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Abstract

The stability of two types of lightly damped resonant eigenmodes in the presence
of energetic ions is studied in Alcator C-Mod. Global Alfvén eigenmodes (GAEs)
can exist at frequencies between the continua of adjacent poloidal mode numbers
to avoid strong continuum damping. Toroidicity-induced Alfvén eigenmodes (TAEs)
exist in gaps in the frequency continuum induced by toroidal coupling. Passing and
trapped fast ions can resonantly excite AEs, which saturate at significant amplitude
and redistribute the ions. There is evidence that consequent losses of D-T alpha
particles could degrade the fusion burn. Unstable TAEs driven by ICRF-heated fast
ions are observed in Alcator C-Mod with toroidal mode numbers of n = —4 and
n = 6. Positive mode numbers indicate that modes are driven by fast ions having
hollow pressure profiles, in agreement with measurements using the Compact Neutral
Particle Analyzer (CNPA). In the absence of sufficient fast ion drive, eigenmodes are
detected by exciting them with antennas close to the plasma boundary and moni-
toring the plasma frequency response with an array of magnetic probes, a method
called active MHD excitation. This thesis reports for the first time that TAEs of
various toroidal mode numbers are excited with a wide-toroidal-spectrum antenna
and observed using a fully resolved toroidal array of probes. GAEs with n = 0 and
damping rates around v/wy = —1%, and TAEs with n = 1 and damping rates around
v/wo = —1.5% are observed. Rigorous calibration is applied to the magnetic probes
to reject the system response of the diagnostic. Measurements demonstrate that even
with a wide-spectrum antenna, the range of AEs that are accessible to the diagnostic
for any particular equilibrium remains quite limited, subject to the modes’ proximity
to the plasma edge. A composite spectrum of observed stable and unstable modes,
and the stability spectrum calculated by NOVA-K, shows that for fast ions with ap-
proximately 150 keV effective temperature, the most unstable mode number tends to
be around n = —5. In comparison, the simple scaling of fast ion drive for kgp; ~ 1
predicts unstable modes around n = —8, demonstrating reasonable agreement with



the measurements. Local islands of stability that are observed in the toroidal mode
number spectrum and the fast ion temperature could be exploited by the strong de-
pendence of the AE spectrum on subtle changes in equilibrium parameters to stabilize
AEs in burning plasmas.
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Each day begins clean and promising in the sweet cool clear green light of dawn. And
then the sun appears, its hydrogen cauldrons brimming - so to speak - with plasmic

fires, and the tyranny of its day begins.

Edward Abbey, The Dead Man at Grandview Point

I conclude, therefore, that this star is not some kind of comet or a fiery meteor,
but that it is a star shining in the firmament itself one that has never previously been

seen before our time, in any age since the beginning of the world.

Tycho Brahe



Chapter 1

Introduction

The fusion of a deuterium nucleus and a tritium nucleus releases a neutron of 14.1
MeV and a helium nucleus (alpha particle) of 3.5 MeV. In bulk, and at a rapid rate,
this reaction and others involving those constituents (such as D-D and so on) are a
promising source for electric power generation. The required pressures and tempera-
tures to attain an appreciable reaction cross-section inevitably lead the deuterium and
tritium fuels to be in the plasma state. The tokamak is one well developed concept
to contain a hot, dense plasma for long periods. This thesis reports on experiments
performed on deuterium plasmas with minority fractions of hydrogen in the Alcator
C-Mod tokamak at MIT.

It has been observed at C-Mod and other toroidal devices that fast ions with en-
ergies around 150 keV, produced by heating with ion cyclotron range of frequency
(ICRF) heating, can excite lightly damped magnetohydrodynamic Alfvénic eigen-
modes (AEs) of the plasma volume. At large amplitudes, the unstable modes saturate
and displace the fast particles in configuration as well as phase space. Fast ions born
from other means of heating, such as energetic neutral beams or fusion reactions, are
equally capable of driving the modes; in C-Mod, the available non-inductive methods
of heating are ICRF and lower-hybrid drive.

The redistribution of fast ions by unstable AEs is a legitimate concern for fusion
reactors. Direct observations of significant fast ion losses in synchronization with

AEs have been reported [1], as well as indirect evidence based on reduced neutron
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rate [2] and vessel damage [3]. When multiple unstable modes at different minor
radii occur together, they can cause significant degradation of the fast ion pressure.
Ultimately, this reduces the fusion burn and is a hurdle on the way to ignition. A
complete understanding of AE dependence on plasma parameters can help to mitigate
their deleterious effects and even to harness their impact on transport for controlling
plasma composition.

Each Alfvén eigenmode has an integer toroidal mode number and comprises a
spectrum of poloidal modes, so that individual eigenmodes can be conveniently la-
belled by their toroidal mode number, n. Dependence on many of the parameters
that contribute to AE damping and also excitation have been studied emperically and
theoretically, as reported in the literature, and always with toroidal mode number as
an important parameter. Experimental evidence typically takes two forms: firstly,
that of unstable modes that appear spontaneously with sufficient fast ion drive; and
secondly, of stable modes enunciated by external antennas, as a means to evaluate the
eigenmode spectrum. This second method of inspecting the stable mode spectrum is
called active MHD excitation.

Both experimental [4] and theoretical [5] studies find that instability peaks ap-
proximately when the fast particle orbit is on the order of the wavelength, or kgp; ~ 1,
where kg is the perpendicular wavevector and p; is the fast ion gyroradius. (For large
kopi, the wave-particle interaction is weakened because the orbit is large compared
to the wavelength. At small kgp;, the interaction increases linearly with kgp; as more
fast ions contribute.) It is also generally agreed that the particular modes that come
to be expressed in a given equilibrium, and their effects on the fast ion distribution,
are sensitively dependent on the equilibrium profiles [6].

Therefore one goal of AE studies is to demonstrate the full AE spectrum for a
particular equilibrium. As one example, the code NOVA-K calculates the plasma
equilibrium and then finds each mode perturbatively, with the assumption that the
modes are independent, and the existence and behavior of every mode of the spec-
trum can be evaluated one at a time [7]. Similarly, active MHD studies attempt to

excite each mode in the toroidal spectrum by sweeping across the relevant band of
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frequencies. Doing so assumes linearity, since each mode is excited individually, yet
the spectrum is considered as a whole.

To date, though, no experimental observations have covered the entire practical
AE spectrum simultaneously. Observations of spontaneous, fast-ion driven modes
report only the most unstable of modes, which tend to have moderate toroidal mode
numbers. Active MHD experiments, on the other hand, have identified modes over a
small range for each plasma shot. On the JET tokamak, this had originally been in
the range |n| = 0 — 2 because the active MHD antenna on JET had a narrow toroidal
spectrum on account of the antenna geometry; a new antenna has been installed with
a broader spectrum [8]. On C-Mod, single modes of moderate toroidal mode number
have been observed from shot to shot, occasionally with unstable, moderate-n modes
also observed.

In other words, the existing experimental picture of AE behavior is piecemeal.
What is lacking is the experimental counterpart to a self-consistent, full-spectrum
model of AEs’ impact on the fast ion distribution, and the resulting, modified fast
ion distribution’s effect on the mode spectrum. Partly as a result, there is no final
word on whether next-generation fusion reactors will be threatened by AEs.

This thesis examines an important factor in the threat of AEs, namely the stability
dependence of a wide-n spectrum (eg [n| = 0 — 10) on the fast ion temperature Tyqq
and distribution fsqs(r, v). Motivated by analytical theory [5], [4], numerical studies
[9] and pioneering experiments [10], [11], [12] that find the mode instability to be
peaked for moderate-n, this research seeks inflections in the stability of the spectrum
that could be exploited to preserve or modify the fast ion distribution.

While it does not provide a conclusive answer with regard to the ultimate risk of
AEs, such knowledge could be useful to attenuate or eliminate particular modes, or
to enhance benign modes for purposes of ash removal. The mode control could be
effected by precisely shifting any of the equilibrium profiles of safety factor, density,
rotation and current, as well as the plasma shape and effective ion mass, all of which
strongly influence the AE spectrum.

The experiment is based around the active MHD system of two antennas posi-
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tioned very near the last closed flux surface, that excite eigenmodes of the plasma,
and an array of magnetic probes that detect the plasma response. The antenna fre-
quency is scanned over the range of eigenmode frequencies to manifest the plasma
frequency response and thereby obtain the mode stability, toroidal structure and res-
onant frequency. Simultaneously, the fast ion distribution is tailored by varying the
ICRF coupled power up to approximately 5.5 MW, as well as shifting the resonant
deposition layer by adjusting the toroidal magnetic field. The compact neutral parti-
cle analyzer (CNPA) measures the ICRF-generated fast ion distribution along three
vertical chords. The CNPA’s silicon diodes detect core ions that have escaped con-
finement by gaining an electron in a charge exchange collision with the diagnostic
neutral beam.

Over the course of several run campaigns toroidicity-induced Alfvén eigenmodes
(TAEs) having toroidal mode numbers of n = 1 and also of moderate n, and global
Alfvén eigenmodes (GAEs) having n = 0 are observed routinely. It is found that the
coupling of the active MHD antenna to AEs is strongly dependent on the equilib-
rium. Modes are observed for the most part only in select equilibria that are used
on dedicated rundays, and the modes are found in isolation rather than as a whole
spectrum. The system performance was improved by augmenting the toroidal array
of probes for better toroidal resolution; and by activating only one of the two anten-
nas to disambiguate the system input. A confident identification of the mode number
is achieved by a careful calibration of the magnetic probe response. Since the n =1
TAEs were only observed in Ohmic conditions, and since n = 0 GAEs do not couple
to fast ions, no experimental data is obtained for the interaction of fast ions with
stable modes. The damping rate resolution for these modes is found to be strongly
degraded by density fluctuations of the plasma.

On the other hand, unstable modes excited by fast ions are also observed in the
same shots, and have n = —4 and n = 6. Positive unstable mode numbers are
indicative of a hollow fast ion pressure profile. Furthermore, the NOVA-K code is
used to estimate the interaction of fast ions with the measured stable modes and

finds reasonable agreement (ie very little excitation for n = 0, 1).
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A composite spectrum is rendered from the collection of stable and unstable
mode observations, and the NOVA-K calculations. This patchwork spectrum dis-
plays peaked instability at moderate mode numbers around |n| = 5. In comparison,
kep; is found to be around 8 'n for protons of 150 keV, indicating the most unsta-
ble modes should be around |n| = 8. Considering the simplicity of that scaling, the
agreement is good.

Notably, this experiment has for the first time excited TAEs of various toroidal
mode number with a wide-toroidal-spectrum antenna and a fully resolved toroidal
array of probes. Measurements demonstrate that even with a wide-spectrum antenna,
the range of AEs that are accessible to the diagnostic for any particular equilibrium
remains quite limited. In fact, only in an unconnected subset of plasma conditions are
modes observable at all. AE behavior is found to be discontinuous across parameter
space, so that slightly tweaking a profile can lead to a completely different mode being
observed.

The most severe discontinuity arises between stable, linear modes and the nec-
essarily non-linear (saturated) unstable modes. In the unstable regime, the fast ion
pressure gradient is modified by the competing actions of recharging by the heating
source and depletion by the excited waves; in turn, the destabilized waves also evolve.
This interdependency is apparent as a transition of the resonant modes to a mod-
ified steady state or as chaotic bursting behavior of multiple, interacting AEs [13],
[14]. The linear, stable regime of active MHD, however, does not perturb the fast
ion distribution, so the associated observations are not easily extended to predict the
amplitude of unstable modes (let alone their specific impact on burning plasmas).
Nonetheless, measurements with active MHD can be regarded as initial conditions
for the evolution of the instability; and relevant scalings of net damping rate with
fast ion temperature, toroidal mode number and plasma shape are achieved by active
MHD excitation in this thesis.

The active MHD system is also found to be useful for MHD spectroscopy, in
which plasma conditions are deduced from mode behavior. For example, it is found

that correlated variations in the mode residue and damping rate indicate otherwise
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unmeasured density fluctuations. As another example, the amplitude profile among
the toroidal set of probes is correlated with the gap between the plasma and the
vessel, and possibly with triangularity and edge shear. While active MHD cannot
provide a definitive conclusion as to the threat that AEs pose for burning plasmas, it
is still a very useful tool.

The sections of this thesis are as follows. First, background on the physics of
AFEs and the experimental history is discussed. Then the active MHD diagnostic is
described in detail, including the data analysis and compensation methods. Next,
results from the 2006, 2007 and 2008 campaigns are presented. Finally, the results
are discussed and suggestions for future work given. The appendices contain a thor-
ough example of error analysis, a description of the probe calibration method, and

instructions for setting up the diagnostic for operation.
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Chapter 2

Background

2.1 Introduction

Alfvén eigenmodes are global resonant modes of magnetohydrodynamic waves in lab-
oratory plasmas. The eigenmodes exist at discrete frequencies well below the ion
cyclotron frequency and are lightly dissipated by mode conversion, radiative damp-
ing, electron and ion Landau damping, and coupling to the shear Alfvén frequency
continuum. Energetic ions from neutral beams and ICRF heating, and alpha parti-
cles from the fusion reaction can act to damp or excite the eigenmodes. When the
energetic ion excitation exceeds the combined sources of damping, the eigenmodes
appear spontaneously and grow to large, saturated amplitudes. The saturated modes
in turn redistribute the energetic ions in velocity and configuration space, degrading
the energy confinement of the plasma. The scope of this thesis is restricted to Alfvén
eigenmode behavior in tokamaks.

Experiments [15] and numerical calculations [16] have indeed confirmed that en-
ergetic particle confinement in tokamaks can be reduced during Alfvén eigenmode
activity. This presents a valid concern for burning plasmas such as ITER, where en-
ergetic alpha particles that can excite Alfvén eigenmodes will be abundant. Enhanced
transport of the alpha particles could reduce the alpha thermalization on core DT
fuel, supressing the fusion burn; and it could increase the thermal load on the reactor

vessel wall, causing catastrophic damage to the blanket modules.
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The radial structure of the displacement and magnetic field perturbations of the
Alfvén eigenmodes, and their damping rate and resonant frequency, are sensitive to
the mass density and magnetic pitch angle profiles of the plasma [6]. The mode inter-
action with energetic ions is further dependent on the ion phase-space distribution.
Consequently the severity of Alfvén eigenmode activity is subject to the particulars
of the plasma configuration. The central focus of this thesis is to obtain an empirical
understanding of this dependency, to enable the prediction and mitigation of Alfvén
eigenmode effects.

One way to experimentally interrogate the discrete spectrum of Alfvén eigenmodes
is to energize the modes with an external antenna below the onset of energetic particle
excitation, and to observe the resultant plasma response with magnetic probes arrayed
around the periphery of the discharge. Resonant frequency and net damping rate
are apparent from the plasma frequency response extracted from the cross-spectral
density function of the antenna current and probe voltages. Toroidal and poloidal
mode structure can also be reconstructed from probe signals, although caution must
be exercised when interpreting mode localization in the interior of the plasma from
strictly external measurements. This diagnostic approach is called active MHD [17].
A detailed description of the active MHD instrumentation that was designed and used
in Alcator for the research in this thesis is reserved for the next chapter.

This chapter presents a comprehensive summary of the literature with a threefold
purpose. First, it introduces the physical mechanisms of the Alfvén eigenmodes and
their interactions with the energetic ions in a tokamak plasma. Secondly, it describes
how this joint behavior can enhance the transport of energetic ions, prematurely
removing energy from the plasma core. For this reason, Alfvén eigenmodes could
represent an important factor in the performance of next generation machines such as
ITER. Finally, an account is given of relevant prior experimental work on Alcator and
other tokamaks concerning Alfvén eigenmode stability and interaction with energetic
ions. The sections of this chapter are roughly divided on the same basis.

Development of Alfvén eigenmode theory and experiment spans more than sixty

years since electrical engineer and recipient of the 1970 Nobel Prize in Physics, Hannes
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Alfvén, postulated the hydromagnetic wave in 1942 [18]. Throughout that period of
incremental maturation (which continues still), important observations were made
that remain relevant even though the complete picture has since been refined. For
example, the redistribution of energetic ions by saturated AEs was investigated exper-
imentally before the damping mechanisms of AEs were very well understood. While
studying the literature, then, it is often illuminating to understand not only the
present status of the field, but also the thinking that pervaded at the time of writing.
Therefore figure 2-1 presents a graphical timeline of the history of Alfvén eigenmode
research. At each key development, the timeline lists a seminal paper that appears
to have brought the concept to the attention of the broader community. A com-
prehensive list of references is given in the bibliography and cited throughout this

chapter.

2.2 Alfvén Eigenmodes

2.2.1 The Ideal MHD Model

The scale of MHD behavior is defined relative to the macroscopic quantities of the
plasma minor radius, L &~ a, and the ion thermal speed, u &~ vr;, the fastest single-
fluid macroscopic motion possible. The corresponding time scale is the ion thermal
transit time of the volume of interest, 7 ~ a/vr;. With a substantial magnetic field,
the ion cyclotron periods and gyroradii are small enough to be averaged over.
Likewise, other phenomena with periods below the ion thermal transit time and
motions with shorter characteristic length than the ion gyroradius are for the most
part decoupled from MHD and can be ignored. Therefore several simplifying approx-

imations can be made that restrict our attention to the scales of interest [19].

1. since the MHD frequency is very much smaller than the electron cyclotron and

plasma frequencies, the electron inertia can be neglected

2. the Debye length is very small, so the plasma is quasi-neutral.
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Topic___Year Paper

MHD waves 1942 Alfvén H., Nature 150

Continuous Alfvén spectrum in 1964 Uberoi C., Indian J. Pure App. Physics 2
inhomogeneous plasma

Resonant absorption of Alfvén waves 1973 Tataronis J. and Grossman W., Z. Physik 261
Alfvén wave dissipation as a heating 1974 Hasegawa A. and Chen L., Phys. Rev. Lett. 32
mechanism

Gaps in Alfvén spectrum due to toroidicity 1978 Pogutse O. and Yurchenko E., Nucl. Fusion 18

Global Alfvén eigenmodes (GAE) and 1982 Appert K. et al., Plas. Physics 24
discrete Alfvén waves (DAW)

Toroidicity-Induced Alfvén Eigenmodes (TAE) 1985 Cheng C.Z. et al., Ann. Phys. 161

Excitation of TAEs by Energetic ions 1989 Fu G.Y. and Van Dam J.W.,, Phys. Fluids B 1
Redistribution of energetic ions by TAEs 1991 Heidbrink W.W. et al., Nucl. Fusion 31
TAE Damping mechanisms 1992 Zonca F. and Chen L., Phys. Rev. Lett. 68
MHD Spectroscopy of tokamak plasmas 1993 Goedbloed 1.P. et al., Plasma Phys. Control. Fusion 35

JET Active MHD 1995 Fasoli A. et al., Phys. Rev. Lett. 75
Review: AEs in toroidal plasmas 1999 Wong K.L., Plasma Phys. Control. Fusion 41
C-Mod Active MHD 2004 Snipes J.A. et al., Plasma Phys. Control. Fusion 46
Review: Alfven Instabilities driven by 2008 Heidbrink W.W., Phys. Plasmas 15

energetic particles

MAST Active MHD 2008 Gryaznevich M.P. et al., Nucl. Fusion 48

Figure 2-1: Timeline of topics relevant to Alfvén Eigenmodes. Not to scale. A more
complete list of publications is presented in this chapter.
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3. the electron motion, being much more rapid than the time scale of interest,
largely eliminates the displacement current. This is equivalent to setting the

permittivity to zero g — 0

4. heat flow is slow compared to the MHD time scale so the behavior is adiabatic

and pressure is assumed to be isotropic with v = 5/3.
5. the plasma is assumed to be collision dominated and can be treated as a fluid.

In summary, these approximations allow the formulation of macroscopic variables

that treat the ion and electron constituents of the plasma as a single fluid, as follows:

p=min
V=
J=en(u; —u,)

P=D;+ De

Furthermore, at large enough scale lengths, the electric field in the plasma frame
can be neglected, and the ideal Ohm’s law adopted. This implies that the perpendic-
ular motion is dominated by £ x B drift, wherein the ions and electrons move in the
same direction and conserve neutrality. Ideal Ohm’s law also forces the fluid elements
to conserve magnetic flux, so that the plasma is frozen to the magnetic lines of force.
Collisionality must also be low to minimize the resistive term in Ohm’s law, and this
is always satisfied for fusion plasmas.

How is it that the fluid model which assumes a collision-dominated plasma can be
applied to low-collisionality plasmas? It turns out that collisionality only comes into
play in the compressive terms of the momentum and energy conservation. Fortunately,
since compression is highly stabilizing, it is not important for most MHD phenomena,
so the fluid picture remains mostly valid in collisionless plasmas.

Finally, applying the macroscopic variables to Maxwell’s equations and the con-
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servation laws of mass, momentum and energy results in the Ideal MHD model:

dp
a'i'pV'V-»O

dv
—=JxB-V
pdt X D

d(p)
a(ﬁ)'o

E+vxB=0

0B
VxE_——at—

VXB=u0J
V-B=0

The derivation and application of the ideal MHD model is treated with elaborate
detail by Freidberg and others in [19] - [22].

2.2.2 Normal Modes of Ideal MHD

The ideal MHD equations provide a non-linear description of motions of the plasma
that satisfy the assumed length and time scales. For small displacements, £, around a

static equilibrium, the equations can be made tenable by linearizing. The linearized

ideal MHD equations are:

dpy

g—FQV'Vl—_—O

%:J1XB+JXB1—Vp1

0

%—FVl-Ver’ypV-vl:O
0B

VX(V1XB)=‘~0—t—1'

V x By = pody

VB1=O
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where the laws of Ohm and Faraday have been combined to eliminate the first order
electric field in the plasma frame. Together, these equations specify the normal modes

of the ideal MHD plasma. It is convenient to introduce the displacement variable, &,

§ = ¢(r)exp(—iwt)
and to represent all the perturbed quantities in terms of &.

V1=—’Lw§
1= —V’(Pﬁ)
p1=-§ - Vp—pV-§

BIZVX(§XB)
1
2]

Ji=—Vx[V x(£xB)].

The eigenmode equation is then obtained by solving for £ in terms of equilibrium

quantities, as

~ wiog = F(¢) (2.1
where
P(©) = —(V x B) x [V x (€ X B)l+ -{V x [V x (¢ x B)}} x B+ V(€ Vp+ 79V -¢).

The normal mode equation is utilized by applying the equilibrium geometry of
interest and searching for eigenmodes and their corresponding eigenvalues. If these
eigenvalues have imaginary parts then the eigenmodes are unstable. Before venturing
into geometries relevant to fusion devices, it is instructive to review the normal modes

of a homogeneous plasma, which are all stable.
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2.2.3 MHD Waves in the Homogeneous Plasma

Consider an infinite, homogeneous plasma with a straight magnetic field defined by
B, = e,B,. The general normal mode can be represented as £ = £exp(ik -r —iwt). If
the coordinate system is transformed to align the y-axis with the perpendicular part
of the wave vector, k = e,k + ek, one component of the displacement is decoupled.

In matrix form the eigenmode equation becomes:

w? — kich 0 0 &
0  W-RKE-k& -kkd| || =0 (2.2)
0 —kJ_k”CE w? — kﬁcf fz

where cy = B/./ftop is the Alfvén speed and ¢, = 1/yp/p is the adiabatic sound speed.
Non-trivial eigenvalues (of which there are three) are the roots of the determinant of

the matrix on the left:
(W — kfch) (w* — (E + cA)k2w? + (kkyesca)®) =0 (2.3)

Each eigenvalue corresponds to a normal MHD mode of the homogeneous magnetized
plasma. The modes are known as the Alfvén wave, the fast magnetosonic wave,
and the slow magnetosonic wave. These are depicted schematically in Figure 2-2.
The figure illustrates that for a given wave vector, since the displacements of the
three waves are orthogonal, an arbitrary disturbance can be decomposed into a linear
combination of these waves. All the waves are dispersionless, since w/k does not
depend on k, but they are strongly anisotropic in most conditions. The anisotropy is
best understood from the phase diagrams of Figure 2-3. The waves are investigated
in further detail below. In particular, their behavior in the low-8 regime is noted as
the relevant condition for tokamak plasmas. In effect, it is emphasizing the magnetic

field force over the plasma pressure in their influence on wave behavior.
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Figure 2-2: The Alfvén wave is characterized by transverse displacement and magnetic
field. The magnetoacoustic modes are characterized by displacement and magnetic
field in the plane tangent to the wave vector and the background magnetic field. The
displacements for these two waves are orthogonal to each other and to the displace-
ment of the Alfvén wave, so that an arbitrary disturbance can be decomposed into
components of each wave.

Alfvén wave

The first root of the dispersion relation, equation 2.3, corresponds to the Alfvén wave

[18] and is completely independent of k.
w? = kiich (2.4)

Therefore, the Alfvén phase speed v4 drops to zero for perpendicular wave vectors.
Figure 2-3 illustrates the phase velocity of each branch of MHD mode as a function
of the angle of the wave vector relative to the magnetic field, and for several values of
B3 = 2uop/B?. Since vphese = w/k, the locus also corresponds to the mode frequency
as a function of the angle of propagation, given a fixed wavelength.

The group velocity of the Alfvén wave is always parallel to the magnetic field
and there is no communication across field lines. This allows adjacent lines of force
to shear across each other, lending the descriptive name shear to the Alfvén wave.

Figure 2-4 shows the locus of the group velocity for various angles of wave vector; for
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Figure 2-3: Phase diagrams illustrate the wave normal surface of each wave. A point
disturbance would evolve into a wave front of these shapes. While they are strongly
anisotropic in most conditions (the exception being the fast wave in the low— g limit),
all the waves are dispersionless, since w/k does not depend on k.

the Alfvén wave, the locus corresponds to a point.

The displacement of the Alfvén wave is polarized perpendicular to both £ and By
for all angles of propagation, as shown in figure 2-5. Since k- £ = 0, the displacement
is compressionless, hence this wave is also sometimes called the incompressible Alfvén
wave. This also explains the Alfvén wave’s insensitivity to 3, which may be noted in
Figures 2-3 and 2-4.

The perturbed magnetic field is polarized parallel to €. To first order there is no
magnetic compression since By - B; = 0. Instead, the magnetic perturbation serves
to bend the background magnetic field, working against the inherent tension in the
lines of force.

The electric field is perpendicular to the background magnetic field, in the plane
of the wave vector, and the plasma displacement corresponds to the resultant E x B
drift. In comparison to an electromagnetic wave, the electric field is smaller by the
ratio v/c, where v &~ 9¢ /0t and accounts for only a fraction of the energy of the wave.
Instead, the wave motion is a balance between plasma inertia and magnetic field
tension, analogous to the dynamics of a stretched, vibrating string. Figure 2-6 shows

the balance between the kinetic energy of the fluid motion and the magnetic energy
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Figure 2-4: Group diagrams illustrate the loci of group velocity, or direction of energy
propagation, of the waves as a function of angle of wave vector. None of the waves has
their group velocity parallel to their phase velocity in general: the shear wave group
velocity is always parallel to the magnetic field, so that there is no communication
across field lines; the fast wave group velocity is roughly in a similar direction to the
phase velocity; and the slow wave has a group velocity across the magnetic field in
the opposite direction of its phase velocity!

of the bent lines of force, as a function of the angle of propagation. The difference

represents the energy of the electric field.

Fast magnetoacoustic wave

Two more roots are obtained from the second term of the determinant given in Equa-

tion 2.3. These are,

1
W= R(E+ A1 (1- o)V,

2 2
2i— ﬂ Cgca

=4
Y

corresponding to the sound wave (-) and the fast magnetosonic wave (+).

The phase velocity of the fast wave does not vanish for perpendicular propagation
(Figure 2-3) and a perpendicular group velocity is possible (Figure 2-4). At parallel
propagation, the fast wave and Alfvén wave have the same phase velocity for 3 < 1.

The fast wave is distinguished from the Aflven wave by having parallel perturbed
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Figure 2-5:

The upper figures illustrate the relative magnitudes and directions of the
displacement and the perturbed magnetic field for the Alfvén wave, for low beta,
at several angles of propagation. The lower figures show the corresponding relative

magnitude and angle of the phase velocity.

Figure 2-6: For the Alfvén wave, the energy is partitioned among the plasma kinetic
energy and the magnetic field bending. The small difference accounts for the weak
electric field. The energy vanishes for perpendicular propagation because the mode

Whyp,
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magnetic field compared to the Alfvén wave’s perpendicular perturbed field.

The polarization of the fast wave is illustrated in Figure 2-7. The displacement is
in the plane of the magnetic field and the wave vector. At low 3, the displacement
is mostly perpendicular for all directions of propagation. Since & - £ # 0, unlike the
shear Alfvén wave, the fast wave is not incompressible.

The magnetic field perturbation lies in the same plane and is perpendicular to the
wave vector, since V - B; = (. The parallel part of B; corresponds to magnetic field
compression, while the perpendicular part corresponds to magnetic line of force, as
in the Alfvén wave. The direction of k dictates whether magnetic compression or line
bending predominates the magnetic energy of the wave. The composition of energy
among plasma kinetic and compression and magnetic compression and tension are
illustrated in Figure 2-8 for several values of 3 as a function of the direction of propa-
gation; the tokamak-relevant regime is low-3 and almost perpendicular propagation.
From the figure it is evident that such a wave is predominately supported by kinetic
energy and compression of the magnetic field. The fast wave becomes isotropic in the

low-beta limit.
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Figure 2-7: The relative magnitudes and directions of the displacement, phase velocity
and the perturbed magnetic field for the fast wave, for low beta, at several angles of

propagation.
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Figure 2-8: The energy of the fast wave is shared mostly between the plasma kinetic
energy and magnetic pressure at high k /k).

Slow wave

The smaller frequency branch from the second term in Equation 2.3 describes the
slow magnetoacoustic wave. Like the fast wave, it has displacement in the plane of
the wave vector and the background magnetic field, but at low beta, the displacement
is predominantly parallel to the magnetic field. The magnetic field perturbation is in
the same direction as in the fast wave: in the plane of B and k, and perpendicular to
k. At low 3, the wave energy is found mostly in the plasma kinetic and compressive
terms, while the magnetic field accounts for only a fraction of the wave energy. Figure

2-8 illustrates the balance between these terms.

2.2.4 Inhomogeneous Slab

New behavior emerges for the MHD waves in inhomogeneous plasma. The dispersion
relations of all three modes of ideal MHD depend on the density and the angle of
the magnetic field with respect to the wave vector. When either of these quantities
has spatial variation, the modes are resonant on the layers where they satisfy the
local dispersion relation. Formally, gradient terms appear in the eigenmode problem,

Equation 2.2, and the resulting eigenfunctions are not square-integrable. If the as-
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Figure 2-9: The relative magnitudes and directions of the displacement, phase velocity
and the perturbed magnetic field for the slow wave, for low beta, at several angles of
propagation.
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Figure 2-10: For the slow wave, the energy is partitioned mostly among the plasma
pressure and plasma kinetic energy, like a sound wave. The energy vanishes for
perpendicular propagation because the mode frequency decreases to zero there. The
assumptions of Ideal MHD with which these waves were derived are not valid for
strongly compressive or high-k (small-w) motions, so these figures are inaccurate for
low and high k) /.
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sumptions of ideal MHD are not relaxed, the modes are found to absorb unbounded
energy at the resonance layer, even though the force operator is Hermitian. When the
ideal MHD assumptions are relaxed, the energy is dissipated by particle kinetics and
mode coupling. The interesting problem of the inhomogeneous plasma can be un-
derstood most simply in the infinite cartesian plasma slab with equilibrium gradients
restricted to one axis.

Following on the geometry of the previous section, the wave vector is taken to be
in the y — z plane, k = k, + k.. The magnetic field is also assumed to be in the y — z
plane, B = B(z), + B(z),, and a gradient is imposed on the density and magnetic
field in the z direction. (This allows a component of shear in the magnetic field).
Furthermore, the displacement is projected into orthogonal components relative to
the magnetic field. The displacement along the gradient is called &; the displacement
in the plane of the magnetic field and the wave vector is called tangential, with the

parallel component being ¢ and the perpendicular component, 7.

€ = fxa
n= Z.(Bzéy - Bygz)/Ba
C = i(ByEy + Bzfz)/B'

The first task is to reformulate the eigenmode equation from the force operator,

Equation 2.1. In matrix form this is,

p + 2y + B & Lk1(vp+ B?) akp | |€
—ki(yp+ B)E  p? =K (w+ BY) - k{B*  —kikpw | |n| =0 (2.5)
—kyvpz —kykoyp p? — Kyp| |¢

Solving for the transverse component of displacement yields an ordinary differential
equation in &,
o [p? —KA) [(ci +)w? — kﬁc;acg] o

9 o 2 ane
Or | wh—K2(ch + cB)w? + k2kjch e Bz ol wa)§ =0
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In the limits of tokamak plasma conditions, the eigenmode problem can be re-
duced to describe only the shear Aflven wave. First, the sound wave is decoupled
by considering the low-g limit, where its phase speed is much lower than that of the
Alfvén wave. Secondly, the fast wave is decoupled by considering large ki /kj (see
[20]), where its phase speed is much larger than the Alfvén wave phase speed. In
effect, for a given wave vector, these limits spread apart the eigenfrequencies of the
three modes, isolating the Alfvén wave in the middle. (Goedbloed and Poedts [22]
give a treatment of the full wave equation, keeping B and kj/ky finite. They find
continuous spectra for the