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ABSTRACT

This thesis presents a comparative study of the theoretical foundations
and experimental results of the ICRF heating experiment on the Alcator A
tokamak at the MIT Plasma Fusion Center and Francis Bitter National Magnet
Laboratory. Due to the versatility of the high power apparatus, the fast
magnetosonic branch is used with w, = 1,2,3,4 wci, unlike most other ICRF
experiments. Unusually high magnetic field (B0= 40-80 kG), plasma density
(ne = 1013 - 5 x 1014 /cm3 ), generator frequency (f, = 90-200 MHz) and
transmitter power, with shielded and unshielded antennas, are the key para-
meters of the experiment. This wide parameter range allows a direct com-
parison between fundamental and second harmonic regimes,and shielded and
unshielded antennas, our prime goals. The real and imaginary partsof the
parallel and perpendicular wave numbers are measured with extensive magne-
tic probe diagnostics for a spectrum of plasma parameters and compared with
theory. Qualitative and quantitative evaluations of the wave structure
and scaling laws are derived analytically in simple geometries and computed
numerically for realistic plasma.parameters and profiles. General figures of
merit, such as radiation resistance and quality factor, are also derived
and compared with the experiment. Secondary effects of the high power wave
launching, such as changes in plasma current, density, Zeff, energetic
neutral flux, soft X-rays, neutron flux, and impurities are also discussed.
Most important, a general synthesis of the many engineering, physics, and
experimental problems and conclusions of the Alcator A ICRF program are
inspected in detail. Finally, the derived and experimentally determined
scaling laws and engineering constraints are used to estimate the ICRF
requirements, advantages, and potential pitfalls of the next generations of
experiments on the Alcator tokamaks.
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I. INTRODUCTION

I-1. Motivation

Since the early 1950's, extensive work in the area of plasma physics

has been undertaken to achieve controlled thermonuclear fusion, which may

be the ultimate source of energy for the next century'. There are two main

steps to demonstrate scientific feasibility of controlled thermonuclear

fusion power. The first is to achieve sufficient levels of the product of

plasma density n, and energy confinement time T, known as Lawson's cri-

terion nr = 1014 sec/cm3 . Many schemes for attaining these high levels

of n' have been proposed, an example being the Alcator tokamak2. Lawson's

criterion is expected to be achieved within the next decade of large scale

experiments.

The second step, which certainly has not been achieved, is to attain

the formidable temperatures required for fusion (= 108'K). Again, several

schemes have been proposed and tried with some success. Ohmic heating of

the plasma by intense currents has achieved consistently high temperatures

in tokamaks 3, but fails in the thermonuclear regime since the plasma

resistivityl drops as Te-3 2 . Injection of high energy neutral

particles5 has so far been successful in low density plasmas,but may be

impractical in a high density reactor because of the low efficiency of the

extremely high energy beams required for good penetration to the plasma

center4 . For many years, radio frequency heating of these plasmas, has

appeared attractive. A wide spectrum of wave frequencies is available at

high power and good efficiency with current technology. Several specific

frequency regimes have been tested, in particular , low frequency (= 106 Hz)

-1I1I-



Alfv-n heating 6, medium frequency (= 3 x 107 Hz) Ion Cyclotron Range of

Frequencies heating (ICRF)7, high frequency (= 109 Hz) lower hybrid 8 , and

ultra high frequency (= 3 x 1010 Hz) electron cyclotron heating 9 . Each

regime has its specific theoretical and practical advantages, disadvantages

and,especially,unknowns.

For the moment, the Ion Cyclotron Range of Frequencies is the prime

candidate because of the relatively good agreement between theory and

experiment,and compatibility with engineering constraints 10 . Even within

the Ion Cyclotron Range of Frequencies, there are fundamentally different

regimes of wave propagation and absorption, which can be broadly classified

in terms of harmonic number of the ion gyrofrequency.

For the present work,we will investigate ICRF heating in a high density

tokamak, and attempt to identify the most promising wave launching structures,

wave frequency, and plasma parameters for efficient heating21.

Almost all recent ICRF work has been in one particular regime: the

minority fundamental ion gyrofrequency regime 1 1 ,1 2. Furthermore, the con-

ditions have always been in tokamak plasmas in similar regimes,

ne = 3 x 10 1 3/cm 3 , B, = 20 kg, f, 25 Mv-z, all being significantly short

of the high field and high density thermonuclear regime. The Alcator ICRF

experiment13 in these respects is different since it is a high field (= 60

kG), high central current density (=1,500 amps/cm 2), high density (= 3 x

1014/cm 3 ) and high frequency (fci = 100 MHz) experiment 14 ,15 . Fortunately,

for comparison, the experiment can also be run at moderately low fields,

current density, plasma density, and frequency. The wide range of parame-

ters and their proximity to the reactor regime1 6 make Alcator an almost

ideal test machine for RF heating.

-12-



1-2. Methodology and Overview

The main goals of this ICRF program are to identify the proper para-

meter regime which produces efficient heating. The single most important para-

meter is the harmonic number, i.e., fundamental, second harmonic or even

higher harmonics of the ion gyrofrequency. The harmonic number, coupled

with working gas and toroidal field, fully determine the transmitter chain

and antenna operating frequency, a non-trivial amount of expensive and

complicated hardware to be adjusted to a particular regime. A prime

objective is to be able to change the parameters of the experiment and

still satisfy w, = n eB for different harmonic numbers n. Two
M

frequencies, 183.5, 92 MHz, four gases, H1 , D2 , He3 , He4 and toroidal

fields from 30-90 kg enable n to be changed over a wide range (n = 1, 2, 4,

8) in different parts of parameter space.

The second issue is the selection of proper launching structure. This

is an especially sensitive topic in the fusion RF community,and con-

siderable controversy exists over fundamental issues, in particular, whether

or not the antenna should be shielded 1. Many other secondary but

nevertheless essential issues are the choice of location, insulation, and

method of RF feeding of the antenna18 . As far as achieving this second

goal,the Alcator experiment has a severe handicap; almost total lack of

space for insertion, access, and location of antenna near the plasma2.

However, several all metal shielded and unshielded antennas (Section 111-2)

were built and tested,and experimental results showed small but accceptable

loading resistances of a few ohms 13. An innovative all metal antenna and

matching system with the vacuum breaks at a point where there is little

reactive power is also proposed (Section I1I-2-6),and could be a great

-13-



step forward in Alcator ICRF antenna technology and performance.

To achieve the above goals, a clear understanding of the basic physics

is necessary as well as a quantitative evaluation of the theory (Chapter

IV). First, a more or less complete review of the current theory 7 ,19-22

is warranted to ensure that the approximations are still valid at high field,

high frequency, and in particular, high density.

The physics of the problem may be divided broadly into three areas7, 89;

wave launching and propagation, wave damping, and the physics of heating.

There are three basic aspects of the wave propagation problem:

(1) the dielectric tensor, wave equation, dispersion relation and

polarization7 , 4 5

(2) the homogeneous and inhomogeneous plasma cylindrical wave field

solutions21 ,22,45,46; and

(3) stochastic mode stacking24.

The above aspects are first treated in conventional rigorous analytical

ways with approximations justified quantitatively in the Alcator

regime3. Successively more complicated models (Sections IV- 1-7) are

developed starting with cold uniform infinite plasma with a single ion spe-

cies and zero electron mass. The final theory includes hot plasma effects to

first order, finite electron mass, two ion species, cylindrical geometry, 1/R

toroidal field, and inhomogeneous density profile 21 ,22 ,26,27. A tangible physi-

cal explanation of the mathematical results is given whenever possible.

Second, the wave fields are numerically evaluated with realistic plasma

parameters and profiles28 ,29 and compared with experimental observations.

A multitude of important measurable quantities is also calculated in the

-14-



same manner. Two prime examples are antenna loading resistance and RF

signals from magnetic probes distributed around the torus.

The second facet of the problem is wave damping. The many wave damping

mechanisms7 ,2 1,26 ,30 ,3 1 are derived in the high density regime, and again we

try to draw simple, intuitive,qualitative understanding as well as a quan-

titative evaluation and comparison with the experiment. Damping depends on

the theoretical and experimental results of wave propagation. Damping may

also significantly modify the propagation picture, especially on sensitive

parameters such as radiation resistance32.

The last theoretical aspect is the physics of heating, and we will con-

centrate on the parameters that directly affect the plasma diagnostics

used for monitoring heating, or the parameters that are likely to

modify the wave propagation or damping. A few good examples are the ion

distribution function as inferred from the fast neutral spectrum monitored

by charge exchange analyzer3 ,33 -38 , neutron flux39 , plasma current and

density 73 , soft X-ray radiation39 , edge temperature ,and density as measured

by Langmuir probe2 9.

The actual experiment is in the form of multi-dimensional scans to map

out the different functions of the multitude of RF and plasma parameter

combinations. This results in experimental scaling laws40 that are com-

pared with theory. A good example of this is that, experimentally, antenna

loading resistance RR linearly increases with electron density13 . Loading

resistance also increases with mass density, i.e., RR is larger in deut-

erium than in hydrogen, but on the other hand, He3 or He' loading resistance

is very small 41,42(ChapterII ). Until now, there has been no theory that satis-

factorily explains these effects, and they have not been seen in any other



experiment. Plausible new explanations are discussed in detail, especially

in light of "Stochastic Mode Stacking" (Section IV-6), a new concept deve-

loped in this work that refers to simultaneous excitation of a number of

randomly phased toroidal eigenmodes, which may profoundly affect the

wave structure at high density23 25 ,93

The conclusion to this work will consist of a tentative synthesis of

the many interacting processes and parameters of the experiment,as well

as recommendations for further investigation.
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1-3. Summary of Related Work

The relatively new Ion Cyclotron Range of Frequencies (ICRF)

regime 43 has evolved out of the Ion Cyclotron Resonant Heating (ICRH)

scheme in the older magnetic confinement devices like the stellarator44 .

Much of the theory for wave excitation and propagation was then summarized

in two books by T.H. Stix 4 5 and Allis et al. 46 , and the formulation and

notation are still widely accepted.

The fundamental difference between ICRH and ICRF is that they each use a

different branch of the wave dispersion relation7 . ICRH used the slow

branch, also called the ion cyclotron wave, at frequencies near or below

the ion cyclotron frequency. The new (1970)43 ICRF uses the fast branch,

also called the fast wave or fast magnetosonic wave, and the wave is

usually carried by a majority ion component at some low harmonic number.

The ion cyclotron wave is evanescent under these conditions7 .

Many national laboratories and universities throughout the world are

involved in ICRF,but the most important are located in the U.S. (Princeton

University, Princeton, NJ), France (TFR, Fontenay- aux- Roses), and Japan

(Japan Atomic Energy Institute Tokai, Ibaraki). Princeton has been in the

field of RF heating for about two decadesand has developed both ICRH and

ICRF through the Model .C Stellarator 4 4 , the Adiabatic Toroidal Compressor

(ATC)11 , and finally, the Princeton Large Torus (PLT)12. Much of the

literature is by T.H. Stix 7 ,03,45, F.J. Paoloni19, 4 7, F.W. Perkins 48, J.C.

Hosea49-50, P.L. Colestock51 , and D.G. Swanson20. The TFR group is newer,

but has been producing consistently good experimental data and theory, and

is headed by J. Adams21,52,54 and J. Jaquinot2 2 ,53,55. Several other

institutions56 also have published good work, particularly the

-17-



University of Wisconsin (Madison, WI) 16,99,26 ,27, but their confinement

device's plasma parameters are usually remote from the high density

regime57.

For this work, three review publications broadly define current theory

and technology ,and contain the foundations of this program:

- The Theory of Plasma Waves, T.H. Stix, McGraw-Hill, New York (1962).

- "Fast Wave Heating of a Two Component Plasma," T.H. Stix, Nuclear

Fusion 15, 737 (1975).

- "Eigenmode Field Structure of the Fast Magnetosonic Wave in a Tokamak

and Loading Impedence of Coupling Structures," J. Adams and J.

Jaquinot, EUR-CEA-FC-886 (April, 1977).

State of the art in ICRF is well summarized in a number of papers

presented at the 8th International Conference on plasma physics
101-106

(Brussels, July, 1980), and the Fourth Topical Conference on RF Heating

in plasma107-115 (University of Texas, February, 1981).
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II. EXPERIMENTAL RESULTS

II-1. Available Parameter Space and Principal New Results

II-1.1. Available parameter space

The experiment was usually run in the form of multi-dimensional

parameter scans. The basic methodology was to map out the various plasma

and wave processes by independently varying each parameter at a time over as

wide a range as possible, with as many other different parameter

combinations as possible,while monitoring all the diagnostics. The main

parameters that could be independently varied were:

(1) RF power from .1 W to 100 kW

(2) Toroidal field from 40 to 80 kG

(3) Resonance layer position from 30 to 70 cm

(4) Plasma density from 1013 to 5 x 1014/cm 3

(5) Wave frequency 90, 180 (50, 360) MHz

(6) RF spectrum width up to 2 MHz

(7) Plasma current from 50 to 250 kA

(8) Working gas, H', D2 , He3, He4

(9) Minority concentration from 1 to 100%

(10) Plasma radius from 9 to 10 cm

(11) Antenna loop area from 5 to 25 cm2

(12) Probe radial position from 9 to 13 cm

(13) Shielded or unshielded antenna

(14) Antenna phasing m = 0 or m = 1

-19-



This represents considerable amounts of machine time,and efficient,

judicious choices of parameter scans are necessary. Theory and gradual

increase in experience guide these choices to enable formulation of

reasonably sound scaling laws, maximization of machine time, and better

understanding of the many interacting physical processes. Nevertheless,

only a fraction of all parameter space was explored.

Figure I shows a plot of resonant frequency with respect to magnetic

field for typical Alcator, TFR and PLT regimes and different hydrogen

and helium isotopes. As we stressed in the introduction, Alcator stands

out as very different from other tokamaks in many directions of parameter

space. We also note from Figure I how several resonant regimes may be

present at the same time. This effect is further emphasized in Figure 2

and Table 1 where we note how partially ionized impurities may scan the

whole width of the plasma and cause edge heating (l.arge concentrations

of impurities are most likely confined to the plasma edge).

-20-



Table 1

Normalized cyclotron frequencies and refractive indicies

gas (ne, B, = constant)
Z

c j A Z
_________________________________________ 4

H1

D2

He3

He4

Fully Ionized

Impurities

Partially Ionized

Impuri ties

11

.5

.667

.5

%.5

to .5

1.

1.41

.866

1.

-[2 to/
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11-1.2. Principal new experimental results

The most important products of this research are sound experimental

results that preferably can be explained by theory. To date,there are

many important questions that need to be answered, most of which are

still unexplored in the high field, high frequency, and high density

regime.

The first question is whether or not the minority or second harmonic regime

should be used. This is a far reaching question and needs much consideration,

many parameter scans and is, of course, answered with best heating and engi-

neering compatibility.

The second question is -whether the antenna should be shielded or not.

This is answered for Alcator A by comparing the performance of the A,, A2,

and A4 antenna over a wide range of experimental conditions.

Third, also of utmost importance, and closely related to the

first two questions, is the effect of density, working gas, frequency.

antenna loop area, shielding, RF power and wave Q on antenna loading

Also correlations between RR, Ha light, impurities, disruptions, X-rays,

etc., are important and not well understood.

- Fourth, what are the predominant wave damping mechanisms, near-field

power losses, and power deposition profiles? This can be answered by

changing the most critical parameters of particular processes, and noting

changes in field structure and heating efficiency. A prime example is the

effect of the resonant layer position on antenna loading, RF probe signals, and

the charge exchange neutral spectra. Wall losses can be directly calculated

from probe signals. Near-field losses could be affected by antenna

shielding, etc.

-23-



Fifth, what is the wave field structure? In particular, what modes

are predominantly excited, and how are they affected by other parameters

such as toroidal field, ion mass, and electron density. Is the cold

plasma dispersion relation valid? What is the role of surface waves?

This set of questions will be answeredby detailed study of the RF probe

signal phase measurements and comparison with theory.

Sixth, is what is the role of stochastic mode stacking ? How

many modes are excited simultaneously ? What are their

Q's? Does it explain the increase in radiation resistance and the satura-

tion of probe signals with density? This will be tentatively answered by

extensive simulations and comparison with experimental values of RR and

probe signals and phases. Finally, does large k. mean small k,,making

second hannonical damping small, leading to a natural selection of undamped

modes of high Q and RR?

All these questions,and many more omitted here, are not fully answered,

but much light is shed on the basic issues. Tables 1 to 4 summarize

some of the basic experimental results that will be discussed in this

chapter. The results are broadly categorized as wave propagation (Table 1),

wave coupling (Table 2), wave damping (Table 3) and heating (Table 4). In

this chapter,voltagessand currents will always be referred to by their RMS

value (Peak to Peak)

2 /2a~
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Table 1

Wave Propagation Measurements from Magnetic Probes Around Torus

- Large number of high Q, closely packed eigenmodes

- Apparent mode cutoff below ne ~ 101 3/cm3

- No significant decrease in amplitude in the toroidal direction

- Magnitude compatible with radiation resistance and stochastic
mode stacking

- BN, Br, Bz, at edge, all have roughly same magnitude ( 3 axis probes
in ceramic thimble)

- 20 cm long, k,. array shows nonuniform wave structure along torus
(short wavelength stochastic mode stacking)

- Large apparent k.. .5 cm~1, hence significant evanescent region
at the edge

- k. fringes show positive going sawteeth

- Electrostatic probe may not contain same phase information (tentative)

- Small k. from relative phases between probes at different poloidal
positions



Table 2

Antenna -Loading Resistance

- Three antennas tested

A1 electrostatically shielded

A2 bare metal, slotted limiters each side

A4 electrostatically shielded, slotted limiters
each side

- RR increases linearly with density

- RR essentially independent of I,, B0, RF power

- RR roughly increases as w.2

- RR roughly unaffected by Faraday shield (taking into account antenna
geometry)

- At 180 MHz, H2 and D2 show similar resistances (D2 slightly larger
than H2) and He exhibits a much smaller resistance

- R sensitive to plasma position (RR decreases at end of shot when
p asma moves inward)

- RR and H light have similar time evolution

- Multipactor regime is very wide in the new large ceramic breaks
(5W - 500W)

- RR is roughly proportional to antenna length squared

- RR is roughly independent of antenna phasing (m = 0,I)
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Table 4

Medium Power Heating Experiments

High Density:

Typical Parameters ni = 2 - 3 x 014cm-3, I, = 150 KA

B = 60 kG, 50% H, 50% D (also 100% H or D)

f = 180 MHz = 2FCH = 4FCD

P = 30 - 100 kW

Results - Energetic H & D tails (>5 Kev) with short
decay times (<100 ps)

- 30 - 50% increase in soft X-rays

- Bolometric measurement indicates an increase
in (fast particles/radiation) flux propor-
tional to the RF input power

- 30% increase in H, light both at the antenna
and around the torus

- Some evidence of light impurities (extreme UV
spectra)

- Small dip in neutron production

- No significant change in JI, V100 , hard X-rays, ne

- With carbon limiter:

- 10% density increase
- carbon deposit on antenna
- no consistent increase in energetic

neutrals

Low Density:

- ne = 5 x 1013 cm-3, deuterium (4 wcD)-
- Very energetic ion tail formation (both early

and at peak of discharge)
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11-2. Low Power Wave Measurements

11-2.1. High Q eigenmodes

In every case examined, except those at high density in the minority

regime, high Q closely packed eigenmodes were observed. An apparent mode

cutoff was also observed at about 1013/cm. Density measurements below

3 x 101 3/cm3 were very crude since the resolution of the alcohol

interferometer was about 10? 3/cm3. Particle recycling usually keeps

the density above 2 x 101 3/cm9 . As expected, cutoff was much easier to

reach at 90 MHz than at 200 MHz because kA x wo.

Figure 1 shows the plasma current (-150 kA), electron line average

density (1014 cm~1/fringe), RF pulse timing, forward (58 KW) and reflected

voltages (9 kW), antenna current (150 Amps RMS) and a probe signal from

the Thomson port for a typical high density shot at 180 MHz (2wcH' 4cD)'

Figure 2 shows the antenna current, probe signal and square law detected

k, array probe signals for a medium density shot. Several important con-

clusions can be drawn from these two Figures. First, we obviously see

dozens of eigenmode peaks in as little as 8 msec (in agreement with IV-6.3.).

Second ,these eigenmodes are very closely packed, overlap, and constitute

a virtual continuum. Nevertheless, some resonances are larger than

others (because of higher Q or coherent stacking of two modes ) pnd cause

dips in the antenna current. The peaks in the probe signal do not

necessarily line up with the dips in the antenna current because, with

many eigenmodes, fields add differently at different locations around

the torus. This effect is further emphasized in Figure 2,where the

different probes are only a few centimeters apart along z (111-3.2),

and show qualitatively the same behavior, but with some small but
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clearly discernable differences, implying the presence of stochastic

stacking of relatively short wavelength eigenmodes (~ array length).

Figures 3 and 4 show probe signals at very low density (~101 3/cm3 )

where the eigenmode resonances are well separated, and can be compared

to Figures IV-6.7.(3) - (9). From Figure 3 (Min/Max = 7) and equation

IV-6.2(7), we can calculate the damping length as

(1) 1/k .= R ~: 4.5 meters
i A

The eigenmode Q can be crudely estimated from equations IV-6.4. ( 6) and

IV -6.4421) as

kA2
(2) Q = ~ 4 x 2 1 25 at low density

100 at high density

(3 ) Q 10 '3/cm ~ 200 at either low or

Ane ae)~ t 10- sec c high density

Although these two methods should be redundant, the large discrepancy

is easily justified by the crudeness of IV-6.4.( 6 ) (k, is not known),

and the gross inaccuracy of 9n/Dt. FR/FA is also underestimated, since

the antenna current dips (FR is underestimated),and several modes

exist (skirts overlap and thus FA is overestimated).

Figure 3 also shows an A cos $ signal of two k,, array probe signals.

Although the magnitude of probe 76 is almost identical to 77, their

phases are considerably different, as expected.

Figures 4 and 5 show probe signals at 10 " and 2 x 10"/cm3 line

average densities and 200 MHz. At 10" 4/cmthe eigenmodes are still

quite discrete, and mode stacking is only partial. At 2 x 10"/cm3
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and above, the individual modes are more difficult to discern, and

radiation resistance spikes disappear, in agreement with IV-6.7., where

we concluded that probe signals would always be "noisier" than RR'

Figure 5 also shows a 23 kHz heterodyned probe signal for phase measure-

ments (III-3.3. and 11-2.3.).

Figure 6 shows a low density, pure hydrogen, 90 MHz (w = wcH) plasma

shot. Very high Q eigenmodes occur early in the discharge. At very

low density, late in the discharge, there is an apparent mode cutoff,

in agreement with simple theory (this may not be a real cutoff, and

Section IV-5.4. showed that no cutoff should occur for the m > 1,

= 1 modes).

Figures 7 and 8 show evidence of possible mode splitting (IV-3.3.)

in a very low and a medium density plasm&. This effect could also be

caused by density fluctuations, or simply by two different perpendicular

eigenmodes.

Following the theory of Section IV-6.3, we are now faced with

the dilemma of labeling these eigenmode resonances (Figures 1-8).

Are they onsets, large RR eigenmode resonances (i.e., m = 0 ± 1

p > 3),or simply particularly high Q eigenmodes (m > 1) ? Onset has

the largest radiation resistance, and probably accounts for the thirty

or so larger peaks. For a quality factor as large as 1000, the energy

pump time (decay time, IV-6.4.( 2))

(4) -T = 2- = 1.6 PsecWi) (A
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is much less than any experimental resonance width. From Figures IV-5.4.(3-

14), we can approximately write

(5) ~' 10-14 cm2

+ 0 for i = 1, m > 1

- for > 1

(6) =l - i at 50 cm~1 sec- 1  ( 101' cm-3 sec-

and for

(7) Ak. = k = 10- 3/cm (1/kg = 10 meters)

we have

(8) At [ah Ak,, = 20 i sec

which is much longer than the pump time.

Until now, we have assumed RR a near onset. Taking into account

k~ = k. 10-, and substituting k,,i 2rR + k.L14a and z + r in IV-6.2.(5),

we have instead a coherent, perpendicular stacking, limiting factor of the

form

(9) RR a 1 + e-k.i 4a 50
1 - e- k.ia

and RR does not go to infinity even for k., = 0.

Away from onset,toroidal resonance radiation resistance peaks are

critically dependent on the evanescent edge and Q. Large perpendicular

mode numbers have smaller k, (small evanescence), but also larger damping
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(small Q),and the two effects compete. The m > 0 modes have larger Q

( IV-5.3), but cannot be discerned from the m < 0 by probes at the plasma

edge. Some peaks may also be beats between different perpendicular

eigenmodes (even for k. R > 1).
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11-2.2. Wave amplitude measurements

Neglecting near-field power absorption, we show in IV-6. that,

for high Q toroidal resonances and many overlapping eigenmodes, the

probe signal average is proportional to <RR>IiY.

Figure 1 shows a standard high density low power shot with the forward

and reflected voltage, antenna current and probe signal at HCN port.
PF -PR

Figure 2 shows the radiation resistance ( 2), antenna current,

antenna electric field ) and probe signal for the same shot. Note

how the radiation resistance and electric field increase with density,

but the probe signal saturates and even decreases with density. Figures

3 and 4 are similar shots, and we notice (Figure 3) the top and bottom

antenna currents are loaded in an almost identical manner (good balance

in: push-push mode). Probe signals around the torus (68 HCN top, 69 HCN

bottom and 67 top limiter), on the other hand, have significantly different

time histories (Figure 4). Many of these different behaviors are believed to

be due to the wandering plasma position. Radiation resistance is usually

lower at the end of the shot (for the same density), and is most likely due

to the plasma moving inward, since there is usually too much vertical field

for the decreasing plasma current. In all cases examined (hundreds of

shots in almost all directions of available parameter space) except the

fundamental regime (with the cyclotron layer in the center of the plasma),

probe signals around the torus (±900, 1800 from antenna) were all about the

same magnitude (probe position in the complicated port geometry is critical).

These measurements were done very carefully,and are strong evidence of

long damping length.

Figures 5 and 6 show radial probe scans with a large magnetic

probe (Figure 111-3.2.(3)) and a standard small unshielded probe
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(Figure III-3.2.(2)). With the large probe fully inserted, it

becomes a good model of a short section of the Al antenna,and we can

write (without mode stacking)

A
(1) V A probe I RProbe Theoretical A antenna antenna R

- 3 Vp experimental

and the discrepancy could be explained by some 9 eigenmodes or, of course, by

near-field or single toroidal pass power absorption. Figure 6 shows similar

results,but at three different power levels, and also showing a discrepancy

factor of three or so. If mode stacking is not invoked, this means that

only some 10% of wave power reaches 90* away from the antenna. The

measurement is very crude because of the extreme sensitivity of the probe and

plasma position (evanescent edge),and the mere fact that power is propor-

tional to voltage squared ( 50% error can easily be due to the average probe

signal value estimation from the oscillograph).

Figures 5 and 6 are indicative of large k1, since,for small k,1,the

edge magnetic field should be roughly independent of distance from the

wall, which is clearly not the case here. For large k,, (= .5/cm), the edge

B vs r should be either linear or exponential, in agreement with experiment.z
(Note again the extreme sensitivity of the port geometry.)

The results shown in Figures 5 and 6 can also be used to estimate

wall power losses as

Awall 2  2 ( 1)2-
(2) P = wall 2 .) (VP )-5 a R 1.0 Wattwall a 6 AP '

(3) in 00 W = 500

Pwall
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and wall losses can be totally neglected in any power balance calcula-

tion (this is a lower limit due to the bellows convolutions and port

geometry).

High and low power experiments showed exactly the same results.

(except obviously,during multipactor), and all processes (coupling,

damping, etc.) were linear over six orders of magnitude (.1 W to

100 kW) (except perhaps some preliminary measurements of low level and

frequency parametric activity at the 50 kW input power level).

Figures 7 and 8 show low and high density shots with predominantly

He'4 plasma composition. The eigenmodes are High Q and very similar

to those for H2 or D2 plasmas. RR, on the other hand, is very small

(11-2.4). The lower traces of Figures 7 and 8 show RF pickup by

the electrostatic Langmuir probe at the HCN port (Figure III-3.2.(5)).

The probe signal was shunted by a 1 pH inductor acting as a high

pass filter. At low density, the electrostatic and magnetic probe

signals show the same behavior (high Q eigenmodes), but differ considerably

at high density (activity continues even after RF is shut off).
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Radiation Resistance and Probe Signal at High Density
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D2 and He' Mixture at 183 MHz
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11-2.3. Wave phase measurements

As outlined in III-3.3., extensive probe phase measurement schemes

were used to estimate parallel and perpendicular wavelengths. Figure 1

shows a typical high density shot with 50% H2 and 50% D2. The lowest

trace is the phase (27/fringe) between the oscillator (~e antenna current)

and a magnetic probe 90* away from the antenna. For a finite Q system

and large dynamic range, the phase is never lost,and the phase difference

simply increases as k, ( /n). Thus

(1) kR = = .61/cm at 2.2 x 1014/cm3  (N = 8.3)

and from IV-2.2. the maximum k, (k1 = 0) is

kA -
(2) k1 =- " =4.4 x 10- 8 n - .78/cm

where

(3) = 1.15 for Q = 2 H2

= .82 for Q = 2 D2

=1.26 for Q = 4 D2

1.2 for 50% H2, 50% D2

and the eigenmodes could be very near cutoff. Note that including an

initial phase shift (R R ) and perhaps one to three initial

fringes at breakdown (ne = 101 3/cm3)

(4) 1013 = k. .5nR = 4 x 10-6 Inn ~ 27r

would give k, = .76 = k. (k. = 0).
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At this point, we must caution the reader thataccording to Figure IV-

2.2.(4), even for a large k,, = .8 kicutoff, k, = .5 kA,and many radial

and poloidal mode numbers are still possible at high density.

Figure 2 shows an expanded view of a pure deuterium shot (k, ~ .5/cm

at 2 x 101 4 /cm3 ) with the phase difference between the HCN port and

antenna (68/ref), top and bottom of HCN (68/69) and HCN and limiter

(68167). Although more difficult to read (due to the large dynamic range on

both inputs to the phase correlator), the phase difference between the HCN and

limiter is the same as between the antenna and HCN ports. Of course, the

phase difference between the antenna and limiter was twice as large as

between the antenna and HCN ports (Figure 3). The shots shown in

Figures 2 and 3 were at the 40 kW level, and the antenna broke down

after 60 msec.

The phase difference between the top and bottom of the HCN (68/69,

Figure 2) does not indicate any average increase in phase, and is

very noisy, as expected with a mixture of many randomly phased eigenmodes.

Eigenmode identification at high density would clearly be very difficult

if not impossible.

Fringe measurements during a single run were also done at 90

and 180 MHz, and as expected from (3)

(5) = 1.26 1.54(5) .82
90

and there were about twice as many fringes at 180 MHz as at 90 MHz fer

about the same experimental conditions. A similar effect was o'bseNyed by

changing the magnetic field from 40 to 80 kG in 11-2.4.

Figures 4 and 5 show phase measurements between the reference and

a near-field probe (5/2) and reference and HCN (5/68), with a linear
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and cosine phase correlator for He3 and He4 plasmas at 183 MHz. Note

how the linear correlator is easier to read. The cosine correlator had

a bandwidth of about 10 MHz. As expected, the near-field phase deviation

was less than Tr , and was highly dependent on eigenmode resonances. The

radiation resistance for these He shots was much lower than for H2 or D2

at the same density, in agreement with the accepted belief that helium

profiles are much narrower. (kAHe kAH,but evanescent edge is much

larger). k, is also very large (=.6/cm), even for medium density

(ne 1.6 x 10 4/cm3 ).

Figure 6 shows an expanded view of phase measurement at medium

power (~50 kW). Note the slight phase difference between the top and

bottom HCN probes, and the usual slight dip in the thermonuclear

neutron production rate.

Figure 7 shows a close up of fringes and soft X-rays,where we note

the correlation between the "positive going" fringe sawteeth and the

central soft X-rays. This correlation could be an argument supporting

the hypothesis that these measurements represent bulk k,,.
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Phase Measurements at 206 MHz and D2 50%, H2 50%
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Phase Measurements Between MW, HCN and Limiter Ports
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Phase Measurements at 183 MHz and He3
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Radiation Resistance and Probe Measurements in He4 at 183 MHz
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Phase Measurements at 206 MHz and D2
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11-2.4. Radiation resistance and magnetic field scans

Radiation resistance is the single most important parameter to

characterize ICRF wave coupling. Figure 1 shows how RR roughly

increases linearly with density, and is slightly higher for deuterium

than hydrogen. Although RR is usually quite repeatable within a given

run, significant changes were noted from run to run with roughly similar

experimental conditions. RR background seemed essentially independent

of plasma currents and magnetic field. Plasma in out position is believed

to be responsible for much of the variations, but this was not con-

firmed, since all the position loops on Alcator were inoperative (Figure 2).

Most of the data in this work was taken with the A2 unshielded

antenna but RR behaved essentially the same for the A1 , A2 and A4 antennas,

except of course, for their relative value. At 200 MHz and 3 x 1014/cm 3,

A1 was about 3 ohms while Az and A4 were typically 8 ohms. At 90 MHz,

RR was lower by a factor of about 4, so that A2 could only couple 30 kW

or less.

Figures 3 and 4 show typical 90 MHz shots with D2 fill and H2 minority

(recycling), and with the resonant layer either in (65.4 kA) or outside the

plasma (79.2 kA). The radiation resistance was calculated with a high

speed on-line analog computer (111-3.1.). RR background is independent

of magnetic field,but the eigenmode spikes on RR and probe signal are very

sensitive to layer position. Figure 5 is a plot of probe signal versus

layer position, and unambiguously exhibits strong magnetic field dependence

in agreement with theory. The minority concentration was small (<5%),

so the TIIH layer was very near the cyclotron layer. Also note the difference

between the field probe signals for the two resonant layer positions. This may
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suggest that eigenmode spikes are due to toroidal resonances rather than on-

sets, because even with short damping lengths (no probe spikes), RR and near-

field should still exhibit large onsets (which they do not in Figure 3).

Figures 6 to 9 show the results of similar experiments at 180 MHz.

Only three fields were used in this case (smaller increments were used

in other experiments), but many shots were averaged to gain good statistics.

No significant field dependence was found on either the probe signals or

radiation resistance (except for the expected k.. a 1/B. dependence). Medium

power field scans (11-3.3.) were also done in 50% H2 and 50% D2 plasmas,

again with about the same result (except for the neutral flux dependence),

indicating that second harmonic damping is weak. RR background is not

necessarily expected to change (both single perpendicular pass and high Q

average RR are independent of damping), but eigenmode peaks should be

inversely proportional to damping if they are representative of the bulk

power and second harmonic damping (the most important unknown).

Figure 10 shows a high density D2 fill and He4 pulse shotwhere we

again note (11-2.3.) how RR stays small with a predominantly helium plasma.

Figures 11 and 12 show H0, and total light in front (MW bottom) and inside

(through holding pins) the antenna for two low power, high density, disruptive

plasma shots. Note in particular, the close resemblance between the RR and the

light signals. The increase in RR could be due to a broader profile

(thinner evanescent layer) or increased near-field losses (also edge density).

At medium power, this light increases by 30% (11-3.3) all around the torus.

Also note (Figure 12) the close resemblance between the alcohol interfero-

meter fringes ($ 0 ne) and the ICRF k,, fringes ( ,).
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Radiation Resistance with Resonant Layer at Plasma Center

B9, P7, S21

90 MHz

D2 fill

H2 minority

65.4 kA

2.3 at 2 fringes

Ip

n
e

t

VF

VR

la

RR

Near-field 2

Limiter 67

HCN Top 68

Figure 3

-63-



Radiation Resistance with Resonant Layer Outside Plasma
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11-2.5. Wave coupling experiments

Aside from the carefully controlled A,, A 2 and A4 antenna coupling experi-

ments, many other simple preliminary measurements were also performed. Ener-

gizing only half of the antenna produced between half and a quarter of the

original RR, in rough agreement with IV-1.3, IV-6.5, and IV-7.1. RR also

seemed independent of phasing, further supporting IV-6.5.

It was most unfortunate that RR a d2 scaling (center conductor to wall

distance) was not proven (a + d remained constant), but the antenna was kept

as close as possible to the plasma to maximize coupling (both the A,

Faraday shield and the A2 side limiters showed some minor plasma erosion).

The Faraday shield did not affect coupling, as A2 and A4 proved to be

almost identical in all respects (slightly lower RR as expected from bench

tests 111-2.5.).

Figure 1 shows capacitive probe (111-3.2.) coupling at high density and

180 MHz. The front of the 1.2 inch diameter molybdenum block was about

3/4 inch from the chamber wall. Note how the probe impedence was almost

exactly 50 Q without any matching network, in plausible agreement with

Section 111-3.2.

(1) Z VF VR 50 0 RR

From shot to shot during a single run, it was consistently noted that,for

a given power (~10 watts), the capacitive probe and the A2 antenna produced

roughly equivalent probe signals around the torus. Although very easily per-

formed,radial probe scans were not done because the probe had to be removed for

-72-



the new k, array (the first array was destroyed by electron runaways).

Note the discrete eigenmode structure of the probe signal at extremely

low density after the plasma shot. These afterglow effects were never

observed with A1 , A2 or A4 (probe singals are 50 msec/div).

The main tokamak limiter (Figure III-3.2.(13)) was also used as a

transmitting antenna and receiving probe. Although the RF connection

was very inductive, the limiter provided a reasonably good match.

Crudely assuming Er ~ E., and monitoring the received voltage on the

limiter, produced roughly consistent results with magnetic probe

signals and RR (11-2.2.).
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Capacitive Probe Measurements at 200 MHz
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11-3. Medium Power Heating Experiments

11-3.1. High density regime

Most of the medium power heating experiments were done in the 2WcH

and 4wcD regimes, for either pure or mixed (50/50%) hydrogen or deuterium

plasmas at 2.5 x 101 4:m 3 and 65 kG.

Experimental conditions (disruptive plasmas and lack of diagnostics

and machine time) were not the most favorable, and most of the following

results were obtained with the A2 unshielded antenna. Figures 1 and 2

show typical pure hydrogen shots with 40 kW. Note how the plasma current

and density remain unchanged (loop voltage and plasma position also

remain constant), while the plasma edge light (H and total light)

at the antenna increases by 30%. Figures 3-5 show the fast neutral

fluxes for the shots shown in Figures 1 and 2. Figure 5 shows the fast

neutral spectra for the third RF pulse of Figures 1 and 3, which has an

"effective temperature" of about 300 eV above background (the spectro-

meter was uncalibrated in these runs). Unfortunately,the flux rise

and fall time is less than 100 psec,and is not indicative of bulk heating.

Figures 1 to 5 are for two consecutive shots of the same runand show the

close repeatability of the RF effects on the plasma. From run to run, on

the other hand, repeatability was not nearly as good, especially for the

usual but inconsistent soft X-ray increase (sometimes only center, then

edge also, and ranging from 0 to 50%). Almost identical results were

also obtained with pure deuterium, but with a very repeatable slight dip

in the neutron rate (Figure II-2.3.(6)). Edge Langmuir probe diagnostics

showed no measurable effect on either the plasma edge temperature or

density (11-3.3).
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Figures 6 to 17 show the basic results of a carefully executed

field scan between 50 and 80 kG, for a 50% H2 and 50% D. plasma at 200 MHz,

55 kW and with the A2 antenna. Figures 6 and 7 show the high (5 keV)

and low (500 eV) energy components of the deuterium fast neturals

versus magnetic field (resonant layer position). Note how the low

energy component doubles independently of layer position, while the

high energy component increases by an order of magnitude when the

layer is at the plasma center. Figures 8 and 9 show similar results

for the hydrogen spectra, except for a very large increase in both

the low and high energy components when the resonant layer is at the

low field side of the plasma in the antenna near-field. Figures

10 to 13 show the unreduced neutral fluxes, as well as the neutral

spectras for the resonant layer at the plasma center.

Figures 14 to 17 show the radiation resistance and probe signals

at the HCN bottom inside (high field side), bottom outside and top

outside (Figure III.3.(1)). Radiation resistance is again (11-2.4)

independent of layer position (within experimental repeatability),

and probe signals are only weakly dependent (slight changes in plasma

position could produce even greater differences). One could possibly

argue that a slight dip in probe signal exists when the resonant layer

is at the center and high field side of the plasma(at the particular

probe position that is monitored).

To lowest order and for bulk heating, we can typically calculate

(1) POH = IV = 150 kA x 2.0 V = 300 kW = 10 PRF

(2) tRF TE = 10 msec
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(3) TRF TOH 1 + O 770 eV

and the high energy (5 keV) neutral flux is

(4) J a e-E/T

1 1
J E- T

(5) = e O R 1.9
OH

and we can unequivocally conclude that no such bulk temperature increase

was observed- (Of course, one might argue that it is not clear that the

spectra is itself representative of the plasma bulk temperature).

In the minority heating regime, we can rewrite (3) (again to zeroth

order) for the minority species (5% H2 )

(6) TRF = T 'H P1 3 TTRF 'HIH POHI O

3RF
(7) O 117

Although medium power 90 MHz heating experiments were only preliminary

(RR is 4 times smaller,and charge exchange was only available late in

the experiment), no such increases in the minority tail were observed

in any form (even 1 kW could produce AJ ~ J). From available evidence

(ne, I P, CX, etc.), 90 MHz unfortunately behaved much like 200 MHz

at high density.
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11-3.2. Low density regime

After the difficulty in heating high density plasmas was clearly

observed, some very preliminary heating experiments were performed at

low density (5 x 10 13/cm3 is still considered high density for other

tokamaks). Note that RR a new 2 scaling is very unfavorable for low

density coupling, expecially at 90 MHz where RR < R losse Fortunately,

fewerparticles need to be heated, but on the other hand, POH remains approxi-

mately the same.

Figures (1) and (2) show the dramatic neutral flux increase for a

medium power 5 x 101 3/cm3, pure hydrogen and 200 MHz shot with the A2

antenna. Neutral flux up to 10 keV with tail temperature 250 eV above

background, were observed in this regime. Early in the discharge,

the apparent flux decay time seemed to be due to the density increase

since pulsing 5 msec later gave only a very small increase. However,

similar pulses were also done at the density maximum of low density

shots (< 5 x 1013/cm3 ) with similar energetic neutral tails but without

the decay time.
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11-3.3. Impurities and radiation measurements

Figure 1 shows a typical disruptive high density plasma shot with

mixed hydrogen and deuterium. Note how the basic parameters (I p, ne,

Ia probe, H' apin light) are well behaved and consistent over all

three 40 kW pulses. The soft X-rays and thermonuclear neutrons, on

the other hand, show a clear increase and flattening, respectively,

over all three pulses (this effect was reproduced over several shots).

Figure 2 shows a similar plasma shot, where we note that the top

electrical break broke down (LT = 250 m-V, IT = 0) without affecting the

plasma current and densitybut, nevertheless, causing the usual increase

in Ha, antenna light and fast neutral flux.

Figure 3 shows a similar shot where the current from an edge Langmuir

probe (HCN top) is also displayed. No significant change in the edge

temperature or density could be measured. Figures 4 and 5 show a

reduced edge density and temperature radial scan for a typical high

density shot. Considerable variation was observed from shot to shot,

and even more from run to run, as expected from the steep density and

temperature profile and the uncontrolled plasma position.

Figure 6 shows the extreme ultra violet spectrum (550 to 1600 A)

before and during a particularly bad RF pulse (typically there is no

discernable increase in radiation). This small increase in radiation

is most likely produced by light impurities (0, N, C) at the plasma

edge (r > 8 cm), where Te < 40 eV and ne < 101*/cm 3, and also indicates

no significant edge heating. The increase in central (and not edge) soft

X - rays may be indicative of electron heating, but was not accompanied

by any decrease in loop voltage or increase in electron cyclotron
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harmonic emission. Hard X-rays were never affected by the RF.

All previous measurements were done with molybdenum limiters.

Surprisingly, completely different plasma behavior with RF was observed

with a carbon limiter (although RR and probe signal behaved the same).

Returning to a different molybdenum limiter immediately reproduced

the original results (so conditioning and exact limiter radius and

geometry factors can be ruled out as the cause).

Figures 7 and 8 show the results of a dramatically affected (by RF)

plasma shot, with a carbon limiter (although not very repeatable, no

such behavior was ever encountered with a molybdenum limiter). Note

how the electron density, central soft X-rays and total radiation

(pyrometer) unambiguously increase with a long time constant during

the medium power RF pulse. The Langmuir probe electron current was

also greatly reduced, possibly indicating an increased plasma potential

(ion saturation remained unchanged, III-3.4). Significant increases

in the neutral tail were never observed either in this mode, as shown

in Figure 7. Visual inspection of the antenna showed carbon deposits

at high electric field points in the antenna, but not anywhere else

near the antenna, which is far away from the limiter.

-90-



'p

ne

X-rays

t

neutrons

VF

VR

IT

B Hydrogen
. CHARGE EXCANE JN-e9/SHOTw.1

LB

La

H -

t Disruptive Plasma

S41, P28, 415

69 HCN D2 /H2, 67 kA, 200 MHz

Bot Figure 1

68 HCN
Top

-91-



0a-
0
F-

En

.1
Iia

'a

r V ~EU.

00 OWEd

I
I

I

i
I- - - - -

-B'-'

LL. F- F-

-92-

0 F-

0
ko

O~N 0C~J ht~ - 0

....NI~ *4flON 0...CJt~ 0 VflO~. 0O~0 -VJlfthflCtt~0QS
NNNC'JNC'JtJN~

LD ID I I ~ I ~ .

0
to)
0

0

to

CV) =

0.
I-'

, 0



I- co CL
-j -

-j
-J

.- 4 4-~

LL -I- Q

4-) L/V

E 0
4:~) *- -

-93-

al

0

S-

.- -a

E =5

S LL.

-J

LOl

LC)

C14

00

10-

C)I

ci
LO

Cfl lI

0.
1-4 r_)( 4-) a

E



(A:

C,j

c'

li

S-

4-)

I-

S.-

4-)

S.-
2i

CL

a)

(C-to NOT1 A11SN20 NtOI

-94-

- - ,- -

-U)

£20

CL.

L3

LiJ

t

Lil

(Aa) 8JjA '3NnIfV83dlJJ. N0813313

i

:P2

C)

C2

-o

C,)U

2

r-

C"

0-

U-)
('A

C C c

C)

0-

C))-"
LOJ .1
cDic

Kn
'd-

U)
S.-
2

LL.-

Co

C,j

L2

LC') U

* ci

-J-

--4 c,



EXTREME ULTRA VIOLET SFECTRUM
Before Rf pulse 75.5 - F9 ms

B16, P19, S48

NV "

y 0Y.-

c Rr

4&9S

During

1239A'

1 216A

Rf pulse 83 - 87 ms

103 4A'

760A 330A'

922K

4tI 1,.,)

Figure 6

ENERGETIC NEUTRALS WITH CARBON LIMITER
318, F25,

CHF!GE EXCHANGE RUNo 94/SHOT'.46

7216

04L 161 8'+

C E16194

1498L1

CKPAN 16369

SPSRE E466

DENSITY 649

c; : T j 4232

Figure 7

-95-

E46

H
2

2
3
4

15
16
17
8o
19
28

2
173
24

26

19
29

30

94
46
to
2

so
21
I?

2

950
2

S
10

256

5
21,

0

0

c rY

202 3 0

r >
Te<

ne <

8cm
40eV

1014/cm

1549A'



4 -

CL (L)
4-3 u-'

~u o~
4-) 0
.- 4-)
2

*" L)
2:

r~- Q~
'.0

o~

0
S.-

E
0
4-)

CL .-
o 0

m.

Li.- C4 f (
>. - I- -

:

0

4-3
0

2:

C0

C
3

0- 0

I-F-

LLIL

C~
E

co

m:) C\J

-96-

0)



III - EXPERIMENTAL APPARATUS

III-1. Transmitter Chain and Engineering Support

III-1.1. Transmitter chain

Usually, the largest investment in any high power RF heating experiment

is the transmitter chain and its engineering support.66 In this case, we

were fortunate enough to acquire most of the high power components as a

gift from the Air Force, making the present installation the largest of its

kind in the world (Figure 1,2). The system was built in view of a multimega-

watt experiment on Alcator C, making the apparatus a gross over-kill for

Alcator A.

Four "A2 " high power amplifiers 67 and "B2 " driver amplifiers were

installed, yielding a maximum power of 6 MW, at 180 MHz. One of the B2

was also operated at 90 MHz with major modifications. Figure 2 shows the

initial basic transmitter chain from the oscillator, then exciters, B2, A2 ,

RF switch gear, dummy loads, resonator, and finally, antenna. An RF feedback

control system was built to stabilize either the antenna current or forward

power. An auto-tune processor and double-stub tuner with stacked 9" transmit-

receive switches as shorting elements was also planned to dynamically match

the antenna during a plasma shot. Fortunately, since134

(1) .33 < Z/Za < 3

(2) reflected _ Z - Z. 2 < .30
Pforwa rd Z + Z'

and this system became unnecessary since, for practical purposes, RR never

varied over much more than a factor of 3 during a given plasma shot.

Figure 3 shows the simplified version of Figure 2 that was actually
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used during the Alcator A experiment. A broad-band 1 kW distributed

transmission line amplifier was used instead of the exciters and the narrow

band 5894,and the 4cx250 stages of the B2 were bypassed (Appendix 12).

Any power level from a fraction of a Watt to 500 kW could be injected into

either Alcator or a 2MW dummy load through a network of motorized type-N,

3" and 9", single pole double throw coaxial switches.

Figures 5 and 6 are very simplified diagrams of the A2 and the B . The

B2 uses an RCA 2041 high power tetrode mounted on a A/2 plate coaxial

cavity with an output coupling tap angle of about 300. The input resonator

is a simple 3/4 X delay line with variable tap angle adjustment,and can be

operated at either 90 or 200 MHz without modifications. For 90 MHz opera-

tion, the plate cavity is extended some 2', and less tuning flexibility is

possible, due to the smaller relative size of the output tuning slug. The

B2 is keyed on by a small screen modulator very similar to the A2 grid

modulator.

The A2 uses an RCA 6950 coaxial super tetrode. The A2 grid is much

more complicated than the B2 's, because the 200 lb tube is x/4 long, and the

voltage maximum must be tuned to the center of the tube grid. The X/2

plate cavity is 30P and 4 feet in diameter. Four magnetic output coupling

loops at the top of the cavity then combine to a single output 9" coax.

A fifth output coupling loop is used to provide positive feedback,that is

combined with the B2 output,through a variable delay line and a 4 port

hybrid ring. This feedback system was bypassed for more stable operation

in varying loads.

At conservative power levels, the B2 generates 100 kW of RF with 12 kVdc

at 15 amps, and the A2 generates 1.5 MW with 20 kVdc at 100 amps. One 6950

alone requires 8 kW of filament power and 150 gallons per minute of plate
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cooling water. All the tuning elements of the A2 and B2 are motor opera-

ted, and the transmitter cabinets are thoroughly RF leak tight. The

A2 and B2 DC plate supply leads are brought through two high power LC RF

feedthroughs.
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111-1.2. High power DC and control systems

Two multi-megawatt DC power schemes could be used to feed the D2 plate

with 12 kV, and the A2 plate with 20 kV, as can be seen from the simplified

schematic of figure 1 . All four power supplies are located underneath the

transmitter room in an explosion and fire proof vault (Appendix 12). In

the first and simplest scheme, two 3 ampere DC power supplies are used to

charge the 600 pF and 400 pF capacitor banks to produce a 40 ms , 500

kW RF pulse.

(1) W 4 x 10~4 F (202 - 152 kV2)= 35 kJ

(2) P 875 kWdc(2) T

Both capacitor banks are split in half, isolated with critically damped

current limiting RL networks (not shown in Figure 1), and equipped with

mechanical and ignitron crowbars. 1000 jjF could also be installed in the vault

permitting up 1.25 MW RF for 40 ms.

The second scheme uses 2 custom made long pulse 300 and 100 ampere

ignitron power supplies powered from the 4160 volt ac 1200 ampere Magnet

Laboratory bus system. Figure 2 is a simplified block diagram of this

system. The main sequencer triggers the "domino block generator", which

in turn, sequentially closes the 4160 Limitamp breakers feeding each of the A2

and B2 high voltage transformers. The sequencer also triggers the

rectifier phase controller, the grid modulator and the fast crowbar system.

The ignitron phase control system is very simple, since this is basically

a predictable capacitive-resistive load and no power inversion is necessary.

The phase control can be run either open or closed loop. The rectifier is

a full wave, three phase array of 12 GL-5630 ignitrons (Appendix 12).These high

voltage ignitrons are rated 30 coulomb, 30 kVdc, with gradient and screen grids,
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and one holding and two triggering anodes.

The 500 gallons per minute at 80 psi of highly demineralized cooling

water is provided by a custom made heat exchanger unit using Charles River

water as primary coolant.69

A multitude of control and safety systems was built to manage the

complex high power apparatus. The safety system can be broken down into

four basic blocks operating at different speed levels (Figure 3). First,

a number of kirk key and panic button interlocks are located throughout the

system and, in particular, at the main control panel, vault, RF switch yard,

Limitamps, Alcator A sequencer and cell, physics station and matching

system. These interlocks, combined with literally hundreds of relay contacts,

monitor the status of everything from slowhigh voltage overcurrents to

a low water flow in a&nA 2 grid. In the event of a fault, the main high voltage

interlock relay -K3 is opened,thus disabling all power systems operating

above one kilovolt. Smaller interlock loops will shut down only subsets

of the system to protect a particular part of the equipment.

The next two faster levels are solid state, monitor fast current,

voltage or reflected power transients, and disable the main sequencer,

which in turn ,triggers the crowbars and cuts off the RF drive. At the

fastest speed level, some twelve short dipoles located near the

transmitters along the transmission line and in the Alcator cells monitor

RF leakage, and,for power levels exceeding OSHA recommendations, the RF

drive to the exciters is quickly cut off.

The most important control element is the central high power control

unit (Appendix 12), which can be divided into three subsets, K1, K2, K3.

For all practical purposes, Ki enables all non-solid state systems (as

long as the safety circuits are satisfied). K2 enables the 4160

Alcator starters, and K3 enables all high voltage DC systems above 1 kV.
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The main sequencer,68 fast crowbar system, grid modulator

and RF leakage detector system70 were custom built in house. Many

channels, remote control and the recyclable features were necessary for

the sequencer, so that during a run, different RF scenarios could be

quickly implemented between shots, (i.e., low power long pulse for tuning,

three short interspaced pulses for high power heating, or simply a short

medium power pulse every second for antenna conditioning).

Even when measured with a half wavelength 50 ohm matched dipole,

RF leakage signals of, at most, one volt were measured under the most

adverse conditions (i.e., a panel left off the resonator, and P f 50

kW). The Poynting flux,

(3) S =E .07 W/m2 7 PW/cm2

where

2
V rms

(4) P rms

(5) A = 1.65 A2
47T

was much less than the OSHA recommended 10 mW/cm2, and the system was not

needed. Normal readings in the cell were at the nanowatt/cm 2 level.

Nevertheless, the system should be used with high power A2 experiments.
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Simplified Flow Diagram of Safety System
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111-2. Matching and Launching Structures

111-2.1. Basic matching and launching system

As we mentioned earlier, a series of three antennas, A1, A2 and

A4 were designed and tested (Figure 1). The first, A1, is an all metal

ultra compact shielded antenna. Significant attention was given to RF

properties, cooling, and especially to the stringent mechanical constraints

of the Alcator tokamak 71 (Section 111-2.2.). The second antenna, A2, is

unshielded, also all metal, and has 2.5 times more loop area (Section

111-2.4.). The A2 antenna structure with side virtual limiters is more

than an order of magnitude larger than the tiny 1.25 x 3.4 inch access

port, and extensive use of "Boat in the Bottle" technique was necessary

to install these unfolding structures inside the Alcator vacuum chamber

(Figure 2).

A4 is a combination of A1 and At with an increased loop area, more finely

slotted Faraday shield and side limiters, and a Langmuir probe mounted in

the front of the shield. Figure 3 is a simplified diagram of the basic

antenna structure.

All three antennas were located on the low field side of the plasma ,

with their back plane electrically connected to the vacuum vessel (r(wall) =

12.5 cm). The antennas were made with two current loops (Ae = 650)
that could be fed so their magnetic fluxes added (m = 0 mode, IT out of

phase with IB, push-pull drive), or cancelled (m = 1 mode, IT in phase

with IB' push-push drive). All three antennas also had internal RF current

probes near the voltage minimum, thus making possible direct calculation of

loading resistance, an advantage not usually seen in other experiments.

A high power 20 foot, 1200 lb. coaxial resonator system72 was built
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to match, balance, and electrically isolate the antenna (Figure 4).

The extremely versatile resonator could match almost any reactive or

resistive load down to a fraction of an ohm, from 45 to 360 MHz,and

up to the megawatt power level. Figure 5 is a simplified sketch of

the vacuum antenna feeder. The m = 1 capacitive coupler is shown in solid

lines,while the m = 0 magnetic coupler is shown in dashed lines. The

vacuum breaks are shown with their CC14 and teflon sleeves. A late

version, two stage dc break is also shown. The resonator and coupler

box are at ground potential while the antenna and vacuum feeder hardware

are at machine potential . Note also how the antenna feeder

center conductor is supported only at each end, the antenna current

maximum ground, and the vacuum breaks.

Considerable time was spent developing satisfactory high power

vacuum electrical breaks. Many materials and geometries were tested at

very high RF voltages using a modified panel at the voltage maximum in

the resonator. Liquid carbon tetrachloride was found to have superior

dielectric and cooling properties for high power, low loss RF insulation.

Finally, two innovative antenna structures and matching systems, A3 and

A6, were proposed and designed (Section 111-2.6). These last RF launching

systems could be a full 360* around the plasma, m = 0 or m = 1, all metal,

and shielded or unshielded. The resonator would be only a half wavelength

long at Alcator vacuum, and the vacuum breaks would be at a real power

feed point. The A6 launching system would,theoretically, have superior

power handling capability and loading and versatility characteristics.
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111-2.2. A, antenna system and engineering constraints

The Alcator A access ports were made by milling holes and slots

in a 3" thick solid block of 304 stainless steel (Bitter flange),which

is part of the high compressional strength Bitter magnet. The plasma

is actually located in a ten inch hole in this stainless steel block.

Figure 1 is a mechanical drawing of the A1 antenna mounted in the Bitter

flange. Two hollow pins hold the antenna firmly against the vacuum wall.

The treaded ends that screw in the antenna, are locally weakened, so the

pins can be broken in case of galling. Light inside the antenna can be

monitored through a line of sight path between the antenna center con-

ductor and a window mounted on the main 10 inch spool piece.

The feeder outer conductor is one inch in diameter, and has a "valve seat"

fit to the back of the antenna. For comparison, this outer conductor is

smaller than the TFR and PLT antenna center conductors, and Al is small enough

to fit inside the center conductor of nine inch coax. The inside

conductor is only half an inch in diameter, giving an impedence of about

40 ohms. 40 ohms is optimum for power carrying capability 18, and is a

good mechanical compromise between a sagging small center conductor, and

a large stiff one requiring too much dimensional stability.

The A1 antenna was "carved" out of a solid block of 304-L stainless

steelas can be seen from Figure 2. Only the center conductor and front

Faraday shield clips were welded inafterwards. Five almost symmetric

pairs of holes were drilled in the backplane of the antenna. (Figures 2

and 3). Starting at the center of the antenna, we have the one inch

feeder coax seat, then the insertion rod holding threads, the holding pin

threads, the Langmuir probe seat and finally, at the end of the antenna,

the antenna current probe seat.
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The rugged Faraday shield is an integral part of the back plane, and

was formed by slicing the side limiters at a 600 angle. The front over-

lapping clips were then electron beam welded to the back plane (Figure 4).

Note how the vacuum vessel radius is only 12.5 cm,while the plasma limiter

is 10 cm,so the Faraday clips are less than 1 cm from the relatively

(to TFR and PLT) high power density plasma edge.

Figures 5 and 6 are mechanical drawingsand assemblies of the vacuum

RF antenna feeder. All components are standard 4.5 and 2.75 inch stainless

steel hardware with knife edge and copper gasket seals. The ceramic vacuum

breaks are high grade alumina (A1203) with high temperature brazing,so the

whole antenna assembly is of ultra high vacuum quality (10-9 torr) and

fully bakable.

The two 4.5 inch bellows enable the outer coax conductors to press

firmly on the antenna seats. Two 30 liter/sec high-Q ion pumps, mounted on

the 2.75 and 4.5 inch "T's"pump the coax feeders and the large trapped

volume in the port behind the antenna. Note from Figure II1-2.1.(4) how the

main ten inch spool piece is at the bottom of a deep tunnel inside the

Alcator liquid nitrogen dewar, considerably limiting access to the Bitter

flange.

,All RF carrying surfaces are electroplated with .001 - .003 inches71

of pure silver (i.e., no organic brighteners). The skin depth at 200 MHz is134

(1) 6= = 4.6 x 10-6 m 1.8 x 0~4 inches

where, for silvera = 6.1 x 10? mho/meter, and a is much less than the

silver thickness.

About half of the easily calculatable system resistive losses comes

from the two meters of half inch diameter center conductors
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(2) RL = a 6L2nr ~ .18 Ohms

With 200 amperes in these conductors,some

I2 RL
(3) P/cm = L 36 watts/cm

P/cm 3  P/Cm 28 watts/cm 3

and a final temperature of 8300 K would be reached after (T. = 2700K)

(Tf - T) p 80 sec
(4) at = P/cm 3

where for stainless steel, p = 7.9 g/ cm3, CP = .504 K and k = .16 Cm K

This corresponds to about two hours of antenna conditioning, with sixty

10 msec pulses a minute. The 830 0K was chosen for a 10~8 torr silver

vapor pressure calculated from the approximate empirical formula 128

(5) log 10 p(torr) = 8.865 - 14058/T(*K)

From the one dimensional heat diffusion equation in a solid

(6) aT _ a2T
at X

where for stainless steel, a = = .04 cm2/sec

we can calculate the approximate heat penetration depth for a 200 msec RF

pulses as139

(7) Ax = VaAt = .09 cm << r

and the heat is deposited only on the surface of the conductors. In fact,

the surface temperature of a semi-infinite solid exposed to a heat flux is140
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(8 TP/cm 1 4 amAt
(8) AT = 7r4 5.70K

Similarly, the heat diffusion time out each end of the center

conductors can be estimated from equation (7)'

(9) At = ~ 17 hours

which is much longer than any run ,and the heat simply piles up as in

equation (4).

For sufficiently large surface temperature (~830*K), black body

radiation141

(10) P/cm2 = a e T4 (*K) .27 W/cm 2

where a = 5.67 10 cmIW *K and e = .1, radiation becomes important

( P/cm 2  - .09 W/cm2 during conditioning),and the surface temperature

is not likely to reach the 10~8 torr vapor point.

Three basic types of electrical breakdowns can occur in the vacuum

feeder: electron cyclotron, multipactorand avalanche breakdown. Electron

cyclotron breakdown occurs in high electric fields where

(11) fo - 2 eB = 100 MHz at B, = 36 gauss

The Alcator fringe fields are greater than 36 G, but in any case, a simple

coil could easily be wound around the feeders (B parallel to the feeders) to

increase the magnetic field. 200 dc amperes pulsed could also be injected

in the center conductors (from an RF feedthrough in the resonator) to

produce a "poloidal" field, also possibly increasing the threshold of

avalanche and multipactor breakdown. The drawback is the significant IXB

force on the antenna center conductor. For 200 amperes, 60 kG, and 10 cm,

the force is

-119-



(12) F = IBk = 120 newtons = 27 lbs

and the average poloidal magnetic field is

(13) B = * = 42 gauss

The time varying tokamak magnetic fields also induce voltages and

currents in the antenna feeders,

(14) V =-A .03 Voltsat

(15) 1 = V = V ai r2  . 2.0 amperesR L

where we assumed A = 50 cm2, -B 6T/sec, s 1.1 x 106 mho/meter,at s

and therefore, are unimportant.

Multipactor occurs when the accelerated electron path length in an RF

electric field becomes comparable to the electrode spacing.

(16) mR = -e E, cos wt

x = eED cos Wt

(17) E0 = d2 = 900 V/cm2e -90Vc

P = 160 watts

where we assumed d = 2 cm, 200 MHz, 50 Q coax, and RR = 1 o. The electrode

must also have a secondary emission coefficient greater than one at about

W = 2 Eod,which is generally true for insulators, and in particular, for

A1 203 ,which has a peak coefficient of about 5, around 1 keV. 142 At low energy,

the electrons cannot "knock out" secondary electrons,and at high energy, the

electrons are buried too deeply in the material. Conductors and, in particular,

silver,do not secondary emit easily, and the problem is most likely to occur

only in the ceramic vacuum breaks.
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For multipactor coefficients greater than one, the electric field18

need not be in phase with the electron motion, and a whole range of

electric fields are possible. In practice, multipactor can occur over

several decades in power (a E2 ), especially with long electrical breaks

where several different multipactor regions are possible. Figure 8 is

a dramatic example of how the antenna current can be almost totally sup-

pressed by slightly lowering the power into the multipactor regime.

Figure 7 compares the approximate experimental results with a more

sophisticated multipactor model that takes into account the electron

phase and the multipactor coefficient. A static magnetic field can

greatly modify the electron motion, and thus multipactor. Insulating

coatings with low secondary emission coefficient have been developed but

were not necessary, since the effect could be circumvented with reasonably

low (< 1 watt) and high (> 1 kW) powers.

The more commonly known avalanche breakdown can occur either inside

or outside the vacuum, when electrons or ions are literally pulled out of

the surfaces, forming large quantities of highly conducting ionized gas.

The worst pressure region is in the high militorr range, slightly above

the Alcator backfill pressure. To ensure high vacuum integrity and keep

as much as possible of the RF feeder at high vacuum, a 30 liter ion pump

was installed near the electrical breaks. The coax gas conductance in

the molecular flow regime80

(18) Xmfp 50 cm >> D at 10-4 torr

D3
(19) Uc 12.2 D = .44 1/sec << 30 liters/secL

where D 1.9 cm = average diameter, L = 100 cm, and therefore the vacuum

break pressure will be about an order of magnitude below the torus pressure.
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On the other hand, the Faraday shield conductance is large

(20) Us 11.7 As liters/sec 100 1/sec >> Uc

and the antenna remains at the torus pressure.

Figure 9 shows typical arcing conditions inside and outside the

vacuum feeders. Arcs outside the vacuum are usually "stiff", and

quickly crowbar the antenna current. Vacuum arcs can be either "stiff"

or "soft", and are accompanied by large amounts of light inside the

feeders.
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Side View of A Antenna and Holding Pins.

Figure 4
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111-2.3. Matching resonator

The Alcator A matching system used a simple high power resonator

(Figure 1[2 Since space was not a constraint, the 13" square coaxial

resonator was built large enough to accommodate almost any frequency

(45-360 MHz), any resistive or reactive loading resistance (.5 0 to

50 Q), and either m=0 or m=l phasing for powers up to the megawatt

level. The resonator was also used as a high RF voltage test stand

for electrical break development.

The basic matching system can be illustrated with a simple,half

wavelength resonator (Figure 2) with a load R at z = 1/2. The field

components are then 72

(1) V(z) = V. sin kz cos wt

(2) I(z) = cos kz sin wt

At resonance, the impedence at the tap point z = d is purely resistive.

From conservation of power and proper match,

(3) V2(d) 12 (X/2) RZO

and substituting (1) and (2) into (3), we have

(4) V9 sin 2kd - V0R
Zo Z

and the tap point angle

(5) kd 80 for R= 1 o and Zo 50 a

= 26* for R = 10o and Zo 50 s
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The actual resonator used was a combination of three overcoupled

resonators as shown in Figures 3 and 4.At 200 MHz, the vacuum feeders

are about a wavelength long, and a voltage minimum in the main resonator

is tuned to half way between the antenna feeders. The input tap angle

is calculated again from (5). Three conditions must be met for proper tun-

ing. First,the system must be resonant, second, the top and bottom

currents must be roughly equal, and third, the tap angle must be set for

proper match. These three conditions can be met by the three moveable

components; top plate, bottom plate, and tap angle. Unfortunately, the

three degrees of freedom are not orthogonal ,and expertise must be developed

for quick,accurate tuning. A number of diagnostic current loop and capacitive

probes are located in the matching system, in particular,on the top and

bottom tuning plates, near the vacuum feedthrough and,of course,in the

antenna.

At 90 MHz, the feeders are only A/2, and the resonator is 3/4 k,with the

bottom shorting plate removed. Other similar resonant modes are also

possible,especially at the higher frequencies.

Figure 5 is a much more general model of the resonator system that

is valid,even off tune. Using the general lossless transmission line

impedence transformation formula

Z + i Z, tan kt
(6) Z =Z 0 L

x *Zo + i ZL tan ki

the impedence of each half of the antennaZL = Z= RR/2,is transformed over

a distance L = A, to a new,complex impedence,Zx = Z2. Similarly, the lower

circuit ZL = 0 is transformed to Z3  Z3 and Z2 are combined to give Z4,
which,in turn, is transformed to Z5, and so on until Z which will be pure,

real 50 s if the system is in tune.
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The vacuum feeders can also be run in the push-push mode by tying the

two feeders together, coupling capacitively, and displacing the lower

voltage node in the resonator. Balance is guaranteed by symmetry, only

two degrees of freedom are necessary, and the system becomes much easier

to tune.

Figure 6 shows the basic mechanical layout of the resonator box, coupler

box, and the one stage capacitive DC break between the vacuum feeders and

the grounded resonator. Figure 7 shows the top plate and center conductor

tap angle remote control drive mechanisms. Figure 8 shows the top shorting

plate and tap angle center conductor bellows. The resonator is built of

1/4 inch machined and silver plated copper plate. The resonator must be

extremely RF leak tight, since for 200 amperes of push-push antenna current

400 amperes circulate in the resonator, corresponding to 20 kV RF and 8.0

megawatts of reactive power. Even under these circumstances, as we cal-

culated earlier inSection 111-1.2, the RF leakage is much less than 106

watts/cm2.
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Side View of 13 inch Diameter Coaxial Resonator
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111-2.4. A2 antenna system

To increase power coupling capability, a new antenna,A 2,was built

with the same backplane and diagnostics as A, but with a loop area 2.5

times larger. The plasma radius was reduced from 10 cm to 9 cm, and slotted

side limiters were installed on each side of the antenna, as can be seen in

Figures 1, 2, 3, and III-2.1.'(1).

The slotted side limiters were similar to the AI Faraday shield,and

were held in place by thin flexible stainless steel arms. These limiters

were installed first, then the antenna and current probes. When proper

fit was reached (as viewed from a .5 inch flexible boroscope through the top

keyhole Fig. 3),the two limiter arms and two hollow antenna holding pins were

tightened, wedging the antenna and limiters securely to the Bitter flange ,

as can be seen from cross section view of Figure :III-2.1.(I). The high current

carrying region between the center conductor and back plane was silver-

plated as A .

The impedence of the antenna can be calculated from the approximate

semiempirical formula for a narrow center conductor (w 1.1 inch) over

135
(d .54. inch) an infinite backplane.

(1) Z =125 116 log10 (w/d) for .2 < w/d < 5

90 z

To calibrate the antenna current loop probes, the test set schematically

shown in Figure 4 was used. The antenna with its limiters and probes were

mounted in an aluminum cylinder simulating the vaccum vessel. A 501 ter-

minated oscillator, directional coupler and coax were then connected to

the antenna coax seat through a special adaptor.
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The currents and voltages at the antenna are (Figure 4)

(2) Ib = a cos ea

(3) Vb = Iaza sin 0a

where 0a = k /2 = 22.50 at 200 MHz.

Similarly, on the coax side of the antenna-coax boundary

(4) Ib = I* cos e0

(5) Vb = 1*Z. sin e.

Equating (2) and (4), (3) and (5), and dividing the two results, we have

(6) Za tan ea = Z. tan 6o

(7) 00 = 36.70

From (2), (4) and (7), we finally have

(8) A Cos e I. = .86 1. = IoA Cos ea

For practical purposes, we will assume

V ( + V 2Vf
a9~ 50 50

and the calibration factor

IV(10 a V f(10) Cp = ~ 25 V - 6.7 amps/volt at 200 MHz (typical)
p p

To increase the voltage and power capability, a much larger (compared to

the first version (Figure 6)) pair of electrical breaks was also installed

(Figure 7). Although several times longer, these new feedthroughs could

only carry about twiee the power, since the thin, long exposed center
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conductors in the electrical breaks had a very high impedence, and unneces-

sarily increased the local RF potential. It is believed that the power

capability could have been increased by simply enlarging the center-

conductors of the new electrical breaks. The electrical breaks were

"effectively" shortened (as in Figure8) by shorting the first half of the

electrical break with aluminum foil, resulting in an almost identical

current carrying capability.

After elaborate testing of many electrical breaks, materials and

geometries, it was consistently found that RF breakdown was several times

more severe than DC (arcs 6 inches long between feeders were common), and

always occurred on sharp edges. The most common and difficult to solve

problem was at the metalized surface of the insulator,where the brazing

thins out to a sharp knife edge. Several epoxies and corona rings were

tested with some success (factors of 1.5 - 2 in antenna current) to cover

these edges, but the main drawback was that,once breakdown occurred, the

voltage standoff was greatly decreased, and the breaks were very difficult

to clean.

Another important factor is keeping the electric field at the

metalized joints, into the ceramic,so that particles cannot acquire

kinetic energy before colliding. Figure 9 shows a ceramic break compatible

with the A1 and A2 feeders using this principle,and where the brazing

is down in a- groove at the end of the ceramic sleeve. High power RF

electron tubes are usually built this way.

Several liquids were also tested to wet these edges, or even completely

submerge the ceramic electrical break inside a leak tight teflon sleeve.

The liquid had to be of very high dielectric strength, low Z, volatile solvent

(in case of contamfnation of-the tokafak), lossless (which,for all practical

-140-



purposes, meant nonpolar), and nonflammable. Carbon tetrachloride met

all these specifications with no major drawbacks,except that it is a

known carcinogen, and great care must be taken to avoid personnel exposure.

Figure lois a simplified sketch of a flexible version of A2 that could

be used for low power tests,and inserted in any of the much smaller HCN

or Thompson port side keyholes.
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Boroscope View of A2 Bridge Assembly Inside
Alcator.

Figure 3
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111-2.5. A4 antenna system and Faraday shields

The third antenna tested, A4, is shown in Figures 1, 2 and

111-2.1.(]). The backplane and side Faraday shield are from the old Al

antenna. The center conductor was moved out like A2,and a thick,dome-

type Faraday shield front was added instead of the thin A1 clips. Slightly

higher (than A2) slotted limiters were also added.

A radially scannable Langmuir probepeeking through the front of the

Faraday shield,was installed to measure the tenuous plasma near the

antenna (Figure 1). The probe connections were made through an additional

port on the already overcrowded 10 inch side port.

The purpose of the Faraday shield and side limiters is twofold. First,

it keeps the tenuous plasma and, in particular, the particles streaming along

the field lines out of the high electric field region of the antenna

(kilovolts/cm),and second, it shorts out the unwanted Ez component of the

antenna without affecting the E. components.

Two general rules of thumb can be formulated for the design of a

Faraday shield that will not significantly shield out the desired BZ'

First, the shield clip width should be much less than the center conductor

to backplane distance. Careful examination of the clip geometry and the

backplane currents shows that part of the backplane current will weave

up the inside of the clip,about a distance equivalent to the clip width.

This image current path will be unimportant only if it is low compared

to the center conductor, and thus our first rule. In A4 ,the clip width

was 2.5 times less than d.
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Second, the clip geometry must be designed so the magnetic energy

stored in the gap between clips is less than the energy stored inside

and outside of the shield. To see this we will,for simplicity, examine

the magnetic energy of only the center conductor of a coaxial antenna.

The stored energy is
r

(1) W = A (1/r) dr = A - 1 A

where for typical Alcator values

inside shield Wi = 2 A .25"< r < .5"

at shield Wat = .33 A .5"< r < .6"

outside shield Wout = 1.66 A .6"< r <

For a good shield, the flux through the shield region is about the

same as without the shield. With the same flux and a gap to width ratio,

G, the energy density in the gap is increased by G2, but the volume is

decreased by G, so a net factor G remains. For A4 , G = .25 /.032-" 8,

and the energy in the shield, Wat, becomes 8 x .33 = 2.64 = W in= Woutand

a small reduction in flux can be expected as compared to A2.

These rules came from a number of experiments on the simple,but very

realistic,set up of Figure 3. Several stripline conductors of .

width w, length k and height d above a large ground plane. ,were energized

as in Figure III-2.4.(4). Several types of slotted and unslotted limiters

and Faraday shields were also tested. Flux measurements at height h were
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made with a shielded magnetic probe (Figure III-3.2.(8).

Figure 4 shows how the magnetic field is independent of the center

conductor width w, and decreases as 1/r2 as expected from the quasi-

static near-field with d << r << X

(2) B 1 -1 1 2dr r r -d r+d
1 2

Figure 5 shows the expected dramatic effect of Faraday shield clip

width. Figures 6, 7, 8 and 9 are similar tests with Al and A2 inside

the cylindrical simulator. Figure 6 shows the weak effect of the

slotted limiters spacing on A2 . Figures 8 and 9 show the flux ratio

of Al to A2 fcr carefully controlled conditions. Although the radia-

tion resistance increases as flux squared (42 = 16), the plasma radius

was decreased by a centimeter (from A1 to A2 ), and thus for large

k, ~ .6/cm, the evanescent edge layer is thicker and the resultant

factor is only

3) ~ 8.8
e-6

A4 had an effective flux about 30% less than A2, as measured in the

cylindrical simulator.

A side effect of a good Faraday shield is that the antenna becomes

a slow wave structure. From transmission line theory,34

(4) V =1
(5=ZLC

(5) z L
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For a vacuum dielectric, A4 geometry without the Faraday shield (Figure 1),

and from equation 111-2.4.(1) with w/d = .83

(6) V = c = 3 x 108 m/s

(7) Z = 134 o

Combining (4) - (7) we have

(8) C = 2.5 x 1011 F/m

(9) L = Z = 4.5 x 10 7 H/m.
C

Adding the Faraday shield does not significantly change L, but the shield

capacitance from Figure 1 is large

(10) Cs = 4.3 x 10~11 F/m

The new phase velocity and impedence are now

(11) V = L Ir =s .6 c

(12) Z = CLC ~ 81h

The impedence and phase velocity could be even further reduced by mounting

large slotted knobs on the back plane or center conductor (the Faraday

shield design rules apply here also) so as to increase the capacitance per

unit length but not the inductance and antenna loop flux.

Following the same procedure as in Section 111-2.4.

(13) ea 370

(14) 0 510
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(15) IA4 = '79 10 = .92 1A2 ' Io

and our current probe calibrations are still within reasonable error.

Figure 7 is the calibration factor for the top and bottom A4 current

probes as a function of frequency. As expected, the calibration factor

is nearly inversely proportional to frequency.
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End View of Antenna Test Set
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111-2.6. A3, As, Ar antenna systems

To further improve the power coupling capability of the A2 unshielded

type antenna, a longer and much higher current antenna system, A3, was

designed (Figure 1). The main new feature is that the matching is done

in a vacuum,so the ceramic feedthroughs are at a pure real power point.

Thus for a conservative 200 amperes, 800 kW can be coupled.

Figure 1 is a preliminary mechanical design of A3. The antenna

itself could be almost twice as long as A2 ,and very easy to insert. Both

antenna center conductors are hinged to the large, four inch diameter, hollow

feeder conductor. Image currents run directly on the vacuum vessel, and

the end of the conductors are held in place by threaded rods through the

vertical keyholes. The large ,stiff ,hollow feeder is very rigidly canti-

levered from the outer conductor behind the sliding tuning plate. The

tuning plate is positioned by motor driven hollow control rods (at atmos-

pheric pressure) with current loops at the plate surface. The entire matching

and antenna system is the same size as the A2 feeder, (X/2 at 90 MHz,

X at 180 MHz). All parts are stainless steel, bakable and silver plated, as

is A1. Electrical breakdown can be monitored through windows mounted on

the tuning and matching control flanges.

Tuning is done through a variable vacuum capacitor in a six inch "T"

near the voltage maximum. From conservation of power when the system is

in tune,and RR <<Z , we can approximately write

in * in in 12 R

which can be rewritten as

V V V2

(2) -- - * V- = R
0 c 0
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and solving for capacitor reactance

0
(3) Xc ~Z0  0  1600 for Z = 50 o and R = 5 u

we find C = 5.0 x 10-12 F at 200 MHz. This corresponds to a rather large

capacitor disk four inches in diameter with a half inch spacing.

Two other major advantages of the A3 system are that tuning and

matching controls are nearly orthogonal ,and the smaller and simpler

matching system cannot contain as many parasitic modes. A3 is thus

much easier to tune and model accurately. A major possible disadavantage is

that the high current carrying part of the antenna intersects the cyclotron

resonance layer.

Figure 4 is a very preliminary conceptual design of a fully shielded

3600 antenna similar to A4 . This antenna would be wider (1.6" instead

of 1.2"), and of lower impedence than A4. A. could be inserted in either

(or both) the HCN or Thomson horizontal ports. The keyhole bridges in

these side ports would be milled in place without lubricants and without

dismanteling the tokamak, a tricky but nevertheless feasible task.

Finally, a no compromise realistic antenna was designed with all the

technology developed through the A1, A2, A3, A4 and A5 designs. Figure 2

is a simplified schematic of the A6 RF components. The A6 antenna is a

slow wave, low impedence, 3600 shielded antenna similar to A4 and A5

(Figure 4). Each half of the antenna is independently matched to 50 0

by two short A3 type vacuum resonators (Figure 3 ). The antenna halves

can be easily and arbitrarily phased by a variable delay line (Figure 6)

The 9" diameter coaxial power splitter (Figure 5 ) is of the long, linearly

tapered type, which is relatively broadband (90 - 200 MHz) and free of

parasitics. The 9 inch DC block is three stage, coaxial and similar to

the two stage A2 version.
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Matching is mechanically most easily achieved by changing the

frequency ,since the A3 tuning capacitor would be too large for the more

compact A6. The tap point (near the operating frequency) can be easily

calculated and experimentally verified under bench test at atmospheric

pressure. For gross tap changes, the standard 4.5" "T's" can be inter-

changed. The vacuum feedthroughscan be custom built, or the already

available (FPS-17) high power 9 inch coaxial TR (Transmit-Receive)

switch tube vacuum barriers could be used. The power splitter and delay

line could also be built from available 9 inch "T's" (FPS-17 up-down

switches) and already motorized A2 feedback phase shifters.

The antenna itself could be secured in place by any combination of

different ways, in particular, by horizontal back plane pins as A,

A2, A4 , vertical rods as A3, or even screws into the Bitter flange as A5 .

A6 could also have the full line of RF, plasma and breakdown diagnostics.

3600 slotted side limiters similar to A2 and A4 would also be installed.

For a sufficiently slow wave structure (V = VA4 = .6 c for Alcator

C and 200 MHz),a voltage null in the antenna can be located slightly on the

low field side of the major radius. This produces a nearly ideal field pattern

for the single perpendicular pass regime (RTIIH < RwcH) and a small near-field

edge heating at the resonant layer.
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Simplified Schematic of A6 System

Figure 2

Simplified Mechanical Layout of A6 System

Figure 3
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A5 Type 360* Antenna

Figure 4
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111-3. Extensive Plasma and RF Diagnostics

One major objective of the experimental apparatus was to.have as

extensive RF diagnostics as possible. For this purpose, almost all

easily implemented RF diagnostic schemes were used.

Forward and reflected power were measured at different points in

the system with 9" coax directional couplers. Top and bottom resonator

balance and antenna currents were measured with magnetic probes. A high

speed dedicated analog computer calculated RR in real time. Many unshielded

RF probes were located around the torus, in particular, in the near-field

of the antenna, in the opposite limiter port ,and poloidally a quarter of the

way around the torus. Ceramic thimbles were also built to house shielded

probes and also a three component, Be, Br, and Bz RF probe. Two k,, arrays

of probes were used to measure the parallel wave length and field profile

at the port.

Several increasingly sophisticated phase detection schemes were used to

measure parallel and perpendicular mode numbers. These schemes include a

high speed compressor and mixer, single sideband generated fringe correlators,

and a sine cosine phase detector.

A number of plasma and RF breakdown diagnostics were also designed and

used, among which were several high sensitivity light detectors monitoring

the RF antenna feeder coaxes, the electrical breaks, and the inside and

outside of the antenna (Figure 1).An Ha light detector, Langmuir probes,

high speed bolometer and trapped particle detector were designed for

measurements even in very high RF fields.

Finally, all the tokamak support diagnostics were used and, in particular,
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73*
the alcohol laser interferometer *, mass selective charge exchange

energetic neutral spectrometer33-38 , soft X-ray detectors39*

39* 2*neutrons , as well as all the usual magnetic diagnostics

Stephen Wolfe and Jeffrey Parker were responsible for density measure-

ments, Martin Greenwald and Catherine Fiore for charge exchange,

Robert Granetz for soft X-ray, David Gwinn, Daniel Pappas and William

Fisher for neutrons, and David Overskei and Bruce Lipschultz for mag-

netic diagnostics.
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111-3.1. RF power, radiation resistance and data acquisition

Forward and reflected power were measured right at the matching

resonator by 60.2 db (at 200 MHz), 9" directional couplers (Figure III-3. (1).

Top and bottom antenna current were measured by calibrated current loops

inserted through the top and bottom MW port.

Double shielded RG 55 coax (= 7 db/100 ft at 200 MHz) was used for

all RF diagnostics. All lines were properly terminated to 50 a and

shunted with high pass .2 microhenry inductors (XL = 250 9 >> 50 a at

200 MHz). Custom high voltage (>l kV) DC blocks were installed at all

RF sources.

Absolute RF measurements were made with 7A24, 400 MHz, 50 Q terminated

Tektronix plug-ins in two (7834), 400 MHz storage mainframes. Relative

measurements at the base frequency and absolute measurements at lower

frequencies were made with 7A18 plug-ins in five 7623A, 100 MHz mainframes

(slew rate limited, = 3 db down at 100 MHz, 14 db at 200 MHz). RF voltages

were usually measured at the base frequency as peak to peak measurements

off oscillograms, and rarely by ordinary square law diode detectors.

Figure I shows the 100 kHz bandwidth on-line radiation resistance

analog.computer. Forward and reflected power and either top or bottom

antenna current signals were 3 db split, displayed at the base frequency

and square law detected. The diode signals were corrected for true

square law over a 20 db range by diode networks, and then subtracted and

divided to calculate loading resistance.

Most of the plasma diagnostic signals were recorded either on storage

oscilloscopes, or on a slower CAMAC digital memory storage system interfaced

to a PDP-11/55 computer.
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111-3.2. RF wave probes and arrays

Many small unshielded RF wave probes were installed around the torus,

as can be seen from the cross section view of Figure III-3.(1).

Most of the probes were unshielded and similar to the ones shown in

Figure 2 and the bottom of Figure 1. These probes were mounted on 3/8"

0D pipe,with atmospheric pressure on the inside. Bakable .125".OD hardline

coax and high temperature brazed alumina feedthroughs were used for high

vacuum integrity. The feedthrough welds were electron beam welded and

protected by side limiters. The Langmuir probe, A2 flux model probe and

k., array of Figures 5, 4, and 1 were of similar construction. The array

probe spacing was about 2 and I cm. A simple k. array of 3 probes similar

to .Figure 1 was also used.

Figure 6 and top left of Figure l show a ceramic thimble that was

used to house more complicated wave probes near the plasma, in an atmospheric

environment. Among these probes were unshielded (Figure 7), shielded

(Figure 8), differentially shielded (Figure 9),and three axis (Be, Br, BZ),

magnetic loop probes.

The inductance of the small probe loops can be approximated as136

R 2
(1) L = 9 R + 20 rpH 4 x 10~9 H, Rp = .065", rp = .025"

p p

The effective area of the probe Ae ,is larger than the estimated Am (due

to the reentrant geometry of the probe tip),and can be accurately calibrated

in the nine inch diameter coaxial field simulator of Figure I--2.4.(5).

The fields could be pure electric, magnetic, or both, depending on termina-

tion and location in the simulator.
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(2) 1 = for z =z
zo

(3) H= 2 rc

(4) Vp Aewo H

V p r c *.(5) A T f 11. .19 cm2 > Am = 7r = .086 cm2

Capacitive coupling effects by the unshielded probes were similarly

investigated. For simplicity, we will assume the probe tip has an effective

capacitance area Ac exposed to a wave electric field. The current and

voltage induced in the probe can be estimated as

(6) Ic = Ac w e E

(7) Vc = L !c= L w2 Ac EE

and can be neglected even in the high dielectric plasma edge since

(8) E= B

() V c=AcLw26 2

(9) = cL ~ ~- L ~.013 for k,, e,, 200 MHz
-P A013

p p
.016 for k = 1/cm, 30 eo

Each half of the unshielded antenna can be modeled as shown infFigures 11

and 12. Power can be dissipated by four basic different mechanisms;.

First and second, the conventional inductively coupled RR and circuit

losses RZ, third and fourth, resistive R , and capacitively coupled

RC losses, primarily at the high voltage (Va) feeder area (A) of the

antenna. The many possible pitfalls are best illustrated by a plausible,

realistic numerical example.
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(10 ) P9,12  * 2 (RR/2) = 20 kW

(11) E = Z R - 20 V/cm
Ow

(12) e /2 = =2 24'
V2 A0

(13) V a 10 ZO sin e /2 a 3.7 kV

Va
(14) Ez = ~ 1.8 kV/cm >> E

(15) CP ~ rasOA lo- 12 F
ra -rp

(16) IXC| = 800 n

(17) JXL . = 37 a

(Va/2)2
(18) PC ~ R 2C ) 4.3 kW

Va2
(19) P= - 4.6 kWp

for 1 = 100 amps and RR = 4

for k = 20 cm

for f, = 200 MHz

for Z, = 90 si

for d = 2 cm

for A = 10 cm2 and ra - p 1 cm

for RC lXcI

for Rp ~ 3000 0

The root of the problem comes from the fact that the antenna electric near-

field (eq. 14) is two orders of magnitude larger than the Eow (eq. 11)

wave field (five orderslarger than Ezw). This high voltage (eq. 13) combined

with even large impedences, can give rise to substantial losses (eq. 18 and

19).

In equation(15),,we assume a vacuum dielectric E ~ so. If instead, we

assumed a more tenuous plasma with s 30 c,, then JXC = IXLland substantial

current could be diverted away from the antenna. Note also that e = 103 ,

and the problem is even more severe along the magnetic field lines.

To investigate these possible pitfalls,a medium power (4l0 kW), capacitive

antenna was installed. Figures 6 and 13 show this probe with a 1.5 inch diameter
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molybdenum electrode. Power was fed through RG 8 coax with custom-made

high voltage connectors. The inside of the probe was gas cooledso the

probe could be inserted into the plasma past the limiter radius.

Since the tokamak main limiter radius had to be adapted to each

antenna, several partial limiters,similar to Figure 13,and full 360*

limiters were built and also energized with RF or used as RF probes.
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Unshielded, Shielded and Shielded Balanced Magnetic Probes

Figure 7 Figure 8 Figure 9

Top View of ke, Array and Access

Keyholes in Thompson and HCN Ports

itter Flange

Figure 10
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Simplified Model of A2 Antenna

Figure 11
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Simplified Electrical Model of A2 Antenna

Figure 12
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111-3.3. RF wave correlators

Several different schemes were used to measure the phase difference

between various RF probes around the torus. The measurement difficulty

comes from the large dynamic range necessary to continuously track the

phase of the nearly 100% high frequency (up to 100 kHz) AM and PM

modulated probe signals.

Figures 1 and II1-1.1(5) show the most used basic techniques. Conceptually,

the simplest scheme was to actively compress and limit the probe signals

with cascaded 28 db RF amplifiers and diode limiters. These signals were

then mixed at the base frequency with standard 7 dbm double balanced mixes

to give a signal roughly proportional to cos (4I - 02). The main draw-

backs are phase error and ambiguity. The advantage is,on the other hand,

unlimited bandwidth. A more clever scheme, the sine-cosine method,did

not require limiting ,and is based on the simple trigonometric identities

(1) A cos a B cos a = cos (a- ) + USB

(2) A cos a B sin = sin (a- ) + USB

This method is implemented by mixing the A and B signal as in equation(l).

The upper sideband (USB) is suppressed by a 16 MHz filter. The B signal

also is phase-shifted with a 900 delay line and mixed with A as in equation(2).

The phase difference can now be unambigiously resolved, given D cos y and

D sin y, by either the PDP 11 or a high-speed analog computer (4 quadrant

divider and arctan (0 - 2l)). The main disadvantagesof this method are the

high data storage rates for off-line digitally processing many probe

signals, and the fact that the amplitude of the local port mixer signal
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must not be too modulated (the oscillator or antenna current are appropriate,

but not an uncompressed probe signal).

All these problems can be circumvented by superheterodining the

200 MHz probe signals down to 500 kHz,and then using a linear set-reset

type 0 - 2u phase correlator. Figure 1 is a detailed schematic of a

later version of this method. The mixers can be operated in the linear

range,since the local port signals are derived directly from the 200 MHz

transmitter oscillator and a 200.5 MHz local oscillator. The USBs are

removed by 16 MHz filters,and all linesincluding the out ports,are pro-

perly terminated. 60 db amplitude dynamic range (5.mV to 5 V) is obtained

by a high speed zero crossing comparator. High phase stability (in terms

of local oscillator drift),500 kHz, input RC filters were used for more

accurate but smaller dynamic amplitude range tracking. Both positive and

negative feedback were used to control the gain and hysteresis of the

comparator. Without feedback and hysteresis, the correlator is unstable

without signal. Simple first order and active fourth order 50 kHz

output filters were also used to filter out the 500 kHz USB. An up-down

counter could also have been used instead of the set-reset flip-flop, but

the output can run away if tracking is lost.
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111-3.4. Plasma edge and RF breakdown diagnostics

Three small Langmuir probes were installed in the HCN port and in

front of the A4 Faraday shield to estimate the density and temperature

of the tenuous plasma edge (Figures 1 and III-3.2.(5)).

Although probe theory can be extremely complicated in the presence

of high magnetic or RF fields, the basic physics is nevertheless the

same?7 For highly negative biased probe (with respect to the vacuum

vessel and plasma potential),a thin sheath, depleted of electrons, is

formed around the electrode. Ions in the nearby plasma acquire an energy

KT
(1) -eVs 2 e

from the leaking electric field (Debye shielding) before entering the

sheath and free-falling onto the probe. Outside the sheath, quasineutra-

lity and Boltzman relation are valid,so that

e V

(2) n = no eKT

The ion saturation current at the sheath boundary is thus simply

(A A since r, > AD)

-1/2 K T,
(3) I = e n vi As = e no e _ K T A

Slightly above (in probe potential) the ion saturation regime, the

dI/dV is mainly due to the electrons reaching the probe,and again from
p

Boltzman relation
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e V

(4) Ie a eKTe

and the electron temperature can be inferred from the slope of the

In (I) vs. VP curve.

The Alcator edge plasma has a very small n, 0  scale length

(~ .2 inches so the .050 inch diameter stainless steel probe wire has an

effective area Ap ~ .2 cm2 . For a 10 eV, 5 x 1013 cm-3 plasma,the ion

saturation current will be about 3.0 amperes,and the electron temperature

can be inferred from a 60 volt peak to peak triangular probe voltage and

current trace. Figure 1 shows the basic circuit used,where care was

taken to avoid standing waves in the probe coax by proper termination at

200 MHz.

A number of high sensitivity (0.4 A/W) silicon pin diodes were used to
0 

0monitor visual light between 3,000 A and 11,000 A around the torus and

antenna system, andin particular, through the antenna hollow holding

pins, inside the electrical breaks and vacuum feeders, and in front of

the antenna through the bottom MW keyhole. H. filters (6520 - 6600 A) were

also used to estimate hydrogen ionization. The detectors were RF

shielded,and multiple wave reflections were carefully suppressed to again

avoid any possibility of RF pick-up (Figure 2).

To further investigate the intricate arcing and diffuse light production

at the antenna, an optical viewer was designed to photograph (and later

film) the antenna from the HCN or Thompson ports during a plasma shot.

Figure 3 shows how a small pyrex window and polished stainless steel mirror

attached to a 5/8 inch diameter pipe could be used with a high resolution,

1/2 inch diameter boroscope to image the plasma cross section (Figure 4). This

diagnostic would also be used to monitor plasma edge position near the

antenna.
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Langmuir Probe Electronics
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Top View of Optical Viewer Geometry

Antenna

Thompson
Port

Figure 3

Detail of Stainless Steel Mirror and Boroscope Assembly

Boroscope

Figure 4
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111-3.5. Charge Exchange Diagnostic

Charge exchange33-38 was the single most important diagnostic for medium

power heating experiments (Figure 1). Figure 2 is a simplified schematic of the

fast neutral spectrometer. Energy selection is done by a series of electro-

static capacitor plates C, - C.. Mass selection is also made possible by

replacing C0 by an electromagnet. At high plasma density, the energetic

neutral flux is very small thus requiring high stripping cell efficiency.

Either 10-4 torr of steady-state nitrogen or 10-2 torr of pulsed helium

was usedwith extensive use of baffles and differential pumps,to limit

plasma contamination by the high pressure stripping gas. Figure 3

is a typical high density shot where both steady-state N2 and pulsed He

were used. The first 100 ms of flux is detected with background N2,

and then He is pulsed, giving a much higher sensitivity. The 20 ms decay

time of the He signal is due to the gas pressure decay, and not a change

in the neutral flux.

The fast neutral flux arriving at the spectrometer can be written as

the product of three factors: collection, production and attenuation.

+aa

(1) 2 = v J cx vinn fi (E) exp (_ io cx' dr) dr

-a r

collection production attenuation

For low density and high energy neutrals, the flux is easy to calculate and

interpret, since attenuation (ionization and charge exchange) is small, and since

the neutral density in the center is not too many e-foldings lower than at the

edge, and high energy ions are only produced in the hot center. The central

temperature can then be simply estimated from the slope of the high energy

neutral spectra.
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At high density, and especially with RF in Alcator, none of the above

is true. Attenuation can be several e-foldings, and the central neutral

density is very low compared to the edge. Low energy neutrals from the

surface (nn = 1011 - 1012 cM- 3) have e-folding lengths of the order of a

cm, and do not contribute to the central neutral density (107 - 108 cm~3)

which is sustained by electron-ion recombination. At high density, for

well-behaved distribution functions and profiles, the high energy spectra

will be colder than the central temperature. Figure 4 shows the neutral

spectra for different times in a typical plasma shot. Note how the

energetic neutral flux dramatically decreases with density. Figure 5 shows

a typical ion temperature evolution with time.

Another major pitfall of charge exchange is that Alcator has a comparatively

large port ripple (Figure 7), and only perpendicular viewing is possible, so

only the vB drifting trapped particles are observed,and are, in many cases,

not representative of the bulk of the distribution function. The mean free

path for detrapping these particles out of the magnetic well is approxi-

mately (Figure 9)1,35,85,86

(2) X VVB 2 5.6 x 1013V1'
0  E5/2

yii n R B

where

v'2

(3) vVB = 2 wci R

(4) B2 .04

(5) yi= 1.8 x 10-7 p-1/2 E-3/2 A n

This mean free path allows the higher energy trapped particles to drift

upward significant distances (Xmfp - a) in the plasma. This effect is
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experimentally seen from Figures 6 and 8 where the asymmetric effective

temperature and neutral flux are shown. This observed asymmetry is

of course, reversed with reversed toroidal field,and closely tied to

temperature and density profiles as can be seen from the difference

between Figures 10 and 11, where the plasma current was changed from 100 kA

to 225 kA. At high currents the profiles are broader and the high energy

production source becomes closer to the high neutral density edge, thus

enhancing the asymmetry.

For high enough energies so the mean free path is larger than the

plasma radius, the central chord distribution function can be completely

depleted. This effect is also observed experimentally by a dramatic drop

in neutral flux above 4 - 7 keV in medium density plasmas.
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Change Exchange Apparatus

Figure 
1
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111-3.6. Bolometers and superbanana trapped particle detectors

In this Section,we present a zeroth order model to illustrate how trapped

particles may also be an important power absorption loss.This discussion will be

confined to the high energy particles at 5 keV, with w. = 2 wch 2 7 200 MHz,

4% ripple, and nH = 1014/cm3. The ICRF wave interacts with these trapped

particles in a volume103

(1) VT = 4(AR a %T) ~800 cm3 << 2 R wr2 - 105 cm3

where

(2) AR z 1 cm (Eq. IV-4.2.(36'))

(3) a = 10 cm

(4) £T ~ 2 R ~ 20 cm (Figure III-3.5.(7))

The trapped particles drift upward.(or downward) at velocity

V. 2

(5) vVB = 2 ci R= 1.4 x 105 cm/sec

and are confined a time

(6) tT = -a 7.1 x 10~5 sec
vB

before leaving the plasma. A large fraction of velocity space is trapped

so that

(7) nT = n0 " = 2 x 1013 cm-3

Since these trapped particles have large v, and bounce back and forth

through the resonant layer, they can absorb much more power than the statis-
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tical average (over the plasma volume) calculated in Section IV-4.2.

If 50 kW were absorbed by these ions, they would reach an energy

P t
(8) W = T 1.4 keV

before leaving the plasma. These ions would have a parallel velocity

(9) v. v= 2 x 107 cm/sec

and pass some

(10) N V" a 70
vB T

times through the resonant layer, acquiring

(11) AW = ~ 20 eV

per pass. This very crude calculation is in reasonable agreement with the

energy kick we calculated from equation IV-4.2. ( 20) where we can make the

second harmonic substitution of equation IV-4.2. (34).

(12) AW = 2E 2 = 2.2x10" ergs 14 eV
(r.P 2  eM +2 7

where we used103

(13) E I statvolt/cm (Section IV- 5.3)

(14) W' 2 wci Vt B 5 x 1013 sec 2

kp
(15) ~.05

Upon the realization of the importance of this possibly large power loss

mechanism, a trapped particle detector and bolometer were designed and built.103

These probes were small (3/8 inch diameter), and could be inserted in any port,
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but in particular, at the antenna port (through the top and bottom

keyholes), under and over the resonant layer where trapping is most

likely to occur.

Figures 1 and 2 show a simple,conceptual design where a poloidal screen and

the machine virtual limiters are used to shield out streaming particles,

but not the superbanana orbits. The circuitry is similar to Figure 111-3.4. (1)

and the probe current can be estimated a-s

(16). Ip e vvB nT kT wp = 4.5 amperes

The parallel and perpendicular energy can also be estimated from the

probe characteristics

(17) W, = W ~ 200 eV

if the probe can sustain the high voltage (V ~ 2W../e 400 V) needed to repel

the ions without causing a plasma discharge in the probe tip.

The bolometer probe is a simple .002" thick stainless steel foil,

with thin, flattened thermocouple wires tack-welded to the back of the foil

(Figures 2 and 3). The ohmic heating power surface density averaged over the

torus vacuum chamber is

(18) P/cm2 = 2 R 2 a 11 W/cm 2

and from equation III-2.2.(4),the bolometer temperature increase over a

150 millisecond shot is approximately

(19) T = P/cm2 t = 410Cp c Ax

where

(20) Ax .002" foil + .002" thermocouple
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The detector reponse time can be calculated from equation 111-2.2.(9)

as

(21) At A ~ 2.6 msec. << t - 20 msec.

41*C corresponds to 1.6 mV, with cromel-alumel, type k, .062" OD jacketed

Omegaclad thermocouple wire, which is easily measurable during the plasma

shot. Localized trapped particle fluxes could give rise to large temperature

increases. A short 20 msec. 50 kW pulse, on the other hand,would only

produce 36 vV,and the measurement becomes extremely difficult due to the

large dB and RF fields near the plasma. Even with a small 1 cm2 loop in a

1 KG, 30 msec. decay time magnetic field, the pick-up voltage would be

300 UV.

To make the measurement of such small signals possible, a triple differ -

ential measurement scheme was used, as shown in Figure 3. The input differential

amplifiers have a gain of 1000, and were tested to discriminate a 10 VV,

1 kHz (-3 db) signal on top of a 1 volt 60 Hz common mode noise. A second

reference signal is used to subtract background temperature and pick-up.

The second differential stage is high pass (T > 2 sec) to avoid saturation

(total series gain is 105). The third differential stage is at ground

potential in the control room.

The jacketed thermocouple wires are twisted and shielded inside an RF

tight stainless steel tube. The electronics is in a RF tight aluminum box

that is in a larger, half-inch thick, soft steel magnetic shield box. The

steel box is electrically tied to the vacuum vessel, and acts as an electro-

static guard for the aluminum box. A heavy braid shield covers the thermo-

couple wires between the Conex vacuum feedthrough and the aluminum box. The

thermcouples and electronics are oriented so as to have minimum coupling to

the tokamak OH and vertical field.
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IV. THEORETICAL WAVE MODELS AND COMPUTATIONS

IV-l. Introduction,First Order Models and Approximations

For the present work, many parameters and processes not fully discussed

in the literature need to be defined21,22,30-32 clearly in simple models to

avoid confusion in the more complicated analytical or computational models.

An intuitive feeling for the order of magnitude of most important para-

meters is derived from the most elementary foundations of physics. Among

the processes that one must understand qualitatively and quantitatively,

are Alfven refractive index and wavelength , experimentally and theoretically

32 7 46
derived radiation resistance , and wave quality factors . The homogeneous

Cartesian waveguide is then usually sufficient to derive the most important

scaling laws of the wave field structure and antenna design.

The reader more experienced in current ICRF work may wish to proceed

directly to Sections IV-5., IV-6., and IV-7, where the more advanced

models are discussed: inhomogeneous cylindrical plasma model, stochastic

mode stacking, and single perpendicular pass regime.
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IV-l.l. Eigenmode wave field approximations in toroidal geometry

In the toroidal geometry of the Alcator tokamak, the wave is bound by

a highly conducting vacuum vessel. For wavelengths short enough to fit

in the minor torus cross section, the wave will propagate and bounce around

inside the toroidal cavity. Since the minor diameter is much less than

the free space wavelength (X.= 150 cm at 200 mHz),we will have a density

cutoff below which the wave cannot propagate. In Alcator we typically

have

WO 2T 200 MHz

B, 60 kG

(1) n e 3 x 10"4 /cm3

AAlfven 4 cm

ncutoff ~0
13/cm3

For wave damping length smaller than the minor radius, no eigenmode

is formed, a situation known as the single perpendicular pass regime (IV.7).

For damping length of more than the minor radius, but less than the major

radius (R. = 54), we have perpendicular eigenmodes,but not toroidal ones.

This situation is called the single toroidal pass regime. Since the Alcator

aspect ratio (R,/a = 5.4)is large, toroidal geometry maps out well into

cylindrical geometry. (IV-3, IV-5, IV-6)

The basic physics of a perpendicular eigenmode can be illustrated with a

simple TE10 mode (Transverse electric) in a rectangular waveguide along z, of

width 2a, filled with an isotropic non-dispersive dielectric (Figure IV-l.2 (1)).

The electric and magnetic fields (from Faradays Law) are of the form (MKS)134

(2) Ey = E, sin (k x) ei(kz - wt)

(3) Hx =-Ey WP0
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(4) Hz = E, s i(k - wt)
tAPJ COS (k xx) e z

with boundary conditions

(5) E x = 0, 2a = 0

(6) k ~ kg ~ T

where p, is the perpendicular mode number (typically 1 4 v 10 for

Alcator).

Similarly,in cylindrical geometry, using the usual coordinates

r, e, zwe have TE or TM eigenmode solutions of the form134

(7) A = A. cos (me) im (kr) ei(kIIz - wt)

where m = 0, 1, 2...

For waves of the Alfven class near the ion cyclotron frequency (W

2ci ), we notice ( Appendix 1 ) two basic differences between

a plasma and a "normal" dielectric. First,E, >> e-, so E. << E, and

thus the wave and its resulting eigenmode must be TE. Second, the

wave is not allowed to be linearly polarized,so we must let the eigen-

modes rotate(elliptically polarized) as they propagate along z. We

then have wave field solutions of the form 46

(8) A = A. Jm (kr) ei(me + k,,z - wt)

with m = 0 1 2 ± 3...

We must allow m to be both positive and negative, since a field rotating

with the ions "feels" a different dielectric constant than one rotating

against the ions. The ion trajectory
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(9) ri = ro e cit)

and the m < 0 field patterns are left-handed. (The m < 0 electric fields are

also predominately left-handed, as will be seen in IV-5.3.) The m > 0 modes

are right-handed, and have a larger dielectric constant than the m < 0 modes

(Section IV-5.3). The +m and -m modes thus have different k1 , are orthogonal,

and must be considered separately. For m = 0, equations (7) and (8) are equiv-

alent since the mode field pattern is not rotating either way. For typical

Alcator ICRF wave and plasma parameters, radial mode numbers (p) up to 5 can

be obtained with small m and k., (Section IV-5.3).

With damping lengths larger than the major radius, both perpen-

dicular and toroidal eigenmodes can exist. To zeroth order, we have

a dispersion relation of the form

(10) kA + k,, = kT2 kA

combining (6) with (10) fully determines k.,and toroidal resonances

will occur if

2RRo = nA.
(11)

kIRo = n

where n is the toroidal mode number (typically 1 < n < 60 for Alcator).

The orthogonality property of eigenmodes with different mode numbers

enables these modes to propagate and be calculated independently with-

out coupling to each other. For our simple TE modes,we can see easily

that indeed TE n0 is independent of TEno,since for m t n
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2a

(12) sin (m 'x) sin (n -) dx = 0

0

Propagation along z is also orthogonal for k,,, k,,2.

Physically,an eigenmode resonance is formed when two or more waves

overlap coherently in space. The usual standing wave is found when

a wave reflects off a boundary and adds to itself,(i.e. the perpen-

dicular eigenmodes).

(13) cos (kx - wt) + cos (-kx - wt) = 2 cos kx cos t

In toroidal geometry, a toroidal standing wave can be formed by two

waves of the same k, and perpendicular field structure circulating

in opposite directions around the torus. If,on the other hand, the

two k,, are not the same, but one of them satisfies (11), we have a

resonant running mode

(14) cos (kz - t) + cos (kz - wt) + ... = A cos (kz - t)

Physically,this amounts to a wave leaving the antenna, circulating

in one direction around the torusand adding coherently to itself.

In this way,for small damping, and either standing or running waves,

the circulating wave power can be many times the power coupled from

the antenna.
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IV-l .2. Theoretical radiation resistance

To calculate the effective radiation resistance (RR) the plasma

presents to the antenna, we assume for the moment a simple TE10 eigen-

mode structure in a rectangular wave guide (Section IV-1.1) as seen in

Figure 1, and the single toroidal pass regime.

(1) 1 < k a << I

Since we have a lossless system except for the plasma, the power into

the antenna, P in , must equal the total wave Poynting flux flowing

down the waveguide ( z), 2PEXH. Thus (MKS)

I2R R IV
(2) P - 2 2 PEXH

where

(3) V = EA t = E0tsin kid E. k, d

(4) PE - ds 2 a2k,
E XH 2 W'11J0

and combining (2), (3), and (4) we have

(5) R V2  Ea £2 uyi 0 a .sJW10
(5) R -a P ~ E T a 4 = k al z 4

where we defined

(6) a = k0  d

Equation (5) is the most important coupling scaling law. For

typical ICRF in Alcator at high density
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n e 3 x 101 4 cm-3  d 1 cm

f. 200 MHz t 20 cm

(7) B~ 60 kG k.~ kA/3 = .5/cm

XA= 4 cm a ~.16

a 10 cm RR .8 Ohms

Simply setting k,, of order kA2/3 is sufficient for rough calculations

except at densities near the mode cutoff where k, - 0 and RR becomes

momentarily large. The factor, a2, is much more difficult to estimate

correctly, since it can easily vary over more than two orders of magni-

tude due to the evanescent edge layer, as we shall see in Section IV -5.

Of course,many modes can exist at high density, and the total

radiation resistance will be the sum over all the propagating poloidal

and radial eigenmode number combinations

(8) RT E R

Calculating PEXH' 0a and RT accurately will require careful modeling

of the antenna, and evaluation of the dispersion relation and wave

fields in realistic geometry and profiles. This will be the subject

of Section IV -5.3.

If we allow the damping to be very small and k11R, = n so as

to have a toroidal eigenmode, another almost equivalent approach is

to consider the back EMF produced by the wave in the antenna loop,

(9) V - = <d Hdgent uloo dt e

and the usual definition of Q
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(10) = i
rdi s

where

(11) W 2H> Vol y H.2 Vol

We have again from conservation of power

V21lop

(12) p =dis 2 RR

and combining (9) to (12) we have 93

(13) RR H 0  2 (4)2 a Q

The importance of the antenna loop area and the evanescent edge

are again emphasized, but a new factor, Q, has appeared. Physically,

a high Q resonant toroidal eigenmode does not change the single pass

Poynting flux PEXH of eq. (4),but increases the antenna electric field,

Ea, by a factor proportional to A/.Thus at constant power and increased

voltage, one has a large R impedence,RR- Surprisingly, but quite

correctly, weak damping produces a larger antenna loading and thus

better coupling (Neglecting Parasitics, Section IV-2.6 and IV-4.5).

The above formulations, although simple and physically tangible,

are very limited. Either one must be in a narrow window of damping

length to have a single toroidal pass regime or to be on top of a narrow

high Q toroidal resonance. We will treat this problem rigorously,

with much more general and flexible formulations in Sections IV-5,

IV-6 and IV-7.
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IV-1.3. Experimental radiation resistance

For typical loop antenna coupling systemsthe real radiation resistance,RR9
is usually combined with a large reactance.To ease RR measurements, and

to allow efficient transfer of power between the transmitter and the antenna,

a matching network system transforms the complex antenna load RR + iX into

a real load of about the transmission line impedence (Figure IV-.2. (2)). By

measuring the antenna current with simple current loops inside the antenna,and

the incoming and reflected power with directional couplers, we can use con-

servation of power to write:

(1) P = I2  Rrms

(2) Pforward - reversed = I (Rlosses + Rplasma

Coupling structure losses are easily measured by observing the loading

resistance without plasma when the wave cannot propagate in the tokamak.

Antenna matching system losses of the order of .5 ohms are commonand thus

plasma radiation resistances of at least several ohms are necessary for

efficient coupling.
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IV-2. Cold Plasma Approximation and Cartesian Dispersion Relations.

The next step is to produce a rigorous, quantitative evaluation of the

dispersion relation for the high density regime. Many approximations 7 are

made,and must be justified quantitatively in view of the accuracy needed

later.

The three main steps are the formulation of the dielectric tensor,

wave equation, and dispersion relation7,45. All three are evaluated at

high and low density and for the several harmonic numbers used in the

experiment. Both branches, slow and fast 7,22, of the dispersion relation

are also investigated over a range of wave k., k... and frequency, and

plasma parameters and profiles.

IV-2.1. Cold dielectric tensor wave equation and dispersion relation

To derive the general cold dielectric tensor and wave equation,we

proceed exactly as in Appendix 1 ,except that we let Ez and Ey be

variables as well as arbitrary k.

Assuming first order quantities proportional to

()ei(k-r - wt)

and a current density

(2) J= nk zk ek eVk
k

where

k = electrons, ions

z = charge magnitude

e = charge signs
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the equation of motion is

d'vk + k+
(3) mk t= Zk Ek e(E +- x B)

For an ion ,(3) becomes

(4) v= -iwM (Ex + vy B)

(5) Vy (Ey - vBVY -iWaM(R O

Substituting (5) + (4)

iwcic (ci 2c

- BOEX - W B Ey

(6) v =

1 -

W2

(7) vy

and the expressions become overwhelmingly complicated as other species

are added.

The problem can be greatly simplified by separating the components into

left and right hand components. Thus,still being totally general,we assume

(8) v+ = vx T ievy and E- = Ex T isEy

Equation (4) and (5) can now simply be added giving

ic Ek Wck
(9) vk* = K~ W + Mck E+

and just as before

ic E wck E
(10) vk,z = B~ w z
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Defining the dielectric tensor

(11) D = K - E = E +

we need now only to substitute (9) and (10) in (2), and then finally into (11)

to get the full,general cold plasma dielectric tensor. An important pro-

perty of tensors is that they can simply be added. The total dielectric

tensor can be represented as the sum of the free space tensor,(an identity

diagonal tensor), the ion current tensor, and the electron current tensor.

Each of the charge particle tensors have on-diagonal polarization drift

terms (Kxx = Kyy),and off -diagonal EXB drift terms (Kxy = -Kyx), and of

course,an inertia term along B. (KzZ)*

When solving for a wave,we must always use the total dielectric tensor,

but once the fields are found,we can look at each of the tensors indivi-

dually to see what the velocities are. For example, two opposite cancelling

currents do not affect the wave, but there is still kinetic energy

stored in these velocities. Furthermore,each species tensor can be divided

into a reactive part and a dissipative part. This formulation is par-

ticularly attractive in complicated situations near singularities,where the

absorption mechanism is not well understood,and one wants to know which

species are heated.

Furthermorewe will use the widely accepted notation introduced by

Stix 45.

S -10 0 Ex

(12) K*E =0i S 0 ' Ey

0 0 P EZ

where
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(13) S= R + L
2

(14) D R - L
2

(15) R 1- ki2 Wewk

'' ck)

(17) P= 1 -

The R and L notations stand for right and left hand polarized. If R and L

are the same as in the very low frequency regime, then D for difference is

zeroand the wave is linearly polarized as we noted in Appendix 1 If

R and L are not the same,we generally have'an elliptically polarized wave.

The wave equation and dispersion relation follow easily as before from

Maxwell's equations.

(18) V X E =

4rJ+ I .3E

(19) V X B1D
c c at C at

(20) k X (k X E) +4 K-E =0

Defining a refractive index

4.

(21) =

we have
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(22) n X (n X E) + K - E = 0

S - (ny2 + nZ)2

(23) iD + nxny

nLnz

-iD + nxn y

S - (nx 2 + nz2 )

nynz

We can usually choose our coordinate system

(23) becomes

S - nz 2

(24) iD

nxnz

-iD

S -n2

0

so as

nxnz E

nynz y = 0

(n X2 + ny 2) Ez

to have n y =0, so that

nxnz Ex

0 L Ey =0

P - nx 2 JEz

Setting this determinant equal to zero gives the general dispersion

relation.



IV-2.2. Zero electron mass dispersion relation and polarization

We now evaluate the dielectric tensor elements in the w << wce regime

for a two component plasma.

(1) R = 1 - -e2  7r 
2

w(( - wce) wTO + Oci)

We can make several important simplifications since

(2) 1 e
S<< ce

r 2 ~.2
(3) we - I

wce Wci

then

.2
(4) R 1+ ci +

where we defined

(5) & -
"ci

For ICRF, the error in the tensor element will be of order -<- < , a
Oce M

good approximation for any practical application.

Similarly,

S.2
(6) L= 1 +

Wci 2 (

2
(7) S R + L = 1 

2 c-
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R - L w.2
(8) 2

(9) = W 2  
W.2 2

(9) w =w =

Since w is of order wci, and at high density

2
W2 i s of order 103

1 is of order 1

is of order 106

we can,to a very good approximation,-write

(10) S i 1WC1T

(11) D =-s

2
(12) P = w

For the moment,let's assume that we are looking for waves of the Alfven

type with nx nz = 40 as we saw in Appendix 1. The third line of the wave tensor

equation then reads

n Xnz Ex + (P - n 2 ) Ez

402 Ex 106 EzO

and thus Ez << Exand Ez would have a negligible effect on the first

two lines of the tensor. For practical purposes,we are now left with the

2 x 2 tensor equation
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S - nl,2 -iD Ex
(14) L = 0

iD S - (n2 + n,, 2 ) E

Since this amounts to assuming P + -- ,or simply me + , this formula-

tion is usually referred to as the zero electron mass approximation, and

requires Ez = 0. Solving the determinant

(15) (S - n,,2 )(S - (n 2 + n,,2)) - D2 = 0

(16) n,2 (S - n,2 )2 - 02
(16) z2 = S - nH

Defining an Alfvdn refractive index

(17) N= 7

and multiplying both sides of (16) by wci /i 2 , we have 7

(18) N'2 = (A - N"2 ) + Al - A)

where we defined

(19) A 1

Figures 1-4 are plots of N,2 vs N'2, and N, vs N,, for different regimes.

Several points are to be noted. First, one distinguishes clearly the fast wave

from the slow wave, since the fast wave has a refractive index several times

smaller than the slow wave. Second, the slow wave is evanescent for a > 1 ,

but the fast wave propagates both above and below wci. Third, for propaga-

tion across B,, k,, = 0, then N = 1 independently of the frequency

regime. Fourth, for fast wave propagation along B, N = 0, and

(20) N = 1
/T+1
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so one can then write the approximate simple dispersion relation

(21) k 2 + (a + 1) k1
2  kA2

From the first line of the dispersion relation (14),

(22) Ex D iE

we can calculate the ratio of the left hand E to the right hand E

polarized electric field components.

(23) = Ex iE
E- Ex - iEy

D + S - n, 2

D - S + n, 2
R - n,,2

-L + n, 2

1-N '2

-+1 "'Fo p nd+ N (2

For perpendicular propagation (N,1 = 0)

= .2 for 0 = 1.5

.33 "s 2

.6 " 4

.78 8

For parallel propagation (20), E+/E_ = 0 independently of 0

If we allow k p' 0 then (iV-2.1(23))

(25) Ex = - 2i nzn Y iE

and

E+
(26) 1- ~=

1 +
+ +1+

1
_ 1 +1i

NXN - N 2 - Nz

N N + N 2 + NZ 2

and the polarization is a function of all three components of k.
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IV-2.3. Inhomogeneous Cartesian waveguide and WKB

We now assume realistic Alcator density and temperature profiles of the
28-29

form (Figures 1, 2, 3).

(1) n = no [ - )0 < r ( 9 cm

= no .139 e 9 < r < 12.5 cm

(2)

where

-r2 /aT 2T = T0 e T0 < r < 12.5 cm

a 2 3 a,2  . , a, = 9 cm, q. = .9, q. = 5
T 2ql

Fixing k, one can now calculate k~ as a function of r using eq. IV-2.2(16)

Figure 5 shows k 2 as a function of r for k, = 0, .2, .4, .6, .8, 1.0, 1.2/cm,

and for the standard condition

(3) fo = 200 MHz

no= 5 x 1014 Hydrogen

One must note that, while in the center, the dispersion relation is of

the type

(4) k 2 + (1 + ) k 2 = kA2

which allows k to be of order unity; the dispersion relation in the near

vacuum edge is of the type

(5) k 2 + k,,2 = kc2 = 1.7 x 10-3/cm2

Thus

(6) kU = ikI

and we have an evanescent layer at the edge. Making k,, larger not only

makes the layer (de) thicker, but also decreases the decay length. A pessi-
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mistic example can be estimated from Figure 5 with

(7) k = .6/cm, de 4 cm

e-kx = e-4x. 6 = .09

Of course,one could also propagate.

(8) k,' = .2 , de ~ 1 cm

e-- 2 = .8

Ea
One can already see the difficulty in evaluating Oa = in the

radiation resistance, due to the evanescent edge effect alone. This

effect is much more pronounced in Alcator, since our antenna is narrow

and thus has a wide kH spectrum, the central density is very high and

thus can support a very large k*,, and the edge vacuum layer thickness is

several centimeters. For low density tokamaks, typical parameters are

(9) k,, .05/cm, de ~ 10 cm

e-.05x10 ~ .6

and almost complete tunneling occurs.

To evaluate the eigenmode wave field shape,we must use a numerical

integration technique.

Assuming ky = 0 and a wave field of the form

(10) E(x,z,t) = E(x) ei(kZ - Wt)

we have from Faraday's law

(11) - Ey = Bx

(12) k, Ex = g By

(13) aEy = Bz
-x
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and,from the x and y components of Ampere's law,we have

(14) k By = 3 [SEx - iDEy]
C

(15) ik,,B . Z = [iDEx + SEy]
ax

Substituting (11,(12+14),13)+15), we have

(16) 3Ey2  2  -D2  + 1-n,,2 E
ax2  c2  s-n,,2

which is recognized (from IV-2.2(16)) as

(17) -k.(x)2 E(x) a2E(x)

ax2

Both sides of can be integrated twice with respect to x

x x x x

(18) - k2(x) E (x)dX a2 Ex) d2E dx
k2(x E (~d~x= ___ d~ S[ax ax d

00 00 x=O

E(x) - E(x) - E(x) x
x=0a x=x=O L =O

and assuming a symmetric mode

x

(19) E(x) = 1 k(x) E(x) d2 X

0 0

Figure 9 is a simplified block diagram of how one can easily calculate

n(x), k2 (x), and E (x) using a first order integration scheme. Although very
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crude, it gives excellent qualitative and quantitative results. Figure 6

is a typical example with k, = .63, n = 5 x 1014. To arrive at a physically valid

solution, one must adjust k,. so as to have E(x) wall = 0. This is a tedious

trial and error process that will be circumvented in Section IV-5.4. One can

find the assymetrical solutions by changing the E and a. initial boundary
ar

conditions. Different radial mode numbers (p) can also be found by drasti-

cally changing k ,,and looking for a new solution.

Another way to solve equation (17) is to use WKB theory.

To zeroth order, we can write 16

i<k>-x
(20) E(x) = Eoe

to first order
i Jk(x)-.dx

(21) E(x) = Eoe

and to second order
i k(x)-dx

(22) E(x) = E. f

WKB theory, although analytically appealing, must be used carefully, espe-

cially since the wavelength is of the same order as the density scale

length. Zero order WKB is obviously very crude, and is only useful either

along B. or with flat density profiles. First order WKB (Fig. 7) is in good

agreement with the exact solution, as it treats correctly the evanescent

layer. Second order WKB, which one might expect to be better, has a singu-

larity when k = 0,and is of no use for our purposes (Figure 8).

In Section IV-4 we will see that collisionless damping power deposition

is proportional to either the temperature, (Fig. 1) or to some exponential

factor of the temperature. These profiles are extremely peaked, with half

power width of only a few centimeters. We thin should expect the
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collisionless damping power to be deposited near the center of the

plasma, almost independently of any reasonable electric field profile.
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Block Diagram of Heuristic Code

k., Bo, f 0, A

Fint(l) Sint(l) = 0
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I =1I+ 1

r(I) = IA
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k-L2 =fl(N(I), k. .. )
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IV-2.4. Finite electron mass, fast and slow wave dispersion relations

If we now keep the full 3 x 3 dispersion relation tensor with k = 0

and solve for the determinant, we have

(1) (S - n., 2 ) [(S - (n. 2 + n,2 )) (P - n 2)]

- D2 (P - n'2) - nn,, (S - n'2 - n,,2 ) nn,, = 0

which,after some simple algebraic manipulations, can be written in the form

(2) a n,4 + b n, 2 + C = 0

where a = 1

b = -( + 1) (S - n 2 ) +

c = [(S - n 2 )2 - D2]

Equation (2) has the fast wave root

(4) n 2 -b + /b2 - 4ac b( 1 + 1  2c)-L+ 2a 2 V

where we made the approximation / -c= 1 - e/2 , since, in our regime

b2 >> 4ac

and thus
(S - n,,2 )2 - D2

+'+ b2(5) f+ "~5 * S - n,2

which is the same as we found by solving the 2 x 2 determinant.

Similarly, we have the new slow wave root 22

(7) n 2 = n 2 = -b - VbZ - 4ac = -b = . (S - n,,2 )
2a S

2

For a > 1 and reasonable densities, n, is of order P = , which means

an extremely evanescent field. For this reason ,we are now confident that

-225-



only the fast wave can propagate in Alcator. Figures 1 and 2 are the fast

and slow wave k.2 profiles for standard condition B. = 66 kG, f. = 200 MHz,

k. = .5/cm and 5 x 1014 /cm3 hydrogen central density.
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Fast and Slow Waves at 200 MHz
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IV-2.5. 1/R Magnetic field, two ion species and the two ion-ion hybrid

resonance

We now introduce a 1/R magnetic field, so that

(1) B = B 1
I + r/R,

and let Wci, "ce, Ii' 'e, be functions of r. At this point, we

also introduce several ion species,and numerically calculate R, L, S,

D, and P directly in their unsimplified general form (IV-2.1.(13)-(17)).

Figures 1 and 2 show the fast and slow wave for one ion species at second

harmonic with 1/R magnetic field. We notice a slight shift of the

k.,2 maximum towards the outside,which is simply explained by a lower magne-

tic field (kA a 1/B). The effect of this is to make the wave effective major

radius some 3% larger than R,.

For a mixed hydrogen and deuterium plasma with

(2) wo = wcH = 2 OcD

and a smaller concentration of hydrogen than deuterium

(3) noH + noD = ne

(4) n!kL <
nD

we will encounter a singularity in the fast wave when

(5) n2 = (S n 2 2 - D2

or simply

(6) S - n, 2 =0

a condition often called the Two Ion-Ion Hybrid (TIIH) resonance. Figures

3 and 4 show wave profiles for k., = .3/cm, f. = 90 MHz, nH = 2.5 x 10'3/cm3,
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nD = 5 x 101 /cm3 , and Bo = 60 kG. The k, profile is now grossly non-symmetric

since the resonance is critically dependent on the 1/R magnetic field.

Neglecting the small electron contribution, equation (6) becomes

2 Tr2

(7 ) n2 2  - +D 0H

and for n,12  0 and high density

(8) IP2 2 C2

WD Wz - Wz cD

Combining (1), (2), (4) and (8), we have the simple formula

(9) £H= +.a= .97 for a = 5%
1 + 2a = .82 for a = 20%

and the hybrid layer is some 1.5 to 6 cm on the high field side of the

wci resonance layer. Of course, for a = 0,the resonance is right at the w =

wcH layer.

For very low densities, when wit 2 
+ 0, equation (7) can only be solved

for Z2 , wcH2. Thus, for a parabolic density profile, the two ion-ion

hybrid resonance layer meets the minority cyclotron layer at the plasma

edge independently of a.

For the general case with finite n, , and uN ,we can write equation (7) in

the form

(10) n,2 -1 + ne F (R, B0 , a, Wo) = 0

(11) ne 1- 2
F (R , Bo, a, Wo)

Assuming a simple density profile

(12) ne(r) = noe (1 - )
rw
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(13) r = ' - ne (r)/noe

and a two dimensional Cartesian coordinate system centered on the plasma,

(14) r 2 = i2 + y2

(15) y =v/r - x2

(16) R= R, + x

Equations (11) and (12) can be numerically solved by slowly increasing x in

(16)+(11) starting at x = -rw, until the condition

(17) 0 < ne < noe

is met, at which point we have a resonance solution requiring a

density ne(r) = ne and radius r from (13).

Thus, substituting (16) + (11) + (13) + (15),

we have a resonance surface of the form

(18) (x,y) x, 1 n,,2
r nF(Ro , Bo, c:, Xo)

and a vacuum vessel at

(19) (xy) = (x, -X2 )

Figures 5 and 6 are typical two ion-ion hybrid resonance surfaces for a

.05, .1, .2, .3, .45, 1 and k., = .1, .5 /cm ,BO=70 kG,and f 0=97 MHz. We see

that at high density, k,, decreases the distance between the TIIH and

cyclotron layers. For reasonable minority concentrations, the TIIH layer17

will usually start near the dense pTasma center and reach out to the cyclotron

layer Tocated in the low field side antenna.
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Fast and Slow Waves at 200 MHz
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TIIH Layer Position for k, = .5/cm
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25

22.5

20

17.5

15

Y 12.5

1

7.5

5

2.5

a
-ii

fe-.9w 4w MsUa 2.

rmax-12.5m rAJ.54.

alpha-.95, .1, .2, .3.

Y W DILiS

4 . , 05

-1 - a 5
-7.5 -2.5 2.5

fil(ca)

MM mub- I.WD bS-.79MKi+S

W kpw- 0.118 n*tUr 19M

.45, 1.0

7.5 12.5

nehft .SmW +15

Figure 6

-232-

to

2.5



IV-2.6. Plasma edge lower hybrid resonance and E7

In Figures IV-2.5 (3-4), we noticed a singularity in k'2 when the den-

sity was decreased until the wave frequency was of the order of the ion

plasma frequency. Specifically,close examination of Section IV-2.5 shows

that this happens near

(1) S = 1 + .i. I+10+
Wciz -A

or simply

(2) w2 = 2 + ci 2

From the usual definition of the lower hybrid wave45

(3) 1 1 + 1 1 fori2 << w
wLH2  Wci + Xj ce Wci Wci + fij 2  1 wce

which is the same as (2),and we shall call this low density edge mode the

lower hybrid resonance field. For the standard second harmonic condition in

hydrogen at 200 MH, this corresponds to ne = 7 x 1011/cm3. Although very

low, this edge density could be obtained with normal density profiles and a

central density less than 1014 /cm3.

In cold plasma theory, we can easily calculate Ez from the third line of

the full (3 x 3) wave tensor

(4) n..n 1 Ex + (P - n 2 ) Ez = 0

under normal fast wave circumstances, n,2 9 n112  nA2 = 402 , and P

106, so that

E -nana
(5) = , 10

x
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and Ez is only a small perturbation to the overall TE electric field.

(This is not true of the lower hybrid modesince fP is of the order of

n2 ). Nevertheless, since S, D and n2 are all of the same order, the

parallel electron current

(6) j = PEz w n2 E,.

is of the same order as the perpendicular currents

(7) J = -T (S Ex - iD Ey) = n2 E
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IV-2.7. Fast Wave Energy Density

The total stored energy in the fast wave can be divided into magnetic,

electric and kinetic energy components (MKS)

(1) < W> = W + WE + WK * H2 + * eo E' + a nkmk k2
t H E Kk kkk

From Faraday's law,we can crudely write

(2) E = p0 H 0 H

(3) E >> 1
E 6

and the electric field energy can be neglected.

In any wave, energy is transferred back and forth between two or

more energy storage mechanisms. A closer look at the different components

of Faraday's law

Hx =- E = -Nil v 7 * E

(4) H =ki E =Ni A E
k J

Hz ~ i E A * E

shows that for k. = O,only Hz remains,and energy must be transferred

between WH and WK, and

(5) WH WK

For k, / 0, energy is shuffled between the different magnetic components

and the particles velocitiesiso (5) is no longer valid.

Equation (1)may, in general, be rewritten for a lossless dielectric (CGS) 7
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+ E* ..L(wK). -J
awj

= 1 A E 2 N2(F2 + 1) + N2] + 2(1 1 W)4 ( 1 + F)2(1 Q2

+ (1 -F) 2 (1 +

where the first bracket is the magnetic energy, and from the first line

of the wave tensor

(7) F =
IT

= -D _ 1 - 02 [N2 + N112 _ T1

Finally, substituting (4) and (7) into (6), we have

< W > 2WH = 1 E 2

1 2 + EY
= -TA (1 + 2

= A.44 E 2

r A 2

T 
Y

for k. = 0

for k. = 0

for k, = 0 and 0 = 2

in general
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I1-3. Homogeneous Plasma Cylindrical Waveguide Field Solution

For simple analytical purposes, the most important model is the homoge-

neous cylindrical waveguide45,46,56,60. The zero electron mass cold plasma

dispersion relation, coupled with the electric field boundary conditions at

the wall, gives the deterministic equation which in turn, uniquely defines

kz as a function of ne, for the different values of radial and poloidal

mode numbers 22 . This, furthermore, fully determines the cylindrical field

solutions from which can be calculated the Poynting flux, antenna E6 field,

probe signals and the radiation resistance 21 . An estimate of the number of

possible propagating mode 93 and mode splitting22,52,55,due to the Ohmic

current around the torus, is also calculated.

IV-3.1. Zero electron mass fast wave dispersion relation and mode cutoff

Proceeding exactly as in the previous chapter, we write Maxwell's

equation and the equivalent dialectric tensor in cylindrical coordinates.

From Faraday's law we have,

(1) v X E = _ = i a B

from Ampere's law,

1 a D -i + +(2) V X B = K E

and from the dielectric tensor

S -iD [ Er

(3) K - E = Qi S 0 Ee

L 0 P Ez _
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where in cylindrical coordinates

r/r / Z/r

(4) V X A = a/r /aaz

Ar rAe Az

The basic methodology is to expand (1) and (2) in their r, 0 and z com-

ponents using (3) and (4). Then assuming 22

(5) A = A. ei(me +k,,z - wt)

and a TE eigenmode (E. = 0), so that

(6) Oz a mr (k r)

we can write an equation of the type

(7) f(Bz) = g (Ee)

and using the boundary condition

(8) E =0

wall

we have the deterministic equation and the dispersion relation.

We thus proceed with Faraday's Law,

_3s i w Br
(ir) ~ ___

a r EW Be

(lz) 1 a r a E i B2- - = _pe -sl a

and Aniperds law
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1 7F
(2r) -j; 3Ez

3rBe -iW
- ]_ = (S Er - iD EO)

(26) - + ___ 03 (iD Er + S E)

and substituting (16) + (2r)

i m Bz
(9) r +

and (Ir) + 2e

D W
Ec E=

ik 112 c
+ Ee E

(B1
(10) arz

E I wS
Er (-

oS
- -1 = -

c

k..2
+ ic -)W

wD
- ErC

Finally, combining (9) and (10) we have

(11) - -+
mr W2

r(c2k,. 2 - W2S)
BZ

i D2 W3
= 2L(c 2 k 2 - w2S)

iWS k 2c
+ -- i ] E6

c W

Using the Boundary condition (8)

(BZ
ar

m D w2

wall I (C2 ki,12
- w25 B wall1

and substituting (6) into (12), we have the dispersion relation

(13) k, a Jm' (k a) = m D w2 m (k a)
I 2 S - c2 k.2

The mode cutoff can be found by setting k, = 0,and thus we have the

simple deterministic equation

(14) m -M 

where

(15) x = k a = kAa
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For m = 0, x will be simply the zeroes of Jo'. Using the Bessel function

identities 137

(16) J~ ( )) -nd (x)
() n n-1~x x

(17) J-n jx) (,_)n j n(x)

we can calculate the ±1 mode cutoffs (Table 1) for hydrogen and s = 2.

We note that m = +1 has the lowest density cutoff ,and is therefore

the fundamental mode of the system.

We can now easily calculate the electric and magnetic field com-

ponents. Of course from (6)

(18) Bz = A Jm(kr) ei(me + k,,z - t)

and substituting (17) - (11)

(19) Ea = B Jm'(kar) + C Jm(k r)

and (19) + (1r)

(20) Br

and (18,

(21) Er

and (21)

(22) B

where A,

tions of

-k c E

19) - (9)

=D Jm' (kjr) + E Jm(k .r)

+ le)

= 1 Er

B, C, D, E are constants proportional to the wave field,and func-

the plasma and wave parameters.
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Table 1

m -1 0 +1
'P

1 .32 .19 .10 x 1014/cm3

2 .89 .63 .42

3 1.71 1.34 .98

4 2.79 2.28 1.83

5 4.09 3.52 2.90

Eigenmode cutoff density for m = 0 1,

a = 10 cm

p = 1-5, P, = 2, hydrogen and
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IV-3.2. Number of propagating eigenmodes at high density

Using equation IV-3.1.(16),we can transform IV-3.1,(14) to

(1) M-1 m( )

For reasonable values of m, 0, and X, i.e.

m =3

(2) = 2

X = kAa = 10

and, since Jm-1 has roughly the same amplitude as Jm, we can approxi-

mate equation (1) as

(3) J-_ 1(x) = 0

From Figure 1 and IV-3.1(17),we can write the very crude but simple

cutoff dispersion relation

(4) k.a = y(r + )

In a typical Alcator high density plasma with XA = 3.8 cm and a = 10 cm,

ka
(5) -

and we can propagate as many as 45 perpendicular modes,as shown in Table 1.

Physically, we could have arrived at the same result by crudely

assuming

-k-. = kr + k

kra = lT

k.2n<r> = m 2rr

<r> = <a
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Of course, at large r, where 1/r effects can be neglected, we must have

(7) k,2 =k 2 + ( 2r r

At this point, we must use these simple relations for statistical

purposes only. For example, in a normal dielectric, the lowest TE mode

of a rectangular guide is TE01. In a circular guide,the lowest mode

is TE i, not TE01. Accordingly, a careful look at the electric field

would have shown that the circular TE11 is only a slightly perturbed

Cartesian TE01 , and would indeed require less k, than the more dis-

torted circular TE01. With an only slightly more sophisticated version

of equation (4),7 which includes a phase factor dependent on the sign

of m, the mode spectrum would then be correctly symmetric about m = -1

instead of m = 0.

Cartesian fields (sin, cos) can be mapped into cylindrical coor-

dinate fields (Jm' ,m') by using the crude approximation

sin(x)
(8) J1(x) /1 + wx/2

as shown in Figure 2. Our corrected inhomogeneous Cartesian solution

(IV-2.3) then becomes a very good approximation to the exact solution,

as we will see in Section IV-5.3.

Table 1

Possible perpendicular eigenmodes for kaa = 5.

m

1 0±1 2 3 ±4 5 6 7 8

2 0 1 2 3 4 5 6

3 0 1 2 3 4

4 0 1 2

5 0
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IV-3.3. Mode splitting

For a wave field of the form

(1) ei(me + kz - wt)

we have a constant phase point at

kz
(2) 9W = m

So far, our wave field structure was always "tied" to a stationary

magnetic field. If the magnetic field frame of reference is rotated, our field

solutions are still valid in that reference frame. Unfortunately, we would.

like a solution in the laboratory frame of reference. In a tokamak,

the confining field has a similar constant phase point (Figure 1)

Be z
(3) aB - B r

Assuming k,, positive and m < 0, the wave field rotates with a typical

parallel wavelength of a few centimeters. When positive Be is added, the

wave field wraps around faster, and thus, as seen in the laboratory, has a

shorter parallel wavelength.

(4) y ~ 0B~ AAw

and

(5) << <
Xw«

Substituting (2) and (3) in (5)

B
(6) Ak Be m m

a a=Bzr ~qR

where q is the usual safety factor. 1,22 If we now simulate an identical

wave going against BP by simply reversing BG, the wave wraps around
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more slowly, and thus has a longer parallel length. For typical Alcator

experiments

k,, .5/cm
(7)

q =3

and

(8) 2.5%kil

m =2

R = 54 cm
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IV-4. Hot Plasma Model and Damping Mechanisms

Five basic damping mechanisms32 of importance can be found in the

Alcator experiment 20 ,26 . Each of the damping decrements depend heavily on

the wave field structures and plasma parameter profiles. The first and

simplest are wall losseswhich are always present and give an upper bound

on Q32. Wall losses are dependent on parallel and perpendicular mode num-

bers and, in particular,the edge H field. Second harmonic of the ion

gyrofrequency damping can also be important if k pci is large enough, which

for practical purposes, means large radial mode numbers in the hot plasma

center 30-32. Fundamental and two ion-ion hybrid damping mechanisms have

been discussed the most in the literature,and have the largest damping

decrements 10 ,11,12,16,17,27,48,49.

Electron Landau Damping (ELD) and Transient Time Magnetic Pumping

(TTMP) can be important in the high temperature center with large enough

k. and Ez in the absence of other strong damping mechanisms30-32.

Finally, collisional and near-field damping may contribute to the 90 , 9 6

loading resistance, and remove power from the antenna. Also,a whole genera-

tion of non-l inear effects and surface waves may, unfortunately, heat the plasma

edge17,32,74.

In this and the next Sections, all five types of damping mechanisms will be

qualitatively evaluated in simple geometry, and then used in the weak damping

approximation to numerically calculate wave damping length, radiation resistance

and power deposition profiles for realistic experimental mode numbers, field

strengths, plasma parameters and profiles.
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IV-4.1. Wall damping

We now allow kH to be complex, so the power flowing down our simple

waveguide is

Pf a [EO ei((kr + iki) z - t)2
(1)

a Po e-2kiz

The power dissipated per unit length is

(2) - @z = 2 ki Pf

and the wave damping length is

(3) 1 -2Pf 2 Power Flowinq
ki P/az Power Dissipated

In Section IV-1.3,we calculated the power flowing down a simple wave

guide as (MKS)

(4) Pf z E2

For wall losses, the power dissipated per unit length can be calculated

from the surface current resistive loss on the vacuum vessel

(5) J = 11aEs 1oax Iwall

The power deposited per unit area and unit length are thenl 34

j 2
(6) P/rn2 = 2 a6

(7) P/m = 2l a P/m2

where the skin depth is

(8) 6 2
PI'a
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Finally, substituting (4) - (8) into (3), we have

(9) 1 212 , 12
(9)f =E/a - a k, "myoa 740 meters

wal1

for high density (IV-1. 3 .(7))and a stainless steel(a = 1.1 x 106 mho/m)

vacuum vessel.

We again see the critical importance of knowing the edge field. Physi-

cally, for a given central field, and thus flowing power, a smaller edge

field will dissipate less power and have a longer damping length.
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IV-4.2. Cyclotron damping

To first order, we can write the left handed particle trajectories and

velocities (positive ions), as

(1) x = r. sin wmt

(2) y = r. cos wmt

(3) vx = ro w0cos Wmt

(4) vy = -ro w ,sin wot

For a right handed electric field (E )

(5) Ex = E0 cos Wot

(6) Ey = E. sin wot

we can write the average power to the ion as

Jfq(vXEX + vVEy)dt'
(7) P- t rowoqEo[<cos 2 wit> - <sin 2ait>= 0

and,on the average, no power is coupled.

For a left handed electric field (E+),

48) Ex = E. cos wat

(9) Ex = -E. sin wmt

and the power coupled to the ion is simply,

(10) P+ = romwqE. [<cos 2W0 t> + <sin2w0t>] = row~qE

Of course, negative power can be obtained by adjusting the phase of the electric

field with respect to the ion velocity, but the right hand electric field

component cannot couple power independently of phase, and can be ignored in the

following power absorption calculations.

To understand this initial phase effect, we proceed directly to the tokamak
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geometry,where particles are streaming along the rotationally transformed

field lines in a 1/R magnetic field. For ICRF, the electric field is a wave

propagating along z, and the resonant condition is

(11) w. = wci + kiiV

or simply, the cyclotron frequency in the ion's moving reference frame.

Since the ions are moving along z in a slowly varying magnetic field,

we can write.

(12) wci(t) = wci + t w' ci

and the equations of motion become

(13) vx - Wci(t) vy = q/m Ex cos wat

(14) vy + wci(t) vy = -q/m Ey sin wmt

Combining (13) and (14) in a rotating coordinate system

E ±E
(15) E±= x 23

(16) u vx + ivy

and neglecting the non-resonant right hand electric field, we have

(17) du + i ci (t) u qE+ e-iwt

Equation (17) is linear, of first order, may be integrated using the

integrating factor 132

(18) p = ei ci(t)

and has the solution7

(19) u(t) = exp(- ici(t)dt) u(--) + q E+
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The first factor in (19) is simply the phase angle of the velocity, and is

analogous to WKB solutions, with k(x) substituted by wci(t), and x by t.

Assuming that u(--) is randomly phased with respect to E+, the average

energy kick per pass through the resonant layer is

(20) W= < u(t) u(t)* - u(--) u(--)* > = E+2  2i2
2 2m WO ci

and is independent of initial phase and perpendicular energy. We can now

integrate this energy kick over a distribution of resonant particles to find

the power absorbed,

1tq 2 E+2  r
(21) P/cm 3 = m k. Jjdvx dvy f(v,, Vres)

where from (11)

(*3 - Wci
(22) Vres W k

Physically, the 1/ku factor is due to the fact thatfor a given layer

thickness Ax, perpendicular distribution function, etc., the integration

interval width along Va is proportional to 1/k,,.

Substituting a Maxwellian distribution function1

12

(23) fm 1 e ]2

1 vth

into (21),and making some changes in variables that cancel out the 1/R magnetic

field dependence, gives the usual cyclotron power absorption formula 21 ,31,32

(24) P/cm 3 = e E 2  kvthi
8 w ki vthi

-253-



We could have arrived at the same result in uniform B0 theory by an

almost identical method, as in Section IV-2.1. Firstwe write the momentum

equation including the parallel velocity, V.45

(25) m v + y 2.v q El + v XB + I XBI
at 3z q c c

Again we assume

(26) v- = vx ivy

ET = Ex; iEy

and solve for v adding the restriction v = 0 at t = 0

ie E+ (w - kuV) ei(kiz-wt) 1-ei(w-knViwci)t
(27) v, = mw w - knV T Cci

Averaging (27) over a Maxwellian distribution and random initial phase, we can

then write a dielectric tensor with complex elements similar to S and D

which, themselves, are again functionsof complex R (right hand) and L (left

hand) components. The resistive parts of S and D then represent dissipative

effects, since the current is now in phase with the electric field.

We can thus write

(28) Kxx = Kyy= S + iy

Kyx = -K y =iD + y

and

(29) P/cm3 = Re (E*.J) = 1 (E J) + cc = T67 E (K - 1) -E + cc

In equation (7) we assumed the ions were "free falling" in the

resonant electric field, so the power delivered was proportional to Eot. In

practice, ions are not allowed to free fall, since the interaction time with
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the resonant field is finite,and phase incoherent from one pass to another

through the resonant layer. This finite interaction leads to a collision

type resistivity,and thus to an absorbed power proportional to E.2 . The

interaction force is,nevertheless,simply qE in the ion reference frame.

If we now assume an electric field at the second harmonic of the ion

gyrofrequency, equation (7) becomes

(30) P = r0wE0[<coswat cos 2 wet> + <sin wat sin 2 wot>] = 0

and no power can be coupled independently of polarization or initial phase.

On the other hand,if we allow E to have a gradient,

(31) Ex = E0 + 3E x = E0 (1 + kro cos w0 t)
ax

power can be coupled through the non-linear term
(32) <cos wt cos wmt cos 2 o0t> f 0

Our effective interaction force is now

(33) - q Eo = /Xq E.

instead of simply qE,and all of our previous results can be upgraded for

the second harmonic regime by simply replacing E.,by 1/X E. and wci by 2 wci.

Similarly, we could go to the nth harmonic by inserting the factors

(34) I&1 and nwci

From now on,we shall consider the second harmonic regime at high den-

21,31,32
sity in the tokamak geometry

2
W-2Wci

2 kVthi
(35) P/cm 3 kV E e

8 " thi
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In this case, the wave energy is deposited in the perpendicular com-

ponent of the ion energy for predominantly large Larmor radii. At high

power,this will lead to the formation of energetic perpendicular ion tails.

If the resonant layer is at the center of the plasma,the resonant region

will be a cylinder of radius R., height 2a and effective thickness AR (such

that the exponent is negative one on each side of the resonance )21

(36) AR = kVthi = .6 cm in the hot plasma center.

The heat transfer along e is much greater than along r due to the rota-

tional transform,and so we can write an average power per volume as a func-

tion of minor radius by integrating around e at r and dividing by 2Nr.

(= 2 Rok 2 2 2 Rs ii112(37) P/cm3 = 16w r E P +_ E

This result is independent of k,, and peaked at the center of the plasma (small

r). The apparent singularity can be removed by displacing the resonant

layer by AR (r+r + AR in denominator). In any case, we will either want the

power deposition profile or the power deposited per unit length, which removes

the singularity altogether

a hot

(38) P/cm = 27rr P/cm3 dr 1.7 x log ergs = 170 W/cmf sec-cm

where we assumed ahot = 5 cm, n = 5 x 1O'*/cm 3, E+ = .16 statvolt/cm

and k, = 1/cm. Also assuming E= .5statvolt/cm and k, = .5/cm, the power

flowing is approximately
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(39) Pf = CEXH ds
s

S 2 k" ~ .1 x 1012 ergs/sec = 110 kW

The damping length is then

1 2 Pf
(40) T = = 13 meters

dis

which is several times the circumference of the torus, but is nevertheless

much shorter than the wall damping length.

-257-



IV-4.3. Electron Landau damping and transit time magnetic pumping

The collisionless resonant damping condition w - nwc - k. V = 0 can

also be significant for n = 0 if the phase velocity is of the order of the

parallel thermal velocity.1 For electrons at high density in Alcator

(1) 2.5 x 109 cm/sec 1.9vthet, 1.3 x 10' cm/sec

and we thus proceed to calculate what is usually called electron Landau

damping. Considering only motions and fields along z, and without using

complex variable;we can write the momentum equation and its solution just

as in the previous Section. 1,45

(2) mdv' eE cos [k (z. + vot) - wt]dt

(3) y, = eE sin [k (z. + vot) - wt] - sin kz.
m kvo - w

The power absorption is then found by averaging the change in kinetic

energy over the initial condition z0 and distribution function f(v0)

(4) P/cm 3= n. d -> z0 , v

_ -nnow e 2 a f(v.)
2 mkz a vW

VO=k
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Substituting a Maxwellian distribution function (IV-4.2(23)) and (1),

we have

(5V no e2 E2 e
(5) P/cm' M Za e-a

The difficulty is now in calculating Ez as a function of E It is

tempting to use the third line of the dielectric tensor, but as we shall

see later, for the hot dielectric tensor when /a is not small, the kzy

element can be of the order of nA2 instead of zero, and kzz is 1/k,2D2

instead of -72e/w2.7 To circumvent these problems, we shall assume the

wave is more or less compressional (k, > k,,), and the electrons can keep

quasi-neutrality through Debye shielding (Vte > V Both approximations

are quite crude for Alcator, but will nevertheless give a reasonable

answer. We can thus write from compressibility

nil B1
(6) n - BI

from quasi-neutrality

(7) n11  nel

from hot electron shielding

(8) nel noe KTe no (+ +

and from Ampere's law

41

(9) VXE=-c
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Substituting (7)+(6)-*(8)->(9), we have

(10) i k E =w eO- B,x y c KTe

and noting that

(11) Ez = - = -1 k +

then

(12) E i k KTe c()Ez w e B E

Substituting (12) into (5) finally gives the compact form130

(13) P/cm 3 - We kic1  a e-a E 2
l6i L J e y

Note that, for Alcator, we could have achieved a similar result by

blindly using the cold dielectric tensor, since

,2 V2

(14) 1 A =[
-TA' "the

except that the phase of Ez would have been wrong (which is of no impor-

tance here).

Until now, we have only allowed qE forces on the particles, but we

could also include -pVB forces, which would give rise to transit time

magnetic pumping (TTMP). Careful analysis of the hot dielectric tensor7shows

that ELD and TTMP are coherent, and cross terms cancel in the power

deposition calculation (IV-4.2.(26)),thus leaving ELD (Ez) alone in the form
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of (13), which is half the TTMP power loss. We note also that the wave

energy is deposited in the electron parallel velocity near the thermal

velocity, unlike 2 wci damping, which favors large Larmor radius ions.

Using the same numbers as in Section 11-4.2. (E, = 150 V/cm, ahot = 5 cm,

k. = .5/cm, k, = 1/cm, a = 1.9, ae = 5.6 x 10-3 and Pf = 110 kW)

(15) P/cm = P/cm 3 = 1.4 x 10 erg = 14 W/cmhoa~t =14x0 sec-cm

2P
(16) 1 = 'f = 160 meters

The damping length is then many times the circumference of the torus,

but is, nevertheless, shorter than the wall damping length, and much

longer than the 2 wci damping length.
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IV-4.4. The hot dielectric tensor and approximations

So far, we have looked into selected topics of hot plasma effects, just

as in Appendix 1 we investigated selected simple wave regimes. Now we

introduce a totally general wave propagation and damping formulation, the

hot dielectric tensor and wave equation. 45,20 The basic constitution of

the hot tensor is the same as the cold one, i.e., a sum of a vacuum, electron

and ion terms, except that the elements can also be resistive. Unfortunately,

as we saw in Section IV-4.2.,the resistive and even reactive particle

currents are much more difficult to calculate than in cold plasma theory.

The basic trick is to calculate the field-particle interaction in the par-

ticle zeroth order trajectory reference frame, and then average over the

particle velocity distribution function. The product of this formidable

analytic computation is, even in its most compact form for Maxwellian

distribution functions, a somewhat overwhelming series of infinite sums

involving just about every plasma variable (Te, kx, X ... Vd) and a par-

ticularly nasty integral, the dispersion function. Nevertheless,with a

number of not too restrictive and quite accurate approximations at high

density, 20,26

(1) Vdrift = 0

(2) Ti Te

(3) k= 0

(4) j = e, i

(5) -5 < n < +5

the formulation becomes manageable, and general trends become more

apparent.

The basic expansion parameters are as one would expect from our simple
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treatment of collisionless damping:20

k 2 ~2
(6 ) = 2

W + nfl c
(7) Ic.= - c.

nj ki, Vthj

k = 0 is the most restricting approximation, since ky affects the wave

polarization, and thus the reactive and resistive components of the

tensor elements. Although the dispersion relation is still found by simply

setting the wave equation. determinant to zero, we cannot write an equiva-

lent biquadratic equation,since the tensor elements are infinite sums

already involving kx, ky, kL, kl. Without the further, major assumption

that Ai << 1, the many dispersion relation solutions can only be found

by using sophisticated numerical methods. Restricting A << 1 basically

reproduces the cold (2 x 2) tensor with very small 26 changes in the

reactive components due to ELD, TTMP and cyclotron damping,and does not

allow any new wave solutions.

A realistic,comprehensive study of the effect of our approxima-

tions (equations (1) - (5)) can only be done on advanced algebraic

manipulators such as MAXIMA. In particular, at low density in the runaway

regime, the streaming parameter becomes appreciable (VD 1 0), Ti # Te,

discrete positive and negative m modes dominate (ky = 0), Zeff > 1 (j = e,

i, impurities), and all approximations break down lamentably.

Fortunately, in Alcator,nearly pure hydrogen high density plasmas can

be produced with very small drift velocities and nearly isotropic

Maxwellian distribution functions. For simplicity and not necessity,we
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will also assume for now, that ky = 0. The results of solving the cold and

hot wave determinants for a hot, dense plasma center and cold edge, for the

same k,, and roughly the same magnetic field are shown in Tables I and 2.

As we suspected and assumed until now, the 2 X 2 part of the cold tensor is

almost the same as its hot plasma counterpart for the fast wave branch,

since indeed X << 1, and so all our previous work is well founded. Also,

as one would expect, at the cold edge, kxz and kyz are very small, and kzz

Unfortunately, this is not the case with the hot plasma center, which led to

our earlier difficulty in calculating Ez from the third line of the wave tensor.

It is important to note here that, although the reactive components of the

fast wave tensor elements are insensitive to the major radius position, that

is, the magnetic field, the ion resistive components are dependent on the

narrow harmonic resonant condition

(8) w - nwc - k" V = 0

and the power deposition profile is very peaked at the resonant layer in a

one dimensional plasma formulation.

It is also interesting to note that, for k = 0 (m = 0), from the first

line of the wave tensor, we have

E E 2

(9) = E -iD = 5.46 at the edge,
= .60 at the center,

= 1 at the cutoff layer(k2 = 0).

which means that ,from 'a global point of view, the antenna couples to an Ee edge

wave that gradually transforms into an Er wave in the center of the plasma.
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The mere fact that the wave equation is of higher order than

biquadratic means that other wave solutions exist. The most important

solution (besides the slow wave which did not even depend on hot plasma

effects, but was found evanescent in our regime and could be neglected)

is the ion Bernstein wave. This new wave is critically dependent on X

and ;, and thus cannot be coupled from the cold edge which does not allow

such a mode, as we saw in cold plasma theory. Nevertheless, the wave can

couple power from the fast wave near the center if the Bernstein wave k,

becomes equal to the fast wave k. The two modes are then locally non-

orthogonal ,and power can be coupled between the waves giving rise to a

telescopingly complicated problem. In the two ion-ion hybrid regime, even

with cold plasma theory, we encountered singularities in k,_ which would have

made X >> 1, and new waves would have immediately appeared. In fact, hot

plasma treatment of the two ion-ion hybrid regime would have removed the

singularity, but the general location of the resonance would still be

governed by the cold plasma k,, which "controls" the hot plasma expansion

parameter X.
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IV-4.5. Collisional Damping

To take into account collisional damping,we return again to the basic

momentum equationbut including collisions

dv k + k X Y k
(1) knk dt =knk (E x c knkmkk

Equation (1) can

stitution

be cast in the form of equation IV-2.1.(3) with the sub-

(2) mk + mk =mk (1 + i yk)

and

(3) o+&t

(4) 2 Tr
c c

and our cold dielectric tensor is easily upgraded to include collisions.

We will confine this derivation to ICRF, and assume

(5) si << < 6_ 6.5e m _e

(6) yi =1 m Ye3 (T = Te)

e

(8) =kYl

The new dielectric tensor elements are then calculated from IV-2.1 as

t 2  t 2

(9) P 1 - e - 1

7e2 (1 - i )+i2 T
e e + 1r~ 1 -

= P (1 - i r )e -268-



t1 2

(10) Re=- e
W (W - Wt )ce

2 -

WWci t 1 0 it + 1-

(11 ) L t = - 2 1 +
W ci Oe+ 1

1It

(13) Ot
Sjt2

~2 1 (1 -

- (1 -

1

i 2T
+2

itr n2 +_

0 -t i

and using (12), (13) and (5),

t =(14) St = 2

(15) Dt =Rt - L
2 = D (1 + i T 2

Power absorption is then calculated as

(16) P., = Re J" , El*l Re w PI E E*(1)2 i8rr z z

Tr 2

-e
W --

2 Y - m

Cl
y 2

where we used (6),and assumed Ez me/mi E , and

(17) P,= R

= Re i8Eei8 7

Ex - iDt E ) Ex* + (iDt Ex + S E ) E *]

- Dt 2 § -']+ 
t
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Further assuming nl = 0 and D = -s Swe have

(18) P = E2 j P
c1 e

From Spitzer resistivity (7), and the ion-electron collision

frequency (6)75,82

(19) Yie = 4.8 x 10~8 neAc T-3/2 -1/2 = 2.3 x 106/sec

and the ion-neutral collision frequency82

(20) Y = nnonvthi a 1.5 x 106/sec

(21) Yi = Yin + Yie 3.8 x 106/sec

where we assumed Ti = Te = 10 ev, an = 5 x 10-15 cm2, nn = ne = 1014/cm3.

The cold neutrals from the edge will have a short mean free path,

due to ionization by electron impact 78

(22) yion <e e = 1.9 x 106/sec

(23) A mfP= thi .1cm
Yion

where we assumed Tn = 5 ev, Te = 30 ev and ne = 10'4/cm3 .

Finally,the power deposition and damping length can be approximately

calculated as

(24) P/cm 3 = P, ~ 3.1 x 106 erg .31 W/cm 3
sec cm

(25) P/cm 27raxmfp P/cm 3 - 19.5 W/cm

(26) = P/cm 110 meters

where we assumed from IV-4.2, Pf = 110 kW and E, = 60 V/cm.

From (18) and (20) it is clear that

(27) P - n E2 T-3/2
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and

(28) Pcenter < Pedge -

Even if the collisional damping length is much larger than the second

harmonic damping length, it may have very detrimental effects since

nT is much smaller at the plasma edge. Antenna near-fields can be

several times larger than the wave fields (and Ez of the order of E.

for unshielded antenna) giving rise to large power absorption, and

even breakdown.

Collisional power absorption could also have been crudely estimated

by simply writing 1,75,90,96,144

(29) P/cm 3 = J2T  s

where

(30) j eA Ej = J.if

and n is the Spitzer (or any other) resistivity. Note that this is very

different from writing P/cm3 = E2 n/2 as in ohmic heating, since the resis-

tivity is in "series" with a much larger wave reactance.

(31) = E 1 100 0 - cm

>> n = .08 T-15  10-4 0 - cm
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IV-5. Inhomogeneous Cylindrical Plasma Numerical Model

We now turn to a somewhat more sophisticated model, the inhomogeneous

plasma-filled circular waveguide. The procedure for obtaining the field

solutions is a combination of all our previous modelswhere we will

sacrifice simplicity for more precise results, especially at the low den-

sity edge near the antenna. A numerical code21 written by J. Adams (TFR,

Fontenay - aux - Roses,France) and further extended to incorporate Ez and

hot plasma effects, is used extensively. A similar code is also used to

generate the full inhomogeneous plasma eigenmode dispersion relations.

Using these codes, radiation resistance and probe signal components are

calculated much more precisely.

IV-5.1. Inhomogeneous plasma eigenmode differential equations and large

r approximation

In this Section, we will again start with Maxwell's equations and the

dielectric tensor in cylindrical coordinates, as in Section IV-3.1., and

assume a wave of poloidal, toroidal and temporal form

(1) A = Agei (me + k,,z - wt)

but leave the radial behavior unspecified. We will also solve for a second

order differential equation in E0 , instead of Bz, so that the physical

solution with E,= 0 at the wall can easily be recognized, just as in Section

IV-2.3.

Starting with equation(2r) of Section IV-3.1. and substituting (1), we

have

(2) -B - ikJ18 = --w (SE - iDE r z 0 c r 0
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Then substituting (le) and (lz) into (2) and collecting terms, we have a

first order differential equation in terms of E0 and Er alone21

(3) iE [k. + - E' + E [;2+
r rT -2 > r + -TD

where the prime denotes differentiation with respect to r. Similarly, we

can also start with equation (2e),and substituting (1),

(4) -B + ikB= 0 (iDE + SE )
Z *r c r e

and again, substituting (1r) and (l.z) and collecting terms, we have

of E Sm 1 ~,D
(5) E +-2 + E [Loz - k = Er - iE [ + ]

0 r 0c2r2 r r - i 2 c 2

Let's pause now from our general derivation and assume that r -

but m stays finite, which simulates a Cartesian coordinate system with

k = 0. Equation (3) then becomes

(6) E [(0 - k21] - ifj2E0= 0(6) Er 2 2

which we recognize as the first line of the wave tensor equation.

Similarly, equation (5) becomes

(7) E + E [ - ki- kD2 ]
0 E C2 C 4 W 2s k

2 2
c

where the factor multiplying E0 is easily recognized as the fast wave k

in agreement with our inhomogeneous plasma Cartesian waveguide treatment

of Section IV-2.3.

Returning to our general derivation, we can rewrite (3) and (5) as

(8) AiEr = B E0 + C E0

(9) E + D E0 + F E = BiEr - CiEr

where A, B, C, D, and F are all functions of r.
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By substituting (8) and the derivative of (8),

(10) i E E=lE + () + E + ([)B Er =A E A~ AJ

into (9) and collecting terms, we have a second order differential

equation in E alone,

(11) E = A D + B E [F - B (W) + EEOA[V+ B E (1' A~ ej0

where we note the possibility of a singularity at

(12) A - B2  0

which is simply our two ion-ion hybrid resonance condition, S -n, = 0.

Also,unlike equation (7), we must take derivatives of the plasma parameter

functions, A', B' and C', which are trivial except for the dielectric

tensor element factors S' and D', which can be written as

(13) S, D a n(r)

and these derivatives are easily calculated from the density profile

n(r) and n(r)

Cold plasma Ez can be calculated from IV-3.1-(2z).

arB aB
(14) 1[ - - ]_ = -w P Ez

and substituting (lr) and (1a), we have

klc2 [i Er
(15) E ~ 2  r - E ]

p 2 + -7 E4-
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IV-5.2. TFR-EZ code structure

We now wish to solve numerically equation IV-5. 1.(11), which can

be rewritten as

(1) Ee = F (r, E , E )

and where we will use a density profile,

n(r) = n (1 - r ) 0 < r < .9a

(2) = n [04 + .15e-12(ra - .9)] .9a < r < wall

and na, nb, B,, w, etc. ,to calculate F.

In Section IV-2.3, we used a first order integration method to

solve

(3) y' = G (r,y)

(4) y + +-- (6a1)

with aI = h G (rk k

h = step size

Quite similarly,we could have written to fourth order, using the

Runge-Kutta method 132

(5) yk+1 k + (b, + 2b2 + 2b3 + b4)

with

b, = h G (rk, k

b2 = h G (r k +h )
k Y Y +2

b3 = h G (rk + , b2)

b4 = h G (rk + h, yk + b3)
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Now solving equation (1) to fourth order, we similarly write

(6) Ek+l = Ek .+ (b1 + 2b2 + 2b3 + b)

E'k+1 Ek' + (b'1 + 2b' 2 + 2b'3 + b'4 )

where we have successively calculated

b= h E'k

b' = h F (rk, Ek, E'k)

(7) b2 = h (E'k +

b'2 = h F (rk + k + E'k +

and so on for b3, b'3, b4 , and b'4 .

To initialize the program,we need to specify E0 and E'6 at r = 0

for each poloidal mode number m, just as we needed to initialize FINT

(first integral) and SINT (second integral) in Section IV-2.3. By

judiciously varying k,,,we can then solve for the desired radial mode

number p,while keeping.E6 (w) = 0. Since we now have E., E'l, S,

D, etc. for all r, we can successively calculate iEr from Section

IV-5.1.(3), Ez from IV-5.1. (15), Br from IV-3.1.(Ir), Be from IV-3.1. (le)

and Bz from IV-3.1.(lz). We can calculate [E+I, JE'+I, IE'+J 2 from

E ~ T iEr
(8) E±= 2 r (statvolts/cm)

and the Poynting flux along +z and -z,as

(9) k(r) = [Er 2 + JE |2] rdr (ergs/sec)

0
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Similarly, power deposition per cubic centimeter and per unit length

for ELD and second harmonic are calculated from IV-4.3. (13) and IV-4.2.(37)

with a Gaussian temperature profile defined by IV-2.3.(2). Finally,

the single pass radiation resistance can be found from (6), Ee (r =

antenna) and equation IV-1.2 (5).

Figure 1 is a simplified operational block diagram of TFR-EZ.

Data can either be written directly in the beginning of the main program

or through more convenient files. The initial data is then normalized

and reduced to more compact forms,and proper initial conditions are

set for E6 and E' as a function of m. ADIRKG is a general fourth

order subroutine that sets up (6) and (7). SYDELC is a specific sub-

routine that calculates (7) from the initial reduced data. CALPI

calculates n(r) and 3n(r)/ar from (2). The field components can then

be calculated and printed as the.main loop increases r to a maximum

radius,where all the field components can be plotted as a function

of minor radius.
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Block Diagram of TFR-EZ
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Similarly, power deposition per cubic centimeter and per unit length

for ELD and second harmonic are calculated from IV-4.3. (13) and IV-4.2.(37)

with a Gaussian temperature profile defined by IV-2.3.(2). Finally,

the single pass radiation resistance can be found from (6), E8 (r =

antenna) and equation IV-1.2 (5).

Figure 1 is a simplified operational block diagram of TFR-EZ.

Data can either be written directly in the beginning of the main program

or through more convenient files. The initial data is then normalized

and reduced to more compact forms,and proper initial conditions are

set for E and E' as a function of m. ADIRKG is a general fourth

order subroutine that sets up (6) and (7). SYDELC is a specific sub-

routine that calculates (7) from the initial reduced data. CALPI

calculates n(r) and an(r)/ar from (2). The field components can then

be calculated and printed as the main loop increases r to a maximum

radius,where all the field components can be plotted as a function

of minor radius.
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IV-5.3. Field profiles at high density

In this Section, we will discuss the Alcator ICRF field profiles for

a hot (Te = T = lkeV) high density (he = 5 x 1014/cm 3) hydrogen plasma

in the second harmonic regime (f= 200 MHz).

Figures 1-4 show E0vs r for m = 0 and radial mode numbers P = 1-4.

Note how Figure 3 is in excellent agreement with our simple Cartesian

model of Figure IV-2.3. (6) (except for the Bessel function effect discussed

in Section IV-3.2.). Note also the extreme importance of the evanescent

layer for the smaller p (RR = 10-3). The evanescent layer is, on the

other hand, almost negligible for TFR,as can be seen from Figures 5 and 6,

since k.. is of order .05/cm instead of .5/cm for Alcator.

Figures 7, 8, and 9 are the complete set of electric and magnetic

fields and power absorption profiles, E., Er, E B9, Br, z S.z E+,

E 2, Peld/cm3, Pe .cm, P2W ./cm, as well as the radiation resistance

calculated from E0 (11.5 cm), for -p = 3, m = 0, -1, +1. Many particularities

need to be noted as follows.

The simplest mode to visualize is the asymmetric (E., about + r) m = 0

mode shown in Figure 7. m = + 1 are symmetric as shown in Figures 8 and 9.

We must be careful with the definition of p, since only Bz (in homogeneous

plasma) is a pure Bessel function (EO Is the suw of two Bessel functions,

IV-3.1.(19)), so that the number of zero crossings is different for E. and

Bz. We will use E0 in defining p because of the wall boundary condition.

Since the m = + 1 has the lowest density cutoff, it has the largest k6 for a

given p, and thus has the largest evanescent layer and smallest radiation

resistance (Rgl < RO < R1 ).

In the plasma center, the magnitudes of Er and E are comparable for

all modes, and about three orders of magnitude larger than Ez (also B,

Br = Bz). The phase between Er and E , on the other hand, is very different
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for the different poloidal mode numbers, so that the m < 0 are essentially

left-handed (E ~ -iEr), m > 0 are right-handed (EE = iEr), and m = 0 is

about half and half.21 Second harmonic damping is dependent on the gradient

of the left-hand component, so that the m < 0 will have shorter parallel

damping length (= 5 meters) than the m > 0 modes (= 60 meters),as shown

in Figure 10.

(1) = 2Pf - PHI
k P 2 /cm P2WPL

ci

The effect of kz on the damping length can be removed by dividing the

Poynting flux (PHI a E2 kz) by kz, also shown in Figure 10.

From Figures 7, 8, and 9, it is clear that it is not possible to discern

the m > 0 from the m < 0 modes by the relative phases between field com-

ponents in the evanescent plasma edge (from either E or B). Most of the

wave fields are well confined to the plasma center, so that most of the

Poynting flux is from rPHI < 8 cm (Figures 7-9 and 11-14). The ELD and

2wci power deposition profiles are even more peaked,due to the narrow

Gaussian temperature profile, so that rELD < 3 cm and r2  < 4 cm.

Figures 15 to 18 show the single parallel pass radiation resistance

(R., IV-1.3.(5)), the toroidal resonance (FR Ro, IV-6.2.(5)) and anti-

resonance (FARO, IV-6.2.(6)), corrected radiation resistance, k11, X 2c and

AELD as a function of density for the m = 0, v = 3 and 4 eigenmodes (the

singularities at cutoff are, of course, unphysical, and are removed by

letting ki / 0 (Section IV-2.1.) .
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m = 0, E0 profiles in Alcator and TFR
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IV-5.4. Full inhomogeneous eigenmode dispersion relations

As we might expect, the full inhomogeneous eigenmode dispersion

relation cannot be put in some simple form such as equation IV-3.1.(14).

Numerically, however, TFR-EZ can be put in a loop that successively

incredses kz and ne, following the E (w) = 0 boundary solution, and

thus tracing the dispersion relation (Figure 1). Although simple in

principle, this is a very large computation, and step sizes of the many

nested loops must be judiciously chosen to ensure reasonable computation

times, even on large computer systems such as Multics. The program is

started with the usual boundary conditions (E,,E'),but with a very small

ne and k . After each TFR-EZ integration from the plasma center to the

wall, the wall E is multiplied with its previous value. If the product

is positive, no solution was crossed, and we increase n and rerun TFR-EZ.

At some value of n, an onset (cutoff) will occur, and the product will be

negative. We then increase kz until the product is again positive, and

so on. To finder higher radial mode numbers, the program is simply

started after a lower radial mode cutoff, but still with kz = 0.

Figures 3-9 are the dispersion relation of the 0, + 1, + 2, + 3

eigenmodes for 200 MHz, 67 kG, pure hydrogen and peak densities up to

6 x 1014/cm 3. As we saw in our cruder model (IV-3.1.), the m = +1 is

the fundamental mode, and can have a radial mode number as high as 5 at

high density. kz can also be as large as 1.2/cm,which corresponds to a

toroidal mode number n = 65. Some 27 eigenmodes (Figure 10) are possible,

which is in good agreement with Section IV-3.2. if we take into account

that we did not include the poloidal modes with Iml > 3.

For the m > 0 modes, we note an apparent lack of cutoff due to the

tenuous edge plasma layer. Figures 11-13 show the details of the low
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density end of the dispersion relations. The fundamental and higher

toroidal resonances occur at

(1) k1  = 1 , , ...

= .018, .037, .055, .074 ... /cm

and further determine k1,, so that densities of the order of 4 x 1012 /cm3

are still necessary for the appearance of the lowest toroidal resonances.

(2) ii=1, m = +1, n = 3

Note that this corresponds to edge and even central densities at or below

the lower hybrid resonance, and these simulations are probably not

meaningful.

Figure 14 shows the m = 0, y = 1 mode dispersion relation for pure

hydrogen and deuterium plasmas, as well as a 50% H2/50% D2 plasma, in

the 2wcH regime.
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m = 0, P = 1 Dispersion Relations for Pure H2 , Pure

D , and 50% H / 50% D Plasmas
2 2 2
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IV-6. Stochastic Mode Stacking

IV-6.1. Introduction

The last theoretical aspect of eigenmode coupling, and one believed

to be of importance at high density, is stochastic rmode stacking in a multi-

moded plasma cavity.24 This somewhat new theory and original work, at least

in the fusion field, is now discussed at length.
23-25,7, 93

In the Alcator program,our goal is to heat at high density, where a

multitude of modes can propagate, many of which are coupled by the antenna,

and several of which can be simultaneously resonant, due to their finite

bandwidth in k space. This is fundamentally different from the regime

of most previous experiments which were at low density, where only one mode

at a time was important. Either a particular mode was actually tracked,

or heating was efficient only for the short duration of the mode resonance.52

Very large damping mechanisms can also be used to stop the toroidal resonances

and stabilize the radiation resistance,but at a significant loss in antenna

loading, a major engineering drawback.30

The first issue is the overlap of the skirts of the finite bandwidth

modes. The coherent stacking of the many eigenmodes at the antenna will

result in the radiation resistance increasing linearly with the number

of modes present, whereas statistical interference away from the antenna

will result in a less than linear increase in wave field and RF surface

probe signal. This complicated multi-k wave structure can be analyzed

in analogy to noise theory63 with many random frequencies and phases. 64

The key issues reside in the judicious choice of distribution functions

of the statistical parameters. All previous theories of propagation, coupling,

and damping of the various field components are used in making this choice
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for various simulations.

The second major issue, which is closely related to the previous one,

is the reactive component of the field structure and its effect on antenna

loading and observed probe signal. The reactive wave components of the

off resonance modes do not draw power from the antenna,and so do not

contribute to radiation resistance, but are of utmost importance in the probe

signal since, usually, only the magnitude is observed. If sophisticated

phase detection is employed, the reactive skirts of the modes will be of

importance in understanding the detailed phase structure of the measure-

ments. This way, apparent magnetic probe signal phase jumps over a short

time scale, as well as bulk continuous phase increase with density, are

explained by the average phase increase of the finite Q toroidal modes.

Appropriate analytical results from simplified models are backed up by

detailed computational simulations.
65

The effect of internal plasma density perturbations on effective

Q is also discussed. The injection of a narrow spectrum of wave frequencies

could also simulate lower Q,and increase the importance of the stochastic

stacking.

It is also shown that,on the average,the total radiation resistance

is independent of damping, is roughly proportional to the antenna length,and is

independent of antenna phasing.

Finally, the above theory is used to tentatively explain three new

experimental findings that cannot be explained satisfactorily without sto-

chastic mode stacking. The first and most important is the somewhat linear

increase of loading resistance with density.13 The second is the satura-

tion of the probe signal with electron density,41,42 and the last is the

noisy but monotonic phase increase between RF probes distributed around
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the torus. The first two findings could be explained somewhat by some

near-field loading, but the fact that the probe phase is continuous is

most likely of the realm of mode stacking.

A further,important,theoretically explained experimental finding is

that the measurement of the bulk parallel and perpendicular phase (hence wave

number) suggests a small propagation angle (referred to the toroidal field),

which would make second harmonic damping small. A corollary to this effect

is that these low k, modes will have large Q and enhanced resonant fields.
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I-V-6.2. Coherent and stochastic stacking

For a given perpendicular eigenmode field structure, two independent

waves propagate away from the antenna along +z and -z around the torus,

and add to the original electric field. Assuming (Figure 1)

(1) k =kz± + i kzi

(2) 1 =2R

we have the normalized electric field (z = 0 at antenna)7,22

(2) F T = ik z +eik_(l-z)

+ eik+(l+z) + e ik_(21-z)

+ eik+(nl+z) + e ik_(nl-z)

e ik+z eik_(l-z)

-eik + - iki

= F+ + F_

where we used the binomial expansion

(3) = 1 + X + X2... Xn

Without mode splittingkz+ = kz- ,and56

ikz ik(l-z) cos z - 7R k
(4) F =e + eikl = i s LRkR)k = i cotan [nRk] for z 0

At a toroidal resonance, kz = n/R, and z = 0

(5) F 1 + e-ki 2 R ~ for k.2R << 1
R eki2R - ki - rR 1

2Pf k,
P dirrR a r-

dis -300-



At antiresonance,kz = +R1/ 2 and

I -iki 21R
(6) FA = +--ik R ~ k ifR for ki27rR << 1

1 +e i

Figure 2 is a plot of FR and FA for large damping. Finallythe ratio

of the maximum to minimum is

(7) k ( R for ki27rR << 1

The average value of F at the antenna between resonances can be cal-

culated from (4) as

(n+1)/R

(8) <F> = R F dk <F+> + <F>

n/R

and using the integration formulas137

Sdx x - 1 log (a + b e p)

fa +b epx a ap e

ae x _ log (b + c eax)
b + c eax 1c e

we find

<F+ I
(10)

<F > = 0

independently of k . The average of F_ is zero because F_ is negative

half the time. F+, on the other hand, is always positive. RR is pro-

portional to F (electric field),and thus <RR> is also independent of

damping.
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Coherent Toroidal Wave Stacking Geometry
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IV-6.3. Mode spacing and onset

From

the total

(P = 2, v

Section IV-3.2, equation (5) and Table 1, we can calculate

number of possible perpendicular eigenmodes (onsets) as

= 1, ne = 3 x10 14/cm 3, a = 10 cm, R = 54 cm)

() N = v(2v - 1) . 2v2 for v >> 1

3.9 x 10~16 n ~- n 45

Also recalling that

(2) R&2+ (1 + ) k12 - kA2

(3) k. =.aV

4mT
(4) k1 -R

for a given perpendicular eigenmode with k. << kA, we calculate the number

of toroidal eigenmodes as

(5) NmT - A 4.4 x 10- 8  QR n 50

The total number of toroidal resonances is then approximately 93

vmax

(6) NmS

0

2v2 Nm (v) dv 2 Ra2  kA331ZIT A

mi NmT . x 10-24 o3 R a2

3 5.75 x3/2

The rate of onsets and resonances and spacing (AN = 1) in density is
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calculated as

(7) 9Nm
ane

Nm

ne

An = 2.56 x 1015 - = 6.4 x 1012 /cm3

(8) mT
3ne

Nem

2ne

An = 4.5 x 107 1/+ 1.25 x 101 3/cm3
emT P R

(9) mS
ane

e3 NmS
2 n e

An = 1.16 x 1023 -L il R3/2AemS Q3 3 Ra 2 - 2.7 x 1011/cm3

Finally, we can calculate the mode spacing in time (typically =n

5 x 1015 cm~3 sec~1)

(10) At = Ana 1.3 msec for m%

2.5 msec for mT

54 psec for mS
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IV-6.4. Quality factor

Wave or circuit quality factor is a criteria commonly used in

133,134
electrodynamics and electrical engineering. From first principles

144
(previous Sections and IV-7.2), we have

1) 2 Pfk P
P dis

(2) P = V

(3) v N ~ A for N. 5and0 2

(4) Q -
di s

(5)

Combining (1) to 4) and for the rest of this Section assuming

a plasma with a = 2, x = 1, n = 3 x 101/cm3, a= 10 cm, R = 54 cm, we

have

(6) Q 2 kwv 2 k NoN$2 A for N, .5
Q=kjg ki. VA 1 f k

250 for kA 1/cm, l/k = 10 meters

134
In comparision, we would have for a "normal" dielectric

2kE 2 -

(7) 2 P 2n
k dis 2

w E 2

(8) Q w2 =

TdisE2

W W _ k forv = Vki2P f - 12v 9 -2k~ g p
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The quality factor can also be derived from the complex frequency

(9) E = E, e~ (i )t

(10) W = WO e-2wit

(11)P awW2( dis = t =

(12) Q =

in agreement with (8) for nondispersive waves, where

(13) w a k

wi a k.

Further assuming k, = kA and Te = T =1 keY. we can calculate

(Section IV-4.2.) the second harmonic damping Q

(14) W/cm L A E 2  ra2

E+ iE E87r_ ___ y

(15) E = y i+2 2j Ey 2i

(16) Pdis/cm = Pdis/cM3 ds= 27rar Pdis /cm 3

(17) Q W/cm a2 5 x 1010  B02  1102w Pdis/cm -R ai R neTi 1

and assuming a = 1.9, we have the electron Landau damping Q

(18) QELD .2 1 a2 L 1 6500

2.63 R
2 a 2wc
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Similarly,we can calculate collisional90,96 and wall damping93,134,144

Q as

(19) QC01
WW A E2/2 I

Pdis T j2 / 2 A

kA 5500
2ki

(20) Qw
w

W W
P is

kA

2k

a 4dge
6 Bedge

37,000

where we note the difference between equations (8) and (19).

From (5),we calculate the half power width in density as10

(21) Q w
7i - 2ne
Ayi. Ane

(22) Q = =e x 1012 /cm3 for Q = 100

Mode stacking becomes important when the mode width is comparable to the

mode spacing. Following the notation of IV-6.3., and using (20), we can

calculate the maximum allowable Q for mode stacking (overlapping skirts).

(23) Q 2n =2 N 90, An em, Mn1
2ne

(24) QmT AnemT =NmT =

2ne

(25) Q Ane =23 NmS = 2250
0emS-
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Summarizing these results, we write

(26) QmT < < Q2we < QmS < Qcoll < ELD < Qwall

and onsets and high radiation resistance perpendicular eigenmodes are

expected to be distinguishable from the background. On the other hand, the

average toroidal resonance is expected to be swamped out by stochastic

mode stacking, especially with the resonant layer in the plasma center.

Finally, for a single mode,we can calculate the ratio of the maximum

to minimum field from IV-6.2.(7),as

(27) FR= /kR (1 kRQ 5.6 for Q = 100, kA= i/cm
A R Alr \A'T
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IV-6.5. Poloidal mode stacking

From Section IV-l.3., we calculated that,in general,

Vm2

(1) Rm fm
4 fm

(2) RT Rm

In this Section, we will consider the poloidal mode coupling effects of

two independently fed antenna loops, as shown in Figure I1I-2.1.(3). Figures

1-4 show the usual discrete Fourier (sin, cos, m > 0) components137 of a

3600 (TFR) and 1300 (Alcator) antenna, which is fed either in or out of phase

(Section 111-2.1.).

For simplicity, we will assume that the ratio of the Poynting flux

to the square of E at the antenna radius is independent of mode number

(Bam: 2an, Section IV-1.3.). For any particular set of eigenmodes, this may be

a very crude approximation (especially due to the evanescent edge), but will lead

to two simple,important,statistical scaling laws.

Allowing m to be both positive and negative (Section IV-1.2.), we have

+a

(3) Vm Em Ca cos (me - wt) a de

-ea

where

(4) ea I for push-pull

-a -ea 0 +6a 

+1

for push-push

-l-_J
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Using the trigonometric identity

(5) cos (me - wt) = cos me cos wt + sin me sin wt

and assuming a push-pull fed antennawe have

ea

(6) Vm = a Em 2

0

cos me de

2 a E sin m oa
= 2 aEm m a

(7) RT= a2 m 2 [ 2 .2 + 2
T fm a M~

00

2 +2
m=l

sin2 mea
m2

cos Wt -0 < m < + 00

m 0

sin2 me1
mz

= 9.87 for ea = 180*, m < 10

= 3. 47 for ea = 65 , m < 10

Similarly, for push-push we have

(8) RT= a2 Em2  -cos mea 2
T Pfm M-l m j

a2

m=l

[1 - cos meaj2 9.47 for ea = 180*, m < 10

3.29 for ea = 650 m < 10

and we note that the total radiation resistance is independent of antenna

phasing. A closer look at (7) and (8) further shows that

a2 Em2

(9) RT ~ Pf m 2 ea

Of course, the radiation resistances of the low poloidal mode numbers

still increase as 4a2 (or even 0 a'4 ), but the spectrum width decreases

with 8 a, resulting in RT a ea
--310-
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IV-6.6. Stochastic mode stacking

In this Section,we will examine the stochastic stacking of orthogonal

eigenmodes,at and away from the antenna. At the antenna (Ea), the eigenmodes

are coherent (all in phase),and the electric fields simply add. Away

(kz >> 1) from the antenna (E p),the modes become randomly phased with

respect to each other (incoherent), and statistically interfere.

For perpendicular eigenmodes (kg = 0) and high Q toroidal

standing eigenmodes, the electric fields are either in phase

or out of phase with respect to the antenna (for the same poloidal angle 6).

This random phase can be modeled by a simple coin toss with heads = 1 and

tails = -1. Thus for 1 coin (1 mode), two possibilities exist (21 2), and

(1) < E >= <l+ = 1a p 2

< E >
(2) < Ea

For 2 coins, there are four possibilities (22) and

(3) E 1 + 11 + -1 - + |-1 + 1 + +1 - 1 1
< Ea > + |+1(! + [ 1 \ + +-1l! + | 1 + |+10 + |+ 1\ + | -12

For 4 coins64

< E> 4 [() + (4)) + 2 [() + ()) + 0 1(4) _

< Ea > 4(24) 8

where

(5) (n) n!
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and in general ,

E _

(6) -- >
< E a>

IXm
<M = I1

,rI-

for x m ±l

for n + -

as shown in Figure 1.

Considering the problem from another angle, we may write

(7) P El + E2 + .... En] n n Io Eok
(7) antenna 2

E p2j2VOl
(8 dis 2n____

(9) Pantenna P dis

and thus

(10) Ea a n

(11) E a

Ea(12) EP

in agreement with (6).

The electric field at the antenna is thus,on the averageVn times

larger than the electric field around the torus, and is much more likely

to produce edge heating (the edge evanescence even further deteriorates

the situation).
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To further investigate the stochastic field structure of a set of

random modes, we define the following statistical operators.

fpdq p

(13) Average (mean) = <p> = -- n
dq fl

p = probe signal (Ip(z)I), radiation resistance (Re p(z 0))

q = k1, t, ne

(14) Deviation = p - <p>

(15) Average Deviation = <Ip - <p>l>

(16) Normalized Average Deviation =

(17) Standard Deviation =/ p -

(18) Normalized Standard Deviation =<">_ 2

(19) Range = pmax - min

(20) Normalized Range = max -min

145 pma
(21) Solidity (normalized maximum) ma

To illustrate the basic issues, we will use the following simple

heuristic model. Consider the field solidity near the antenna (coherent RR)

and away from the antenna (incoherent IV P).
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coherent

(22) <p> =

(23) pmax =

(24) Solidity (S)

n

aQ + (n - 1)

+ (n - 1)
n

incoherent

I-

aQ +n - 1

fQ +-n - 1

where n is the number of modes ,and Q is the quality factor. Thus for the

plausible cases

(25) n = 1, aQ= 10 Sc = 10 Si = 10

n =10, aQ=0 Sc =1.9 S. =4.1

n = 10, aQ 2 Sc 1.1 Si = 1.6

and, in general

(26) S > Sc

(27 S :: Sc f for aQ " n

which means that a probe signal (away from the antenna) will always have a

"noisier" time history than the radiation resistance.

Although this simple model is a good approximation in the coherent case

(since RR is always positive), it does not take into account stochastic

destructive interference (a high Q resonance with opposite phase can

totally cancel out the background). The normalized range is a slightly

more powerful operator (Range = pmax - <p> in coherent case), and further

shows that the probe signal is statistically noisier than RR. In the next

Section, we will computationally use the average and standard deviations,

again with the same results.
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Simple Stochastic Mode Stacking Model
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IV-6.7. Coherent and stochastic field simulations

In this Section, we will examine the results of realistic computer

simulations of coherent and stochastic fields. A code called "Stochastic

Mode Stacking" is listed in the appendix, and is versatile enough for almost

any parameter scan. Figure 1 shows the many parameters that need to be

chosen for a given set of simulations (multi-dimensional scans). Table 1

is an outline of the basic functions and variables used in the code, and

is self explanatory with the code comments, Given the basic input data,

the code calculates and plots the real, imaginary, magnitude and phase of

the sum of s = 1, 3, 10 and 20 modes, as a function of linearly increasing

kz of z. kzo is some random number (i,e., between .5 and ,6/cm) with ran-

dom or fixed initial phase, and z is the distance from the antenna. The

average, average deviation, and standard deviation of the various parameters

are also outputted.

Figures 4 to 7 show the real, imaginary, magnitude and phase of

the electric field at the antenna (z = 0) versus k1 (kzr), without mode splitting

(p = 0) or fluctuations (kzfa = 0),and one mode (s = 1) and damping length

S10R. As expected from Section 11-6.2, <Re> = ar = s = 1, <Im> = ai ~ 0

<Mag> = am > ar and <0> = ap ~ 0.

Figure 3 is a magnified view of Figure 4,where the maximum (F), mini-

mum (FA) and half power width (AkZ) are easily measured. Figure 8 shows

eigenmode resonances produced by sweeping a multi-wavelength coax resonator

through several resonances between 150 and 220 MHz (Figure 10). Figure 9

is similar, but with three different resonators in parallel.

Figures 11 and 12 are the same as 4 and 5,but with 1% mode

splitting (p = .01). Figures 13 and 14 are z scans (scan k = 0) with

large damping (kzi = l/R). Note how the phase linearly increases near the
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antenna (F_ << F+),but goes through nearly step-like transitions 1800 around

the torus (IF+J = jF_|). This effect is further investigated in Figures

15 to 20,where the damping length is varied from R to 100 R, and at a

position near the HCN or Thompson ports (z = 60). Note again the phase

increase difference between the small and large damping cases. At high Q,

the fields are almost always either in phase or out of phase, and the parallel

wavelength is most easily calculated by measuring the distance between phase

jumps or magnitude nodes. This situation, of course, does not occur if

the mode is highly split (running wave, Figures 53 to 58).

Figures 21 to 24 show the radiation resistance (Re, z = 0) for s = 1,

3, 10 and 20 and kzi = .I/R. Figures 25 to 30 show the same simulation,

but with random initial phase,and z = 60. Note how the phase becomes

progressively more difficult to measure with increasing number of modes.

Table 2 summarizes the averages and normalized deviations, as a function of

number of modes. Note, in particular, how the average of the magnitude of the

probe signal (= -Vas) and radiation resistance (= s) agree with analytical

theory. Also note how the normalized deviation of the radiation resistance

decreases with swhile the probe signal is independent of s. For many

modes, the radiation resistance has a smaller normalized deviation than

the magnitude of the probe signal (RR is less "noisy" than a probe signal).

Figures 31 to 36 show similar simulations with 10 modes, but with

k,, spectrum widths of .01,.l and 1/cm. Figures 37 to 40 show the effects

of 1% and 10% high frequency fluctuations on one mode.

Figures 41 to 46 show the probe signal (z = 60) for 10 modes as a

function of increasing kz, for ki = /R, .l/R and.0l/R (this is the same

as Figures 15 to 20, but with scan k = 1). Figures 47 to 52 show the ef-

fect of 1% and 10% mode splitting on the probe signal (z = 60) and the

radiation resistance (z = 0), for one mode and k. = .1/R.
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Table 1.

Outline of basic functions and variables used in the

stochastic mode stacking code.

INPUT DATA

s = number of modes

k = kzr + i(kzi) complex k

k_ = k+ (1 + p) mode splitting

k = kzr[kzfa - cos (kzff - kz)] fluctuations

F = F+ + F_ as calculated in 11-6.2,

kzro and pha = random set of initial k and phase

scan k linearly increases k or z

kzro = kmult (kzro - ksubt) changes the initial spectrum width

OUTPUT DATA

Plot either real, imaginary, magnitude or phase.

ar = <Re> , ai = <Im> , am = <Mag> , ap = <0>

adrs = <jRe - si> ; adrrs = <IRe - l>

sdrs = (Re - S)2>; sdrrs = <(Re - )2>

admrs =(<iMag - /sl>) average deviation of magnitude minus root s
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Table 2

Summary of averages and normalized deviations as a function

of number of modes for I/k zi = 1OR.

.1

z 0

<Re> S

<1Re - s1>

<Re

z = 60

<IMag - >,
<Tag>

s = 1

1.0029

.715

1.079

.448

3

3.026

.448

2.056

. 464

10

9.989 20.04

.212

4.0432.936

.476
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Multi-Dimensional Scans

kRe
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Phase
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Low Q Eigenmode Waveform Detail

3.5

.3

2.5

2

1.5

I

0.5

a

8.535
8.54 0.55

0.545 .555
K2R

8.56
0.565

0.57

INPUT scank-1.8 s- I phase-0.0 n- 589 r-54.8
DATA kzi-.OM9 p- 0.08 z- 0.00 zmin- 58.89 Zmax 75.00

kminf-8.970 kmaxf=1.WO kfmlt 1.00 ksubht O.OW
kzfae.M kzff..18E+64 kzrO(1)-0.55340

AVERAGE adr- 0.9597 adi- 8.1445 adm- 1.2480 adp- O.e93
AVE DEV adrs- 0.7351 adrrs- 0.7351 adms- 0.7458 adwrs- 8.7458
STAND DEV sdrs- 0.97 sdrrs- 0.977 sdms- 0.9762 sd-rs. 0.9762

Figure 3
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Figure 4

MP01TUDE vs K2
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0.56

0.58

Figure 5

Real, Imaginary,
k. = ./R, 4 = 0

Figure 6
Magnitude and Phase of one
and no mode splitting

Figure 7

toroidal eigenmode at z = 0,

IrflT scank-1.0 s*- 1 phase-0.0 n- SW r-54.Q
DATA kzi-0.8015 p- 0.90 z- 9.90 zmin- 0.00 zmax- 60.90

kminf-.9W kmaxf-1.1i kmult- 1.90 ksubt- 0.0
kzfa-.z kzff.1+0 4G4

vERAGE adr- 0.9995 adie O.O3 aimd 1.31M ads- 0.942
W DEV airs- 9.7198 adrs- 0.7190 adms- 0.75M admrs- 0.753
ST" DEV sdrs- 0.8949 sdrrs- 6.94 sdms- 9.9856 sdwrs- 1956
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Analog Eigenmode Simulations
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Probe Signal Simulations for One Mode and 1% and 10% k Fluctuations
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IV-7. The Single Perpendicular Pass Regime

In the presence of very strong damping mechanisms, neither parallel or

perpendicular eigenmodes can occur. Our previous waveguide treatment must

be significantly modified to account for the excited spectrum of the

antenna. The concept of group velocity becomes an important analytical and

intuitive tool for estimating energy propagation and deposition in this

regime.

IV-7.1. Single perpendicular pass radiation resistance

To estimate the single perpendicular pass radiation resistance, we will

model the antenna and plasma in the semi-infinite Cartesian geometry

shown in Figure 1. The antenna is modeled as a Fourier transformed current

sheet at ra 126

(1) dk = e* ei(kz - wt)

backed by an infinitely conducting wall at r . The semi-infinite plasma is

modeled as a flat density profile starting at rc (cutoff radius), which will

be a function of k1 , as we shall see shortly. Only E in the direction of

J needs to be considered,so that we define

(2) Ek = Ey = E0

Neglecting vacuum displacement currents, the electric field in the three

regions a, b, and c can be written as

(3) Ea = A eikrr

(4) Eb= B ekr + C e-kr
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(5) Ec = D ekr + F e-kr

where Ea is propagating and Eb and Ec are evanescent. From continuity in

Ey, we have the boundary conditions

(6) EC(rw) = 0

(7) Eb(ra) = Ec(r a)

(8) Ea(rc) = Eb(rc)

From continuity in Hz (Hz a 3E/ar),we have

(9) d[Ea (re) - Eb (rc)] = 0

(10) d [E E (4w i w J
() [Eb (ra) c (ra = 2

By making the judicious change o

(11) 5 = ra -rc

(12) 62 r - ra

(13) 63 61 + 62 = rw - rc

equations (3) through (10) can b

unknowns.

(14) D = -F e-2k62

(15) E(ra) = B + C = D + F

(16) Ae-ikr 61 = Be-ks1 + Ce+k61

f variables

e reduced to five compact equations and five

-334-

-- - -



(17) ikr Ae-ikral = kBe-kol - kCek6l

(18) B- D + F C =. 4i wJ
kc

which,after some lengthy algebra,can be solved to give the Fourier trans-

formed electric field at the antenna (15).

(19) E (r) = 2 i 2k (ek62 - e-k62) x
Ek (a) kc2

k(ekol + e-k61) + ikr(ek6l - e-k6)

r

Fourier transforming the antenna current strip,we have

+w/2

(20) J - J.o e- ikzdz = JUw sin k w/2
(20)k f- 2f k w/2

-w/2

and

(21) 10 = jow

The inverse transform of the electric field at the antenna radius is

(22) E(ra, z) = Ek(ra) eikz dk

The Fourier spectrum of the antenna complex impedence is

(23) Zk = a)

and the inverse transform is

(24) Z = 1 E ikzdk 2 [
o 0

Ek a) dk
o d
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Radiation resistance and impedence per unit length are then simply

(25) RR/cm = Re [Z]

(26) X/cm = Im [Z]

In this model, we furthermore let kr and 6, be functions of k, which is of

course,k . Assuming a parabolic density profile,the cutoff (k, = 0) den-

sity and radius (rc ), and thus 6 ,can be found by equations IV-2.5.(12)

and IV-2.2.(6) as

(27) nc + a 5.16 x l4 iik2

(28) 6 o+rp(1-

The plasma density in region a is then assumed to be

no + n c
(29) na 2

so that kr can be calculated from equation IV-2.2.(6), assuming k, =k and n na.

Figures 2 and 3 show the real and imaginary parts of the k spectrum for

typical Alcator conditions

= 2 (Deuterium) ra = 11 cm

s = 2 rp = 9 cm

f. = 97 MHz w = 3 cm

rw = 12.5 cm no = 0, .5, 1, 5 x 1014 x 1014/cm3

The integral of the imaginary part of the spectrum for no = 0 (ZINTI =

2.2 n/cm) is in reasonable agreement with w L,as calculated from equations

111-2.4.1) and III-2.5.(9)

(30) w L =-- = 1.83 a/cm
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The reactance is also slightly decreased, as expected, when the high

dielectric constant plasma is brought near the stripline antenna. The

real part of the spectrum is concentrated at low k,,,and its integral

(ZINTR = .25 o/cm) is much smaller than the imaginary part,and is weakly

dependent on density.

Figures 4 and 5 show the 200 MHz hydrogen case ,where we note how the

no-plasma reactance exactly doubled as expected. The real part also

approximately doubled.

These computational findings can be more physically understood by

separating the problem into three parts; wave production, attenuation and

transmission. .Wave production can be visualized as a wave from the antenna

center conductor that interferes with a wave reflected from the wall.

(31) E a 1 - e-2k62 = 2k.6 2

Halving 62 =w -ra thus halves the electric field,and reduces the coupled

power and radiation resistance by a factor of four (ZINTR = .065), just as

in eigenmode coupling. This effect is clearly shown in Figure 6 where ra

was increased from 11 cm to 11.75 cm. The antenna reactance also decreased

according to equation (30).

The attenuation is simply the evanescence between the antenna and the

plasma

(32) E a e-ki61

and limits k. < 1/61. Decreasing r from 9 to 8 cm decreased RR by about

40%,as shown in Figure 7.

The transmission factor between the evanescent wave in the vacuum region

and the propagating wave in the plasma comes about from the mismatch between
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the plasma and vacuum impedences. From continuity of E and H,we have

(Transmitted, Incident, Reflected)

(33) ET eik Lr = E1 e- k1r ER e+kir

(34) ET i kreiktr = -EI kne-kr - ER k ekiir

and assuming for simplicity r = 0 and EI = 1, we find

(35) E f(k.)
LTa ikj. ki

For constant kit, ET is dependent on density when k. << k,,. On the other

hand, at high density and small k,, k >> kit and

(36) ET f(k) I

Figure 8 shows a similar case, but with deuterium at high density

(1 - 5 x 1014/cm3 ). For small kt (~ .1/cm),the cutoff layer is nearly

fixed to the plasma edge (rc = r ), so that equation (36) is valid,and

(37) RR a EXH a k E2 1

which is in good agreement with Figure 8.

If a density gradient were included,the transmission coefficient would

be slightly larger, but since

(38) A _ 2 > k,

our computational model is a good approximation.

The last variable is the width of the antenna. Since w < l/kreal ' the

width has little affect on RR. On the other hand, decreasing w increases

the high end of the imaginary part of the kit spectrum (Figure 9),and thus

the impedence, also in agreement with equation (30).
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Single Perpendicular Pass Regime Fast Wave Coupling Model
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ku Spectrum for D2 at 97 MHz
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IV-7.2. Group velocity and simple ray tracing

The normalized fast wave dispersion relation is well approximated

by (IV-2.2.(21))

(1) N2 + (1 + a) N2 =1

2
(2) k = k2 + k2 = - (1 + 6) k2

X y VA2
A

The group velocity in. the y direction (e) is 144

(3) v = (=)

Combining (2) and (3), we have

(4) 1 - 1 2 _ k.
v aw 2k Y Wcivgy 1k [ VA 3c

and similarly for v gx, so that

(5) vg = <<v kX

For practical purposes, this means that in the perpendicular plane,

energy leaves the antenna at nearly right angles to the vacuum wall , as shown

in Figure 1. The wave energy (rays) can even be slightly focused to the

plasma center,due to the kr gradient (n(r)). In the single perpendicular

pass regime, as opposed to eigenmode coupling, the antenna must of course

be fed in the push-pull mode for plasma center heating.

Substituting k. + k in(4)gives the compact form

(6) vg, = VA

N2

- VA for = 2
1 - N A

=VA for k,= 0
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Similarly ,

(7) v =(I + Q)N, V
g I -RN2 I

2 "

- 3N VA for o = 2

ifN/2 VAfok=
= (1Q+ 3/2 A for k,. = 0

and finally, dividing (6) by (7), we have

(8) =' 1

Figure 2 shows a graph of the normalized N2x2 fast wave dispersion

relation (IV-2.2.(18)), the normalized N elliptical (1) approximation, the

normalized 1/N wave normal surface (normalized phase velocity), and the

group velocity for n = 2. The normalized phase velocity w/kVA, is simply

1 in the direction of k. Locuses labeled by the number 4 for example,TNT
all refer to the case

(9) ki. = k. = .5kA

N-. = N, = .5

v' = v = VTVA

vg91 = 3v = 2.0 VA

Simple ray tracing can be done graphically,as shown in Figure 3,by

plotting the local group velocity on the wave normal surfaces for different

times. The calculation and plot need to be done only once, since the

copy can be photostatically reduced. The rays are then conformed to the

group velocity vector field.
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For the more realistic inhomogeneous plasma of the previous Section,

we saw that almost all the power was coupled to small k,,,due to the

evanescent edge. Thus,outside the 45* wedge drawn in Figure 3, k,, > k,

and we need not worry about the more complicated boundary conditions at

the plasma edge and vacuum chamber wall. Inside this wedge, our simple

model is qualitatively correct, and we note in particular, how the phase

fronts propagate at nearly right angles with the magnetic field. The

group velocity ,and thus the rays, on the other hand, have a very strong

tendency to diverge in the parallel direction. The density gradient

again tends to focus the rays by increasing k,,so that most of the single

pass energy at the plasma center should be enclosed in the 45' wedge, not

that this wedge is in either k (wave normal) or x (wave front) space.

Since the fast wave is electromagnetic (Section IV-2.7.),power flow

can also be followed with the Poynting flux vector (IV-1.3.)

(10) S = EX H
2

and assuming k = Ez = 0

k
(11) Sx =x E2

2w. y

S = 0 since E a i E
y y

k

Sz= z(E2 + E2

and

E2

(12) S = E2  k,
x y
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From the first line of the wave tensor equation,II- 2 .2.(1 4)

(13) E
y

=[0s1
2

=S - n,

which combined with (12), gives the energy propagation direction

(14) - 2

() +1

1

1 N.
2.4 N,

1
N.,

for
NT.

0 = 2 and N, = 0 (900)

for Q = 2 and N,, = .478 (450)

for 0 = 2 and N,, = .58 (0*)

in qualitative agreement with the simple elliptical approximation of

equation (8).
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Perpendicular Ray Training

Figure 1

First Order Phase and Group Velocities for Q = 2
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Phase Fronts and Simple Ray Tracing

hase Front
ay

roup Velocity

45 *

A2 Antenna V. , z

(Top View)

Figure 3

-347-



IV-7.3. - Tunneling and poloidal magnetic field effects in the TIIH regime

Near the two ion-ion hybrid resonance, the wave equation can be

approximated by
10 ,48

(1) d 2 + [ + b E = 0
d r2 P

where from equation IV-2.3.(17)

(2) + b = k2(r)

and from simple curve fitting at and away from the TIIH layer.

(3) b = k2 (r+w) 1

(4) a = Arb " .5

Where Ar is the thickness of the evanescent layer. Figure 1 is a close

up of Figure IV-2.5.(3),and is in good agreement with Figure 2,which is

a plot of equation (2).

Equation (1) can be solved using confluent hypergeometric functions819131

(instead of trigonometric functions, for k2(r) = constant). From

principles of geometrical optics, we can define reflection (R), trans-

mission (T), and absorption coefficients (A) at the TIIH layer. The

tunneling coefficient

(5) n = Ar k,(-) = .5

is independent of damping and direction of propagation through the

resonant layer. A wave incident from the high field side sees a resonance

first, no reflection occurs,and most of the power is absorbed.
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(6) R= 0

T~e~rn/2
(7) T= e-/= .46

(8) AN=1 - R2 - T2 = -_ e-r' = .8

A wave incident from the low field side,on the other hand,encounters

an evanescent layer,and most of the power is reflected.

(9) R = 1 - e~"1 = .8

(10) T = e-wn/2 = .46

(11) AL e-2n .16

Figure 3 shows how absorption from the high field side (AH) is always

greater than from the low field side (AL).

We might wonder how power is absorbed if the mechanism is independent

damping. The answer resides in the fact that the perpendicular group

velocity tends to zero near the resonance. Even for a small change in w,

the resonant layer k. can change drastically, so that

(12) + 7 and vg -* 0

The parallel group velocity,on the other hand, is weakly dependent on w,so

that energy is diverted along the parallel direction,and slowly dissipates

over many wavelengths. Of course, mode conversion occurs here,so that

this treatment is only approximate.

Another major difference between low and high field side incidence is

the difference in species heated. High field incidence lets k,+ - so that,

from equation IV-2.6.(5), Ez is increased manyfold',and electron Landau

damping (equation IV-4.3.(5)) can become very large. The inclusion of

rotational transform effects (Figure 4) also increases k,
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(13) k ;4 kz +- k

and further enhances electron heating through increased Ez and vthe / vp
At low minority concentrations, the TIIH layer becomes part of the

finite thickness (IV-4.2.(36)),fundamental and second harmonic resonance

layers and hot plasma effects swamp out theresonances, and electron

heating stays small compared to ion heating.
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Detail of TIIH Resonance Layer Dispersion Relation
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V. Synthesis, Recommendations for Further Work, and Conclusions

V-1. Synthesis

The Alcator A ICRF experiment can be schematically summarized by the

block diagram of Figure 1. Some of the main controllable and uncontrollable

input variables are shown with the most important ICRF propagation and

damping processes. A certain number of wave measurements, products,and

by-products are also shown.

From a theoretical point of view, one is interested in understanding the

processes, so that an efficient heating scheme can be devised. From a more near-

sighted, practical point of view, we need only to produce heating (product)

with as little plasma deterioration as possible (by-products). Unfortunately,

neither point of view has seemed encouraging up until now for ICRF at high

density. Although significant amounts of RF power were coupled to the

plasma without any significant plasma deterioration, no evidence of any

bulk heating was observed.

Although unpromising (unrealistically high goals were set), many

important new results were observed at high density. Before the Alcator

experiment, one could not have made a single statement about the effect of

any input variable on any of the output measurements, products or by-products

of Figure 1. This work has experimentally mapped out most of the different

parameter correlations in conjunction with plausible,simple theories.

The most important new scaling law is

2 1.5
(1) RR a d p* F0 ne1 WO2 pom-5 z-2 1 0

where we have successively listed the effect of center conductor to wall
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spacing, antenna length, antenna phasing, Faraday shield, plasma density,

transmitter frequency, P power, ion mass, ion charge, plasma current,and

toroidal field. Most other results, on the other hand, cannot be cast in

such condensed form.

In the fundamental regime, cyclotron or cyclotron harmonic damping

were obviously important processes, as shown by the dramatically different

probe signal and radiation resistance spikes behavior during a toroidal

field scan. At second and fourth harmonic, no such behavior was observed,

and some other strong damping mechanism must be accounted for. Collisional

damping is a possibility since edge neutral density is unknown, but similar

results were observed with gas puffed at the antenna port and 900 away.

A likely source of problems are the trapped particles in the port ripple.

Trapped particles were the major concern of the Alcator lower hybrid

experiment. Figures 2 and 3 show typical lower hybrid heating shots (data taken

by the author in October, 1976). Essentially the same symptoms as in ICRF

were observed; energetic ion tail, fast decay time, no plasma deterioration,

and no bulk heating. After extensive parameter scanning, a very narrow

density window was found where thermonuclear neutron production was

dramatically increased, but again, without bulk heating.

Most of the ICRF wave measurements were made far away from the antenna

(except for the near-field, which is too close),and it is possible (and

even likely) that the observed probe signals are not representative of the

bulk power leaving the antenna. There could be, of course, near-field absorp-

tion, but also single perpendicular and parallel pass absorption. In all three

cases, RR would be independent of toroidal field (damping strength) as

experimentally observed. This idea is especially supported by the surprising

fact that k, away from the antenna,is very large, in contradiction with good
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mode coupling (small evanescent edge), but consistent with weakly damped

(2wci) low k, modes. This may explain why the probe eigenmodes are

independent of layer position. Put concisely, these eigenmodes are not

necessarily representative of bulk power flow and absorption.

All three regimes of damping (single perpendicular pass, single

toroidal pass and stochastic mode stacking) at high density can be used

to explain the basic behavior of the radiation resistance (equation(l))

and probe signal background. For example, RR theoretically scales as

d2 independently of damping, 0, for single perpendicular pass and 1 to 24

for perpendicular eigenmodes, and is independent of antenna phasing, etc.

Comparing available parameter space with the space that was actually care-

fully investigated immediately reveals a large discrepancy;the low density

fundamental regime which has been proven successful on the two largest ICRF

experiments (TFR,PLT). Three main factors contributed to the brevity of the in-

vestigations of this regime; first, the extremely unfavorable power coupling scal-

ing law (RR a new2 ). Second, Alcator is a high density experiment, and consider-

ably more scientific impact could be obtained by heating a high density plasma

(commercial reactors will undoubtedly operate above ne = 1014/cm3). Third,

the tokamak operators have little experience in low density work, the

machine is difficult to run, and diagnostitians are usually not interested

in this regime. In hindsight, not fully investigating the fundamental regime

has been a mistake, although preliminary results with proper antenna phasing

(push-pull in single pass regime) low minority concentration, and fully

shielded antenna (A4 ),proved unsuccessful.

We are now left with the dilemma of pinpointing the source of the

problem. Antenna design is the most unlikely since A4 is all metal and

fully shielded. Trapped particles clearly need further investigation

(even simple up-down charge exchange scans were never done), and could be
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the sole problem, explaining everything. Either high density, field or

frequency could also be at the heart of the problem, as they are significantly

higher than the TFR and PLT experiments (the evanescent edge is many

times worse in Alcator). PLT always stays at very low density while TFR

has shown good results up to 1014/cm3 .

Tokamak size has also been suggested,since the large PLT, TFR and

Macrotor tokamaks are easily heated ,while the smaller Microtor and Alcator

have not been heated. The "Magic Touch" can be ruled out since both

Microtor and Macrotor are at the same laboratory. A major difference, caused

by tokamak size increase at a given central density, is the much lower

plasma edge density. In PLT, the plasma density near the Faraday shield

is of the order of 1010 - 1011/cm3, and reaches 1012/cm3 ,only several centi-

meters into the plasma. In Alcator,on the other hand, the plasma edge

density starts immediately at the 1013/cm3 level, at least two orders of

magnitude larger than PLT. We could, of course, suggest the counter-argument

that A2 and A4 behaved the same. If edge density was the problem, an

unshielded antenna would have undoubtedly been much worse. Antenna current

shorted out by plasma is also ruled out by the same argument. It was most

unfortunate that no time was available to use the Langmuir probe installed

in the A4 Faraday shield after so much work went into implementing the

intricate design.
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Lower Hybrid Data

Figure 2

10/7/76

Figure 3

-358-

10/28/76
Lower Hybrid Data



V-2. Recommendations for Further Work

The next theoretical investigations should include an in depth study

of hot plasma effects in the TIIH regime at high density and a realistic

description of the antenna near-fields,including density gradient and a

very strong,localized absorption mechanism similar to those modeled by

120 ,121Y. Lapierre. The most important, urgent, and possibly difficult

problem is producing a good model of the trapped particle power absorption.

The next stage of experiments on Alcator "A" or "C" should definitely

be done with shielded antennas until some evidence of bulk heating has

been achieved,since there is no reason to believe that Faraday shields

have any detrimental effects (except mechanical, which is of secondary

importance at this point), and may in fact be necessary (PLT and TFR groups

claim they are). A6 is an excellent overall design, and only the vacuum breaks

(and multipactor) need further investigation.

In the area of diagnostics, much initial work,discussed in Chapter III,

needs to be finished, particularly the A4 Langmuir probe, capacitive

probe radial scans, trapped particle detector, high speed stainless steel

foil bolometer, antenna breakdown detectors, and most importantly, the antenna

viewer. More complete k. array and electron heating (soft X-ray and electron

cyclotron emission) diagnostics, as well as less cumbersome data acquisition,

are also in order.

The next generation of experiments should concentrate on the more well-

known and proven minority regime at low density (Note again that Microtor

has not yet been heated successfully). Second harmonic experiments should

also concentrate on the lower density with close attention given to power

balance and wave activity at the antenna port instead of far away from it.
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Of course, any promising results at higher density on Alcator C would com-

pletely change these recommendations.

The most important parameter scans are minority concentration, in-out

position and up-down charge exchange and, of course, resonant layer posi-

tion. Of more academic importance are the d2, I1., $* and w' scaling laws,

which would be very easily investigated (except for d2 ) with the A6 an-

tenna system.
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V-3. Conclusions

With a nearly complete comprehensive study of the theoretical

foundation of ICRF at high density, and through comparison with experimental

data over a wide range of parameters, a more enlightened understanding

of the physics of launching, propagation, and absorption has resulted.

Even with apparently large discrepancies between theory and experiment,

important new scaling laws have been formulated, which can be compared

with other experiments and more sophisticated theories.

In any case, many technological advances have been made in the field of

antenna design, matching,and diagnostics through careful study of the

A1 , A2, A4 and A6 antenna designs and experiments.

In short, this work has tried to substantiate a choice of ICRF

schemes for future high field, high density,compact tokamaks, through a

broad comparison of different parameter regimes. The outcome is still

unclear,and much more experimental and theoretical work is still necessary,

continuing, and planned.143
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APPENDIX 1

Alfven Regime Approximations

For the purpose of this work,we shall use the usual perturbation

technique,and linearize most of the basic equations.1, 45

(1) n =n. + n +

E = E, + El +

The Fourier transformed first order quantities in a wave are of the form

(2) A1 = Klei(k-r-wt)

where we will use only the real part of A1 as measurable quantity. Also

(3) k-* = k x + kyy + kzz

k.2 = kx + ky2

k12 = k + k

= zB,

For each species in the plasma,we can write the full fluid equation, i.e.,

for ions

(4) Mn = en(E + v x )- VPj - V-.Ni + Pie

where Mn dv/dt represents the change in momentum, en(E + vj x B) the

electromagnetic forces, VPie the pressure gradients, v-3,i the off

diagonal shear, and Pie the collisions. For the plasma wave regimes

in the near collisionless regime we will be analyzing, the shear and

collision terms represent small resistive losses that will be evaluated in

Section IV-4.2-5. The pressure term is reactivel and would only be

important ifits corresponding phase velocity, the speed of sound in a

plasma (= Vthi for Ti = Te),was of the order of,or greater than ,our elec-

tromagnetically induced wave phase velocity (V,.= VA thi, Appendix 2).
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Cancelling the density term on each side, we are then left with the

equation of motion of the single particle

dv + + 4,
(5) M Ui =e (E + v B x _ )

c

with

(6) -= + (-V- V)vdt at v~

The term on the right is usually called the connective derivative and may

be neglected if there is no constant drift. Thus,

(7) v V*o + Vi ~V

and our equation of motion is then simply

(8) M e (E + v x+

which has orthogonal components

(9) - iWMvx = e (Ex + v )

(10) - iWMvy = e (E - v B_o)y xc

For simplicity, we assume for now that Ey = 0,and solve for the ion

velocities

(11) v  polarization current

(12) v - Ec EX8 currentv 1 oz~ B,

where we defined

(13) Q -
ci

Substituting for electrons in the relatively low ICRF,where w << ce

-363-



(14) M+ m

e + -e

Wci ~ce

62. + -62 a 1

we thus have for electron velocities

(15) ve= i a a << , v ,v(5 Vex ~ e B, ix 'Y Vey

(16) vey = Ecey B,

and the electron current along Ex (polarization current) may be neglected.

Combining Ampere's and Faraday's laws with the definition of current

density,

(17) v x E =- c

(18) c v x B= 4 +

(19) J = ne(v - ye)

we have the wave equation1

+4 ++4 -+ +* A4
- 

+ )2+
(20) v x (v x E) = -k(k- E)+,k2E= c Z-J + - E

We assume for now that k = kz,(an electromagnetic wave since k - E = 0

(Figure 1)), so that

W2
(21) k2E = 2 (1 + -) E

where we defined an effective plasma dielectric constant

W2

(22) E Al!==C for w < w
U' E = lv'nc

In Section IV -2.1. this will correspond to the total dielectric tensor element
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(23) K = S = evacuum + plasma

In the very low frequency approximation w << wci

(24) v. _ -Ec

4 y Bo ey

J3 = 0, and E linear polarization is justified, since the other ortho-

gonal linear polarization,E y, would not couple power to the original

wave

(25) J E Y2

Al so, since

(26) = i
Viy

the bulk of the particle wave kinetic energy is oscillating in motion

perpendicular to both B. and E, (E X BOz drift). The phase velocity is simply

(27) w - I = c = VA

From Faraday's law (17)

(28) By = Ek
Xw

and we note that this By when added to Boz, gives rise to a small (BI k< B.)

shear sinusoidal ripple on the confining field (Figure 1). The y component

of the velocity of the field line is simply

B E c
VBy k B. B0

which is the same velocity as the fluid EXB drift motion

E c
(30) vfluid B
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For all these reasons,this mode is usually called the electromagnetic shear

Alfven wave.

In the frequency regime above the ion cyclotron frequency wci < W < ce

(31) -~ 1
vey

and our assumption that Ey was zero is not valid anymoresince E couples

with J y2  0. To treat the problem correctly, we must allow E to be

arbitrary and solve the coupled set of equations (this will be done in

Section IV-2.1). In the ion cyclotron range of frequencies, and in

particular, for - 2,

(32) Iv I = Iviyl = Iv > Vex!

For o = wci, we have singularities in the ion currents. These singularities

will be removed in hot plasma theory,and give rise to collisionless damping,

(Section IV -42).

If we now look at the case where E, k, and Bo are all perpendicular to

each other, i.e., Ex, ky, Boz, our previous derivations remain unchanged,

except that now the EXB O drift is along k,and the plasma will be compressed

(instead of sheared),as in a compressional acoustic wave (Figure 2). One

could have also kept the pressure term in the fluid equation and achieved a

slightly modified result1 .

S Vs2 + V 2

(33) c2  c2 + VA A2 for vs << VA

A

where vs is the sound velocity.

We note also that around the cyclotron frequency (ie s2 = 2), the

magnitude of the dielectric constant c (S) is smaller than EA,and the wave

phase velocity is slightly faster than the Alfven speed. For all these

reasons, this mode is usually called the fast wave, fast compressional

wave, fast compressional Alfven wave, or even fast magnetosonic compressional
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Alfven wave. The fact that S is negative for a > 1 should be of some

concern, but the overall dielectric constant will be positive when Ey
will be allowed to be finite. The basic physical picture of the problem

is nevertheless correct. A more powerful mathematical formulation will

be necessary to get a complete picture at the cost of physical simplicity.

This formulation will be the subject of Section IV-2.

The last possibility is E parallel to Bo. This can be simulated by

simply setting B. = 0 in (9) or (15)

(34 ) vez i E z . i zez mw i
2

(35) - pe

which corresponds to an enormous dielectric constant. For many practical

purposes,this can be considered a short circuit and Ez = 0. This approxi-

mation is often called the zero electron mass approximation (me/m. -+ 0)

We can now qualitatively conclude that,except for the cyclotron frequency

singularity, one has a non-isotropic dielectric constant with a perpendicular

component of order * 2Mci2, and a much larger parallel component wpe 2 /w2.

In particular, for ICRF

(36) .-"- >> 1
E_ me

The dispersive character of the wave is essentially controlled by the ion's

frequency dependent polarization and VXB , drifts, with respect to the

electron's VXB drift (Figure 3)
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APPENDIX 2

Table of Formulas and Typical Values 82

Numerical values are for T and T. in eV, B in gauss, P = m/i/mp, n in cm~3

Typical values are for Ti = Te = 1 keY, P = 1, n = 3 x 101"/cm 3, B =

60 kG, Ac = 15, fo = 200 mHz, k, = .5, k, = 1/cm.

CGS Numerical Typical
Name Symbol Formula Value Value

FREQUENCIES

electron gyrofrequency

ion gyrofrequency

electron plasma frequency

ion plasma frequency

electron collision

frequency

Ion collision frequency

VELOCITIES

speed of light

electron thermal velocity

ion thermal velocity

ion sound velocity

Alfv6n velocity

wc

w ci

Ii

Ye

IT.

1

eB
m = c

eB
m ic

A 4ne2
m e

=4rrne 2
m.

= 2.9 x 10~

1.76 x 107 B ~ 101 2/sec

9.58 x 10' B 5.7 x 108/se

5.64 x 104 ~n- 9.8 x 1011/s

1.32 x 10' ~ 2.3 x 1010/s

n Ac Te-3/2 4.1 x 105/sec

c

ec

ec

Yi = 4.8 x 10~1 n xc Ti-3/2 - 6.8 x 103/sec

c

vte

vti

vA

= 3 x 10'0 cm/sec

= = 4.19 x 10 7 I ~ 1.3 x 109 cm/sec
e

KT.7
=9.79 x 10 3.0 x 107 cm/sec

1

Te =9.79 x 10 e 3.1x cm/sec

B 218 x 1011 B 7.5 x 108 cm/sec
-.

47rn im. - V
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Name

Table of Formulas (cont.)

CGS
Symbol Formul a

LENGTH

electron gyroradius

ion gyroradius

free space wavelength

Alfvin wavelength

debye length

DIMENSIONLESS

proton/electron mass ratio

Alfvin refractive index

thermal/magnetic energy

ratio

Numerical Typical
Value Value

2.38 1 0

e = te "ce :- B ~ 'x1-3m

1.02 x 10 7V c
P = V 1.02 5.4 x 10-2 cm

A0 = c/f. = 150 cm

XA VA/fo = 3.8 cm

AD 4ne = 7.43 x 10 1.4x103 cm

m
= -= 1837

e
- .137 vTVA Wci 40

8ffnKT 4.03 1011 nT -3
SB 2 . x10
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Rear View of A2 HPA Without 6950 Triode
and Grid Cavity.

Figure 3
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RCA 6950 Super Triode

in Roll-Around Socket

-390- Figure 4



Back of B2 IPA after 90 MHz Modification.

Figure 5
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Ignition Rectifier and Crowbar Array in Vault.

Figure 8
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