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Abstract The power radiated into the modes of an infinite magnetized

plasma by a modulated hollow electron beam is calculated for the cases of

cold and wann plasmas. The beam is assumed to be sinusoidally density

modulated and the induced fluctuating electric field is strong enough to

quench any beam plasma interaction. Numerical results are presented for

the power deposited into the plasma at frequencies near the lower hybrid

frequency for different beam plasma parameters.

2



1. Introduction

Several experiments were done in the past two decades to investigate the interaction between
magnetized plasmas and modulated electron beams(--7). Hcating of the plasma near the ion cyclotron

frequency was observed by Haas and Dandl (1967),Yatsui and Yamamoto (1969),and I Isich et al
(1973). It should be mentioned that the plasmas used in these experiments had very small densities.
Bhatnagar and Getty (1971),Kovnik and Kornilov (1974), and Zeidlits et al (1976) did observe strong
heating near the lower hybrid frequency for plasmas that have densities of the order of 1012 cm 3 .

In this paper we investigate the heating of an infinite magnetized plasma using a hollow thin
electron beam as shown in fig. 1. 11he electron beam is density modulated at a frequency near the lower
hybrid resonance, and the beam density is assumed to have a sinusoidal periodicity in the z direction
with wavelength equal to X;.

We neglected the effects of the beam plasma instability near the plasma frequency since this
instability is quenched by the induced low frequency field 6 -7 ). In section 2 of this paper we found
the excited quasiclectrostatic mode that is excited by the modulated beam in a cold plasma and in
section 3 an expression for the power delivered to this mode is written. In section 4 the case of a warm
plasma is considered and finally numerical results in section 5 are given for the power delivered to the
lower hybrid mode for different beam and plasma parameters.
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2. 'he Case of a Cold Plasma

As shown in fig. I the magnetic field is in the ; direction. Due to the beam modulation an

alternating current source will arise which will excite die plasma waves, this current has the following
form:

YI 06(r - a) exp(ikllz)
J = (1)22ra

Where

I is the amplitude of the alternating current,
a is the beam radius,
k1l = W/Vb,

and vb is the beam velocity.

The charge density of the beam is given by

I0
Pb = (r - a) exp(ik1z) (2)27rav

From the divergence relation we have

(2V)= -Pb (3)

Hence

E V,2 - e =lk P6 (4)

4 is the electrostatic potential.

fA. the perpendicular plasma relative permittivity.
f-1 the parallel plasma relative permittivity.

__2___ W2~
S -C (5a)

S 2 
- W2 

- W(5)

ePCW21~ (5b)

Taking the Hankel transform of eq. 4 we have

(EIk 2 4 + ellk~ = Pb (6)

Where

$(k±, z) = dr2wr4(r, z) Jo(k r) (7)
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p(kj, z)= f dr2xrpb(r, z)Jo(kr) (8)

Hence

pb(ki, z) = -Jo(kaa) exp(ikljz) (9)
Vb

Hence from (7) (9)

. <(k-_, z) ="Jo(k_ a) exp(ikllz) (.10)
f0 Vb -Lk2 + k1101

Finding the inverse Il-ankel transform

fdk_ k±LJo(kLr)Jo)(k-.a)
q(r, z) = 1 exp(iklz) ** 2 + )

foVeo 2? e k2 + elk

We have two regions r > a and r < a

i) r > a
dkk Jo(kjr)Jo(kja) * k H ')(kLr)Jo(ka) (12)
ek2 +e 1k2 -_ 2 k2 + ellk

From (11) (12)

'0 j -k Jo(kja)H(')(k_,r) (3O(r, z) = exp(ikliz) _L 0okaH k (13)
-~4wr ek + f-lk~

The integrand of eq. (13) has the asymptotic value ke ik_(r-a)/(ehk2 + f11k ) and by Jordan
lemma the integral is equal to the residues of the poles lying in the upper half plane.
Hence

O(r, z) = H((kr)Jo(kpa) (14)

k, is the solution to the dispersion relation k 2F_ + kje11 = 0

ii) For r < a we get

O(r, z) = 4f"' H )(ka)Jo(k,r) (15)
_ovb
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3. Power Delivered by the Bean

We note from the dispersion relation that we have

21 k2 + eki = 0

And that kp can be either positive or negative for propagating waves. One way for choosing the excited

mode is to assume that the plasma is lossy by introducing collisions between the particles of the plasma

and then pick the mode that has always a positive imaginary part, this mode is a backward wave near

the lower hybrid frequency.

Hence the radiated power per unit length is

P = -Real dS EJ (16)

dS is an element of the cross sectional area

P = Real j dr 2rr I'8(r - a) exp(-iklz)ikil $(r, z)

Hence

P = Real( kiH )(kpa)Jo(kpa)) (17)

We should note that up to this point we neglected the effect of the radiation on the beam, in

other words the beam is taken to be rigid which is not very obvious however if this radiation is only

a fraction of the beam dc power when integrated over many wavelength P'Z << IdcVdc then our

assumption is justified.
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4. Modes in a Warni Plasma

The dispersion relation in a warm infinite plasma is given by

1009(w,kj) = k 2+kii ±
j -00

00I 00

dvjj f dv.L 27rvL T,
kIvi k11  + " OA

Cj, w -~ nwcj -18

(18)
Where j refers to the plasma species and

9(w, kL) = 0

The above equation is derived from the dispersion relation

(k 2 +k+ qf
3

dv~f .)c~( b(k L, z)v Ij)D(k_,z) =-

For zero external sources b = 0 we get the dispersion relation of eq. (18). Using eqs. (2) (19) we get

I(ki, z) = 1 Jo(kja)exp(ikljz) (2
EoVb 9(w, k_)

Hence

O(r, z) = *01 ei 00* dkf k Jo(kr)Jo(ka)
C-Ab fo 2r 9(w, k_,)

We know that for r>a the above integral can be written as

10 dkL H(')(kLr)Jo(kLa)
O(r, z) = * exp(iklz) * dkk_ (

2eovb T.o 7r 9(w, kj_)

Taking the residues of the poles in the upper half plane we get

O(r, z) " exp(ikjz) 00 k±)/kJo.kpa)
2eovb E 9 w k )/k

And similarly for r < a we get

4(r, z) = *- exp(ikljz) T k, (k±)Okpr)
oVb= 8r(Wki)Iak |

0)

(21)

(22)

(23)

(24)

7

(19)



Again the power per unit length defined in eq.(16) can be written as follows for a warm plasma

12 k 00kR(H(kpa).J(k,,a)
P -, Real( k---k (25)

.4vbf,e P=1 (W, k-L) /(k-L I _= k,

It can be shown that for(w - kivt,)/wej >> 1 the zeros of the dispersion relation occur in pairs
which are the negative of each other complex conjugate when the waves are damped in the ; direc-

tion, consequently the contribution from the poles off the real axis is zero, and the power radiated is

provided by those zeros lying on the real kp axis.

In fig. 2 the locii of the propagating modes near the lower hybrid frequency are sketched one
of these modes is a backward wave and the other is a forward wave ,most of the radiated power is

delivered to the backward wave which is usually called the lower hybrid wave.
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5. Numerical Results

A computer program was written to calculate the power radiated into the lower hybrid mode in

a plasma that has a Maxwellian distribution. The dispersion relation for tie infinite plasma can be

written as follows:

9(w, kp) = 0

Where

9(w, kl) = k + kl + Wj E exp(-( )2) -(( I2 ))WZ(w r" (26)
ei Wi We4 kvtj k(V26

Where

vt,, vtj are the electron and ion thermal velocities respectively,

we, we are the electron and ion cyclotron frequencies,

I,, is the modified Bessel function of order n of the first kind,

and Z is the plasia dispersion function.

The power radiated increases as the square of the ac current I, ,hence the maximum radiation

occurs when the current modulation is 100 % that is I. = Id. Putting the current equal to this value

the ratio q of this maximum power radiation to the de power transported by the beam is given by

Pmax (27)
Id.Vd,

Using eq.(25)

Ink k M(kpa)Jo(kpa)
S=-Real (28)VVcEo V =(w, k)|9k ,k,(

Putting I 9Vd and k= w/vb we get

t7Rel(W Vc k7,H(')(kva)Jo~ka
' 9= - 4v Real(% ka )Atle E &(w,k |k_ |9kLk,

Hence

9w 00 kHM(k a)Jo(k,a)
ti =-,- Real( (29)4vbe,, 2e P= &(w, kL)1,k_ |,k
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Where 9 is the beam perveance,

And ?7 is the ratio of the power radiated per unit length to the total power of the beam.

We should note again that when the ratio of power radLated per unit wavelength (X = 2ir/kIi is

large 27ril/k, >> 1 the above results are not accurate since the beam modulation would be damped

in the z direction.

In figs.(3-10) 27 is plotted for a variety of beam plasnia parameters. The beam perveance is taken

to be 10-6 perv and the plasma is a hydrogen plasma with density equal to 10O2 c -3.In each of the

above figures the real and imaginary parts of kj as well as the ratio q; are plotted versus frequency for

the lower hybrid mode.

Most of the radiated power goes to the lower hybrid mode, so we calculated the contribution of

this mode only. As for the other modes more calculations are to be done.

The results show considerable heating near the lower hybrid resonance and by changing the beam

velocity then the magnetic field intensity we concluded that the heating goes up as the B field increases

and by decreasing the beam velocity. The results where obtained for two temperatures and they show a

decrease in heating efficiency as the plasma becomes warmer.
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6. Suiniary

In this paper the quasielectrostatic waves that are radiated by a modulated E-Beam in a mag-

netized plasma are analyzed and analytic formulce are given for the wave potentials for both cold and

warm plasmas at frequencies near the lower hybrid resonance.

It should be emphasized that the high frequency beam plasma interaction was neglected in the

analysis and this is justifiable if the beam modulation is large enough such that the high frequency is

quenched by the lower hybrid wave.

The numerical results for the power radiated per unit length of the beam in a Maxwellian plasma

show that the heating efficiency increases with increasing magnetic field intensity, that it decreases with

increasing beam velocity and that the efliciency is lower for warmer plasmas.
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