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ABSTRACT

This thesis introduces a new approach for modeling and control of
algebraically constrained dynamic systems. The formulation of dynamic systems in
terms of differential equations -and algebraic constraints provides a systematic
framework that is well suited for object oriented modeling of thermo-fluid systems.
In this approach, differential equations are used to describe the evolution of
subsystem states and algebraic equations are used to define the interconnections
between the subsystems (boundary conditions). Algebraic constraints also
commonly occur as a result of modeling simplifications such as steady state
approximation of fast dynamics and rigid body assumptions that result in kinematic
constraints. Important examples of algebraically constrained dynamic systems
include multi-body problems, chemical processes, and two phase thermo-fluid
systems.

Differential-algebraic equation (DAE) systems often referred to as descriptor,
implicit, or singular systems present a number of difficult problems in simulation
and control. One of the key difficulties is that DAEs are not expressed in an explicit
state space form required by many simulation and corntrol design methods. This is
particularly true in control of nonlinear DAE systems for which there are few
known results. Existing control methods for nonlinear DAEs have so far relied on
deriving state space models for limited classes of problems.

A new approach for state space modeling of DAEs is developed by
formulating an equivalent nonlinear control problem. The zero dynamics of the
control system represent the dynamics of the original DAE. This new connection
between DAE model representation and nonlinear control is used to obtain state
space representations for a general class of differential-algebraic systems. By
relating nonlinear control concepts to DAE structural properties a sliding manifold
is constructed that asymptotically satisfies the constraint equations. Sliding control
techniques are combined with elements of singular perturbation theory to develop
an efficient state space model with properties necessary for controller synthesis.
This leads to the singularly perturbed sliding manifold (SPSM) approach for state
space realization. The new approach is demonstrated by formulating a state space



model of vapor compressicn cycles. This allows verification of the method and
provides more insight into the problems associated with modeling differential-
algebraic systems.
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1. !ntroduction

1.1 Motivation

This thesis investigates new methods for modeling and control of
algebraically constrained dynamic systems. These problems are often referred to as
descriptor, implicit, or differential-algebraic equation (DAE) systems [1]. Recently,
a growing interest in DAEs has formed because physical models are often more
systematically formulated in terms of differential equations and algebraic
constraints. In this approach, differential equations are used to describe the
evolution of subsystem states and algebraic equations are used to define the
interconnections between the subsystems. This process is known to be an effective
method that is well suited for object oriented modeling [7]. For interconnected
thermo-fluid systems, such as vapor compression cycles, DAEs provide the key to
systematic model representation (see Figure 1). Algebraic constraints also
commonly occur as a result of modeling simplifications such as steady state
approximation of fast dynamics and rigid body assumptions that result in kinematic
constraints. Further motivation for studying DAE systems stems from the fact they
represent a more general class of dynamic systems and are capable of behavior that
is fundamentally different from conventional ordinary differential equations (ODEs)
[14].

Despite the generality of DAEs and their simplification of the modeling
process few methods currently exist for control of this class of systems. Often the
constraints are nonlinear and cannot be eliminated so the DAE must be studied
directly. However, differential-algebraic systems present a number of significant
problems in simulation and control [13]. A key difficulty is that DAEs are not
expressed in an explicit state space form required by many control methodologies
and numerical integration methods. This is particularly true in control of nonlinear

DAE systems for which there are few known results. Existing methods for control



of nonlinear DAEs have relied on deriving state space representations for limited
classes of problems [16].

The main objective of this thesis is to expand the validity of nonlinear control
and simulation methods to a general class of nonlinear DAEs by developing
systematic methods for constructing explicit state space representations. This
process, often referred to as DAE realization has so far been successful only for
restricted classes of problems such as systems that are linear in the constrained
states [13] or index one systems [6]. The index property of a differential-algebraic
system is defined as the number of times the constraint equations must be
differentiated in order to solve for the derivatives of the constrained states. It is a
measure of the singularity of the system and can significantly affect the behavior of
the solution. Simulation of high index systems is generally more difficult and there
are few existing software packages for systems with an index greater than two.
However, many important classes of systems are naturally described by high index
DAEs. These include multi-body mechanical systems [22], chemical processes [13],
and two phase thermo-fluid systems [7]. This clearly suggests the need for a

systematic approach for realization of high index DAE problems.

10
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Figure 1. A multiple-zone vapor compression cycle

1.2 Thesis Contribution

In this thesis, a new approach is developed for constructing explicit state
space realizations for a general class of high index DAE systems. A differential-

algebraic system can be expressed in the general form:

x=f(t,x,z) (1)
0=g(t,x,z)

where xe R”, ze R™, £ RXR" XR™ > R", and g: RXR"XxR™ > R™. It is assumed
that f and g are sufficiently differentiable with respect to their arguments, and

that a well defined solution for x and z exists [1]. In general, the constrained
variables z cannot be eliminated because the constraint equations are nonlinear.
This presents difficulty in control design since existing nonlinear control methods

do not apply to this form of problem. In many cases the constraints no longer

11



depend on z and they cannot be directly inverted. This is an example of a high
index DAE system.
A new approach for realization of high index DAEs is introduced by

formulating an equivalent nonlinear control prcblem (see Figure 2):

x=f(t,x,z)

z=Vy (2)
w=g(t,X,z)

Where v is some fictitious input that drives z (now assumed to be independent)
which is allowed to violate the constraint equations producing an output w. This
modeling approach differs significantly from a typical nonlinear control problem
since the objective is to have the two dynamic systems (1,2) converge in some
appropriate manner.

By relating nonlinear control concepts to the index property a sliding
manifold is developed that satisfies the constraints of the DAE. This results in a
new type of sliding control problem. However, DAE realization presents a number
of new problems for the sliding control method. These issues are related to the
convergence of the approximation error in the presence of state variations. These
problems are investigated using the methods of feedback linearization and singular
perturbation theory. Important issues such as reduction of computational
complexity and bounding the approximation error are dealt with in this theoretical
framework. Together, these new results lead to the singularly perturbed sliding
manifold approach (SPSM) to DAE realization.

Application of new methods to specific problems is an important part of
control research because it provides valuable insights into their utility, and helps
illuminate new ideas and research avenues. With these objectives the SPSM
realization approach is applied to vapor compression cycles (see Figure 1). The
dynamic behavior of vapor compression cycles are governed by complex interactions

between refrigerant flowing in single phase or two phase states and fin arrays that

12



thermally communicate with ambient environments. These coupled fluid
mechanics and heat transfer processes are inherently distributed in nature. Low
order approximation of these processes results in models described by nonlinear
high index DAEs. Application of the SPSM to this problem yields a new control
theoretic model of vapor compression cycles that is useful for simulation and
multivariable control design. This in turn provides valuable new insights into

modeling and state space realization of DAE systems.

+ v r 4 i X w
0 Gc >J — f(t,x,2) —bf -— g(t,x,2) -

controller

Figure 2. Block diagram of DAE realization approach

1.3 Related Work and Previous Literature

The main areas of relevant works are related to numerical analysis, sliding
control, and singular perturbation analysis. The interconnections between these
bodies of work are carefully investigated in this thesis to establish new
underpinning principles for realization of DAE systems.

The study of DAE systems has attracted substantial attention by the
numerical analysis community over the last several years [1,3]. This research is
motivated by the many challenging computational problems that result when
simulating multibody systems, chemical processes, and trajectory control problems

[3]. An important concept that was discovered in this research is the index

13



property. It is a measure of the singularity of the system and can significantly
affect numerical behavior of the solution. Discretization of high index systems often
results in ill conditioned equations [1]. To overcome this problem several methods
have been proposed with varying degrees of success [3]. However, high index
systems remain a challenging numerical analysis problem.

The realization of high index DAE systems involves the satisfaction of a
number of algebraic constraints that form an invariant set in the system. It is
shown that this can by achieved by using an appropriately defined sliding manifold.
Sliding control methods can then be employed to force the constraints to zero. This
leads to boundary layer interpolation methods that can be used to bound the
approximation error of the realization [19]. However, DAE realization presents a
number of new problems for the sliding control method that are related to
convergence of the approximation. These issues are addressed using normal form
representation from feedback linearization theory [9], and the singular perturbation
method.

In general, a high gain controller is necessary in order to force the constraints
to small values while the unconstrained state x is varying (see Figure 2). This
results in fast dynamics for the constrained states z and two-time-scale behavior.
Singular perturbation theory has been used with great success in the control
community as a means of studying systems with fast dynamics [12,11]. It is
demonstrated how this technique can be inverted to guide the synthesis of fast
dynamics that converge to index one constraints. The approach is then extended to
high index systems approximated by sliding manifolds. Furthermore, properties
such as stability, controllability, and observability of singular perturbation
approximations are investigated to ensure a DAE realization can be used for control

design.

14



1.4 Organization of Thesis

This thesis is organized into seven chapters. In chapter 2, the realization of
index one systems is investigated. It is shown how algebraic constraints can be
modeled using fast dynamics. The singular perturbation method of analyzing
systems with fast dynamics is then introduced. Using this technique criteria are
developed for systematically developing fast dynamics that converge to the
constraints until only a small error is involved.

Chapter 3 investigates the realization problem for high index (>1) DAEs. It
is shown how the DAE realization process can be formulated as an equivalent
nonlinear control problem. From this new connection a key relation between the
index property and the relative degree is obtained. This allows the constraints to be
combined into a sliding manifold. The sliding manifold is then used to generalize
the singular perturbation approach and develop a realization method based on a
sliding control analogy. Finally, normal form representation of DAEs is introduced.
This technique leads to new insights about DAEs and provides new methods to
study the convergence properties of sliding realizations.

In chapter 4, the boundary layer method for approximating sliding controllers
is introduced. Combining this approach with the generalized singular perturbation
method results in the singularly perturbed sliding manifold approach to realization.
The convergence properties of the method are rigorously proven using singular
perturbation analysis, normal form representation, and a sliding condition analysis.
This provides valuable bounds on the approximation error and some guidance for
the selection of important parameters. A simple heat pendulum example is then
used to illustrate the SPSM approach. Furthermore, the existence of control
properties such as controllability and observability are proven for SPSM
realizations. This leads to additional criteria for selecting model parameters. The
concluding section presents a technique to guide the selection of parameters based

on linearization of the SPSM.

15



Chapters 5 and 6 involve the application of the SPSM modeling approach to
vapor compression cycles. A systematic approach for modeling the dynamics of
vapor compression cycles is introduced based on a DAE representation. From this
process physical insights are gained about DAE models. The SPSM method is then
used for realization of the nonlinear high index DAE problem. This yields an
explicit state space model that can be used for simulation and control design.

Finally, the concluding remarks are given in chapter 7.

16



2. A Singular Perturbation Approach for DAE Realization

2.1 Introduction

In the process of modeling physical systems approximations are frequently
made to reduce the dimension and frequency range of the model. Rigid body
assumptions and neglecting fast dynamics can often lead to algebraic constraints
among state variables and derivatives. Algebraic constraints occur because the
dynamics of the constraining interactions are not directly modeled. At more
fundamental modeling levels, such as the N-body equation of classical mechanics '
and the multibody Schrodinger equation, there are no algebraic constraints between
variables. This is a reflection of the finite signal propagation rate required by
physical laws.

The idea of directly modeling algebraic constraints has been used with some
success for realization of DAE systems. This chapter introduces this approach,
known as the stiff dynamic element method, and illustrates some of its
shortcomings. It is shown how this physically motivated technique can be
generalized using singular perturbation theory to yield an improved method for
DAE realization. Conditions for convergence and approximation methods are
investigated. These new results form an important part of the theoretical

foundation needed for the singularly perturbed sliding manifold approach.

2.2 The DAE Realization Problem

The most general DAE problem considered in this thesis is the mixed set of

implicit differential and algebraic equations given by

F(t,x,x)=0 3)

17



where xe RP, F:RXRPXxRP - RP. For a DAE system [JF/0x] is singular so that

some of the state variables are algebraically constrained. Further, it is assumed
that a well defined solution for x exists with consistent initial conditions [1]. The
system presented is not under or over constrained. To facilitate analysis the DAE

system will be written in a semi-explicit form:

x=f(t,x,2) (4)
0=g(t,x,z) (5)

where xe R", ze R™, f: RXR"XR™ 5> R", and g: RXR" xR™ - R™. Implicit state
derivatives and constraints such as equation (3) can be converted to this form as

follows:

X=z (6)
0=F(t,x,2) (N

In this section it will be assumed that equations (4) and (5) are continuously

differentiable with respect to their arguments and that

det[—a—g] #0 ®)
o0z

in some neighborhood of the exact solution, which is guaranteed by the implicit
function theorem if g can be explicitly solved for z. This situation corresponds to an

index one DAE. High index systems (>1) will be investigated in the next chapter.

18



2.3 Previous Solution Methods

In this section, a brief overview of existing methods for solving DAE problems
is presented. This gives some background on the field and the difficulties that may
be encountered during DAE realization.

Implicit integration is one of the earliest techniques proposed for solving
differential algebraic systems [1]. In this method, the derivatives are replaced by
finite difference approximations which results in a set of nonlinear algebraic
equations that are solved for x[n] and z[n]. For example, using a first order

approximation yields

x[n]=x[n-1]+ At -f(t[n],x[n],z[n]) 9
0 =g(t[n],x[n],z[n])

This approach has been successfully applied for simulation of DAEs (see Figure 3).
However, it does not result in an explicit state space representation, so its
usefulness for control design is quite limited. Furthermore, the method becomes
numerically ill conditioned for systems with index greater than two.

A common approach for realization of DAEs is to differentiate the algebraic
constraints until derivatives of the constrained states appear. For an index one

system only one differentiation is required

as_[ag], [, [2]_ (10)
dt '[az]”[ax]”[at]“o

The Jacobian [dg/dz] is invertible so we can solve for z. A potential difficulty with

this approach is that differentiation operations can result in complicated
differential equations and Jacobian terms that are difficult to calculate. This
problem is described in later sections. Another problem is that the solution can

drift of the constraints because (10) only enforces the constraints at the differential
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level. Small numerical errors will accumulate in a direction normal to the
constraint surface (see Figure 4). This could potentially result in numerical and
controller instability problems.

A popular DAE realization approach is to approximate the algebraic
constraints using stiff dynamic elements. This procedure was originally introduced
to model the dynamics of two dimensional mechanisms [10]. Recently, the method
has been generalized to multibody systems [22]. This approach converts the DAEs
to an explicit state space form by directly modeling the constraints in the system
using stiff spring and damper elements. Figure 5 shows an example of how the
kinematic constraints in a four bar linkage can be approximated. The main
difficulty with this approach is that it requires sharp physical intuition or a bond
graph based method [17] to determine where to place the additional elements in the
system and how stiff to make the elements to obtain an accurate approximation.
Furthermore, adding new energy storage elements could potentially induce high
frequency interactions between the new elements and the original system. To
suppress high frequency oscillations, proper dampers must be added. In many
cases, particularly thermo-fluid systems, excess damping could result in substantial
error between the realization and the original system behavior. For general
systems, new methods are needed for designing well behaved fast dynamics that
guarantee convergence to the algebraic constraints. A geometrical interpretation of
the method is illustrated in Figure 6. It is evident that the method results in an
explicit ODE that converges to a manifold that is a small distance from the DAE
without drifting ef¥ects. However, a very high stiffness may be necessary for a good
approximation which could limit the utility of the approach for simulation and

control design.
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2.4 The Stiff Dynamic Element Method

In this section, an attempt to model a simple DAE system using the stiff
dynamic element method and some potential problems are illustrated. A lumped

parameter model of a two phase flow heat exchanger represents a simple
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illustrative example of a DAE system (see Figure 7). The system is composed of
three control volumes representing the fluid inside the heat exchanger (node 1),
fluid inside the connecting pipes (node 2), and the thermal capacitance of the heat
exchanger wall and fins (node 3). The state equations for this system can be
determined by applying conservation of mass and energy together with
thermodynamic properties for each control volume in the system. This results in

state equations of the form:
x=f(t,x,z) (11)
where
x=[P p; P, p; TJ , z=my (12)

The constant boundary conditions are given by T, , m; , h; , and m,. A full

description of the state equations appear in appendix A.

A common assumption made in modeling heat exchangers is that pressure
variations along its length have negligible impact on energy interactions, so that all
control volumes are assumed to have the same pressure. This results in the

following pressure constraint equation:
O=g(X) = X1 —X3 (13)

The differential-algebraic equations (11,13) can be converted to an explicit state

space form by finding a state equation for the mass flow rate m;. The combined

system should closely approximate the original DAE system. In analogy to the stiff
dynamic element method, an equation for the mass flow rate can be determined
from a momentum balance on a negligibly small section of pipe between the

components (see Figure 8). A simple approximation is
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dm, . 1
g —=—-m;+— (P, -P,) , O<g <<l
1 g 1 82(1 2) 1

(14)

Where ¢; represents the ratio of inertia to frictional damping and ¢, is the ratio of

friction to pipe cross section area.

The response of the system for a typical set of parameters and initial
conditions is shown in Figure 9. It is apparent that the addition of the momentum
equation results in fast pressure oscillations in the system. If damping is increased,
the oscillation decays faster; however, the approximation error becomes higher, as
shown in Figure 10. Evidently, the stiff dynamic element method (small inertia
method in this case) can lead to high frequency oscillations due to the interactions
between the new elements (fast dynamics) and the original system. This is
especially true for thermo-fluid systems, where energy exchange between fluid and
thermal domains can become substantially complicated when new storage elements
are introduced. Connecting new storage components in parallel, closed loop, or
other types of configurations in a thermo-fluid system does not guarantee a good
approximation, or in many cases even stability [20]. The results of this example
suggest the need for a systematic method of adding fast dynamics that guarantees
convergence to the original system described by DAEs. The singular perturbation
approach presented in the following section provides a systematic generalization of

this physically motivated approach.
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2.5 The Singular Perturbation Approach
The standard form of the singular perturbation problem is [11]:

x=£(t,x,2,e), x(t,)=x,, xeR" (15)

e2=g(t,X,2,€), z(t,)=2z,, zZ€R" (16)

When the functions f and g are scaled to have the same order of magnitude, the
perturbation parameter ¢ represents the ratio of time scales associated with x and z.
When ¢ approaches zero the dynamics of z become infinitely faster than x and the
system under certain conditions approaches the solution obtained by setting ¢ to

Zero

x=£(t,x,2) a7
0=g(t,x,z) (18)

which is in the same form as a set of differential-algebraic equations (equations (4)
and (5)). This observation suggests that a set of DAEs can be transformed to an
explicit set of ordinary differential equations by adding appropriate singularly
perturbed dynamics to the differential-algebraic system. Singular perturbation
analysis techniques can be used to analyze the behavior of this class of systems and
help guide the synthesis of appropriate fast dynamics. The conditions for
asymptotic convergence are derived in the following paragraphs.

The degree of violation of the algebraic constraints by the augmented system
(15,16) can be expressed by the function

w=g(tx,z), weR" (19)
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The cenvergence of the model to the algebraic constraints of the DAE can be
examined through the dynamics of w. Ideally, we would like the system to converge
to an invariant set [19]:

w=0 (20)

The invariance property implies that trajectories are confined to the set for all time
after the system converges. Thus, after the constraints are satisfied they will
continue to be exactly satisfied. A simple equation that accomplishes this goal is

ow . (21)

where € is a positive scalar. The DAE system is essentially approximated by a set of
ODEs with an attractive manifold given by the constraint equations. To be a
physically valid approximation it is important that the manifold be attractive. A
common approach for deriving state space formulations is to use the marginally
stable manifold formed by differentiating the constraint equations

ow . (22)

However, this differentiation based approach wili eventually drift off the
constraints in the in the presence of small numerical errors.
Equation (21) can be solved for z since the Jacobian matrix [0w/dz] is non-

singular. The combined system can thus be written as

x=1(t,x,2) (23)
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This system will asymptotically converge to the invariant set of algebraic
constraints in some local neighborhood of the exact solution where the Jacobian is
non-singular. From the implicit function theorem it follows that there will be at
least some small nonsingular region around the solution. Initial conditions should
be chosen sufficiently close to the exact solution to avoid singularities during

convergence or convergence to an invalid solution.

2.6 Approximate Dynamics

In practice, the calculation of the Jacobians, [dw/dz] and [dw/dx], may

introduce substantial computational burden. This is often the case for large scale
thermo-fluid networks where computationally intensive thermodynamic property
routines must be numerically differentiated. From equation (24), it can be seen that
the fast dynamics of z are mainly driven by the first term on the right hand side of
the equation since the second term is € times smaller than the first term. This
suggests that the fast dynamics can be approximated by neglecting the second
term. Furthermore, to avoid calculation of the inverse of the Jacobian matrix

[ow/dz], it is desired to seek another candidate for the coefficients of w. An

approximate form of the fast dynamics is proposed as follows:
ez=R(t,x,z)w , ReR ., (25)

where R is an approximate gradient that allows small insignificant terms in the
dynamics to be neglected to help improve efficiency for simulation and real-time
controller implementation. The criteria for convergence of the approximation are

given by the following theorem.
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Theorem 1. Consider the matrix defined by

JR (26)
where
J= a—w(t,x, z) 27)
oz

If the matrix is negative definite and J is non-singular in a region of state space
around the DAE solution then there exists a value of € such that difference between

the exact and approximate solution is given by

x(t,&) - x(t) = O(g) (28)

z(t,€) —z(t) = O(€) (29)

This result holds uniformly for some time interval [ty,t;] after a short period

[ty.tp].

Proof. Singular perturbation analysis can be used to establish the validity of the
approximate two-time-scale system (23,25) [12]. In particular, we need to analyze
the stability of a boundary layer defined as the difference between the exact
solution and the singularly perturbed system as € approaches zero. When € — 0 the

governing equations approach

x=f(t,x,2z) (30)
0=w(t,x,z) (31
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under the condition that R is not singular. It is assumed that equation (31) has an

isolated real root so that we may invoke the implicit function theorem
z=h(t,x) 32)

Then the exact solution to equations (30) and (31) can be obtained by solving the

reduced order problem
x=f(t,x,h(t,x)) (33)

The convergence of the two-time-scale system to the exact solution can be
established by investigating the dynamics in the fast time scale t=€t. The system

in this new time scale is

dx (34)
= =¢ef(t, +£€7.X,2)

%z; =R(t, +£T,X,Z)W(t, +E£T,X,2) (9)

To show convergence to the true solution we need to investigate the stability of the

boundary layer defined by
y=2z-h(t,x) (36)
Substituting this into (35) and taking the limit as £¢ — 0 yields

ax_o 37
dt

dy

38
L Rt Xgshltor o) + YIW(Eg: %o ity X)) (38)
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The first equation implies that x is frozen at its initial value. If the boundary layer

equation is locally exponentially stable uniformly in the frozen parameters t, and
X, , then Tikhonov’s theorem [11] guarantees that there exists a value of € such that

the solution uniformly approximates the true solution after a short "boundary layer"

interval [t,t,] (see Figure 11). That is,

x(t,€) —x(t) = O(¢) (39)

z(t,&) —h(t,x) = O(g) (40)

holds uniformly for a given time interval [t;,t;].

Uniform exponential stability of the boundary layer dynamics can be
established by finding a Lyapunov function V(t,,x,,y) that satisfies the following

conditions [11]:

ely|® S Vto. o Scofy] . y|<p (41)
dv 2 (42)
LBy

>0 , ¢,>0 , c3>0 (43)

for all t, and x, in some region around the origin of the boundary layer p. These

conditions can be proven using the Lyapunov function V=w'w/2. Close to the

origin w can be expressed using a first order Taylor expansion

w =J_y + higher order terms (44)
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where

JO ='ia'!'v"(toyxo vh(to,xo ))

dy

(45)

Near the origin the first order terms will dominate and the Lyapunov function is

given by
1
velpap

This expression is bounded by

1 1
Sl < V<o ohu Go)l’

Since J, is non-singular we have
1 . o 1 .
C; =—minCp (J,)>0 , ¢y =—minCp,,(J,)>0
2 tx 2 tx

The derivative of the Lyapunov function is given by

av_rdw _ ridy
dt dt dt

where

(46)

(47)

(48)

(49)
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= o X it ) +) (50
Substituting the boundary layer dynamics (38) gives
av._ wTJRw (51)
dt
Since [JR] is negative definite we have [19]
U o2
Where M is the symmetric positive definite part of [-JR]
M=-—JR—(JR)T>O (53)

2

Since M is symmetric positive definite the eigenvalues are always positive and the

Lyapunov function is therefore bounded by

dv
Y < Ao D[

(54)

Using the Taylor expansion of w near the origin (44) it can be shown that this

expression is bounded by

dv
< i MO T

(55)
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The expression for c; is thus given by
¢ =1tniny Pmin M2, (T 1> 0 (56)

Therefore, it can be concluded that the origin is exponentially stable and that the
results from Tikhonov’s theorem apply. The criteria for exponential stability of the
boundary layer are therefore equivalent to

JR <0, J=%(to,xo,Z) D

for all t, and x, in the domain of interest. An exact matrix that accomplishes this

goal, while avoiding inversion of the Jacobian is
R=-JT (58)

For a uniform approximation on infinite time intervals there is the additional
requirement that the DAE system be exponentially stable. The convergence criteria
depend on J being non-singular around some region of the exact solution. For some
value of £ the solution will be sufficiently close to the exact solution to ensure that J
is not singular. Singularities correspond to a possible transition between different
physical configurations and usually should be avoided. The validity of the
approximation can be checked by ensuring that det(J) does not vanish. This

concludes the convergence theorem. O

The singular perturbation method is typically used for model reduction [12].
This new realization approach inverts the method to convert DAEs to ODEs. A
geometrical interpretation of the approach is shown in Figure 12. It is apparent

that the method constructs a set of ODEs that converge to a manifold that is a small
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distance from the DAE. From a geometrical perspective the method is similar to
the stiff dynamic element method. However, it has a number of significant
advantages. The singular perturbation method has only one parameter to adjust (¢)
versus two (stiffness and damping) for each dynamic element placed in the model.
For large scale thermo-fluid systems the stiff dynamic element method could result
in hundreds of parameters that have to be carefully adjusted to achieve a good
approximation. Therefore, the new realization approach is far more systematic in
this respect. Furthermore, it will be shown in chapter 4 that the stability of the
realization is guaranteed for some value of €. No such guarantee exists using stiff
dynamic elements. Certain combinations could conceivably result in unstable
interactions. It will later be shown that this new approach is much more accurate
for a given stiffness of the dynamics. This is because the dynamics are directly
forced by the constraints, whereas in the stiff dynamic element method they are
only forced indirectly. Lastly, the singular perturbation method has the important
advantage that there exists a large number of control methods that deal with
systems in standard singular perturbation form [12]. The stiff dynamic element
method (14) cannot easily be written in this form so it is not as well suited for
control design.

In this chapter, a new approach based on singular perturbation analysis was
introduced for converting a system described by DAEs to an explicit state space
representation. This was achieved through the addition of fast dynamics that
converge to the algebraic constraints. Since the constraints were assumed to be
non-singular the approach is limited to index one problems. However, it will later
be shown that this result plays an important role in the realization of high index
DAEs.
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3. State Space Realization of High index DAEs

3.1 Introduction

In the singular perturbation approach it was assumed that the constraint
equations are nonsingular which corresponds to an index one DAE. High index
systems present more difficult problems in simulation and control due to the
presence of additional constraints that must be satisfied. In this chapter, new
methods are developed to address this more general class of problems. By relating
the index property to nonlinear control concepts a new type of control problem is
formulated that is equivalent to the realization process for high index systems.
This leads to representation of constraints in terms of sliding manifolds and a
generalization of the singular perturbation method. Further, a new realization
approach is developed based on a sliding control analogy. Together, these results
provide the key elements needed for development of the singularly perturbed sliding

manifold approach to realization.

3.2 The Index Property of a DAE System

A high index differential-algebraic system can be expressed in the general form

x=f(t,x,2) (59)
0=g(t,x,z) (60)

where xeR", zeR™, L RXR"XRT 5R", and g:RXR"XR™ >R™. In the

following discussion it is assumed that that f and g are sufficiently differentiable

and that a well defined solution for x and z exists with consistent initial conditions.
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Under these assumptions an important structural property of a DAE known as the

index can be defined [1].

Definition 1. The minimum number of times that all or part of the constraint
equations (60) must be differentiated with respect to time in order to solve for z as
a continuous function of t, X, and z is the index of the DAE (59-60).

Carrying out the differentiation procedure once gives

0=a—g+ggf+§§i

ot ox 0z

(61)

It is apparent that if the Jacobian [dg/dz ] is nonsingular then it is possible to solve

for z and the system has an index of one. For high index systems ( index > 1 ) the
Jacobian is not invertible and the constraint equations are identically singular with
respect to z. This violates the assumption made in standard singular perturbation
theory that the constraints have an isolated root. Therefore, the singular
perturbation approach cannot be used for high index systems without further
modification. Realization of a high index DAE generally involves differentiating the
constraint equations. However, it will be shown later that differentiation by itself is
not an acceptable method for generating state space realizations.

High index problems are common in many control applications [3]. A
constrained multi-body mechanical system, such as a four bar linkage (see Figure
13), is a common example of a high index DAE system. The Lagrange formulation

for the equations of motion can be expressed as

M(x)V =b(x,v) - g! (x)z (62)
X=v
0=_g(x)
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This is a high index problem since the constraints g do not involve z. From a
geometrical point of view, high index DAEs correspond to systems that have
additional algebraic constraints that involve the assumed unconstrained states x.
For instance, the four bar linkage has only one degree of freedom which implies that
the states of the other three links are algebraically coupled. A deeper geometric
interpretation of high index behavior will be given in section 3.7 using the normal
form representation of a DAE system. Conceivably, the index could vary at
different points in state space. However, many types of physical systems have a
constant index in a large domain of operation. Therefore, it will be assumed that
the index remains constant in some local region of state space around the DAE
solution. Changes in index correspond to critical configuration changes such as
kinematic singularities so caution should be used in these situations to ensure that

the system index remains constant.

Figure 13. An example of a high index DAE
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3.3 A Relation between DAE Realization and Nonlinear Control

In this section, an important connection between DAE systems and nonlinear
control theory is made by formulating a control problem that is equivalent to the
DAE realization process. This has substantial implications since it allows existing
insights from geometrical control theory to be used for analysis and realization of
high index DAE systems. This new connection is expressed in the following

proposition.
Proposition 1. Consider the SISO nonlinear control problem defined by

x=f(t,x,2z)

Z=V (63)
w=g(t,X,z)

where v is some fictitious input that drives z which is now assumed to be
independent, and w is an output equal to the violation of the constraint equations.
Then the relative degree of this problem is equal to the index of the DAE, and the
zero dynamics represent the dynamics of the high index DAE.

Remark 1. The input, by definition, is equal to z. The relative degree is defined as
the number of times the output must be differentiated to explicitly determine the
input. By analogy to definition 1 it is evident that the index and relative degree are
equal. Furthermore, the zero dynamics are defined as the system dynamics when
the input is chosen to force the output to zero. It is evident that integrating this
input yields a solution to the high index DAE problem. Since it was assumed that
the high index DAE has a unique solution the zero dynamics are therefore

equivalent to the DAE system.
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Figure 14. Block diagram of DAE realization approach

These results imply that the realization of an explicit state space model for a high
index DAE system can be interpreted as finding a controller that forces the defined
output to zero (see Figure 14). Most DAE problems have an equal number
constraints, and excess constraint equations can in principle be removed.
Therefore, it can be assumed without much loss of generality that the number of
outputs are equal to the number of inputs. Problems with this preperty, known as
square systems, simplify the design of cutput controllers considerably. For SISO
systems the analogy between index and relative degree is relatively
straightforward. However, for MIMO systems the definition of the index needs to
be generalized in the following manner.

Definition 2. The vector index of a multiple constraint DAE is defined as
r=lg .. [ ©4)
Where r, is the number of times each constraint w; must be differentiated for

components of z to appear. If the required differentiations are constant in some
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region of state space around the DAE solution and they explicitly determine z then

the vector index is well defined.

This property is analogous to the vector relative degree used in MIMO control
with a specialized form of input and domain [9]. Since the number of constraints
are equal to the number of constrained states the control problem is square. Note
that the index of the previous definition is the largest component of the vector
index. It will be found later that another index measure analogous to the total

relative degree is also theoretically important.
Definition 3. The total index of a multiple constraint DAE is defined as

(65)

Where 1, are the components of the vector index.

In order for the vector index to be well defined the definition requires that z
is explicitly determined after performing the required differentiations. The criteria
for this property can be determined by differentiating the constraints to obtain a set

of algebraic equations that must always be satisfied by an exact solution of the DAE

[1l:

0=w;(t,x)

_gw; (66)
0 it (t,x)

ri-1 .
0=4 ——l(txz)  for 1Si<m
de '
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For z to be explicitly determined by the constraints (66) the implicit function

theorem requires that the following Jacobian matrix be nonsingular.

Jo = o (67
2732

Where

dr,-1

l(t X,Z) for 1<i<m
dt'! (68)

Q=
For many types of physical systems it can be shown that the Jacobian is always
nonsingular. The non-singularity criteria is equivalent to the assumption made in
the vector index that the constraints explicitly determine z. This can be seen from

the following expression for @ which can in principle be solved for z

02 0, I (69)
0= at+axf+azz

The Jacobian invertibility criteria thus compietes the definition of the vector index.

The analogy between nonlinear control and high index DAE systems has
substantial implications since it allows existing insights from nonlinear control
theory to be used for analysis and realization of high index DAE systems.
Nonlinear control methods can thus be used to help systematically construct
realizations of DAE systems. However, it should be noted that this problem differs
significantly from a typical nonlinear control problem since the objective is to have
the two dynamic systems (59-60,63) converge in some approximate manner in the
presence of state variations and controller activity. The three main issues that need

to be addressed are
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1) How to force high index constraints to zero
2)  How to reduce computational complexity
3) How to guarantee convergence

The first issue is addressed in section 3.4 by constructing an appropriate sliding
manifold. In chapter 4, boundary layer sliding control is combined with the
singular perturbation method to address the second problem. Furthermore,
singular perturbation analysis and results from feedback linearization theory are

used to determine the necessary criteria for convergence.

3.4 Modeling of Algebraic Constraints using Sliding Manifolds

Systematic methods will now be developed for designing control inputs that
force the high index constraints to zero. For a valid solution each of the constraint
equations (66) must be simultaneously satisfied. This objective can be achieved by
constructing a sliding manifold with an attractive invariant set composed of the
constraint equations. The criteria for this procedure are ocutlined in the following

theorem

Theorem 2. If a DAE system has a vector index of r then a sliding manifold s can be

constructed with components defined as

d Ii—1
=l u—+1 s, >0 for 1<i<
S (u % ) w; M or i<m 70)
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so that s=0 has an attractive invariant set composed of the constraint equations.

Furthermore, s needs to be differentiated only once to explicitly determine z (or v).

Proof. By construction, each equation s; =0 represents a high order differential

-1

equation in w; with stable poles at A=—-p"" . Therefore, the constraint dynamics

are exponentially stable and the constraints are asymptotically satisfied

Wi(t,X) -0

dwi
—L(t,x) >0
at (t,x)

dhily, , 1)
—o (t%2) >0 for ISiSm as t—o

dt

Thus, s=0 has an invariant set composed of the high index constraints equations
(66). This implies that after the constraints are satisfied they will continue to be
exactly satisfied, which will result in an exact solution of the high index DAE.
Further, the derivative of s is given by

dt 9z ox ot (72)

Expand each component of s noting that lower order derivatives are independent of

z

rj—l Il dri-lW'
—_ — i~ 1 H
S —(HE{+1J w; =B (t,x)+pt F for 1<i<m (73)

Combining the components and using definition 2 yields
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s=p(t,x)+ diag[p,ri 'l] Q(t,x,z)
(74)

Therefore,

E = diag[},lri -

I]a_ﬂ
0z

dz (75)

From the definition of the vector index it is apparent that [ds/dz] is non-singular
around the DAE solution. This implies that the derivative of s (72) explicitly

determines z which completes the proof. O

The realization problem now becomes how to force s to zero. One simple way
this can be accomplished is by designing inputs that enforce exponentially stable

dynamics for s:
ps=-s (76)
This expression can be solved for v by expanding the derivative term

98 s [§f+9§] 77)
Haz Hax "o

Since [9s/0z] is non-singular we can solve for v, which yields an explicit ODE with

an invariant set composed of the algebraic constraints

x =f(t,x,2) (78)
i=v
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This system will asymptotically converge to the invariant set of algebraic
constraints in some local neighborhood of the exact solution where the Jacobian
multiplying v is nonsingular. Initial conditions should be chosen sufficiently close
to the exact solution to avoid singularities during convergence or convergence to an
invalid solution. It is evident that an asymptotically exact representation of a high
index DAE can easily be obtained using sliding manifolds. However, this may be at
the expense of calculating potentially computationally expensive Jacobian terms.

The following example illustrates this problem.

Example: A general index two DAE

The asymptotic control method (77) was applied to a general DAE with a

vector index of r; =2 in order to illustrate the technique and gain more insight into

the requirements of the method. Start with the definition of a sliding surface for an

index two problem

_,dw (79)
S=p——tw
syl O(AW), 9 (dw) . 9 (dw) | dw
larar ) ox| e oz dt dt (80)
where
dl:ﬂ.'.a_wf
dt ot ox (81)

Substituting these expressions into the sliding dynamics (76) and solving for v

gives
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29 (dw) _ o (dw)_ o[d(dw) 0 (dw). (82)
I'lazdt l'ldt”atdtamdt

This controller will asymptotically converge to the invariant set of algebraic
constraints in some local neighborhood of the exact solution. However, this may be
achieved at the expense of calculating computationally expensive Jacobians of terms
which are in turn composed of other Jacobians. The recursive complexity associated
with calculating Jacobians could limit the usefulness of the sliding manifold
approach. This warrants the investigation of model reduction techniques for more

efficient computation.

3.5 Generalization of the Singular Perturbation Approach

Using the results of the previous sections the singular perturbation approach
for index one DAE systems can be extended to high index problems. The singular

perturbation realization method has the form

x=f(t,x,z)
ez=R(t,x,z2)w(t,x,z) , O<e<<l (83)

The critical assumption made in developing this result is that the constraint
equation must be explicitly solvable for z , which corresponds to an index one
system. High index systems are identically singular so the method cannot be
directly applied.

The singular perturbation approach can be generalized by using the
previously defined sliding manifold. This extension is based on the observation that
the sliding surface represents an algebraic relation that can be explicitly solved for

z. If z is chosen to satisfy s=0 then the constraints will be asymptotically
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satisfied. Therefore, an index one DAE can be constructed that asymptotically
converges to the high index DAE

x=£(t,x,2) (84)
=s(t,X,2)

The singular perturbation approach can now be applied as before. This leads to the

generalized singular perturbation approach

x=£(t,x,2) (85)
ez=¢v =R(t,x,2)s(t,X,z)

where

JR<0 , Jﬁ%(t,x,Z) (86)

The convergence criteria depend, in a similar manner to index one systems, on the
J acobig.n being non-singular around some region of the exact solution. This follows
from theorem 2 if the vector index is well defined. Then for some value of € the
approximation will be sufficiently close to the exact solution to guarantee that the
Jacobian is nonsingular. The validity of the solution should be checked by ensuring
the determinant of the Jacobian doesn’t vanish. Furthermore, it should be noted
that the purpose of this section is to motivate a generalization of the singular
perturbation approach. By itself, it doesn’t constitute a rigorous proof of the method
for high index systems. A rigorous proof of these results will be presented in the

next chapter after the necessary mathematical results are developed.
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Example: A general index 2 DAE

The generalized singular perturbation approach for a DAE with a vector index of

;=2 was derived to illustrate the technique and to compare it to the other

approaches. Applying the method yields

[ @ ]
ev=Rlp—+w
de 87

Where one possible choice for R is

_ 3 (dw["
R= —[” 37(?)] (88)

Comparing this expression to the asymptotic sliding dynamics (82) it can be seen
that the Jacobian calculation requirements are substantially reduced. However,
there is a tradeoff since a small perturbation parameter may be needed for a good
approximation, which could incur additional computational effort. For many
applications, including thermo-fluid systems, Jacobian calculations often far

outweigh the added expense of the fast dynamics [6].

3.6 Sliding Controi Method

An alternative approach that would allow the removal of computationally
expensive Jacobian terms is to use a sliding control method to drive s to zero. A
sliding condition analysis can be used to determined the necessary criteria for

convergence [19]. Start with a quadratic Lyapunov function
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V=-!-sTs>0
2

(89)
Therefore
Vv _Ts= sT(@+Jv) (90)
dt
where
=2, e=24 3y (o1)
Now select the control inputs
Js - v = -6 —diag(k)sgn(s) (92)

Where a is a more computationally efficient approximation of the Jacobian terms a
and sgn() is a component-wise sign function. From theorem 2, the coefficients of v
are locally nonsingular. Thus, we can explicitly solve for the required input. This

yields

dv A B
—=s"(a-a)- Y kifs;|
dt i=1 (93)

Now choose the components of the gain vector k so that

ki .>.|ai —('ii|+1‘]i » T >0 for 1Si<m (94)
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The sliding condition then follows,

dv 1d 7t m
— T —— — S -_— .S,
dt 2 dts S %nllsll (95)

Which implies that s —» 0 and that the constraints will be asymptotically satisfied.
Further, s=90 is an invariant set in the system and the constraints form an
invariant set within s =0. Therefore, if s =0 and the other constraints are initially
satisfied then they will always be satisfied. Under these conditions the sliding

control method produces an exact representation of the DAE.

Example: A general index 2 DAE

Applying the sliding control method to the previous example gives

ugaz—(%} v=-f —diag(k)sgn[”‘:i_‘:’+w] (96)
where
ki 2|e; —&|+n; , m;>0 for 1<i<m 97)
a= u[i(ﬂ}—a-(ﬂ)-f] s
ot\ dt ) ox| dt dt (98)
%=g+—5{f (99)

From these equations it is apparent that the sliding control method allows precise

control over the tradeoff between Jacobian calculation and the control gain required
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for a good approximation. Therefore, large computationally inexpensive terms can
be included in @ to effectively reduce the bandwidth of the controller. The main
drawback is the discontinuous control input. This is very undesirable because it
can result in chattering behavior that could enter the actual control input and
excite unmodeled dynamics. Furthermore, a very small time step is necessary to
satisfactorily discretize the method for simulation and implementation. Effective

methods to smooth out the discontinuities are investigated in the following chapter.

3.7 Normal Form Representation of DAEs

The normal form representation used in geometrical control theory plays an
important role in understanding the zero dynamics and behavior of systems with
controlled outputs [9]. By applying the connection between DAE realization and
nonlinear control it is possible to use normal form analysis to gain new insights
about DAE systems. In addition, this approach provides a means of understanding
the convergence properties of the proposed realization methods. In the next chapter
this theory will be used to prove variocus results concerning DAE realizations.

Consider a SISO control system that represents an autonomous DAE system

with a single constraint equation

x =f(x,z)

z=v (100)
w=g(x,z)

This system can be expressed in the more generic form

E=7(5) +BEV
w=g(&) (101)
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where

(102)

If the DAE system has a constant index in a region of state space around some point

¢, then it can be proven [9] that locally there exists a smooth invertible nonlinear

coordinate transformation

OO =[p; -« Pr G - Gnurl ., @R SR

(103)
such that the dynamics can be expressed in normal form
_ o -
p= (104)
Pr
La(p,q) +b(p,q)Vv |
q =c(@.q)
where
p=[w w .. wiDfF (105)

The output can be written as
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w=p, (106)

It is apparent that the first states p in the normal form can be interpreted as
constrained states that are zero when the output is zero. The remaining states q

represent unconstrained coordinates that, in general, can vary even when the

output is zero. In normal form the zero dynamics are given by

p=0 p(t,)=0 (107)
q =c(0,q9)

This representation effectively gives the dynamics of the associated DAE system in
an independent generalized coordinate frame. It is evident from the dimension of q
that the actual dimension of the DAE dynamics is given by A=n+1-r. Thus, for
an index one system the dimension is equal to the dimension of x. As the index of
the system increases the dimension of the DAE decreases. For a system with an
index of (n+1) there are no dynamics and the DAE actually represents an algebraic
relationship. From a geometrical interpretation of these results it is apparent that
the number of independent states is given by A. Furthermore, it is possible to
define a coordinate transformation such that the system has n—-A dependant
states. Thus, an index one system has no dependant elements in x whereas a high
index DAE will always have dependant siates.

The normal form can also be used to study the behavior of systems with
controlled outputs. From the definition of the index it follows that b(p,q) is

invertible. Therefore, it is always possible to find a nonlinear controller that

linearizes the input-output dynamics using the following input transformation

v=b@.9)"(V-2(p.9) (108)
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Where V is a redefined input. This leads to linear dynamics for the constrained
states

P2
(109)

Pr

It can easily be shown that this form is always controllable and that by using state

feedback of the constrained states the pole locations can be arbitrarily specified

V=-Fp = p=Ap , MA)ER, (110)

The DAE realization methods proposed in this thesis to some extent use this idea
which results in stable output cdynamics. However, this procedure is not

guaranteed to converge to the DAE if the initial conditions of p are not zero. The

stability of a realization method depends on the behavior of the second equation in

(104) known as the internai dynamics of the system. Its behavior depends on p so

the stability of the internal dynamics depends on the form of the cutput dynamics.
It will be shown in the next chapter, however, that stability of the DAE implies local
stability of the realization. Note that p and the terms a({) and b({) in the first

equation of (104) can easily be calculated since they only involve derivatives of the
constraints. However, selection of the remaining coordinates and the nonlinear
transformation generally involves solving a difficult set of partial differential
equations (PDEs). The main utility of the normal form representation is as a
theoretical tool, and the internal dynamics usually must be studied using another

set of co-ordinates.
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The normal form representation can be generalized to MIMO systems which
occur for autonomous DAE systems with multiple constraints. For the class of DAE
systems under consideration the MIMO system is square with the number of inputs

equal to the number of outputs. The system can be written in the form

x=f(x,z)

z=v (111)
w=g(X,z)

This can be expressed as

E=v() +BEV
w=g() (112)

where

SHRES SRS b
B z gh 0mxl ’ - Imxm (113)

If the system has a constant vector index in a region of state space around some

point {, then it can be proven that locally there exists a smooth invertible nonlinear

coordinate transformation of the form

(114)

og=| P , @R g

_qn+m—rt i
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The columns of B are always constant and thus have the special property that they

form an involutive distribution [9]. This implies that the states q can be chosen

such that their dynamics are independent of v. It then follows that the system can

be expressed in the normal form representation

P2
pi - l
pl'i
m
a;(p,q) + X b;;(p.q)v;
_ =1 i
q =¢(p,q)

where

P =[w; W,
p'
p=| ..
pm
The outputs can be written as
Wi = P}

for 1<i<m

wi(ri -yT

(115)

(116)

(117)

(118)

Note that the elements of matrix b are equal to the Jacobian J, which is

nonsingular. The input-output dynamics can be expressed as
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Py
=a)+b)v (119)

- m
Prp

Therefore, the output dynamics can always be transformed into a linear input-

output relationship using the following transformation

v=b@.9)" (V-a@.q) (120)

Where V is a redefined input. This leads to decoupled linear dynamics for the

constrained states

(121)
[)i= . for 1<i<m

It can easily be shown that this form is always controllable and using feedback of

the constrained states the pole locations can be arbitrarily specified

Vi=-Fp' = p'=Ap ., M@ADeR (122)

Just as before, the physical interpretation of the MIMO normal form can be found

by examining the zero dynamics
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p=0 p(t,) =0 (123)
q =¢(0,9)

In this case the dimension of the DAE dynamics is given by A=n+m-r.
Therefore, a system with a vector index of =1 has a dimension of n with no

dependant states. When the total index is increased further the dimension
decreases. The number of dependant states increases with the total index and is
given by n—A. Since the MIMO normal form has the same structure as the SISO
case the same results hold for the relation between the internal dynamics and
convergence of DAE realizations. Therefore, MIMO normal forms can be used to

study the convergence of realization methods for multiple constraint high index
DAEs.
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4. The Sinqularly Perturbed Sliding Manifold Approach

4.1 Introduction

In this chapter the sliding control method and generalized singular
perturbation approach are combined to create a new method for DAE realization.
This approach has the advantages that it gives explicit error bounds and it allows a
precise tradeoff between Jacobian calculation and control bandwidth. The following
sections prove the convergence of the SPSM method which leads to significant
insights into the nature of the approach. A simple pendulum example is then used
to illustrate the method. Furthermore, important control properties of the SPSM
such as stability, controllability, and observability are investigated. Finally,
guidelines for the selection of parameters are presented based on a root locus

analysis technique.

4.2 The Singularly Perturbed Sliding Manifold Approach

The sliding control approach to realization has a number of advantages such
as the elimination of the approximation error after convergence. However, the price
of this performance is that the sign function introduces discontinuous control
activity. This is very undesirable because it can result in chattering behavior that
could enter the actual control input and excite unmodeled dynamics. Furthermore,
a very small time step is necessary to satisfactorily discretize the method during
implementation. To overcome the discontinuity problems a boundary layer
interpolation technique is employed [19]. This is achieved by replacing the sign
function with a saturation function to smooth the input in a thin boundary layer
region around the sliding surface. To achieve a good approximation the boundary
layer must be very thin. As a result, the dynamics become singularly perturbed and

the sliding control method needs to be combined with the singular perturbation
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approach introduced in section 2.5. This results in the singularly perturbed sliding
manifold approach (SPSM) to DAE realization:

x=£(t,x,2)
i=v

w =g(t,X,2) (124)

Jov=-a-Ksat(y) , y=cldiag(p)s , O<e<<l

;-1
si=(p.a+l) w; , u>0 forl<i<m

where J; is a more computationally efficient approximation of J, and sat(y) is the
vector of components sat(y;). The relative importance of the sliding surface
components are specified by the weighting vector p. Further, the assumption that

the gain matrix K is diagonal has been removed for the sake of generality. The
criteria for the SPSM realization to be a good approximation to the high index DAE

are derived in the next section.

4.3 Conditions for Convergence

Figure 15 shows the path that the trajectories of the SPSM realization (124)
follow in order to illustrate the conditions required for convergence of the method.
These are given as follows

1) The DAE must have a vector index (definition 2).

2) A sliding condition given by theorem 3 must be satisfied. This ensures that

the trajectories will point into the boundary layer surface and remain inside.
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3) Once the trajectory is inside the boundary layer the realization must satisfy a
singular perturbation stability criteria (theorem 4). This is important because
it ensures that the solution converges in a stable manner to a manifold {11]
that is a small distance O(¢) from the sliding surface which avoids the

potential problem of chattering inside the boundary layer. A further
consequence is that as € approaches zero the realization approaches an index

one DAE given by

x=f(t,x,2) (125)
0=s(t,x,2z)

Finally, a normal form representation is required to show that this equation

converges to the high index DAE.

SPSM trajectory
2. sliding condition
3. singularly perturbed dynamics

NS

s+€/p , sliding boundary layer

Figure 15. The SPSM realization method
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The sliding condition is derived in the following theorem.

Theorem 3. The SPSM realization given by

x=1(1,x,2)
zZ=v
';V =g(t,X,2) (124)
Jv=—a-Ksat(y) , w =£"diag(p)s , O<e<<l
a it
S; =(p.-a—t-+lj w; , Mu>0 forl<i<m
satisfies a sliding condition, if the DAE has a vector index r and
J sj s_lK -T' is positive diagonally dominant (126)

where T =|diagla—JJ ;1&] is the uncertainty associated with approximating a.

Furthermore, the errors of the constraints and their derivatives as well as the

sliding manifold are explicitly bounded by

si|l<=  forO<i<m (127)
Pi
wi j (128)
dwil Ze for0<j<r-l for0<i<m
de | i

Proof. A component-wise sliding condition can be used to guarantee that the sliding

boundary layer is always attractive. This criteria can be expressed as
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. € .
$;<0 , s;2— , for0<i<m
i

. € .
$;>0 , s;<— , for0<i<m

Pi
The derivative of the sliding manifold is given by
s=Jv+a
Applying the SPSM input (124) gives
s=a—-J J'a- 337K sat(e diag(p)s)

Expanding this relationship for a particular component yields
. S S:D: s
$i=%Yi— Dilsatl:—fl] . Diisat[—'%-] —e. Dimsat[%:l

where
y=a-JJ;'a , D=JJ;K

If s; 2e/p; then

éi =% -—Dilsatli%]—-...—Dﬁ —...—Dimsat[i'“:—m]

(129)

(130)

(131)

(132)

(133)

(134)

(135)
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The sliding condition (129) can be enforced if

136
Dy >1y; --Dnsat[s—fl]—...-—Dimsat[s—mép—'-'-‘-] = §; <0 ( )

Which can be satisfied independently of the other sliding co-ordinates if
Dii >|Yi|+|Dil|+"'+|Dim| (137)

This is equivalent to the matrix D—Idiag(y)l being positive diagonally dominant.

Substituting the defined expressions (134) gives that J sj S"IK—F must be positive

diagonally dominant. Following a similar procedure it can be shown that the
sliding condition is the same for the other side of the boundary layer.

The sliding condition ensures that the boundary layer is an attractive
invariant set. Therefore, once the solution enters the boundary layer it will remain

there for all time. From this the error bounds on s follow

lsi|<=  for0<i<m (138)

Following [19], the sliding manifold can be expressed as a sequence of first order

linear filters which leads to bounds on the constraint errors

iw. i (139)
d“." S—g—e-.- for0<j<g-1 for0<i<m
de’ | pp!
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Remark 2. This result is an important addition to the singular perturbation
approach because it can be used to help guide selection of €. If the time constant u
of the sliding manifold is specified then € can be adjusted to meet some desired
constraint tolerances. The sliding condition can also be used to help guide the
trade-off between control bandwidth and Jacobian computation. It is apparent from
(126) that as @ approaches a then less control gain K is needed to ensure that the
test matrix is positive diagonally dominant. Furthermore, the error bounds can be
used to ensure the realization will always be within a certain region of the DAE

solution so the Jacobian J is nonsingular. O

In order to study the approximation error between the SPSM realization and
the high index DAE system it is necessary to express the system in a special type of
normal form representation. This transformation is expressed in the following

lemma.
Lemma 1. If the DAE system has a vector index then the SPSM realization

x=1f(t,x,z)
Z=V

‘jz g8(t,x,z) (124)
Jov=-a-Ksat(y) , w:e"ldiag(p)s , O<e<kl

-1
si=(ua—+1) w; , u>0 forl<i<m

inside the sliding boundary layer can be expressed in a sliding normal form co-

ordinate system
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. i

b1 P2

Plr -2 = Pir- . for 1<ism (140)
1 1

| Dot [Gi= (6 = DR 7pE ], —.m (5 — Dupy — )/ |

e =¢e(a— J J;'8) - J 37K diag(p) s

q =¢(g,s,0)

where ge R™™ 21i represents the internal states of the system, and the output

states are given by

pi=[wi W .. wi(ri'l)]T forl<i€m

Pt Py - Pl 141
2 2 2 T
g=| Pl P2 - Ppl
" P35 - Phyal’

Proof. From proposition 1 and definition 2 it follows that if the DAE system has a
vector index then the vector relative degree of the associated control problem (124)
is well defined. Then from the normal form theory in section 3.7 it can be concluded

that locally there exists a smooth invertible nonlinear state transformation

¢(§)=tp] . @R R C___[X:I
q z (142)

that transforms (124) into normal form co-ordinates
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(143)
P = . for 1<i<m
]
Py
m
2;(P.9) + Lb;(P.Q)V;
| F J
q =é(p,q)

where q represents the internal states of the system and the output states p are
given by

p=lw; w; .. w8 DT fori<i<sm (144)

'This result assumes that the DAE is autonomous. If this is not the case then it is
necessary to replace time with an autonomous state equation of the form t=1. The
nonlinear state transformation of the augmented system is guaranteed to exist in
some local region of state space. Therefore, the results will be valid in some time
interval.

The normal form (143) can be expressed in terms of sliding co-ordinates using

a simplie linear transformation between s; and piri since the sliding co-ordinates are

defined by

T -1
c=lp—+1 c=pfipl g —DpS2ph |+ 4 (5 - Dpph +
Si [ll @ ] wi =R py +(5—DU* “pr (5 —Dup; +p; (145)

Therefore, there also exists a smooth invertible transformation of the form
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(4]
D)= s] , @ RV SR C=[§] (146)

where piri is essentially replaced by s;. An equation for § can be determined from
s=J,v+e | (147)
The SPSM input (124) inside the sliding boundary layer is given by
Jv=-a-e'K diaglp)s (148)
Substituting this into the previous expression yields a state equation for s
g8 =e(a—J J716) - J I 'K diag(p) s (149)

The equation for ?il'i 1 can be determined from equation (143)

P}, =Pk
(150)
which can be expressed in terms of the sliding manifold (145)
Wi gy =s; = (5 = DU pg y —...— (5, = Dup} - pi (151)

By combining the previous results equation (143) can now be expressed in a sliding

normal form

71



6 ]| ph | | (152)
i - im for 1<i<m

Pr-2 Pr;—1

Pht] 6= G- DR P~ - Dip -/

es=e(a—JJ5'6) - J.J;'K diag(p) s
q =c(q.s,0)

Remark 3. This result is important because it separates the internal dynamics from
the dynamics of the output. The zero dynamics of the SPSM (124) can then be

expressed as

(153)

] =¢(q,0,0)

From proposition 1 this is equivalent to the dynamics of the high index DAE.
Therefore, this representation can be used to help study convergence to the high
index DAE system. Furthermore, it will be found that the effect of € can be

systematically determined from the sliding normal form. O
Using lemma 1 it can be proven that the approximation error of the SPSM

realizatien will be small for sufficiently small values of €. This result is presented

in the following theorem.
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Theorem 4. Consider the SPSM realization given by

x=£(t,x,z)
z=v
tv - g(t, X, z) (124)
Jov=-a-Ksat(y) , \|l=£'ldiag(p)s , O<e<xl
a Y
si=(ua-+1) w; , U>0 forl<ism

If the DAE has a vector index and the matrix [-JJ;'K diag(p)] is negative definite

in a region around the DAE solution then there exists a value of € such that the

approximation error between the realization and the high index DAE is given by

x(t,&) —x(t) =0(g) (154)
z(t,&) — z(t) = O(€) (155)
s(t,e) = 0(g) (156)

This result holds uniformly on a given time interval [t,,t;] after a short boundary

layer interval [t,,t,] given consistent initial conditions.

Proof. After the trajectory of the SPSM enters the sliding boundary layer the

realization has the form

x=f(t,x,z)
Z=V
w=g(t,Xx,2)

R (157)
Jov=—6-¢K diag(p)s
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Using lemma 1 this system can be expressed in a sliding normal form

o || ph T (158)
pi - P for 1<i<m

pri—2 pl'i—l

Pt | |G- @ —DRE?pgl .= (5 —Dppy —p)/pi |

s =e(a—J I @) - J J;'K diag(p) s
q =c(g.s,0)

since the DAE has a vector index. This representation is in standard singular
perturbation form with respect to €. It is evident that this system has a form that is

similar to the singular perturbation approach (25) described in section 2.6. The
extra term a(a—Jsjglﬁ) does not change theorem 1 so it may be ignored. As €

approaches zero the system approaches a DAE expressed in terms of the sliding

manifold
Bl ph
) (159)
I i for 1<i<m
pri -2 Pr;-1
| Bk | | (@ -DRi7pE! —..— (5 - Duph - p))/pi |
O=s
q =¢(q,0,0)

where it follows that [-J sj ;‘K diag(p)] is invertible since it is negative definite. The

algebraic constraints for the constrained states s are trivially invertible so the
system is an index one DAE. Therefore, we can directly apply theorem 1 to deduce

the criteria necessary for convergence of (158) to (159). The analogous terms are
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R=-1J'K diag(p) 3_5 I (160)
Therefore, the convergence criteria are given by
(161)

—Jsjle diag(p)<0 , J; =%(t,x,z)

in some region around the DAE solution. From theorem 1 it can be concluded that
there exists a value of € such that the approximation error between the SPSM in

sliding norm form (158) and the index one DAE (159) is given by

q(t,e)—qt)=0(e) (162)
s(t,€) —s(t) = O(g) (163)
o(t,£) —a(t) =0(c) (164)

This result holds uniformly on a given time interval [t,,t;] after a short boundary
layer interval [t,,t,].

The dynamics of the high index DAE are given by equation (159) when the

initial conditions are consistent. That is,
¢(0)=0 (165)
This yields the solution of the high index DAE

6=0 , o(0)=0

0=s (166)
q =¢(q,0,0)
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Thus, for a given set of consistent initial conditions the approximation error
between the SPSM and the high index DAE is given by (162-164). Since the co-
ordinate transformation used in lemma 1 is smooth and invertible the mean value

theorem can be applied

E;(t -°.)—C'(t)=a[q);IW)]j (yt,&)—y(t)) for 1<j<(n+m)
j(LE)—G; 3 _7’ Y =)= (167)
Y
° X
0=y , y=|s| , C=[z] (168)
q

where ¥ is a mean value evaluated in some region around the high index DAE
solution y. Combining equations (162-164) and (167) gives the approximation error

in terms of x and z

x(t,€) —x(t) = 0(e) (169)

z(t,&) —z(t) = 0(e) (170)

This completes the proof of the convergence theorem. L]

4.4 Numerical Example

This section illustrates the SPSM realization approach using a simple
pendulum example (see Figure 16). The equations of motion for this system in

Cartesian co-ordinates form a high index DAE problem:
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Vi =2ZX (171)

Vy=zy-g (172)
X=v, (173)
y=v, 174)

x2+y%-1=0 (175)

Where (x,y) is the position of the pendulum, and z is the compressive force in the

rigid link.

Figure 16. A simple pendulum example

The index of this system can be determined by repeated differentiation of the

constraint equation (175).
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W =2xvy +2yvy (176)
W =2vi +2v2 +22(x* +y?) - 2gy a77
W =82(xv, +yv,)+22(x* + y?) - 2gv, (178)

Since the coefficient of z in (178) is nonsingular the system has an index of three.

Therefore, the appropriate sliding manifold is given by

PR , (179)
s=(u-&;+l) W= W+ 2UW + W
s$= 2u2(v§ + v§ +z(x2 + y2)—gy)-|-2u(2xvx +2yvy)+x2 + y2 -1 (180)
The derivative of the sliding surface is thus given by
§=p + 2% + W =+ v (181)

Substituting the expressions (176-178) into equation (181) results in the following

expressions for J; and o
J =202 (x2 +y?) (182)
o= u2(82(xvx +yvy)—2gvy) +4u(v§ + vf, + z(x2 + yz) - 8Y)+2xv, +2yv, (183)

Substituting the previous equations into (124) and using J, =J; and @=0 yields a

SPSM realization of the DAE system
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uix2+y?)v= (184)
~ksat|pe”'[ 2u2(v? +v+2(x? +y?) - gy) + 2nQ2xv, +2yv, ) +x* +y? -1 1]

Theorems 3 and 4 guarantee that there exist values of k, i, and € such that
the SPSM is a good approximation of the DAE with guaranteed error bounds on the
constraints. The following procedure can be used to determine a suitable set of

parameters.

1)  Select a value of p so that the dynamics on the sliding manifold are
sufficiently fast.

2)  Select the control gain to satisfy the sliding condition (126).
3)  Choose ¢ to satisfy some desired error bounds on the constraints (139).

This sequence will result in a realization that satisfies a given set of error bounds.
This is a significant improvement over the singular perturbation method since it
gives an explicit criteria for selecting € based on a desired error. Further, it ensures
that the realization stays a small distance from the DAE solution se¢ that
singularities are not encountered. Simulations can be used to verify the transient
properties of the solution, and if they are not optimal then i can be adjusted and
steps 2 and 3 repeated.

For this problem a time constant of pn=0.02 was selected for the sliding
manifold. The sliding condition of this problem (126) reduces to

k—|a|>0 (185)
This relation can be satisfied if
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k > max [p,lz(Sz(xvx +yvy)—2gvy) +4u(v§ + v§ + z(x2 + y2) —gY) +2xv, +2yv,] (186)
A conservative bound for this expression can be obtained from

k> 2@y vy D+ 28wy D+ anda [ + vy [+l + ) +ely)
(187
+2|x||vx|+2|y||vyl )

From physical considerations it can be shown that the following bounds are
satisfied near the solution
|x| <1
Jy]<1
|Vx}sw/£
Ivy|<+2g (188)
lz|<3g

Substituting these relations gives a numerical value for k
k>0l 20 (189)

Finally, the parameter € can be selected to achieve some desired error bounds. For

example, the position error is bounded by

w]<e (190)

Where p is set equal to one, since there is only one sliding component. Thus, to

ensure a maximum position error of 0.1 we can set
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£=0.1 (191)
The sliding boundary layer is given by

lsf<e (192)

Therefore, once the SPSM has entered this regicn the error bounds will be satisfied.
The SPSM was simulated for the given set of parameters

R=002 , =01 , K=y, (193)

with initial conditions outside the boundary layer (see Figure 17 to Figure 22). It
can be seen from Figure 21 that the trajectories quickly converge inside the
boundary layer and remain thereafter. As a result the error bounds are satisfied
after a brief transient (see Figure 20). A comparison of the SPSM to the exact
solution is shown in Figure 17 to Figure 19. It is apparent that the realization
quickly converges to the high index solution until only a small error is involved.
Furthermore, the solution will never encounter the singularity at (x=0, y=0) since

the error bounds imply that

|x2 + y2 - 1| <0.1 (194)

09<sx2+y?<1.1 (195)
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4.5 Control Properties of Singuiarly Perturbed Sliding Manifolds

For the SPSM realization approach to be an effective tool for control design it
is important that control properties such as stability, controllability, and
observability are equivalent to the original DAE. These requirements will be
affected by the parameters and in turn lead to additional criteria for their selection.
This section proves that there always exists values of € and p such that the local
stability, controllability, and observability are equivalent. The results will be

proven for autoncmous DAE systems of the form

SPSM DAE
x =f(x,z,u) x =f(x,z,u)
Z = v(X,Z,1L,E, L) Py 0=g(x,z,u)
y =h(x,z,u) y =h(x,z,u)

where u is an external input and y is some defined output.

The stability equivalence of the SPSM to the DAE is proven in the following

theorem.

Theorem 5. There exists values of € and p such that the SPSM is locally stable iff
the DAE is locally stable. O

Proof. It is evident from equation (157) that inside the boundary layer the SPSM

realization of an autonomous system with control inputs applied has the form

x=f(x,z) (196)
ez =R(x,2)s(x,z) +eP(x,72)
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It will first be shown that the stability of the SPSM is equivalent to the following

index one DAE for some value of ¢.

x=f(x,2z) 197
0=s(x,z)

Then it will be proven that the stability of the index one system is equivalent to the
high index system.

x =f(x,z) (198)
0=w(x,2)

The system (196) can be linearized at an equilibrium to investigate its local stability

properties

iK=A“x+A]2Z (199)
€2 = (A21 +€E2] )X+(A22 +€E22 )Z

Where the linearized coefficient matrices are defined in the obvious manner, and x,

z are offsets from equilibrium values. The reduced model for € =0 is given by

X= A“x + Alzz (200)
0= A21x + Azzz

The linear algebraic relation in z can always be inverted since the implicit function
theorem guarantees that the associated Jacobian is invertible. Substitution of the

second equation into the first equation results in a reduced model in terms of x

x=[A}; —~ApADA X (201)
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This equation is equivalent to the linearized index one DAE corresponding to (197)

since

_ dRs|'[aRs] _[2 (202)
e R

From the implicit function theorem this expression is independent of the choice of
R. Therefore, convergence to the reduced model of (199) is sufficient to imply
convergence to the index one DAE.

Following the linear singular perturbation theory derived in [21] it can be
concluded that as €¢ -0 the eigenvalues separate into a fast stable region and a

slow region (see Figure 23).

Im

= Re

Figure 23. Root locus of eigenvalues

The n slow modes converge to the eigenvalues of the index one DAE:

Al 4 A(Ao) , Al € EKmm (203)
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where
Ag=A; -ApAnA,, (204)
Furthermore, the m fast modes converge to stable asymptotes given by

A2 b 4 A(Azz)/s s A2 € g‘mxm (205)

where it can be shown that A,, is stable as a result of Tikhonov’s stability criterion

[11]. By continuity, there exists a value of € such that the slow eigenvalues of the
SPSM are arbitrarily close to the eigenvalues of the index one DAE. Since the other
fast eigenvalues are asymptotically stable the stability of the SPSM is equivalent to
the index one DAE.

To complete the proof it is necessary to show that the stability of the index
one DAE is equivalent to the high index system. This can be accomplished using
the singularly perturbed sliding normal form (140). The index one DAE can thus be

expressed as

c':i=Ai<si for 1<i<m
s=0 (206)
q =¢(q,0,0)

where A; is a stable matrix with eigenvalues at —-n!. This expression represents

the internal dynamics of the index one DAE. The local stability of the internal

dynamics can be determined by linearizing these equations.

(207)
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él| A, 0 - 0O 0 ¢!
62 0 A2 0 0 02
g™ 0 0 -+ A, Oje™
G| [Bi B, - By, HJ ¢q

where the linearized coefficient matrices are appropriately defined. Since this
matrix is in block triangular form the eigenvalues are determined by the matrices
on the diagonal entries. The first m matrices are stable for any value of u, so the
local stability solely depends on H which represents the linearized dynamics of the
high index DAE in normal form coordinates. Therefore, the local stability of the
index one DAE is equivalent to the stability of the high index system. Combining
this with the previous result completes the proof of the theorem. From these results
it is apparent that the local stability of the realization doesn’t depend on the value

of L given a sufficiently small value of €. O

The stability equivalence property ensures that if a controller is designed
that stabilizes the SPSM then the controller will also result in a stable system when
applied to the actual DAE. Conversely, if the originally DAE is stable or unstable
then this property, which is necessary for control synthesis, will be inherited by the
SPSM for some parameter values. The equivalence of controllability is

demonstrated by a corollary of the previous theorem.

Corollary 1. There exists values of € and p such that the SPSM is locally
stabilizable iff the DAE is locally stabilizable. OO

Proof. If a system is locally stabilizable then, by definition {2], it is possible to find a
controller that results in a locally stable system. Therefore, if the original DAE is
locally stabilizable a controller can be designed that results in a stable system. The

previous theorem then guarantees that there exists a set of parameters such that
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the SPSM is also stable. Hence, if the DAE is stabilizable then the SPSM is also
stabilizable. It follows in a similar manner that if the SPSM is stabilizable then the
DAE is also stabilizable. The existence of linear stabilizing controllers for the two
systems is thus equivalent for some value of parameters. In general, it may not be
possible to control the stable modes related to the fast dynamics of the SPSM.
Therefore, it is only possible to prove that the two systems are stabilizable. O

Remark 4. Under some mild smoothness assumptions it can be concluded that if
the linearized system can be stabilized then the nonlinear system can also be

stabilized. OO

In general, the fast modes of the SPSM become unobservable as € and p approach

zero. Therefore, it is only possible to prove detectability.

Theorem 6. There exists values of € and p such that the SPSM is locally detectable
iff the DAE is locally detectable. O

Proof. This proof is beyond the scope of the thesis. O

To summarize, it can be concluded that the stability, controllability, and
detectability of the SPSM will be equivalent to the original DAE for certain
parameter values. These parameters may be determined using a linearization of

the SPSM and explicitly checking each criteria. An efficient method for linear

parametric analysis of the SPSM is outlined in the following section.

4.6 Selection of Parameters using a Root Locus Technique

The results of the previous sections indicate the existence of parameter

values of € and p such that the SPSM is a good approximation of the DAE. In this
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section a root locus technique is introduced ti.at parameterizes the linear dynamics
around an equilibrium point. This allows efficient characterization of the local
behavior of the realization over the parameter space to help guide the selection of
parameters. To illustrate the technique it will be applied to an index two DAE. It
is a straightforward matter to extend the method to more general realizations. The
SPSM realization of an autonomous system inside the sliding boundary layer can be

written as

x=£(x,2) (208)
ez=Rs (209)
R =-J;'K diag(p) (210)

where @ is set equal to zero. Substituting the expression for s gives

€z = R(uw + w) = uRw + Rw (211)

The realization can now be linearized as follows

X= Al 1X + Alzz (212)
Z= A21X + A22z

where

o (213)
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Rw) g J(Rw)

—1.. (Rw) e J(Rw) (214)
ox ox ’

A-n =
428!182 3

1.9
Ay=¢n (

It is now evident that the SPSM parameter dependencies can be separated from the
linearized terms. Note that the parameter dependency in R may also have to be

separated. For instance, if

R=-J;! (215)
then using theorem 2 we have

O(RW) _ ! AT g (X,2)W(x,2)]

x dx
IRW) _ - A g (x,2)W(x,2)]

ox ox
IRW) _ -1 AWa (x,2)W(x.2)]

oz oz (216)
IRW) _ 4 lJg (x.2)W(x,2)]

oz s oz

ow

JQ = 'a—z

Therefore, the Jacobian matrices need to be evaluated only once at an equilibrium
point. Hence, for any set of parameters the linearized dynamics can be calculated
by performing simple matrix additions. This result is a very useful tool for
parameter selection since the linear parameterization can easily be used in efficient
optimization and search algorithms. One important use is tc test for local stability,
controllability, and detectability equivalence. It can also be used to study the effect
of interactions between the sliding manifold (u) and singular perturbation dynamics

(e) by drawing a root locus of the eigenvalue locations.
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5. A DAE Modeling Approach for Vapor Compression Cycles

5.1 Introduction

In recent years, dynamic modeling, control, and diagnostics of vapor
compression cycles have become active areas of research to improve the
performance of air conditioning and heat pump systems. Most research efforts have
been concerned with increasing steady state efficiency despite the fact that steady
conditions are rarely achieved. Dynamic behavior, such start-up and shut-down
transients, can substantially degrade performance and reduce system reliability.
Systematic modeling and control methods are therefore needed to improve dynamic
behavior of vapor compression cycles. This is especially true for new vapor
compression cycle designs that employ multiple indoor heat exchangers for HVAC
systems used in large buildings (see Figure 24). The dynamic behavior of multiple-
zone vapor compression cycles are highly nonlinear with substantial processes
uncertainties which make modeling and control design difficult problems. In this
chapter, a new DAE based modeling approach is developed for describing the
dynamics of multiple-zone vapor compression cycles. Since this formulation results
in a nonlinear high index DAE system it provides motivation and a realistic
application for the SPSM realization method. The SPSM method is applied to this

new problem in chapter 6.
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Figure 24. A Multiple-zone Vapor Compression Cycle

5.2 Evaporator Subsystems

The dynamic behavior of the evaporator heat exchanger is governed by
complex interactions between refrigerant flowing in single phase or two phase
states and fin arrays that thermally communicate with ambient environments.
These coupled fluid mechanics and heat transfer processes are inherently
distributed in nature. They can be formulated as a set of coupled one dimensional
partial differential equations (PDEs) by applying the principles of mass, momentum

and energy conservation [20]. The equations can be expressed as

mass balance

¥, Apew _ (217)
ot oz
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momentum balance

d(pu) , d(pu?) _ oP (218)
o "o o el

energy balance

dph—-P) d(puh) 4 (219)
x —Dia‘(T Tw)

thermodynamic state equations

h=h(p,P) T=T(p,P) (220)

where the dependant field variables p, u, P, h, and T are density, flow velocity,

pressure, specific enthalpy, and temperature respectively. The independent
variables are time and length along the heat exchanger. In the fermulation of the
energy equation viscous dissipation, axial conduction, pressure drop, and gravity
terms were neglected. The gravity term was also neglected in the momentum
equation. These equations assume a homogeneous flow pattern and a one
dimensional cylindrical geometry.

The three coupled nonlinear PDEs along with the two thermodynamic state
equations can be solved for the five field variables using numerical techniques.
However, low order ODE approximations of these equations are required for control
system design. The main objective of the modeling approach is to capture the basic
mechanisms governing the dynamic interactions in: the system and their impact on
energy efficiency. With this goal, the mass and energy equations were integrated
assuming a moving boundary flow pattern [15]. Figure 25 illustrates the concept.
The heat exchanger flow field is divided into a two phase region with a liquid film

on the inside of the tube wall (annular flow) and a gas phase section (superheated)
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with the variable /. (t) describing the position of the liquid-vapor transition point.
In the two phase region the volume ratio of gas ¥ (mean void fraction) is assumed to

be approximately constant. It is important to model the dynamics of the liquid-
vapor transition point because a small superheat section is required for efficiency,
but it must not be too small otherwise liquid will enter and damage the compressor.
Therefore, the length of the superheat section must be accurately controlled. The
moving boundary method has been shown to be effective for capturing the dynamics
of the liquid-vapor transition point in vapor compression cycles with one indoor heat
exchanger [8]. This investigation generalizes the method to multi-zone systems (see
Figure 26). Integration of the mass and energy equations (217,219) was performed
from z=0 to z=1[,(t) using the moving boundary method (see Appendix B). This

yields the following set of low order ordinary differential equations for eich indoor

evaporator k:

- dl - dpg - .
Ag =T )P _pgk)_d'tk_"'Acklk[Yk—_g—"'(l_Yk) q - Mk Mok 221)

dpy [dPy _ .
dp, dP,

dPghg) . _ _d(pyh dP,
gk Mgk (A=) (Pix lk)_l] k
dp, dpP, dt (222)
=ty hoe - Toxh g + D3Ok [Tk - Toar (P

— d/ _
A =Y )Pichi —Pgrchgi )d_: + Acklk[Yk

dT.

— — (223)
(pAccp)wk —dt& = nDok Aok [Tak - ka ] - T‘Dik Olik [ka - Tsat (Pk )]

See appendix C for relevant variable definitions. The superheat section of the
evaporator was modeled using steady state equations since the time scale of its
dynamics are much faster than the two phase section. The steady state assumption
yields algebraic equations for the evaporator outlet enthalpy and superheat as a

function of the evaporator state variables and outlet mass flow.
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Figure 26. Multiple-zone evaporator model
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5.3 Lumped Parameter Subsystems

The other components in the cycle (the condenser and accumulator) were
modeled using a standard lumped parameter approach since the accuracy of these
models are known to have a much smaller influence on system efficiency [4,8]. The

equations for the accumulator are

mass balance

dp, _ .
V. " =m, —1m, @90)
energy balance
9(p. 0 G 225
v, 20e8e) ), T | BBy, 20l () O (0 (22D
oP, dP, | dt op, ap, | dt

=2 Mo hg — ri1phga
k

gas phase out

two phase in

P — |

=
|
|
|
b o —

Figure 27. Accumulator
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The equations for the condenser are

mass balance

d . . (226)
Ve (‘i)tc =m, -y
k
energy balance (fluid)
d(p i) dP apci)dp, . . _ 227
Vc (gl‘;u ) dtc +vc (SPHC) C‘i)t =mphop —Emvkhoc _(aA)ic(Tsat(Pc)—Twc) ( )
energy balance (wall and fins)
dT _ — 228
(mc)wc —d‘ty_c. = (aA)ic (Tsat (Pc) - Twc )_ ((IA)OC (Twc - Tac ) ( )

warm liquid out ==—=—=—=—=== hotgasin

i

Figure 28. Condenser
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5.4 Actuator Models

The fan, valve, and compressor actuators in the system are known to have
much faster time constants than the vapor compression cycle dynamics. Therefore,
they were modeled using the following steady state empirical corielations which can
be identified through appropriate measurements.

fans (outside heat transfer coefficients)
O, =a+bfy T, =a+bf, (229)
expansion valve area (mass flow rate)
i, =k, (A —a)’ (B —P)°p¢ (230)
compressor speed (mass flow rate, power, outlet enthalpy)

. m.h,, +W
M, =kpe® W,=k,Pfo" h,=—0F P
p = KpPga p=Kwta op ) 231)

5.5 DAE Modeling Approach

The set of differential equations (221-228) and actuator equations (229-231)
represent the models of the individual components in the multiple-zone vapor
compression cycle. However, the mass flow interactions between the components
need to be determined to complete the model. The momentum equation provides

the key to determining this information in thermo-fluid systems. Integration of
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equation (218) from the accumulator to the center of the indoor unit two phase

region gives the following relation:

) ) k() I (t)/2
Py —P, =(pu), —(pu?)y 2+ [Fyandz+ [Fyydz
Lk Ik (t) (232)

where it is assumed that the momentum interactions are much faster than the
vapor compression cycle dynamics so that the momentum equation is in a steady
state condition. This expression represents the pressure drop from the evaporator
heat exchanger to the accumulator entrance. It can be shown to be a nonlinear

function of the mass flow and pressure (see Appendix D):

There is alsc the additional mass flow constraint imposed by the junction to the

accumulator:
Ymy —m, =0 (234)

Together, these algebraic equations give sufficient information to calculate the
unknown mass flow rates in the system.
Through suitable manipulations the vapor compression cycle model can be

expressed as a collection of DAE subsystems

xy =fi (x,z,u)
0 =g, (x,z,u) (235)

Y =¥ (x,z,u) , k=1.N

102



where:

T]T T,T

T T T
x=[x;" .. Xy z=[z; .. zn] u=[u .. uy']

xg =l Py ka]T’ k=LN-1,xy=[P, p. P p Twc]T (236)
)
Zy =Ii1°k » k=1.N-1 s ZN =Iha

u =[A,; f]7, k=1L.N-1,uy=[o f.]7

See appendix E for the subsystem components. This intercornected system is
described by a set of differential-algebraic equations. The differential equations are
responsible for energy and mass storage in the system, whereas the algebraic
constraints are a result of the steady momentum and mass flow constraint
equations. In general, the constrained variables z cannot be eliminated because
the constraint equations are nonlinear. Further, if the pressure drops are negligible
the constraint equations no longer depend on z which results in a high index DAE.
The DAE based approach for modeling multi-zone vapor compression cycles
simplifies the formulation of the model considerably. The appropriate model can be
constructed in a modular fashion by simply combining the DAE subsystems
associated with the various components. For instance, a two zone system can be
constructed by including the subsystem DAESs for the components shown in Figure
29. A multi-zone system with more than two indoor units can easily be constructed
and simulated by adding more subsystems. This procedure can be systematically

carried out in an object oriented language such as C++.

103



refrigerant l ? compressor

flow

evaporator #1 JeQ il
VY.

accumulator

evaporator #2 §

Figure 29. DAE model of a multiple-zone vapor compression cycle
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6. Application of the SPSM Methed to Vapor Compression Cycles

6.1 Introduction

In the previous chapter it was found that the dynamics of vapor compression
cycles could be systematically formulated using a DAE representation. However, in
exchange for this modeling simplicity algebraic constraints are introduced that need
to be addressed. This chapter uses the SPSM method to construct an explicit state
space realization which can be used for simulation or control design. The root locus
method introduced earlier is used to select the model parameters and the
realization is compared to the exact solution. Furthermore, the SPSM approach is
compared to the stiff dynamic element method. The utility of the SPSM approach is
demonstrated by simulating a vapor compression cycle over its entire operating
envelope. These results verify the method and provide some intuitive

understanding of the realization process.

6.2 The Stiff Dynamic Element Method

The stiff dynamic element method is one of the few techniques currently
available for realization of nonlinear DAE systems. This section applies the
alternative approach to a two evaporater system for comparison to the SPSM
method. Following the simple heat exchanger example in section 2.4, the
momentum equation was applied to small sections of interconnecting pipe to
determine state equations for the unknown mass flow rates in the system (see

Figure 30).
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el%=—zl+;1-(Pl—Pa) , 0<g <<1 (237)

2

2 _ (238)

dz 1
g§—==-z2,+—(P,-P,) , O<g, <1
- 2 82( 2 —Py) 1

Since the evaporators in this example are the same an identical set of parameters
are used in the stiff dynamic elements. For general cases, another set of
parameters would be necessary. Figure 31 shows the response to a step change in

boundary conditions for elements with low damping €, <<1. It can be seen that the

response is highly oscillatory and the dynamic error is large during the transient.
However, when the damping is increased a large steady state error occurs (see
Figure 32 to Figure 34). This problem is similar to the simple heat exchanger
example presented in section 2.4. To ensure a small steady state error the damping
was fixed at a level 20 times greater than the value used in Figure 31. To reduce

the approximation error the inertia & was reduced by a factor of 100 until an

acceptable error was achieved. It can be seen from Figure 35 that the error is
reduced at the expense of increasing the stiffness of the elements. Figure 36 shows
how the eigenvalue locations are varied to improve the approximation error. The
four eigenvalues associated with the stiff dynamic elements are off the real axis. It
is evident that the natural frequency needs to be increased substantially over the
previous case. In both situations the dynamics are very oscillatory. This example
clearly shows the tradeoff between element stiffness and approximation error. To
achieve a satisfactory error the fast dynamics have to be shifted into the acoustic
frequency range (>250 Hz) which is two orders of magnitude greater than the
highest frequency in the original DAE (4 Hz). The stiff dynamic element method
evidently needs to model the actual acoustic interactions in the system to achieve a
good approximation. This is not surprising since the method is based on an
approximation of the actual momentum interactions in the system. The severe time

scale separation beiween the stiff dynamics and the DAE will result in stiff
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differential equations that are computationally expensive to simulate.
Furthermore, this effect can also present numerical problems for many control

design methods [18].
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Figure 30. The stiff dynamic element method

6.3 The SPSM Realization Approach

The SPSM approach was applied to develop a state space realization for a
vapor compression cycle with two evaporators (see Figure 30). Combining the
separate differential-algebraic subsystems in (235) results in the following DAE

system:
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x=f(x,z,u) (239)
0=g(x,z,u) (240)

where
x'=[F 4 Ty P L Tey Py py P p Tyl
2" =[hy Thyy tm,]"
(241)
u'=[A,; A, o

yT=[SH; T,; SH, T,,I"

The SH output represents the superheat of each indoor unit, and the fans are set
constant. It is assumed that the pressure drops in both evaporators are negligible
so that the constraints are given by

W = Pl - Pa =X1—X7 (242)

W2 =P2'-Pa =X4—X7 (243)

There is also a third constraint given by the mass flow junction into the

accumulator
W3=Z]+ZZ—Z3 =0 (244)

This equation is trivial to invert so it is used to eliminate one of the constrained
states
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23=2;+12, (245)

Therefore, only two constraints need to be considered for this problem. Since the
constraints (242-243) do not depend on z the system is a high index problem. It can
be readily shown that the system is an index two problem so that the sliding

manifold components are given by

d (246)
$1 =|:|.l.a+1ilwl = }l(f] (t,X,Z)—f7(t.X,Z))+ X1 —X7y

d (247)
Sy = [NE-H}” =u(f(t,x,2) - £57(t,X,2)) + X4 — X7

Applying the generalized singular perturbation form of the SPSM gives the

following realization

ev=—J Is (248)

In order to complete the state space model the two parameters € and | need to be
determined. The root locus technique was used to help select the parameters.
Figure 37 presents a root locus as ¢ is varied for p = 0.1. The second plot is a zoom
in view of the slow DAE eigenvalues. It can be seen that the slow modes of the
SPSM converge to the high index DAE when ¢ is small enough (¢=0.07). At this
point the two fastest SPSM modes have only three times the frequency (12 Hz) of
the fastest DAE mode. The motivation for the selection of i can be seen from the
first root locus plot. It is evident that as & approaches zero the two fast modes
approach negative infinity and the other two SPSM modes approach the zeros
induced by the sliding manifold at A=-1/u. This pattern follows from the normal
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form representation of the SPSM. Therefore, it is always possible to achieve a non
oscillatory response. The zero can be placed through appropriate selection of u to
achieve a desired locus shape and SPSM modes that are sufficiently fast. This two
stage process of selecting p and then reducing € until convergence is obtained is
more systematic than selecting € and varying p. Figure 38 illustrates this
alternative procedure. It can be seen that if n is reduced too much then excessive
oscillations occur. The shape of the locus is also less intuitive since the eigenvalues

approach undesirable locations (+ j).

The system was simulated for a step change in the boundary conditions for
parameter values of p = 0.1 and € = 0.07 (see Figure 40 and Figure 41). Comparing
this to the stiff dynamic element method (Figure 35) it is apparent that the
response is far less oscillatory. It is also evident from Figure 39 that the frequency
needed for the SPSM dynamics to achieve a similar approximation error is more
than an order of magnitude less than the stiff dynamic element method (=12 Hz
vs. @=250Hz). This provides further evidence that the SPSM method requires
dynamics that are less stiff to achieve a good approximation. From this example it
is evident that the SPSM approach has significant advantages over physically based

realization methods.

6.4 Simulation of Multiple-zone Vapor Compression Cycies

The SPSM realization provides a full description of the slow and fast
transients in multi-zone systems. Therefore, it can predict long start-up transients
from a complete shut down state and short transients that are important for
regulator design. Simulations for several types of long and short transients in a two
unit system were performed using a standard Runge-Kutta integration routine
programmed in C++ (see Figure 42 to Figure 44). A start-up from a complete shut-
down state occurs from t=0s to t=500s. Initially, the compressor is running and

both expansion valves are fully open. The fast transient is due to the formation of a
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pressure distribution between the condenser and the indoor units. The slow
transient is the result of changes in the mass distribution (see Figure 44). After the
start-up at t=500s a steady state operating condition is predicted. The small
transient that occurs at t=700s corresponds to the point when the accumulator dries
out (see Figure 44). At t=800s indoor unit #2 is turned off by fully closing the
expansion valve. As a result the pressure quickly drops in both evaporators (a short
transient). The temperature of the wall in indoor unit #1 decreases and the
temperature of indoor unit #2 increases until it becomes room temperature. At
t=1200s indoor unit #2 is turned fully on again and a short transient occurs where
the superheat rapidly drops and oscillates (see Figure 43). Since the superheat
quickly decreases this could potentially violate the superheat reliability
requirement. This suggests that the superheat needs to be carefully controlled
during start-up and shut-down. At t=1600s the system is completely shut-down by
stopping the compressor. It can be seen that the pressures of the indoor units and
the condenser quickly reach an equilibrium, and the temperatures of the heat
exchanger walls reach an equilibrium with the indoor and outdoor temperatures.
From the density states it is apparent that mnost of the mass moves from the
condenser to the accumulator during shut-down. This agrees with published
experimental results [4]. At t=2000s the system undergoes a full start-up from a
warm shut-down state. It can be seen that the system behavior is essentially the
same as the response at t=0s. This provides further evidence of the models ability
to simulate start-up and shut-down. From these results it is evident that the SPSM
model is capable of predicting the local and global nonlinear behavior of vapor
compression cycles. Furthermore, it is evident that the DAE system is highly
nonlinear which provides further motivation for the SPSM method.
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7. Conclusions

The main results and contributions of this thesis are summarized as follows:

A new approach for realization of DAE systems

One of the key problems associated with simulation and control of DAE systems
is the development of an explicit state space realization that allows the application
of existing methods. In this thesis, a new approach for realization of DAE systems
is developed based on nonlinear control. It is shown that the DAE realization
problem can be interpreted as a new type of nonlinear control problem where the
violation of the constraints are the outputs and the inputs are the derivatives of the

constrained states (see Figure 45):

0 Gc &>

___; f(t,x,2)

controller

g(t,x.2)

+
<
N
v
—
]
v
g
\/

Figure 45. Block diagram of the new DAE realization approach

With these definitions the relative degree is equal to the index and the zero
dynamics are equivalent to the DAE. This allows powerful tools from nonlinear
control theory to address the realization problem. New methods were then

developed to address a general class of nonlinear high index DAE systems:
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1) That are differentiable a sufficient number of times.

2) Have an equal number of constraints w and constrained states z .

3) Have a constant vector index r (definition 2).

Under these mild conditions a sliding manifold can be developed that
asymptotically satisfies high index constraints. Boundary layer sliding control can
then be used to force the sliding surface to small errors. However, DAE realization
presents a number of new problems for the sliding control method. These issues are
related to convergence of the approximation error in the presence of state
variations. This new problem was investigated using methods from geometrical
control and singular perturbation theory. It was found that additional criteria must
be satisfied to ensure that the dynamics inside the boundary layer are stable.
Together, these new connections lead to the singularly perturbed sliding manifold
approach (SPSM) for DAE realization. This represents the first method for
realization of DAEs that can systematically reduce computational complexity with
guaranteed bounds on the approximation error. Furthermore, results from singular
perturbation theory are used to prove that there exists parameter values such that
local stability, controllability, observability of the SPSM are equivalent to the high
index DAE. This ensures that the SPSM can be used for controller and observer
design.

The main original contributions of this work are

1)  The first approach for modeling high index DAEs using nonlinear control

2)  The first method that solves a general class of nonlinear high index DAEs
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3) The first work that investigates the connections between the fields of
nonlinear control, DAE realization, and modeling (see Figure 46). This is
important because it opens a gateway between these fields that results in

many new and challenging problems.

4) New concepts such as control property equivalence, vector index, and normal

form representation of DAEs are introduced.

physical
models

nonlinear
control

Figure 46. New connections

A new DAE based modeling approach for multiple-zone vapor compression cycles

Application of new methods to specific problems is an important part of
control research because it provides valuable insights into their utility, and helps
illuminate new ideas and research avenues. With these objectives the SPSM
approach was verified on a vapor compression cycle problem. The dynamic behavior
of vapor compression cycles are governed by complex interactions between
refrigerant flowing in single phase or two phase states and fin arrays that
thermally communicate with ambient environments. Low order approximation of
these processes results in models described by nonlinear high index DAEs.
Application of the SPSM to this problem yields a new control theoretic model of

vapor compression cycles that is useful for simulation and multivariable control
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design. This can be used to develop multivariable controllers tc improve the

efficiency and reliability of heat pump and air conditicning systems.
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Appendix A: State Equations for Heat Exchanger Example

Energy balance equation for node 1.

v, Ipyup dpy  , 9P1wy) dPy

=m:h; —mh, -A,0,(T; -T
ot 181,1 a ihj —mjh; = A0y (T} - T;)

Mass balance equation for node 1.

Energy balance equation for node 2.

v, d(pou,) dp, +V d(p,u,) dP,

= tiyh; i h
dp, dt 2 ap, a miTmh

Mass balance equation for node 2.

dpz . .
V,—==m;-m
2 dt 1 2

Energy balance equation for node 3.

dT. — —
Cpsﬁ’-‘ AT (T) —T3) — A303(T; —T,)

The state equations (249) to (253) have the form

(249)

(250)

(251)

(252)

(253)
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f(t,x,2)x =£.(t,x,2) (254)

It can be shown that the coefficient matrix f; is always invertible so that

x=f(t,x,2z) (255)
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Appendix B: Derivation of Evaporator State Equations

Integration of the energy balance equation (219) from z=0 to z=1.(t) gives:

le(t) a(ph) dP
—dz-1, ——- uh)| . - (puh) +i a- T-T,)
Then use the following integral identity:
z2(t) z2(t)
[ ofzt), _d £z, t)dz~F(z5(0), )3 ()+f( z,(t),t) dz‘(t)
2@ O ) (257)
This gives:
P28 -5 80
o ot Pegheg Tdt (258)
Now use the moving boundary principle of invariant mean void fraction:
qle® le(t) 1 4'le® 1d ~ _
— h)dz=—— |h(pAdz)=—— |hdm=—— hy(1=7.)+peh Al
at (J;(P) At E‘)- (pAdz) A dt (J; m Adt[(pel a(1=Ye) +PeghegYe) e] (259)

Back substitution and multiplication by A yields the desired result (222). The mass
balance equation (221) and energy balance equation for the tube wall (223) can be

obtained in a similar fashion.
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Appendix C: Variable Glossary

= volume

= diameter

= length of heat exchanger

= total number of subsystems

E 2 B O <

= flow velocity

= length along heat exchanger

N

= heat transfer coefficient

= density

7 o oqQ

= gpecific enthalpy
= gpecific internal energy
= pressure

= temperature

5 =3 9 =

= mass flow rate

= inside cross section area of evaporator

[¢]

> >
<

= expansion valve area

=

[~}

= outlet specific enthalpy

= outlet mass flow rate

B.
o

= ambient temperature

o

(mc),, = heat capacity of wall section

(PAccp)y = heat capacity per unit length of heat exchanger wall

Wp = power input to compressor

(0] = compressor speed

f = fan speed

Y = mean void fraction

l = length of two phase region

Fyall = wall friction force per unit volume
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Subscripts:

accumulator
condenser

evaporator

gas phase

liquid phase

inside heat exchanger
number of indoor heat exchanger
outside heat exchanger
compressor

saturated state
expansion valve

heat exchanger wall
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Appendix D: Evaporator Pressure Drop Correlation

Assuming that the mass flow in the heat exchanger is equal to the outlet mass flow

rate the pressure drop can be estimated as:

‘ (260)

where a, b, ¢, d, e, f are empirical constants.

Appendix E: Subsystem Components

The state equations can be obtained after some algebra from

f, =(221-223) ,1<k<(N-1)
f,, =(224-228) (261)

The constraint equations are given by

g =P —P, — gy, P,ly) , 1Sk<S(N-1)

N-1
BN = Lo —ih, (262)

The outputs are defined to be

ye =[SHE Ty ", 1Sk<(N-1) (263)
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