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ABSTRACT

The nonlinear saturation of parametric decay instability in a

plasma is investigated analytically under a wide range of conditions.

Nonlinear coupling of four Langmuir waves is studied as a new saturation

mechanism, which is treated together with three-wave cascade coupling

and ion nonlinear Landau damping. It is found that when the ele ctron and

ion temperatures are almost equal, nonlinear four-wave coupling is the

dominant saturation mechanism, which produces a single-peaked

Langmuir wave spectrum. When the electron temperature far exceeds

the ion temperature, cascade mode coupling is more important and the

resulting spectrum exhibits many well-resolved peaks. All these features

are in agreement with laboratory experiments.



I. INTRODUCTION

Under an intense high frequency electromagnetic field various

modes of oscillation in a plasma may be coupled and driven unstable.

The study of parametric instabilities so excited in a plasma has attracted

much attention in the past few years because of their relevance to plasma

heating. Once above threshold the plasma wave amplitudes grow exponen-

tially in time or space, and finally saturates due to nonlinear effects. The

saturated plasma wave energy and spectrum are important quantities to

2
know since they determine the rate of anomalous absorption.

Various physical mechanisms for nonlinear saturation has been

studied. 3 In the strong turbulence regime, when JE 0J 2 /4wnT e> 1,

computer simulations show particle trapping and wave saturation

accompanied by turbulent heating of the plasma and formation of

suprathermal electron tails 4, (E is the pump electric field, n the

plasma density and Te the electron temperature). At lower pump

intensity, but IE 2/41nTe > XDk, saturation by Langmuir wave collapse

and soliton formation is predicted.' (k is the wavevector of the

Langmuir wave and XD the Debye wavelength).

In the weak turbulence regime, (E (2 /4rnT < Dk, the dominant

saturating mechanism is considered to be multiple decay processes,

i. e., ion nonlinear Landau damping if Te T when the ion acoustic

8,9
wave is heavily damped, 8 and cascade mode coupling if Te T.

10, 11

when the ion wave is well defined. 10,11 The essential features predicted

by these multiple-decay processes are a saturated Langmuir wave energy
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P proportional to the square of the pump intensity P , and a Langmuir

wave spectrum consisting of a series of peaks separated from each other

by the ion acoustic frequency.

.12 2
In early experiments the P .c P dependence can be directly

inferred from absorption measurements near threshold. However, in

more recent experiments13-15 the P .<: P 2 relation is not observed.

Mizuro and Degroot report that for Te/Ti = 8, P P from P oPth

13
to P /Pth = 30. Flick's experimental data at Te e T show that near

threshold Pth' PA varies much faster than P 2 , while for P/th > 3

14, 15
P varies linearly as P .

For Te > Ti, experimentally observed steady-state Langmuir

wave spectra consist of discrete lines 16,17 in agreement with cascade mode

coupling theories. 10, 11 When T~-= Ti, nonlinear ion Landau damping

8,9
theories predict a similar spectrum. However, although the

theoretically predicted spectrum is consistent with ionosphere mea-

surements, it is not consistent with laboratory experiments. 14, 15

Instead, Flick reports an essentially single-peaked spectrum for Po/Pth

varying from 1 to 10. Since distinct peaks are fine structures and may

not be experimentally resolved, it is important to note that while theories

predict wave energy being spread into modes with much lower wavevector

via secondary ion nonlinear Landau damping,8,9 such spread is not

observed in Flick's experiments, which shows the wave energy to be

14, 15concentrated around the original linearly excited frequency. ' Thus

it seemed that where Te = Ti, nonlinear ion Landau damping alone cannot

fully account for the nonlinear saturation of parametric decay instabilities.



In this article nonlinear coupling of four Langmuir waves is

18
studied as an additional saturating mechanism, which is treated

together with the usual multiple-decay processes. The physical

process of nonlinear four-wave coupling is as follows: a pump wave

with electric field E and frequency w 0 excites Langmuir waves

E (k) and ion acoustic waves Ea(k) through linear parametric decay

instability. Two of the excited Langmuir waves then couple with

each other to produce two new Langmuir waves with different waveve ctor k.

Note that nonlinear three-wave coupling between Langmuir waves cannot

occur because frequency and wavevector conservation conditions cannot

be satisfied. Nonlinear four-wave coupling spreads wave energy to modes

with both higher and lower phase velocity, in contrast to the multiple-

decay processes by which wave energy is spread to higher phase velocity

modes only.

The importance of saturation by nonlinear four-wave coupling

at T eT can be recognized if one recalls that the oscillating

two stream instability (OTSI) is essentially a four-wave process with

two of the waves involved being the pump, and it is well known that at

T e T the decay and OTSI have comparable thresholds. 9 Both the

decay and OTSI are included in our general formulation, and the non-

linear four-wave saturating mechanism applies to both branches.

However, the OTSI occupies a different region of k-space as the decay

branch. When Te - Ti, the volume of k-space occupied by OTSI is much

smaller than that occupied by the decay unstable waves, and when

T T , the OTSI has much higher threshold than the decay instability.

Therefore we present the saturated spectrum of the parametric decay
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instability only, so that the physical features resulting from non-

linear saturation will not be obscured by mathematical complexities

arising from a disjoint branch, and it is easier to compare with

previous theoretical results where the OTSI branch is also neglected

under the same conditions. 8 1 1

Four-wave coupling processes can become strongly nonlinear,

20
involving soliton formation and collapse. We will not consider

such processes and limit ourselves to the weak turbulence regime so

that I EC(k) 12/4rnT < XDk. This condition is hard to satisfy fore

parametric instabilities in overdense or critically-dense plasmas,

but can easily be satisfied in underdense plasmas. Since we are

interested in the decay branch of parametric instabilities, we will

always consider the pump frequency w to be greater than the electron

plasma frequency w pe.

The present theory is valid over a wide range of temperature

ratios, and the damping rate of the ion acoustic wave, ya/'a, is used

as a continuouslyvarying parameter. It is found that when y/a <<

(Te Ti), nonlinear four-wave coupling and ion nonlinear Landau

damping are neglible compared to cascade mode coupling, and the

previously predicted 1 0 11 comb-like Langmuir wave spectrum is

obtained. As ya /a increases, nonlinear four-wave coupling and ion

nonlinear Landau damping become more and more important, the

number of separate peaks in the saturated spectrum decreases and

the peaks broadens. When the ion acoustic wave is heavily damped

(N awa = 1, Te - Ti), nonlinear four-wave coupling becomes the

dominant saturating mechanism, ani the saturated Langmuir wave
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spectrum obtained in this case consist of a single broad peak with wave

energy concentrating around the linearly excited frequency. All these

results are in agreement with laboratory experimental observations. 14-17

Our theory also predicts a saturated Langmuir wave energy which in-

creases very fast with P when P > Pth' but linearly proportional to Po

when P /Pth > 3, again in agreement with experiments. 1 3 1 5

At T e T., the present theory yields results quite different
e8 9

from the ion nonlinear Landau damping theories. 8, It should be noted

that the ion nonlinear Landau damping theories predict Langmuir wave

energy being cascaded into modes with very small wavevector. Under

such situation strongly turbulent Langmuir wave collapse can easily set

in,2 0 leading to the total breakdown of the weak turbulence theory. How-

ever, the present theory does not predict any cascading for this tempera-

ture condition, so that the weak turbulence condition can be satisfied.. For

T e T, when cascading does occur, the four-wave process which leads

20
to Langmuir wave collapse is very weak.

The coupled mode equations governing the evolution of the

Langmuir and ion acoustic waves are derived in the next section. Section

III briefly checks the present formulation with previous theories by cal-

culating tim'linear growth rate and threshold. In Sec. IV a steady-state

solution to the coupled-mode equations are obtained by using various

approximations, yielding the saturated Langmuir wave spectrum in the

one-dimensional case. The total st-eady-state Langmuir wave energy is

calculated in Sec. V. In Sec. VI the major approximations used in the

calculation are summarized andtheir effects and range of validity discussed.

The stability of the steady-state solution is also examined.
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II. COUPLED-MODE EQUATIONS

Consider a homogeneous, warm plasma without any external

magnetic field. All collective oscillations of the plasma can be

represented by the total spatial-temporal dependent electric field

E(r, t) governed by the wave equation

T -. 'b Z~ 1-1 8 E 4 2r
Sx ( 17 x 2)+ -7 t -7 T t21c at c at

where is the total polarization of the plasma. We work in the

electrostatic approximation so that

( - Z n q f (rv, t)dv (2)a a a f a

where p is the average charge density, q a and n are the charge and

equilibrium density of the a species particle (a = e, i for electron and

ion), and f a(r,-r,t) is the particle distribution function governed by the

Vlasov equation

af 3f q 3f
+a - + (a t) . a =0. .(3)at -X m

Equations (1) - (3) are the basis of our analysis. To proceed with

the case of parametric instabilities, we expand E (, t) in terms of three

groups of modesi a monochromatic pump E , the high frequency

Langmuir waves E (k), and the low frequency ion acoustic modes

Ea (k),



i(k z-w )i~~- t) i(k-r-w 't)
E(r, t) = E e 0 0+ dk F (k)e t + dk E a(k)e a (4)

where E (k) and E a(k) depend on time only, and k x E (k) = k x E (k) = 0.

Nonlinearity of the pump field is neglected so that E is a constant.
0 0

However, it must be noted that the nonlinear interaction between the pump

and decay waves is a saturation mechanism intrinsic to all parametric

processes. This effect has been studied previously. 21, 11 Because of

mode coupling, the oscillating frequencies l and w of (k) and

Ea(k) need not satisfy the Bohn-Gross dispersion relations - =W

(1 + 3 k2 )1/2, Z = c. [3k 2 /(l + 3kj ]1/2. All wavevectors are normalized

with respect to the Debye wavevector. With expansion Eq. (4) the wave

equation can be written as

1 a 2 2i a 5-- -- - I E (k) =4T C?('k, k()
ok atZ k 6tY1kw k 2

a 2i 3
2 Z - I Ea (k) 4r6((k,w ak) (6)

To find the plasma polarization, we use the standard iterative

scheme to solve Eqs.(2) and (3). Writing Eqs. (2) and (3) in their Fourier

transform form, we let

f (v, k, w) = f (v) 6(k)6(w) + fa + + f +... (7)

p(k,w)= p1(kw) + p2 (k,w) +p 3 (k,w)+... (8)
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where the equilibrium distribution f (v) is Maxwellian, and
aO

f (v, k,c4 i 1 k wan -n dk d.1. F (k-k, an- ki)7w)
CL -k- vV f-

(9)

The equilibrium electron density is exactly cancelled by the positive ions,

so that p = 0.

From Eqs. (7) and (9) we see that f is proportional to E, and

describes the linear response of the plasma system. The term f goes

as and takes into account three-wave coupling processes, which include

the linear parametric excitation of Langmuir and ion waves by the pump

(see Fig. la), and the nonlinear coupling between two Langmuir waves and

an ion acoustic wave, i.e., cascade mode coupling (Figs. 1c, ld). The

3term f£3 is proportional to . and takes into account four-wave coupling

processes, which includes the linear excitation of two Langmuirs by

two pump waves simultaneously, i. e., OTSI, (Fig. lb) and the nonlinear

coupling between four Lagnmuir waves (Fig. le). In the problem we are

considering, these are all the mode coupling processes that can satisfy

the frequency-wavevector conservation conditions, and are depicted

schematically in Fig. 1.

Note that in Eq. (9) the electric field F is always an first-order

quantity, we are not expanding it in perturbative terms as we did with a

and p. Therefore only coupling between collective modes are included in

the derivation. The wave-particle nonlinear interaction, i. e., the nonlinear

ion Landau damping term as depicted in Fig. If, is derived separately22

and included as an additional loss term in the wave equation.

- 8 -
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From Eqs. (2) and (7)-(9), the plasma polarization can be written as

Lk

(k,= [p 2 (k,) +3

j A ~(2)-1
= dk' d -X (k, w;k', ) . (k-, i') (k I-k)) (10)

(3) - -
+ dk' dk" dw dwI (k, WS ki, W I k", W") (k', wt) (k", w') E (k-k'-k", W- -"

where E (k, ) is the longitudinal dielectric constant, derived from the f(k, ) i theonguina.l

term and include both electron and ion contributions. The ions are too

heavy to follow the high frequency oscillation, thus do not contribute to the

high frequency terms, but we have to keep the ion terms in the low frequency

case. Also, the ions do not participate in the nonlinear coupling

22 ~()(3)
processes, so that X and X are mainlyfrom electron contribution.

The first order nonlinear susceptibility - has been calculated by many

authors before. 22, 23

y) (k .;k',)- i (ekD/2me 1 k )(k - k'/jkj Ik' 1) (11)

for coupling between longitudinal waves. The second-order nonlinear

susceptibility1( 3 ) can be obtained by simply carrying out the iteration in

Eq. (9) for one more order,

ek 2 
(- D (- k')k" - (k-k'-k"') (12)

2m (k tkt i k" k-k'-k"

With Eqs. (10)-(12) we can write down the high and low frequency

plasma polarizations. For simplicity we shall restrict to the one-dimensional

case from now on. Writing out the specific modes included in Eq. (4), and
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keeping only those processes that can satisfy frequency-wavevector

maiching conditions, we get

4e L (k, wkk - i(2/\/k) E * (k) - fdk'[ E (k')Ea(k+k')-EX(kt)E }(k+k)]

-8/\ 2 2E(k) + dkdk'Ej(k')E (k") E(k+k'-k") (13)

4TTE L (k, -wak)O (k, -ak) = - i(2 A/k) E'E (k) + dk'E (k')E (k-k') (14)

where A S ( 6 4nwT )-l/2, and we have let k0 0, E(-) = E1 (w). The five

terms on the right-hand side of Eq. (13) correspond to the process depicted

in Figs. la, id, 1c, lb and le, respectively. Only processes la, ic and

ld are involved in the low frequency Eq. (14).

Although E2 (k) and Ea(k) may oscillate at any frequency, it is

clear that they will peak around the natural resonance frequencies Chk

and Zak. Thus, we can expand l/e L(k, w) around the natural frequencies

for each of the coupled mode terms. Take, for e~xample, the first term

on the right-hand side of Eq. (13), the EoE a*(k) term. Consider Ea (k)

to be at resonance, so that the frequency matching condition is w +

- W = 0. However, we require that wfk to be near resonance cfk also,

so we can write for this term

- 2
1 .. . 2fk ..__ _ __ _ _ _

L ZY - - 2 
-k ik Cc/k + [ak (15)

i(w k/2- ) f [(k-kd()
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where y is the damping rate of the Langmuir wave, = /Wa'

A //2(m /3m ) / kd - A/Z + (A /4 + 2 E/ 3 ) E W0/W pe-1,

2
and f(x) 1/(1 +x ) for any x. Similar expansions can be readily

carried for each of the seven terms on the right-hand side of Eqs. (13) and

(14). The Lorentzian functions f(x) take into account frequency pulling

effects so that coupling to modes with frequency shifted from the

resonance frequency is allowed.

With Eq. (15) and similar expansions, we substitute the plasma

polarization Eqs. (13) and (14) into Eqs. (5) and (6) and obtain the one-

dimensional coupled-mode equation for Langmuir and ion acoustic waves:

(1/ofk)((/at +y +YNL)E(k) = - i(A /k) E E (k) - 4/\2 fE 4(k) +PNL

(16)

(1/wak)(3/8t + ya)Ea(k) = - ikAfdE E (k) + P1 (17)ak)(aat do Z NLS

where f f [(k-k )/T& ], fd E f [(k-kd a k (e /3)1/
p - pd )P& P Yaw p

Here we consider w to be close to , so that only long wavelength

collision damped waves are excited and the damping rates are independent

of k. Also, we assume the electric field amplitudes to be slowly varying,

so that the linearly growth rate is smaller than the real frequencies, thus

the second order time derivative is neglected. Note that the Langmuir

waves are generally lightly damped in the wavelength range of interest,

Y /a << 1, thus in the three-wave coupling most of the frequency pulling

effects comes from ion contribution, and anti-Stokes three-wave coupling

can be neglected. The first two terms on the right-hand side of Eq. (16)

account for linear decay and OTSI. The nonlinear mode coupling terms are:
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NLS = i(A/k) dk'E(k') E(k+k') - E (k)E (k+k')
NLS "'a- a(kk)

-4 A 2  dk'Idk" f[(k-k')/rA] E*(k')E (k' )E (k~k'-k') (18)

NLS = ik dk' f[(Zk'-k-A)/A] E (k')Et(ki-k) (19)

The ion nonlinear damping term Y NL in Eq. (16) is derived by previous

22 8
authors, ' and included in the coupled-mode equations as an additional

loss term

Y NL A 2 fdk' lE (k) 2 f [ (k-k+)/pA - f [(k-k'- )/P.]} (20)

where we have approximated the plasma dispersion function by the function f.

This should be a fairly good approximation as can be seen from Fig. 2, where

the solid lines plots the tabulated24 value of M() =(l/k )Im[E L (k-k' "MWZ.k)

In one dimension case, v = (Sk- k' Ti jk-kI j = (3 Te/2Ti)'/ 2

[(k j -jk'I )/A 1, vT = (ZT /m)1/2. The width of M[(k-kl)/A] decreases with

increasing Te/Ti, this is approximated in Eq. (20) by the width decreases

with decreasing ya/'a. The dashed line in Fig. 2 shows the approximated

matrix element, which matches M[(k-k')/& ] fairly closely except at the tail

part. The approximation may be improved if we let f(x) to be a Gaussian

instead of Lorentzian function of x as can be seen from the crosses in Fig. 2.

2
We will let f(x) = exp(-x ) from now on.

Equations (16) - (20) form the basis of subsequent analysis.
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II LINEAR GROWTH FUNCTION

Before we start to solve the nonlinear problem, let us quickly check

the formulation by examining the linear growth behavior. Putting

aE(k)/at = y (k)E(k) and PNLS PLS NL= 0, in Eqs. (16) and (17), the

resulting secular equation has two doubly degenerate roots for the linear

growth rate as a function of k

y (k) = - + [(y -a pp o 2 + 41/k2akd o]1/2 (21)

where P0 0 E 1Z/64TrnT eWith y (k) = 0, Eq. (21) yields the

threshold value for various region in k-space

Pth(k) = Y ya k'akd + Ya'p fp (22)

From Eq. (22) the minimum threshold for decay instability is Pth =e a kAak

occurring at k = kd, miminum threshold for OTSI is P =Y /. Equation

(21) shows that the linear growth rate for the decay branch varies as P 1/2

while it varies as P0 for the OTSI branch. All these are in agreement with

previous theories. 19

The linear growth *rate as a function of k has been computed

numerically before, 4 but Eq. (21) allows us to tell at a glance what region

of k space will be excited for an arbitrary set of parameters. For example,

Fig. 3 plots Eq. (21) for a hydrogen plasma, it exhibits two distinct peaks

for the decay and OTSI branches, with their relative height determined by P .

The widths of the two peaks varies with the damping rate of the ion acoustic

and Langmuir waves respectively, which is intuitively correct because the

damping rates determines the range of k-space to be close to resonance.
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IV. SATURATED SPECTRUM

As can be seen from Eq. (21) and Fig. 3, the OTSI occupies a

different region of k-space as the decay branch. For Te = T. when OTSI has

comparable threshold with the decay instability, y /wa << I implies the waves

excited by OTSI concentrate in a very narrow region of k-space. Thus for

simplicity we shall henceforth neglect the OTSI branch in our saturated

spectrum and wave energy, although the saturation processes considered

applies equally to both branches and it is straight forward to generalize the

present calculation to cover OTSI as well.

In the steady state, 3E (k)/at = aE a(k)/at = 0, elminating E a(k)

between Eqs. (16) and (17) gives

(y +YNLE(k) = (w aIYa) 2 fd o 2 E (k)

- 4( /\fdkdk" f [(k-kl)/o-A]E (k') E (k") E (k+k'-k")

+ (wa A 2 fddkdk" f[(2k"-k-k'-a)/PA] - f[(2k"-k-k'+A )/

- E (k')E (k")E(k+k'k"), (23)

2 2*
where the 41 f E Ej(k) term in Eq. (16) representing OTSI is neglected,

so are terms of order f(kd/A) as compared to unity. The solution of Eq. (23)

depends heavily on phase behavior. The following calculation will be

carried out in the random phase approximation.

=<E(k)E(-k')> = JE (k)j2 (k-k'). (24)

When the pump wave is coherent, the random phase approximation may be

justified by virtue of the many modes linearly excited. It must be noted

that Eq. (24) can be used only within the weak turbulence regime we are
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working with. When P 0 > Dk, strongly nonlinear processes such as soliton

formation sets in and the problem must be solved with coherent phase.

Multiply Eq. (23) by E (k''') and use Eq. (24), we get

fd 0 th = (l+P)fdk'I(k') f [(k-k+)/p A] -f [(k'-k- A)/P A]

+ 4P dkI(k')f [(k'-k)/o-A] (25)

where IJE ( k E 2/64TnT . The second term on the right-hand side

represents nonlinear four-wave coupling, the part of the first term pro-

portional to P comes from ion nonlinear Landau damping, and the rest of

the second term is due to three-wave cascade mode coupling.

In the form Eq. (25), ion nonlinear Landau damping, three-wave

and four-wave couplings all appear as the same order, the only difference

between them being the coupling functions. Since the maximum value. of f

is always 1, the relative strength of various nonlinear processes can be

seen at once from the coupling parameters. Thus when P = 1 four-wave

coupling is more important, and when P << 1 three-wave cascading dominates.

The ordering of three- and four-wave processes in Eq. (25) may

seem puzzling at first because four-wave coupling is apparently a higher-

order process than three-wave coupling as can be seen from Eq. (10). It

must be remembered that one of the waves in three-wave processes is the

acoustic wave Ea (k), and when eliminating E a(k) the ordering changes. When

-awa ' , the acoustic wave is so heavily damped that it can be adiabatically

eliminated as a dynamical variable, in so doing Ea (k) is treated as a second-

order variable,22 different from E (k) which are first-order variables.
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When -a/a << 1, Ea(k) can be eliminated only in the steady state, is so

doing we are essentially looking at a two-step three-wave process: a

Langmuir wave decays into another Langmuir and an acoustic wave, which

at once combine with a third Langmuir wave to produce a fourth one. Thus

in an equation involving E (k) only, all three processes appear as same order.

The exact solution of the integral Eq. (25) is sensitive to the specific

functional form of the f's, including the tail behavior. Since approximation

has already been made on the form of f, we do not seek exact numerical

solutions to Eq. (25) but rather develop approximate analytic solutions.

If we drop the second term on the right-hand side, then Eq. (25)

8
reduces to the case of cascade decay process. Kruer and Valeo have

solved such a problem numerically using the exact functional form of M().

Their Langmuir spectrum shows a series of sharp spikes separated by A

from each other. Physically, this is obvious because in the three-mode

decay process, the two Langmuir modes have to be separated by the ion

mode frequency. In fact, if we go to the extreme case and approximate

all f's by delta functions, e. g., f(k'-k+A) . 6(k'-k+A), then Eq. (25) can

11
be solved exactly and gives I(k) as a set of zero width lines with varying

height locating at k = kd

The finite width of f will broaden these lines. Furthermore, the

four-wave parametric process is not restricted by the wave numbers of the

ion modes, so that its effect is to wash out the sharp spikes caused by the

three-mode decay process. However, for any given E (k), the range of wave

number it can couple to via four-wave processes is of the order a-A, so that

in any one coupling process wave energy cannot spread to very different

k-modes and alter the spectrum drastically.
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With the above consideration, we assume the solution for I(k)

to be consisting of a series of Gaussian functions g with varying

normalizing height I and width an
0n n

I(k) = I exp [-(k-k ) 2/(anA) - r (26)

where I, an, r are unknown constants to be determined.

Substituting Eq. (26) into Eq. (25), we see that Pth and F are the

only two terms independent of k. Since Eq. (25) has to be satisfied for

all k values, r can be determined

F = Pth/41 7 PA (27)

The physical meaning of ,r should be clear. All nonlinear

processes considered here are just various parametric instabilities with

the linearly excited Langmuir waves acting as pumps, and it is well

known that parametric instabilities can occur only akove a threshold.

The constant F then serves as a threshold term which determines what

k-modes are excited by linear as well as nonlinear processes.

With Eq. (26) the integration over k' in Eq. (25) can be

carried out

fd o = MZA f [(k-k n-1/Wn] - f[(k-kn+l)/wpn] n f[(k-k n)/w n]} (28)

where '- S Po/[(+P)p I A] , w ~(a 2 + P2 )1/2A;W 2 + 2 1/2
0 n n a-n n

An = anin(a 2 2 -1/2, T = 4a-w /w (l+P). Note that the k n's are

separated from each other by A, and the width of the coupling functions

are at most A when ya/ia = 1. Thus we will assume that the line centering

at k = k couples to lines at k = kn+l only. This a good approximation as
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long as the widths of individual lines in the spectrum are less than A

(a < 1). Under this approximation Eq. (28) can be separated into a

set of equations:

d o = A 1 f [(k-k )/w ] + AOa- f[(k-k])/w (29)

0 Aa+1 f [(k-k )/w n+1] + An n f[(k-k )/w ] (30)

- A f[(k-k )/w ] n > 1

Only positive I Is are included in Eq. (26), so that if IN+l becomes

negative, the series stops at IN. In general, the I's increases with Po,

so that Eq. (26) shows the number of peaks N will also increase with P 0 .

This is physically obvious because a stronger pump just means more waves

can be nonlinearly excited by secondary parametric processes, and agrees with

experimental observations. When secondarydecay peaks do appear, they

only appear as Po is raised further above threshold for the fundamental

decay.16,lit is noted- that experimentally when P 0 is further increased,

the distinct peaks broadens and finally smears out. This is probably

due to thermal effects when the plasma is heated up, and is not considered

in the present theory.

Since we are not concerned with the detailed shape of each peak,

but are interested only in their heights and widths, we expand the f's in a

Taylor series around kn , and match the coefficients of the first two non-

vanishing terms to calculate a and I . Equations (29) and (30) then gives

P 0= A 1 + A (31)

0 = A + TnAn - An-i' n>1 (32)

- 18 -



from the constant terms, and

P @2 (A' + O'A' )

0 = A' 1+ ' A' - A'
n+lnn n-1

- n > I

from the (k-k )2 terms. Here A' = a In(a 2 2 -3/2+1 . ando-' =4-l+Pnn nn n n

(a2 2+ /(a 2 +2r )1-3/2
n n

Equation (32) forms a set of linear transformations which can

be represented in terms of continued fractions: 2 5

'A =A +1 (35)
An = n+1 n+l + (31

n+2+ n+3 +...

then Eq. (31) becomes

P =A C0 0 (36)

where C is a continued fraction

C= T + 11

Similarly, we get for Eq. (33)

P / =A ' C'
0 0

(37)

(38)

where C' is same as C with T replaced by o'. If we know C and C', Eqs. (36)

and (38) can be solved for a , I0 , and it is straight forward to obtain

all an and I Is from Eqs. (31) - (34). However, C and C' themselves depend

on the a 's. We will use an interative scheme to obtain approximate solutions.

- 19 -
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In the zeroth approximation, we assume all a ns are equal, and

let a = in Eq. (37). We then solve for all the a ' and I' 's. Then n n

first order values at are then substituted backinto Eq. (37) to calculaten

C in the first-order approximation. This iterative procedure may be

continued. It is foundthat the values of a obtained settles quickly after

the first iteration. In general, the result of the second and seventh iteration

will not differ by more than five percent. The choice a = comes from then

consideration that spectral lines broadens with increasing ion acoustic damp-

ing. As it turns out, the final results of a are quite insensitive to smallC n

variation to the values of a' used in the zeroth order approximation. Withn,
o 25a = , C can be approximated by its convergence
n

C (S/2)[I + (1+ 4/S2 )1/2) (39)

C'- (S't/2) 1 + (I + 4/S 12 1/2 (40)

where S = 4TP[2/(P2 + (r2)1l/2/(1+ P) and S'= 4P 3[ 2/(P2 2 3/2/(l +P)

With Eqs. (39) and (40), it is simple algebra to find from Eqs. (31)

and (33) that

a P [(C/C') - 1] (41)

2 2 1/2Io=(P0 /C)(l+p /a 0 ) (42)

a p [C'(C - )/C(C -' ) 1  11 (43)

Il P OC)(l +P 2/a, 2 )1/2 (CT0(4

- 20 -



and so on for a2 , a3 .'. Iz2 3'' . Expressions for a and I gets

longer and messier as n becomes large. Here we will only qtote the

approximate expressions for extreme cases, although it is straight

forward to get general results.

When P << 1, the saturated spectrum will exhibit many narrow

lines. For simplicity of expression, we neglect terms of order P 2

compared to unity, thus

n n1/2

an P IC'(1 Z C -2m- "m)/C(1 -C Z ( m-) - 1 (45)
Zn mnal mn=1 rn

n n 1/2
a2 n+ : ( -l a-zm)/C(C' - E - (46)

fc m=O mn=0

I P2T (I+P 2 / 2 )1/2 (47)
12n rn=1 I2m-_1)(+ /2n

P 2 /a2 1/2
I2n+1 = (o/C)(C T 2m)(1 +P/a 2 n+1) (48)

M0

for p << 1. Since a' < n , Eqs. (45) - (48) shows that a > a and
n n n n-i n

I < I , i. e. , the spectral lines will broaden and their intensity decreases

as more cascade processes occur. The behavior of In agrees with previous

theories on cascade mode coupling 10,11 which approximated a = 0.

Similar features of the saturated Langmuir wave spectrum are obtained

in numerical calculations involving just ion nonlinear Landau damping.8

When P = 1, if we neglect the nonlinear four-wave coupling process

by setting T- = a' = 0 in Eqs. (31) - (34), a spectrum with several distinct

peaks are obtained in agreement with previous theories. However, when

2nonlinear four-wave coupling is included, it is found that an quickly becomes
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negative for n > 1. Thus, only a few lines will appear even if P is

"large. Especially, when P > 0.4, the spectrum will show only one

peak, with width and height

2 2 1/2a =(f3 -o) (49)

1 0  (P 0 / )(1 + P /a 0) (50)

Equations (45), (46) and (49) shows a < P = 1, so that the approximation

of including interaction between lines separated by a is justified.

For further iteration, we substitute Eqs. (41) -

(44) etc., into Eq. (37), and carry out the above outlined procedure

again. This is more easily done with numbers than with symbols. The

following results are obtained by iterating seven times. Usually, the

first-order results quoted in Eqs.(41 - (50) are within a factor of 2 of the

final results, for both the P = 1 and P << 1 cases.

Figures 4 - 6 show the saturated Langmuir wave spectra for a

hydrogen plasma, with w = 1.05 wpey , /pe = 10-. The ion acoustic

wave damping rate varies from p = 0.05 in Fig. 4 to p = 0.5 in Fig. 6.

The qualitative difference between these spectra should be obvious.

When PPth=5, Fig. 6 which corresponds to the case T e T exhibits

a single broad peak with width - A/2 centering around the wavevector

satisfied by linear decay resonance condition. With the same parameters

but for the Te > T case, Fig. 4 exhibits seven peaks with widths of the

order 0.02 A. While wave energy is spread to very long wavelength mode

- 22 -



via second decay processes in P << 1 cases (Figs. 4 and 5), such spread

is absent in the P = 1 case. The spectrum in Fig. 6 can be interpreted in

terms of nonlinear four-wave coupling, which couples energy to waves with

both lower and higher wavevector, but always close to the original linearly

excited wavevector, in contrast to the cascade processes which spread

energy to modes with smaller wavevector only. Note that in Fig. 6

SE0 1 2/4TrnTe = 2 x 10-3 for P o/th = 5, and the wave energy concentrates

in modes with wavevector k 0k > 0.15 so that E 2/4TrnTe << (XD k) and

strong nonlinear processes as Langmuir wave collapse will not occur.

V. TOTAL SATURATED WAVE ENERGY

The total saturated wave energy IT is important because it

determines the anomalous absorption rate. It is obtained by integrating

the spectrum over all k. The spectrum is represented by the positive

part of Eq. (26),

k

Pa =I(k) dk = n exp [-(k-k )2 /a 2 &2 ] dk (51)
=fin fkn n

n-

where kn+ = kn + a n [.n(In/Pth)] 1/2 defines the range of k-space excited

by linear as well as nonlinear instabilities. Thus

N /2
P = eTrA ; a I erfc /th (52)

n=0

which is approximately P 'Z Mr a I when P /P 3. The number ofn nn o th

modes N present in the spectrum is determined by the largest number such

that IN o .> When p < 1, t 1 Eqs. (45) - (48) gives

N = (2/S) 1 + (PA)2[ - ( + 22 /P2 1/2J (53)
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where T : Po/Pth. Equation (53) shows that for any T, P, N approaches a

constant when 1 >> 1. Thus the total Langmuir wave energy Eq. (52)

is directly proportional to Po when P 0 >> P th. The P *- P0 dependence

is observed experimentally.
13 - 15

Below threshold, P < Pt P2 = 0 since the present theory does

not take into account thermal fluctuations. Close to threshold, P > Pth'

Eq. (52) shows the total Langmuir wave energy increases very rapidly as

P0, which is characteristic of parametric processes overcoming the

threshold and agrees with experimental observations. 14,15 Just how

P2 rises from zero to a level comparable to the pump when Po increase

by less than a factor of 2 depends on the detail shape of the spectrum.

Since we have approximated the spectrum to be consisting of Gaussian

lines in Eq. (26), the error-function dependence in Eq. (52) can only be

a qualitative des cription.

Figure 7 plots the total Langmuir wave energy in a hydrogen

plasma excited by parametric instability. The three curves in Fig. 7

correspond to integrating over the spectra depicted in Figs. 4 - 6

respectively. It can be seen that saturated wave energy is of the order

of the pump energy, in agreement with experiments12-15 as well as

simulations. 4 , 5 Also, a higher damping rate for the acoustic wave

gives a lower saturated wave energy, which is physically reasonable

because higher damping means energy is being transferred faster to the

particles. Note that the maximum pumping level in Fig. 7 is for the p = 0.5,

P0/Pth = 10 case, where E 12 /4rrnTe = 0.02 and the corresponding linear

growth rate ~ 0.7 a , so that the present weak turbulence calculation is

applicable.
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VI. DISCUSSION

In summary, we have studied the saturation of parametric decay

instability by nonlinear three- and four-wave coupling as well as ion nonlinear

Landau damping. The relative importance of these saturating mechanisms

is determined by the damping rate of the ion acoustic wave ya/wi, which

is treated as a varying parameter. A steady-state solution to the solution

is developed during which various approximations have been made. Here

we investigate the stability of our steady-state solution, and briefly

discuss the effect and range of validity of the major approximations

involved.

Keeping the time variable, Eq. (25) becomes

(a/ar + Pth - d Po)I(k)

S-(1+P)I(k)fI(k')dk f[(k'-k+a)/al - f[(k'-k-A)/Pa] + 443'f[(k-k')/-A]

(54)

where -r~(a a)t and P P/(+p). We let I(k) =Io(k) + 6I(k) where 10(k) is the

steady-state solution of Eq. (26) and 8I(k) is a small time dependent

perturbation term. If 6I(k) decays exponentially in time, then the steady-

state solution 1 0 (k) is stable. Linearize the right-hand side of Eq. (54) with

respect to 8I(k), and approximate the f's by delta functions when integrating

the 6I(k) term, we get

8 6I(k)/3 r + f d 0(1+P)1O(k) [4P' + G(k)] 8I(k) +(I + P) I 0 (k) I(k-a) - 6I(k+&3) =

(55)

where G(k) is given by the right-hand side of Eq. (28). Consistant with the

approximations made in Sec. IV, we can assume interaction between modes

separated by ±a only, then Eq. (55) breaks up to a set of N coupled equations.

The stability condition involves finding the eigenvalue of an N x N matrix.



When 3 << 1, nonlinear four-wave coupling is negligible compared to cascade

mode coupling, so that although the physical condition and saturating

mechansim is different, mathematically the problem is equivalent

to the ion nonlinear Landau damping theory. The time evolution of Langmuir

waves has been calculated numerically in Ref. 8, which reported steady-

state wave spectra very similar to the present result, i. e., a spiky

spectrum consisting of many distinct lines. Thus it is assumed here

that our steady-state solution is stable. Moreover, a spiky spectrum

16,17
as predicted is actually observed in experiment ' with appropriate

physical condition (T > T. corresponding to p << 1), thus providing

the best justification for the stability of the present steady-state solution.

In the P - 1 case, the steady-state spectrum consists of a single

peak and Eq. (55) becomes

86I(k)/a T+ 4P'(1+P)I (k)[l+a 0 AaI (a 2 +T2 -/2 P 0 (k)=0

(56)

61(k) will decay exponentially with time if the quantity in the curly bracket

is positive. When T << 1, this condition is satisfied if

(0, aP 0+ 1/4)1/2 -1/2 < p< 4 0i - 1. (57)

Since (r, A P 0 << 1, the stability condition Eq. (57) shows that the steady-

state sulution is stable for a wide range of P < 1.

When P > 1.25, our solution becomes unstable. Actually, since the

coupling width of three-wave processes is proportional to PA, by retaining

coupling between modes separated by A we have already limited ourselves

to the case p <1. Thus the present theory is valid. only for P <1.
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In this theory, the exact plasma dispersion relation is approximated

by a Gaussian function in wave number. This approximation restricts the

problem to one dimension. Following this approximation, we have

assumed a solution consisting of Gaussian lines. By itself, the

Gaussian approximation is reasonable, but since the integral equation

we attempt to solve is sensitive to the tail of the coupling function, this

approximation may have a subtle effect on the plasma wave spectrum.

However, its effects on the total Langmuir wave energy should be small

because of the integration over the entire spectrum.

Also, the calculation of the saturated spectrum is carried out in

the random phase approximation so that wave energy is not spread very

far into the high wavenumber region. To investigate energy spread into

very low phase velocity modes, a coherent phase calculation has to be

carried out.
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FIGURE CAPTIONS

1. Coupling processes considered in this paper: a) parametric

decay instability, b) OTSI, c) three-wave decay coupling, d)

three-wave coalescence, e) nonlinear coupling of four Langmuir

waves f) ion nonlinear Landau damping.

2. Matrix element for nonlinear ion Landau damping. The solid line

plots M( ) for T = T . Dashed line and the crosses plots

0.6 f [(k-k'-A)/PA] - f[(k-k'+A)pa] I for P = Y3, the dashed line

* 2 -1 2with f(x) = (1 +x ) , crosses with f(x) = exp(-x ) for any x.

3. Linear growth rate as a function of normalized wavevector for

hydrogen plasma. e = 0.05, ite pe = 3 3 3' aba = 0.3,

a) P = 4x 10- 3, b) P = 0.01, c) P = 0.05.

4. Steady state Langmuir wave spectrum for hydrogen plasma with

0 = 1.05W p,0 /W p = 10~3' a/ a = 0.05, oPth =5. The

arrow marks the wavevector of the pump frequency if it satisfies

the Bohm-Gross dispersion relation.

5. Steady state Langmuir wave spectrum. Same parameters as

Fig. 4 except ya/wa = 0.1.

6. Steady state Langmuir wave spectrum. Same parameters as

Fig. 4 except ya/wa = 0.5.

7. Total saturated Langmuir wave energy as a function of pump

intensity, w = 1.05 , pe' / = 10-3
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