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Abstract

In the first half of my thesis, I will present experimentally measured photon statistics
of RZ/NRZ signals in an optically pre-amplified direct-detection receiver, and show
that the results are in good agreement with quantum photodetection theory. Specifi-
cally, the ZEROs are described by a degenerate Bose-Einstein distribution, while the
ONEs are described by a noncentral-negative-binomial distribution. We will compare
the exact quantum mechanical approach with the semiclassical Gaussian approxima-
tion in terms of evaluating the bit-error rate and the optimal decision threshold.

I will then describe a nonlinear pulse filter that transmits incident pulses while
rejecting cw background as well as ASE noise. The filter is realized by constructing
a nonlinear optical Sagnac loop that is imbalanced by asymmetric dispersion. In the
first demonstration at 30 Mb/s, a relative extinction of 22 dB (with respect to the
pulse) is measured for the cw background. We also demonstrate cleanup of in-band
ASE noise at 10 Gb/s. Other researchers have adopted my techniques and built
similar pulse filters to clean up compressed pulses so as to build a pedestal-free, 5-ps
16-wavelength WDM source at 10 Gb/s and a 210-fs single-channel TDM source at
640 Gb/s.
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Chapter 1

Introduction

With the explosive growth of the multimedia-driven World Wide Web, the demand
for high bit-rate communications systems is rising exponentially. Following the rapid
deployment of residential cable modems and DSL modems that work at the rate of
1.5 Mb/s, the aggregate bit rate in a small neighborhood quickly goes up to the
multi-Gb/s range. To satisfy this insatiable demand for bandwidth, new optical
networks are being developed and deployed, taking advantage of the low-loss, low-
attenuation properties of the optical fiber, as well as the optical gain of the erbium-
doped fiber amplifier (EDFA). Using an EDFA as an optical preamplifier in a receiver
allows one to achieve unrivaled receiver sensitivities that are about only 3 dB away
from the ultimate quantum limit (38 photons/bit), which is truly an amazing feat of
engineering accomplishment.

Recently long-distance transmission experiments have demonstrated 64 x 10 Gb/s
. transmission where the entire gain bandwidth of EDFA’s C-band is utilized. To
further increase the total bit rate of a system, major efforts have been made to
move from 10 Gb/s (OC-192) to 40 Gb/s (OC-768) in a single channel. As the bit
period shrinks from 100 ps to 25 ps, there is clearly a need for a clean short-pulse
source. Since mcst pulse compression schemes generate short pulses with undesirable
pedestals that will lead to intersymbol interference, a pulse cleanup device has to be

developed.

16



1.1 Thesis Overview

This thesis will address issues in noise characterization and nonlinear pulse process-
ing in optical communication systems. Chapter 2 provides the necessary background
information to understand optical fibers, which is the ideal medium for the transmis-
sion of information. Chapter 3 contains experimental results on the photon statistics
of receivers that use EDFAs as the preamplifier. A better understanding of the noise
processes inside an EDF- allows us to better design our transmission link. Chapter
4 describes a novel nonlinear pulse filter that can clean up pulses, which has found
applications in terabit TDM networks as well as gigabit WDM networks. Chapter
5 extends the usage of the pulse filter to clean up ASE noise, whose presence de-
grades the signal-to-noise ratio and impairs the bit error rate of the system. Chapter
6 contains conclusions and future work. Normalization of the nonlinear Schrédinger

equation is covered in Appendix A.
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Chapter 2

Background

2.1 Wave Propagation in Optical Fibers

In this chapter, we present the theory of light propagation in an optical fiber. We
will develop a mathematical model to describe the evolution of the envelope of a
wavepacket in a dispersive medium where the refractive index depends on the field
intensity.

We first begin with Maxwell’s equations with no sources in an isotropic mediuia [1i],

V.D(r,t) = 0 (2.1)
V.B(r,t) = 0 (2.2)
V x E(r,t) = —3B(§;’t) (2.3)
V x H(r,t) = %. (2.4)

We can obtain a single partial differential equation for the propagation of the electric

field by taking the curl of Eq. (2.3), and using Egs. (2.1) and (2.4)

_ 10°E(r,t) 1 8°P(r,t)

2 _ =
VErY) - 55 ol ot

(2.5)
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2.2 Linear Dispersion

Since the polarization field in an optical fiber does not respond instantaneously to

incident light, that is,

+00

P(z,t) = & / x(t - ) E(z, 7)dr | (2.6)

—00

the susceptibility x(w) is frequency-dependent. Because of causality, the real and

imaginary parts of x(w) are Hilbert transform pairs

_ 1 4o xo(w') duw'

aw) = o[ R (2.7)
_ 1 +00 ¥ (w') dw'

xe(w) = WP/-oo w-w (28)

The real part x;(w) modifies the propagation speed, whereas the imaginary part
X2(w) determines the absorption or amplification by the medium. Using the linear

dispersion relation
D(z,w) = &E(2,w) + P(2,0) = e(w) [1 + x(@)] E(z,w), (2.9)

we can rewrite the wave equation (2.5) in the Fourier domain for an axially uniform

optical fiber as
VZE(r,w) + w’pue(p,w)E(r,w) = 0, (2.10)

where pe(p,w) = [1 + x(p,w)] /c? and p = /22 + 42
If the electric field is y-polarized and it propagates along the z-direction, we can

write
E(r,t) = § a(z, y) @AW (2.11)

Substituting Eq. (2.11) into the wave equation (2.10), we obtain a differential equa-

tion that defines the transverse eigenmode a(z,y)in the optical fiber with modal

19



propagation constant f(w),
Vha(z,y) + [wne(p,w) — B (w)] a(z,y) = 0. (2.12)
The evolution in z can be obtained by assuming
E(r,w) =¥ E(z,w) a(z,y) (2.13)

in Eq. (2.10), which yields a scalar partial differential equation,

O?E(z,w)

32 T B (w)E(z,w) =0. (2.14)

The modal propagation constant A(w) depends on frequency in a complicated way,
because apart from resonance contributions, waveguide dispersion also plays a sig-
nificant role. To simplify calculations, we perform a Taylor series expansion of f(w)

around the optical carrier frequency wy away from electronic resonances,
1
B(w) = Blwo) + B'(wo) (07 — wo) + 58" (wo) (w — wo)’ + - . (2.15)

The envelope of the wavepacket moves at the group velocity vgroup = 1/8'(wo). The
parameter ”(wp) describes pulse broadening due to dispersion. We can “factorize”

and rewrite Eq. (2.14) in the time domain (dropping the term containing S(wp)) as

OE(z, 1) 1 9E(z1)
+
0z ’Ugroup ot

' 0%E(z,
= %,B"(a)o)—af:—t) . (216)

Instead of solving Eq. (2.5), a vector partial differential eqnation in 3 + 1 dimensions,
we have greatly simplified the problem such that we can now work with Eq. (2.16), a
scalar partial differential equation in 1 + 1 dimensions.

In Figure 2-1, the dispersion of a single-mode fiber is shown for different material
composition and modefield diameter.

The measurement of chromatic dispersion is accomplished by analyzing the group

delay through the fiber as a function of wavelength (Fig. 2-2(a)). A wavelength tun-
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Material Dispersion

Si0, %
Si02/4%GeO, \/ S

301 Total Dispersion:
‘Unshifted
20 Shifted
1
0 2.0

t J] Wavelength(zm)

Dispersion (ps/nmekm)
(=]

-101- A W=4.5um
/.o - ‘---~ . . R
20’ === e .. _ Waveguide Dispersion
/' W=2.4 uym
-30L

Figure 2-1: Dispersion of single-mode fiber vs. wavelength for different material com-
position and modefield diameter, after Ref. [1]. Note that the dispersion parameter
is defined as D = — 458" (w).

able optical source is intensity modulated as the input stimulus for the fiber under
test, while the phase of the detected modulation signal is then compared to that of
the input electrical modulation. By measuring how this phase changes with wave-
length, the group delay of the fiber is easily measured. Fig. 2-2(b) shows the relative
group delay vs. wavelength for 1550 nm dispersion-shifted fiber (DSF). One can sce
clearly that above 1550 nm, the chromatic dispersion is anomalous, where the “blue
component” is traveling faster than the “red component”. Finally, the disperion

parameter,

2rc ,
D= SVE "(wo) » (2.17)

is evaluated from group delay data and plotted in Fig. 2-2(c).

2.3 Self-Phase Modulation

The response of an isotropic optical fiber to an external electric field becomes nonlin-

ear when the field is intense (comparable to the internal atomic field). This nonlinear-
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Figure 2-2: (a) Chromatic dispersion measurement of a 2-port optical device around
1.5 um. (b) Relative group delay vs. wavelength. (c) Dispersion (in ps/nm/km) vs.
wavelength. ) is the zero-dispersion wavelength; after Ref [2].
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ity originates from the anharmonic motion of bound electrons under the influence of
an applied field. Self-phase modulation, one of the nonlinear effects, can be modeled

as
PNL(2,w) = eox® [E(z, w) [ E(2, w) (2.18)

where x(® is real and positive.

What happens physically is that the refractive index becomes dependent on the
optical intensity. As a result, when an optical pulse propagates, its peak will acquire
more phase shift than its wings will. Self-phase modulation plays an essential role
in optical soliton formation. One can incorporate this nonlinearity into the wave

equation by defining
D(z,w) = eo(w) [1+ XV ()] B(z,w) + PNE(z,w) (2.19)

which yields the cubic nonlinear Schrédinger equation

3E(z,t)+ 1  9OE(zt) 0?E(z,t) Y

J
o~ 3P @0 g = ~i5x |E (e 1) Bz 1)

(2.20)
It is evident from the right hand side of Eq. (2.20) that the optical Kerr effect is a

0z ’Ugroup

reactive process which produces an additional phase shift proportional to the optical

intensity.

2.4 Optical Solitons

In a lossless medium with anomalous dispersion where 8" (wp) < 0, lower frequency
components of an optical pulse trail higher frequency components. Thus, in a linear
medium, the pulse will broaden indefinitely as it propagates. On the other hand, in
a Kerr medium, self-phase modulation produces a positive chirp across the central
portion of the pulse. It is possible to find a steady-state pulse shape where the
amount of self-phase modulation balances the effect of dispersion exactly. The pulse

then propagatés undistorted in the form of an optical soliton.
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To show that soliton solutions exist for Eq. (2.20), we first normalize the equation

according to (see Appendix A for more details)

z— 'Ugroupt

z, = . (2.21)
t
t, = — (2.22)
i
E
L= = 2
u B (2.23)
and choose z, t., and Ey such that both conditions
2
18" (wo)| 75 =1 (2.24)
c
and
2 O E2 =1 (2.25)
2ncx OZC - .

are satisfied. The normalized nonlinear Schrédinger equation then takes a simple

form
Ou, lazu,,
162, 2082

+ [tn|* U - (2.26)

In 1972, Zakharov and Shabat [12] applied the technique of inverse scattering [13]
to solve the above nonlinear partial differential equation. Their analytical solutions
revealed that the amplitude and the velocity of interacting/colliding solitons did not
change, whereas their phases contained discontinuities. The fundamental soliton is
the simplest form of an extensive family of exact solutions of Eq. (2.26). It has an

hyperbolic secant form
(2, tn) = sech(t,) e 9™/2 (2.27)
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Chapter 3

Photon Statistics in an Optically

Pre-amplified Receiver

3.1 Motivation

The determination of receiver sensitivity and bit-error rate (BER) is important in
the design of high bit rate optical digital communication systems. After the intro-
duction of the erbium-doped fiber amplifier (EDFA), optical communication systems
at the 1.5 ym wavelength is now widely based on intensity modulation and direction
detection, instead of relying on coherent techniques [14]. By using an EDFA at the
transmitter, signals can be boosted to high optical levels before transmission. As well,
fiber attenuation can be compensated with EDFAs that are placed in the fiber span.
Finally, by using an EDFA as a pre-amplifier at the receiver, excellent sensitivity as
low as 76 photons/bit can be obtained experimentally [3]. Also, at wavelengths near
1.3 pum, an optically pre-amplified receiver using Raman gain is reported to have a
sensitivity of 151 photons/bit [15]. As with other types of amplifiers, optical ampli-
fiers introduce noise resulting from spontaneous emission in the amplifying region,
which degrades the system’s SNR and thus impairs BER.

In Fig. 3-1, the eye diagram of a typical 10 Gb/s NRZ transmission is shown. The
horizontal axis is time (20 ps/div). Overlaid on the eye diagram is the histogram of

“hits” sampled at the middle of the bit period in a predefined time window. From
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the eye diagram, one can obtain the histogram and the probability distributions of
the ZEROs and the ONEs, which will then enable one to deduce the bit error rate of

the system.

» Counts (20 dB/div)

1! f A
iy rain

Figure 3-1: Eye diagram of a typical 10 Gb/s NRZ transmission. The horizontal axis
is time (20 ps/div); the vertical axis is voltage (arb. units).

There exist two classes of models for modeling the probability distribution of re-
ceived signals in a pre-amplified OOK (on-off keying) receiver. The first class uses
the semiclassical square-law model for detection, resulting in a Gaussian distribution
for the photocurrent [16-19]. The second class uses a quantum treatment of spon-
taneous and stimulated processes in the optical amplifier [20-22]. The advantages
of the semiclassical models are simplicity and the fact that they yield approximate
yet analytical expressions for the BER. The advantage of the quantum mechanical
models is correctness and accuracy in describing the physical processes.

We will confirm experimentally the non-Gaussian nature of the ASE photon dis-
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tribution by showing that it is degenerate Bose-Einstein, a quantum-mechanical pre-
diction [23]. Later, we will further demonstrate experimentally that the photon dis-
tribution of the ONEs state in an OOK pre-amplified receiver is non-Gaussian, and
can be described quantum mechanically by a noncentral-negative-binomial distribu-
tion. We would like to demonstrate the accuracy of the quantum mechanical receiver
models describing both the ZEROs and ONEs.

The ASE noise of an optical amplifier is Bose-Einstein distributed [24]. In thermal
equilibrium at temperature T', the probability pgg (m) that a harmonic oscillator is
thermally excited to the m-th excited state is given by the Boltzmann factor

exp (—En/ksT)

pee (M) = S exp (— By /kT) ° (2.1)

Using the expression for the mean photon number (collected in a time interval given

by the inverse detector bandwidth)

. 1
n= exp (hw/kgT) -1’ (3.2)
one can rewrite pgg (7, m) as
_ n"
pBe (7, m) = Tra (8.3)

For polarized ASE light incident on a photodetector, if the optical filter bandwidth
is g times wider than the inverse response tine of the photodetector, the Bose-Einstein
process becomes g-fold degenerate. The resulting photon probability distribution is
then the convolution of the individual distributions over m, which can be stated in

closed form as [20-22,25]

pse (i, g9,m) = T (;(T:;I‘Z)(g) (1 + %) - (1+a)? (3.4)

where I'(z) is the gamma function. The degenerate Bose-Einstein distribution in

Eq. (3.4) is also known as the negative-binomial distribution [20,22,25]. The average
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number of photons in all of the modes is g7t (see Fig. 3-2), while the mean square

fluctuations in photon number are

(Am?) =g (7 +a?) . (3.5)
Bose-
Einstein
vacuum ——» G gn
gn =gx(G-1)

Figure 3-2: The amplified ZEROs are described by the Bose Einstein distribution.
The Gaussian model tends to underestimate the upper tail of the probhability distri-
bution of the ZEROs.

For an optical amplifier with a power gain of GG, the mean photon number in
each mode is 2 = x (G — 1), where x is the noise enhancement factor for incomplete
inversion of the gain medium. In the case of the erbium-doped fiber amplifier (EDFA)
used in this experiment, x is measured to be 1.4. For conventional lightwave receivers
where the ASE noise is unpolarized, the degeneracy factor has to be doubled because
of the additional degree of polarization.

On the other hand, optically amplified coherent light (ONEs) exhibits different
statistics. When a ONE bit containing 72; photons is pre-amplified with a power gain
of G in a receiver, its statistics are described by the noncentral-negative-binomial

(NNB) distribution [20,22, 25]:

o am Gl a1 Gl
P, m) = (e oxp (=) L [‘ﬁ T+ ﬁ)] (39
where
LV (z) =Y (—z)* (m+ g — 1)Y/[(k+ g — 1)! (m — k)'k!] (3.7)
k=0
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is the generalized Laguerre polynomial. The average number of photons in the output

is Gn; + gn(see Fig. 3-3), while the mean square fluctuations are

(Am?) = Gh, + 2G,f + gi (1 + ) . (3.8)
. Noncentral-
Poisson Negative-Binomial
n —— G Gn_+gn
gn=gx(G-1)

Figure 3-3: The amplified ONEs are described by the noncentral-negative-binomial
distribution. The Gaussian model tends to overestimate the lower tail of the proba-
bility distribution of the ONEs.

The first term contributing to the fluctuations is identified as the shot noise of the
amplified signal, while the second and the third terms are the signal-ASE beat term
and the ASE-ASE beat term, respectively (14].

3.2 Steady-state/cw Measurement

The experimental setup is shown in Fig. 3-4. The receiver consists of an optical
attenuator to adjust the received power, an EDFA pre-amplifier pumped at 980 nm,
an optical bandpass filter with center wavelength 1550 nm and 3-dB bandwidth of 1.0
nm to provide rejection of out-of-band noise, a 30 GHz pin detector with a conversion
gain of 24.83 V/W, and a 30 GHz dc-coupled digital sampling oscilloscope. A second
optical attenuator is used to prevent the pin detector from saturating. For calibration,
we measure the detection circuit’s thermal circuit noise by blocking the detector input
and obtaining the distribution of voltages on the oscilloscope. The voltage levels are

then converted to a noise equivalent optical power, whose histogram is shown in Fig. 3-
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5. The circuit noise distribution is found to be Gaussian with a standard deviation of
12.5 uW, or a noise equivalent power of 72 pW/ vHz, which is expected since thermal
circuit noise is Gaussian [26]. Although the measured standard deviation of circuit
noise at the receiver is within the manufacturer’s specifications, it is about 4 times the
standard deviation of the minimum theoretical thermal noise at room temperature,
which is evaluated to be 0.13 mV. The fitting algorithm used throughout this chapter
is the Levenberg-Marquardt method [27,28]. The line search algorithm is a mixed

quadratic and cubic polynomial interpolation and extrapolation method.

Varlable Optical Varlable 30 GHz
Attenuator Pre-amplifier Attenua-  pin Detector
tor

27\ '|> Z//] g | st

1 nm Bandpass
Filter

Figure 3-4: Experimental setup.

The photon distribution of ASE noise of the pre-zinplifier on the oscilloscope is
obtained by blocking the incident light at the pre-amplifier and unblocking the pin
detector. Using the previously measured circuit noise distribution, the theoretical
distribution of the ASE noise is computed by convolving the degenerate Bose-Einstein
distribution in Eq. (3.4) with the Gaussian distribution obtained in Fig. 3-5. The
ASE histogram data, collected with 107 hits, are then fitted with this composite
distribution, shown in Fig. 3-6 in a logarithmic scale. The two degrees of freedom
used in fitting are the mean photon number per mode 7 and the degeneracy factor g.
The parameter 7 is found to be 2035, and g is 8.5, which is very close to the expected
value of the optical bandwidth divided by the electrical bandwidth while accounting
for the two degrees of polarization (125 GHz/30 GHz x2 = 8.3).

Next, the photon distribution of the amplified ONE:s is obtained by injecting —36
dBm of coherent light (72, = 63) from a DFB laser at 1550 nm into the receiver. The
histogram data are shown in Fig. 3-7, from which one can clearly see the non-Gaussian

nature of the distribution. The NNB fit, agreeing very well with the experimental
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Figure 3-5: Probability distribution of the detector’s thermal circuit noise (circles)
and a Gaussian fit (solid line). Electrical bandwidth: from dc to 30 GHz. From curve
fit, standard deviation is 12.5 uW.
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Figure 3-6: Probability distribution of the ASE/ZEROs (circles), a degenerate Bose-
Einstein fit (solid line), and a Gaussian fit (dotted line) From curve fit, & = 2035 and
g =8.5.

data over a dynamic range of 58 dB, yields 7 = 2110, ¢ = 8.7, and i, = 60. The
extracted value of g = 8.7 in the ONEs is very close to the valuc of ¢ = 8.5 that
is obtained in the ZEROs. On the other hand, one can see that the Gaussian fit to
the data is not satisfactory. As pointed out theoretically in Refs. [20-22], around the
optimal decision threshold, the Gaussian model tends to underestimate the tails of
the probability distributions of the ZEROs while overestimating those of the ONEs.

Next, a polarizer is inserted between the optical bandpass filter and the pin de-
tector. It is oriented such that the amount of signal transmitted is maximized. Since
ASE is unpolarized whereas the amplified signal is polarized, one would expect that
half of the ASE noise is blocked by the polarizer. As shown in Figs. 3-8 and 3-9, this
is indeed the case. The degeneracy factor g obtained from the curve fit is now 4.1,
which is about half as much as before. o

On the other hand, the use of a polarizer in a practical receiver proves to be not

a good idea. First of all, it is not always possible to orient the polarizer to maximize
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Figure 3-7: Probability distribution of the ONEs (circles), a noncentral-negative-
binomial fit (solid line), and a Gaussian fit (dotted line). From curve fit, 7 = 2108,
g = 8.7, and 71, = 60.

signal transmission as the signal may be coming from several sources, each having
its own state of polarization. Second, the dominant noise term in a well-designed
receiver is the signal-ASE beat term, which is independent of the degeneracy factor
g. The physical understanding is that the signal does not beat with the part of the
ASE noise that has the orthogonal polarization.

Since the Gaussian model tends to underestimate the tails of the probability dis-
tributions of the ZEROs while overestimating those of the ONEs, one expects that
the optimal decision threshold predicted will be lower than that predicted by the
quantum model. As shown in Fig. 3-10, the two predictions can differ by more than
a factor of two at low degeneracies. On the other hand, due to a cancellation of
errors in the Gaussian model. the two models predict virtually the same number of

photons/bit required to achieve a 10~ BER.
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Figure 3-8: Probability distribution (obtained with a polarizer) of the ASE/ZEROs
(circles), a degenerate Bose-Einstein fit (solid line), and a Gaussian fit (dotted line).
From curve fit, # = 1510 and g = 4.1.
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Figure 3-9: Probability distribution (obtained with a polarizer) of the ONEs (circles),
a noncentral-negative-binomial fit (solid line), and a Gaussian fit (dotted line). From
curve fit, i = 1610, g = 4.1, and 7, = 69.
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Figure 3-10: Optimal decision threshold calculations using the quantum mechanical
model.
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Figure 3-11: Predicted number of photons/bit required to achieve a 10~° BER. J.
Livas reported a sensitivity of 76 photons/bit [3]; more recently, J. Korn reported 67
photons/bit [4] using the RZ format.
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3.3 Back-to-back NRZ and RZ Transmission Ex-

periments

3.3.1 NRZ Transmission

After demonstrating good agreement between theory and experiment on steady-state
probability distributions of ZEROs and ONEs, we now attempt to study the probabil-
ity distributions when modulation is applied to the source. In our NRZ experiment,
the DFB laser at 1550.9 nm is modulated at 10 Gb/s by a lithium niobate modulator
with a 23! — 1 pseudorandom bit sequence. The optical pre-amplifier is made by
OPREL, which has a 3.5 dB noise figure. A 1.0 nm optical bandpass fiiter is inserted
after the pre-amplifier to filter out the out-of-band ASE noise. The detector is a
Lasertron ac-coupled pin, 2nd it is amplified by an Anritsu wideband rf amplifier (30
kHz - 10 GHz).

The BER curve for the NRZ case is shown in Fig. 3-12. The sensitivity at 107°
BER is —38.7 dBm, or 105 photons/bit. The eye diagram as well as the histogram of
ZEROs and ONEs are shown in Fig. 3-13(a). Since the optical power incident, on the
pin detcector is as high as 3.0 dBm, the output voltage of the pin detector becomes
saturated and clipping results. The probability distribution for the ONEs does not
resemble the NNB distribution at all. After attenuating the optical power to —4.1
dBm with an optical attenuator, the detector is no longer saturated (Fig. 3-13(b)).
However, the receiver sensitivity increases by 0.4 dBm, mostly due to the relative

increase of thermal noise present in the detector’s output.

3.3.2 RZ Transmission

We repeat the above experiment with the RZ data format as well. The RZ source
is an external-cavity mode-locked semicondu'zgor laser that produces 4."ps pulses at
10 GHz. We also switch to the dc-coupled HP Lightwave Converter as we think
that it is better matched to RZ pulses than the Lasertron is. The sensitivity of RZ
transmission is excellent (Fig. 3-12): sensitivity at 10~° BER is 88 photons/bit (—40.0
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Figure 3-12: Back-to-back bit error rate curves for RZ and NRZ at 10 Gb/s. The
receiver sensitivities at 10™° BER are —38.7 dBm (105 photons/bit) for NRZ, and
—40.0 dBm (88 photons/bit) for RZ.
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(b) Optical power at the pin detector = —4.1 dBin

Figure 3-13: Eye diagram of NRZ transmission at 10 Gb/s. The horizontal axis is
time (20 ps/div); the vertical axis is voltage (arb. units).
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dBm). The 1.3 dB difference in sensitivities between the RZ and the NRZ formats
can be attributed to the fact that there is less intersymbol interference in the RZ case
as the RZ pulses are much shorter than the 100 ps duration of the bit period at 10
Gb/s. L. Boivin [29] also observed similar gain in receiver sensitivity when switching
from the NRZ to the RZ format.

At high input optical power (+3.0 dBm) to the detector, some saturation of the
detector’s output is observed (Fig. 3-14(a)). Lowering the optical power to —4 dBm
produces the familiar asymmetric probability distribution of the ONEs (Fig. 3-14(b)).
The probability distributions for the ONEs and ZEROs are re-plotted in Fig. 3-15,
along with the theoretical estimates based on the physical parameters measured:
i =5 x 103, g = 25, i, = 200, and x = 1.3. From the two plots, one can see that
the measured 88 photons/bit (—40.0 dBm) probability distributions have a larger
variance. We think that it is due to i) pattern-dependent effects in the electronics, and
ii) detector ringing (see Fig. 3-16). Naturally, the widened probability distributions
contribute to a slightly higher BER than is predicted by theory.
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Figure 3-14: Eye diagram ot RZ transmission at 10 Gb/s. The horizontal axis is time
(20 ps/div); the vertical axis is voltage (arb. units).
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Figure 3-1A: Portion of the 23' — 1 pseudorandom bit pattern as obtained on the
digital sampling scope. Deleterious effects such as data pattern dependency as well
as detector ringing are clearly evident.

42



Chapter 4

The Dispersion-Imbalanced

Nonlinear Optical Mirror (DILM)

The nonlinear optical loop mirror (NOLM) was invented by Doran and Wood in
1988 [30]. It is a fiber loop constructed with an asymmetric coupler (Fig. 4-1), so that
when light enters the NOLM, it is split into two pulses of unequal intensities, which
will then acquire different nonlinear phase shifts as they propagate along the fiber.
When these two pulses interfere at the coupler, the non-reciprocal phase difference
alters the transmissivity of the NOLM in an intensity-dependent fashion. In 1990,
Fermann et al. enhanced the design of nonlinear loop mirrors by placing an optical
amplifier asymmetrically in the loop (Fig. 4-2), which was known as a nonlinear
amplifying loop mirror (NALM) [31]. The presence of an active element in his design
lowers the switching energy substantially. Subsequently, Richardson et al. [32] and
Duling [33] used the NALM as an artificial saturable absorber to build short-pulse
figure-of-eight fiber lasers. Others used the NOLM and the NALM to perform all-
optical switching [34] and logic functions [35].

In this chapter, the concept of imbalancing loop mirrors with dispersion is first
addressed, with emphasis on the how the self-switching behavior changes as a function
of input pulse intensity, pulse width, and fiber length. The experimental results
showing cw and ASE suppressions are then discussed, and compared with numerical

results.
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Figure 4-2: The nonlinear amplifying loop mirror.
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4.1 Concept of a Dispersion-imbalanced Switch

Recently, the possibility of imbalancing a loop mirror with dispersion was demon-
strated [9]. The dispersion-imbalanced loop was constructed with a 50/50 coupler, a
segment of dispersive fiber, and a segment of dispersionless fiber (Fig. 4-3). When
an N < 1 optical pulse enters the loop mirror, the clockwise-traveling pulse dis-
perses quickly in the dispersive segment and then remains broad in the dispersionless
segment; on the other hand, the counterclockwise-traveling pulse remains short and
intense for the entire dispersionless first segment, wlere it acquires a large amount of
nonlinear phase shift that is proportional to its peak intensity and to the fiber length

L, (Fig. 4-4).

SMF

Figure 4-3: Conceptual operation of a dispersion-imbalanced loop mirror show-
ing pulse stretching and compression: SMF, single-mode fiber; DCF, dispersion-
compensating fiber; DSF, dispersion-shifted fiber.

Pulse propagation in an optical fiber can be modeled by the nonlinear Schrodinger
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clockwise
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Figure 4-4: Plots of the peak pulse intensity as a function of distance along the two
propagation directions: clockwise and counterclockwise.
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equation, which in dimensionless form is

2

The normalized distance z is in units of the dispersion length z, = 72/ |B|, T ~
0.567TpwH M, the normalized time ¢ is measured in units of 7, the complex electric
field envelop u = u(z,t) is in units of 1/v/8z;, where § = 2mny/MoAgg, Agf is the
modal effective area in the fiber, f, = 8?8/0w?, and n, is the nonlinear index =
3.18x1072° m2/W. Since dispersion varies along the loop, the normalization is done at
the fiber segment with the largest amount of dispersion, i.e., D; =1 and |D;| < |D;|.
We assume that the input pulse has a hyperbolic secant shape «(0,t) = Nsech(t) and
the input fiber has a dispersion of Dinpu!: = D,. For example, an N = 1 soliton
incident at the 50/50 coupler will split into an N = 1/1/2 soliton propagating along
L, in the clockwise direction, and an N = 1/(D;+/2) soliton propagating along L, in
the counterclockwise direction.

The evolution of an N = 0.85 soliton input pulse as a function of distance is sim-
ulated numerically with a split-step Fourier algorithm with 1024 temporal gridpoints
(Fig. 4-5). The loop parameters are D; = 1.0, D, = 0.1, and L, = L, = 5.8z,
where zy = 2,7/2 is the soliton period. After the 50/50 coupler, the output pulse is
compressed in the DCF' to yield a near transform-limited pulse. The DCF parameters

are D3 = DDCF = —4.0 and L3 = LDCF = 1.4520.

4.2 Switching Characteristics

Since fiber dispersion acts on pulses but not on cw light, a nonlinear loop mirror
that is imbalanced by dispersion is not only able to select pulse amplitude as well as
pulse width, but also to reject cw and ASE noise present in the input. Motivated by
this observation, we investigate the switching characteristics of dispersion-imbalanced

loop mirrors as a function of input pulse intensity, pulse width, and fiber length.
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Figure 4-5: Intraloop pulse evolution: (a) clockwise along SMF and then DSF, (b)
counterclockwise along DSF and then SMF, (c) along the output DCF.
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4.2.1 Switching Characteristics as a Function of Input Inten-
sity

Figure 4-6 shows the temporal output pulse intensities as the input pulse energy 2/N?
is increased. The transmissivity first increases, peaks, and then drops to a minimum
when the nonlinear phase shift is about 2w. Although this type of response is typical
among conventional nonlinear loop mirrors, the response of the dispersion-imbalanced

loop mirror is pulse-width sensitive as well, which will be shown in the next section.

Intensity

Time
Figure 4-6: Temporal output pulse shapes as a function of input energy. The loop

parameters are D; = 1.0, D, = 0.1, and Ly = L, = 5.82p. The DCF parameters are
D3 = DDCF' = —4.0 and L3 = LDCF = 1.45Z0.
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4.2.2 Switching Characteristics as a Function of Input Pulse

Width

The dependence of switching as a function of pulse width is investigated by varying
the normalized pulse width 7 in the initial condition u(0,t) = 0.85sech(t/r). The
dependence of switching on pulse width is clearly seen in Fig. 4-7. For example, a
factor of two change in pulse width from unity results in about a factor of two change

in transmissivity.

0.4 -
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o
w
1

[=]
N
/

Time
Figure 4-7: Temporal output pulse shapes as a function of normalized pulse width

7. The loop parameters are D, = 1.0, D, = 0.1, and Ly = Ly = 5.829. The DCF
parameters are D3 = Dpcrp = —4.0 and L3 = Lpcr = 1.452.
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Figure 4-8: Temporal output pulse shapes as a function of linear chirp parameter
b. The loop parameters are D, = 1.0, D, = 0.1, and L; = Ly = 5.82p. The DCF
parameters are D3 = Dper = —4.0 and L3 = Lpcr = 1.452.
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4.2.3 Switching Characteristics as a Function of Fiber Length

As the length of the DSF L, gets longer, the transmissivity peak shifts to lower
energies, which can be explained by the fact that, to first order, the nonlinear phase

shifts acquired by the two pulses are approximately:

¢NL,CW =~ 0 (42)
N? 2
¢NL, CCW = Tsech (t)Lz . (4.3)

Since self-switching is an interferometric effect, one expects near-complete switching

to occur when

~ |énL, cw - #NL, cow| =T (4.4)

In other words, the first peak in transmissivity occurs at

2r
N2="". .
- (45)
If one expresses L, in units of the soliton period 2y, then Eq. (4.5) becomes
Input pulse energy 2N = 8/L, . (4.6)

Equation (4.4) is plotted as circles in Fig. 4-9 where L, is expressed in units of
z9. Good agreement is found between this back-of-the-envelope approximation and
the full numerics. Its simplicity serves as a quick method to estimate the length of
fiber needed for switching for a certain given input pulse. In contrast, running the
full simulations to generate the curves for Fig. 4-9 can take many hours on a typical

UNIX workstation.

4.3 Modeling via the Variational Approximation

The nonlinear Schrédinger (NLS) equation describes nonlinear pulse propagation in

an optical fiber, where the effects of second-order group-velocity dispersion and the

52



0.8

o
o
1

Transmissivity
o
'

o
N
]

0.0 a T
0 1 2

Input Energy 2 N

Figure 4-9: Transmissivity vs. input energy for different fiber lengths. Dotted, L, =
5.42y; short dash, L, = 5.62y; dash-dot, L, = 5.87p; dash-dot-dash, L, = 6.02; solid,
L, = 6.2z; circle, peak location as predicted by 2N? = 8/L, in Eq. (4.6). The
loop parameters are Dy = 1.0, D, = 0.1, and L, = 5.82,. The DCF parameters are
D3 = DDCF = —4.0 and L3 = LDCF = 1.4520.
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Kerr nonlinearity are modeled. Th:re exists a large body of theoretical and ex-
perimental work that was devoted to studying the properties of the NLS equation,
along with its variants. Despite the fact that, in very few limited cases, exact results
can be obtained using inverse scattering theory [12] to yield fundamental and higher
order soliton solutions, approximate methods are needed to solve the remaining non-
integrable problems. Anderson et al. first studied the variational formulation of the
NLS equation by using linearly chirped Gaussians [36] and linearly chirped hyperbolic
secants [37] as trial functions. Using the Ritz optimization procedure, the first varia-
tion of the variational functional is made to vanish to first order within a set of trial
functions. Providing that good trial functions are used, the variational approach can
capture the physics behind pulse propagation in an optical fiber. Subsequently, he
and others applied the method successfully to study the effects of third-order disper-
sion [38], fourth-order dispersion [39], and linear birefringence [40], and phenomena

such as soliton collisions [41] and dark solitons [42].

4.3.1 Variational Formulation of the Nonlinear Schrodinger
Equation

The NLS equation can be written as

Ou 0*u

i5-=D5z+8 |ul? u, (4.7)
where
K 10%
D=5 =" (48)
§= T"Tzh“’“ , (4.9)
0 eff

u(z,t) is the complex slowly varying envelope of the optical field, A, is the modal
effective area in the fiber, i(= 1.05 x 1073 J-s) is Planck’s constant divided by 2,
wp is the soliton initial carrier (mean) frequency (rad/s), and for silica the nonlinear

index ny =~ 3.2 x 1072 m?/W.
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It is straight forward to show that, if the Lagrangian is given by

_ ou*  ,Ou 3u6u 4
1= (oG5 - Bt) - DG G+ gt (4.10)

the variational formulation

6//dedt=0 (4.11)

leads to the starting equation (4.7) via the Euler-Lagrange equation

0L d (0L d (0L oL
bur  dt (8u;‘) Tz (au;) Cout 0. (4.12)

4.3.2 Equations of Motion for the Pulse Parameters

In Ref. [36], Anderson used a linearly chirped Gaussian

2

¢ B + jb(z )t2+j¢(:v)] (4.13)

u(z,t) = A(x) exp [ 2a(@)?

as the trial function, where A(z) is the pulse amplitude, a(z) is the pulse width, b(z)
is the linear chirp parameter, and ¢(z) is the overall phase of the pulse. Substituting
the trial function in Eq. (4.13) into the Lagrangian and integrating with respect to ¢,

one obtains the averaged Lagrangian

+o00
(L) = Ladt

- -5 AZ—QA—(H[F) Azﬂ;i—:

3
dp
+(2In2 — 2) A? a—

dé
2
+24 a (4.14)

The equations of motion for the pulse parameters are computed from the reduced

Lagrangian as:

dA

- = 2DAb (4.15)
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da

7= = —4Dab {4.16)
db e D J A?

i = 4Db —&T-l-ma? (4.17)
dg _ D 5y2_,

i = w5 (4.18)

The equation of motion for the pulse width a(z) has the following physical inter-
pretation: the presence of linear chirp b(z) can cause the pulse width to increase or
decrease, depending on the sign of the dispersion (normal or anomalous) and the sign
of the chirp. In addition, the rate of pulse broadening or shortening, gf, increases
with inverse pulse width. The equation of motion of the chirp parameter b(z) tells us
that both nonlinearity (first term) and dispersion (second term) can cause a pulse to
be chirped.

In Ref. [37], Anderson et al. also tried using a linearly chirped sech
t : 2, .
u(z,t) = A(z)sech [MJ exp []b(:z:)t + j¢($)] (4.19)

as the trial function. Similarly, the equations of motion for the pulse parameters can

be computed from the reduced Lagrangian as:

dA A da

& _%;1—-'” 2 (4.20)
b= e (4.22)
Z—f = —%+§6A2. (4.23)

In the soliton regime where D > 0, we see that Eqs.(4.20)-(4.23) has the following
steady-state solution:
1 /2D

Ay = =\ (4.24)

boo = 0 (425)
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deo D o

dx = "'a—g; (4.&6)
or
1 /2D i\ -i%-
u(z,t) = —/ —sech (—) e %o, 4.27
(z,t) o\ s o (4.27)

which is exactly the N = 1 fundamental soliton solution [43]:
u(z,t) = sech(t)e9%/2, (4.28)

if one uses the normalization D = 1 /2,6 =1, and ag = 1.

Using the variational method with the hyperbolic-secant trial function to approx-
imate intra-loop pulse propagation, one obtains reasonable good agreement between
this method and the full numerics (Figs. 4-10 and 4-11). As expected, the variational
solution fails to describe the small pedestal in the output pulse, which accounts for
4% of the energy of the pulse. In other words, the pulse energy of the variational
solution is 4% less than that of the ful] numerics. Please note that the overall system
is still Hamiltonian — the total energy of the transmitted and the reflected pulses is

conserved assuming that the fiber is lossless.

4.4 Experiment

The experimental setup is shown in Fig. 4-12. A 980 nm diode-pumped soliton laser
and a DFB laser emitting 1.4 mW at 1550 nm are both amplified by a bi-directionally
pumped erbium-doped fiber amplifier. The amplified light consists of 400 fs pulses
(spectral width = 9 nm) with 0.16 nJ of pulse energy at 18 MHz and 8 mW of
Cw power at 1550 nm and 1554 nm. The 1554 nm peak is due to cw lasing in the
soliton laser. The Sagnac loop is constructed with a 50/50 coupler with 50 c¢m of
dispersion-shifted leads, 10.0 m of Corning SMF28 fiber with an anomalous disper-
sion of —23 ps? /km, and 10.0 m of Corning DSF fiber with dispersion of —2.3 ps? /km.
Since N is less than unity after the pulse splits at the 50/50 coupler, we use 2.5 m

of dispersion-compensating fiber (dispersion = +94.7 ps?/km) to compress the 2.7
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Figure 4-10: Comparison of the variational approximation and the split-step FFT
scheme, linear scale. The loop parameters are Dy = 1.0, D, =01, and L, = 5.8%.
The DCF parameters are D3 = DpcF = _40and Ly = Lpcr = 1.452p.
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ps chirped output pulse. The use of a three-port optical circulator makes simulta-
neous monitoring of transmitted and reflected light possible. To cancel the natural
birefringence of the fibers, the transmissivity of the loop is nulled by adjusting the
polarization controller for low-intensity cw input. The transmissivity characteristics
are measured for both pulsed input and cw input (Fig. 4-13). The switching energy
at the first peak is 93 pJ for 30% transmissivity for pulsed input. Since there is
good agreement between the experimental data and simulations (when coupling and
connector losses are accounted for), we expect the output pulse shape to be close to

what is depicted in Fig. 4-6.
50/50

400 fs pulses
Soliton coupler EDFA +CW
Laser \
DFB
Laser
1

10 m SMF28 Optical

Circulator

50/50
coupler

Reflection
Transmission

12 2.5m DCF

10 m DSF

Figure 4-12: Experimental setup: PC, polarization controller; EDFA, erbium-doped
fiber amplifier. The experimental parameters, stated in normalized units, are D; =
1.0, D2 = 01, D3 = —4.0, Ll = L2 = 5.820, and L3 = 1.4520.

The input and transmitted optical spectra are shown in Figs. 4-14 and 4-15 respec-
tively. The extinction (loss) for cw in the output, relative to that of the pulse output,
is 22 dB. Moreover, the pulse spectrum is modified in a favorable way — the spectral

width broadens from 9 nm to 14 nm, while the resonant solitonic sidebands are re-
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Figure 4-13: Nonlinear switching characteristics of the dispersion-imbaianced loop
mirror.
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jected by the loop, resulting in a shorter and cleaner pulse after propagation in a DCF
fiber. The broadening in the output spectrum is predicted by simulations as well. As
shown in Figs. 4-16 and 4-17, the output FWHM pulse width is compressed to 230 fs
after 2.5 m of DCF, assuming a sech shape (time-bandwidth-product = 0.40). The
suppression of the pedestal due to cw is evident in the log plot of the pulse autocor-
relations before and after the loop. In the future, polarization-maintaining couplers
and fibers can be used in constructing the Sagnac loop to improve the stability of its

operation, while rendering the use of the polarization controller obsolete.

20
10 1 DFB )
= cw spike
C% 01 N =z
O
o -10 -
2
-20 -
n°. N S~ Solitonic
= 30 - \ - sidebands
(8]
T -40 -
@
-50 + .
S < Simulations
'60 T + T - T
1500 1550 1600

Wavelength (nm)

Figure 4-14: Input optical spectrum at port I1. Solid, experiment; dotted, simula-
tions.

4.5 Further Work done by Other Research Groups

4.5.1 Applications in Laser Diode Pulse Compression

1. Y. Khrushchev and colleagues at the University of Bristol, United Kingdom [5],

achieved high-quality femtosecond pulse generation from a directly-modulated laser
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Figure 4-15: Output optical spectrum at port I2. Solid, experiment; dotted, simula-
tions.
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Figure 4-16: Autocorrelation traces of the input pulse (TPwHM = 400 fs, dotted
line) and the transmitted pulse (Tpywpp = 230 fs, solid line). Linear scale.
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Figure 4-17: Autocorrelation traces of the input pulse (Tpwyp = 400 fs, dotted
line) and the transmitted pulse (Tpywgp = 230 fs, solid line). Logarithmic scale.

diode by means of pulse compression in a nonlinear fiber, followed by nonlinear pulse
cleanup in a DILM (Figs. 4-18 and 4-19). Starting with 22 ps pulses at a repetition
rate of 250 MHz from a multiple quantum well InGaAsP/InP DFB laser diode, they
obtained 270 fs compressed pulses with negligible pedestals at the output of the
DILM. Their design is very similar to the MIT design. Instead of using two pieces
of ten-meter fiber segments, they use 15 m fiber segments. Since we know that by
lengthening the DSF segment, the peak of the switching curve will simply shift to
lower input power/energies.

Recently, they repeated the above experiment at a much higher repetition rate
of 10 GHz [6]. Moreover, they converted the resulting femtosecond pulse train into
multiwavelength high-quality picosecond streams by means of spectral-slicing in an
arrayed waveguide grating demultiplexer. The advantage of their method lies in the
fact that actively mode-locked fiber lasers, an alternative short-pulse WDM source,
are simply more complex, costly, yet are not as tunable in repetition rate. Their

multiple quantuin DFB laser is modulated at 10 GHz, producing linearly chirped 20
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Figure 4-18: Experimental setup of the high-quality laser diode pulse compression
scheme; after Ref. [5].

ps pulses. Following both linear and nonlinear compression, the compressed pulses are
cleaned up in a DILM, yielding pedestal-free 300 fs pulses, which are then spectrally
sliced using a 16 x 16 AWG with a channel spacing of 1.6 nm (200 GHz). As the
final output, sixteen 10 Gb/s channels of clean 5-ps pulses are available on the ITU

frequency grid (Fig. 4-21).

4.5.2 Applications in 640 Gb/s TDM Transmission

N. Nakazawa and K. Tamura at the NTT Optical Network Systems Laboratories
in Kanagawa, Japan, recently demonstrated a 640 Gb/s TDM transmission over a
distance of 60 km [7,8]. Data pulses at 10 Gb/s from a fiber laser are time-multiplexed
by a factor of 64 to 640 Gb/s using a planar lightwave circuit. The reader should
bear in mind that the bit period at 640 Gbit/s is only 1.6 ps, which is even shorter
than the 3 ps pulses available from the original fiber laser. In order for this kind
of time-multiplexing to be successful, a dispersion-imbalanced nonlinear optical loop
mirror is used to clean up the pedestals of the compressed femtosecond pulse train.
(Fig. 4-22).

The seed pulse source is a 10-GHz regeneratively mode-locked fiber laser (RMFL)
emitting transform-limited 3.5 ps pulses with a tuning range of 32 nm. The pulses

are amplified to an average power of 140 mW and then compressed adiabatically in a
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Figure 4-19: Autocorrelation traces of the signal at the input and output of the DILM.
Input pulse width = 22 ps; compressed output pulse width = 270 fs; the dash line is
the calculated autocorrelation trace of an ideal 270 fs hyperbolic-secant pulse; after
Ref. [5].
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Figure 4-20: Experimental setup. DCF = dispersion compensating fiber; DSF =
dispersion-shifted fiber; SMF = standard fiber; AWG = arrayed waveguide grating;
after Ref. [6].

dispersion-flattened dispersion-decreasing fiber (DDF). The autocorrelation trace of
the compressed pulses have a broad pedestal at —22 dB from the peak (Fig 4-23).
To reduce the pulse pedestals, the researchers use a dispersion-flattened and
dispersion-flattened NOLM for pulse cleanup. Dispersion flattening is needed so as to
maintain the broad 32 nm tuning range in the output. The optical spectra before and
after the DILM are shown in Fig. 4-23. The spectral spikes in the input are almost
completely extinguished. Likewise, the autocorrelation shows no sign of a pedestal
down to approximately —40 dB below the pulse peak, which is the measurement limit
of the autocorrelator. Furthermore, by operating the loop mirror at a regime where
the transmissivity is a decreasing function of input power, a self-limiting effect is ob-
served, which minimizes the intensity fluctuations in the pulse source. Previously, an
intra-cavity self-limiting effect was studied by [44] and then demonstrated by [45].
Since a train of 210 fs transform-limited and pedestal-free pulses is now readily
-available for ultra high bit rate TDM experiments, Nakazawa et al. first modulate
the pulses with a 2! — 1 PRBS, then time-multiplex the data up to 640 Gb/s, and
finally launch the high bit rate stream into a 60 km dispersion- managed transmission

line (Fig. 4-24). Using another NOLM to demultiplex the signal down to the original
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Figure 4-22: Experimental arrangement. Inset shows dispersion measurement of DFF
(solid) and of dispersion-flattened DI-NOLM (dashed). Lppr = 100 m, Lgprr = 1 m,
and Lpcr = 0.1 m. DFF = dispersion-flattened fiber; PC = polarization controller;
RMFL = regeneratively mode-locked fiber laser; HP-EDFA = high-power erbium-
doped fiber amplifier; after Ref. [7].
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10 Gb/s, they recorded a receiver sensitivity of —23 dBm at 10~'° BER.
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Figure 4-24: Generation and 64 x multiplication of a femtosecond pulse train, and the

transmission of a single TDM channel at 640 Gb/s over 60 km of a dispersion-managed
fiber link; after Ref. [8].
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Chapter 5

In-band Amplified Spontaneous
Emission Noise Filtering with a

DILM

In a communication system with in-line optical amplifiers, the presence of amplified
spontaneous emission (ASE) noise in the signal stream lowers the signal-to-noise
ratio (SNR) of the signal at the receiver, resulting in a higher bit error rate (BER) in
transmission. We demonstrate here the possibility of using a dispersion-imbalanced
loop mirror to perform nonlinear noise filtering on such a noise-loaded pulse stream.
Previously, a dispersion-imbalanced Mach-Zehnder was proposed as a device for pulse
processing [46]. As well, Olsson and Andrekson used a NOLM to filter mostly out-of-
band noise, where the signal bandwidth to the noise bandwidth is 1:500 [47]. In this
experiment, we will focus on the filtering of in-band noise, which an optical band-pass
filter is incapable of rejecting.

As an overview, we compare the features and drawbacks of various types of non-
linear loop mirrors in Table 5.1. Regarding cw switching, for a narrow bandwidth
signal, the effect of dispersion in the loop is negligible, hence the DILM remains non-
transmitting for all intensities. This is the unique feature of the DILM that gives
it a superior extinction ratio in comparison with other imbalancing schemes (gain,

asymmetric coupler). Fig. 5-1 illustrates the theoretical transmissivity of a 42/58
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Table 5.1: Comparison of various types of nonlinear optical loop mirrors.

Types of loop mirror | Mechanism for imbalance Drawbacks

NOLM asymmetric coupler linear leakage,
cw switching

NALM asymmetric location EDFA adds ASE,
of gain medium cw switching
Loss-imbalanced asymmetric location cw switching
loop mirror of loss element
Dispersion-imbalanced asymmetric dispersion 77
loop mirror map

NOLM for cw inputs.

5.1 Loop Design

We assume that the input pulse to the DILM has a hyperbolic secant shape u(0,t) =
Nsech(t). Since dispersion varies along the loop, the normalization is done at the fiber
segment with the largest amount of dispersion, i.e., Dy = 1 and |D,| < |D,|. Since
the nonlinear Schrédinger equation is self-similar: for A # 0, z2 — A2z, t — At, and
u — u/), the dispersion-imbalanced loop mirror studied in a previous experiment
with femtosecond pulses [9, 10] can be easily scaled so that it will now work with
picosecond pulses, which are the natural bits for high bit-rate soliton transmission

experiments [48,49]. In other words,

T T2

20 = EZC X ﬁ ’ (51)

73



in

Figure 5-1: Theoretical transmissivity of a NOLM, built with a 42/58 coupler, for
pulses and cw input; E;, = N2 and Er = TN2

and

By - (5.2)

Since the switching energy scales with the inverse input pulsewidth, it is lowered
substantially for communication systems with picosecond pulses. For example, the
pulse source available for our experiment can generate hyperbolic secant pulses with
a FWHM of 15 ps, allowing the switching pulse energy to reduce 25 times to 4 pJ.

Other specifications for the design are: i) the average optical power available (after
post amplification) in the receiver is 12 - 14 dBm, or 15.8 - 25.1 mW, ii) the input
pulses are assumed to have a hyperbolic secant shape, and iii) the material loss in
fiber is 0.2 dB/km.

The design parameters are chosen to be D; = 1.0, D, = 0.5, L; = 0.52, and Ly =
0.45zp, as a result of conducting extensive numerical simulations using parameters

that are physically realizable.

74



5.2 Simulations of a Loop Mirror Design with a 10

Gb/s Data Pattern

Using our design, the propagation of a data pattern (100110100) at 10 Gb/s through
the dispersion-imbalanced loop mirror is simulated using a split-step Fourier algorithm
using 1024 temporal steps. The pulse width is assumed to be 15 ps FWHM. Note that
in this design, the input pulses are N = 2.2 solitons (with respect to the input fiber
where D = —4.60 ps?/km). Fig. 5-2 shows the input, transmitted, and reflected pulse
patterns on a logarithmic scale. One can conclude that the pulse-to-pulse crosstalk
induced by the loop mirror is minimal (greater than 40 dB).

Next, additive, white gaussian noise with zero mean and normalized variance 0.04
is included in the input data. Fig. 5-3 plots the intensity of the input, transmitted,
and reflected patterns on a logarithmic scale. The noise is cleaned up substantially in
the output, where the optical SNR increases by about 14 dB. Thus, the loop mirror

design can function as an optical regenerator in a transmission link.

5.3 Thresholding

Before one can study how the dispersion-imbalanced nonlinear optical loop mirror,
which is regarded as an non-instantaneous thresholder, combats ASE noise, one should
consider the simplest case of an ideal instantaneous intensity thresholder. As shown
in Fig. 5-4, an ideal thresholder having a sharp step-like response can open up the
“eye” of a noisy stream of ZEROs and ONEs, provided that the threshold is set
optimally. The distributions of the ZEROs and ONEs in the output signals will
be delta functions. Although\the Q@ factor now becomes infinite (i.e., the “eye” is
perfectly open), the bit error rate of the system at this point remains the same,
because the tails (outlying members) of both distributions are incorrectly restored to
the wrong logic level.

Before we explain why the DILM is a non-instantaneous thresholder, we need

to point out the fact that a coherent solitonic (N = 1) pulse can propagate while
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Figure 5-2: Simulated input, transmitted, and reflected pulse patterns. The input
pattern is (100110100).
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Figure 5-3: Simulated input, transmitted, and reflected pulse patterns. The input is
loaded with zero-mean additive white Gaussian noise with a normalized variance of
0.04.
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maintaining its shape (top); an incoheren: noise burst having the same energy will
simply disperse (Fig. 5-5). Therefore, if a false ZERO (an incoherent pulse having
a significant amount of energy entering the DILM, it will disperse rapidly inside the
loop in both directions, resulting in very little leakage in the output. In other words,
the DILM can correct false ZEROs and improve the BER. The DILM is also a non-
intensity thresholder in the sense that any cw light of sufficient energy will be blocked
by the loop. Detailed split-step simulations of coherent and incoherent pulse inputs

into the DILM are shown in Fig. 5-6.

N = 1 soliton

Incoherent Burst

-

Figure 5-5: A coherent solitonic (N = 1) pulse can propagate while maintaining its
shape (top); an incoherent noise burst having the same energy will simply disperse.

5.4 Experiment

The experiment setup is shown in Fig. 5-7 [50]. A 10-GHz pulse train, where the 15 ps
pulses have a time-bandwidth-product of 0.35 at 1550 nm, is modulated at 10 Gb/s
by a lithium niobate amplitude modulator with a 23! —1 pseudo-random bit sequence.
As much as 20 dBm of average optical power is available when the data-encoded pulse

train is post-amplified by an erbium-ytterbium co-doped fiber amplifier. The noise
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Figure 5-6: Simulated propagations of coherent and incoherent pulse inputs into the
dispersion-imbalanced loop mirror. For a coherent input pulse of sufficient energy,

a coherent output pulse emerges at the output; on the other hand, incoherent noise
bursts with the same energy will be greatly attenuated at the output.
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source consists of two erbium-doped amplifier stages in cascade, into which a 1 nm
band-pass filter is inserted between the two stages to lower the noise bandwidth and
increase the noise spectral power simultaneously. As a result, 8.3 dBm of ASE noise
is generated at the signal wavelength with a bandwidth of 1.3 nm. The signal and
the ASE noise are both launched into the loop mirror via a 50/50 coupler followed by
a three-port optical circulator. One advantage of using this noise-loading technique,
compared with the alternative of amplifying an attenuated input signal, is that the

levels of signal and noise can be independently adjusted and measured.

EDFA 50/50

Coupler

Pulse
Source

Modulator

Input
Monitor Port

1nm
EDFA BpPF EDFA Optical

Circulator

Reflected
Port

50/50

c°upler Lightwave

Receiver

Transmitted
Port

Figure 5-7: Experimental setup: PC, polarization controller; EDFA, erbium-doped
fiber amplifier; BDF, band-pass filter.

The dispersion-imbalanced loop mirror is constructed with a 50/50 coupler, 12.62
km of Lucent TrueWave fiber with an anomalous dispersion of +3.52 ps/(nm.km),
and 11.36 km of TrueWave fiber with an anomalous dispersion of +1.68 ps/(nm.km)
at 1550.0 nm. The losses of the fiber are measured to be 0.201 dB/km and 0.197
dB/km, respectively. To suppress the photoelastic effect, which causes the fiber to
act as an acoustic sensor [51], the two fiber spools are housed in hermetically sealed
aluminum containers. We deviate from our previous design to operate in the pulse
compression regime in order to reduce the generation of dispersive waves, which can

introduce crosstalk in the output signal. The optimal loop design is obtained from
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running simulations over a large set of possible parameters. In normalized units,
the experimental parameters are N = 2.2, D, = 1.0, D, = 0.5, L, = 0.52, and
L, =~ 0.45z3. The input, and the transmitted signal through the loop mirror, are both
fed to an optically pre-amplified lightwave receiver for bit error rate measurements.
The receiver, detailed in Fig. 5-8, exhibits a back-to-back sensitivity of -38.7 dBm
(105 photons/bit) at 10~° BER for intensity-modulated RZ signals at 1.5 pm. It
consists of an optical pre-amplifier, a 1.1 nm band-pass filter to provide rejection
of out-of-band noise, an optical saturating amplifier for power limiting, an optical

attenuator, and a pin detector.

Variable
1.1 nm Attenuator
BPF
. Bit Error
pin Rate Tester
Pre-amplifier Saturating
Amplifier
Clock
Recovery

Figure 5-8: Optically pre-amplified receiver.

To minimize the effect of natural birefringence in the fiber, we null the loop trans-
mission at low input power by adjusting the polarization controller. For pulse input
without noise injected, the transmitted power as a function of input power is mea-
sured and shown in Fig. 5-9. The switching energy corresponding to the first peak
is 4 pJ, and the output FWHM pulse width is shortened to 9 ps at that point. The
agreement with numerical simulations, computed with a split-step Fourier algorithm,
is good. The leakage at low intensities is 0.5%.

Without noise loading, the measured BERs through the loop mirror at 28 mW of
input power is shown in Fig. 5-10 as circles. When compared to the BER without
the loop mirror (squares), one can see that the insertion of the loop mirror causes no

penalty in receiver sensitivity. Furthermore, when in-band ASE noise is added to the
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Figure 5-9: Switching characteristics of the dispersion-imbalanced loop mirror.
Switching energy at the first peak is 4 pJ for 15 ps pulses.
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system such that the input optical signal-to-noise-ratio decreases from 38 dB to 15 dB
in 0.2 nm of bandwidth, the degraded sensitivity of —37.0 dBm measured without the
loop mirror (triangles) can be improved to —37.7 dBm (inverted triangles). Closer
examination of tie loop mirror operztion reveals that its noise-canceling ability is
bias-dependent. In Fig. 5-11, the sensitivities withnut noise-loading through the loop
mirror are shown as squares. For reference, the transmissivity as a function of input,
power is also plotted. One can see that other than when operating between points
C and D, propagating a noise-free signal through the loop mirror incurs a penalty in
sensitivity. When noise is added, the only bias range where there is an improvement
in sensitivity is 25-32 mW, around point D, where the transmissivity is decreasing
with increasing input power. Naturally, the BER curves in Fig. 5-10 are measured at
point D. The eye diagrams obtained at a received power of —37.7 dBm at points A
and D are shown in Figs. 5-12 and 5-13. The @ values for all seven cases (points A
through F) are 2.3, 3.2, 4.3, 5.8, 4.8, 3.2, and 5.2, respectively.

The explanation for the bias dependence of sensitivity can be found from saturable
absorber theory. An artificial saturable absorber encourages high intensitics to build
up from noise. Likewise, at bias points A and B, any fluctuations in the input pulse
will be amplified in the output, causing the eye to shrink, as shown in Fig. 5-12. On
the other hand, reverse saturable absorbers have been used to counteract pulse-to-
pulse variations [44,45]. It is in this stabilizing regime (point D), where transmissivity
decreases with increasing intensity, that the loop mirror keeps the output pulses quiet.
and cleans up the noise between them temporally. Alternatively, it can be concluded
from Fig. 5-9 that the best noise suppression should be in a region where the output
power is almost insensitive to the variation of the input power (between 24 mW and
33 mW of input power).

Rayleigh scattering is a fundamental fiber loss mechanism arising from random
density fluctuations frozen into the fused silica during manufacturing [52]. These
fluctuations in the refractive index scatter light in both the forward and backward
directions. Although the amount of back scattered light in a typical piece of fiber of

sufficient length is very small (about -30 dB of the input light), due to the interfero-
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Figure 5-10: Measured bit error rate curves as a function of power received at the
receiver.
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Figure 5-11: Penalties in receiver sensitivity through the loop mirror as a function
of the loop mirror operating bias. The bias points A and D are also referenced in
Figs. 5-12 and 5-13. The transmissivity of the loop mirrer as a function of input
power is also shown.
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Figure 5-12: Eye diagrams obtained at a received power of —37.7 dBm, at the worst
operating point (point A) with in-band noise of bandwidth 1.3 nm and average power
5.3 dBm added to the system.
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Figure 5-13: Eye diagrams obtained at a received power of —37.7 dBm at the best
operating point (point D) with in-band noise of bandwidth 1.3 nm and average power
5.3 dBm added to the system.

87



metric nature of the loop mirror, this effect is the limiting factor in determining the

maximum achievable SNR. in the output of the loop mirror.

Test Device
cw —> 3dB test arm - : :
source ! ¥ E
N \ e.g.,pigtailed
terminated connector photodiode
end or
Power | fusion splice
Meter | ¢

Figure 5-14: Experiment setup for measuring the total return loss (backward Rayleigh
scattering included) an optical component; after Ref. [2]

A backward Rayleigh measurement was performed on the TrueWave fiber by dis-
connecting the two fiber segments inside the loop mirror and measuring the back-
scattered light via a 50/50 fiber coupling. Fig. 5-14 depicts the general experimental
setup for measuring the total return loss, which incluc~s the backward Rayleigh scat-
tering, from a device. To minimize the Fresnel reflection from the end facet, which
can be as high as 4% if untreated, the tiber end is cleaved and polished with a suf-
ficient angle. In addition, reflectivities from fiber connectors can be made to be less
than —60 dB if angle-polished connectors are used.

The results shown in Fig. 5-15 show that the amount of Rayleigh backscattering
is —29.3 dB of the incident light. Since the ratio of scattered light to incident light
does not depend on the input power over the entire measurement range, one can
conclude that the amount of stimulated Brillouin scattering is negligible, which is not

surprising since the 15-ps input pulses are sufficiently broadband.
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Figure 5-15: Rayleigh backscattering measurement. The amount of Rayleigh
backscattering is —29.3 dB of that of the incident light.
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Chapter 6

Conclusions and Future Work

This chapter summarizes this thesis. In Chapter 2, the photon statistics of ZEROs and
ONE:s in a optically preamplified receiver are measured and are found to agree with
the predictions of quantum photodetection theory. In Chapter 3, a novel nonlinear
pulse filter is described and demonstrated. It has since been used in cleaning up
pulses from a fiber laser in 640 Gb/s TDM transmission experiments, as well as
used in generating clean and tunable multiwavelength WDM sources at 10 Gb/s. In
Chapter 4, the pulse filter is used to clean up in-band ASE noise in a 10 Gb/s R7
signal.

6.1 Thought no. 1

So far we have established excellent agreement between theory and experiment for
the photon statistics of ZEROs and ONEs for the cw case only. We found out that,
in real-life transmission expe-iments, deleterious effects such as i) detector ringing,
which causes intersymbol interference (ISI), and ii) pattern-dependent effects, could
broaden/smear out the probability distributions of the ZEROs and ONEs. These
effects together conspire to prevent us from observing the quantum-limited receiver
sensitivity of 38 photons/bit in our best receivers (according to the specifications,
some optical preamplifiers do have a noise figure as low as 3.5 dB). Although there

have been some numerous effort to model these non-ideal behaviors [53-63], these
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models often fall short of predicting real system behaviors because

1. the number of theory/simulation papers outnumbers the experimental ones by

at least 20 to 1. help

2. when trying to model ISI while keeping the calculations tractable at the same
time, most researchers often work with a 3-bit pattern (with 2* = 8 combina-
tions), which, in my opinion, is inadequate because we are dealing with, at the

minimum, a 27 — 1 or a 2!® — 1 pseudorandom sequence in the lab.

3. these undesirable effects are incorporated into the models in the probability
generating function (PGF) space, which do not yield closed-from expressions in
probability distribution space. In other words, it may be simply easier just to

run the experiments directly instead.

Based on my observations above, I see a clear need in continuing work on bridging
the gap between theory and experiments in the studying of real-life high-bit-rate

communication systems.

6.2 Thought no. 2

Even with the state-of-the-art 10 Gb/s x 64 channel dense WDM systems reported
at OFC 99, we are still underutilizing the available EDFA bandwidth. It seems that
going from 10 Gb/s (OC-192) to 40 Gb/s (OC-768) in each channel is imminent.
Since Nakazawa and Tamura demonstrated the short-haul terrestrial transmission
of a single TDM channel at 640 Gb/s, made feasible with the pulse-cleanup DILM
device, we should take a closer look at some of the higher-order pulse propagation

effects in a DILM. One should

1. study the effect of Raman self-frequency shift (RSFS) as the steady-state pulse
inside the loop can be as short as 230 fs. If the amount of RSFS is significant,
the two counterpropagating pulses can have very diflerent center frequencies

and group delays (!!) after traversing the loop once.

91



2. study the effect of four-wave mixing between the counterpropagating streams.
This effect, already observed by Tamura and Nakazawa [7] becomes more sig-

nificant as the duty cycle of the pulses increases.

3. study the effect of third-order dispersion (TOD) on intra-loop pulse propagation.
Similar to RSFS, TOD can downshift the center frequency of a pulse and cause

a change in its group delay as well.
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Appendix A

Normalizing the Evolution

Equation

The material in this appendiz was written by Dr. John D. Moores and
Dr. Farzana I. Khatri back in 1988. It also appeared in Dr. Khatri’s
Ph.D. thesis [64].

A.1 Master Equation with Group Velocity Disper-
sion

This is a summary of how to normalize the Master Equation. Note that it is nor-
malized to bright solitons in media with anomalous group velocity dispersion (GVD)
(and positive Kerr effect), and therefore, 3, = —|f,|.

The unnormalized Master Equation is as follows:

ou ou . g 1 02
gz-+05t— = {(z¢+g—l)+(9—§+m)@}u
|B2] 8 B3 & py 0

+ {1—2—555 + 58 +zﬁ@} U — iCRo3

+ {(73 + i83)[uf® + (5 + ids)|ul" } u.

Olul®
ot

u (A.1)

Here u is the complex field, z is distance, t is the (possibly shifting) time coordinate,
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o is the slip with dimensions of inverse velocity (this term can be scaled out of a single
nonlinear Schrodinger equation via the shifting time coordinate, but appears in the
coupled Master equations for two polarizations when the medium is birefringent -
furthermore, if one of the two coupled equations is in the coordinate frame moving
with its pulse, then the other equation has a slip 0 = £An/c, where An is the index
of refraction difference between the two polarization axes, and c is the vacuum speed
of light - note that the beat length L, = An/}), 9 is a phase shift per length, g is the
(saturated) linear gain per length, [ is the linear loss per length, €, is the spectral
half-width at half maximum intensity of the (homogeneously-broadened) gain, Q; is
the spectral half-width at half maximum intensity of the net passive (static) filtering,
Ly is a characteristic length for Qf, B, m = 2,3,4 are the mth-order coefficients of
group-velocity dispersion, cg is the effective Raman relaxation time, <3 is the third-
order saturable absorber gain, d; is the Kerr coefficient (self-phase modulation), -ys is
the fifth-order saturable absorber gain (usually negative, and therefore a loss), and
85 is the fifth-order self-phase modulation coefficient.

To normalize, first let

t — t,7

z _> z-n ZC

where the normalized time and space variables are ¢, and z, respectively, 7 =
0.56729632855 TRWHM> TFWHM 1S the pulse width at half-maximum intensity, and
2. is a characteristic length scale which shall be determined below, where we normal-
ize the dispersion coefficient. The choice of time scale is such that normalized sech
(%) corresponds to a pulse whose FWHM is NTpywp, in real units.

Next, you high school sophomores should use the chain rule and figure out deriva-

tives like this:

ou _ Oudm _10u
0z 0z, dz 2,0z,
Ju ou dﬁ _ 1_6_u

ot ot, dt Tot,
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Similarly, with the second and third derivatives,

Pu 9 (10u\dt, 10%
oz~ ot (T Oty ) T 2o
u 1 83u

=

Making these replacements, the Master Equation becomes:

ou o Ou , g 1 0*
2.0z, + TOt, {(u/)+g -0+ (Qf,'r2 + L,Q%Tz) ¢_9t_,21}u
Bo| O B3 B . By O
+ { |2 2|6t2 e—aat—*WaT}"
CR63 6|u|
T ot "
+ {(rs + i83)[ul® + (75 + ids)ul*} w.

Next, we divide out {f,|/72 so that the normalized dispersion is 1/2. This gives:

i au+0'r6—" = {(i1,b+ —1)72+< I - )6_2}u
Balze 02n  |Bal Ot 9716 T\l T L0208, ) o2

1 92 Bs O3 ps &
+ {z§a7+6r|ﬁ2|8?+ "2ar2i5, ot |
B cR63'r6|u|

Bl ot "

v o+ BT + 8 Tl

Now, if we set the coefficient for du/0z, to 1, we have that z. = 72/|B,|. Note that

22,
Ze = —

where 2, is the soliton period. We would also like to normalize the Kerr coefficient

to unity, for which we choose u = u,/\/832.. Finally, we get:

au,, oT Ouy, —{(W’"' _1)7'2+( 9_ . 1 )6—2}u
Bz | 16| Ot TR GETARE R A vl
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Thus, we can define normalized parameters, so that the normalized equation is of

the same form as the unnormalized equation, Eq. (A.1). Thus,

0z
Op =
T
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gn = 02
l, = lz
Ly
Lip, = —
f, Ze
Qgn = QT
Qpn = Q7
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A.2 Master Equation near Zero Group Velocity
Dispersion Point

This is a summary of how to normalize the Master Equation at a zero-group-velocity-
dispersion (zero GVD) point.

The unnormalized Master Equation, with zero GVD, is as follows:

o ou . g 1)
7rom = w0+ (G o)

B PO . . O

* {63t3+’24at4 N

+ {(’)’3 +1483)[ul® + (75 + i55)|"|4} u.

Here u is the complex field, z is dictance, ¢ is the (possibly shifting) time coordinate,
o is the slip with dimensions of inverse velocity (this term can be scaled out of the
equation via the shifting time coordinate, but appears in the coupled Master equations
for two polarizations when the medium is birefringent), 1 is a phase shift per length, g
is the (saturated) linear gain per length, [ is the linear loss per length, , is the spectral
half-width at half maximum intensity of the (homogeneously-broadened) gain, §2 is
the spectral half-width at halt maximum intensity of the net passive (static) filtering,
Ly is a characteristic length for Q, 8, m = 3,4 are the mth-order coefficients of
group-velocity dispersion, cg is the effective Raman relaxation time, 3 is the third-
order saturable absorber gain, 3 is the Kerr coefficient (self-phase modulation), s is
the fifth-order saturable absorber gain (usually negative, and therefore a loss), and
ds is the fifth-order self-phase modulation coefficient.

To normalize, first let

t '——> tnT

Z — 2,23

where the normalized time and space variables are t, and z, respectively, 7 =
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0.56729632855 TRWHM> TFWHM is the pulse width at half-maximum intensity, and
23 is a characteristic length scale which shall be determined below, where we normal-
ize the dispersion coefficient. The choice of time scale is such that normalized sech
(%2) corresponds to a pulse whose FWHM is N7pyyy), in real units.

Next, you high school sophomores should use the chain rule and figure out deriva-

tives like this:

Qu _ Oudam 10u
0z Oz, dz 2302,
Ju Ou dt, 1 @

ot ot, dt  TOt,

Similarly, with the second and third derivatives,

0%u 0 (1 6u> dt, 1 0%

@ = ai\ron) @& - moE
u 1 Bu

- Ta

Making these replacements, the Master Equation becomes:

2
Ou +g-a—E = {(i¢+g—l)+( J + . )8 }u

230z, T Oty Q272 LpQ37? B_t,zl
ﬂS 63 . ,34 64 ,6363 3"11,]2
* {67-3 a2 " ‘urian (YT T A

+ {(7s + i83)[ul* + (75 + 6s)[ul*} u.

Next, we divide out |8s|/73 so that the normalized third-order dispersion is 1/6. This

gives:

3 3u+a1'26u {(iT/"*' l)’r3 +( gr_ T )62}
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Now, if we set the coefficient for 8u/dz, to 1, we have that z; = 73/|83|. We would
also like to normalize the Kerr coefficient to unity, for which we choose u = u,/v/d323.

Finally, we get:

3u,,+0126un _ {(i¢+g—l)T3 +( gr_ . _ T )6_2}u

0z,  |Bsl Bt, |Bs| Q2|54 Lfﬂ}lﬂal oz ™
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Thus, we can define normalized parameters, so that the normalized equation is of

the same form as the unnormalized equation, Eq. (A.1). Thus,
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