li) [1 +f f/ (6wtarapis )

The off-diagonal p's (i.e. Pol and 10o) are then given by

5
Pol = -Poo - Kol2

(5.8)

(5.9)

where Pol = plo and

g KKol~

(1 + 2.92vaKol/Kol) [1 + koP/ (6WtaTako6S)]

Here cwta is the thermal transit frequency,

ta = VTa/Roq (5.11)

where Ro is the major radius and q is the safety factor. Tab is the Braginskii collision

time and is given by

1 _ 16V"- (ZaZbe 2'

Tab 3 47 o

nb In A

m v(
(5.12)

g is the ratio of the trapped particle fraction, ft, to the circulating particle fraction,

fe, i.e. g = A = . An approximation for fc when 0 < E < 1 is given by,f f _ _

f, r 1 - 1.46v + 0.46cV4 (5.13)

The collisionality parameter, va, in equations 5.10 and 5.8 is given by

9 Wta
1.46 V2taaa

(B2 )

((b • VB)2)

where (...) is the flux surface average of the quantity in the brackets, B is the vec-

tor magnetic field and b is the magnetic field unit vector. The expressions for the

(5.10)

(5.14)



quantities iij and K0o for various collisionality regimes are summarized in table 5.1.

Table 5.1: Summary of the asymptotic dimensionless viscosity coefficients, where
d 2.23 + Zeff + 2.40Z ff. Reproduced from table I in reference [25].

Collisionality Banana Plateau Pfrisch-Schluter
S or KB A or KP VPS or KPS

0oo 0.52 + Zeff 3.54 (3.02 + 4.25Zeff) /d
K01ol 0.71 + Zeff 10.63 (12.43 + 20.13Zeff) /d

i11  1.39 + 13Zefi/4 11.52 (15.38 + 26.9 7 Zeff) /d

Gyroviscous effects are ignored in NCT which leads to identical expressions for the

electron and ion radial particle flux. This so-called "automatic ambipolarity" means

that the radial electric field can not be calculated using NCT. As a result the toroidal

rotation velocities of both the main ions and the impurities can only be written in

terms of the unspecified E, profile (via radial pressure balance) as shown below.

V = Er + VB e - ] (5.15)
Be oeni

If nothing else, the collection of equations above gives some sense of the complexity

of even the simplest of analytic transport theories.

5.2 Sub-Neoclassical Theory

One of the fundamental limitations of NCT is the assumption that all macroscopic

scale lengths are of the same order [34]. These macroscopic lengths include the connec-

tion length (qR typically of order several meters), the minor radius (typically an order

of magnitude less than qR), and gradient scale lengths (typically - 1cm or smaller

within transport barriers). More over, NCT assumes that all gradient scale lengths

are large compared to the gyroradius, which is often not the case in the edge re-

gion of enhanced confinement regime plasmas. As mentioned in the previous section,



standard NCT also ignores gyroviscosity which leads to a degenerate ambipolarity

constraint. These notions can be formalized by considering the ratio of the parallel

energy transport time to the perpendicular diamagnetic transit time[34]:

q2R 2  Ti 1 q2R 2

A1 =q = 0.255 1 qR (5.17)
Xll,i/N eBrar QjTj rLT,

where Q is the Larmor frequency, and Xjj,i and T are the Braginskii parallel heat

conductivity and ion collision time respectively [35]. Standard NCT is derived as-

suming A1 = 0 while sub-neoclassical theory (SNCT) considers A1 small but finite.

Substitutions and simplification of equation 5.17 gives

A, = 0.019 (5.18)BT 3/2  rLT,

where B is the magnetic field in Tesla, ni density is in 1019 particles/m 3 , T is tem-

perature in electron volts, Ai is the atomic mass of the main ions, and R, r, and

LT are all in meters. Substituting typical values for the edge region of an Alcator

C-Mod H-mode plasma (R = 0.7 m, r = 0.2 m, Ai =2, B = 5 T, q = 4, Zeffni

4 x 1019m - 3 , Ti = 200 ev, LT = 0.005 m) gives A1 = 0.06. It can be shown that

the SNCT correction to the neoclassical heat flux is of order O(A ), which in this

case is quite small, suggesting that the added complexity of (SNCT) is unnecessary.

However, it can also be shown that the difference between the ion and electron radial

particle flux is proportional to A1 (specifically, ri - Fe= A1yi with 7i r 1i). Since

this flux difference is what determines the radial electric field, retaining a finite A1

allows one to obtain a non-degenerate ambipolarity constraint. Put another way, it

is the implicit assumption that A1 = 0 made in standard NCT that gives rise to the

degenerate ambipolarity constraint.

While it is possible to write out complete expressions for the sub-neoclassical

toroidal rotation velocities and radial electric field[34] they are even longer and more

complicated than their neoclassical counterparts and so they will be omitted (see

reference [34] for full details). Comparison of the predictions of SNCT to experiment

have had mixed results [36] [37]. SNCT has had some success predicting the sign and



magnitude of flows, but it consistently under-predicts (by orders of magnitude) the

time scales on which these flows develop. It is believed that the anomalously short

momentum confinement times observed in experiment are due to plasma turbulence.

5.3 ICRF Induced Rotation

Many theories have been developed to explain the observation of co-current plasma

rotation in ICRF heated plasmas [38] [39] [40]. While each of these theories differ in

detail, they all rely on a combination of direct momentum exchange between waves

and particles and an ICRF wave induced non-ambipolar radial current. This radial

current leads to charge separation which in turn causes changes to the radial electric

field profile. Since E, and V0 are related through the radial force balance equation, a

change in E, can induce a change in V0, hence ICRF flow drive.

Comparison of these theories with experiment has had mixed results. For example,

the theory put forward by Perkins et. al[38] predicted a toroidal rotation inversion

when the ICRF resonance was scanned from the low field side to the high field side. In

dedicated experiments on Alcator C-Mod this inversion was not observed[37]. Other

theories have faired somewhat better, but the fact that very similar co-current rota-

tion is seen in purely ohmic plasmas suggests that ICRF heating is only indirectly

responsible for the rotation[41]. This possibility is discussed at greater length in

chapter 6.

5.4 Accretion Theory

Accretion theory suggests that the observed intrinsic rotation in tokamaks results

from an interaction between plasma particles and edge localized collective modes[42].

Specifically, particles traveling at the phase velocity of these collective modes are

preferentially scattered to the wall. If the phase velocities have a preferred toroidal

direction then scattered particles lost to the wall will take with them net angular

momentum. In order for total angular momentum to be conserved, the plasma must



rotate in the direction opposite the phase velocity of the collective modes.

The theory seeks to explain the observed rotation inversion from L-mode to H-

mode (counter current in L-mode, co-current in H-mode) [43] [44] by the phase velocity

direction of the dominant turbulence mechanism in each regime. It is argued that

turbulence in L-mode plasmas is primarily due to ion temperature gradient modes

(ITGs). These modes tend to have phase velocities in the co-current direction which

leads to counter-current plasma rotation[45][46]. Conversely, it is argued that in H-

mode plasmas ITG modes are largely suppressed and turbulence is driven by strong

density gradients in the edge of the plasma. It is stated that these density driven

modes have phase velocities in the counter-current direction which in turn gives rise

to co-current rotation.

In addition to flow drive from edge localized turbulence, a momentum pinch mech-

anism is identified by considering electrostatic modes in slab geometry. The calcula-

tion begins by considering modes of the form

S~ (xo) exp(-iwt + ikyy + ikllz) (5.19)

localized around a surface x = x,. The perturbed parallel momentum conservation

equation is then used to determine the dispersion relation for these modes. This

calculation leads to the following form for the perpendicular momentum flux

-2 I2 [,dv 11 mn + dp (5.20)F - dx wk dx

where C = w-klkjvl (xo) is the Doppler shifted frequency, vii is the parallel flow velocity

(assumed subsonic, i.e. VllIVthi << 1), Yk = Im I k is the mode growth rate and

D (2k ) k 2) is the quasi-linear diffusion coefficient. In the equation above,

the first term in the brackets gives rise to momentum diffusion, while the second term

gives rise to a momentum pinch proportional to the ion pressure gradient1 .

1A similar theory has been put forth K.C. Shaing in which electrostatic fluctuations lead to a
momentum pinch[47]



In summary, accretion theory puts forth a explanation for the rotation inversion

observed during L-H transitions based on the phase velocity direction of turbulence at

the plasma boundary. Additionally, it identifies a momentum pinch term proportional

to the ion pressure gradient capable of giving rise to peaked rotation profiles.

5.5 Flow Drive via Reynolds Stress

Reynolds stress refers to off-diagonal terms in the pressure tensor induced by turbulent

fluctuations. The turbulence based stresses are typically defined by considering each

fluid quantity as composed of an average and fluctuating part, for example

v = (vI) + , 1. (5.21)

where '-' represent fluctuating quantities and (.) represent fluctuation averaged quan-

tities. When the fluid equations are averaged on time scales large compared to the

turbulence fluctuations one ends up with terms proportional to the average of the

product of fluctuating quantities (i.e. (~ir)). It is terms such as this, related to the

cross phase of fluctuating quantities, that give rise to Reynolds stresses.

Although the average of each fluctuating quantity is zero by definition, the product

of two fluctuating quantities can be non-zero. In order for the Reynolds stress terms to

be non-zero there needs to be a symmetry breaking mechanism. In their 2007 paper,

Gurcan et al.[48] proposed radially sheared E x B velocity profiles as a potential

source of symmetry breaking. They proceed to calculate both the diffusive and non-

diffusive flux of parallel momentum driven by ITG turbulence in a, cylindrical plasma.

To their credit, the calculation is performed with a self-consistent radial electric field

by taking into account the interaction between momentum transport via turbulent

Reynolds stress and turbulence suppression via velocity shear. The calculation begins

by considering the equation for the parallel mean velocity,

atl a /21 (5.22)atV1+ a0 (f3Exi5I) = taX2VII5.2



where V11 is the mean parallel flow velocity, vii is the fluctuating parallel flow velocity,

VEx is the radial component of the fluctuating E x B velocity and v is the collisional

parallel viscosity. Following a quasi-linear closure scheme and assuming a linear

response based on ITG turbulence the parallel stress is calculated to be

-Rev:k2 Y tik pi a + vtik vk pI vtikl e4k
k(E) -iWk i Wk Wk PdX W Ti

(5.23)

The first term in this equation is the standard diffusion term. The second and

third terms are so-called "off diagonal terms". Note that both of the off-diagonal

terms are proportional to k1l, therefore if the the fluctuation spectrum is symmetric

in kll the off-diagonal contribution to the sum will be zero. The fundamental result of

this calculation is that the E x B shear causes the modes to shift off the x=0O resonant

surface which gives rise to a breaking of the kll symmetry and hence an off-diagonal

component of the parallel momentum flux.

In addition to E x B shear, magnetic curvature has been put forward as a mech-

anism for breaking kll symmetry[49]. Specifically it has been proposed that Reynolds

stress can develop due to imperfect cancellation of curvature and grad-B drifts when

fluctuation intensity varies on a flux surface. The calculation proceeds by considering

the electrostatic toroidal non-linear gyro-kinetic equations with the assumption that

E,' = 0 and ignoring the effect of turbulence driven zonal flows. After a lengthy cal-

culation, the radial component of the turbulent driven flux, IIang, of the ion parallel

angular momentum density, minoUIIR, is found to be of the form

ngb _) Ang (RBo)2 (minoU |R) + VA (RB minoUjR) (5.24)

where the radial coordinate is designated by the poloidal flux V, XAng represents

the angular momentum diffusivity, and VATr C o represents a novel turbulence driven

convective pinch velocity. VTnurC is shown to be composed of two different pinch



velocities. The first, V , is based on turbulence equipartition and is driven by

V(1/B). This pinch term can be expressed as

VTEP , 2Fballoon ̂ Ang (5.25)
0Ang A (5.25)

where Fbauoon is a dimensionless coefficient of order unity. For outward ballooning

fluctuations Fbauoon is > 0 and therefore /Te, gives rise to an inward pinch of angular

momentum. The second novel pinch velocity, V1Ch, is based on curvature driven

thermal flux from ion temperature fluctuations and is given by

vCTh 4Fballoon (a,
Ang Ro e ) XAng (5.26)

Since 6T/6o can be positive or negative, the sign of VACsh depends on the cross phase

between ion temperature and electric potential.

In summary, the Reynolds stress theories outlined above represent an impor-

tant step forward in our understanding of momentum transport in tokamak plasmas.

Given the anomalously high momentum diffusivities observed in experiment, it seems

reasonable to assert that any theoretical treatment of momentum transport that ig-

nores the role of turbulence could not possible be complete. However these turbulence

effects depend sensitively on the magnitude and phase of fluctuating quantities that

are extremely difficult to measure. As a result it will be very difficult to test them

experimentally.

5.6 Summary of Rotation Theories

This chapter has sought to give a brief overview of the main theories being put forward

to explain intrinsic rotation in tokamak plasmas. These theories can be broadly

grouped into three categories: Theories based on Coulomb collisions, wave induced

rotation theories, and theories based on plasma turbulence. The Coulomb collision

theories are unable to predict accurately the time scale of momentum transport,

typically overestimating them by an order of magnitude or more. The ICRF theories



do not explain why very similar co-current rotation is observed in ohmic H-mode

discharges. The turbulence based theories depend sensitively on quantities that we are

currently unable to measure. Therefore, despite progress in the theoretical description

of plasma flows, the fact remains that our ability to make predictions of rotation in

tokamak plasmas in the absence of strong NBI is based almost entirely on empirical

grounds.
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Chapter 6

Intrinsic Rotation in Enhanced

Confinement Regime Plasmas

Significant plasma rotation in both low and enhanced confinement modes has been

studied on a number of tokamaks worldwide. A brief summary of the L-mode ro-

tation results from these studies is made difficult by the tremendous variety of the

phenomenology reported. Intrinsic rotation in L-mode has been shown to depend

sensitively, and in complicated ways, on a number of parameters including mag-

netic topology, plasma density, magnetic field, plasma current, and ion temperature

[50] [24] [51] [52] [53] [54] [55].

In contrast to the complexity of L-mode, intrinsic rotation in enhanced confine-

ment regimes is relatively simple. On many machines, using a variety of heating

techniques, intrinsic rotation in enhanced confinement regimes is observed to be in

the co-current direction and positively correlated with plasma pressure. These results

were first observed in JET[56] plasmas with ICRF heating in which a strong corre-

lation between angular momentum density and ion pressure was observed. Shortly

thereafter similar observation were made on Alcator C-Mod, showing a strong cor-

relation between the change in rotation, AV, with the change in store energy, AW.

Here A refers to the change in a quantity between the L-mode and H-mode portions

of a discharge [43] and is illustrated in figure 6-1[43]. Further work on Alcator C-Mod

demonstrated that this co-current change in toroidal rotation was seen not only with



ICRF heating but, also in purely ohmic discharges [43] [57] [58].

Similar results in ohmic plasmas have been observed on DIII-D [59] [60] and COMPASS-

D [61]. Taken together, these observations suggest that the observed co-current ro-

tation in ICRF heated discharges is not the result of fast ion effects as is suggests by

some theories[38] [37].
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Figure 6-1: Traces of a) plasma stored energy, and b) central toroidal rotation showing
the definitions of AW and AV.

Related experiments on Alcator C-Mod investigated the temporal evolution of

intrinsic rotation during the transition from L-mode to H-mode. Three single-chord

x-ray spectrometers were used to measure time histories of toroidal rotation at r/a

. 0.0, 0.3 and 0.6. Immediately following an L-H transition the co-current increase

in toroidal rotation appeared on the outermost channel first, with the central chan-

nels lagging behind by tens of milliseconds (comparable to the energy confinement

time)[62]. This result indicates that the rotation is generated by an edge localized

source. Subsequent experiments on Alcator C-Mod using the Hirex-Sr spectrometer

have confirmed this important result. Figure 6-3 shows an example toroidal rotation

profile evolution through an L-H transition as measured by Hirex-Sr.
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Another important result to come out of the Alcator C-Mod studies was the

inverse relationship between AV and plasma current, i.e. AV c( AW/I. Figure 6-2

shows this scaling (often referred to as the Rice scaling) for both ohmic and ICRF

heated C-Mod discharges with a wide range in plasma current[41]. The success of

these experiments motivated similar studies on other tokamaks. Figure 6-4 shows the

C-Mod data from figure 6-2 plotted along with rescaled data from subsequent DIII-D

and Tore Supra publications[60] [63]. Figure 6-4 shows that all three machines are

well characterized by the Rice scaling however, each machine has a different scaling

coefficient.
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Figure 6-4: A synthesis of published results of the Rice scaling from 3 tokamaks (
DIII-D [60] figure 8, Tore Supra [63] figure 3, and Alcator C-mod [41] figure 2



6.1 Multi-Machine Intrinsic Rotation Database

In an effort to characterize further intrinsic rotation in enhanced confinement regimes,

a multi-machine database was constructed with results from six different tokamaks

(JET, JT60-U, Tore Supra, DIII-D, TCV and Alcator C-Mod)[8]. The goal of this

project was to determine an empirical scaling relation for intrinsic rotation based on

statistical techniques similar to those used in energy confinement times studies[64] [65].

The parameters chosen for this database were all global quantities (plasma current,

stored energy etc.) even though the precise mechanism by which the intrinsic rota-

tion is generated almost certainly depends on local quantities. This approach was

taken because global quantities tend to be measured both more frequently and more

accurately than local quantities. Table 6.1 shows the range of some of the parameters

included in the database.

Table 6.1: Intrinsic Rotation Database Parameter Ranges

Device V Q Wp R a BT Ip fiN p Notes
km/s kR/s MJ m m T MA x10 -3

C-Mod 0-130 0-200 0-0.23 0.67 0.21 5.4 0.6-1.2 0.5-1.2 5-8 ICRF,
OH

DIII-D 0-30 0-20 0-0.6 1.66 0.67 1.8 1.0-1.5 0.2-1.4 2-4 ECH,OH
r/a = 0.8

JET 0-60 0-20 0-4 2.96 1.25 2.8 3.0 0.5-0.7 2-3 ICRF
JT- 0-120 0-35 0-0.5 3.4 1.0 3.8 1.2 0.05- 1-2 ECH/
60U 0.22 LH(ITB)
TCV 0-35 0-40 0.04 0.88 0.25 1.4 0.3 0.8-2.0 9-14 ECH,

OH
Tore 0-80 0-35 0-0.8 2.34 0.78 3.6 0.8-1.5 0.5-1.2 2-4 ICRF
Supra
ITER ? ? 250 6.2 2.0 5.3 15 2.6 1.5 ICRF/

ECH

One common technique used when trying to unify seemingly disparate sets of data

is to recast the problem in terms of non-dimensional quantities. For rotation velocity

in a magnetized plasma there are four obvious normalizations; the electron thermal



speed, the ion thermal speed, the Alfvn speed and the ion acoustic speed. These

normalizations give rise to the ion thermal Mach number (Mi V4/vi), the electron

thermal Mach number (Me = V¢/ve), the Alfvn Mach number (M = VO/CA) and the

ion acoustic Mach number (Ms = VO/Vs) respectively. Here CA is the Alfv6n speed

(P, B/ /tonemD), ve is the electron thermal speed (= Te/me), vi is the ion thermal

speed (= VT/mave), Cs is the ion acoustic speed and mave mD [1 - (Zeff - 1) /ZI]

is the average ion mass, assuming a dominant impurity species of charge Z1 . A

derivation of this expression and a definition of Cs can be found in appendix F. The

expression [1 - (Zeff - 1) /Z] amounts to about a 20% correction for the highest Zeff

cases in the database. The stored energy (or plasma pressure) can be normalized with

respect to the energy density of the magnetic field using the dimensionless quantity

PT a 2,,op) where (p) is the average pressure. Given the I;- 1 dependance of the Rice

scaling, it is natural to consider the MHD stability parameter "normalized beta"

given by 3 N - p. Figure 6-5 show the ion thermal Mach number as a function of

/N for the six machines included in the database1 .

From figure 6-5 it is clear that for all machines the ion thermal Mach number

increases with 3N, although there is variation in the constants of proportionality.

With the exception of the JT60-U data, the dimensionless scaling Mi vs. 3N (figure

6-5) seems to overlay the data to a greater degree than does the original Rice Scaling

(figure 6-4). The particular JT60-U discharges used in the database were quite dif-

ferent from the plasmas generated on the other machines in that they had electron

temperature ITBs, no edge pedestal, Te >> Ti as well as very low densities and ps.

Scalings using the electron thermal Mach numbers, and ion acoustic Mach numbers

gave very similar results to those displayed in figure 6-5.

Plotting the Alfv6nic Mach number vs. PN (figure 6-6) seems to do a better job

unifying the data than does the ion thermal Mach number. It is worth mentioning

at this stage that "normalized P", f3N, actually has units of [%Tm/MA]. 3N can be

made dimensionless simply be dividing by /, and motivates the following definition:

'The Alcator C-Mod data used in this database is from a single chord, tangentially viewing,
cylindrically bent crystal spectrometer[43]
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3 N/o = aBo 1 Bo
= - 2Io = r _ (6.1)

I.Lol 27r B (a)

where Be(a) is the average poloidal field at the plasma boundary. The variable p,3

can be evaluated numerically as 3iN = yN/407r. Interestingly, when the Alfvnic

Mach number is plotted vs. O'N the line of best fit through the data has a slope

of order unity (see top abscissa in figure 6-6). In addition to PN, the relationship

between various Mach numbers and normalized gryo-radius p*(- rL/a = 1.02 x

10-4 pAMUTeV /[Bo,Tam)]) were investigated (see figures 6-7 and 6-8). Since there is

relatively little variation in v'7 , the data for any given machine in these figures are

confined to a narrow region of p*, with the machines being sorted in Boa. Plots of vari-

ous Mach numbers vs. collisionality (v* = 9.56x 103n(1020m-3)qZeffR(m)/[T(eV)2a(m)3 /2])

are similarly unhelpful in elucidating any broad trends in the data (see figures 6-9,

6-10). Taken together, figures 6-5 through 6-10 suggest that the intrinsic rotation

does not depend directly on the dimensionless transport variables v* and p*, but does

scale strongly with the MHD quantity ON. It remains an open question whether or

not the strong scaling between intrinsic rotation and ON is simply a coincidence or is

indicative of fundamental connection with MHD activity.
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Plotting various dimensionless quantities against one another can give a general

impression of the relationship between the variables in question, however, it only

allows two quantities to be compared at a time. A more systematic approach involves

using multivariate regression analysis to look for correlations between all variables

simultaneously. This is accomplished by assuming that the dependent variable (in

this case velocity or Mach number) can be expressed in the form of a power law:

Yi = XiJ (6.2)

where y is the dependent variable, x represents independent variables and aj are

constants to be determined. Here the subscript j refers to the jth independent variable

and i represents the ith measurement. The advantage of assuming this form is that it

can be readily linearized by taking the natural logarithm of equation 6.2. This gives

In (yi) = E alIn xi,j (6.3)

If we now define new variables yi - In Yi and x j - In xij we obtain
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Y = jxj (6.4)

Since this is the form of a linear system it is possible to use standard multivariate

regression techniques to determine the values of the coefficients, ai, that best fit

the data in a 'least squares' sense. This type of analysis was performed on the

intrinsic rotation database using dimensionless parameters and generated the scaling

MA = 0.653f4 q, 3 , where q. = 27rca2B/ltRIp. The measured Alfvnic Mach number

vs this scaling is shown in figure 6-11. While there is clearly some variation in slope

between the machines, almost all of the data fall within a factor of two of the scaling.

Extrapolation of this scaling to ITER predicts A'IA > 0.02 for both inductive and

non-inductive scenarios.
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Figure 6-11: Measured Alfvnic Mach number vs. the scaling MA = 0.65 Iq* 3

Dashed lines show a factor of 2 difference from the scaling.

A similar analysis was performed using dimensional parameters and generated the

following scaling: AV = 0.9B-1 A (p)1.O0 I 1 9 R2.2, with AV in [km/s], B in [T], A (p)

in [kPa], Ip in [MA] and R in [m]. The results of this scaling are shown in figure

6-12. This scaling brings data of all machines into rather good agreement and with

the exception of the JT60-U, all machines have approximately the same slope.
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Perhaps the most important implication of the dimensional and dimensionless

scalings is that when extrapolated to ITER relevant parameters then both predict

substantial intrinsic rotation (i.e. a few hundred km/s, or equivalently - 2% of the

Alfvn speed). Theoretical predictions suggest that a few percent of the Alfvn speed

is what is required for resistive wall modes (RWM) stabalization [66] [67]. Recent

results on DIII-D suggest that Alfv6nic Mach numbers as low as 0.3% may be sufficent

for RWM suppression[68]. These types of empirical scalings are undoubtedly crude

tools, and predictions based on extrapolations should be viewed with some skepticism.

That being said, even the most conservative extrapolations of any of the scalings

presented here suggest Alfvnic Mach numbers well in excess of 0.03%.

6.2 Chapter Summary

This chapter has given a brief overview of the experimental characterization of in-

trinsic rotation in enhanced confinement modes of plasma operation. Unlike L-mode,

plasma rotation in enhanced confinement regimes has a relatively simple dependence

on macroscopic plasma parameters which can be quantified in terms of empirical

scaling relations. A multi-machine database covering a wide range of plasma sizes,

currents, field strengths, temperatures, densities, and heating types has demonstrated

the universality of co-current rotation in enhanced confinement mode plasmas. The

fact that such similar results are seen in plasmas all forms of heating suggests that it

is the plasma gradients themselves that are responsible for the rotation. This intrinsic

rotation will almost certainly help plasma performance in future machines through

suppression of RWM and/or reduce turbulence through E x B shearing. There is,

however, no obvious way to control the magnitude or shape of the rotation profile.

Chapters 7 and 8 will discuss potential methods for achieving rotation profile control

via the application of LH waves and ICRF mode conversion flow drive respectively.
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Chapter 7

Lower Hybrid Wave Induced

Rotation Profile Modification

Flows associated with lower hybrid current drive (LHCD) have been observed in

both L-mode and H-mode discharges on Alcator C-Mod when lower hybrid waves are

launched such as to drive positive current. These changes to the toroidal rotation

profile are core localized (r/a < 0.4) and always in the counter-current direction.

When the waves are launched against the inductive toroidal electric field, very little

current is driven and no effect on the rotation profile is observed. This result indicates

that it is the LHCD (as opposed to heating) that is responsible for the counter-current

change in toroidal rotation. In discharges with sufficient LHCD, a region of high

velocity shear forms concurrently with a negative increment in the radial electric field

profile.

The lower hybrid system on Alcator C-Mod consists of an 88 wave guide launcher

capable of delivering up to 1.2MW of power at 4.6 GHz with an nil range of 1.5-4 in

either direction (Here nHl is the refractive index of the injected LH waves parallel to

the magnetic field).
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7.1 Temporal Evolution

Shown in figure 7-1 are the temporal evolution of selected parameters for an L-mode

discharge in which the injection of lower hybrid waves caused a strong counter-current

change in the toroidal rotation (solid lines). The dashed lines in figure 1 represent a

similar discharge in which no lower hybrid waves were injected. 600kW of lower hybrid

power (with nil =1.6) was coupled to the plasma, at t = 0.8 s. Immediately following

the application of LH power, the central toroidal rotation began to evolve on a time

scale considerably longer than the energy and momentum confinement times (- 20
3

ms) but comparable to the current redistribution time[69] (TCR = 1.4Ka 2Tk/Zeff -

150ms). The ability to sustain LHCD for many current redistribution times makes it

possible to study the induced rotation in plasmas with fully relaxed current density

profiles.

Modification of the toroidal rotation profile by LHCD has been observed over a

range of electron density, plasma current, magnetic field, and lower hybrid power.

Although the magnitude of the effect depends on these parameters, in every instance

the change in toroidal rotation is in the counter-current direction. In discharges

initially rotating in the co-current direction (as in figure 7-1) the application of LHCD

can cause the rotation to change sign. While the precise mechanism by which the

lower hybrid waves affect the rotation profile remains unclear, rotation inversions such

as these can not be explained solely by changes in viscous damping (an increase or

decrease in viscous damping would change the magnitude of the flow but not its sign).

7.2 LH Induced Rotation Modifications and Nor-

malized Internal Inductance

Also of interest is the change in normalized internal inductance, 1i (a measure of

the peakedness of the current density profile[70], given by the ratio of the volume

averaged to surface averaged poloidal magnetic energy). The motional Stark effect

(MSE) diagnostic was not available for these discharges and as a result, knowledge
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Figure 7-1: Time histories of a) lower hybrid power, b) surface loop voltage, c) line
averaged density, d) central toroidal rotation velocity and e) the normalized internal
inductance for discharges with LHCD (solid lines) and without LHCD (dashed lines).
Both discharges had the same magnetic field (5.4 T) and plasma current (800 kA).
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of the current density profile is limited to global quantities such as li and changes in

loop voltage. The decrease in li from 0.8 s to 1.3 s indicates that the current density

profile is becoming less peaked due to the off-axis current being provided by the lower

hybrid waves.
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Figure 7-2: Trajectories in the -AV vs -li plane for discharges with LHCD at varying
nl. Each small diamond represents the average value over a 20 ms time period. The
large diamonds represents the last time point during the LH phase for each discharge.
The LH power in all four discharges was - 400 kW.

The quantity Ali shown in figure 7-1 is defined as the change in the internal

inductance relative to the start time of the LHCD pulse (AVe is defined similarly).

Figure 7-2 shows trajectories in the -AV vs -Ali plane for identical target discharges

with varying values of niI of the launched LH waves.

These trajectories all start at the origin (since AVO(t rt) = li(tgt) = 0 by

definition) and progress in a counter-clockwise pattern indicating that AV tends

to lag behind Ali. There is also a clear trend in n1l, with smaller nil giving larger

excursions in AVe and Ali. This trend can be explained by the fact that LHCD
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efficiency is proportional to 1/n'. Thus waves launched with lower nil give rise to a

larger change in Ali even though the associated LHCD profiles are less hollow.

The correlation between changes in central toroidal rotation and normalized in-

ternal inductance is observed in a wide variety of plasmas. This is illustrated in figure

7-3 in which AV, and Ali data are plotted for discharges with varying magnetic field,

plasma current, density, magnetic topology, confinement regimes, lower hybrid power

and launched nil.

0.1 0.2

Figure 7-3: LH induced changes in central toroidal rotation and normalized internal
inductance for a wide variety of plasmas (Each point represents a single discharge).
The trajectories from figure 7-2 (dashed lines) are included for comparison.

7.3 LH Induced Rotation Modification in H-mode

Plasmas

Modification of the toroidal rotation via the application of LH waves is also observed

in H-mode plasmas. Time histories from just such a discharge are shown in figure 7-4.

Shortly after the application of - 1.5MW of ICRF power the plasma transitioned

into H-mode (t - 0.75s). After this transition the central toroidal rotation is observed
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to increment in the co-current direction by an amount consistent with the previously
described Rice scaling of intrinsic rotation. At t = 1.1s the lower hybrid system
is turned on and the toroidal rotation is seen to increment in the counter-current

direction. As in the L-mode case, this lower hybrid induced counter-current increment
in toroidal rotation evolves on a time scale considerably longer than the energy and
momentum time scales.

2.0
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1.0

0.5

0.6 0.8 1.0 1.2 1.4 1.6
Time [s]

IAVRF

Figure 7-4: Time histories of a) LH and ICRF power, b) line averaged density, and c)
central toroidal rotation velocity. Both the magnetic field (BO = 5.4 T) and plasma
current (I, = 600 kA) were steady through the discharge.

This discharge suggests that the rotation drive associated with enhanced con-

finement regimes (co-Ip) and the rotation drive associated with LH (counter-I) can

coexist. More over, it appears that the net toroidal rotation is simply a linear super-

position of the rotation associated with each drive mechanism.
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7.4 Spatial Extent of Rotation Modifications

The modification of the toroidal rotation profile by LHCD tends to be core localized,

with the largest changes occurring in the range 0 < r/a < 0.4. The sawtooth averaged

radial profiles of n, V0 , Te, T and E, both before and during the application of LHCD

are shown in figure 7-5. The radial electric field, Er, was calculated by measuring all

other terms in the radial force balance equation as described in chapter 4. The change

in the radial electric field profile indicates that there is a non-ambipolar radial current

charging the plasma negatively with respect to its pre-LH state. Figure 7-6 compares

the radial electric field profile evolution in discharges with and without LHCD.

7.5 Lower Hybrid Induced Fast Electron Pinch

A possible explanation of this negative charging of the core is a resonant trapped

electron pinch[71], [72]. This pinch results from the canonical angular momentum ab-

sorbed by resonant trapped electrons while interacting with lower hybrid waves. Since

the trapped resonant particles cannot on average carry toroidal mechanical angular

momentum, the added momentum can only be realized by a change in the electron

vector potential, and so they are forced to drift radially inwards. This mechanism can

be thought of as a "Ware pinch"-like effect operating on resonant trapped electrons.

The Ware pinch is automatically ambipolar because it is based on the E x B drift

associated with the toroidal electric field and the poloidal magnetic field[73]. In the

LHCD case, however, the resonant electrons experience a larger electric field than the

ions and therefore a faster drift. This in turn, gives rise to a non-ambipolar inward

radial drift of electrons, and therefore negative charging of the core. A pinch of reso-

nant electrons is consistent with the observation that no change in radial electric field

is seen when LHCD is applied in the counter-current direction. In this situation, vir-

tually no fast electrons are produced because the LHCD is countered by the opposing

Ohmic electric field. With no fast electrons there can be no fast electron pinch.
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Regardless of the details of the electron pinch mechanism, as the plasma charges up

negatively, the radial electric field is modified so as to oppose this charge separation.

This negative increment in the radial electric in turn drives counter-current toroidal

rotation via radial pressure balance. In steady state, the negative charging due to the

electron pinch is balanced by a return current produced by the altered radial electric

field.

7.6 Chapter Summary

Lower hybrid waves have been shown to induce strong modifications to the toroidal

rotation profiles in both L-mode and H-mode discharges. These modifications evolve

on a time scale comparable to the current redistribution time, are core localized (r/a <

0.4), scale linearly with lower hybrid power, and are well correlated with changes in

normalized internal inductance. A counter-current modification of the rotation profile

implies a negative increment in the radial electric field. This modification of the radial

electric filed is consistent with an inward pinch of resonant trapped electrons.

Regardless of the precise mechanism that gives rise to this phenomenon, it is

clear that lower hybrid waves can be used to modify toroidal rotation profiles. In

terms of the implications for future devices, such as ITER and DEMO, it remains

to be seen how the effect will scale. If there is a, favorable scaling to large devices,

this phenomenon could prove to be helpful for advanced scenario development by

providing a method for tailoring the toroidal rotation and radial electric field profiles.
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Chapter 8

ICRF Mode Conversion Flow Drive

Mode conversion (MC) refers to a process in which energy is transferred from one

type of wave to another. This can occur when a wave is traveling through an inho-

mogeneous plasma and simultaneously satisfies the dispersion relation of two types of

waves [74] [75]. In a deuterium plasma with a small fraction of 3He, fast magnetosonic

waves can mode convert into short wavelength, slow waves, specifically ion cyclotron

waves (ICW) and ion Bernstein waves (IBW) [76] [77] [78] [79]. These waves are then

absorbed (via ion cyclotron resonance for ICWs and electron Landau damping for

IBWs) resulting in heating of both electrons and ions.

It has been predicted that in addition to heating, the absorption of mode converted

waves can also drive plasma flows[80] [81] [82]. Experiments on TFTR showed some

indication of mode converted IBWs driving poloidal flow, however it was not possible

to exclude the possibility that these flows were driven by minority heating (MH)

[83]1. Recent experiments on Alcator C-Mod have produced the first unambiguous

demonstration of flow drive via mode converted slow waves in a tokamak plasma.

For the experiments described here, plasma flows were measured in discharges with

both MH and MC ICRF. The minority heating scheme involved launching fast waves

at 80 MHz from the low field side into bulk deuterium plasmas with a minority H

concentration of nH/ne < 5%. The magnetic field in both the MC and MH discharges

'In an ICRF MH scheme a small amount of a second ion species is introduced into the plasma.
Fast waves directly heat this minority population via the cyclotron resonance[84]. These high energy

minority ions then slow down on, and heat, both the electrons and bulk ions.
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was 5.1 T which puts the ion cyclotron resonance at RIC,H = 0.65 in, slightly inboard

of the magnetic axis (Ro - 0.67 m). In the mode conversion heating scheme 50 MHz

fast waves were launched from the low field side into D -3 He plasmas. These fast

waves then mode convertered in the vicinity of the D -_3 He hybrid layer (RIC,3He

0.71 m) into short wavelength ICWs and IBWs.

8.1 Toroidal Rotation

Figure 8-1 compares two discharges with the same current, magnetic field and line

averaged density, but different RF heating schemnes (MH in blue and MC in red).

Although the amount of RF power coupled to both plasmas is almost identical, the

change in central toroidal rotation, AV, is considerably larger in the MC case. It

should be noted, however, that the change in stored energy, AW, is larger in MH

plasmas than in the MC plasmas. These results are displayed graphically in figure

8-2 in which the Rice scalings for multiple MH and MC plasmas are compared. The

slope of the Rice scaling for the MC data is about 2 times larger than the slope of MH

data because the MC plasmas tend to have larger AVs and smaller AWs than their

MH counterparts. Taken together, these results suggest that MC is less efficient (in

a per MW sense) than MH ICRF at heating, but more efficient at driving rotation.

It is also interesting to note that the two heating schemes divide their power

differently between the ions and the electrons. This can be inferred by comparing

the ion and electron temperatures for the two types of discharges. In figure 8-1 we

see that the Te(0) for the MH discharge is considerably larger than Ti(0), suggesting

that more of the ICRF wave energy is being deposited into the electrons. In the MC

discharge Te(0) a Ti(0) suggesting that the ICRF wave energy is being divided more

towards the ions.

The MC driven toroidal flow is most pronounced in the core of the plasma (r/a <

0.5). This is illustrated in figure 8-3 in which profiles of VO and Ti are shown for the

same discharges depicted in figure 8-1. Profiles are plotted for two times during the

discharge; pre-ICRF(open symbols) and during ICRF(closed symbols). Comparing
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Figure 8-1: Comparison of similar discharges with different RF Heating schemes (MC
in red, MH in blue). From top to bottom: a) central toroidal rotation, b) plasma
stored energy, c) central electron temperature (solid lines) and central ion temperature
(dashed lines), d) line averaged density, and e) RF power. Both discharges had I, =
800 kA and BT = 5.1 T.
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Figure 8-2: Comparison of the Rice scaling for discharges with MC (red circles) and
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been over plotted in gray for comparison.
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the pre-ICRF profiles, we see that the two discharges are well match (i.e. the rotation

velocity of the two discharges are within error bars of one another, while the MC

discharge has only a slightly higher ion temperature). Comparing the rotation profiles

of the MH discharge before and during the ICRF phase we see that there is a -30

km/s shift in the co-current direction, with the profile shape remaining relatively flat.

In the MC discharge the central rotation increases by -80 km/s and the profile shape

changes from relatively flat to peaked on axis.

In general, the shape of a rotation profile in steady state results from a balance

between torque density and momentum transport. Snapshots of rotation profiles,

such as those in figure 8-3, can only provide information on the net result of these

two effects. For example, the peaked rotation profile of the MC discharge could have

been produced by an edge torque with a strong inward momentum pinch or simply a

core localized effect. In order to distinguish between these two possibilities one must

look at the temporal evolution of the rotation velocity profile. Figure 8-4 shows the

time histories of toroidal rotation at three radial locations (r/a =0, 0.3, and 0.7) for

the same MC discharge depicted in figure 8-3. The fact that the central channels

experience an increase in toroidal rotation well before the outer channel indicates

that the co-current spin up of the plasma resulted from a core localized effect and

not from momentum propagating in from the edge.

8.2 Poloidal Rotation and Radial Electric Field

In addition to toroidal rotation, MC ICRF has also been observed to drive poloidal

flows. Figure 8-5 shows ICRF induced poloidal rotation profiles as a function of source

power for both MC and MH plasmas. For the MC discharges the poloidal rotation is

in the ion diamagnetic direction, scales approximately linearly with RF power, and

peaks at r/a a 0.45. In the MH cases the induced poloidal rotation is within error

bars of zero for all ICRF power levels indicating no significant poloidal rotation drive.

Figure 8-6 shows the total radial electric field in MC and MH plasmas. The three

terms in radial pressure balance that sum to give the radial electric field are also
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Figure 8-3: Comparison of toroidal rotation a) and ion temperature profiles b) be-
tween discharges with MC (red) and MH (blue) ICRF. Open symbols represent pro-
files before the application of ICRF (tl = 0.7 s in figure 8-1) while closed symbols
represent profiles toward the end of the ICRF pulses (t2 = 1.4 s).

120



-e- r/a = 0.0
30 - r/a = 0.3

S20 .-6-" rla =0.7

>10

-100 .. . .
0.6 0. 7 0.8 0.9 1.0

Time [s]

Figure 8-4: Temporal evolution of the toroidal rotation in a discharge with MC ICRF.

shown. It is clear from this figure that the radial electric field is substantially larger

in the MC case. The diamagnetic term is similar in shape and magnitude for the two

discharges, and so the difference in radial electric field profiles is almost entirely from

the difference in V x B.

These poloidal rotation profiles represent the flow of highly ionized argon impuri-

ties and not the bulk ions. In this particular case the ICRF flow drive of the impurities

is indirect since it is the resonant ions that are absorbing the mode converted waves.

As such, the impurity flows result from a combination of

1. Changes in frictional forces with the ions

2. Changes to the radial electric field profile

It is important to keep in mind that trace impurities do not significantly influence

ion flow or the radial electric field (they simply respond to them). The toroidal flow

of a trace impurity is closely tied to that of the main ions via strong parallel friction
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122



. I.. ... - I IIIIIIIIIIIrTrrr

I IIII(I)I1 .II 1 .,...,... 1 I .. . .I ......... IIII III III 1 1 III(1III ILI

_1L I I I I I II(I I ,....i,.. Iii 11

0.0 0.1 0.2 0.3 0.4

I- I IL b)

0.5 0.6 0.7
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forces[25]. The poloidal velocities of impurities and ions, however, are less closely

coupled because the poloidal damping associated with magnetic pumping can differ

between species[25] [85]. The poloidal rotation of the main ions can be estimated by

relating the poloidal velocity to the parallel and perpendicular velocities:

V = i + ") - = I + V I (8.1)

The parallel velocity of the ions can be written as

I = Ai + - i, (8.2)

where AV -I - - V1 is the difference in parallel velocity between an impurity

species and the main ions. Expressing VIj in terms of Vol and V' and substituting it

into the equation above gives

1 I "AVtI B V'+ B v (8.3)

For a heavy trace impurity in a bulk deuterium plasma AVi' on axis is approximately

given by 2

Ve T3 /2

A ,i - 3.0 (km/s) (8.4)
R n 20

where Ve is the loop voltage in volts, T is the ion temperature in keV, n20 is the ion

density in 1020m- 3 and R is the major radius in meters. For all the MC discharges

this expression gives AV"ij --5 km/s. From radial pressure balance the perpendicular

ion velocity can be written as

1 TLVj= B Er - L,1 (8.5)

where L- 1 is the inverse gradient scale length of the ion pressure. Substitution of Er

from the impurity radial pressure balance equation gives
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Vi = ( B, - V- B, + L-1 - L-1 (8.6)

We can now substitute the expressions for V1' (equation 8.3) and Vj (equation 8.6)

into the expression for VOi (equation 1). Some routine algebra then gives,

Vi = Ve' + 3.0 TI  Ti ]L (8.7)

The first term is simply the impurity poloidal velocity which was measured to be

2km/s at p r 0.4. The second term is the poloidal projection of the difference in

parallel flow. Substituting V = 0.65 V, R = 0.67 m, Be = 0.55 T, B = 5.4 T, Ti =

1.8 keV and n20 = 1.4 gives AV l 0 0.5 km/s.

The third term is simply the poloidal projection of the difference between the

ion and impurity diamagnetic velocities. For p ' 0.4 in the MC plasmas L-1 is

comparable to L-1.Therefore the impurity diamagnetic term is smaller than the ion

diamagnetic term by about factor of Z1 . Since the ion pressure gradient is < 0, it

then follows that the diamagnetic velocity term will always be positive (i.e. in the

ion diamagnetic direction, hence the name). With L ' - 10 m - ', the third term has

a value of -3 km/s. Taken together these estimates suggest that the ion poloidal

rotation velocity in this case is -5.5 km/s in the ion diamagnetic direction.

8.3 Comparison with Theory

In their 2002 paper J.R. Myra et al. derived approximate expressions for both poloidal

and toroidal flows driven by IBW absorption[81]. The expression for the poloidal

rotation was derived in the "Diffusion limit" in which A << A << ra, where ra is

the minor radius, A is the width of the poloidal flow layer and A is the absorption

layer thickness. For the MC Alcator C-Mod plasmas, we have A 1 cm, A 2

cm and ra, 10 cm, and therefore the second condition is somewhat satisfied while

the first is marginal. In the derivation, the condition A << A is manifested as the

assumption that the RF force is a delta function in minor radius. Given the nature
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of this derivation, having A - A simply has the effect of broadening the poloidal flow

profile while reducing its height. As a result, the predicted poloidal rotation for the

specific Alcator C-Mod case being considered here will be somewhat over estimated.

Bearing these caveats in mind, the expressions for the toroidal and poloidal flows

(equations 43 and 45 in reference [81]) are:

VBW 4l (8.8)S  8RfDn20o

VIBW 0 PIBw (8.9)
S 0.4q 2RraBDn20

where V w are the toroidal and poloidal rotations induced by the absorption of

IBWs, PIBw is the rate of IBW energy absorption, kll is the parallel wave number,

R is the major radius, r, is the minor radius of the resonance layer, f is the wave

frequency, D is the momentum diffusivity, n 20 is the electron density in 1020 m- 3, q(r)

is the local safety factor and p is the ratio of the average ion mass to a proton mass,

defined as3

nimp
S rap(8.10)

The units and values of the parameters in equations 8.8 and 8.9 for the MC ICRF

plasma in figure 8-1 are given in table 8.1. Most of these values (i.e. f, B, R,

ra, q(r), n 2o and pt) were measured, while the remaining three (D, kll and PIBw)

require estimates. The momentum diffusivity, D, was estimated to be 0.2 m 2/s since

this is a typical value for L-mode discharges in Alcator C-Mod[86]. The estimate of

kll - 40m - 1 is based on numerical solutions of the full electromagnetic wave dispersion

relation which takes into account kil up-shift. The estimate of PIBW PRF is

consistent with both TORIC simulations and the observed increases in electron and

ion temperatures.

Substituting the values from table 8.1 into equations 8.8 and 8.9 give estimates

of VMc ; 160km/s and VoMC  3km/s both of which are within a factor of approx-

3In reference [81] the definition of mu is incorrectly given as the inverse of equation 8.10.
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Table 8.1: MC Plasma Parameters

Parameter Psw f B R ra q(r) n 20  kl D p
Units MW MHz T m m - 102 0 m -  m -1  m2/s -
Value -~3.1 50 5.1 0.7 0.1 -1.5 1.2 ~40 -0.2 -2.1

imately two of the experimental values. In the derivation of equation 8.8 the plasma

volume is taken to be V = 27r2 r2 R which implicitly assumes a circular cross section (a

similar assumption is made in the derivation of 8.9). Taking into account non-unity

plasma elongation leads to a factor of t, appearing in the denominators of equations

8.8 and 8.9. For the plasma referenced in table 8.1 the elongation is 1.6 which reduces

the predicted rotation values to V' c0  100km/s and VMc a 2km/s. While these

values are closer to the experimental measurements the factor of r may have been

omitted from the derivation because the resulting expressions were only intended as

order of magnitude estimates. In this context, there is qualitative agreement between

theory and experiment with or without the inclusion of r.

8.4 Direct ICRF Momentum Input

It is tempting to think that the flows driven in MC ICRF plasmas are simply the

result of direct momentum input from the RF antennas. While this direct wave

momentum can contribute to the toroidal torque on a plasma it is certainly not the

only mechanism involved. It is possible to get an upper estimate on the direct wave

momentum input by considering a control volume enclosing the RF antenna and then

calculating the rate of momentum transfer through its surface. For this calculation

it is convenient to think of the R.F waves launched from the antenna as a flux of

photons. The energy and momentum of each photon is simply E = hw and p = hk

respectively. The ratio of the E/p for each photon is then E/p = w/k = c. If an

antenna is launching PRF watts worth of photons it follows that the rate of momentum
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transfer from the antenna is simply -PRF in Newtons4 .

To estimate the importance of direct wave momentum input we can calculate how

quickly a plasma is accelerated when subject to the 1PRF force. To get an upper

estimate we will make the following simplifying assumptions

1. There is no viscous damping

2. There is 100% wave absorbtion

3. All waves are launched in the same direction (i.e. ignoring secondary lobe

emission)

4. The momentum of all photons is directed entirely in the toroidal direction

Making these assumptions, applying Newton's second law and rearranging gives

AV = P At(8.11)
cM1

where M is the mass of the plasma and AV is the change in velocity after At seconds

of constant acceleration. Substituting M 27r2 Ir2RmDhi, where ei is the average

electron density and mD is the mass of deuteriumn gives

PRFAt PRFAt
AV 20 2 mDr 2R .5 (8.12)

2,F 2CMDKT2 Rn, Kn202R

where PRF is in MW, At is in seconds and AV is in km/s. Figure 8-7 shows the time

history of the central toroidal rotation for a MC ICRF discharge in which 3.4 MW

of RF power (1.7 MW at both 50 MHz and 80MHz) is turned on at t = 0.6s. The

central toroidal rotation changes by AV m 70 km/s in a time At _ 120 ms. For this

discharge, , = 1.6, r = 0.2, R = 0.67 and n 20 = 1.2. Evening assuming all 3.4 MW

of RF power goes entirely into co-current toroidal rotation, equation 8.12 predicts a

AV of only -4 km/s which is considerably less than the experimentally measured

value. This example clearly illustrates that the large rotation velocities observed in

4 The expression PRF for the momentum input of the waves is consistent with numerical calcu-
lations of the integral of the Poynting vector over the antenna grill
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MC ICRF plasmas are not simply the result of direct photon momentum input from

RF antennas.

MC ICRF
100

80 V(O)
80 -

60

E 40

20 - AV

0.5 0.6 0.7 0.8
Time [s]

Figure 8-7: Central toroidal rotation vs. time for an MC ICRF discharge. The rapid
acceleration of the plasma is too fast to be explained by photon momentum input
from the RF antennas.

8.5 Chapter Summary

It has been demonstrated that the absorption of mode converted ICRF slow waves

can drive substantial rotation in a tokamak plasma. The resulting co-current toroidal

rotation profiles tended to be peaked on axis, with AVO(0) up to 100km/s being mea-

sured. Compared to MH ICRF at the same power level, the MC waves were more

efficient at driving rotation, but less efficient at heating. The MC driven poloidal

rotation velocity was of order a few km/s in the ion diamagnetic direction and con-

centrated in the radial range 0.2 < r/a < 0.6, peaking around r/a ; 0.45. The

experimentally measured plasma flows are in qualitative agreement with theoretical

predictions based on the absorption of IBWs.

Looking forward to next generation tokamaks such as ITER, it is possible im-

plement mode conversion ICRF schemes in D-T plasmas. Through careful choice of

species mix, magnetic field strength, RF frequency, etc. it may be possible to drive

significant amounts of poloidal and toroidal rotation in such plasmas.
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Chapter 9

Conclusions and Future Work

This thesis has described a novel imaging spectrometer capable of making detailed

measurements of plasma rotation and has identified a number of mechanisms for driv-

ing flows without the need for neutral beam injection. This chapter will summarize

the key results of these two themes and identify possible directions for future work.

9.1 Imaging X-ray Crystal Spectroscopy

A novel high resolution x-ray crystal spectrometer capable of making spatially re-

solved measurements has been designed, built, installed and operated on the Alcator

C-Mod tokamak. By taking advantage of toroidal symmetry and magnetic flux sur-

face mapping it is possible to perform spectral tomography with a single fan of views.

This combination of spatial resolved spectra and tomographic techniques has allowed

for measurement of a number of local plasma parameters from line integrated x-ray

spectra for the first time. In particular these techniques have been used to measure

temporally evolving profiles of emissivity, charge state densities, rotation velocity,
electron temperature, ion temperature, as well as radial electric field.

Currently, the standard method for measuring rotation profiles in tokamak plas-

mas is active charge exchange spectroscopy with neutral beam injection. The pertur-

bative nature of neutral beams with respect to plasma rotation makes it very difficult

to study intrinsic flows with this technique. Moreover, next generation tokamaks like
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ITER will operate at high densities and be considerably larger than present day ex-

periments. Both of these effects will make neutral beam penetration (and therefore

charge exchange spectroscopy) much more challenging. In contrast, high densities

and increased plasma dimensions will make imaging x-ray crystal spectroscopy eas-

ierl rather than more difficult and the passive nature of this technique is ideally suited

for intrinsic rotation studies.

The Hirex-Sr spectrometer has clearly demonstrated the feasibility of imaging x-

ray crystal spectroscopy as a reliable diagnostic approach for fusion plasmas. The

success of this project has influenced the decision to have a suite of such instruments

on ITER and plans are underway to deploy similar spectrometers on other major

tokamaks worldwide.

There are many ways in which the Hirex-Sr spectrometer and the associated set

of data analysis routines can be up-graded. For example, developing an in-situ cali-

bration source so that wavelength calibrations can be acquired without the need for

locked mode discharges would be highly advantageous. Additionally, providing ther-

mal stabilization of the spectrometer may help to reduce calibration drift. The use of

toroidally, as opposed to spherically, bent crystals would decouple sagittal and merid-

ional focusing. This decoupling would in turn allow spectral and spatial resolution to

be optimized separately.

Potential up-grades aside, the Hirex-Sr spectrometer has recorded a large quantity

of data since its installation in May of 2007 and only a small fraction of this data

set has been studied in detail. The focus of this thesis has been on intrinsic rotation,

but there are a number of other topics for which the Hirex-Sr spectrometer is well

suited. For example, the ability to measure density profiles of multiple impurities (and

multiple charge states) simultaneously and on short time scales ( < 10 ms) constitutes

a tremendous opportunity for impurity transport studies. The installation of an

impurity injector on Alcator C-Mode for the next run campaign makes such studies

even more promising. There is also an opportunity for fruitful collaborations with

'Increasing the density and size of a plasmas both increase the amount of line radiation it emits
and therefore increases signal levels for x-ray spectroscopy.
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atomic physics modelers who wish to validate their wavelength and rate coefficient

calculations. Further atomic physics studies may also lead to alternative line ratio

combinations for reliable Te measurements at higher temperatures.

9.2 Intrinsic Rotation Studies

In past experiments the twin benefits of plasma rotation, namely turbulence sup-

pression and resistive wall mode stabilization, have been provided by large amounts

of tangential neutral beam injection. For reasons already alluded to in the previous

section, neutral beam injection will be much less efficient at driving rotation in future

reactors and so there is a need to identify alternative methods. The development

of the Hirex-Sr spectrometer was motivated by a desire to measure plasma flows in

the absence of neutral beam injection. In this thesis three methods of flow gener-

ating without the use of NBI have been identified: intrinsic rotation in enhanced

confinement modes, lower hybrid wave induced rotation and ICRF mode conversion

flow drive. A brief summary of the major findings for each of these methods is given

below.

9.2.1 Intrinsic Rotation in Enhanced Confinement Modes

Tokamak plasmas in enhanced confinement modes have been observed to rotate in

the co-current direction on every machine in which measurements have been made.

In an effort to better characterize this phenomenon a multi-machine intrinsic rotation

database was constructed. Statistical analysis of this database lead to the develop-

ment of the following dimensionless and dimensional empirical scaling relations

AV = 0.9BI-A (p).0  l. 9R 2.2  (9.1)

A1 = 0.653 4q 23 (9.2)
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This co-current rotation has the same phenomenology regardless of the type of

auxiliary heating. This suggests that it is plasma gradients themselves, as opposed

to the specifics of any given heating mechanism, that are giving rise to the observed

rotation. The fact that these flows are observed to develop on time scales much shorter

than those predicted by neoclassical theory is suggestive of a turbulence based driving

mechanism. Given the complexity of the turbulence based rotation theories it is

hugely surprising that simple scaling relations based on global plasma parameters do

such a reasonable job unifying the observed data. Although empirical scaling relations

are undoubtedly blunt instruments, even the most pessimistic extrapolations of the

expression above suggest that there will be substantial intrinsic rotation in ITER

H-modes.

9.2.2 Lower Hybrid Wave Induced Rotation

Lower hybrid waves have been shown to induce strong modifications to the toroidal

rotation profiles in Alcator C-Mod plasmas. These modifications are in the counter-

current direction, are core localized (p < 0.5) and have been observed in both L-

mode and H-mode discharges. Changes in central rotation of up to 60 km/s have

been observed in discharges with -1 MW of LH power. The modifications are well

correlated with changes in normalized internal inductance, and their magnitude is

inversely related to the nil of the launched LH waves. The negative increment in

toroidal velocity observed in these discharges implies a negative charging of the plasma

core and is consistent with a pinch of resonant trapped electrons.

These observations represent the first demonstration of the ability to create strongly

sheared rotation and significant modification to the electric field profiles using lower

hybrid waves. This phenomenon could prove to be helpful for advanced scenario

development by providing a method for tailoring V and E, profiles.
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9.2.3 ICRF Mode Conversion Flow Drive

Experiments on Alcator C-Mod have led to the first unambiguous measurement of

flow drive via mode converted waves. For the same power level, mode converted

waves drive significantly more toroidal rotation than minority heating ICRF. The

resulting MC toroidal rotation profiles are peaked on axis, with rotation developing

in the central portion of the plasma first. The toroidal acceleration of the plasma is

much to rapid to be explained by the absorption of photon momentum alone.

Mode converted ICRF waves have also been shown to drive poloidal rotation. The

resulting impurity poloidal rotation profiles are localized to the mid radius (0.2 < p <

0.6) with a peak velocity of r2 km/s in the ion diamagnetic direction. Strong coupling

of parallel flows between ions and impurities suggests that the main ion poloidal

rotation is in the same direction and somewhat larger than that of the impurities.

The magnitude of both the poloidal and toroidal flows is consistent with theoretical

estimates based on the absorption of ion Bernstein waves. Although it is not clear

how these flow drive effects will scale to larger reactors, it should be possible to

implement a MC heating scheme in D-T plasmas through judicious choice of RF

frequency, species mix, and magnetic field strength.

9.3 Conclusions

Further study of the flow drive mechanisms identified here will no doubt lead to a

greater understanding of the complicated subject of plasma rotation. It seems likely

that these studies will also identify other methods for the modification of plasma flows.

The broader message from this area of research in recent years has been that self-

generated plasma flow is the rule as opposed to the exception. In hindsight, the fact

that these flows went unnoticed for so long is the result of the misguided notion that

plasma rotation is simply the result of neutral beam torque and diffusive momentum

transport. With our greater understating of the subtleties of momentum transport

and ever improving diagnostic capabilities there is justified hope that plasma rotation

can be used to substantially improve the performance of tokamak plasmas.
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Appendix A

H- & He-Like Argon Spectra

The Hirex-Sr spectrometer was designed to measure line radiation from highly ionized

charges states of argon, specifically the hydrogen and helium like charge states. The

spectrometer covers the spectral range 3.94A < A < 4.00 to measure the strongest

of the He-like argon lines. For lack of a better name, this wavelength range will

be referred to as "He-like" even though He-like argon emission lines are not the

exclusive inhabitants of this spectral range. By the same token, the wavelength range

3.72 < A < 3.80 will be referred to as "H-like".
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A.1 He-like Argon Spectra

3940 3950 3960 3970 . 3980 3990 4000
Wavelength [mA]

Figure A-1: The He-like argon spectrum as measured by the Hirex-Sr spectrometer.

Table A.1: Argon lines in the wavelength range 3.94A < A < 4.00A. Wavelength are
from reference[95]
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Name Transition Wavelength [A]
w ls2p 1P - ls 2 1 So 3.9492
x ls2p 3P2 -- 1s2 1SO 3.9659
y ls2 p 3P1 - 1s 2 1So 3.9692
q ls2s2p 2P3/2 - 1822S 2S1/2 3.9815
r ls2s2p 2P1/ 2 -+ 18228 2S1/2 3.9839
a 1s2p2 2P3/2 - 1s22p 2P3/2  3.9864
k 1s2p2 2D3/2 - 1s22p 2P1/ 2  3.9903
j 1s2p2 2D5/2 - 1s22p 2P3/2  3.9932
z ls2s 3So 1 is 2 1So 3.9943



A.2 H-like Argon Spectra
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Figure A-2: The H-like Argon Spectrum as measured by the Hirex-Sr spectrometer.

Table A.2: Argon lines
from reference [98]

in the wavelength range 3.72 < A < 3.80. Wavelengths are
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Name Transition Wavelength
Ly-az 2p 2P3/2  is 1S11/2  3731.10
Ly-a2 2p 2 P 1/ 2  18 1S1/2 3736.52

T 2s2p 'P, - 1s2s 'So 3755.26
Q 2s2p 3P2 -+ ls2s 3S1 3761.06
J 2s2p2 1D2 --+ ls 2p 1P1 3771.79
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Figure A-3: Raw image from the H-like argon module.

Table A.3: Molybdenum lines in the wavelength range 3.72 <
are from reference [96]

A < 3.80. Wavelengths

Label Transition Upper State Wavelength
M32+  2p - 4d (2p-) 2 (2p+) 44d - J = 1 3739.8
M31+  2p - 4d 2p + [3s] 4d + J = 3785.7
M31~ 2p - 4d(3p)+ 2p + [3p+] 4d + J = + 3787.4
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Appendix B

X-ray Transmission Coefficients

and Helium Purity Measurements

We wish to measure the attenuation coefficient of 3.1 keV X-rays in a gaseous mixture

of predominantly He with a trace amount of air. The transmission coefficient, t, of

x-rays passing through a gas can be written in the following form:

I
T-- =exp -aT (B.1)

Where Io is the intensity measured in a vacuum (i.e. with no gas present), I is

the intensity measured in the presence of the gas, p is the pressure of the gas, T is the

temperature, x is the path length through the gas and a is the attenuation coefficient

If the gas is composed of a mixture of gases then the total transmission coefficient

is simply the product of the transmission coefficient of each component:

TT = n = exp - -a Axi (B.2)

If all the components of the gas are in thermal equilibrium, and the path length is

the same then x and T are constants and we get:

TT = fTi = exp [ a (B.3)
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For a gas composed of air and helium equation B.3 becomes:

TT - exp [-- (aairPair + dHePHe)] (B.4)

Solving this equation for Pair we get:

1 T I\ 1
Pair . - In + OHaePHe (B.5)

aair Io0

Since aHe and oair are known values, and T, x and PHe are can be directly mea-

sured, we can estimate the partial pressure of air in a mixture by measuring the count

rate of an x-ray detector, I, and comparing to the count rate of the same detector in

a vacuum, Io.

There is, however, one further complication. Although we are interested in x-rays

of 3.1kev, there is no convenient source of x-rays at 3.1kev. Iron 55, Fe5 5, is an

acceptable substitute since its spectra is dominated by x-rays at 5.9 keV.

calc 1 In (IFe +Fe
Pair ae in Fe aHePHej (B.6)

Oair  k F e

We can then substitute this value into the attenuation coefficient for the Argon

line emission at 3.1kev.

Ar x Ar cala (1.7)
Ar = exp airPair C+ AeHe) (B7

Where subscripts refer to the medium and superscripts refer to the photon energy

(Ar the for 3.1 keV argon lines, and Fe for the 5.9 keV iron 55 source). Using equation

B.7 the total transmission coefficient for 3.1kev photons traveling through 1.3 m of

helium was calculated as a function of air (impurity). Figure B-1 shows that the

transmission coefficient for pure He at standard temperature and pressure is about

97%. The transmission coefficient drops to about 90% at an air impurity fraction of

0.3%.

During part of the 2007 campaign, x-ray attenuations measurements were made

using a scheme similar to that described above. An Fe55 source was placed inside the
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Figure B-1: Transmission coefficient of 3.1 keV x-rays as a function of % air impurity
for a path length of 130cm at STP.

spectrometer housing and aimed at the Pilatus 100k x-ray detectors. The distance

between the source and detectors was chosen such that the count rate per pixel was

very small (<< I/second) but the total count rate for an entire module was large

(> 1000/second). This adds a negligible amount of background noise but allows for

measurement of the Helium purity and x-ray transmission coefficient. The detectors

were set up to trigger 100ms before the beginning of each discharge to allow for a

measurement of the Fe55 source in the absence of plasma x-rays. IDL routines were

written to automatically analyze the x-ray data at the end of each plasma discharge.

This allowed for easy tracking of the helium purity and x-ray transmission throughout

a run day without the need for a cell access. An example of the inferred helium purity

and transmission coefficients over the course of a run day is shown in figure B-2.
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Figure B-2: The measured x-ray transmission coefficients of 5.9 keV x-rays were used
to infer the % air impurity of the gas mixture in the spectrometer housing. This % air
impurity was then used to calculate the transmission coefficient for 3.1 keV x-rays.
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There is good agreement between the results based on data from all four detectors.

This particular run day came after 3.5 days without operation during which time no

helium was flowing through the spectrometer. At about 8:30 the helium flow was

turned on. The steady flow of helium led to a gradual reduction in the air impurity

levels throughout the day. As the amount of air in the spectrometer was reduced there

was an associated increase in the x-ray transmission coefficients. The sensitivity of

3.1 keV X-rays to an air impurity is clearly visible, with the transmission coefficient

doubling over the course of the day.
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Appendix C

Interspecies Thermal Equilibration

In general the temperature of each species in a plasma need not be the same. Tem-

perature separation can occur when an one species is preferentially heated or cooled.

Once a temperature difference develops, net energy is transfered from the hotter to

the cooler species via Coulomb collisions. If the distribution functions of both species

are Maxwellian then the time scale for thermal equilibration is given by

a,b 3 47o 2 mb (Ta/e)3 /2 1
Te ~ (C.1)

where T is temperature, n is density, m is atomic mass, Z is atomic charge charge, A

is the Coulomb logarithm, the subscript a and b refer to the two species in question,

and o, is the permittivity of free space[99]. It should be noted that the equation

above assumes that ma << mb. The extent to which two species equilibrate their

temperatures depends on the ratio of Teq to the energy confinement time, TE, which

has the following definition,

TE i (C.2)W

where W is the total thermal energy content of the plasma, W is the time rate of

change of W and Pi, is the total input power. If the equilibration time is slow

compared to the energy confinement time then most of the energy deposited into

the hotter species will be lost before it can be transmitted to the cooler species.
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Conversely, if the equilibration time is short compared to the energy confinement

time then the two species will thermally equilibrate before the energy is radiated or

transported away. Thus we can expect good temperature equilibration when

<< 1 (C.3)
TE

C.1 Ion-Impurity Thermal Equilibration

The ion temperature measurements presented in this thesis are based on Doppler

broadening of emission lines from partially ionized argon impurity atoms in bulk

hydrogen plasmas. These measurements reflect the temperature of the emitting argon

atoms, while it is the temperature of the bulk hydrogen ions which is of greater

interest. In the temperature range for fusion plasmas high Z impurities and bulk

hydrogen ions tend to be well thermally coupled. This can be seen by rewriting

equation C.1 for a bulk deuterium plasma, and an high Z impurity (Z >> 1),

1,3/2
DeqD 2 x 10 - 4  (C.4)eg qZIn20

where Tk is the temperature in keV and n20 is the density in 1020m-3 (it has also

been assumed that m1  ZImD). For a typical Alcator C-Mod plasma (T 2keV,

-. 1020 -3) this gives TlD 40ps which is considerably shorter than typical energy

confinement times (- 20 - 40 ims).

An estimate of the upper limit on r7,D for argon in an Alcator C-Mod plasma

can be obtained by substituting a high temperature (Tk = 5keV) and low density
Ar,D

(n20 = 0.5) into equation C.4 giving TAr,Dq 0.3ms. Clearly then T << 1 even

for low density, high temperature discharges on Alcator C-Mod and therefore argon

is indeed well equilibrated with the bulk ions.

Next generation devices like ITER and DEMO will be operating at high densi-
_ArD

ties (- 1020 m -3) and temperatures (, 12 keV). These values give a TeArD f ap-

proximately 0.5 ms which we certainly hope will be much shorter than the energy

confinement time.
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C.2 Electron Ion Thermal Equilibration

Rewriting equation C. 1 for the case of electron-deuterium thermal equilibration gives,

T3/2
DeD 10-2 k (C.5)n(C.5)eq 00-

Comparing this result with the expression for Ter, D derived in the previous section

(equation C.4) we see that the thermal equilibration time between electrons and ions

is much larger than the equilibration time between ions and impurities. Substituting

in the same high temperature/low density values used in the previous section (T =

5keV, n = 0.5m-) gives D 250ms which is considerably longer than the energy

confinement times on Alcator C-Mod. Substituting low temperature/high densities

values (T = 2keV, n = 3m -3 ) gives TeD 10ms which is somewhat shorter than

typical energy confinement times. Clearly then, for the parameter ranges of Alcator

C-mod the ions and electrons can be, but are not necessarily, well thermally coupled.

Figure C-1 shows the electron-deuterium thermal equilibration time, 74D , and

the energy confinement time, TE, as a function of time throughout a high density/low

temperature discharge. Since the energy confinement time is many times greater

than the equilibration time, we expect that the T - T for this discharge. Figure C-2

shows measurements of both the electron and ion temperature profiles from a number

of different diagnostics. As expected the ion and electron temperature measurements

are in good agreement. The fact that these measurements agree adds confidence to

temperature calibration of the x-ray spectrometer.

Figure C-3 shows electron and ion temperature profiles in a high temperature

(Te(0) - 4keV), low density (n(0) - 2 x 1020 m-3 ) discharge in which there is

substantial separation between T and T.

The time histories of the energy confinement time and the ion-electron thermal

equilibration times for this discharge are plotted in figure C-4. At 0.6 s 3 MW of ICRF

power was coupled to the plasma leading to an immediate transition into H-mode.

This transition led to an increase in the energy confinement time and a reduction

in thermal equilibration time (due to the large increase in temperature). During
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Figure C-1: Comparison of the energy confinement time and the electron-dueterium
thermal equilibration time for a high density/low temperature discharge. Since the
energy confinement time is long compared the equilibration time, the ions and elec-
trons in this discharge are well thermally coupled.
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Figure C-2: Electron and ion temperature profiles in a high density/low temperature
discharge (t = 1.1 s of figure C-1)
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the H-mode phase the ratio of Teq/ E becomes less than unity making it possible for

significant temperature separation to occur between the ions and electrons.
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Figure C-3: Electron and ion temperature
of figure C-4)
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Figure C-4: Comparison of the
thermal equilibration time in a

energy confinement time and
high temperature discharge.
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Appendix D

Resolving Power and Instrumental

Temperature

The ability to infer plasma parameters from the subtle Doppler shifts and broadenings

of x-ray line emission requires a high resolution spectrometer. The notion of "high

resolution" is typically quantified in terms of the resolving power, A/AA, where AA

is a measure of the smallest difference in wavelength that can be discerned by an

instrument. One common way to determine AA is to direct monochromatic light into

the instrument in question and record the resulting spectra. The shape of this line is

referred to as the instrument function, and AA is usually taken to be its full width at

half maximum (FWHM). In general the measured line shape will be the convolution

of instrumental function and the actual line shape,

M(A) = I(A)L(A - u)du (D.1)

where M(A) is the measured line shape, I(A) is the instrumental function, and L(A)

is the actual line shape. The convolution of the instrumental function with the line

shape leads to an artificially broad measured line width. For the special case of a

plasma with a Maxwellian impurity distribution and a Gaussian instrumental function

it can be shown that the relationship between the measured, instrumental and actual

widths is given by,
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(D.2)

where AM, AI, AL are the FWHMs of the measured line, instrumental function

and the actual line shape respectively. For a purely Doppler broadened line, the

relationship between temperature and line width is given by,

T = c2 (AA (D.3)

where T, is the temperature, m is the mass of the emitting ion, c is the speed of

light, Ao is the rest wavelength of the emission line, and AA is the FWHM of the line.

Substituting this equation into D.2 and rearranging gives,

T2 = T I - Tf (D.4)

where T is the actual plasma temperature, TNI is the temperature inferred based

on the width of the measured line and T, is the "instrumental temperature". The

instrumental temperature can be interpreted as the temperature that one would infer

from the measured width of a perfectly monochromatic source i.e.,

Ti = 2(AA 2 (D.5)T I 8 1n2 Ao

where AA is the FWHM of the instrumental function. It should be noted that the

instrumental temperature depends on the mass of the emitting impurity.

There is no convenient calibration source for the wavelength regions of the H- and

He-like argon spectra, so the plasma itself must be used. Determining the instru-

mental function and resolving power based on line radiation from a fusion plasma is

non-trivial since the measured lines will necessarily be the convolution of the Doppler

broadening and the instrument function. If the impurity temperature is not known

a priori then it is not possible to distinguish the Doppler broadening from the in-

strumental broadening. This ambiguity can be resolved if two emission lines from

impurities of significantly difference masses (but sharing the same temperature) can
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be measured simultaneously. This can be seen by writing equation D.5 for each

impurity and eliminating the plasma temperature:

aTI2 b T 2 +a TM -b T (D.6)

From equation D.5 the ratio of the instrumental temperatures is given by,

aT maT= - (D.7)
bTI mb

Substitution of D.7 into D.6 and rearranging gives,

aT2 aTi - bTm (D.8)
1-)2

Since ma and mb are known quantities and aTm and bTm are both measured,

one can calculate the instrumental temperature of both impurities. Fortunately the

presence of a strong Ne-like molybdenum line very close to the H-like argon Lyman-a

doublet allows for the calculation of the impurity temperatures. Figure D-1 shows a

multi line fit to an example spectrum containing these lines.

The applicability of this method for determining the instrumental temperature is

somewhat limited due to the requirement that the instrumental function be a Gaus-

sian. For many instruments the rapid exponential decay of a Gaussian does not ac-

curately model the instrumental function and this can lead to inaccuracies in inferred

instrumental temperatures. An alternative approach involves using a Lorentizian in-

stead of a Gaussian to model the instrument function. The Lorentizian function can

be expressed as,

1 !A
I(A) 2 (D.9)

7 (A- A)2 + (I)2

where A is the FWHM and I(A) is normalized such that the integral of I over all A is

unity. The algebraically decaying wings provide a more realistic approximation to the

instrument function of many instruments. The convolution of a Maxwellian velocity
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distribution with a Lorentzian instrumental function gives rise to a measured Voigt

line shape.

The crux of this alternative approach is to perform a multi-line Voigt fit to a

spectrum containing lines from multiple impurities in which the Maxwellian widths

of the lines are allowed to vary independently but the Lorentzian widths of all lines

are taken to be the same. In addition to using a more appropriate model for the

instrument function, this method also provides a convenient self consistency check.

If the ratio of the Maxwellian widths for the two impurities differ significantly from

the ratio of their masses, this suggests that there is a problem with the analysis.

Conversely if ratio of the Maxwellian widths is close to the ratio of impurities, then

the assumption of a Lorentzian instrument function is probably a reasonable one.

Figure D-1 shows the results of a multiple Voigt line fit to the H-like Argon spec-

tra. The same Lorentzian width was used for each line, while the Maxwellian widths

were allowed to vary independently. The fit shown gave a Lorentzian FWHM of 0.14

mA and Maxwellian widths of 0.782 mA and 0.525 mA for the argon and molyb-

denum lines respectively. The ratio of these widths is 0.67 while the expected value

is mAr/mMo = 0.645. This close agreement between the ratio of fitted Maxwellian

widths and the square root of the impurity mass ratio suggests that a Lorentzian is

a reasonable approximation for the instrumental function of the spectrometer. The

inferred Lorentzian FWHM of 0.14 mA implies a resolving power of Ao/AA = 25, 000.
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Figure D-1: Multi line fit of an H-like spectra using Voigt functions. The Maxwellian
widths of the molybdenum and argon lines were allowed to vary independently, while
a single Lorentzian width was used for all lines. Shaded regions indicate the width of
each line associated with Doppler broadening.
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Appendix E

Ion-Impurity Parallel Flow

Separation

The rotation velocities presented in this thesis are based on the Doppler shifts of

impurity emissions lines. Although the flows of impurities are related to the flows of

the main ions they are not identical. The poloidal flows of ion and impurities can in

fact be quite different and can even have opposite signs[25]. The parallel velocities of

ions and impurities, however, tend to be very well coupled due to parallel friction.

One effect that gives rise to separation in parallel velocities between ions and

impurities is the parallel electric field. In the presence of a parallel electric field,
the ions and electrons will drift in opposite directions. When a trace impurity is

introduced into the plasma its flow will result from a balance between the electric

field force and ion drag in the co-current direction and electron drag in the counter

current direction. A detailed calculation of the difference in parallel flow between

ions and impurities gives

ai ZeEll Z - Zi / + 13a/4 (E.1)
viim ZI (1 + a) (/2 + a

where, Zi and Z are the charge of the ions and impurities respectively, m is the

ion mass, Ell is the parallel electric field and a - n1 Z?/niZ[25]. For a heavy trace

impurity in a bulk deuterium plasma equation E.1 simplifies to
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(E.2)AvIj' = 3.0- 2 (km/s)1 R n20o

where Ti is the ion temperature in keV, n20 is the ion density in 1020 m- 3 , R is the

major radius in meters and V = 27rREII is the loop voltage in in volts. Figure E-

1 shows time histories of 14, T, n 2o and AVI', for Alcator C-Mod discharge. For

this discharge (and the vast majority of Alcator C-Mod discharges[97]), AVi',I is

approximately 5 km/s. When interpreting impurity rotation data it is important to

keep in mind that there can be slight differences between ion and impurity parallel

flows.
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Figure E-1: Time histories of A I' in a typical Alcator C-Mod discharge. The three
quantities used to calculate AK I', namely loop voltage a), ion temperature b), and
ion density c) are also are also plotted.
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Appendix F

Intrinsic Rotation Scaling Variable

Description

All units are in MKS unless otherwise specified

Table F.1: Plasma Quantities

Var. Units Description
V [km/s] Toroidal rotation velocity
W [MJ] Plasma stored energy
I [MA] Plasma current
Bo [T] Toroidal field on axis
Ti [keV] Ion temperature
Te [keV] Electron temperature
ne [m- ]  Electron density
Z, Charge of dominant impurity species
Zef f Z___ = Zefj z

Table F.2: Geometric Quantities

a [in] Plasma minor radius
R [m] Plasma major radius
e Inverse aspect ratio: e = a/R
K Plasma elongation
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Table F.3: MHD Variables

q, Edge safety factor: q, = c-

,3N [%Tm/MA] Beta Normal: 3N - 3"
__ Non-dimensional 3N: 3N = 3N/P = No 132rK BO

Table F.4: MHD Variables

p* Normalized gryo-radius: p, = ' = ±-- = - T
a a wT aeBo miTr

v* Collisionality: it* 2 x 10- 3( n/2reffR

with n20 in units of [1020]

F.1 Derivation of mave

We begin with the definition for the average ion mass in a multi-species plasma:

(F.1)mave m-
1:nj

If we assume that the plasma consists of a bulk deuterium population and a single

dominant impurity species of charge Z, we obtain:

mDnD + r1 ni
mave =-

nD+ nI
(F.2)

We can then make the further assumption that the impurity is fully stripped and that

mz a ZimD. The expression then becomes:

(anD + Zr 'n
mave MD nD + ZI)

(F.3)

Assuming quasi-neutrality (n. e nD + Zinl) we get:

(F.4)mave mD
liD - n1

After some routine algebraic manipulation it is possible to rewrite nz and nD in terms

of Zi and Zeff:
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Table F.5: Velocities

Vth,i [km/s] Ion thermal speed: Vth,i = Ti/ave
where mave = (Emjnj) / (Eny) r mD [1 - (Zeff - 1) /ZI]-

Vth,e [km/s] Electron thermal speed: Vth,e = Te/mve

CA [km/s] Alfven speed: C,2= B 2 _ B2
poP hoonemp

0 s [km/s] Ion Acoustic sound speed: C2 = (E- pj) / (E pi) - T [1 - Zff + 3

Table F.6: Mach Numbers

Mth,i Ion thermal Mach #: Mth,i = V/Vth,i
Mth,e Electron thermal Mach #: Mth,e = VO/Vth,e
Ms Ion acoustic Mach #: Ms = VO/Cs
MA Ion thermal Mach #: MA = VO/CA

Ze:f - 1
nr = ne ff

ZI (zI - 1)

nD e Zeff -z 1
ZI-1

(F.5)

(F.6)

Plugging these expressions into equation F.4 gives the final result

mave MD (I Zeff - 1)-
Z 1 (F.7)

F.2 Derivation of the Ion Acoustic Sound Speed

It can be shown that for an un-magnetized multi species plasma the general expression

for the ion acoustic sound speed is given by:

s = pj
E pi

(F.8)
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If we again assume that the plasma consists of bulk deuterium and a single fully

stripped impurity species of charge Z then we can write:

2 _ 7P 7DPD + TiPI +T ePe
Spj mDSD + min, + mene

The above expression is valid for an un-magnetized plasma, thus we may expect it to

hold for sound waves propagating in the direction of the magnetic field. Substituting

pj= nTj, ignoring the electron mass, and with the additional assumptions that

TD T Ti, 7D I 7 = -i we obtain:

iT (nD + n) + Te (F.)
mDrD + m 1 nr

If we further assume quasi-neutrality and (as in the derivation of mave) that mi

ZImD then the expression above reduces to:

,2 ,TI 7 (nD + nrI) e+ ten (Te Ti)

Using the result for nrD n I from equation F.4 from the mave derivation we obtain:

2 iTi Ze - +1 TeTe
C2 (F.12)m D Z I y Ti (F. 12)

If we further assume that the motion of the relatively slow ions is adiabatic (7i = 3)

and that the motion of the relatively fast moving electrons is isothermal (Te = 1)

then we obtain the final result:

2 3T [1 (Zeff - 1 ) Te (F.13)
mD Zi 3T
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Appendix G

Rotation Generation Through

Momentum Diffusivity

Asymmetries

Bulk toroidal plasma rotation in discharges with no momentum input has been ob-

served in a variety of machines. It will be shown that if particles with v1 > 0 and

vjl < 0 can have slightly different toroidal momentum diffusivities, X0, this can lead

to significant bulk plasma rotation. To illustrate this effect we begin by considering

momentum diffusion in a plasma column in which only axial flow is considered, with

no source terms. Specifically

dL
+ V - = 0 (G.1)

where L _ pV r miniVo is the toroidal momentum density (Ignoring the electron

contribution). Here mi is the ion mass, ni is the ion particle density and V is the

axial flow velocity. If we assume a purely diffusive momentum flux then we have

dL
r = -XO r  (G.2)

Using cylindrical symmetry and substituting equation G.2 into G.1 gives
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Lrt =1 ra rXaLr = 0 (G.3)

We now modify this equation by considering positive and negative momentum

separately by introducing the positive and negative momentum densities defined as:

loo 00 0
L_ m j vff ( )dvdvydv (G.5)

where f(Y) is the distribution function of the main ions. Given these definitions it is

possible to write separate conservation equations for positive and negative momen-

tum.

aL 1 G.L6)
at r ar ar =

aLL_ 1 (G 7)

at r r r =i (G.7)

where F1i/ is the force exerted on species j by species i. Note that in equations G.6

and G.7 the diffusivity for L+ and L- have been permitted to differ. Adding equations

G.6 and G.7 gives:

a 1a r aL+ aL
(La + L) r r L -- F+/ + F /+ (G.8)

From the definitions of L+ and L_ it follows that L = L+ + L_. Further, it is

clear that the two friction terms cancel which gives

aL a r a + r- a = 0 (G.9)
at r ar " r ar

We now introduce the following variables:

X + (G.10)

168



Clearly X0 is the average of X+ and , while 6 is a non-dimensional measure of

the degree of the diffusivity asymmetry. Substitution of these variables into equation

G.9 and some straightforward algebraic manipulations gives

8L 1 & ( L 1 0t r - rx6 (L+ - L_) (G.12)
at r ar ( r, r r arI

To make further progress we must calculate L+ - L_. For computational simplicity

we will assume that the distribution function of the ions can be approximated by a

drifting Maxwellian, that is

ni V- V
f 3 exp Vh (G.13)

where V1 is the axial flow, Vth is the thermal speed, both of which can be functions of

minor radius. Plugging this form of the distribution function into the definition for

L+ (equation G.4) and performing the appropriate integrals gives

L- m+ M + J (M - x) exp - 2) dx (G.14)
2 2 o

where M represents the Mach number defined as M - V¢/vth. A similar calculation

for L_ gives

L_ - >,j M + (M - x) exp (-x 2) dx (G.15)V 2 2 o
Combining these results gives

L+ - L_ = mn + 2 (M - X) exp ) dx (G.16)

Taylor expanding the remaining integral for small Mach numbers yields

L, - Lh + 2M 2 _ M4= mriivhG(M) (G.17)
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where G(M) - 7r-1/2 (1 + 2M 2 - M4/3). We can now substitute equation G.17 into

equation G.12 to obtain the final result

at rrr a r r)r 1r

This equation is the same as the diffusion equation with which we started (G.18)

except for the new term on the right hand side, r(r). This term implies that in the

presence of a diffusivity asymmetry (i.e. 6 h 0) gradients in the thermal momentum

density (minivth) can give rise to local torque densities and therefore drive flows.

Given the relatively stiff nature of temperature and density profiles, the fact that T(r)

is proportional to gradients in niT 1/2 is consistent with the scaling of intrinsic rotation

with stored energy. Figure G-1 shows the radial profile of the thermal momentum

density, and its second derivative (proportional to r) for a typical H-mode Alcator

C-Mod discharge.

a) b)

1-
2.0-

1.5E

.o
1.0

- Density [1 e20m

0.5 -- Ti [kev]

pvt, [10 kg m
2 

s 
]

0.0 I I I -2 I I ,

0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20

Minor radius [m] Minor radius [m]

Figure G-1: Spatial profiles of a) thermal momentum density (pvth) and b) the second
derivative of pvth.

Interestingly the radial profile of r(r) is strongly localized to the edge region of

the plasma which is consistent with the experimental evidence of an edge source of

intrinsic rotation.
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The total momentum input, P, can be calculated by integrating T(r) over the

plasma cross section

P = JrdA = f rT(r)drd = 27 rT(r)dr (G.19)

substituting the form of T(r) from equation G.18 gives

P = 27r r r Xy6d  (miniVthG(M)) dr (G.20)

Applying the fundamental theory of calculus gives

P aX= X6 (minivthG(M)) r=a (G.21)

Equation G.21 shows that the momentum input T(r) depends only on boundary

conditions, i.e. it is the wall that is ultimately inputting momentum into the system.

G.O.1 Symmetry Breaking

The preceding derivation demonstrates that a momentum diffusivity asymmetry can

drive flows but does not indicate what mechanisms might gives rise to such an asym-

metry. As mentioned in chapter 6, the fact that the observed intrinsic rotation devel-

ops on time scales much shorter than those predicted by neoclassical theory suggests

that a turbulence drive mechanism is involved. As described in chapter 5, there are a

number of mechanisms that can break the symmetry of turbulent fluctuations (E x B

velocity shear, magnetic curvature, etc.). As suggested in accretion theory, particles

traveling at different speeds with respect to the phase velocity of turbulent fluctua-

tions interact with that turbulence in different ways. Such an effect could give rise to

the diffusivity asymmetries described above.
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