
PFC/RR-81-21

PLASMA POSITION CONTROL .ON ALCATOR C

Patrick A. Pribyl

Plasma Fusion Center
Massachusetts Institute of Technology

Cambridge, MA 02139

May, 1981

This work was supported by the U.S. Department of Energy Con-
tract No. DE-AC02-78ET51013. Reproduction, translation, pub-
lication, use and disposal, in whole or in part, by or for the
United States government is permitted.



PLASMA POSITION CONTROL ON ALCATOR C

by

Patrick A. Pribyl

ABSTRACT

The Alcator C MHD equilibrium is investigated from the
standpoint of determining the plasma position. A review of
equilibrium theory is presented, indicating that the central
flux surfaces of the plasma should be displaced about 1-2 cm
from the outermost. Further, the plasma should have a slight-
ly noncircular cross-section. A comparison is made between
the observed and predicted profiles. Flux loops sensitive
to plasma position generate the error signal for the feedback
control circuit. This measurement agrees with other position-
sensitive diagnostics, such as limiter heating, and centroids
of density, soft X-ray, and electron cyclotron emission. A
linear model is developed for the position control feedback
system, including the vertical field SCR supply, plasma, and
feedback electronics. Operation of the control system agrees
well with that predicted by the model, with acceptable plasma
position being maintained for the duration of the discharge.
The feedback control system is in daily use for Alcator C runs.

Supervised by R. Parker, Professor of Electrical Engineering
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Chapter 1. Introduction

The Alcator C Tokamak is designed to operate with near

fusion-grade plasmas. In typical operation, the input power

to the plasma is from 1 to 5 MW, resulting in average energy

2
flux at the surface of 20 to 100 W per cm2. -Local "hot spots"

receive much greater energy concentrations. For protection

of.the interior of the vacuum chamber, and for minimum impu-

rity influx from the walls, it is necessary to accurately

control and maintain the plasma position. This is the object

of the work presented in this thesis.

The classical method of horizontal plasma position cont-

rol is to use a vertical magnetic field to act on the plasma

current to create a transverse force. Most tokamaks have some

sort of position feedback involving perturbations to a pre-

programmed field. In addition, many also employ a copper

shell around the plasma to compensate for any rapid changes

in position, by means of flux conservation forces.

The feedback scheme developed for Alcator C dynamically

controls the entire equilibrium vertical field for the plasma.

The response of the feedback loop is found to be adequate to

maintain the position, even with no copper shell. In this

system, a first approximation to the required equilibrium

field is derived from the plasma current, with measured posi-

tion fluctuations forming the feedback error signal.

Theory pertinent to the plasma position equilibrium is

presented in Chapter 2. The innermost flux surfaces should

i
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be offset from the center of the plasma cross section, and

the outer plasma boundary is theoretically noncircular. These

effects are derived by direct integration of the Grad-Shafranov

nov equation [.1, and must be taken into account when compar-

ing measurements of the outermost flux surfaces to data from

other position sensitive diagnostics (such as centroids of the

soft.X-ray and density profiles). The feedback system is

described in Chapter 3. A linearized model of the system is

examined with regards to stability and response. Stray mag-

netic fields present in the toroidal vessel may affect the

plasma equilibrium, and these are discussed in this chapter

as well. The feedback system is now employed during normal

operation of the Alcator C Tokamak, and results of its use

are presented in Chapter 4. Various diagnostics are used to

determine the plasma position, including density, soft X-ray

and electron cyclotron emission profiles, and limiter thermo-

couples, and this information is compared to that from the

magnetic pickup loops used for the feedback signal.

I
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Chapter 2. Theory

2.1 Magnetohydrodynamic Description of the Plasma--

The Grad-Shafranov Equation

For a static equilibrium, the MHD equations that model

the plasma are:

2.1 = 0

2.2 7 x - = T

2.3 T x f =Vp

B = magnetic field in plasma
J = plasma current
p = plasma pressure

This system of equations in variables B, J, and p can be

reduced to a single variable partial differential equation,

the Grad-Shafranov equation. The most direct derivation seems

to be that of J. Freidberg [1, and is outlined as follows.

(A more complete description is given in Appendix I.) Toroi-

dal geometry is used, with major radius R and toroidal. angle

0$, and with minor radius r and azimuthal angle e. Appendix I

illustrates the coordinate system. O-symmetry is assumed.

The stream function '1/ is defined, and 2.1 can be expressed

in the form (with /5= 0):

2.4 B = BOe + 7? x

In particular, the poloidal component is given by

2.4a B = .
E R r



11

With this definition of V, the 0-component of the vector po-

tential A is given by V = RAO . Further, Equation 2.2 gives

2.5 L*V - + 1 + (RB ) X e

where the operator 4* is defined in Equation 2.8. Equation

2.3 is next broken into three components, in directions par-

allel to K, J, and 7 p. " -*p = f - (T x 9) = 0 results

in-p = p('), since B is only a function of' from Equation

2.4. Similarly, use of Equation 2.5 and V 'p = 0 results

in the formula:

1 7(RB ) x * e 0,

or 2.6 RBo = F(M).

From the above relations, the Grad-Shafranov equation can be

derived, and is:

2.7 R 2 + Fd I

with:

2.81 1 2 1 Cos sin e
r r 2r+ 7 2- R s r e
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2.2 Solutions to the Grad-Shafranov Equation

In the preceeding derivation, the pressure p was found

to be a function of only the poloidal flux functionVP. Such

a quantity is constant on a magnetic flux surface, and is

called a surface quantity; another is RB0. In this work, the

high thermal conductivity parallel to the toroidal field has

been assumed to imply that flux surfaces are isothermal, and

therefore density is a surface quantity as well.

The Grad-Shafranov equation is nonlinear in 1 ; analytic

solution requires an expansion in some small parameters. For

a typical tokamak, the parameter r/R (= minor radius/major

radius) results in an analytically tractable set of equations.

In the Alcator Tokamak, this quantity is at most .16/.64. A

self-consistent expansion is achieved by taking the toroidal

field to be zero order, with the plasma poloidal field

Beo~0((L)2 B ). The diamagnetism B is also of this order,

as is 6 , the ratio of plasma energy density nK(T. + T) toe

magnetic field energy density B2 /2.Y0  Another quantity,

Ppol = 2,0 nKT /B 2 , is of order unity.

This equation is solved for a zero-order /I, which is

independent of e. This is then subtracted from the full Grad-

Shafranov etuation*, and the remaining first order equation is

solved iteratively for a small quantity 1//1. Since the zero

order flux function depends only on the minor radius coordi-

nate r, surfaces of 1o = constant are circular, as are the zero

order terms of all quantities which are solely functions of '/V.
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With this expansion, any surface quantity Q can be

expressed as Q = Q + Qi, where Q, is the first-order

correction to Q0 . It follows that:

Q() = Q + Q

2.9 = (9)
2 = 0 1 i

where the second term on the right is defined to be Q . An

alternate form, using Equation 2.4a, is

Q = Q + (R ) 1

2.10 = Q + .

Also RBO = F(4) results in

2.11 B= ( o)(B + B ('P) )

as an expression for the toroidal field. B is a constant,

while B 2 (V) is introduced to represent the plasma para- or

diamagnetism.
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2.2.1 One-Dimensional Pressure Balance (Zero-Order)

Neglecting terms of order r/R, the Grad-Shafranov

equation is

2.12 r o - R2(o) - d 2(RBO)
r jr 3r o 3,

By use of Equation 2.4a, this becomes:

2 2 2Be B 2  R 2 BO
2.13 + ( + p + ( 2 )

,;OF ar2 0 0

which is the one-dimensional pressure balance equation in

toroidal geometry. An alternative form, using Equation 2.11,

is

B6
2  2

; -- + r -- + p + ) 0
0 10

which is readily shown to be equivalent to the pressure bal-

ance equation in straight cylindrical geometry.

I
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.h this expansion, any surface quantity Q can be -Order)
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-order
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Q =Q, + (R ) 113QV04 R r
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0 R B_ .rod
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11 B = )(B B see
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tpression for the toroidal field. B is a constant, )xima-
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e of
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Separation of variables can be used to obtain the particular

solution '=' Yi(r) cos 0. (The homogeneous solutions rep-

resent non-circularity, see the next section.) This equation

can be integrated to obtain an analytic U1i(r) [1].

Multiplying through by rB., and making use of the iden-

tities

-+ r (rB)= (rB')r r dr r dr Cre0 r~)

and [rB 2 ( ,)t = [rBe lti - r 1B.']'

= Be.r /1i)' - fg(rB,')'

the differential equation to be solved reduces to:

24-'1 r 2  2 dp02.17 (rB2 (B-)'' = rB 2 - 2P r r 0
E

Here Q' = dQ/dr. Two integrations give:

2.18 =i+ BT 2  )r dr + dr + C2'
2B9 2 /2P f e22

e0

the equation for 4. Q the average of a quantity Q, and

is defined:

r-

2.19 2 Q r' dr'.
r J

0

The term involving C1 corresponds to a singularity (i.e., a

wire or particle beam) at the plasma center, and in this ana-

lysis is set to 0. The boundary condition at the edge of the
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plasma is that the radial field = 0, or equivalently V= con-

stant (=1[0 + VJcos 6). Nonzero C2 is necessary to achieve

this, since 4 (r=a) = 0 is required. Defining the internal

inductance and poloidal beta as functions of the minor radius:

=2

2.20 1. =
B 
6

22 (4 - p)
2.21 Bpol 2

results in the final equation for V (r,6):

2.22 = B AP + r dr + C2 Be cos 6.

This perturbation to *0 can be shown to represent the

flux surface shiftL (r) derived by Shafranov [4]. By assum-

ing that the equation for a surface on which 1/= constant is

given by rs= r +L(r)cos 6, then ',(r5 ) = 0 (rs) + (rS)

gives (through a Taylor series approximation):

2.23 3t = '/(r) + - 0 cos 8 + 1V/, (r) cos 6.
dr

6(r) is the small deviation of the surface from circular.

Since the left side is assumed constant, and 1 0 (r) 0 f(G),

dip
2.24 Jj(r) = ~ - s(r) .2.24 T dr

When 2.4a is used to eliminate 3V 0 / r,

r

Cg r) f 1.
2.25 MHCr) - =- (' + rp )

0

where C2 has been incorporated into the definite integral.
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This is equivalent to the expression for A(r) derived by

Shafranov.

/g(r) can be calculated numerically by using zero order

density, temperature, and current profiles determined from

Alcator plasma discharges. A Gaussian temperature distribution

is a good approximaton to the temperature as measured by the

electron cyclotron emission, as shown in Figure 2.1 [2].

Spitzer resistivity is assumed for the plasma, so the-current

is proportional to T-3/2, with the central current density

adjusted to give the correct total current. Semicircular

density, or parabolic to a weak power, fits the density pro-

file fairly accurately. As measured from the laser interfero-

meter, this profile is compared with the assumed profile in

Figure 2.1[3]. (The density measurement is discussed in Chap-

ter 4.) In summary:

T = T exp -r2/a 2

J(r) J0 exp ( -3r 2/2a2t 2

n e,i n0 (1 - r2/aL2 ) 1/2

where at and ad are determined empirically. B (r) is computed

from J(r).

For these profiles, variables (r) and 1 (r) are

shown in Figure 2.2. These are the quantities which are numer-

ically integrated to obtain 4/'(r) (or ts(r)).

Note that the quantity that enters the equation for the

shift is the pressure, nKT. Since the temperature has a much

sharper, narrower profile than the density, the exact func-

tional dependence of the density on radius is not important.

I
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r) + d-0 i cos 6 +1'//(r) cos 9.
dr
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2.0

6r)

0 4 8 12 16

6 1 (r)

.4 - -- --. .. .. ... -.... ................................ ...................... ................. .....

.43 - -.-.---.......... ................ ..............

2"

0 4 8 12 16

Minor Radius, cm

Figure 2.2. The poloidal beta and internal inductance, as
functions of radius. These quantities, defined in equations
:2.19 and 2.20, are measures of the thermal and magnetic energy
internal to the plasma.
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For small Z compared to the minor radius, the equation

for flux surfaces represents circles whose centers are offset

by the amount (r). These are plotted in Figure 2.3, with

surfaces shown at equi-density intervals. The center of the

discharge is shifted outward relative to the outermost flux

surface; the predicted displacement is 1.2 to 1.8 cm for typi-

cal Alcator C plasmas.

-20 -15 -10 -5 0 5 10 15 20

cm

Figure 2.3. The plasma flux surfaces are offset by the amount
6(r) with respect to the outermost. This is the "Shafranov
shift".
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2.2.2.2 Non-Circularity

The vacuum vertical field is not uniformly vertical,

but varies across the plasma. Further, there are stray hori-

zontal and vertical fields associated with the main toroidal

field; these are cancelled approximately by applied bias

fields, but still contain harmonic poloidal field components.

With the boundary condition B 0 at the plasma edge, theser

fields result in a first order correction to 11/, in addition

to the Shafranov shift. This 11h satisfies the homogeneous

first-order Grad-Shafranov equation, i.e., solving:

2

2.26 - (r - +P r2 ge E (rB)]=.

Theta-dependence of the solutions is harmonic, VPn(r,e)

1n (r) e in, but LPn r) must be determined numerically.

Equation 2.26 was solved using backward finite differen-

ces. The plots of several solutions are shown in Figure 2.4,

with their peak amplitudes normalized to unity (hence the

label H ).

Since the plasma boundary is a constant flux surface,

these perturbations to the zero order flux function cause

the plasma shape to vary slightly from circular. Mathemati-

cally, this is seen by assuming that r s=f(r,8) describes the

surface of the plasma, and can be expressed

2.27 rs = a + E brncos ne.

Then, because the surface must be a constant flux surface,

V0 = /O(rs) + / (rs) = constant.
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Hn(r)

H 2

H :
H3

H 4

0-
0 4 8 12 16

Minor Radius, cm

Figure 2.4. Graphs of the first order homogeneous solution of
the Grad-Shafranov equation. These are calculated by numerical
integration of equation 2.26, and plotted normalized to unity.
Boundary conditions at the plasma edge determine the magnitude
of each perturbation.
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Through a Taylor series expansion, this gives:

(a - d, r cos ne,

~lLin~a dr nr

or 2.28 V// (a) - ROB brncos ne.

Given the numerical solution of Equation 2.25, described

above, values -for the &rns may be determined from Equation

2.4a by matching the boundary conditions at the edge of the

plasma. The equation for a particular brn is:

(n) (n)
B (a) H (r)

6 rn = na'

H (a) Be(r)
1

(n)
Here H1  represents the calculated flux function perturba-

tions, but with arbitrary normalizations (see Figure 2.4).

The magnitudes of these shape perturbations ( r n's ) are

listed in Table 2.1 for several sets of plasma parameters.

When the Y 's ar.e included in the plot of the plasma

flux surfaces, deformations are seen to occur at the edge of

the plasma, while the center remains virtually circular (Fig-

ure 2.5). This is to be expected mathematically, since the

perturbation amplitude always increases as a function of

radius. Physically, also, it is reasonable that small distur-

bances in the fields at the edge do not greatly affect the

equilibrium in the hotter, higher pressure portion of the

discharge. The local ratio of plasma energy to field energy

is much greater at the center than at the edge, so small

effects in the latter do not propagate inward.



-20 -15 -10 -5 0 5 10 15 20

Radial Position, cm

Figure 2.5. Harmonically perturbed flux surfaces. The inhomo-
geneity of the vacuum vertical field causes perturbations to
the shape of the plasma.

25
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The line integral of density through the above-calculated

plasma profile is shown in Figure 2.6. The peak is moved

slightly outside of center, and the shape made slightly asym-

metric. Also shown is the data from a centered Alcator plasma,

with an even polynomial function fit to it. In general, the

resolution of the density interferometer is probably not great

enough to detect the small Shafranov-type perturbations to

the density profile. Chapter 4 contains a comparison -of the

empirical data to results of the calculations performed above.
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Figure 2.6. Interferometer density data (+'s) compared with the
theoretical line integral of the density. The dashed line isan even polynomial that is fit to the data prior to its Abel
inversion. To date, the density profile data is consistently
symmetric about a midpoint, and the even polynomial fit is well
justified. The theoretical profile includes effects from the
Shafranov shift and noncircularity, resulting in its asymmetry
about the origin.
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Table 2.1. Plasma Shape Perturbations from Circular, for

Various Plasma Parameters

The following are harmonic radial perturbations of the

outer flux surface, with the zero order radius = 16 cm. The

surface is given by the equation

r = 16 cm + A ncos ne + Bn sin ne,

with An and Bn given in centimeters. The various plasma

parameters for each calculated equilibrium are:

I = Plasma current, in kA
p

T0 = peak temperature, in keV, for Gaussian profile

N = Peak density, in cm 3, for semicircular density
0 profile of minor radius = 18 cm

Bt = Toroidal field, in Tesla

Shape perturbations are calculated for the toroidal field

single turn current both parallel and antiparallel to the

plasma current. The single turn is modeled as a Gaussian

current distribution of 25 cm width, centered 4 cm above

the midplane. Bias fields needed to create a field null

in this model are consistent with those actually used to

achieve breakdown and plasma centering as of this writing.

However, there is evidence that the vertical position of the

single turn changes with time.

The only other current used in calculating the field

harmonics was that for the vertical field. This was set at

a level to give the correct plasma equilibrium.
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Table 2.1a The Toroidal Field Single Turn Current is Anti-
Parallel to the Plasma Current:

I = 50 T0 = .3 N = 1 Bt = 6

n 2 3 4 5 6

An -.29 .27 .06 -.03 .01 cm

B .48. -.09 .02 0 0 cm

Ip = 100 T0 = .5 N0 = 1.5 Bt -6
.................................................................................

n 2 3 4 5 6

An .03 .19 .04 -. 01 0 cm

Bn .25 -. 04 .01 0 0 cm

I = 200 T = .75 N0 = 3 Bt = 6
................................................................................

n 2 3 4 5 6

A .22 .15 .03 -. 01 0 cm

B .14 -. 02 .01 0 0 cm

= 400 T =1 N= 4 Bt 6
................................... ......................................................

n 2 3 4 5 6

An .30 .13 .02 0 0 cm

Bn .09 -. 01 0 0 0 cm

Ip = 400 T0 = 1.2 N 5 Bt = 9

n 2 3 4 5 6

An .24 .14 .03 -. 01 0 cm

Bn .13 -. 02 0 0 0 cm

I = 600 T0 = 1.2 N = 5 Bt =9

n 2 3 4 5 6

An .27 .12 .02 0 0 cm

Bn .09 -. 01 0 0 0 cm
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Table 2.1b The Toroidal Field Single Turn Current is Paral-
lel to the Plasma Current:

I = 50 T0 = .3 N = 1 B = 6
.........................................................................

n 2 3 4 5 6

A 1.1 -.03 -.01 .03 -.01 cm
B
Bn -. 5 .09 -.02 0 0 cm

I = 100 T 0  .5 N = 1.5 B = 6
p 0 t

n 2 3 4 5 6

A .72 .04 0 .01 0 cm

Bn -.26 .04 -.01 0 0 cm

Ip 200 T0 = .75 N = 3 Bt = 6
.........................................................................

n 2 3 4 5 6

An .62 .08 .01 .01 0 cm

Bn -. 15 .02 -.01 0 0 cm

I =400 T0 = 1 N =4 Bt = 6

n 2 3 4 5 6.

An .54 .08 .01 0 0 cm

Bn -.09 .01 0 0 0 cm

I =400 T0 = 1.2 N 5 Bt = 9

n 2 3 4 5 6

A .51 .08 .01 0 0 cm

Bn- -.09 .01 0 0 0 cm

I = 600 T0 = 1.2 N 5 Bt = 9

.........................................................................
n 2 3 4 5 6

An .59 .08 .01 .01 0 cm

B -.12 .02 0 0 0 cmn
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2.3 The Vertical Field Required for Equilibrium

Due to its toroidal shape, there is a net tendency for

the plasma to expand. The magnetic field due to the current

ring is greater in the center, so the resultant J x B force

is outward. Similarly, the distribution of fields inside the

current channel itself adds a contribution to the outward

force, again since T x B is greater on the inside. Third,

the internal plasma pressure acts on a greater outward area

of the discharge than inward, so isotropic pressure causes a

net expansion force. These expansion forces can be counter-

acted by imposing a vertical field in the vicinity of the

plasma; the I x Bv force can then be adjusted to control the

equilibrium position of the plasma.

The fields surrounding a toroidal conductor in the pres-

ence of an applied vertical field are given by Mukhovatov [5]

2.29 B = + [ - -OinBr + ( 2 - ) ) cos 99 2 Tr 4TrR r21R 2 2

2.30 Br =[- r l - 1 + (~ C2 + ) sin e.
r

The magnitude of the field at infinity is C2/(2rR), represent-

ing the applied vertical field. The boundary conditions on Br

and Be at the plasma edge determine the constants C1 and C2;

Br (a) 0, while the poloidal field variation B = B(a) is

calculated directly from Equation 2.4. Expanding the quantities

V= 1O + h , 1/R = (1/R0 )(1-(a/R0 )cos 9), and Be = Bgo + B o,
and using 1/ from the last section, Be(a,G) can be determined.
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Differentiating * ,

L 1 = ( + 1pol) S /\+ i
dr 2p1 -

and substituting into Equation 2.4:

2.31 B6 (a,6) P B 0(1 - cos 9) + Be

(0 + A cos )2-va R

The fields surrounding the plasma are then (assuming no sur-

face currents at the edge of the plasma):

2.32 B= 2 + [ ln 1 + (A + I)(1 + a) cos .
r

2.33 Br = 2 [ ln + ( 1 )(1 -2) a sin G.
r

The vertical field that satisfies the above boundary condi-

tions is

2.34 By 2 O2  I ( 8R + A - 1),

and this is the well known expression for the vertical field

required by the plasma at equilibrium [1),[4],[5j.

The vertical field actual-ly used to center the plasma

agrees to experimental error ( 5% ) with that predicted

above.
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Chapter 3. The Feedback System

A block diagram of the feedback system is shown in Figure

3.1. An SCR power supply drives a set of four coils, which

generate a vertical magnetic field. The J x B force of this

field on the plasma current acts to position the plasma.

As -derived in Chapter 2, the vertical field required for

equilibrium radius R is given by

2.34 By RD -(ln' + + - 1.5).v 4 7rR a po1 + 2 .)

To a first approximation, the field should be directly propor-

tional to the plasma current; variations in plasma radius a,

pressure term 6 pol or profile term 1 / 2 represent distur-

bances that must be corrected for. In the feedback system,

Figure 3.1, the major portion of the programming is a constant

times the plasma current, in accordance with the above equa-

tion (since ln8R/a is 5-10 times 0 po or 1 /2). The loop

error signal is proportional to the deviation of position from

the vacuum vessel center, R= .64 m, and this is summed with

the I p contribution to generate the proper field programming

signal. Some phase lead is added to increase stability and

to improve response of the system to rapid plasma variations;

this becomes the input to the SCR power supply. Optional pro-

gramming of the plasma position is also provided for at the

input of the supply, as shown.

Note that for a given change in position, the programming

change should be proportional to the plasma current. For
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Position Vertical
Programming TRANSREX SCR Fieldcoils
Signal + SUPPLY

+ 3kV, 5kA

+t

Zero Offset
Base Program= alp

Figure 3.1. The Feedback System. The SCR supply drives the
vertical field coils to position the plasma. The plasma
current forms the base program for the supply, with the posi-
tion error signal added as a correction. Optional position
programming is allowed, as well.
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constant loop gain, the error signal should be the product of

position displacement and plasma current, and this is the sig-

nal obtained from the pickup loops. Further, a constant off-

set can be achieved using a signal proportional to the plasma

current as the programming signal. In practice, this is done

by varying the contribution of the zero order programming, xIP.
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3.1 A Model of the Feedback Loop

A model of the feedback system is presented for linear

analysis in this section. The model is shown in Figure 3.2

(see Figure 3.1 for the actual feedback system). The main

components and interactions that are considered are: a) The

SCR power supply generates a current in the vertical field

coils, which acts to position the plasma; b) variations in

plasma parameters such as current, temperature, or profile

represent disturbances which must be corrected for; and c)

the product of position and current is measured, and forms

the error signal in the feedback loop. With an apparent fre-

quency dependence of plasma response to the applied field,

the plasma transfer function is proportional to Iv /(1+sp).

This signal is the input to the feedback electronics, which

then drives the SCR supply. An optional position programming

signal can also be added to the feedback error signal, as il-

lustrated in Figure 3.2 at Vprg'
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.. . . . . . . . . . . . . . .. . . . .

Hr)
Programming r

Input H: (s)

a. . .. . . . .

. ..................... ...................

SCR Supply and Vertical Plasma
Field Coils

Disturbance

H(s)

x-I
Feedback Electronics

(Vc-s)

Figure 3.2. A linear model of the feedback loop.
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3.1.1 The Vertical Field Power Supply

The vertical field power supply is a three kilovolt,

five kiloamp SCR supply used in programmed current mode. A

linear model for analyzing the power supply response will be

presented in this section, and is shown in -Figure 3.3; the

supply contains a general division between the internal con-

trol eletronics and the power output stage, as is indicated

in the figure. The control electronics includes a large

amount of safety and fault detection circuitry, but the dyna-

mic response is normally independent of these. During linear

operation, the internal electronics is essentially represented

by the following:

30 1.5

1 k .15 500 k

V 2 x10 -

S10 k &V 3

v +400
0 10 k

where V , V2 and V3 are the same as in Figure 3.3. The output

of this stage, V3 , directly controls the firing times of the

SCR gate pulses. The DC gain is 500, with different AC gains

for rising and falling input voltage. V0 is the supply out-

put voltage, and this signal path forms an internal feedback
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V H (s)
pror 

H2 (s)

H f(s).

Vo

Internal Electronics

V3 : -sT

600 e

SCR Output Stage

Ia

Vertical Field-
Coil

Figure 3.3.' A linear model of the vertical field SCR supply.
The internal electronics contains a diode in the forward signal
path, resulting in separate transfer functions for the cases of
rising or falling V2 . These are denoted by Hr(s) and Hf(s);
H 2 (s) is 50/(1 + s x .7 sec). The supply is operated with
output current feedback.
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loop for voltage control. V2 is the input programming signal

minus the feedback signal (= output current times .00226o ).

There are two forward transfer functions for the above cir-

cuit; in the case where the input signal is positive and the

diode is biased on, the transfer function includes a lead net-

work:

H (S) 1 + .00165 S
r 1 + .00015 S

In the falling input case, or steady state, the transfer func-

tion Hf(s) is unity. The next op-amp stage has as its trans-

fer function

H(s) = 50 1 + .000045 s
.75 s

The power output stage follows, consisting of a three-phase

SCR bridge driven from a 3000 V transformer. There is a delay

due to the three-phase line being switched, which can be as

great as 2.7 ms. This stage is represented in the model as

having a voltage gain of 600, though the actual output is a

nonlinear function of the input. The supply output drives

the vertical field coils, an inductance of .14 Henry.

The supply is operated in a closed loop configuration,

with internal feedback on the output current and voltage.

For the model of the supply shown in Figure 3.3 and considered

above, the closed loop transfer function is:

2.1 Hrf
3.1 HSupp 2.26 2 x 10-4(1+.75s)s esT + .015s + HrF



41

where Hr s) and Hf(s) are the rising- and falling-input trans-

fer functions, and the delay due to the AC line being switched

is represented by e- sT. Bode plots of the closed loop

response of the supply model are shown in Figure 3.4; plots

are given for operation involving both Hr and Hf. The SCR

delay is approximated as being 1.4 ms, its average value.

(In the supply, there are lowpass filters on the signals V0
and V2 ; with time constants of .5 ms, these were included

for the Bode plot calculations.)
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2

rising input"

0 --- --- ------ ~ ----- - ----- - -- - ---- ------ ------ --------- --
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-2

0 1 2 3

log F(Hz)

Figure 3.4. Bode plots of the closed loop response of the
vertical field power supply (as modeled). The supply has
different transfer functions for the cases of a) rising and
b) falling inputs to the supply.
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3.1.2 The Plasma and Position Sensing Response

The plasma response, as measured by the position-sensi-

tive coils, is:

3.2 P(s) 1 + s'T
p

where 0 = 0 12 = 3 V/kA(vert. field)

1 = 13 m 100 kA ,the plasma
p response

= 23V 2 the
2 = .23- 100 kA

instrumentation response

1.6 ms.

pp
The time constantr 'p is measured, and is not well understood

physically. The observed delay might be a penetration effect

of the vertical field through the edge plasma, where the

temperature, and therefore the plasma conductivity, is low.

The edge plasma is believed to have a temperature of approxi-

mately 50 eV, with a density of 5 to 10 x 1013 cm- 3 . This

results in the conductivity, O'-2 x 105 (nm) 1 [7], and the

skin penetration time through 6 cm is about 1 ms. For this

reason, the ideal MHD equations used above are of questionable

validity in that region of the plasma. Further, in order to

neglect viscosity in the MHD description of the plasma, the

temperature and density must satisfy the condition E1:

1.6 X 104 T2 (eV) 1
n1

where T = temperature in electron volts
n14 = density/(0C14 cm- 3 ).

For the low edge temperatures present, this inequality is not
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met, and this would add another term to the MHD equations.

In summary, the observed delay is likely to be due to a cur-

rent redistribution effect in the edge of the plasma, taking

place in the region for which the ideal MHD description of

the plasma breaks down.
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3.1.3 The Feedback Circuit

Without frequency compensation, the closed loop system

is unstable when the DC gain is high enough for accurate posi-

tion control. (The system goes into a limit-cycle oscillation

in which the slew rate of the vertical field current, and thus

position, is limited by the output voltage of the SCR supply.)

Consequently, a lead network is included in the feedback loop.

Lead compensation was chosen in order to achieve the fastest

closed loop response to a plasma disturbance.

The feedback circuit has a single pole-zero pair trans-

fer function. With adjustable gain and lead, this transfer

function is:

3.3 H(s) = H 1 + s

where: T 1= 5.2 ms (variable)

T2 = 1 ms

H0 = 2.5 (variable).

^y is the lead parameter, while H represents the DC gain of

the circuit. For the actual circuit diagram, see Appendix III.
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3.1.4 Stability and Response of the Feedback System

Bode plots of the open loop transmission of the system

discussed above are shown in Figure 3.5. The SCR switching

of the three-phase line must be taken into account for the

stability analysis. Since a disturbance may occur at any time

with respect to the line period, this delay is of random

length, from 0 to 2.7 ms. The feedback system must be stable

in the worst case, i.e., for the longest delay. However, once

this is achieved, the system response is best approximated by

use of the 1.4 ms average delay. In Figure 3.5a, the loop

transmission is plotted for the case of no frequency compen-

sation and with the 2.7 ms delay. This is seen to be unstable

for feedback operation, as the gain is greater than unity for

a phase ofiT radians. This instability is observed experi-

mentally; the system goes into the limit cycle oscillation

described previously. Figure 4.4 illustrates a plasma shot

under these conditions. The normal operating setting of the

lead network stabilizes the transfer function, and the Bode

plots of Figure 3.5b illustrate this case. For these plots,

the delay is set to its average value of 1.4 ms. All Bode

plots illustrate both rising and falling inputs to the SCR

supply, sinde the loop transmissions are different for each.

In general, the rising and falling transfer functions

may be separated. The dominant input to the SCR supply is

proportional to the plasma current, and consists of ramps that

are large compared to the position error signal. Operation of

the feedback system is described in Chapter 4; for the period
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Figure 3.5a. Bode plots of the feedback system open loop trans-
mission (as modeled). The case of no frequency compensation
from the feedback circuit results in an unstable closed loop
response. Both cases of SCR supply operation are shown (rising
and falling inputs as described previously).
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1-

(rising input)
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0
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Figure 3.5b. Bode plots of the feedback system open loop
transmission (continued). The normal operating settings were
used to generate -the response plot. Both cases of SCR supply
operation are shown.
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of the current rise, the "rising input" transfer function is

in effect. For current flat-top and fall, the "falling input"

case must be used.

The closed loop frequency response calculated for this

model is shown in Figure 3.6a. The excitation is a signal

at the programming input, and the response is the resulting

plasma displacement. Figure 3.6b is a Bode plot of closed

loop response to a disturbance in the plasma, as measured by

the position-sensing coils. The resonance occurs at about

40 Hz, and this is in reasonable agreement with the measured

dynamic response of the feedback system. Feedback system

operation is described in Chapter 4.
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Figure 3.6a. Bode plots of the closed loop frequency response
of the feedback system. The excitation is a programming sig-
nal, while the response is the measured position signal Vc-s-
Again, both cases of SCR supply operation are shown.
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Figure 3.6b. Bode plots of the closed loop frequency response
of the feedback system. The excitation is an equivalent plasma
disturbance, while the response is the position signal. Both
cases of SCR supply operation are shown.
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3.2 The Position-Sensing Pickup Coils

These coils are situated just outside the vacuum vessel

wall. Both coils produce voltages

3.4 V = C,sI (X - X0) )

where X = plasma position with respect
to the vacuum chamber center

X = offset due to toroidal geometry
I = plasma current

Co= scale factor for either cos e
c,s or saddle coil.

These signals are time-integrated to provide position infor-

mation.

The coils are wound on a flat strip, which is then

wrapped around a minor circumference of the torus (see Figure

3.7). The cos 9 coil is wound to approximate a turns density

of n0 cos 9, and is thus sensitive to poloidal fields with

cos e functional dependence. The saddle coil is wound length-

wise on the edges of the strip, crossing over at the center,

and its sensitivity is to radial fields Br at the vacuum

chamber surface. Note that since a vertical field in cylin-

drical coordinates is

B = Bvo (r cos 9 + 0 sin 0),

the cos 9 and saddle coils detect the net vertical field in-

tersecting the vacuum vessel. To a first approximation, the

object of the applied vertical field can be viewed as being

I
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Cos 8 coil

Saddle coil
(on edges, crosses at center)

Figure 3.7. The position-sensing pickup coils. The coils
are wound on a flat strip which is then bent to encircle the
vacuum vessel. The Cos 8 coil is wound to approximate a turns
density of n cos 9, while the Saddle coil is wound on the
edge.
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to keep this field symmetric on either side of the plasma,

thus nulling the net I x Bv force. However, other effects

arise due to the finite plasma pressure and toroidal extent;

the problem is treated accurately in Section 2.3.

Using Be and Br, as given by Mukhovatov[5] (see Equations

2.32 and 2.33), the fluxes linked by each coil may be calcu-

lated. -For a plasma shifted by some amount relative to the

vacuum chamber center, these fluxes are given by the integrals:

2

3.7 cos = f cose de 'bN

0 p=b

3.8 sad = 2 - de bt

0 p=b

where p = minor radius coordinate from
the vacuum chamber center

= similar angle coordinate
b = radius of pickup coils
t =.width of the coil form = 2.54 cm
N peak turns density for the co a

coil times area/turn = 6.5 cm /cm.

Since the signals appearing at the coil terminals are propor-

tional to d /dt, they are integrated. Arbitrary constants

of integration-are set equal to zero, and the results are

3. sd~5~~~i 2  b 2

3.9 Vsad = sIp[ X - (Un- b+ (A+ .5)(1 - - ) )]

b fR a 2

3.10 V = cIp X + (1n - 1 + (A+ .5)(1 + a

where X = plasma position
a = plasma minor radius
b = pickup coil radius
R = major radius = .64 m
I = plasma current
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and with:

CI 2"'o t I p P Volts
s p Tr bXT cm

C I -3 ION- IP - 24 ()Volts
c p IT b rc . 100 kA cm

where t coil form width = 2.54 cm

5rs = integrator time
constants = .93 ms.

Thus these two signals contain plasma position information

from magnetic fields surrounding the plasma. The signals are

proportional not only to the po.sition of the plasma, but also

to variations in pressure/profile term A and minor radius a.

A proper linear combination of the saddle and cos e coils can

in principle eliminate the A dependence, to give a position

signal:

2 b 2 2
3.11 V C I X a (2 ln 2-+c-s o 0p[ - (2 a 2

With a gain in the electronics K = .7,

C =K 4 b t Ao
0 WTs (b2 + a 2

results in:

3.12 V .093 (Xc - 1.0 cm) ( Voltsc-s c 100 kA' cm

for a plasma minor radius of 16 cm. The amplitude of this

signal, as well as the offset term (X0 in Equation 3.4, above),

still depends on a, the plasma minor radius, but variation

in this parameter is assumed to be negligible. This is
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accurate within the approximation used in the above calcula-

tion, since dVc-s/da is of order a/R with respect to dVC-s/dX

(for an approximately centered plasma).

Experimentally, this combination was determined by using

the vacuum vertical field to measure the relative magnitudes

of the two constants C and C s. The vertical field was

pulsed, and the gains of the two signals adjusted to sum to

zero. The relative amplitudes of the measured VCos and Vsad

signals agreed to within 5% of those calculated for a purely

vertical field. The cos e contribution was then reduced by

the amount (b2 - a2 )/(b2 + a2 ) to give the position signal,

Vc-S in Equation 3.11 above. This is used as the loop

error signal.

The constant C0 in Equation 3.11 above was calibrated

against other position-sensitive diagnostics, as described in

Chapter 4. The agreement with the calculated values is accu-

rate to within the experimental errors of the diagnostics and

the numerical calculation of the coefficients.
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3.3 The Vertical Field

3.3.1 The Vacuum Vertical Field

The vertical field is established by a set of four

coils, as shown in Figure 3.8. Field lines, generated by

plotting lines of constant RAO, are also shown. Ao was cal-

culated by numerical integration of [8):

J Rccost J(r) dV

3.13 IC |R0  - r I

where R= coil radius

J = coil current element
R - r = distance to observer

from current element
= angle in plane of coil,

from observer to element.

Hasting's approximation formulas were used to evaluate the

integral [9].

The spatial variation of the vertical field is described

by the vertical field index:

dB-
3.14 n - dvB dRv

where R = major radius coordinate
B = vertical field magnitude.

For stability to up-down motion, the index must be positive.

That is, the field should curve such that its horizontal com-

ponents tend to recenter the plasma for vertical disturbances.

Second, since the field is stronger towards the inward side

of the vacuum chamber, an outward disturbance of plasma posi-

tion would seem to be immediately unstable (from examination
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Figure 3.8. The vacuum vertical field. Field lines were
generated by plotting surfaces of constant RA. The coils
are designated by EFl and EF2.

7Limiter

1\



59

of the physical model; inward equilibrium forces generated

by I p X B counterract the plasma tendency to expand). How-

ever, the plasma is a conducting ring that, in order to expand,

must cut more vertical field flux. From conservation. of mag-

netic field energy this arrangement can be stable, but sets

an upper limit on the decay of the field: n must be less than

3/2. These conditions, 0 < n < 3/2, are met by the vacuum

vertical field. In Appendix III, the vertical field strength

and vertical field index are listed for various positions in

the vacuum chamber. The field values were calculated by

numerically differentiating the potential from Equation 3.13,

above.

Since the vertical field is not strictly homogeneous

across the area of the vacuum chamber, several poloidal field

harmonics are present. Further, various stray fields occur

within the plasma chamber. Affecting the vertical field index,

as well as the equilibrium shape of the plasma, these fields

are described in Section 3.4.
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3.3.2 Time Delays Associated with the Vertical Field

The vertical field must pass through the Bitter plates

of the toroidal field coil, and also through the vacuum cham-

ber walls. Since these are conductors, penetration delays can

result. As measurements and calculations show, however, these

delays take place on time scales of .1-.2 ms, and are assumed

to be insignificant to the dynamics of the system (see

Appendix II for the experimental measurements).
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3.4 Stray Fields Affecting the Plasma

There are several fields with vertical components in the

region of the vacuum chamber. The toroidal field winding has

a net single turn due to its helicity: the turn-to-turn

crossovers are equivalent to a loop carrying the toroidal

field current. They occur inside the major radius of the

plasma, and have roughly rectangular cross sections. -To a

good approximation, this single turn results in a stray ver-

tical field of approximately 150 Gauss in the center and 250

Gauss at the inside edge of the plasma, for a toroidal field

current of 100 kA. By comparison, a 400 kA plasma discharge

has a poloidal field of 5 kG, with an imposed equilibrium

vertical field of 1.8 kG. (There is also a stray horizontal

field component due to a vertical displacement of the single

turn. This varies, but is usually about 30 Gauss.)

Since a field null is necessary to achieve the electron

avalanche necessary for the initial breakdown, a compensating

bias field must be applied to cancel these stray components.

The stray toroidal field, the bias field, and their sum are

shown in Figure 3.9. (Only the vertical fields are illustra-

ted.) Since the bias field has a different decay index from

the single turn field, they can only be nulled at one point,

but this is sufficient for initiation of the plasma. For this

operation, the breakdown has in fact been observed to origi-

nate at the outside of the major radius of the vacuum chamber

[3], which is consistent with the expected field null position.
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Figure 3.9. The stray component of the toroidal field, as
nulled by the bias field. a) the stray toroidal field. b)
the bias field. c) their sum; a field null occurs near the
outside edge of the vacuum chamber.
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The vertical field index, as given by formula 3.14 and in

Appendix III, is changed when these stray fields are included.

Theoretically, the index is now such that the plasma is not

always stable to in-out perturbations, as described in Section

3.3. This is particularly true during the current rise and

fall, when the stray fields are of the same order as the ap-

plied equilibrium field. Experimentally, however, this does

not seem to be important. The position appears to be stable

to this mode at all times during the discharge, except possi-

bly the last 10 ms. During this time, the plasma current is

ramping down, but the -discharge almost always terminates be-

fore the current reaches zero. This termination is accompa-

nied by large position excursions, indicating a possibly un-

stable index situation. Appendix III contains values of the

index for each vacuum field present that may be applied to

the plasma, and explains the method for calculating the total

index for a given set of currents.
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Chapter 4. Performance and Results

4.1 Performance.

Data from a typical Alcator C plasma discharge is shown

in Figure 4.1. Signals from the plasma current, Cos-Saddle

position loops, central density, and central soft X-ray emis-

sion, are shown. The actual position of the plasma is compu-

ted from the Cos-Sad signal according to Equation 3.12, and

is also plotted. The Cos-Sad signal is the loop error Volt-

age, and is explained in detail in Chapter 3. The plasma den-

sity is measured with-an infrared laser interferometer on five

chords through the plasma. For the central chord shown in

the figure, each interference fringe represents .58 x 10 4

electrons per cm 3 ; other chords are located at -12 cm, -6 cm,

+8.5 cm, and +15 cm. With distances referenced to the center

of the vacuum vessel, positive = greater major radius. Soft

X-ray emission is measured at chords spaced every 2 cm, from

-12 cm to +14 cm. The measured X-ray signal has a complicated

dependance on a number of factors, among ,them plasma tempera-

ture, density, and level of impurities, so the absolute mag-

nitude of this signal is not easily interpretable.

The plasma discharge of Figure 4.1 is typical for Alcator

position feedback operation. There is a small error in the

initial vertical field, causing an excursion in the position

before the control circuit has time to respond. During the

subsequent 60 ms of the discharge, the plasma current and beta

are rapidly increasing, and also the profile is changing.



1.0 V/DIV
.7SVOLT3 AT CENTER

PLASMA CURRENT 118
KR/VOLT S/9/I79

-I20214T3 AT CENTER
FEEDBACK COS-SAD

.00 WHY0
0.00 CM A CENTER

POSITION

0

-1-

II

6.035VOLT AT CENTER CHANNEL 15

LINE AVERAGE DENSITY . - --0.6 CH. . . . .

5 VOLTS AT CENTER

SOFT X-RAY 0 CM

CHANNEL -72

: -. -. -. . . . . . . .

ccI

Figure 4.1. A typical Alcator C plasma discharge. The posi-
tion signal is calculated from the Cos-Sad data divided by the
current, according to equation 3.12.
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This results in a larger error signal than during the period

from 80 to 270 ms, and thus poorer position. Similarly, as

the plasma current is decreased at the end of the discharge,

the beta and internal inductance are again changing, also

resulting in a larger error signal.

The position response to a programmed step is shown in

Figure 4.2. (Note: The step had a 3.6 ms time constant on

its rising and falling edges.) Plasma current and soft X-ray

emission are shown, along with vertical field current. The

net plasma motion is about 2 cm. 'As the center moves, the

central X-ray signal changes due to the motion of the peak

emitting region of the plasma; immediately following the step,

the soft X-ray signals from all detectors increase, indicating

an influx of impurities from the wall or limiter. This shot

was produced with the normal settings of the feedback gain

and lead adjustment, and illustrates the good control and lack

of overshoot available from the closed loop system.

In normal operation, the feedback system has good stabi-

lity. Typical response is free from overshoot, as in each

of the cases presented herein. This is consistent with the

analysis of Section 3.1.3, in which the average time of 1.4 ms

was used for the delay of the SCR supply.

In Figure 4.3, two disruptive plasma shots are shown.

A plasma disruption is characterized by abrupt changes in

current, temperature and density profiles (on a time scale of

100 us), and represents an step-like disturbance to the plasma

equilibrium. In each case, the feedback system restores the
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position of the plasma within a short time. In the second

shot, the plasma discharge was severely damaged before the

position was restored; the speed of recovery was limited by

the output current slew rate of the vertical field SCR supply.

That the linear analysis of the stability of the feedback

circuit is approximately correct is further established by

operation of the feedback system with an unstable closed loop

response. According to Bode plots of open loop gain and phase

(see Chapter 3), setting the lead = 0 should result in an

unstable situation. Experimentally, the position is indeed

unstable; such a case-is shown in Figure 4.4. The premature

plasma termination is probably due to the introduction of

impurities. A second region of instability should occur for

an open loop DC gain which is 20% higher than the normal set-

ting, and this is also observed. In this case, the oscil-

lation seems to lock to a subharmonic of the line frequency,

a nonlinear effect that is probably due to the three-phase

delay, and is not considered in the preceeding analysis.

Operation in this regime is shown in Figure 4.5.



-I".S5OLT AT CENTER
PLASR CURRENT 116
XA/ VOLT S/1/79

*1.SSI'OL% AT CENTER

FEEDBACK COS-SAD

68 NOLS AT CENTER
VERTICAL FIELDCURRENT w .0 0487 w 5

-2.OOV/DIV
2.115 VOLTS AT CENTER

SOFT X-RAT 0 CM

-D.2DVOLTS AT CENTER

LINE AVERAGE DENSITY
+0.6 C"

Figure 4.4. Unstable operation of the feedback system (no
lead). The oscillation amplitude is limited by the slew rate
of the vertical field current.

71

CccNA .. .

.- .- . .. -. .



72

I7SVOLTS AT CENTER
PLASMA CURRENT itIs
KA/Y0LT 5/11/7

-1. O SAT CENTER
FEEDBACK COS-SAD

I VOLTS AT CENTER
VERTIA FIrCURRET .uOOM0l . S

iSR
0
VOLIS AT CENTER

SOFT X-RAT 0 CM

,.00 V/09
0.35 VOL AT CENTER
LINE AVERAGE DENSITY

0.6a CH

Figure 4.5. Unstable operation of the feedback system (too
much gain). The oscillation appears to cause a non-
linear interaction in the SCR supply between the "rising" and
"falling" input responses and the three phase delay.

- . .. . .CHANNEL -105 .

................. ... ..............................

-cc CPHANL

- - - -I-.1M E ....

. .. .. ..-. - . . . .



73

4.2 Results

There are a number of position-sensitive diagnostics

available for comparison with the pickup loop signals. A step

was programmed for the plasma position in the discharge shown

in Figure 4.6. Centroids of the density and soft X-ray pro-

files are computed, and their locations are shown as functions

of time. Also shown is the position of the outermost flux

surface as indicated by the Cos-Saddle signal (which is divi-

ded by plasma current and offset 1 cm, according to Equation

3.12). The relative changes in position measured by each di-

agnostic agree with each other to better than 10%, which is

the approximate experimental error of the data.

The soft X-ray centroid position is offset from the flux

surface and density measurements by about 2 cm, indicating

a shift of the hottest par.t of the plasma towards the outside.

This is the only evidence of the Shafranov shift that was des-

cribed in Chapter 2. The density centroid is not offset, and

profiles are virtually always symmetric about their centers

(see Figure 2.6). This is in contrast to the expected density

profiles for a plasma with shifted inner flux surfaces, also

shown in Figure 2.6.

Electron cyclotron harmonic emission is used to measure

electron temperature profiles, and is a third diagnostic sen-

sitive to position. A typical electron cyclotron profile is

shown in Figure 2.1. The position of the center of the fit-

ted profile depends on the exact magnitude of the toroidal

field, so it is not possible to determine the absolute
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location of the plasma center with accuracy of greater than

about +2 cm. However, relative changes in the positions

of these profiles agree well with those measured by the diag-

nostics discussed above. Figure 4.7 shows electron cyclotron-

measured positions plotted against those taken from the flux

loops; the least squares fit to the data has a slope of about

.9. The shift of the data to 1 cm outside may not be taken

as evidence of a Shafranov shift, due to the aforementioned

errors.

If the peak of the temperature Gaussian is arbitrarily

made to coincide with-the peak of the X-ray signals, constant

pressure surfaces may be computed using experimental density

profiles. These are indeed shifted at the center with respect

to the outermost, but the net shift is only about one third

to one half of the expected Shafranov shift. To produce the

proper amount of shift, a small temperature offset, varying

linearly with major radius, must be added to the Gaussian

profile of the temperature. The offset needed is about +7%

of the peak at the smallest major radius of the discharge,

varying to -7% at the outermost. Such a perturbation is

probably below the limits of the resolution of the diagnostic.

Thermocouples mounted on the limiter are used to measure

heating its heating at various locations poloidally. Factors

besides poor positioning affect the heating of the limiter,

but centering the plasma according to the above diagnostics

qualitatively seems to maximize the uniformity of the thermal

loading. For plasma discharges whose average position varied



76

ECE Position

cm

1.5

0.

1-

.5

S S ,6
0

e e e -

-1.5. -l -.5
,e

0 0
-.5

-S

* .9

00

Flux Surface
Position

. I -I I cmI I
.5 1 cm

Figure 4.7. Positions measured by Electron Cyclotron Emission, .
plotted against measured flux surface position. Errors in abso-
lute position are ± 2 cm, so the above shift is not evidence of
the Shafranov shift.

I

-5

A



77

from -1 cm to +1 cm, the differential limiter heating is plot-

ted in Figure 4.8. The vertical axis is the difference be-

tween the quantities of heat received on the inner- and outer-

120 degree sections of the limiter, divided by the total

energy received by both; the horizontal axis is the average

position as measured by the flux loops. In general, cente'ring

results in the most even heating, though there may be large

fluctuations from shot to shot.
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Figure 4.8 Differential limiter heating vs. the average position
of the outer flux surface. The vertical axis is the difference
.in heat energy received by the outer and inner segments, divided
by the total. In general, centering the plasma results in the
most even thermal loading of the limiter.
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Note on determination of soft X-ray profiles:

Because of the geometry, and individual variations in

diode sensitivity and window thickness, determination of soft

X-ray profiles is somewhat arbitrary. In this work, two means

were used: 1) As the plasma is moved in a step , the detector

closest to the peak of the emission profile will change the

least. This can be used to determine the center of the pro-

file, and the amplitudes of symmetric detectors can then be

adjusted to give symmetric profiles. Further, an assumption

is made that as the plasma is moved initially by 2 cm, the

emission profile is of approximately constant shape and mag-

nitude; this results in each detector's seeing the plasma

chord which the immediately inside neighbor previously viewed,

and the gains can be adjusted accordingly. 2) The center of

the plasma normally undergoes a relaxation oscillation denoted

by "saw-teeth" in the hottest part of the plasma, and if they

are assumed to be symmetric about the peak, can give an inde-

pendent calibration of the location of the peak of the emis-

sion profile.
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Chapter 5. Conclusions

Position control of the Alcator C plasma has been imple-

mented. The feedback system typically operates with good

stability and little overshoot, and enables the plasma dis-

charge to recover from minor disruptions with little harm.

This feedback control system is in daily use for the Alcator

C runs.

At the date of this writing, a similar control system

has been developed for control of the up-down plasma position.

This is still in the prototype stage, but is also used in

daily operation.

With plasma diagnostics currently available, the exis-

tence of the Shafranov shift may neither be conclusively proven

nor disproven. The soft X-ray signals seem to indicate that

the hottest region of the plasma is displaced with respect to

the outermost flux surface, but temperature and density pro-

files are not able to resolve the concomitant asymmetries in

the pressure profile.

The influence of the shape of the plasma on the various

position-sensitive diagnostics was also investigated. Theo-

retically, the perturbations to circularity affect temperature

and density profiles even less than the Shafranov shift; thus

they are apparently not measurable. However, the lack of

measurements of the Shafranov shift is also not attributable

to any plasma shape effect.

Relative changes in the measured position of the outer-

most flux surface are demonstrated to be in good agreement
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with other position-sensitive diagnostics. Soft X-ray,

density, and temperature profiles all agree with the flux

loop measurement to within their experimental errors. Fur-

ther, the thermal loading of the limiter is most even for

discharges that are centered according to the flux loops.

More work will be required to establish the existence of

the Shafranov shift. Also, limiter heating and poloidally

resolved flux loop measurements may be used to experimentally

investigate the shape of the plasma. This must be undertaken

in order to do a more advanced comparison of the predicted

versus observed MHD equilibria.



82

Appendix I. A Derivation of the Grad Shafranov Equation

The MHD equations used for the derivation of the Grad-

Shafranov equation are:

2.1 0

2.2 Vx B =uJ

2.3 J x B = Vp.

For this model, all dissipation effects are neglected, and

plasma conductivity is assumed to be infinite. No variation

along e is assumed, so /c = 0.' Pressure p is assumed to

be a scalar. This derivation is originally credited to J.

Freidberg [1].

Beginning in cylindrical coordinates, B can be expressed

X A A
2.4 B = VY'x e, + B e.

-A A A 1

e,, z + e. B. + e z R

which is equivalent to 2.1, 17 B = 0. Equation 2.4a of Chap-

ter 2 is derived only after the change of coordinates at the

end of this appendix. Taking the curl of the above expression

for B,

M J =VX B = -e e 2 + )+ ez R RB).
o 0 R 6 2 R R

Defining the operatorA*, this becomes

2.5 01 = 1/eR + 1 (RB ) x e

with

R R 6 R + 6z
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Next, Freidberg notes that since B - J x B = 0, Equation

2.3 results in B p = 0, also. This implies that p p(4),

since a/ O = 0 and BR and Bz are only functions of '4 . With

this in mind,Vp becomes 7'k( dp/dV ) in the following equa-

tions. Similarly, TJ- Tx B 0 results in

0 = ~ -7p
0

0 =[1 (RBO) x 'e d P

when the expression in Equation 2.5 is used for T. This im-

plies that RB is also only a function of 1// . The function

F is defined:

2.6 F M)S RBO

with

d IV

Substitution of these expressions for l and T into Equation

2.3 results in the Grad-Shafranov equation. That is,

A J x B = u 7p

x ~ x [B A 1 AR+ VF x e. x B e + 71x e. I = &L0p

* xU(7xe) + F ( VF x )x e = A p
R 2 R2 x 0

-x(V'~x e 0  14 uR dp Y+ F ~e~x7V e)

and since VV is perpendicular to ^

2.7 - = d .2 + F d,

which is the desired result.
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For a tokamak, it is necessary to convert from the cylin-

drical geometry used in the derivation so far to a toroidal

coordinate system. Figure A.I.1 shows the toroidal coordi-

nates used: r, e, 0, and with major radius R . It is appa-

rent that

R = R + r cos G

z = r sin 9

The operator A is converted to toroidal coordinates by

expressing the derivatives

LQ dr 3Qde
R ~r dR + ae dR

Q aQ dr + QdE
Jz ~r dz 6e dz

The derivatives dr/dR and dz/dR are calculated from the

expression r2 = Z2 + (R-R0 )2 , and the above relations between

the coordinates:

d- - R = cos 9dR r

dr = sin 0.dz - rsie

The remaining de/dR and de/dz terms may be calculated by dif-

ferentiating z r sin 8:

0 dr sin e + r cos 9 d9

dR dR

dG -sin 9
dR r
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and also:

1 drsin 9 + r cos 9dO
rZ- dz

dO cos 0
dz - r

Algebra then leads to the expression for I* in toroidal coor-

dinates:

2.8 6* = 1 1. sin 31/1
2. J Tr r2 e2  Rcos - -r T

Further, Equation 2.4a may now be established:

B P= 1//x e

=A --tap)e R R Raz
A z 1 3L/+ e z R R

A^1 1AcosO
( ercos 9 - e sin e)( C sin 9 - 8r

+ ersin 8 + e cos O)( Cos e - - srin

In the e direction, this is equivalently:

2.4a B9  - 1 0
B9 T 8 r'

In addition, the expression for the field in the er direction

is:

B
r R r e
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Coordinates

R = major radius of plasma

r = minor radius of plasma

6 = azimuthal angle of plasma

p = minor radius with respect to
vacuum chamber center

= similar angle

x = displacement of plasma center
from vacuum chamber center

Figure A.II.l. The toroidal coordinate system.
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Appendix II. Delays Due to the Vertical Field Penetration of

the Tokamak Structure

A.II.1 Penetration of the Vertical Field through the Toroi-

dal Field Magnet

The Alcator C toroidal field magnet is of Bitter plate

construction. That is, individual copper plates are cut and

formed together 'to create a square helix around the vacuum

chamber (see Figure A.II.1). There is also a helical insula-

tor between the plates, and this laminated construction per-

mits vertical fields to pass relatively unimpeded. Eddy cur-

rents can flow in the plates, but the average vertical field

in the center can be shown to be the same as the average ap-

plied vertical field. Since the actual geometry is complica-

ted, however, two limiting cases will be considered.

A.II.1.1 Case 1

Infinitely wide parallel plates are considered, with

field applied perpendicular to their ends (see Figure A.II.2).

Solving Maxwell's equations and matching boundary conditions

at the ends of the plates:

n ?r x - nwz
Bn cos( -) exp( -

By symmetry, or since 7 - B = 0, the space average field on

both ends of the plates must be the same. Solution of Lap-

lace's equation shows that, at a distance equal to a plate's-

width from the ends, even the first harmonic is attenuated

-2,m
by e.
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Figure A.II.l. The toroidal field Bitter plate construction.
The plates are interleaved with an insulator., and form a helix
around the vacuum chamber.



89

BO Applied

Transmitted

B

avg = Bo

Figure A.II.2. Field penetration, case 1. A vertical field
is applied perpendicular to the ends of infinitely wide plates;
by symmetry, or V - B = 0, the transmitted field is equal to
the applied field.
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A.II.1.2 Case 2

Infinitely long parallel plates with field applied

parallel to their sides is considered next (see Figure A.II.3).

Here, surface currents flow which exclude flux from the inside

of the conductors. Again by symmetry, or by line-integrating

~B along either' path I or II as'shown, it can be seen that the

transmitted field II is the same as the applied field I. Each

path passes through the center of the plates and encloses the

same amount of the surface current, so the the line integral

of the magnetic field along each is the same. Thus field is

not excluded from the other side- of the plates.
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Figure A.II.3. Field penetration, case 2. A vertical field
is applied parallel to the sides of infinitely long plates;
induced surface currents shield the field from the interiors
of each plate, but the field is transmitted past them. Line
integrals around path I or II surround the same amount of
current, so BI = B1 1 .
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A.II.2 Penetration through the Vacuum Chamber Wall

The vacuum chamber is constructed from a stainless

steel bellows that is bent into a torus. Several penetration

effects occur for a time-varying applied field. For the

first, the bellows can be modeled as a straight conducting

cylindrical shell in an alternating vertical field. Solution

of Maxwell's equations shows that, as the frequency is in-

creased, the field begins to be excluded from the interior

at the frequency

1 1_ _ _

27r t 21r 1A b <rcb
0

1.6 kHz

for the parameters
b = radius of shell = .2 m
6 = wall thickness x conductivity

= 400 0

or X( .1 ms. Because of the variations in wall thickness

around the torus, (o ) has been adjusted to its "average"

value, i.e., that which gives the measured resistance of the

bellows.

The second effect is due to the bellows being formed into

a torus; it is a conducting ring with inductance L = 1.1pH [6)

and resistance R = 8 mo. As such it begins to exclude flux at

the frequency

f R = 1160 Hz
27C L

or T=-.14 ms.



93

A.II.3 Machine Penetration-Time Measurements

By the use of pickup coils sensitive to poloidal field

(cos 9 coil) and to radial field (saddle coil) just outside

the vacuum chamber wall, it is possible to measure these field

penetration effects. The pickup coils are described in detail

in Chapter 3. The frequency response was found by measuring

the signals at the pickup loops when known alternating cur-

rents were passed through the the vertical or horizontal field

coils.

A graph of pickup signal amplitudes vs. frequency for

applied horizontal field is shown in Figure A.II.4. The geo-

metry of parallel plates is basically the same as for an ap-

plied vertical field, but the bellows' conducting-ring effect

is absent. When the field is excluded from the vacuum chamber,

the theta component outside the bellows begins to increase

while the radial component decreases, and these changes are

clearly shown. Described in section b of this appendix, this

is the effect modeled by a long straight cylindrical shell

in a transverse field, and occurs at about 2 kHz, close to

the predicted value.

The frequency response to applied vertical field is shown

in Figure A.II.5. The same long-cylinder effect is apparent,

but the effect due to the bellows being a conducting-ring mod-

ifies the response. A dip occurs in the BG curve as the bel-

lows current rises and flux is excluded from the torus center;

this is at approximately 1 kHz, which is again close to the

predicted value.
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In both situations, no real decrease of signal is ob-

served, supporting the earlier argument that the vertical

field completely penetrates the toroidal Bitter plates for

the frequencies of interest.



97

Appendix III. Magnetic Field Strengths in Alcator C

Table A.III.1 Midplane Values of the Fields and their Indexes.
(Note: The total index of two fields B1 and B2 is given by:

B 111 + B22 2
tot B1 + B2

Table III.1a EF1 Vertical Field at Midplane, for 1 kA

Radius (cm)
44
45
46
47
48
49
50
51
52-
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

Magnetic Field (Gauss)
502.
500.
499.'
498.
496.
494.
493.
490.
488.
486.
483.
480.
477.
474.
470.
466.
462.
458.
454.
449.
444.
439.
433.
427.
421.
415.
408.
402.
394.
387.
380.
372.
364.
355.
347.
338.
329.
320.
310.
301.
291.

Index
0.16
0.18
0.19
0.21
0.23
0.25
0.27
0.29
0.32
0.35
0.37
0.41
0.44
0.47
0.51
0.55
0.60
0.64
0.69
0.75
0.80
0.86
0.93
0.99
1.06
1.14
1.22
1.31
1.40
1.49
1.59
1.70
1.81
1.93
2.06
2.19
2.33
2.47
2.63
2.79
2.96
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Table A.III.1b EF2 Vertical Field at Midplane, for 1 kA.

Radius (cm) Magnetic Field (Gauss) Index

44 467. -0.06
45 468. -0.06
46 469. -0.-06
47 470. -0.06
48 472. -0.05
49 473. -0.05
50 474. -0.05
51 475. -0.05
52 476. -0.05
53 476. -0.04
54 477. -0.04
55 478. -0.03
56 479. -0.03
57 479. -0.02
58 480. -0.02
59 480. -0.01
60- 481. 0.00
61 - 481. 0.01
62 481. 0.02
63 481. 0.04
64 481. 0.05
65 481. 0.07
66 481. 0.08
67 480. 0.10
68 480. 0.12
69 479. 0.15
70 478. 0.17
71 477. 0.20
72 476. 0.23
73 475. 0.27
74 473. 0.30
75 471. 0.34
76 469. 0.39
77 467. 0.44
78 464. 0.49
79 461. 0.54,
80 458. 0.61
81 455. 0.67
82 451. 0.74
83 447.- 0.82
84 442. 0.91
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Table A.III.1c DF1 Bias Field at Midplane, for 1 kA.

Radius (cm)

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60-
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

Magnetic Field (Gauss)

-134.
-129.
-123.
-118.
-113.
-108.
-103.
-98.
-93.
-88.
-84.
-79.
-75.
-71.
-67.
-63.
-59.
-55.
-52.
-48.
-45.
-42.
-39.
-36.
-33.
-31.
-28.
-26.
-24.
-21.
-19.
-17.
-16.
-14.
-12.
-11.
-9.
-8.
-6.
-5.
-4.

Index

2.04
2.14
2.24
2.35
2.47
2.58
2.70
2.83
2.95
3.09
3.23
3.37
3.52
3.67
3.83
4.00
4..18
4.36
4.56
4.77
4.99
5.22
5.47
5.75
6.04
6.35
6.70
7.09
7.51
7.99
8.52
9.14
9.86
10.70
11.70
12.93
14.47
16.45
19.13
22.94
28.82
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Table A.III.1d DF2 Bias Field at Midplane, for 1 kA.

Radius (cm)

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

Magnetic Field (Gauss)

153.
154.
154.
154.
154.
154.
1514.
154.
154.
154.
154.
153.
153.
153.
153.
152.
152.
152.
151.
151.
150.
150.
149.
149.
148.
147.
146.
145.
144.
143.
142.
141.
140.
139.
.137.
136.
134.
133.
131.
129.
127.

Index

0.03
0.03
0.04
0.04
0.05
0.06
0.06
0.07
0.08
0.09
0.10
0.11
0.13
0.14
0.16
0.17
0.19
0.21
0.23
0.25
0.28
0.30
0.33
0.36
0.39
0.42
0.46
0.50
0.54
0.58
0.63
0.68
0.74
0.79
0.85
0.92
0.99
1.06
1.14
1.22
1.31
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Table A.III.1e. Horizontal Bias Field at Midplane, for 1 kA.

Radius (cm)

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

Magnetic Field (Gauss)

41.
42.
43.
45.
46.
47.
48.
50.
51.
53.
54.
55.
57.
58.
60.
61.
63.
64.
66.
68.
69.
71.
72.
74.
76.
78.
79.
81.
83.
85.
87.
89.
91.
92.
94.
96.
98.
100.
102.
104.
106.

Index
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Table A.III.1f Stray Toroidal Field at Midplane, for 100 kA
Entries are for a single turn current modelled as a Gaus-

sian 25 cm wide, centered at the midplane. (These values are
good approximations -for Gaussians centered within 5 cm of the
midplane.)

Radius (cm) Magnetic Field (Gauss) Index

44
45
46 -
47 -
48 -
49 -
50 -247. 0.89
51 -241. 1.04
52 -234. 1.17
53 -227. 1.29
54 -219. 1.40
55 -212. 1.49
56 -205. 1.58
57 -198. 1.66
58 -191. 1.73
59 -184. 1.80
60 -177. 1.86
61 -170. 1.92
62 -164. 1.98
63 -158. 2.03
64 -152. 2.08
65 -146. 2.13
66 -141. 2.17
67 -136. 2.21
68 -131. 2.25
69 -126. 2.28
70 -121. 2.32
71 -117. 2.35
72 -112. 2.38
73 -108. 2.40
74 -104. 2.43
75 -100. 2.45
76 -97. 2.47
77 -93. 2.49.
78 -90. 2.51
79 -87. 2.53
80 -84. 2.55
81 -81. 2.56
82 -78. 2.58
83 -75. 2.59
84 -73. 2.61
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e. Horizontal Bias Field at Midplane, for 1 kA. t in

Radius (cm)

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

Magnetic Field (Gauss) Index

41.
42.
43.
45.
46.
47.
48.
50.
51.
53.
54.
55.
57.
58.
60.
61.
63.
64.
66.
68.
69.
71.
72.
74.
76.
78.
79.
81.
83.
85.
87.
89.
9 1.
92.
94.
96.
98.

100.
102.
104.
106.

represents
tained from

Bias Field

>s n8.
Lculated

Gauss

Gauss

Gauss

Gauss

E Bnsin ne.

Gauss

.urn" that

.nd centered
model is
nsions
toroidal
the min-or

Gauss
Gauss
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Appendix IV. The Feedback Circuit--Description and Schematic

The feedback circuit can be divided into two sections:

the integrators, and the. summing and lead network. The'

integrators are the input stage; in the succeeding stage their

outputs are.summed, and differentiated for the lead. The

integrator signals are also monitored. The final output

drives the Transrex SCR power supply through an isolation

amplifier, which is external to the circuit.

A.IV.1 The Integrators

In order to allow integration of all fields present in

the tokamak, a useable integration time of 8 seconds was aimed

for, with minimum output drift being a design priority. Be-

cause of the environment, differential inputs are necessary.

Reset capability was desired, and also auto-zero compensation

for any offset current changes that would occur due to

temperature changes or aging effects.

The circuit in Figure A.IV.1 meets these criteria accept-

ably for use in the feedback system. Op-amp U1 is a differen-

tial integrator, U2 is the auto-compensation sample/hold, and

U3 and U4 are output buffers.

During quiescent operation, the circuit is in the

auto-compensate mode of operation. Just before the plasma.

pulse, this is stopped and integration begun. In general,

the output voltage is not zero just before the plasma shot

occurs (due to offset voltage and stray pickup from a number



- I-

g 00ZP

0
4. 00

-r b*

2

00

ro

-

- .

- kv

-D
to

2~ C4a

Li i

u-a
0D
'-I

4- 

w 0So4
r-. ON4.J00

0
Q)

tU4

H .

OL

:3 4JD

.0 o
004

t o

(1) (14

4

E-4 4 >

4; W -

00

UN

4)

(I r.
S4) -H

4J 0

U r

W) 4)4

.,

ty.,Q 0)
.rq cr.

rL C 4



106

of fields), so the relays K1 and K2 are turned on for 30 ms to

discharge the capacitors to zero. Integrator reset is accom-

plished with relays to avoid any unequal leakage currents that

might result from use of FET switches.

FET Q1, capacitor C1, and op-amp U2 form a sample and

hold for use in the auto-drift compensation. With the FET

on, this forms a unity gain follower for DC signals at the

output of U1, and op-amps Ul and U2 can be treated simply

as a high gain DC amplifier. Unbalanced offset currents

generate an output voltage, and this is held by the capacitor

during integration (when the FET is off). Drift of the hold-

ing capacitor voltage is small and has negligible effect dur-

ing the 8 seconds of DC-open-loop operation.

Resistors R1 through R7 form an error-field subtraction

circuit. This is Used to null any signal due to coupling of

the toroidal field to the pickup coils. This is a differen-

tial subtraction circuit whose contribution may be varied

either positive or negative by use of one potentiometer, R3.

In order to minimize common mode sensitivity, the time

constants for each side of the integrator may be equalized by

adjusting R8. The overall output time constant is adjusted

by R9.

Op-amp U3 is a 741, and is used as the monitor output

for the integrated signal. Its output is equal to that from

U4, which drives the summing and differentiating circuit.

The feedback resistors of these two amplifiers are of 1%

tolerance, but were matched to be significantly closer.
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Two integrator circuits are implemented on a single

circuit board. All connections are through a 22 pin edge

connector. The component side has a ground plane, and the

relays are in dual-inline packages mounted on the board.

The board must be clean, or leakage currents cause output

drift. This could probably be avoided by better arrangement

of components, with proper low-current shielding techniques

applied to the conductor side of the board.
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A.IV.2 The Rest of the Circuit

The summing and differentiation circuit is shown in

Figure A.IV.2. The outputs from the cos 8 and saddle inte-

grators are summed with variable weighting. R1 and R2 control

the output level from each. Added to them is the output from

the plasma current integrator', also variable. Op-amp U10

contributes a differentiated version of the signal, and poten-

tiometer R4 controls the lead time constant. Their sum is the

feedback signal, the overall amplitude of which is adjusted

by R3. A programming signal is added at this stage, and this

becomes the output signal to the power supply. The output is

buffered by op-amp U14, and may be clamped to an adjustable

level by the circuit around U13. A voltage follower monitors

that signal for recording during the plasma shot. All adjust-

ments are on the front panel.

Also shown is the control circuit for the integrators'

reset functions. The 555 timers control the length of the

integration pulse (U17) and the length of the reset pulse

(U16). The firing of the one-shots is externally programmed,

or they may be manually triggered.

The inputs to this stage are all monitored by level

detectors, U16 and U17. If the integrator outputs are above

12.5 or below -12.5 Volts, a front panel LED indicator is lit

to indicate possible saturation.
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