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ABSTRACT

An outline for a self-consistent theory of finite e universal mode

turbulence is given. Saturation results from resonance broadening of the

electron response due to magnetic shear. Electron diffusion, for

S> m e/m , is due to the magnetic part of the fluctuations. The diffu-

4 2 2
sion coefficient, D = .1 (T /(T + T )) (m /m S )(Ls/Ln) x v p 2/L'e 1 e) e i e s n ii n

scales inversely with density, is independent of magnetic field, and is

in excellent quantitative agreement with observations on the Alcator toka-

mak.
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One of the principal theoretical goals in tokamak research is the

development of a self-consistent turbulence theory for the short wave-

length fluctuations thought to be responsible for anomalous transport.

This paper presents a resonance broadening turbulence theory for the

finite $ universal instability. An approximate analytic solution of the

coupled, non-linear, eigenmode equations is obtained. The accuracy of

this solution is verified by numerical computations. The resulting for-

mula for the anomalous electron thermal conductivity, eq. (14), has many

similarities with experimental observations, including absolute magnitude,

and scaling with density, temperature and ion mass. For typical tokamak

regimes where 6 > m /m, the calculation constitutes an example of a self-

consistent theory of stochastic magnetic fluctuations.

Until recently,2 most turbulence theories ignored shear in the equili-

brium magnetic field. Without shear, turbulence mainly effects the ions.

The basic saturation picture, as developed by Dupree, balanced linear

L NLelectron growth, y e, against nonlinear (turbulent) ion damping, y . Taking

Y = k2 D is the basis for the y L/k2 estimates of the anomalous diffusion

coefficient. However, recent theory has found that yNL << k D, because

the ion-wave interaction is weak for low frequency modes, and consequently,

for tokamak parameters, that ion non-linearity is not a viable saturation

mechanism.

With shear and because of their rapid mobility along the field lines, elec-

trons are the species the most strongly effected by turbulence.2 Here, the

S
ions cause damping linearly, due to the shear, y1 . Electron growth is

Nt
modified by shear induced resonance broadening, to y . Saturation,

NL S
Ye = y , can occur at low turbulence levels, consistent with observations.



3

In a sense, the main point of this paper is to show that shear induced

resonance broadening is applicable to the electromagnetic problem and pro-

vides an effective mechanism for the saturation of such instabilities.

2
Of course, as before, the shear also produces the instability due to the

2same effect for finite radial diffusion, D "' V eipe

The specific example considered here is basically a drift wave, although

finite a does modify the shear damping in an important way, and when

S> M e/m , most of the transport is due to the magnetic part of the fluc-

tuation.5

We consider a cylindrical tokamak, with equilibrium field com-

ponents B = B e + B (r)e . Since 8 4rnT /B << 1, the compressionalo -z 6- ae e

mode of fluctuations may be neglected, and it suffices to consider the parallel

component of the vector potential A . Expanding the modes in a Fourier

series in poloidalk-nd toroidal angle "' expfime - in - iwtl, the parallel

wave vector is given by k11  (m - nq)/Rq, where q = rB 0RB is the safety

factor. For each mode, the rational surface is at r , such that q(r mn = mn,

and we let x = r - r be the distance from the rational surface. Then

k = k x k x/Ls. As in linear theory the modes have a definite parity

with respect to x. The drift wave parity considered here is P even,A odd,

so that E = -ik 1 (D - T) is odd, where T, defined as A w/k 1 c, is even

in x.

The non-linear electron response to 0 and T may be computed in the

manner indicated previously.2 Writing the electron fluctuation as

e (1 w*ef = -- F -- -- )w +he, (1)
e T F

e

where the first term is the adiabatic response (or the k 11 v -Co limit of

the drift kinetic equation), the result of this "renormalization" is equiva-

let t 6

lent to computing h efrom the diffusion equation.
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2  2 e. '
-i(w - - Dd /dx ] he = FM (- w*e)(0 - T ) (2)

Now D contains magnetic as well as electrostatic contributions,

2 2
c k 1 2 v 2

D =$ - - A11  j R(w - k v ) , (3)

m,n B m c

where R = J dt exp[i(w - k Iv,)t -.1 (11 v ) Dt 3 s a turbulently broadened

0 'V c "V 2 1/2
resonance function. Note, since A =-- (see eq. (10)), where vA = (B /4 rnmi)

2 2 A
that when ve /v > 1 or a > m /m , diffusion due to the magnetic part

A e e i

of the fluctuations is dominant. The physical properties of shear induced

resonance broadening can be inferred directly from eq. (2) . It is derived

by detailed renormalization techniques, but represents also a plausible

physical model.

Equation (2) is appropriate when the particle orbits in the presence

of the fluctuations exhibit the stochasticity property, thus justifying diffu-

sive behavior on the spatial scale of a wavelength. To verify the stochas-

ticity property we examine the orbit equations representing the deviation from

the linear or unperturbed trajectory

d6r i = ck 6 1
dt "r -n B(-mn -A ) sin(me - n$ - wt)rmn c n mn

(4)
It;

v
d66 _ dlnq 6r +
dt Pq dr r

where 6 = - t + 66, o = Pt, and n6, of order r m6e, is neglected.

8
The shearless contribution to the 6 fluctuation is small and can be discarded .

For small enough amplitude these orbits generate chains of resonances, or
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islands, in the r 8 phase space, each chain centered at the radius given

by w = k v11 . In the electrostatic limit, e < m / the radial island

widths are

ES L e 1/2,

S  e e Te

while for 8 > m e/mi when the perturbation of the orbits is mostly magnetic,

the islands, for the drift wave parity, have width5

A = x Ls rmn 1/3
I k BW~ (6)

.I

where x to be defined shortly, is essentially the Alfven layer thickness.

The spacing between island chains is basically a geometric condition giving

the distance between zeroes of m - nq(r) (ignoring the frequency in

w - k 11 v = 0). For modes (m,n) and (m + V, n +n), the distance is given

by dq/dr6r = (yn - nm)/(n(n + n). For mode numbers in the 102 range which,

as we find, dominate the spectrum, the numerator Un - nm can be made of

order one, so that approximately,

ARES ~ r/(m dlnq/dlnr), (7)

as noted previously 1. The Chirikov condition for stochasticity A ES/AREI RES

or A / A > 1, will be satisfied for electrostatic fluctuation levels
I RES

on the order of e n/Te 10, or magnetic fluctuations of rmn /B -- 10 .

Thus, for these high mode number fluctuations the rational surfaces are

packed very densely together and the stochasticity condition is, for all

practical purposes, always satisfied.
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Returning to the eigenmode problem, the electron density and current

fluctuations can be computed from eq. (2). Finite gyroradius ion fluctuations

are computed from linear theory. Combining these, using quasineutrality

4w *
n n and Ampere's law -V2 A -= $ (J + i leads to

- = (d - 0) [A - - + exj), (8)

dx

i2kc 2 +
b) k = ( - - [A - - 22 + e (I+I )]. (91

dx vA k C

We have retained the standard notation wherever possible, defining

b = k 2 2, r (b) = e-b I (b), = T /T, x = y/k v , x - k c

d = (r0 - r 1 )(T + We/w), = (1-r r- r1 ), A= d 1 [l+T(l-r )-r ow*e ],

2 = d 1 (T + W /w) r (W* /r) 2 (Ln/Ls) 2, k' a k /Ls

a (xI) / 1XI = (W - W )d1 (x /IxI)Z((x +ixc /IX).

Note that the underlaying electromagnetic modes persist in the presence

of stochasticity, at least for the odd parity of A 11

To simplify the solution to Eqs. (8) and (9) we use an approxi-

mate algebraic relation between 0 and * (obtained by interpolating

between the asymptotic relations) in Eq. (8) to give a self-adjoint

equation for 0. The approximation is based on the following argu-

ment.9 We are concerned with what is basically a drift wave, and the

principal dynamics are



7

described by eq. (8). The primary finite beta effect (as is known from previous

work19 is the reduction of the parallel electric field, or 0 - p, within

the Alfven layer, xA = w/k vA, due to inductive effects. To represent this

algebraically, note that $ + 0 as x + 0 (this follows from eq. (9), by

requiring finiteness of the right hand side). The large x behavior is found

by combining (8) and (9) to give d2 /dx2 -E0 = (k c/wd )(v /c2)(d2/dx2 - b)

x k c*/w. As x -+ -, the derivative terms are dominant, implying * 'k x 2d /x2
I I

so by a simple interpolation

t2" / (x 2 + x 2 (10)

2 2
where x = x d . The approximate eigenmode equation is then obtained from eqs.

(10) and (8). 2 2 2 2
2 x (A - y x + a ) + (x2

e (D8 = 0 (11)
- 2 2

dx x + x 2

2
Equation (11) passes to the usual electrostatic equation as x + 0.

A quadratic form may be constructed by multiplying eq. (11) by D and

integrating over x to give

J x 2 2 x2 22 e 2

0 = dx 2 + x 1
x ~ x + x (12)

Requiring the first variation of S to be zero gives eq. (11). Since we are

interested in the dispersion relation near saturation, we pass to the limit

1 ' 2 -1/3 2 1 1-1
' =W[ (k ) D- < 1 of the electron response , or ae = i r(-)d

x (W - W )TC. Taking the normalized trial function to be 0 = (ahl/4 ex(-a2/2),

with a the variational parameter, and doing the integrals for Vax < 1, yields

S = a/2 - y 2/2a + v Ex y/ + A + a e, which again reproduces the electrostatic
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form when x + 0. The parameter a is determined by SS/6x = 0 - 1/2 + 2/2a2

+ Vx a-1/2 /2. Dominance of the first two terms gives the Weber trial function.

However, when wx 2 > P, or Se > (L n /Ls) (1 + T) Tr -1 (8b)-1/2, which is typi-

cally satisfied for tokamaks, the last two terms dominate and we obtain

al/2 2 / x as the variational parameter. Here eT is chosen

uniquely as the cube root of -1, by applying the outgoing wave boundary condi-

tion. The dispersion relation now follows as,

3/2 (13)
S - - ( T x 2/3 313/2 2/3 1 1 -1l13

S = 0 =4(5x V) + A+i [ 2xP) + ir(-) d (w - w*)TI'

Note that the primary finite a effect is to modify the shear damping. Finite

x pushes out the eigenmode, enhancing the outward convection of wave energy;

the resultant damping involves a geometric mean of x and i.

At marginal stability, the frequencies are real, and the real and

imaginary parts of eq. (13) give the frequency, w = w(k ), and diffusion

coefficient, D = D(k ), respectively. Here D(k ), which is interpreted as

the amount of diffusion necessary to stabilize mode k , is given by

T e 4 m e L s 2 v P12 v
D = .07 ( ) ( ) (14)

Te+Ti ' e n Ln

This is not yet the transport coefficient since it depends on the wave parameter,

k . Actually ion collisions, as well as higher order spatial turbulent

broadening effects and ion non-linearities act to give

additional damping for b > 1, with the consequence that D(b) will have a maxi-

mum near b = 2. The dependence of b on plasma parameters will effect the

scaling of D very weakly. For convenience,

in practical applications, we simply put b = 2 in eq. (14) which gives the

formula quoted in the abstract.
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The D of eq. (14) is an electron test particle diffusion coefficient.

When inserted in the electron kinetic equation, appropriately using the ambi-

polar potential12, one can obtain transport equations in the usual way.

The transport equations in Ref. (12) apply to the present case when

a > m /mi. For crude estimates D equals the electron thermal
e e i*

conductivity, Xe, and particle diffusion is not anomalous (ion diffusion

being slow for kI p  > 1).

Rewriting (14) to display the scaling (with lengths in cm. and tempera-

tures in eV, V the ion mass in units of the proton mass), gives

Dl 16  1 T e T 3/2 L 2
D = 2.65 x 1016 / T T(5np1/2 T T +T I T [Li L n (15)

which is independent of magnetic field. For T = Ti, eq. (15) scales

unfavorably with temperature, but if the dependence on T = T IT is

considered, (15) is consistent with recent observations on PLT13 where

confinement improved with increased T . The behavior with ion mass,

D T p-1/2 is in agreement with ISX-A measurements. 1 Further, eq. (15)

shows a tendency for improved confinement with decreased aspect ratio,

(note L ns/ = (Rq/r) dln n/dlnq is approximately R/a) a feature which,

qualitatively, has been seen in the data.
1 5

v 2

Note that equation (14) can be written D = Le c 2 [6 x

103 m /m (L /Ln)3I . This, to the extent that the factor n brackets
e i s n

is one (it is of this order for tokamaks), is the Ohkawa 16formula.
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Of course, the physics underlying this diffusion is much different, being due

to low frequency modes, as is the scaling with ion mass, the T /T ratio, q,

and several other parameters.

Finally taking Alcator 17 profiles at r = 5 cm, Ls a 100 cm., Ln a 5 cm.,

2 -19 2
and T = 1 KeV, and defining TE aL 2/D, we find TE = 2.4 x 10 naL 2

18 -19 2
which is within 50% of the Alcator empirical scaling law1 8 E = 3.77 x 10 naL

We might note that this transport mechanism is also consistent with the inter-

pretation of the soft X-ray anomally given in Ref. (12), and that the absolute

value of D from eq. (14) agrees very well with that found empirically from

the X-ray data.

Obviously, the theory as described in this paper is not accurate to

50%, and many omitted effects and questions about the finite 8e eigenvalue

problem remain to be considered. However, the main attributes of Eq. (14),

namely absolute magnitude and density scaling, have been verified by the

numerical solution of Eqs. (8) and (9). The significant point is that,

when saturated by shear induced resonance broadening, the simplest, almost

archetypal, drift instability, the universal mode, gives inverse density

scaling of the anomalous thermal conductivity. One then feels that this

feature will be retained when complicating effects are added, and that

on this basis, the established empirical scaling, TE c n, can be understood.
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