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PLASMA POSITION CONTROL ON ALCATOR C

by
Patrick A. Pribyl

ABSTRACT

The Alcator C MHD equilibrium is investigated from the
standpoint of determining the plasma position. A review of
equilibrium theory is presented, indicating that the central
flux surfaces of the plasma should be displaced about 1-2 cm
from the outermost. Further, the plasma should have a slight-
ly noncircular cross-section. A comparison is made between
. the observed and predicted profiles. Flux loops sensitive
to plasma position generate the error signal for the feedback
control circuit. This measurement agrees with other position-
sensitive diagnosties, such as limiter heating, and centroids
of density, soft X-ray, and electron cyclotron emission. A
linear model is developed for the position control feedback
system, including the vertical field SCR supply, plasma, and
feedback electronics. Operation of the control system agrees
well with that predicted by the model, with acceptable plasma
position being maintained for the duration of the discharge.
The feedback control system is in daily use for Alcator C runs.

Supervised by R. Parker, Professor of Electrical Engineering
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Chapter 1. Introduction

The Alcator C Tokamak is designed to operate with near
fusion-grade plasmas. 1In typical operation, the input power
to the plasma is from 1 to 5 MW, resulting in average energy
flux at the sqrface of 20 to 100 W per cmz. .Local "hot spots"
receive much greater energy concentrations. For protection
of the interior of the vacuum chamber, and for minimum impu-
rity influx from the walls, it is necessary to accurately
control and maintain the plasma position. This is the object
of the work presented in this thesis.

The classical method of horizontal plasma position cont-
rol is to use a vertical magAetic field to act on the plasma
current to create a transverse force. Most tokamaks have some
sort of position feedback involving perturbations to a pre-
programmed field. In addition, many also employ a copper
shell around the plasma to compensate for any rapid changes
in position, by means of flux conservation forces.

The feedback scheme developed for Alcator C dynamically
controls the entire equilibrium vertical field for the plasma.
Tﬁe response of the feedback loop is found to be adequate to
maintain thg position, even with no copper shell. 1In this
system, a first approximation to the required equilibrium
field is derived from the plasma current, with measured posi-
tion fluctuations forming the feedback error signal.

Theory pertinent to the plasma position equilibrium is

presented in Chapter 2. The innermost flux surfaces should
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be offset from the ceqter of the plasma éross section, and

the outer plasma boundary is theoretically noncircular. These
effects are'yerived.by direct integration of the Grad-Shafranov
nov equation [1], and must be taken into account when compar-
ing measurements of the outermost flux surfaces to data from
other position‘sensitive diagnostics (such as centroids of the
soft .X-ray and density profiles). The feedback system is
described in Chapter 3. A linearized model of the system is
examined with regards to stability and response. Stray mag-
netic fields present in the toroidal vessel may affect the
plasma equilibrium, and these are discussed in this chapter

as well: The feedback system is now employed during normal
operation of the Alcator C Tokamak, and results of its use

are presented in Chapter 4. Various diagnostics are used to
determine the plasma position, including density, soft X-ray
and electron cyclotron emission profiles, and limiter thermo-

couples, and this information is compared to that from the

magnetic pickup loops used for the feedback signal.
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Chapter 2. Theory

2.1 Magnetohydrodynamic Description of the Plasma=--

The Grad-Shafranov Equation

For a static eqUilibrium, the MHD equations that model

the plasma are:

2.1 Y B=0
2.2 VxB-= uoj
2.3 JxB=Vp

magnetic field in plasma
plasma current
plasma pressure

T o
Hnun

. This system of equations in variables §, 3, and p can be
reduced to a single variable partial differential equation,'
the Grad-Shafranov equation. The most direct derivation seems
to be that of J. Freidberg [1], and is outlined as follows.

(A more complete description is given in Appendix I.) Toroi-
dal geometry is used, with major radius R and toroidal angle
®, and with minor radius r and azimuthal angle 6. Appendix I
illustrates the coordinate system. $ -symmetry is assumed.

The stream function 1& is defined, and 2.1 can be expressed

in the form (with 3/d8 = 0):
= A 1 A
2.4’4 B = Bpe¢ + -ﬁ'v\/’x s
In particular, the poloidal component is given by

-1 g¥
2.4a B, = R

G or °
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With this definition of ¥, the ¢-component of the vector po-

tential X is given by V¥ = RAy . Further, Equation 2.2 gives

2.5 b = - T OV S, + TURBY) x By

where the operator A* is defined in Equaﬁion 2.8. Equation
2.3 is next broken into three components, in directions par-
allel to B, J, and Yp. B -Vp =P8 - (J x B) = 0 results
in-p = p(¥), since B is oply a function of ¥ from Equation
2.4, Similarly, use of Equation 2.5 and J ° Vp = 0 results

in the formula:
14 A
¥ av [V(RBy) x VY1 * & = 0,
or 2.6 RBy = F(¥).

From the above relations, the Grad-Shafranov equation can be

derived, and is:

o 2 d dF
2.7 O¥Y = -0 wR &-3 + Fgy 1
with: .
| 13 W 1 3%y 1 W sip e MV
2.8 A*W: —r--s?rﬁ+ ‘;—2";'6—2- - 'ﬁ'( cos 8 br- r 38

).




12

2.2 Solutions to the Grad-Shafranov Equation

In the preceeding derivation, the pressure p was found
to be a function of only the poloidal flux funectionV¥. Such
a quantity is constant on a magnetic flux surface, and is
called a shrface quahtity; another is RB¢. In this work, the
high thermal conductivity parallel to the toroidal field has
been.assumed to imply that flux surfaces are isothermal, and
thérefore density is a surface quantity as well. '

The Grad-Shafranov equation is nonlinear in ¥ ; analytic
solution requires an expansion in some small parametérs. For
a typical tokamak, the parameter r/R (= minor radius/major
radius) results in an analytically tractable set of equations.
AIn the Alcator Tokamak, this quantity is at most .16/.64. A
self-consistent expansion is achieved by taking the toroidal
field to be zero order, Qiﬁh the plasma poloidal field
By ~O((P)® By ). The diamagnetism B, is also of this order,
as is B, the ratio of plasma energy density nK(‘I‘..e +'Ti) to_
magnetic field energy density B2/2y°. Another quantity,
ﬁpol = 2u° nKT /Bez, is of order unity.

' This equation is solved for a zero-order ‘Wo, which is
independent of 8. This is then subtracted from the full Grad-
Shafranov equation, and the remaining first order equation is

solved iteratively for a small quantity 1#1. Since the zero

order flux function depends only on the minor radius coordi-

nate r, surfaces of #% = constant are circular, as are the zero

order terms of all quantities which are solely functions of V.




With this expansion, any surface quantity Q can be
expressed as Q = Qo + Q1, where Q1 is the first-order
correction to Qo. It follows that:

Q(¥)

Qo + Q1

2.9 QCW ) + W1 FW’

where the second term on the right is defined to be 01.

alternate form, using Equation 2.4a, is

dr aQ
Q= Q, + (Rp) g V1

o 4 L

2.10
o RBe

Qla.
Lo

%Y,

Also RBy = F(V) results in
2.1 By = (§0)(By + By (W) )

13

An

as an expression for the toroidal field. B¢o is a constant,

while B¢2(W) is introduced to represent the plasma para- or

diamagnetism.




2.2.1 One-Dimensional Pressure Balance (Zero-Order)

Neglecting terms of order r/R, the Grad-Shafranov
equation is |

P 9¥ o o -, 2R, - 1 & (RB P

1
2.12 T 3r J% dwo

Q/IQ/
et

By use of Equation 2.4a, this becomes:

2 2 2
B y B R. 2 By
5 rPr ) g ) =0
o e} o} o]

which is the one-~dimensional pressure balance equation in

toroidal geometry. An alternative form, using Equation 2.11,

is

2 2

Bg~ 9 By By 2Bgo
— + 3;( 55+ P+ — ") =0
Mo Yo o

14

which is readily shown to be equivalent to the pressure bal-

ance equation in straight cylindrical geometry.
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Qe(y)

Qo + Q1

0Q
Q(WO) + w1 w,

Vel
"

e second term on the right is defined to be Q1.

;e form, using Equation 2.4a, is

- ory 199
Q = QO + (RW -ﬁ' -a—Fo'\P1
_ 1 dQ
10 = % * ®B, aro ¥y

( = F() results in

R
11 By = (go)(By  + By (¥) )

13

tpression for the toroidal field. B¢o is a constant,
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Separation of variables can be used to obtain the particular
solution’Y1=’V3(r) cos €. (The homogeneous solutions rep-
resent non-circularity, see the next section.) This equation
can be integrated to obtain an analytic VQ(r) [13.

Multiplying through by ng, and making use of the iden-

tities
B
9 d 1d -
Tt T GF T ar (rBe) = (rBe')'
and [r’Be2 (gﬁo']' = [rBe Vﬁ‘ - r‘W1Be']'

9

Bo(r ¥yt)' = ¥,(rBg")!

- the differential equation to be solved reduces to:

dp
2, o2 2 9P,
2.17 (r'Be (EE)')' = rBe - 2u°r rr

Here Q' = dQ/dr. Two integrations give:
2

V1 1B 5o €
2.18 §g = (E 5 + =% Jr dr + 5 dr + C,,

Bg By /20, r By

the ‘equation for1P1. Q = the average of a quantity Q, and
is defined:
r

2.19 Q= 35 Qr' dr'.
. r

0

The term involving C1 corresponds to a singularity (i.e., a
Wwire or particle beam) at the plasma center, and in this ana-

lysis is set to 0. The boundary condition at the edge of the
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piasma is that the radial field = 0, or equivalently VY= con-
stant (=1Po + Y,cos 8). Nonzero C, is necessary to achieve
this, since %ﬁ(r:a) = 0 is required. Defining the internal

inductance and poloidal beta as functions of the minor radius:

.2.20 \ 1i = B—?
]
2u (p - p)
. =0
2.21 ﬁ%ol = R >
8

results in the final equation for V%(r,e):

i 1,
2.22 Y, = By (5_1_+ Boo1) T dr + CyBy cos 6.

This perturbation to #B can be shown to represent the
flux surface shift O(r) derived by Shafranov [4]. By assum-
ing that the equation for a surface on which Y = constant is
given by r=r + A(r)cos 6, then \P(rs) =’¢o(rs) +‘W1(rs)
gives (through a Taylor series approximation):

Wy,
2.23 1p='¢/(r)+__Acose+‘W(r) cos 6.
o] ar 1 :
N(r) is the small deviation of the surface from circular.

Since the left side is assumed constant, and ﬂg(r) ¢ £(8),

dy
2.2 Y (r) = - 2O,

When 2.4a is used to eliminate aﬂ%/ér,

r
1.

A L r_
2.25 A(r) = R B - / (2 + IBpOl ) Ro dt",

0

where C2 has been incorporated into the definite integral.
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This is equivalent to the expression for A(r) derived by
Shafranov.

Uﬁ(r) can be calculated numerically by using zero order
density, temperature, and current profiles determined from
Alcator plasma discharges. A Gaussian temperature distribution
is a good apptoximaton to the temperature as measured by the
electron cyclotron emission, as shown in Figure 2.1 [2].
Spitzer resistivity is assumed for the plasma, so the.current
is proportional to T'3/2, with the central current density
adjusted to give the correct total current. Semicircular
density, or parabolic to a weak power, fits the density pro-
file fairly accurately. As measured from the laser interfero-
. meter, this profile is compared with the assumed profile in
Figure 2.103]. (The density measurement is discussed in Chap-

ter 4.) In summary:

_ 2 2
Te,i = T, exp ( -r%/a, )

- 2 2
J(r) = Jo exp ( -3r /2at )

- 2 2 1/2
Pe,i = o (1 -r/a ™) 77,

where ay and ay are determined empirically. Be(r) is computed
from J(r). -

For these profiles, variables ﬁpol(r) and 1,(r) are
shown in Figure 2.2. These are the quantities which are numer-
ically integrated to obtain ﬂQ(r) (or OD(r)).

Note that the quantity that enters the equation for the
shift is the pressure, nKT. Since the temperature has a much
sharper, narrower profile than the density, the exact func-

tional depeddence of the density on radius is not important.




17
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Minor Radius, cm

Figure 2.2. The poloidal beta and internal inductance, as
functions of radius. These quantities, defined in equations

2.19 and 2.20, are measures of the thermal and magnetic energy
internal to the plasma.

16
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For small A compared to the minor radius, the equation
for flux surfaces represents circles whose centers are offset
by the amount A(r). These are plotted in Figure 2.3, with
surfaces shown at equi-density intervals. The center of the
discharge is shiftedAoutwardbrelative to the outermost flux
surfacej the predicted displacement is 1.2 to 1.8 cm for typi-

cal Alcator C plasmas.

Figure 2.3. The plasma flux surfaces are offset by the amount
ONr) with respect to the outermost. This is the "Shafranov
shift". , , |
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2.2.2.2 Non-Circularity

The vacuum vertical field is not uniformly vertical,
but varies across the plasma. Further, there are stray hori-
zontal and vertical fields associated with the main toroidal
field; theﬁe are cancelled approximately by applied bias
fields, but still contain harmonic poloidal field components.
With.thg boundary conéition Br = 0 at the plasma edge, these
fiélds resﬁlt in a first order correction to u%, in a&dition
to the Shafranov shift. This"}‘1h satisfies the homogeneous

first-order Grad-Shafranov equation, i.e., solving:

2
13 ,.9%, 1. 3% 19819
2.26 Fy(l“ -Sr_) +-;—2-§e— —‘ng[; x(rBe)] = 0.

Theta-dependence of the‘solutions is harmonic,‘uqn(r,e) =
ﬂqn(r) eine, but ’¢Gn(r) must be determined numerically.
Equation 2.26 was solved uSing backward finite differen-

ces. The plots of several solutions are shown in Figure 2.4,
with their peak amplitudes normalized to unity (hence the
label Hn).

- Since the plasma boundary is a constant flux surface,
these perturbations to the zero order flux function cause
the plasma shape to vary slightly from circular. Mathemati-
cally, this is seen by assuming that rs=f(r,9) describes the
surface of the plasma, and can be expressed

2.27 r_ = a+ Z:érncos no.

S

Then, because the surface must be a constant flux surface,

Yo=Y (r) + Y (r,) = constant.
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- Hp(x)

Minor Radius, cm

Figure 2.4. Graphs of the first order homogeneous solution of

the Grad-Shafranov equation. These are calculated by numerical
integration of equation 2.26, and plotted normalized to unity.

Boundary conditions at the plasma edge determine the magnitude

of each perturbation.
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Through a Taylor series expansion, this gives:

ay
: Lo
Wiaa) = = g7 ér cos ne,

or 2.28 #ﬁn(a) - R By ér cos n8.

Given the numerical solution of Equation 2.25, described
above, values for the Grgs may be determined from Equation
2.4a by matching the boundary conditions at the edge of the

plasma. The equation for a particular Sr_ is:

(n) (n)
N Be (a) . H] (r)
n (n)" B_(r)
H1 (a) e

(n) :
" Here H1 represents the calculated flux function perturba-

tions, but with arbitrary normalizations (see Figure 2.4).
The magnitudes of these shape perturbations ( ers ) are
listed in Table 2.1 for several sets of plasma parameters.

When the‘v1gs are included in the plot of the plasma
flux surfaces, deformations are seen to occur at the edge of
the plasma, while the center bemaihs virtually circular (Fig-
ure 2.5). This is to be expected mathematically, since the
perturbation amplitude always increases as a function of
radius. Physically, also, it is reasonable that small distur-
bances in the fields at the edge do not greatly affect the
equilibfium in the hotter, higher pressure portion of the
discharge. The local ratio of plasma energy to field energy
is much greater at the center than at the edge, so small

effects in the latter do not propagate inward.
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-20 =15 -10 -5 0 5 10 15 20
Radial Position, cm
Figure 2.5. Harmonically perturbed flux surfaces. The inhomo-

geneity of the vacuum vertical field causes perturbations to
the shape of the plasma.
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The line integral of density through the above-calculated
plasma profile is shown in Figure 2.6. The peak'is moved
slightly outside of center, and the shape made slightly asym-
metric. Also shown is the data from a centered Alcator ‘plasma,
with an even polynomial function fit to it. In general, the
resolution of\the density interferometer is probably not great
enough to detect the small Shafranov-type perturbations to
the density profile. Chapter 4 contains a comparison.of the

empirical data to results of the calculations performed above.
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Figure 2.6. Interferometer density data (+'8) compared with the
theoretical line integral of the density. The dashed line is
an even polynomial that is fit to the data prior to its Abel
inversion. To date, the density profile data is consistently
symmetric about a midpoint, and the even polynomial fit is well

justified. The theoretical profile includes effects from the
Shafranov shift and noncircularity, resulting in its asymmetry
about the origin. -
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Table 2.1. Plasma Shape Perturbations from Circular, for

Various Plasma Parameters

The following are harmonic radial perturbations of the
outer flux surface, with the zero order radius = 16 cm. The

surface is given by the equation

rg = 16 em + 2: Ancos ne + Bn51n no,

with An-and B, given in centimeters. The various plasma

parameters for each calculated equilibrium are:

Ip = Plasma current, in kA

To = peak temperature, in keV, for Gaussian profile

No = Peak density! in cm'?, for semicircular density
profile of minor radius = 18 cm

Bt = Toroidal field, in Tesla

Shape perturbations are calculated for the toroidal field
sinéle turn current both parallel and antiparallel to the
plasma current. The single turn is mbdeled és a Gaussian
current distribution of 25 em width, centered U4 cm above
the midplane. Bias fields needed to create a field null
in this model are consistent with those actually used to
achieve breakdown and plasma centering as of this writing.
However, there is evidence that the vertical position of the
single turn changes with time.

The only other current used in calculating the field
harmonics was that for the vertical field. This was set at

a level to give the correct plasma equilibrium.




29

Table 2.1a The Toroidal Field Single Turn Current is Anti-

Parallel to the Plasma Current:

Ip = 50 To = .3 NO = 1 Bt = F ............

n= ........ 2 ............. 3 ............. ll ............ : ceeees 6 ......
A, -.29 .27 .06 -.03 .01 cm
Bnr U8 -.09 .02 0 0 cm

Ip = 100 To = .5 No = 1.5 Bt = 6 L

.".".".".".;.; ......... é ............. én.n.u.".u."."." "é ...... é ..........
An .03 19 .04 -.01 0 cm
Bn .25 -.04 01 0 0 cm

R0 T Ne3 B2t

- S é".".".".u ............. éu.".".“g ........

An .22 15 .03 -.01 0 cm
B, 14 -.02 .01 0 0 cm

Tp 20 kel o e B,

n = 2 3 y 5 6

An .30 .13 .02 0 0 cm
B, .09 -.01 0 0 0 cm

Ip = 400 TO = 1.2 NO = 5 Bt =9

................. 6..;........é{............é.............1(............Eg...........é.........
An .24 .14 .03 -.01 0 cm
Bn .13 -.02 0 0 0 cm

Ip = 600 TO = 1.2 §° ?-? . ".-PP-: 9

................ r;.:;........é........... é.. ceeeeees L; . .......E;...........é.........
A, .27 .12 .02 0 0 ecm
B .09 -.01 0 0 0 cm
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Table 2.1b The Toroidal Field Single Turn Current is Paral-
lel to the Plasma Current: .

Ip = 50 TO = .3 NO = 1 Bt = b6

................. h";"'""'Ei""""°'"?i""""°"'3i"'"""'"?5"""""'25""""'
A 1.1 -.03 -.01 03 -.01 cm
B -.5 09 -,02 0 0 cm

Ip = 100 To = .5 No = 1.5 Bt = 6

................. ﬁ.';..'-...'éf.....-‘---.'5{--.'..--.‘..If.-......'.-.E{----------]é.-.-----.
A T2 .04 0 .01 cm
B -.26 oy -.01 0 0 cm

Ip = 200 -TO = .75 NO = 3 Bt = 6

................ - """'E£°"""""'E§"'°'""'"ii"'""""'25"""""'6""""°
A 62 08 .01 01 0 cm
B -.15 .02 -,01 0 0 cm

oo et ] I S S

n= 2 3 y 5 6.

A 54 .08 .01 0 cm
B -.09 01 0 0 0 cm

Ip = 400 To = 1.2 No =5 Bt =3

it e é ............. AR o P
An 51 .08 01 0 cm
B -.09 .01 0 0 0 cm

fa-i.ﬁ?g ........ ?2.: 1.2 No =5 Bt =9

s é"'"'"'“’ﬂ'"'"'"'"% .....................

An .59 .08 .01 .01 0 cm

Bn -.12 .02 0 0 0 cm
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2;3 The Vertical Field Required for Equilibrium

Due to its toroidal shape, there is a net tendency for
the piasma tb expand. The magnetic field due to the cufrent
ring is greater in the center, so the resultant J x B force
is outward; Similariy, the distribution of fields inside the
current channel itself adds a contribution to the outward
force, againlsince J x B is greater on the inside. Third,
thé internal plasma pressure acts on a greater outwar& area
of the discharge than inward, so isotropic pressure causes a
net expansion force. These expansion forces can be counter-
acted by imposing a vertical field in the vicinity of the

plasma; the T _ x Ev force can then be adjusted to control the

P
equilibrium position of the plasma.
The fields surrounding a toroidal conductor in the pres-

ence of an applied vertical field are given by Mukhovatov [5]

w I u I C
. o~ ° 8R . _1_ 1
2.30 B-[-ig-(lns-—R--1)+—l—(C+9—]—)sine
. r = " TR r 2wR' V2 2 .

The magnitude of the field at infinity is Cz/(ZﬂR), represent-
ing the applied vertical field. The boundary conditions on Br

and Be at the plasma edge determine the constants C, and C

1 23
Br(a) = 0, while the poloidal field variation Be = Be(a) is

calculated directly from Equation 2.4. Expanding the quantities

V= v, + y%, 1/R = (1/R°)(1-(a/R°)cos @), and B, = B, + B

e 8o 81’
and using #ﬁ from the last section, Bg(a,6) can be determined.
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Differentiating ¢Q,

Mediep

Yy = A+ 1
dr 2 pol

and substituting into Equation 2.4:

| oy = 1d¥ a
2.31 Be(a,e) z ar ° B9°(1 - cos 8 ) + Be

=|

R 1
p.I
= 5%; (1 + %-A cos 8 ).

The fields surrounding the plasma are then (assuming no sur-

face currents at the edge of the plasma):

w I I , 2
. 9~ o~ r 1 a_

2.3 By =g +tgmg LIng =1+ (N+ 3001+ t‘2) ] cos 6.
_ uol r 1 a? .

2.33 B. = > L lna + (N\+ 5 Y(1 - —E) ] sin 8.

r

The vertical field that satisfies the above boundary condi-

tions is

c u I
. 2 _ o 8R 1
.34 By =3wg = gy Clmg + A -3,

and this is the well known expression for the vertical field
required by the plasma at equilibrium [1],[41,[5].
The vertical field actually used to center the plasma

agrees to experimental error (~ 5% ) with that predicted

above.
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Chapter 3. The Feedback System

A block diagram of the feedback system is shown in Figure
3.1. An SCR power supply drives a set of four coils, which
generate a vertical magnetic field. The J x B force of this
field on the plasma current acts to position the plasma.

As derived in Cﬁapter 2, the vertical field required for

equilibrium radius R is given by

u 1 1l
| _ fop 8R i _
2.34 Bv = TrR (1n s ﬁpol + 3 1.5).

To a first approximation, the field should be directly propor-
tional to the plasma current; variations in plasma radius a,
pressure term ﬂpol’ or profile term 11/2 represent distur-
bances that must be corrected for. 1In the feedback system,
Figure 3.1, the major poftion of the programming is a constant
times the plasma current, in accordance with the above equa=-

tion (since 1n8R/a is 5-10 times &8 or 11/2). The loop

pol
error signal is proportional to the deviation of position from
the vacuum vessel center, R= .64 m, and this is summed with
the de contribution to generate the proper field programming
signal. Some phase lead is added to increase stability and

to improve response of the system to rapid plasma variations;
this becomes the input to the SCR power supply. Optional pro-
gramming of the plasma position is also provided for at the
input of the supply, as shown.

Note that for a given change in position, the programming

change shou;d be proportional to the plasma current. For
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Optional
Position ;
Vertical
Programming TRANSREX SCR | Fieldcoils
Signal N SUPPLY Pickup Coils
3kV, SkA cos® Saddle
Rogowski‘
== Plasma %
+
, l
Lead
Network
PY-} Zero Offset
ot Base Program= alp,
3
e ,/1:1 .[
A AN

- Error Signal=G Ip(X-Xo)

<<

Figure 3.1. The Feedback System. The SCR supply drives the
vertical field coils to position the plasma. The plasma
current forms the base program for the supply, with the posi-
tion error signal added as a correction. Optional position
programming is allowed, as well.
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constant loop gain, the error signal should be the product of
position displacement and plasma current, and this is the sig
nal obtained from the pickup loops. Further, a constant off-
set can be achieved using a signal proportional to the plasma
current as the programming signal. In practice, this is done

by varying the contribution of the zero order programming, xI

po
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3.1 A Model of the Feedback Loop

A model of the feedback system is presented for linear
analysis in this section. The model is shown in Figure'3.2
(see Figure 3.1 for the actual feedback system). The main
componenté and interactions that are considered are: a) The
SCR power supply generates a cﬁrrent in the vertical field
coils, which acts to position the plasma; b) variations in
plésma parameters such as current, temperature, or préfile
represent disturbances which must be corrected for; and c)
the product of position and current is measured, and forms
the error signal in the feedback loop. With an apparent fre-
quency dependence of plasma response to the applied field,
the plasma transfer function is proportional ﬁo Iv/(1+sTp).
This signal is the input to the feedback electronies, which
then drives the SCR supply. An optional position programming
signal can also be added to the feedback error signal, as il-

lustrated in Figure 3.2 at vprog'




- Programming

Tnput g~y

SCR Supply and Vertical

Field Coils

Figure

3.2.

Plasma
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Disturbance

)

H(s)

Feedback Electronics

A linear model of the feedback loop.
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3.1.1 The Vertical Field Power Supply

The vertical field power supply is a three kilovolt,
five kiloamp SCR supply used in programmed current mode. A
linear model for analyzing the power supply response will be
presented in this seétion, and is shown in .Figure 3.3; the
supply contains a general division between the internal con-"
trol elgtronics and the power output stage, as is indicated
in'the figure. The control electronics includes a lagge
amount of safety and fault‘detection circuitry, but the dyna-

mic response is normally independent of these. During linear

operation, the internal electronics is essentially represented

by the following:

— A ——— ————

30 1.5
1k .15 500 k
V2 xlO Wv —— - -
10 k . v,
v
\'4
(o]

10 k

Wwhere Vo, V2 aﬂd V3 are the same as in Figuré 3.3. The output
of this Stage, V3, directly controls the firing times of the
SCR gate pulses. The DC gain is 500, with different AC gains
for rising and falling input voltage. Vo is the supply out-

put voltage, and this signal path'forms an internal feedback
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prog v r T : :
—*Q—*I—a —-”{)J Hz (s) Vs 600 eST :
é He (s) § § :
E Vo . .
: T 1
S e atecatetstessantrtseercancsssosabocnos secbaes ot eceeecratesnonsecchessans
R I, Internal Electronics SCR Output Sgage
X
I,

Vertical Field-

Coil

|

Figure 3.3. A linear model of the vertical field SCR supply.
The internal electronics contains a diode in the forward signal
path, resulting in separate transfer functions for the cases of
rising or falling V:. These are denoted by Hy(s) and Hg(s);
H,(s) is 50/(1 + s x .7 sec). The supply is operated with

output current feedback.
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loop for voltage control. V2 is the input programming signal
minus the feedback signal (= output current times .002260 ).
There are two forward transfer functions for the above cir-
cuit; in the case where the input signal is positive and the
diode is biased on, the transfer function includes a lead net-

work:

1.+ .00165 S
He(S) = ==~ %0015 5
In'the falling input case, or steady state, the transfer func-
tion Hf(s) is unity. The next op-amp stage has as its trans-
fer function

1 + .000045 s
.75 s *

H(s) = 50

The power output stage follows, consisting of a three-phase
SCR bridge driven from a 3000 V transformer. There is a delay
due to the three-phase line being switched, which can be as
great as 2.7 ms. This stage is represented in the model as
having a voltage gain of 600, though the actual output is a
nonlinear function of the input. The supply output drives
the vertical field coils, an inductance of .14 Henry.

The supply is operated in a closed loop configuration,
with internal feedback on the output current and voltage.
For the model of the supply shown in Figure 3.3 and consideréd
above, the closed loop transfer function is:

1 H

2.26

rf
(1+.75s)s e°

3.1 H (s) = '
Supp -4 T+ .015s + Hyp

2 x 10
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 where Hr(s) and Hf(s) are the rising- and falling-input trans-
fer functions, and the delay due to the AC line being switched
is represented by e'ST. Bode plots of the closed loop
response of the supply model are shown in Figure 3.4; plots
.are given for operation involﬁing both Hr and Hf. The SCR
delay is approximated as being 1.4 ms, its average value.

(In the supply, there are lowpass filters on the signals Vo
and V2;‘with time constants of .5 ms, these were included

for the Bode plot calculations.)
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"rising input”

-----

-7

s

\A

R0 0 1 2 3
me

2 2

"falling input"g

log F(HZ)

Figure 3.4. Bode plots of the closed loop response of the
vertical field power supply (as modeled). The supply has
different transfer functions for the cases of a) rising and
b) falling inputs to the supply.
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3.1.2 The Plasma and Position Sensing Response

The plasma response, as measured by the position-sensi-

tive coils, is:

oL
: _ Y
where o = d1 UZ = 3 V/kA(vert. field)

0(1 = 13 ﬁ% ']%O_KA' ythe plasma
P response
I .

- v p
X, = 2355 Toowa ' the
instrumentation response
T. = 1.6 ms.

p

The time constant‘?"p is measured, and is not well understood
physically. The observed delay might be a penetration effect
' of the vertical field through the edge plasma, where the
temperature, and therefore the plasma conductivity, is low.
The edge plasma is believed ﬁo have a temperature of approxi=-
mately 50 eV, with a density of 5 to 10 x 10'3 em™3. This
results in the conductivity, O =2 x 102 (am)”) [7], and the
skin penetration time through 6 cm is about 1 ms. For this
reason, the ideal MHD equations used above are of queStionable
validity in that region of the plasma. Further, in order to
neglect viscosity in the MHD description of the plasma, the
temperature ‘and density must satisfy the condition [1]:

1.6 X 1074 IeD) o,

Ty

temperature in electron volts
density/(10'* em™3).

where T

D1y

For the low edge temperatures present, this inequality is not
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mét, and this would add another term to the MHD equations.
In summary, the observed delay is likely to be due to a cur-
rent redistribution effect in the edge of the plasma, taking

place in the region for which the ideal MHD description of

the plasma breaks down.
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3.1.3 The Feedback Circuit

Without frequency compensation, the closed loop system
is unstable when the DC gaih is high enough for accuratg posi-
tion control. (The system goes into a limit-cycle oscillation
in which the slew rate of the vertical field current, and thus
position, is limited by the output voltage of the SCR supply.)
Consequently, a lead network is included in the feedback loop.
Lead compenéation was chosen in order to achieve the fastest
closed 1oob response to a plasma disturbance.

The feedback circuit has a single pole-zero pair trans-

fer function. With adjustable gain and lead, this transfer

function is:

1 + sV
- — 1
3.3 H(s) = Ho — T,
where: T1 = 5.2 ms (variable)
T2—1ms
Ho = 2.5 (variable).

%% is the lead parameter, while Ho-represents the DC gain of

the circuit. For the actual circuit diagram, see Appendix III.
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3.17.4 Stability and Response of the Feedback System

Bode plots of the open loop transmission of the system
discussed above are shown in Figure 3.5. The SCR switching
of the three-phase line must be taken into account for the
stability.analysis. 'Since a disturbance may occur at any time
with respect to the line period, this delay is of random
length, from 0 to 2.7 ms. The feedback system must be stable

in the worst case, i.e., for the longest delay. However, once

this is achieved, the system response is best approximated by .

use of the 1.4 ms average delay. In Figure 3.5a, the loop
transmission is plotted for the case of no frequency compén-
sation and with the 2.7 ms delay. This is seen to be unstable
for feedback operation, as the gain is greater than unity for
a pha§e of m radians. This instability is observed experi-
mentally; the system goes into the 1limit cycle oscillation
described previously. Figure 4.4 illustrates a plasma shot
under these conditions. The normal operating setting of the
lead network stabilizes the transfer function, and the Bode
plots of Figure 3.5b illustrate this case. For these plots,
the delay is set to its average value of 1.4 ms. All Bode
plots illustrate both rising and falling inputs to the SCR
supply, since the loop transmissions are different for each.
In general, the rising and falling transfer functions
may be separated. The dominant input to the SCR supply is
proportional to the plasma current, and consists of ramps that
are large compared to the position error signal. Operation of

the feedbackvsystem is described in Chapter 4; for the period
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"rising input"

Log (V/V)

"falling input"%

Log F(Hz)

Figure 3.5a. Bode plots of the feedback system open loop trans-

mission (as modeled). The case of no frequency compensation <
from the feedback circuit results in an unstable closed loop

response. Both cases of SCR supply operation are shown (rising

and falling inputs as described previously).
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(rising input)é
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: . .
H .
* .
0"‘" ----------
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H .
.
H b

¢ (s)

log (kA/V)

log F(HZz)

Figure 3.5b. Bode plots of the feedback system open loop
transmission (continued). The normal operating settings were

used to generate the response plot. Both cases of SCR supply
operation are shown.
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of the current rise, the "rising input" transfer function is

in effect. For current flat-top and fall, the "falling input"

case must be used.

The closed loop frequency response calculated for this
model is shown in Figure 3.6a; The excitation is a signal
at the programming input, and the response is the resulting
plasma displacement. Figure 3.6b is a Bode plot of closed
loop response to a disturbance in the plasma, as measured by
the position-sensing coils. The resonance occurs at about
40 Hz; and thié is in reasonable agreement with the measured
dynamic response'of the feedback system. Feedback system

operation is described in Chapter 4.
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"rising input"

¢ (s)

loq (VC -.s/vprog)

"falling input"%

log F(Hz)

Figure 3.6a. Bode plots of the closed loop frequency response
of the feedback system. The excitation is a programming sig-
nal, while the response is the measured position signal V,_g.
Again, both cases of SCR supply operation are shown.
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"rising input"

log H(s)
"¢ (s)

""falling input"§

log F(Hz)

Figure 3.6b. Bode plots of the closed loop frequency response
of the feedback system. The excitation is an equivalent plasma
disturbance, while the response is the position signal. Both
cases of SCR supply operation are shown.
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3.2 The Position-Sensing Pickup Coils

These coils are situated just outside the vacuum vessel

wall. Both coils produce voltages

, 9,
3.4 V = Cc,s-SE( Ip (X - Xy )

X plasma position with respect

to the vacuum chamber center
X = offset due to toroidal geometry
I

= plasma current

= scale factor for either cos 6
or saddle coil.

These signals are time-integrated to provide position infor-
mation. |

The coils are wound on a flat strip, which is then
wrapped around a minor circumference of the torus (see Figure
3.7). The cos 8 coil is wound to approximate a turns density
of n,cos 8, and is thus sensitive to poloidal fields with
cos 8 functional dependence. The saddle coil is wound length-
wise 6n the edges of the strip, crossing over at the center,
and its sensitivity is to radial fields Br at the vacuum
chamber surface. Note that since a vertical field in cylin-

drical coordinates is

B, = B,, (r cos 8 + 6 sin 8),
the cos © and saddle coils detect the net vertical field in-
tersecting the vacuum vessel. To a first approximation, the

object of the applied vertical field can be viewed as being
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AN

Cos 0 coil

N

»”~ .
Lrop ne ) 0

L 7
Saddle coil
(on edges, crosses at center)

Figure 3.7. The position-sensing pickup coils. The coils
are wound on a flat strip which is then bent to encircle the
vacuum vessel. The Cos 86 coil is wound to approximate a turns

density of n_cos 6, while the Saddle coil is wound on the
edge.
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to keep this field symmetric on eitber side of the plasma,
thus nulling the net Tb X ﬁ& force. H&wever, other effects
arise due to the finite plasma pressure and toroidal extent;
the problem is treated accurately in Section 2.3.

Using Bg and B as given‘by Mukhovatov[5] (see Equations
2.32 and 2.33), the fluxes linked by each coil may be calcu-
lated. -‘For a plasma shifted by some amount relative to the
vacuum chamber center, these fluxes are given by the integrals:

2

/ﬁ' © |cose de "bN

.p:b

0
— A )

3.8 G oy = 2[3 -pP| de bt

0 p=b

minor radius coordinate from

the vacuum chamber center

similar angle coordinate

radius of pickup coils _
‘width of the coil form = 2.54 cm
peak turns density for the cos 8
coil times area/turn =z 6.5 cm“/cm.

3.7 ®cos

P
o
b
t
N

Since the signals appearing at the coil terminals are propor-
tional to d¢>/dt, they are integrated. Arbitrary constants

of integration-are set equal to zero, and the results are

3.9 V.= Il X -2o(1nd 4 5)(1 - 2oy )]
. sad = “s’p -or{lng + (A+ . - b2
3.10 V = CII[ X+ QE(lntl -1+ (A+ .5)(1 + ii) )]
: ~ 'eos T Te’p 2R a : b2 !
where X = plasma position
a = plasma minor radius
b = pickup coil radius
R = major radius = .64 m
I_ = plasma current
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and with:

C.I

u No- I I :
CI = V3 o” Tp . o (=P ) Yolts
700 k& ' “cm

= coil form width = 2.54 cm

t
TE = T; = integrator time

constants = .93 ms.
Thus these two signals contain plasma position information
from magnetic fields surrounding thé plasma. The signals are
proportional not only to the position of the plasma, but also
to variations in pressure/profile term A and minor radius a.
- A proper linear combination of the saddle and cos 6 coils can
in principle eliminate the A dependence, to give a position

signal:

2 2 2
- a_ b b - 3~
3.11 Vos ,.colp[ X - uR(2 in . * 2 ) 1.

With a gain in the electroniecs = K = .7,

4 b t 4o
C_ =K
° s (b2 + a2)
results in:
3,12 V_ .= .093 (X_ - 1.0 em) ( “p y VYolts
* c-s -~ ° cm * 100 kA cm

for a plésma minor radius of 16 ecm. The amplitude of this
signal, as well as the offset term (Xo in Equation 3.4, above),
still depends on a, the plasma minor radius, but variation

in this parameter is assumed to be negligible. This is
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aécurate within the approximation used in the above calcula-
tion, since ch_s/da is of order a/R with respect to ch_s/dX
(for an approximately centered plasma).

Experimentally, this combination was determined by ‘using
the vacuum vertical field to measure the relative magnitudes
of the two constants Cc and Cs' The vertical field was
pulsed, and the gains of the two signals adjusted to sum to

.zero. The relative amplitudes of the measured VCo and vsa

d
signals agreed to within 5% of those calculated for a purely

S

vertical field. The cos 8 contribution was then reduced by
the amount (b2 - a2)/(b2 + a2) to give the position signal,
Vc_s in Equation 3.11 above. This is used as the loop
- error signal.

The constant Co in Equation 3.11 above was calibrated
against other position-sensitive diagnostics, as described in
Chapter 4. The agreémgnt Qith the calculated values is accu=

rate to within the experimental errors of the diagnostics and

the numerical calculation of the coefficients.
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3.3 The Vertical Field

3.3.1 The Vacuum Vertical Field

The vertical field is established by a set of four
coils, as shown in Figure 3.8. Field lines, generated by
plotting lines of constant RA,, are also shown. Ay was cal-

culated by numerical integration of [8]:

‘ Rccos£ J(r) dv
3.13 A¢: l Ro ——

where Rc = coil rédius
J = coil current element
R° - r = distance to observer
from current element
¢ = angle in plane of coil,

from observer to element.

Hasting's approximation formulas were used to evaluate the
integral [9].
The spatial variation of the vertical field is described

by the vertical field index:

dB
. =R __v
3.14 n =7y iR
v
where R major radius coordinate

B

v vertical field magnitude.

For stability to up-down motion, the index must be positive.
That is, the field should curve such that its horizontal com-
ponents tend to recenter the plasma for vertical disturbances.
Second, since the field is stronger towards the inward side
of the vacuum chamber, an outward disturbance of plasma posi-

tion would seem to be immediétely unstable (from examination




(=,

EF2

Limiter

. o
EF2
Toroidal Field o .
Magnet : \\\ EF1

Figure 3.8. The vacuum vertical field. Field lines were
generated by plotting surfaces of constant RA¢. The coils
are designated by EFl and EF2.
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of the physical model; inward equilibrium forces generated

by Ip X §v counterract the plasma tendency to expand). How-

ever, the plasma is a conducting ring that, in order to expand,

must cut more vertical field flux. From conservation of mag-
netic field energy this arrangement can be stable, but sets
an upper limip on the decay of the field: n must be less than
3/2. These conditions, 0 < n < 3/2, are met by the vacuum
vertical field. 1In Appendix III, the vertical field strength
and vertical field index are listed for various positions in
the vacuum chamber. The field values were calculated by
numerically differentiating the potential from Equation 3.13,
above. |
Since the vertical field is not strictly homogeneous
across the area of the vacuum chamber, several poloidal field

harmonics are present. Further, various stray fields occur

within the plasma chamber. Affecting the vertical field index,

as well as the equilibrium shape of the plasma, these fields

are described in Section 3.4.
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3.3.2 Time Delays Associated with the Vertical Field

The vertical field must pass through the Bitter plates
of the toroidal field coil, and also through the vacuum.cham-
ber walls. Since these are conductors, benetration delays can
result. As measurements and calculations show, however, these
delays take place on time scales of .1-.2 ms, and are assumed
to be insignificant to the dynamicé of the system (see

Appendix II for the experimental measurements).
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3.4 Stray Fields Affecting the Plasma

There are several fields with vertical components in the
region of the vacuum chamber. The toroidal field winding has
a net single turn due to its helicity: the turn-to-turn
crossovers are equivalent to a loop carrying the toroidal
field current. They occur inside the major radius of the
plasma, and have roughly rectangular c¢ross sections. -To a
good approximation, this single turn results in a stray ver-
tical field of approximately 150 Gauss in the center and 250
Gauss at the inside edge of the plasma, for a toroidal field
current of 100 kA. By comparison, a U400 kA plasma discharge
"has a poloidal field of 5 kG, with an imposed equilibrium
vertical field of 1.8 kG. (There is also a stray horizontal
field component due to a vertical displacement of the single
turn. This varies, but is usually about 30 Gauss.)

Since a field null is necessary to achieve the electron
avalanche necessary for the initial breakdown, a compensating
bias field must be appliéd to cancel these stray components.
The stray toroidal field, the bias fiéld, and their sum are
shown in Figure 3.9. (Only the vertical fields are illustra-
ted.) Since the bias field has a different decay index from
the single turn field, they can only be nulled at one point,
but this is suffiqient for initiation of the plasma. For this
operation, the breakdown has in fact been observed to origi-
nate at the outside of the major radius of the vacuum chamber

[3], which is consistent with the expected field null position.
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a)

Figure 3.9. The stray component of the toroidal field, as

nulled by the bias field. a) the stray toroidal field. b)
the bias field. c¢) their sum; a field null occurs near the
outside edge of the vacuum chamber.
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The vertical field index, as given by formula 3.14 and in
Appendix III, is changed when these stray fields are included.
Theoretically, the index ié now such that the plasma is not
always stable to in-out perturbations, as described in Section
3.3. This is particularly true during the current rise and
fall, when the stray fields are of the same order as the ap-
plied equiliﬂrium field. Experimentally, however, this does
not seem to be important. The position appears to be stable
to this mode at all times during fhe discharge, except possi-
bly the last 10 ms. During this time, the plasma current is
ramping down, but the discharge almost always terminates be-
fore the current reaches zero. This termination is accompa-
‘nied by large position excursions, indicating a possibly un-
stable index situation. Appendix III contains values of the
index for each vacuum field.present that may be applied to
~ the plasma, and explaips the method for calculating the total

index for a given set of currents.
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Chapter 4. Performance and Results

4,1 Performance.

Data from a typical Alcator C plasma discharge is shown
in Figure 4.1.‘ Signals from the plasma current, Cos-Saddle
position loops, central density, and central soft X-ray emis-
sion, are shown: The actual position of the plasma is compu-
ted from the Cos-Sad signal according to Equation 3.12, and
is also plotted. The Cos-Sad signal is the loop error Volt-
age, and is explained in detail in Chapter 3. The plasma den-
sity is measured with-an infrared laser interferometer on five
chdrds through the plasma. For the central chord shown in
‘the figure, each interference fringe represents .58 x 1014

3

electrons per cm”; other chords are located at -12 cm, -6 cm,
+8.5 cm, and +1$ cm., With distances referenced to the center
of the vacuum vessel, positive = greater major radius. Soft
X-ray emission is measured at chords spaced every 2 cm, from
-12 cm to +14 cm. The measured X-ray signal has a complicated .
dependance on a number of,factors, among them plasma tempera-
ture, density, and level of impurities; so the absolute mag-
nitude of this signal is not easily interpretable.

The plasma discharge of Figure 4.1 is typical for Alcator
position feedback operation. There is a small error in the
initial vertical field, causing an excursion in the position
before the control circuit has time to respond. During the

subsequent 60 ms of the discharge, the plasma current and beta

are rapidly increasing, and also the profile is changing.
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This results in a larger error signal than during the period
from 80 to 270 ms, and thus poorer position. Similarly, as
the plasma current is decreased at the end of the discharge,
the beta and internal inductance are again changing, also
resulting in é larger error signal.

The pos;tion rgsponse to a programmed step is shown in
Figure 4.2. (Note: The step had a 3.6 ms time constant on
its rising and falling edges.) Plasma current and soft X-ray
emission are shown, along with vertical field current. The
net plasma motion is about 2 em. As the center moves, the
central X-ray signal changes due to the motion.of the peak
emitting region of the plasma; immediately following the step,
‘the soft X-ray signals from all detectors increase, indicating
an influx of impurities from the wall or limiter. This shot
was produced with the normai settings of the feedback gain
and lead adjustment, apd illustrates the good control and lack
of overshoot available from the closed loop system.

In normal operation, the feedback system has good stabi-
lity. Typical response is free from overshoot, as in each

of the cases presented herein. This is consistent with the

analysis of Section 3.1.3, in which the average time of 1.4 ms -

was used for the delay of the SCR supply.

In Figure 4.3, two disruptive plasma shots are shown.
A plasma disruption is‘characterizéd by abrupt changes in.
current, temperature and density profiles (on a time scale of
100 us), and répresents an step-like disturbance to the plasma

equilibrium. In each case, the feedback system restores the
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position of the plasma within a short time. In the second
shot, the plasma discharge was severely damaged before the
position was restored; the speed of recovery was limited by
the output current slew rate of the vertical field SCR supply.
That the linear analysis of the stability of the feedback
cirecuit is approximately_corrgct is further established by
operation of the feedback system with an unstable closed loop
response. According to Bode plots of open loop gain and phase
(see Chapter 3), setting the lead = 0 should result in an
unstable situation. Experimentally, the position is indeed
unstable; such a case is shown in Figure U4.4. The premature
plasma termination is probably due to the .introduction of
‘impurities. A second region of instability should occur for
an open loop DC gain which is 20% higher than the normal set-
ting, and this is also obsefved. In‘this case, the oscil-
lation seems to lock to a subharmonic of the line frequency,
a nbniinear effect that is probably due to the three-phase
delay, and is not considered in the preceeding analysis.

Operation in this regime is shown in Figure 4.5.
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4.2 Results

There are a number of position-sensitive diagnosties
available for comparison with the pickup loop signals. 'A step
was programmed for the plasma position in the discharge shown
in Figure 4.6. Centroids of the density and soft X-ray pro-
files are cdmputed, and their locations are shown as functions
of time. Also shown is the position of the outermost flux
surface as indicated by the Cos;Saddle signal (which is divi-
ded by plasma current aﬁd offset 1 cm, according to Equation
3.12). The relative changes in position measured by each di-
agnostic agree with each other to better than 10%, which is
‘the approximate experimental error of the'data.

The soft X-ray centroid position is offset from the flux
surface and density measurements by about 2 cm, indicating
a shift of the hottest part of the plasma towards the outside.
This is the only evidence of the Shafranov shift that was des-
cribed in Chapter 2. The density centroid is not offset, and
profiles are virtually always symmetric about their centers
(see Figure 2.6). This is in contrast to the expected dénsity
profiles for a plasma with shifted inner flux surfaces, also
shown in Figure 2.6.

Electron cyclotron harmonic emission is used to measure
electron temperature profiles, and is a third diagnostic sen-
sitive to positidn. A typical electron cyclotron profile is
shown in Figure 2.1. The pos{tion of the center of the fit-
ted profile depends on the exact magnitude of the toroidal

field, so it is not possible to determine the absolute
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with the flux surface measurement.
X-ray signal to the outside is evidence of the Shafranov shift.
(Note that the center of this trace is at 1 cm.)

Comparison of position-sensitive diagnostics

The shift of the soft
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location of the plasma center with accuracy of greater than
about +2 cm. However, relative changes in the positions

of these profiles agree well with those measured by the diag-
nostics discussed above. Figure 4.7 shows electron cyclotron-
measured positions plotted against those taken from the flux
loops; the least squares fit to the data has a slope of about
.9. The shift of the data to 1 cm outside may not be taken

as evidence of a Shafranov shift, due to the aforementioned
errors.

If the peak of the temperature Gaussian is arbitrarily
made to coincide with the peak of the X-ray signals, constant
- pressure surfaces may be computed using experimental density
‘profiles. These are indeed shifted at the center with respect
to the outermost, but the net shift is only about one third
to one half of the expectedAShafranov shift. To produce the
~ proper amount of shift? a small temperature offset, varying

lineafly with major radius, must be added to the Gaussian
| profile of the temperature. The offset needed is about +7%
of the peak at the smallest major radius of the discharge,
varying to -7% at the outermost. Such a perturbation is
probably below the limits of the resolution of the diagnostic.

Thermocouples mounted on the limiter are used to measure

heating its heating at various locations poloidally. Factors
besides poor positionipg affect the heating of the limitef,
but centering the plasma according to the above diagnostics
qualitatively seems to maximize the uniformity of the thermal

loading. For plasma discharges whose average position varied
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Figure 4.7. Positions measured by Electron Cyclotron Emission, .
plotted against measured flux surface position. Errors in abso-

lute position are * 2 cm, so the above shift is not evidence of
the Shafranov shift.
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from -1 cm to +1 cm, the differential limiter heating is plot-
ted in Figure ﬁ.8. The vertical axis is the difference be-
tween the quantities of heat received on the inner- and outer-
120 degree sections of the limiter, divided by the total
energy received by both; the horizontal axis is the average
position as measured by the flux loops. In general, centering

results in the most even heating, though there may be large

fluctuétions from shot to shot.
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Figure 4.8 Differential limiter heating vs. the average position
of the outer flux surface. The vertical axis is the difference
‘in heat energy received by the outer and inner segments, divided
by the total. In general, centering the plasma results in the
most even thermal loading of the limiter.
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Note on determination of soft X-ray profiles:

Because of the geometry, and individual variations in
diode sensitivity and window thickness, determination of soft
X-ray profiles is somewhat arbitrary. In this work, two means
were used: 1) As the plasma is moved in a step , the detector
closest to the\peak of the emission profile will change the
least. This can be used to determine the center of the pro-
file, and the amplitudes of symmetric detectors can then be
ad justed to give symmetric profiles. Further, an assumption
is made that as the plasma is moved initially by 2 cm, the
emission profile is of approximately constant shape and mag-
nitude; this results in each detector's seeing the plasma
‘chord which the immediately inside neighbor previously viewed,
and the gains can be adjusted accordingly. 2) The center of
the plasma normally undergoes a relaxation oscillation denoted
by "saw-teeth" in fhe hottest part of thelplasma, and if they
are assumed to be symmetfic about the peak, can give an inde-
pendent calibration of the location of the peak of the emis-

sion profile.
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Chapter 5. Conclusions

Position control of the Alcator C plasma has been imple-
mented. The feedback system typically operates with good
stability and little overshoot, and enables the plasma dis-
charge to recover from minor disruptions with little harm.
This feedback control system is in daily use for the Alcator
C runs. | |

A£ the date of this writing, a similar control s§stem
has been developed for control of the up-down plasma position.
This is still in the prototype stage, but is also used in
daily operation. |

With plasma diagnostics currently avéilable,_the exis-

tence of the Shafranov shift may neither be conclusively proven
.nor disproven. The soft X-ray signals seem tomindicate that
the hottest region of the plasma is displaced with respect to
the outermost flux surface, but temperature and density pro-
files are not able to resolve the concomitant asymmetries in
the pressure profile.

The influence of the shape of the plasma on the various
position-sensitive diagnostics was also investigated. Theo-
retically, the perturbations to circularity affect temperature
and density profiles even less than the Shafranov shift; thus
they are apparently not measurable. However, the lack of
measurements of the Shafranov shift is also not attributable
to any plasma shape effect.

Relative changes in the measured position of the outer-

most flux surface are demonstrated to be in good agreement
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with other position-sensitive diagnostics. Soft X-ray,
density, and temperature profiles all agree with the flux
loop measurement to within their experimental errors. Fur-
ther, the thermal loading of the limiter is most even for
discharges that are centered according to the flux loops.
More work will be required to establish the existence of
the Shafranov shift. Also, limiter héating and poloidally

resolved flux loop measurements may be used to experimentally

investigate the shape of the plasma. This must be undertaken

in order to do a more advanced compafison of the predicted

versus observed MHD equilibria.




Appendix I. A Derivation of the Grad Shafranov Equation

The MHD equations used for the derivation of the Grad-

Shafranov equation are:

2.1 V.:B=z0
2.2 VszyoJ
2.3 T xB = Vp.

For this model, all dissipation effects are neglected; and
plasma conductivity is assumed to be infinite. No variation
along 3¢ is assumed, so o/0% = 0. Pressure p is assumed to
be a scalar. This derivation is originally credited to J.
Freidberg [1].

Beginning in cylindrical coordinates, B can be expressed

= 1 A N
2.4 B=pgV¥Pxe + Byey

A'lélu_ AB Alﬂ,
% Raz* % ¢ * ©z R QR

. which is equivalent to 2.1, V-B = 0. Equation 2.4a of Chap-
ter 2 is derived only after the change of coordinates at the

end of this appendix. Taking the curl of the above expression

for'ﬁ,
2
3 . = A OBy A 1 0W O 1% A~ 19
K d =V x B = -ep oz - e¢(-ﬁ- '6_;54- 3R Ré)R) + e, p aR(RB¢)'
Defining the operator N¥, this becomes
2.5 w3 = tprwe, + L ome, x e
: o” ° R ¢ R ¢ #
with ) TJW
02V
O*Y = RypRoR * 322
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Next, Freidberg notes that since B-JxB-= 0, Equation

2.3 results in B - Up = 0, also. This implies that p = p(¥),

since d/3% = 0 and Bp and B, are only functions of V. With

this in mind, Vp becomes VY¥( dp/d¥ ) in the following equa-

tions. Similarly, J - B

J x
0 = uo_J’ 'Vp.

= 0 results in

0=1I[ %V(RB,,) X &g ]_-VW%%

when the expression in Equation 2.5 is used for J. This im-

plies that RB¢ is also only
F is defined: '
2.6 F(Y)

with
VF

a function of ¥ . The function

= RB,

dvy

Substitution of these expressions for B and J into Equation

2.3 results in the Grad-Shafr

HOJXBz

lory &« 1UF x 8,

-;—;_-A*«,v & x (T¥x &,)

-V, x (TU¥x &) =

and since V¥ is perpendicular
2.7 - A=

which is the desired result.

anov equation. That is,

'uo§7p

n_Vp

o

_J_- -~ Ly
+ R21=‘('§7I-‘xe,;)xe,ﬁ uOVp

2 d dF A2 A
uoR EVQ;VV+FaTw—e¢X VY¥x e),

to 3¢ ’

2 dp dF
uoR v + F v




84

For a tokamak, it is necessary to convert from the cylin-
drical geometry used in the derivation so far to a toroidal
coordinate system. Figure A.I.1 shows the toroidal coordi-

nates used: r, g, ®, and with major radius Ro‘ It is appa-

rent that
R = Ro + r cos 6
z =71r sin 8
p=9

The operator A* is converted to toroidal coordinates by

expressing the‘derivatives

99 _ 39 dr . 2Q de
06 dR

JoR or dr *
9Q _ 2Q dr , 3Q de
dz ~ ar dz 96 dz °

The derivatives dr/dR and dz/dR are galculated from the

expression rl = 22 + (R-Ro)z, and the above relations between

- the coordinates:

-%% = 5_%_50 = cos ©
f}- = -%- = sin @9,

The remaining d6/dR and d6/dz terms may be calculated by dif-
ferentiating z = r sin ©6:

g% sin @ + r cos ©

[o X

)
R

o
"

Q.

d9 _ - sin ®

R ~ r !




and also:

dr de
1 =33 sin 8 + r cos © iz
de _ cos ©
dz ~ r

Algebra then leads to the expression for A* in toroidal coor-

dinates: |
2.8 A*Y = 1§—réw 1—2;)—;’1! 1(3’;0056-5129%%)
Further, Equation 2.4a may now be established:
Bp =% 3”‘3&
= éR ( f%‘%%?) + gz'% é%;
= (e.cos 8 - egsin 6)( ;%.‘g-sin 8 _%%gcosre)
+ ( e.sin 8 + egcos 8)( %%cose-%%“giiﬁ—ﬁ

In the 36 direction, this is equivalently:

L1 ¥
2.4a B9=§ar"

In addition, the expression for the field in the 3} direction

is:
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Ro=_.64 m

b

_____?f____q

R
l |
. Coordinates

R = major radius of plasma

r = minor radius of plasma

8 = azimuthal angle of plasma

p = minor radius with respect to
vacuum chamber center

® = similar angle

X = displacement of plasma center
from vacuum chamber center

Figure A.IT.1. The toroidal coordinate system.
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Appendix II. Delays Due to the Vertical Field Penetration of

the Tokamak Structure

A.II.1 Penetration of the Vertical Field through the Toroi-

dal Field Magnet

The Alcatpr C toroidal f;eld magnet is of Bitter plate
construction. That is, individual copper plates are cut and -
formed together to create a square helix around the vacuum
chamber (see Figure A.II.1). There is also a helical insula-
tor between the plates, and this laminated construction per-
mits vertical fields to pass rélatively unimpeded. Eddy cur-
rents can flow in the plates, but the average vertical field
'in the center can be shown to be the same as the average ap-
plied vertical field. Since the actual geometry is complica-

ted, however, two limiting cases will be considered.

A.II.1.1 Case 1

Infinitely wide parallel plates are considered, with
field applied perpendicular to their ends (see Figure A.II.2).
Solving Maxwell's equations and matching boundary conditions
at the ends of the plates:

nwx -nrnz

B = B, cos( L ) exp( T )

By symmetry, or since V : B = 0, the space average field on
both ends of the plates must be the same. Solution of Lap-
lace's equation shows that, at a distance equal to a plate's-
width from the ends, even the first harmonic is attenuated

by e=2m,




Figure A.II.l1. The toroidal field Bitter plate construction.
- The plates are interleaved with an insulator, and form a helix
around the vacuum chamber.
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Figure A.II.2. Field penetration, case 1. A vertical field
is applied perpendicular to the ends of infinitely wide plates;
by symmetry, or V « B = 0, the transmitted field is equal to

the applied field.
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A.I1.1.2 Case 2

Infinitely long parallel plates with field applied
parallel to their sides is considered next (see Figure A.II.3).
Here, surface currents flow which exclude flux from the inside
of the conductors. Again by symmetry, or by line-integrating
B along eitheh path I or II as shown, it.can be seen that the
transmitted field II is the same as the applied field I. Each
path pésses through the center of the plates and'encléses the
same amount of the surface current, so the the line integral
of the magnetic field along each‘is the same. Thus field is

not excluded from the other side of the plates.
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Figure A.II.3. Field penetration, case 2. A vertical field
is applied parallel to the sides of infinitely long plates;

induced surface currents shield the field from the interiors
of each plate, but the field is transmitted past them. Line

integrals around path I or II surround the same amount of
current, so By = Bry.




A.II.2 Penetration through the Vacuum Chamber Wall

The vacuum chamber is constructed from a stainless
steel bellows that is bent into a torus. Several penetration
effects occur for a time-varying applied field. For the
first, the bellows can be modeled as a straight conducting
cylindrical shell in an alternating vertical field. Solution
of Maxwell's equations shows that, as the frequency is in-
creésed, the field begins to be excluded from the interior

at the frequency

R 1
2XY - 2w uobc-é

1.6 kHz

for the parameters

b = radius of shell = .2 m
08 = wall thickness x conductivity
= 400 0-1

or T= .1 ms. Because of the variations in wall thickness
around the torus, (c-§ ) has been ad justed td its““average"
value, i.e., that which gives the measured resistance of the
bellows.

The second effect is due to the bellows being formed into
~a torus; it is a conducting ring with inductance L = 1.1uxH (6]
and resistance R = 8 mao. As such it begins to exclude flux at

the frequency

f=-1—-—R—= 1160 Hz
< L

N

or T= .14 ms.




A.II.3 Machine Penetration-Time Measurements

By the use of pickup coils sensitive to poloidal field
(cos 8 coil) and £o radial field (saddle coil) just out;ide
the vacuum chamber wall, it is possible to measure these field
penetration effects. The pickup coils are described in detail
in Chapter 3.‘ The frequency response was found by measuring
the signals at the pickup loops when known alternating cur-
rents Qere passed through the the vertical or horizonéal field
coils.

A graph of pickup signal amplitﬁdes vs. frequency for .
applied horizontal fiéld is shown in Figure A.II.4, The geo-
‘metry of parallel plates is basically the same as for an ap-
plied vertical field, but the bellows' conducting-ring effect
is absent. When the field is excluded from the vacuum chamber,
the theta component outside the bellows begins to increase
while the radial component decreases, and these changes are
clearly shown. Described in section b of this appendix, this
is the effect modeled by-a long straight cylindrical shell
in a transverse field, and occurs at about 2 kHz, close to
the predicted value.

The frequency response to applied vertical field is shown
in Figure A.II.5. The same long-cylinder effect is apparent,
. but the effect due to the bellows being a conducting-ring mod-
ifies the response. A dip occurs in the Be curve as the bel-
lows current rises and flux is excluded from the torus center;
this is at approximately 1 kHz, which is again close to the

predicted value.
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In both situations, no real decrease of signal is ob-
served, supporting the earlier argument that the vertical
field completely penetrates the toroidal Bitter plates for

the frequencies of interest.
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Appendix III. Magnetic Field Strengths in Alcator C

Table A.III.1 Midplane Values of the Fields and their Indexes.
(Note: The total index of two fields B1 and B2 is given by:

B,I, + B,I
1 171 272 )

tot ~ B1 + B2

Table III.1a EF1 Vertical Field at Midplane, for 1 kA

Radius (em) Magnetic Field (Gauss) Index
4y 502. 0.16
45 500. 0.18
46 499. 0.19
u7 498. 0.21
48 496. 0.23
49 uoy, 0.25
50 " 493, 0.27
51 490. 0.29
52" ugs. 0.32
53 486. 0.35
54 483. 0.37
55 480. 0.41
56 _ 477. 0.4Y4
57 47y, 0.47
58 470. 0.51
59 : 466. 0.55
60 462. 0.60
61 458. 0.64
62 454, 0.69
63 - 449, 0.75
64 hyy, 0.80
65 439. 0.86
66 433. 0.93
67 : 427, 0.99
68 . 421. 1.06
69 415, 1.14
70 _ 408. 1.22
71 4o2. 1.31
72 394. 1.40
73 387. 1.49
T4 380. 1.59
75 372. 1.70
76 364, 1.81 )
T7 355. 1.93 - |
78 347. 2.06
79 338. 2.19
80 329. 2.33
81 320. 2.47
82 310. 2.63

- 83 301. 2.79
84 291. 2.96



Table A.III.1b EF2 VerticalvField at Midplane, for 1 kA,

Radius (em)

By
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 -
61
62
63
61
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

Magnetic Field (Gauss)

467.
u68.
469.
470.
472,
473.
474,
475.
476.
476.
47T
478.
u79.
479.
-480.
480.
u81.
481.
481.
u81,
4R1,
481.
481.
480.
480.
L79.
478.
477.
u76.
47s5.
473,
471.
469.
467.
464.
461.
458.
4s55.
451.
Uu7.s
By2,

Index

-0
-0
-0

-0

oo XoYoRoXeYoReloloNoNoNoNoRoloNojolelojoRoelo No)
- L] L L] - . * o

.06
.06
.06
-0.
-0.
.05
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.

06
05

98




Table A.III.1c DF1 Bias Field at Midplane, for 1 KA.

Radius (cm)

4y
45
46
47
48
hg
50
51
52
53
54
55
56
57
58
59
60 -
61
62
63
61
65
66
67
68
69
70
71
72
73
T4
75
76
77
78
79
80
81
82
83
8

Magnetic Field (Gauss)

-134.
-129.
-123.
-118.
-113.
-108.
-103.
-98.
-93.
-88.
-84.
~79.
-75.
-71.
-67.
"63-
-59.
-55.
-52.
18,
-45,
-42,
-39.
-36.
-33.
-31.
-28.
-26.
-24.
-21.
-19.
-170
-16.
-14.
-12.
-11.
=9.
-8.
-6.
-5.
-4,

99

Index

2.04
2.14
2.24
2.35
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Table A.III.1d DF2 Bias Field at Midplane, for 1 kA.

Radius (ecm) Magnetic Field (Gauss) Index
4y 153. 0.03
45 154, 0.03
u6 154, 0.04
u7 154. 0.04
48 154, 0.05
49 154, 0.06
50 154 . 0.06
51 ' 154, 0.07
52 154, 0.08
53 154, 0.09
5 154, 0.10
55 153. 0.11
56 153. 0.13
57 153. 0.14
58 “153. 0.16
59 152. 0.17
60 - 152. 0.19
61 152. 0.21
62 151. 0.23
63 151. 0.25
64 _ 150. 0.28
65 . 150. 0.30
66 149. 0.33
67 149, 0.36
68 148. 0.39
69 147, 0.42
70 146. 0.46
71 145, 0.50
72 144, 0.54
73 143, 0.58
T4 142. 0.63
75 : 141, 0.68
76 140. 0.74
T7 139. 0.79
78 J137. 0.85

79 136. 0.92
80 134. 0.99
81 133. 1.06
82 131. 1.14
83 129. 1.22
84 127. 1

<31
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Table A.III.%le. Horizontal Bias Field at Midplane, for 1 kA.

Radius (cm)

ny
45
46
u7
48
49
50
51
52
53
54
55
56

57
58
59
60 -
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

Magnetic Field (Gauss)

u1,
42,
43,
45,
16,
47,
48,
50.
51.
53.
51,
55.
57.
58.
" 60.
61.
63.
61,
66.
68.
69.
1.
72.
4.
76.
78.
79.
81.
83.
85.

Index
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Table A.III.1f Stray Toroidal Field at Midplane, for 100 kA

Entries are for a single turn current modelled as a Gaus-
sian 25 cm wide, centered at the midplane. (These values are
good approximations -for Gaussians centered within 5 cm of the
midplane.)

Radius (cm) Magnetic Field (Gauss) Index
4y -
45 -
46 -
u7 -
ug -
49 - ,
50 -247, 0.89
51 -241, 1.04
52 -234, 1.17
53 -227. 1.29
54 -219. 1.40
55 - -212. . 1.49
56 -205. 1.58
57 -198. 1.66
58 -191. 1.73
59 . -184. 1.80
60 -177. 1.86
61 -170. 1.92
62 : -164. 1.98
63 -158. 2.03
64 -152. 2.08
65 ~-146. 2.13
66 - =141, 2.17
67 -136. , 2.21
68 -131. 2.25
69 -126. 2.28
70 : -121. 2.32
71 -117. 2.35
72 -112. 2.38
73 -108. 2.40
T4 -104. 2.43
75 -100. 2.45
76 "97- 2.”7 !
77 -93. 2.49 . |
78 -90. 2.51 |
79 -87. 2.53 . f
80 -84. 2.55 |
81 "81. 2'56 |
82 - -78. 2.58 ;
83 -75. 2.59 i
84 "'73¢ 2-61 )
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e. Horizontal Bias Field at Midplane, for 1 KA. t in
Radius (ecm) Magnetic Field (Gauss) Index
represents
4y 41, tained from
45 42. : '
46 43. ‘ ’
" -
48 L6, ~ Bias Field
49 47. )
50 ug. ‘ >S né.
51 50. tculated
52 51. ‘ )
54 54, | : )
55 55.
56 5T.
57 - 58. Gauss
gg g?: » Gauss
g? 23: Gauss
62 66. , Gauss
63 68.
64 , 69. .
63 S e
66 T2.
67 : T4.
68 76. 2. B sin ne.
69 78. ‘
70 79.
71 81.
T2 83.
73 85.
74 87. p Gauss
75 89.
76 91.
[ 2. e
78 9k '
79 96. -
80 98. ’ ~.urn" that
81 100. nd centered
82 102. : model is
83 104, nsions
8l 106. ' toroidal
the minor

" Gauss
Gauss
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Appendix IV. The Feedback Circuit--Description and Schematic

The feedback circuit can be divided into two sections:
the integrators, and the summing and lead network. The’
integrators are the input stage; in the succeeding stage their
outputs are summed, and differentiated for the lead. The
integrator signals are also monitored. The final output
drives the Transrex SCR power supply through an isolation

amplifier, which is external to the circuit.

'A.IV.1 The Integrators

In order to allow integration of ail fields present in
the tokamak, a useable integration time of 8 seconds was aimed
for, with minimum output drift being a design priority. Be-
cause of the environment, differentialvinputs are necessary.
Reset capability was desired, and also auto-zero compensation
for any offset current changes that would occur due to
temperature changes or aging effects.

The circuit in Figure A.IV.1 meets these criteria accept-
ably for use in the feedback system. Op-amp U1 is a.differen-
tial integratdr, U2 is the auto-compensation sample/hold, and
U3 and U4 are output buffers.

During quiescent operation, the circuit is in the
auto-compensate mode of operation. Just before the plasma
pulse, this is stopped and integration begun. In general,
the output’voltage is not zero just before the plasma shot

occurs (due to offset voltage and stray pickup from a number
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of fields), so ﬁhe relays K1 and K2 are turned on for 30 ms to
discharge the capacitors to zero. Integrator reset is accom-
plished with relays to avoid any unequai leakage currents that
might result from use of FET switches.

FET Q1, capacitor C1, and op-amp U2 form a sample and
hold for use ip the auto-drift compensation. With the FET
on, this forms a unity gain follower for DC signals at the
output of U1, and op-amps U1 and U2 can be treated simply
as a high gain DC amplifier. Unbalanced offset currents
generate an output voltage, and this is held by the capacitor
during integration (when the FET is off). Drift of the hold-
ing capacitor voltage is small and has negligible effect dur-
‘ing the 8 seconds of DC-open-loop operation.

Resistors R1 through R7 form an error-field subtraction
circuit. This is used to ndll an& signal due to coupling of
the toroidal field to the pickup coils. This is a differen-
tial subtraction circuit whose contribution may be varied
either positive or negative by use of one potentiometer, R3.

In order tOvminimizé common mode sensitivity, the time
constants for each side of the integrator may be equalized by

adjusting R8. The overall output time constant is adjusted

by R9.

Op-amp U3 is a 741, and is used as the monitor output
for the integrated signal. 1Its output is equal to that frbm
U4, which drives the summing and differentiating circuit.
The feedback fesistors of these two amplifiers are of 1%

tolerance, but were matched to be significantly closer.



Two integrator circuits are implemented on a single
circuit board. Ail connections are through a 22 pin edge
connector. The component side has a ground plane, and the
relays are in dual-inline packages mounted on the board.

The board must be clean,.or leakage currents cause output
drift. This could probably be avoided‘by better arrangement
of components, with proper low-current shielding techniques

applied to the conductor side of the board.




A.IV.2 The Rest of the Circuit

The summing and differentiation circuit is shown in
Figure A.IV.2. The outputs from the cos 6 and saddle iqte-
grators are summed with variable weighting. R1 and R2 control
the output level from each. Added to them is the output from
the plasma current integrator, also variable. Op-amp U10
contributes a differentiated version of the signal, and poten-
tiometer R4 controls the lead time constant. Their sﬁm is the
feedback signal, the overall ampl;tude of which is adjusted
by R3. A programming signal is added at this stage, and this
becomes the output siénal to the power supply. The output is
" buffered by op-amp U4, and may be clampéd to an adjustable
level by the circuit around U13. A voltage follower monitors
that signal for recording during the plasma shot. All adjust-
ments are én the front panel.

Also shown is the control circuit for the integrators:!
reset functions. The 555 timers control the'length of the
integration pulse (U17) and the length of the reset pulse
(U16). The firing of the one-shots is externally programmed,
or they may be manually triggered. | .

The inputs to this stage are all monitored by level
detectors, U16 and U17. If the integrator outputs are above
12.5 or below -12.5 Volts,~a front panel LED indicator is -lit

to indicate possible saturation.
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