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The nonlinear coupling and propagation of lower hybrid waves excited by a
waveguide array arc examined numerically in a model of an inhomogencous
Tokamak plasma. The nonlinearity is the ponderomnotive force which results
in self-modulation of the lower hybrid waves. We evolve self-consistently the
fields in time to a steady-state. Both travelling and standing wave excitations are
considered. The dependence of reflectivity on the nonlinearity is studied and
found to exhibit qualitative behavior seen in experiments. The nonlinearity also
produces density "holes" in front of the waveguides, and the accompanying fields
are strongly focused. In Fourier space, the parallel wave spectrum is broadened
and upshifted. In the travelling wave case the spectrum is broadened but remains
unidirectional, that is negative k- are not generated.

I. Introduction : Lower hybrid heating experiments with waveguide arrays have involved large incident
power densities, sometimes exceeding 10 kW/cm2 and have shown strong deviations from linear coupling
theory [1,2]. At such power levels ponderomotive effects are expected to be large and might explain this non-
linear behavior. In this paper we investigate numerically coupling and propagation of lower hybrid waves in the
presence of self-consistent ponderomotive density modulation.

The numerical work is focused on a number of representative cases: (i) a travelling wave excitation, with
a fairly narrow spectrum in k, space; this might be imposed by a broad waveguide array (at least 4-6 elements)
with 1 progressive phasing; (ii) a standing wave excitation, with two narrow peaks in the s)ectrum, obtained by
7r phasing of the array; and (iii) a two-waveguide array excitation, with 0 or 7r phasing.

We are principally concerned with two aspects of the coupling, the total power coupled, and the wave
spectrum exiting the nonlinear region.

II. Propagation Equations : We assume a slab geometry for edge propagation. The coordinate z points in
the toroidal direction, and x is the direction of the equilibrium density gradient. We ignore variation in y and
take E. = 0. Because of low temperatures near the edge (T < 5 - 20 cV) we neglect thermal dispersion. We
consider waves with frequency UA, Qi < wo < Qe where f2i,e are the cyclotron frequencies, and allow for slow
time variations by writing: E(r, t) = P(r, t)eu4t + c.c.. We then expand Maxwell's equations, assuming that
the elements of the dielectric tensor appear as in the linear case. The density modulation caused by the high

frequency fields is n = no(X) exp (-|j 2I2/E1,,) where El = 4mew 2 (Te + Tj)/e 2. This density appears in
the expressions for the elements of the dielectric tensor.

We assume a linear density gradient near the edge. Eliminating k, from the Maxwell equations and
neglecting terms in 2/(t 2, we obtain a single evolution equation forE,:

i 92(E aoE) O2E - ( + i)Q(e-M l - ao)E) = 0 (1)
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with the normalizations: = Q1/ , 0  = -z, = , ao = 2/3 and E = The parameter

a is proportional to the density gradient, a In general the parameter a is large, a -

1000, so that we can neglect terms in ao. The function (E) allows for temperature inhoiogeneity, 3(E) =

(To + TO/T() + Ti(O)).

E'q.(1) is not dynamically correct because we took the density modulation to be instantaneous, while in

fact it is created at a rate involving the transit of ion acoustiC waves. Thus only the steady-state equation is

physically correct, and time C\olution is principally an artifice for obtaining the steady-state. In the steady-
state. c9/r = 0, eq.(1) has a conservation law. The total E-dircted Poynting flux is conserved, P(E) =

. Re(- IEIH*)d = constant, where H, the normalized H , is found by solving: (-, + 1)H = i46E.

Consider, for instance, PETULA-like parameters, with frequency f = 1.25 Giz and edge temperatures

Ti < T, ~ 5 eV [2] . We assume the coupling region ends at the edge of the limiter shadow, zmax ~ .1 cm,
beyond which the temperature rises and reduces nonlinearity. Taking a ~ 1000, we find that x= 2.6. In

the experiments, as much as 10 kW/cm 2 were fed into the waveguides, for which we have Emax 3.3. We
integrate eq.(l) with these maximum values in mind.

III. Numerical Solutions : Eq.(l) is solved by a finite difference, implicit scheme. The computational

region is a rectangle, with, typically 0 < E < E, = 3.5 and -19.5 = -- rt < < ?m = 19.5. A
reasonable mesh size is N, X N, = 27 x 256, and this is obtained with AE = 0.135 and A = 0.15. The
time step used is Ar ~- 0.25, and roughly 100 - 200 time steps are necessary to reach the steady-state after
the excitamion at ( = 0 is turned on. At ( = , a numerical radiation boundary condition is implemented.
At the boundaries ( = , periodic or zero boundary conditions are applied. The nonlinear region, where

#(E) = 1, extends to dm = 2.0. To avoid aliasing problems with the nonlinearity, a digital filter was used. This
filter introduces artificial dissipation in n.,,_ > n1 . For n,, < nj, the dissipation is negligible. The "harm"

done to larger Fourier components can be gauged by the total power lost, that is P(E,,,,K) - P(0), as waves
propagate from the source to the far boundary. In most nins nj - 6, and power loss was under 10%.

IV. Trai'elling Wave Excitation : The simplest numerical "experiment" involves a travelling-wave excita-

tion, with a narrow spectrum at the edge. We impose: E(0, E) = Eb e ( - , where o > lr/Vo.

This simulates a long array with 7r/2 phasing, with each waveguide of width 7r/.

The power coupled for an infinite travelling wave can be found from a one-dimensional model [3,4]. If we
refine this model by averaging over the finite envelope, we obtain excellent agreement with the 21) numerical
resuLKs, even when the "array" is fairly small, containing only 4-6 elements. The main feature is that the power

coupled "saturates" at large amplitudes at the edge. When the waveguide impedance is taken into account,

there may be regions where the coupling improves because the impedance mismatch between plasma and

waveguide decreases. The linear field structure (EO < 1) consists of a single resonance cone, almost symmetri-

cal about its axis. The spectrum changes little in amplitude as the fields penetrate the plasma, each n" Fourier

component picking up the phase of an Airy function. In the nonlinear regime the field structure is changed in

two ways. The resonance cone is shifted away from the magnetic field and penetrates faster into the plasma;

and a "shock"- like steepening forms on the edge farthest from the magnetic field axis. in Fourier space, this

steepening results in a broadening of the spectrum. 'Tlhis broadening is directed toward larger positive n.'s and

we see little generation of negative n.'s, which would correspond to nonlinear reflection in the resonance cone.

The overall nonlinear effect on the power spectrum is modest. For instance in one run we'have vo = 2.0 and

o = 4.0. If we define 0 as the center of gravity of the power spectrum in n, > 0, then as E increases to 3.0
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the shift in 0 is only about 0.1.

V. Standing Wave Excitation The next complication is to introduce a standing wave excitation, of the

form E(O, 4) = E0 cos(vu') - . This simulates a large array with alternate zero 7r phasing.

An example of linear field structure is shown in fig.(1 ). In this run, V() = 1.7 and g = 6.0. The excitation

results in two smooth resonance conies exiting the coupling region. The nonlinear structure is shown in fig.(2),
with E) = 3.0. h'le resonance cones are now split into several parallel channels. In Fourier space, we see

coupling to odd harmonics of vo, with subsidiary peaks of the spectrum forming at nz ~ 5.1, 8.5, ... , and it

is the beating of these harmonics which results in filamentation of each resonance cone. Such an effect can
be predicted qualitatively from the equation for an infinite cosine excitation. The higher harmonics do not
carry very much power. For instance, with E = 3.0, we find that A0 ~ 0.15, a small shift in the center of

the positive power spectrum. Tlhe nonlinear effect on the total power coupled is large however, and we have
found a one-dimensional model to predict it. Because higher harmonics are small in the immediate vicinity of

the excitation, we neglect them in doing a Fourier expansion of the fields in harmonics of e""". The coupling

equation for the amplitude of eivor is: % + (v3 - 1)EQ( E 2 )EI = 0 where Q(y) = e-'(Io(y) - II(y)),
Ei(0) = E and radiation is required at large E. This equation ressembles the one for the travelling wave

excitation, and the same power saturation occurs. Of course, the harmonic generation and filamentation in
propagation are not described by this simplified equation.

fiq.(I)fiq.(2)

VI. Waveguide Coupling The sources considered above are idealized versions of large arrays We now
consider a more finite excitation, that of two phased waveguides.

Our computations are done with only the dominant modes in the waveguides. In each run, we measure
2

the plasma admittance Yp, and then calculate the reflection coefficient according to: R 2  
- 1. Some

results are shown in fig.(3) where R 2 is plotted against the self-consistent incident power. We considered a
PETULA like array, with waveguide width b = 1.0 in nonrmalized units. Both 0 = 0 and 0 = 7r phasings
are considered, for density gradients of a = 540 and a = 64. Power densities are obtained assuming an edge
temperature T, = 5 eV. When the normalized amplitude is E = 1, the power density is 0.93 kW/cm 2.

For both density gradients there is convergence and crossing of the reflection coefficients with increasing

3



power. This is the result of a steady decrease in the plasma admittance Yp. The field structure is also changed

considerably. We see the formation of narrow channels in front of the waveguidc mouths where the density is

strongly depressed. At the end of this channel the fields seperate into resonance cones which themselves are

filamented as in fig.(2).
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In Fourier space, the spectrum of the excitation
fig. (3) is shifted and broadened by the nonlinear

effects. In particular, we see growth of Fourier

components about v = 2ir/b for both phasings.

The shift of the center of gravity of the power

spectrum is again modest. For instance, with

P. (kW) b = 1.5, we found a shift AC = 0.2 for 0 =
lflCL 7r and AO = 0.5 for # = 0, as Eo increases

to 3.0 . On the other hand the broadening of

the spectrum may suffice to shift a considerable

amount of power above accessibility. This is par-

ticularly true for # = 0 phasing. The linear

spectrum has less than 10% power above v =

P (kW) 2.0, and this is increased to over 50% when
inc - E = 2.0.

VI. Conclusions : We analyzed the nonlinear excitation of lower hybrid waves with models of waveguide
arrays. Our focus was on predicting the total power coupled into the plasma and how it is distributed in the
nonlinear power spectrum.

We found that power coupled from large arrays (at least 4-6 waveguides), for travelling or standing wave
excitations, can be found by solving one-dimensional equations. The nonlinear effects o the power coupled are
strong, with saturation at large powers. . However, when matching to the waveguide impedance is taken into
account, the coupling may improve in some range of incident power. The spectrum generated inside the plasma

is not drastically changed, in part because of the finite length in x of the nonlinear region. With the standing
wave, Fourier modes at odd spatial harmonics are generated but do not carry very much power. In real space,
the nonlinear effects are more striking and result in the distortion or filamentation of the resonance cones.

We also considered a two-waveguide excitation. Again, the nonlinear effects on the coupling are strong,
with the reflection coefficients for 0 and 7r phasing changing considerably. In real space, straight narrow chan-
nels form in front of the waveguides. In Fourier space the spectrum is broadened. When accessibility effects are
taken into account, the nonlinear modification of power which reaches the plasma interior may be considerable.
In particular, these results suggest that a linearly "poor" coupler (i.e. a single waveguide) may be improved
by nonlinear effects, both because its matching to the plasma is improved and because a large amount of its
spectrum is pushed above accessibility.
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