
PFC/RR-83-27 DOE/ET-51013-98

UC-20

Spline Techniques

for Magnetic Fields

John G. Aspinall

MIT Plasma Fusion Center, Cambridge Ma. USA

June 8, 1984



Spline Techniques for Magnetic Fields.

John G. Aspinall

Spline techniques are becoming an increasingly popular method to ap-

proximate magnetic fields for computational studies in controlled fusion.

This report provides an introduction to the theory and practice of B-spline

techniques for the computational physicist.
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0. Forward

This report is an overview of B-spline techniques, oriented towards magnetic field

computation. These techniques form a powerful mathematical approximating method

for many physics and engineering calculations.

Sections 1, 2, and 3 form the core of the report. In section 1, the concept of a

polynomial spline is introduced. Section 2 shows how a particular spline with well

chosen properties, the B-spline, can be used to build any spline. In section 3, the

description of how to solve a simple spline approximation problem is completed, and

some practical examples of using splines are shown. All these sections deal exclusively

in scalar functions of one variable for simplicity.

Section 4 is partly digression. Techniques that are not B-spline techniques, but are

closely related, are covered. These methods are not needed for what follows, until the

last section on errors.

Sections 5, 6, and 7 form a second group which work toward the final goal of using

B-splines to approximate a magnetic field. Section 5 demonstrates how to approximate

a scalar function of many variables. The necessary mathematics is completed in section

6, where the problems of approximating a vector function in general, and a magnetic

field in particular, are examined. Finally some algorithms and data organization are

shown in section 7.

Section 8 deals with error analysis. This is not intended as a substitute for a text on

approximation theory, but simply as a brief overview of the issues involved, to show



0. Forward

the limits of the techniques in the previous sections.

In this report, only a subset of spline techniques, applied to a subset of all the

myriad applications, are discussed. For "cultural interest" some other techniques and

applications are mentioned, but the focus is generally narrow. On the other hand,

certain topics that would not appear in a mathematical text are mentioned here - these

are mainly suggestions about the practical implementation of these techniques in a

high-level computer language. There are not many programming examples contained

in the report, but where some concept can easily be expressed by showing how to

implement it, that method of explanation has been employed.

The size of the domain where splines are being applied is growing larger daily, and

there is no shortage of learning materials. The books by de Boor [10] and Schumaker

[16] are good starting points for study of the fundamentals, while journals such as

Computer Aided Design provide a view of some very thought-provoking applications.
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1. What is a Spline?

When performing scientific or engineering analysis, the issue of approximation enters

early. Any numerical calculation performed with finite precision involves approxima-

tion, and even analytic techniques lean heavily on methods such as expansion in terms

of a power series, so that small terms can be dropped. Many interesting problems

fall into the class where a certain amount of effort will obtain a good approximation,

but increasing amounts of effort yield decreasing amounts of improvement to the

approximation. Approximation is a fact of life.

Polynomials are used for approximations more than any other class of function. This

is because their simple mathematical structure makes evaluation of the function, its

derivatives and integrals, and other functionals simple.

Suppose we wish to interpolate between known values of a function. In providing an

intuitive definition of a spline it is useful to first consider two extreme cases of the

choice of approximating function. Consider first the polygonal approximation. (See

figure 1.1.) In this case, the approximating function consists of straight line segments

between neighboring points. This approximation can be considered highly local, in

the sense that the approximating function between two points depends only on the

known function value at those two nearby points.

Now consider fitting a single polynomial, of order equal to the number of points,

as the approximating ftnction. Lagrange interpolation, described in section 4, can

be used to do this. This approximation is highly non-local, since the approximating

function over its entire range depends on all the known function values. The well



1. whV.1 is a Spline?

Figure 1.1: Polygonal interpolation to a set of points.

known oscillatory nature of higher order polynomials is a disadvantage; the non-local

coupling (4e. the effect of the function value at one point upon the polynomial far

away) can also be seen by the global effect of changing one known function value.

(See figure 1.2.) In fact it is quite easy to construct an example [10] where the

maximum error between the function and its approximating polynomial increases as

the number of interpolation points increases.

A Working Definition

The literature on splines contains a number of similar, but not identical, definitions

of a spline. Let us use the following:

Let xi; i = 0,..., n be a set of points. in non-decreasing order. Let pj(x);i =

1,..., n be a set of polynomials. A piecewise polynomial is a function defined as

being identically equal to each polynomial pi in its respective interval. That is

fpp(x) = pj(x) for x_ 1 <X < Xi.

A spline is a piecewise-polynomial with some degree of continuity from one interval

to another. The breakpoints between intervals of different polynomials are called

knots.
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I. What is a Spline?

Figure 1.2:. 1 igh order polynomial interpolation to two sets of points. The two sets are identical except

for one member, however the interpolating polynomials differ markedly at many places in the range.

Let us return to fitting a function to the points of figures 1.1 and 1.2. A spline can

be seen as a compromise between the two extremes above. A spline approximates

a set of known values with a set of mth degree polynomials spanning the ranges

between known points, but satisfying continuity only up to the (m - 1)th derivative

at the boundaries between spans. By discarding continuity of higher derivatives a

certain amount of decoupling is provided and the function value at one point has

a much more limited effect upon the approximation far away. By keeping some

continuity in the lower derivatives, the approximation is smoother than the polygonal

approximation.

The spline defined above is called a spline with simple knots; if only one degree

of continuity is "lost" at a knot, it is called a simple knot. A multiple knot is the

generalization of a simple knot; it is best thought of as the limit of several simple

knots approaching each other. The multiplicity of a knot is an integer, denoting the

number of degrees of continuity lost at a multiple knot.

Aside for the Mathematically Inclined. De Boor [10] fills one loophole in the above argument for

piecewise polynomials. The oscillatory behavior of high order polynomials is often particularly

bad for even spacing of the interpolation points. If a more appropriate set of interpolation points

is chosen (Chebycheff points are the usual choice) then the error can be made to decrease as the

number of points increases. Nevertheless, de Boor goes on to show that a choice of lower order
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1. What is a Spline?

Figure 1.3: Cubic spline interpolation to the same two sets of points as figure 1.2.

pieccewisc polynomials can still be more efficient, and less sensitivc to numerical conditioning

problems.

Historical footnote. Traditionally, the spline was a draftsman's tool: a long flexible piece of

wood used to draw a smooth curve through a series of points. The spline was held in place by

a number of weights, called ducks. attached along the length of the spline. Under conditions of

small bending this is the classical thin bcailn with point supports. The solution to this is cubic

polynomial spans between supports and continuous curvature at the supports. The term "duck"

did not make the leap into the mathematical terminology.
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2. B-splines in One Dimension - on an Infinite Set of Knots

In this section the B-spline formulation of polynomial interpolation is introduced. For

the sake of simplicity, all knots are treated equally; this is equivalent to interpolating

on a set of knots that extend to infinity in both directions on the real line. (This

does not mean that the knots are equally spaced - simply that there is no "first" or

"last" knot in the sequence.) In reality, this is very close to the situation where the

interpolating function is periodic in the independent variable.

Consider this as a typical problem to be solved:

Solve for the cubic spline that interpolates a function f(x), where we know funclion

values f(xi). The interpolation points xi will be the knots of the spline.

Aside for the Mathematically Inclined. Remember that a knot is the point where the

approximating spline loses its higher degrees of continuity. It does not have to be the same

point as the interpolating point where the function and its approximation take on the same value.

In most of what follows, the two will be the same, but it is worth remembering that this is not

mandatory. In effect, by doing this, we are specifying what we mean by the "correct" interpolation

- the one that solves the problem posed immediately above.

A Naive Formulation

Let's consider a very naive formulation of the spline fitting problem posed above.

This is not the B-spline formulation, but it will serve to counterpoint the B-spline

(and other) methods. The general cubic in the interval from xi to xj 1 will be written

in the form

A + B,(x -x) + C(X - X)2+ D(x - X(2. (2.1)
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Then for each interval we have four eqUations: matching the function value at the

lower end of the interval:

A = (i); (2.2)

matching the function value at the higher end of the interval:

Ai + Bi(xi+1 - xi) + Ci(zi+1 - xi)2 + Di(xi+1 - zi) = (xi+1); (2.3)

ensuring continuity of the first derivative at the higher end of the interval:

Bi + 2Ci(xi+1 - zi) + 3D;(xi+1 - x;)2 = Bi+1 ; (2.4)

and doing the same for the second derivative:

2Ci + 6D;(xi+l - x;) = 2Ci+l. (2.5)

Remembering that we are ignoring the problem of end points for the moment, and

noting that the continuity equations at the lower end of the interval "belong to" the

next lower interval, we see that for n piecewise continuous polynomials we have a

system of 4n equations to solve.

There are many ways to reduce the size of the system of equations shown above, each

involving formulating the problem differently. Most reduce the system to one of n

(plus one or two, sometimes) equations. One of the more powerful ways is to use a

basis function called a B-spline.

The B-Spline as a Basis

The concept of a basis appears in many parts of mathematical analysis, not just spline

theory. The familiar i, j and k unit vectors are a basis for vectors in three-dimensional

space. They are a necessary and sufficient set such that any vector in the space can be

represented as a unique linear combination of the members of the basis. In a function

space, the harmonics of a Fourier series are the members of a basis for uniquely
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2. I-splines ill Ou1 Dimension on an Ililinile Se of Knots

representing any member of the set of periodic functions. Note that there are many

possible bases for a given space. The dimension of a space is the greatest number of

linearly independent members of that space it is possible to have.

Once we have settled on a basis for the space, any member of that space can

be represented as a linear combination of the members of the basis, and the set

of coef~icienis nultipling each member of the basis can be considered as another

representation of the original function.

A set of B-splines is a basis for the space of splines. Each B-spline is itself a spline,

that is, it is a piecewise polynomial of order k (degree k - 1), with continuity up

to the (k - m - 1)th derivative at the knots. (m is the multiplicity of the knot.) A

linear combination of B-splines will retain the same properties of continuity of the

individual B-splines. This is one of the motivations for using such a basis. By putting

continuity into the basis functions, we can ensure the same continuity in the spline

without having to include equations for that continuity explicitly in the system to be

solved.

Succinctly, we seek basis ftnctions Nj(x) so that we can represent a spline S(x) as a

sum

S(x) = > AgNj(x), (2.6)

and the Aj will be a new representation of S(x). We will see that the choice of

a B-spline for Nj(x) allows a well conditioned problem to be posed in many cases

for finding the coefficients Aj, as well as an efficient evaluation of the sum when

evaluating the function.

What does a B-spline look like? It is worth noting a few points before showing the

general mathematical form of a B-spline.

. B-splines are zero outside a small range. This is called having a "compact basis".

10



2. Ikplincs in One Dimension on an InLinite Sel of Knots

" They are strictly positive within that range. A kth order B-spline will be non-zero

over a range from knot i to knot i + k.

. A full basis for splines of a given order is made by placing a B-spline on each

possible set of k + 1 consecutive knots. Therefore there will be k non-zero basis

functions overlapping in any given interval between two adjacent knots.

The One-Sided Polynomial

B-splines are constructed using the function:

(", if x>0 (2.7)
0, if x < 0

often called the one-sided function or generalized step function. Since (x - a)k-

is a kth order spline with one knot at x = a, any spline can be made up from a

linear combination of these one-sided functions on the knots of the desired spline.

The one-sided function may be differentiated and integrated almost as if it were the

polynomial of the same degree:

d M n . (x)n , if n > 0 (2.8)
dx + S(x), if n = 0

(X)" dx = - (x)n+. (2.9)+ n +

Finally, note that to negate the argument yields "the other side":

(x)n + (-)"(-x)" = x". (2.10)

Another look at Polygonal Approximation

Before proceeding to general spline interpolation with B-splines, let us discuss linear

interpolation in terms of basis functions. Linear interpolation has few subtleties to it;

this section gives a different perspective on the role of basis functions.
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2. I-splinvs in One )iIension - oil .1 Ininilc SCI of Knots

Figure 2.1: Tlie polygonal interpolation of figure 1.1 shown as a linear combination of 2nd order

13-spline basis functions ("hat" functions).

The linear B-spline basis function, or "hat" function, is the second order case of the

general B-spline and is defined, using the second order step function, as follows:

(X - xi), - (X - zi+,)+ _ (X - i+)+ - (x - zi+2 )+ (
Ni,2(X) :=+ .iX+2-X+ (2.11)

In the case of equal knot spacing h, this becomes

Ni,2 (X) := ((z - xi-.)+ - 2(x - xi)+ + (z - zi+1)+). (2.12)

Note that this function has all the properties of a B-spline listed above. It is non-zero

over the range from Xi to Xi+2 . It rises linearly to magnitude 1.0 at xi+1 In any given

interval between two knots there are two non-zero basis functions. The polygonal

approximation of the first section can be posed as a linear combination of these basis

functions. (See Figure 2.1.) Their respective magnitudes are simply the magnitudes

of the function at the knots.

In general, we will see, the vector of B-spline basis function magnitudes can be found

from the vector of original function magnitudes with a linear transformation; i.e. a

matrix inversion. It won't always be as simple as the linear case above where, in

effect, we had an identity matrix to invert, but the important point is that there are
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?. I-sphties in One 0imension on an Inlinite Set of Knots

only a handful of basis functions (actually k, the order, of them) that are non-zero at

any point. It is this property, as advertised earlier, that makes the linear combination

of basis functions easy to evaluate.

The Normalized B-spline of Arbitrary Order

As promised earlier, the general form of the B-spline is

N;(x) := (xi+k - Xi)gk([ , i+ , x +k; X) (2.13)

where gk([xi, Xi+ 1, .. ., Xi+k; x) denotes the kth divided difference in the first argument

of the function

gk(;x) = ( X)k-1 (214)

in so-called "place-holder" notation. To be precise, this is the normalized B-spline of

order k on the knot sequence xi,..., x+k.

This general form will not be derived here. For the interested reader, derivations

appear in many detailed books [10,11]. One important result will be presented though,

as it is the starting point for efficiently evaluating B-splines on arbitrary knots.

Divided differences are functional operators that bear strong resemblance to derivatives.

In particular, one can write a product rule for the divided difference of h(x) = f(x)g(x)

such as

h[xo, x1] = f[xo, x1]g[x1] + f[[xo]g[xo, x1] (2.15)

where f[x] f(x), or for higher order operators

k
h[xo,..., xk]= f[xo,..., x,]gx,,. .., Xk]. (2.16)

r=O

This is attributed to Leibniz.

If (2.16) is applied to the product

9k( -; x) = (-x)gk-1( ;), (2.17)
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2. I1-splines in One D imension - on an Infinite Set of Knots

only two terms in the sum appear, to give

gk([i, zi+ I, -. ., Xi+kI; X) =(8
9k- 1([Xi, i+I, . ,Zi+k- 1l; X) + 9k-I ([Xi, Xi+] - - -, Xi+k); X)(Xi+k - X)-

This is easily rewritten in terns of the B-splines, Ni,

___-___- Xj+k -
Ni,k(X) = X Ni,k-.(z) + Ni+I,k- 1(x). (2.19)

Xi+kj- - Xi Xi k Zi+1

This relationship will appear again later.

It is also worth considering the form of the function in terms of the three properties

listed earlier.

* The B-spline is zero outside the range (Xi,Xi+k). For x < xi this is obvious. All

the individual truncated power functions are zero, therefore the sum is zero. For

x > Zi+k the one-sided nature of the power functions is not relevant here as all

of the terms are non-zero. Therefore the function is the kth divided difference

of a kth order ordinary polynomial, which is zero.

* The B-spline is strictly positive within the range (zi, zi+k). By inspection this is

true for the first and second order B-splines. The coefficients in front of Ni,k.1

and Nj+I,k-1 in the recursion relation (2.19) are always positive. Therefore by

induction this is true for all orders.

. The B-splines form a full basis. It will not be proved rigorously here that the

set of B-splines on a series of knots is a basis for the set of all splines on those

knots; the proof is done by Holland and Sahney [11] among others. Intuitively,

though, it should be clear that the different B-spline basis functions are linearly

independent, as given any pair of non-identical basis functions on simple knots

we can always find some range between two knots where one is zero and the

other is not. Also it should be easy to see that the k non-zero basis functions in a

given range (between two knots) provide the right number of degrees of freedom

for the polynomial in that range.
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2. IB-Splines in 01C I )inicnsioni oil an Iinlinite Soi of Knots

Aside for the Mathematically Inclined. Multiple knots render the letter of the above proof false,

cven though the spirit is still valid. The problem happens when there are two different basis

functions starting and ending on the same valuc: i.e. at multiple knots. We then must compare

the appropriate order derivative value at that point for the two splines. Because the knot will

appear with different multiplicities in the different splines, there will always be sonic order of

derivative (less than the order of the spline) where we can make the zero - non-zero distinction

at that point.

Specialization to a Uniform Set of Knots

It is no surprise that the very important special case of uniform knot spacing allows

sone simplification. If xj+1 - xj = h for all j then the basis function becomes

N(,(x) k - 1! hk- ( k) (x - ij)(2.20)

Every B-spline has the same shape here - they differ only by a translation.

The special case of uniform knot spacing will reappear several more times as various

topics are covered.

Alternate Notation and Definition

At the risk of confusing the reader, there are two places where notation and usage in

some texts differ from what has used so far.

First: individual B-splines have been indexed according to the lowest knot in their

range. This keeps definitions cleaner when talking about splines of arbitrary order.

When dealing with splines of one order only, and especially when that order is even, it

is tempting to label the B-spline with the index of the knot where the B-spline reaches

its maximum value. This is particularly common for cubic splines on uniformly spaced

knots as the B-spline is then symmetric about its "home knot". There is little harm

in this notation as long as one is aware of its use.

Second: the B-spline retains all of its continuity properties and so forth when multiplied

by a constant. Therefore the basis function is sometimes defined with a different
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2. I-splines ill Oue Oimiension oni an Inliniie Soi of' Knots

Figure 2.2: B-splines of order 4, showing the effect of knot spacing. The

marks on the axis.

knots are denoted by the

multiplier in front. This is a hard discrepancy to ignore in practice because it changes

the relationships between splines of different order. The reason that the normalized

B-spline is called "normalized", is that B-splines defined in this way form a "partition

of unity". This means that at any point x, the sum of all Ni(x) will be 1, or in

other words if the spline function is a constant, its B-spline coefficients will all be that

constant

Evaluation of general B-splines

It may seem strange to start discussing how to evaluate a function represented as

a sum of B-splines before discussing how to find the coefficients in that sum. The

boundary condition techniques discussed in the next section are designed to make the

boundary look like any other point in the range, and that the problem of converting
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2. B-splines in One Dimicnsion on ;m Iliniite Set of Knots

Figure 2.3: 13-splines form a partition of unity. With unit coefficients, 13-splines sum to 1, regardless of

the knot spacing.

to a spline representation will be easier with full knowledge of how that representation

will be used.

One of the features that makes B-spline evaluation fast, is that only k B-splines (where

k is the order) will be non-zero at any point. The evaluator, summing terms in

equation 2.6, need only consider the corresponding k coefficients times the value of

their respective B-splines.

To find which B-splines contribute to the spline, a look-up function is used. A look-up

function is defined as follows.

Given a non-decreasing set of values xj, and any x, find i such that xi < x < xi+1.

A bisection method is often used in a standard look-up algorithm. A bisection method

works by splitting in the search space into successive halves, until the possibilities are

narowed down to one knot. Where successive function evaluations are likely to be at

points close to each other (when plotting the function, for example) a look-up with

guess may be used. A look-up with guess starts by searching the space around an

initial guess before expanding to include the whole range. Usually the guess is the

value from the previous look-up.
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2. l1-splines in One Dimension -- on an Infinite Set of Knots

Having found i as above, the compact support property of the B-splines means the

sum in (2.6) need only be evaluated from i - k + 1 to i . The recursion relation (2.19)

provides an efficient way to do this. Following de Boor's excellent derivatiin [8], let

us express each kth order B-spline in terms of B-splines of the next lower order. Then

S(x)=' ANj,k(X)

substituting from the recursion relation
X - X- Xi+k - X

-Ax Nj,kI(x) + NX+ 1,k--I(W
X+k- I~ -Xi Xi+ k -" Xi+ I

and regrouping terms

A,+ Xi+k -X AI )Nk 1(x)
\ Xi+k-1 ~- Xi Xi+k - Xi+1

- A1 ](x)N,k-I (x) (2.21)

where
X - Xj Xj+k-1 -X

A__(x) =-A__+ Aj- 1. (2.22)
Xj+k-1 - Xj iX+k1 - X

Continuing this process

S(x) = Af1 (x)Nj,k..,(x) (2.23)

where

Aj, if s = 0

A[! (x) = X - x Xj+k- - X (2.24)
Aj() A[!-1(X), if 8 > 0.

Xj+k-a -- Zj+k-., - Xi

The key to using this new recursion relation (2.24) is that Ni,i(x) = 1 for xi <; x <

xj+1 and zero otherwise. It immediately follows that

S(x) = A--~(x). (2.25)

It is also worth pointing out at this time that this process, equation 2.24, is numerically

well conditioned, as convex combinations are repeatedly formed.

18



2. h spline sin One Dimension - on an infinite Sci of Knots

Evaluating any B-spline approximation (i.e. equation 2.6) can be done by generating

the entries in the following table, often referred to as "de Boor's triangle".

A-ik+1

A-k+2 Ai-k+2

(2.26)

A 01 Ai - - - 2

For efficient evaluation of the spline S(x) and its derivatives, see Boehm [31 and Lee

[12] for an elegant generalization of this method.

Evaluation of B-splines on a Uniform Set of Knots

The specialized case of uniform knot spacing can, if desired, provide some savings

in the cost of evaluating the spline S(x). Uniform knot spacing means that there is

no need to store coordinates of all the knots - it is sufficient to store the inter-knot

spacing and some sort of origin, usually the coordinate of the first knot. No look-up

is needed. Translational symmetry of the B-spline means that the evaluation can be

done by expressing each piece of the B-spline as a piece-wise polynomial in some

coordinate local to the basis function.

Let's consider an example for cubic B-splines. The form of the 4th order B-spline is

Ni(x) = X(( - xi)3 - 4(x - X,+1)3 + 6(x - Xi+2) (2.27)

- 4(x - Xi+3)+ + (z - Xi+4) )

(The order of the spline has not been mentioned in the notation.) So for xi < z <

Xi+1, the contributing terms can be simplified

19



2. Il-splines in one Dimension on an Infinite Set of Knots

ZANj(x)=

Ai-3 ((x - Xi-) 3 - 4(x - xi) + 6(x - - 4(x - xi)'

+A-2 ((X - Xi-2)3 _ 4(x 3 + 6(x -X )3 (2.28)

+Aj- 1 ((x - Xi-1)3 - 4(x - x,)3)

+Ai (x - X)3)

and if we define the local coordinate

= - (2.29)
h

then

AjN(x)= A-, (1 - 3i + 3i2 3)

+A- 2 (4 - 62 + 3i 3  (2.30)

+A- 1 (1 + 3i + 3i2 - 3i 3 )

+A

It is certainly possible to mechanize the procedure for converting any B-spline to its

piece-wise polynomial representation. Also, it is possible to use the arbitrary knot

recursion relation on evenly spaced knots. The recursion relation will be more efficient,

except in special cases, than a conversion to piecewise polynomials for evaluation of

a spline on arbitrary knots. And uniformly spaced knots are the only commonly

occurring special case where this doesn't apply.

A Preview of Solving the Interpolation Problem

There are many ways to "best" fit one function (i.e. the spline) to another. When

expressing a vector f in a particular basis, one forms inner products with individual

members of the basis to get a complete set of equations to solve. (In general, the

space may be a function space, so by "vector" I mean function as well.) We get a
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2. 11-splines in One NImension - on an Infinite So of Knots

system of equations of the form

(bi bj)A =(f bj). (2.31)

When curve-fitting, that is fitting a function with only a few degrees of freedom to a

large number of points, the criterion used for a good fit is some sort of a least-squares

minimum.

In nearly all of what follows, the spline will be fitted using collocation- that is by

creating a linear operator that matches the function and spline values at discreet points,

and then inverting that operator. This will be fully covered in the next section, but

by way of advance billing it is worth pointing out that there will be a narrow banded

matrix to invert (because of the B-spline's compact basis), and that the matrix will be

well conditioned, in general (because of the strictly positive nature of the B-spline).
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Here the description of how to use B-splines in one dimension is completed, by

dealing with a finite set of knots that begins and ends at some definite values. Several

different techniques For this situation are presented: the final implementation decision

among these choices will be seen to depend on the nature of the particular problem

being solved as well as on purely mathematical criteria.

Consider a complete system of equations generated by the naive spline formulation

as in (2.1). Over n + 1 points there are n intervals, each specified by four scalars

determining the particular cubic in that interval. The known function values account

for 2n constraining equations of the form (2.2) and (2.3) (2 at each knot, except for

only I at end points), and the conditions of first and second derivative continuity at

internal knots account for 2(n - 1) more equations of the form (2.4) and (2.5). This

leaves the system underdetermined by 2 equations.

It may be tempting to assume that the B-spline formulation avoids these difficulties

immediately: n + 1 knots, n + 1 basis functions; but this is not the case. If you

consider a B-spline formulation with a basis function starting on each knot in the

interpolation range, you will see that the interval between the first and second knots

only has one basis function contributing to it.

There are a number of ways to sort this out, but most of them amount to placing extra

knots on or outside each end of the range. The right number of basis functions then

contribute to the spline in every interval in the range, and all basis functions have the

same form. Now we need more equations to give us a completely determined system;
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since those equations usually come from some sort of criterion applying to the end

points of the range, they are lumped under the term "boundary conditions".

The choice between placing extra knots on the end of the interpolation range, and

placing them outside the interpolation range is usually made on the basis of whether

there is any reason to preserve uniform knot spacing. If uniform knot spacing has

been used throughout the interpolation range so far, there may be reason to keep

things simple and continue this spacing outside the range. However most formulations

that deal with non-uniform knot spacing, such as de Boor's triangle in the previous

section, can handle multiple knots without any extra effort.

A Simple Case on Uniform Knots

We want to approximate a function with a cubic spline in some interval. Knots have

been placed at equal intervals h throughout the range, and so it makes sense to place

additional knots with equal spacing outside the range so that spline evaluation at any

point can follow the same procedure. Enough knots are placed so that every interval

within the approximation range has the full number of basis functions contributing to

it (in this case, 4). The spline is determined by the criteria that it match the function

at all knots. This yields a set of equations of the form

jAjNj(ih) = f(ih) for i = 0, 1, ... , n. (3.1)

A quick accounting of equations and unknowns reveals the same figures as above:

n intervals between knots in the range, n + 1 function values to match, and n + 3

basis functions, each with an unknown magnitude. For the sake of argument, it is

asssumed that the first derivative of the spline is specified at the left end, and the

second derivative is specified at the right end. These conditions take the form of the

derivatives of equation 3.1:

AN3'(0) = f'(0) (3.2)
j
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and

AjN'(nh) = f"(nh). (3.3)

This completes the set of equations. Values of the basis function and its derivatives

are easily found from equations 2.27 or 2.29. A factor of h is multiplied into the first

derivative equation to make it dimensionless: similarly a factor of h2 is used in the

second derivative equation. The complete system to be solved looks like this. Note

the tridiagonal nature of the system (omitted elements are 0).

1 0 1
2 2 A- 1  h f'(0)

1 2 1

1 2 1

A1  f(h)

(3.4)

An- I f((n - 1)h)

An f(nh)
1 2 1

An+1 h2 f"(nh)
-1 2 -1

The nearly tridiagonal and nearly symmetric nature of the matrix above suggests that

there may be some efficient ways to solve this set of equations. The question of

preferred matrix solution methods will addressed shortly.

Natural Splines

Where no strong reason for a particular boundary condition presents itself, the cubic

spline is often calculated with second derivative equal to zero at the boundaries. In the

physical spline mentioned in the first section, this corresponds to having no external

bending moment applied at the ends. This is a particular case of a natural spline.
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A spline of odd degree (2k - 1) is called a natural spline if its j h derivatives are

equal to zero at the end points for k + 1 < j < 2k.

Natural splines often occur as solutions of variational problems of the form:

minimize J[s"(x)]2 dx. (3.5)

Aside for the NIathematically Inclined. The natural spline minimizes the 2-norm of the spline.

Another similar creature is the perfect spline - which minimizes the cc-norm.

The first two equations in the collocation matrix will have the form

t -1 2 -1

1 2 1
9 6

.. I
which can be rearranged as

0 1 0

1 0 1

... I1 I

f()

2f(O)J.

The zeros on the diagonal will cause problems with the standard LU decomposition

methods (including the tridiagonal solver), so this is a candidate to be solved in a

reduced form.

The "Not-a-Knot" Condition

The natural spline suffers [10] from a lower order of convergence near the end points

than in the rest of the range (unless f" really is zero there).
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3. B-spfines in One Dimension - onidary Conditions

According to de Boor, a better choice of boundary condition when one knows nothing

about derivatives at the end points, is to ensure that the spline yields a single

polynomial over the first two intervals. In other words - there is no loss of continuity,

in any order derivative, at the first interpolation point inside the range. The term

hnot-a-knot- conies from the fact that this point would be a knot: it looks like a knot

when the problem is formulated, but it is not a knot according to the definition of

one.

For cubic B-splines on uniform knots, this means the additional equation in the system

sets the sum jump-discontinuity in the third derivative at this point to zero, and the

system will look like

1 -4 6 -4 1 A
0

1 2 1 A0
f(0)

1 2 1 A,
aA f(h) (3.8)

1 2 1 A2
f(2h)

A3

With a few row operations, the first row can be reduced to

-f(0) + 8f(h) - f(2h)
A,1 (3.9)6

which is much more tractable.

Periodic Boundary Conditions

When interpolating a periodic function, knowledge of one full period specifies the

entire function. In some sense, a periodic function has no boundary at all. (Or, any

point may be the boundary.) So the purpose of applying boundary conditions to the

solution procedure in this case is to make the boundary point look like any other.
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Consider the concept of "neighboring basis functions" that we have used so far. The

only basis functions that contribute to the spline at some particular point are those

whose support includes the knots neighboring the point of interest. The effect of

approximating a periodic function is best understood as making some knots at the

right hand end of the range neighbors of those at the left hand end, and vice versa.

The smallest possible system to be solved, with the least redundancy, would then look

like:
2 1 1

AO f(0)
1 2 1

3 U A f(h)
1 2 1

A 2  f(2h)

(3.10)

2 1 An-3 f((n - 3)h)

1 2 1 An-2 f((n - 2)h)

An- 1  f((n - 1)h)

Note that this assumes the knots in the range are numbered 0 through n - 1, knot n

is knot 0. Likewise, knots to the left of knot 0 are knots n - 1, n - 2, etc.

If You are writing a subroutine to handle a choice of boundary conditions, compatibility
with other boundary formulations may be more important than solving the minimum

system. In this case, other "duplicate" coefficient values may be included explicitly in

the system to be solved.

Interpolation Points between Knots

It's worth having one example with a different order of spline, and this is also a good

opportunity to demonstrate that interpolation points need not fall on knots of the

spline.
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Here is the system to be solved for litting a quadratic (3rd order) spline to a

function where the spline matches the function VaIle at points half-way in between

the knots. The interpolation range runs from 0 to nh, and knots sit at the points

-5h/2, -3h/2, -h/2,..., (2n + 5)h/2. The coefficient of the B-spline that starts on the

first knot will be denoted A- 5 ; the next, A- 3 ; and so on.

Half-knot interval values are calculated for the quadratic B-spline:

Ni(x) = (2 - ) - ( z+ 1) ++ 3(x - Xi+2 - (X - Xi+3 (3.11)

which supplies most of the rows of the matrix, and the "not-a-knot" boundary

condition is applied to the knots nearest each boundary. The full system looks like:

-1 3 -3 1
A-5 ' 0

1 3 1

S A-3 f(0)
1 3 1

A- 1  f(h)

(3.12)

1 3 1 A2 1 i f((n -1)h)

A2,+ 3  f(nh)

A2n+ 5  0
-1 3 -3 1

Section 8, in the discussion of cardinal splines, mentions one reason why interpolating

between knots may produce a better approximation than interpolating on knots, for

this quadratic spline.
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4. Other Methods and Bases for Interpolation

This section covers three other interpolation methods. They all share something in

common with the B-spline formulation described in the previous sections. In addition,

Hermite interpolation will be used as an analytic tool to deal with error analysis in

section 8.

Hernite Interpolation

Any text on polynomial interpolation should cover Lagrange interpolation. To review

extremely briefly - given a set of known points (xo,yo),(x 1 ,y1 ),..1. the Lagrange

interpolation formula gives the unique lowest order polynomial that passes through

the points.

PL(X) = Li(z) y; (4.1)
i=O

where

Li()= (z - o)(z - I) ... -(X - xi....1)(x - zi+i). ._ (z - za)
(XL - XO)(Xi - X1). - i-1)(Xi - zi+1).. (x - zX)

" (X - . (4.2)

= 0 (Xi - z)

34 i

The Li are called Lagrange interpolation polynomials.

Now suppose we are given not only the function values yj = f(xi), but also the

slopes y' = df(x)/dx and we wish to find the lowest order polynomial that passes

through the points with the correct slope at each point. This is given by the Hermite
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interpolation formula:

n nL

pit() = 1 1I W y; + H I(X) y' (4.3)
1=1) i=O

where

H;(x) = (1 - 2L'(xi) (x - xi)) L, 2(X) (4.4)

and

H (:) = (x - xi) L 2 (X). (4.5)

The functions Li are the Lagrange polynomials defined above in equation 5.2.

The simplest case of Hermite interpolation - fitting a polynomial to two points with

slopes (zo, yo, y') and (xi, yi, y') - is worth considering further. This yields a cubic

of the form:
(X - XI)2 (X - Xo)(X - XI)2

PylzM (X - Xi)2  .(X -Xi)3  )O
+ (X - O)2 -2 (X _ Xl)(X _ XO)2 Y

(I - XO)2. (X 1 - XO) 3

/ (4.6)
+(X - XO)(X - Xi)2 I

+(X0 - X1)2 0

+(X _ Xi)(X _ XO)2 I
(X1 - Xo) 2  1

If we set x0 = 0 and z = 1 we get a simplified and more common form in terms of

a normalized independent variable:

PH(z)= (2x 3 - 3 2 + 1) Yo

+ (-2z3 + 3X2) ,(.
(4.7)+ (X3 - 2 X2+ )yI'

+ 3za_ x2)Y/

which is the form in which this formula is most often seen. In the CAD (computer

aided design) literature these Hermite functions are often called "blending functions".
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4. Oiher Methods and iases for Interpolation

Note the difference between fitting a cubic spline to a series of points and doing

Hermite interpolation between neighboring pairs of the same points. In the spline

interpolation we maintain continuity of first and second derivatives across the knots,

but we do not get to specify their values. In Hermite interpolation we specify the first

derivative value (and therefore also guarantee its continuity) but lose any control over

the second derivative.

The cubic Hermite may however be used as a different route to the standard cubic

spline. Representing each interval of the spline as a cubic Hermite interpolation

polynomial we can solve for the set of (as yet, unknown) first derivative values by

applying continuity conditions for the second derivative. Equating second derivative

values at internal knots, the general member of the system to be solved looks like:

2 , 4 + 4 2
Yi-1 + + y', + yi+1

i - Zi- 1  (i - Xi- 1  i+1 ~ Xi) Xi+ 1 -Xi (4.8)

-6 6 6 6
(Xi - Xi_ 1)2 yi- + ( (i - Xi_ 1)2 (i,1 - zi)2 Yi + Xi+ 1 - Xi)2 Yi+ I

Two additional equations are needed to make a fully determined system. As with the

B-splines in section 3, these are usually provided by the application of some sort of

boundary condition at the first and last knots.

Splines under Tension

The standard cubic spline often produces extra unwanted points of inflection, or

"overshoots" when fitting abruptly changing data. (See figure 4.1.) Using analogy

with the physical spline again, some tension in the flexible strip should decrease this

tendency. Splines under tension and v-splines are two approaches to mathematically

modelling this process.

A spline under tension is derived [5] by solving for a function that fits a set of points,

and has two continuous derivatives (like a cubic spline), but satisfies one additional

condition: the quantity f"(x) - a2f(x) should vary in a linear fashion from knot to
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4. Other Methods and Bases for Interpolation

Figure 4.1: An example of "overshoot". (Actually, this function is "undershooting", but "overshoot"

is the standard term.) For instance, we may not know the function exactly, but we may know that it

is supposed to be monotonic. 'he known data is monotonic, but the spline shown here is not.

knot. The quantity o is called the tension. As o => 0 the curve approaches a cubic

spline; as a = oo the curve approaches a straight line segment.

A separate tension may be associated with each segment of the curve, although the

appearance is more uniform if the same tension is applied throughout. Note that the

tension, as defined here, has dimensions of the inverse of x. It is often redefined in

a dimensionless way by multiplying by the average distance between knots, but this

will not be done here.

Solving

f"(x) - a 2  _ f2 + + [y+i - 2 yi+ -
+ ~i+1 - (i

with the function values at the knots f(zi) = yj and f(xi+,) = yi+1 as boundary

conditions we get

yi sinh(i(xi+ 1 - X)) + y7+i sinh(ai(x - x;))
cr sinh(ai(xi+j - xi)) a? sinh(;(xi+i - Xi))

+ % (4.10)
yir Xi+1 - X+ . yfj+1 X - Xi

+ yi- , +yi+1 I -
[Y 01 X+1 - Xi 01 i+ I - Xi
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The shape of the curve in the interval from xi to xi+1 is then determined by the (as

yet unknown) values of y and y?+i-

The solution procedure for splines under tension therefore consists of solving for the

set of y" values by applying the remaining continuity condition - that of the first

derivative - at the interior knots. Differentiating equation 5.10 and equating left and

right derivatives at the i-th knot, the general member of the system to be solved is

1csch(i-1(xi - xi-I))
Cr -(Xi - i-1) "i-1

(1 -1 + -1
(Oe 1 (Xi - Xi_1) C7(xi+1 - Xi)

+ --- tanh(ai-(i - i-1)) + - tanh(ai(xi+1 - xi))) (4.11)
Oli-1 Ori

-1 Ut
+y+1 1 sch(Oi(Xi+ 1 - Xi))

, (Xi+ I - Xi) Ori
Yi+1 - i _Vi Yi-1

xi+1 - Xi -zi-1

which produces a diagonally dominant, tridiagonal system.

The usual variety of boundary conditions may be applied to complete the system of

equations.

v-Splines

While splines under tension achieve their desired result, they do so at the expense of

introducing exponential functions in place of polynomials. In some applications this

is not objectionable, but in others the increased cost of evaluating the function may

be prohibitive. v-splines were introduced [13] as a polynomial alternative to splines in

tension in order to rectify this. They do so, however, at the cost of losing continuity

in the second derivative.

Like splines in tension, v-splines have a parameter called the tension. The tension in

a v-spline is associated with a point, rather than with a segment of the curve as in a
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4. Other Methods and Bases for Interpolation

Figure 4.2: A v-splinc through the points of figure 4.1.

spline under tension; in fact the tension gives the magnitude of the discontinuity in

the second derivative at that point. Zero tension at all points will again produce the

standard cubic spline, and if the tensions at both ends of a given segment approach

oo, the curve will indeed approach a straight line.

The tension at a knot of a v-spline is defined to be the ratio of the jump discontinuity

in the second derivative to the (continuous) first derivative value at that point.

ti - m m d2f(X) (4.12)
dx x-zi+ dx 2 x-xi- dx 2

The solution procedure is to represent each segment of the curve as a cubic Hermite

interpolation polynomial and solve for the unknown values of the first derivatives using

the known discontinuities in the second derivative. This is very similar to solving for

the standard cubic spline represented as Hermite interpolation polynomials.
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5. B-splines in Multiple Dimensions

In this section the B-spline formulation is generalized to interpolate a scalar function

of more than one variable. The key point is the introduction of a multi-dimensional

basis function which leads to the formulation of the collocation problem so that the

solution procedure involves matrices no bigger than a one-dimensional case.

Suppose we have somehow found a two dimensional basis function N(x, y). Presumably,

by analogy with the one-dimensional case, it is non-zero over some small range about

its center in all directions in the zy plane. If there are L by M knots upon which we

want to approximate the function then our naive formulation suggests we will have

an LM by LM matrix to invert. The matrix would be banded, but nevertheless the

inversion might still be a formidable problem.

The proper construction of a multi-dimensional basis function avoids the complexity

threatened above. The two dimensional basis function is defined as

N;,j(x, y) := N;(x) Nj(y), (5.1)

where i counts knots in the z direction, and j counts knots in the y direction. The

order of the spline does not appear explicitly in the notation here. The further

generalization to three and more dimensions is obvious. A plot of z = N(x, y), where

N is cubic in both variables, is in figure 5.1.

Before coming to grips with formulating the collocation problem, a word about

tensors is in order. This multi-dimensional B-spline formulation is often called a

tensor formulation, because the function space of these splines is an outer product
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Figure 5.1: The two-dimensional cubic basis function, N 4 (X, Y), on uniform knots. The function is

plotted over the four knot - square area over which it is non-zero.

of two vector spaces. The only time this impacts the algebraic manipulations one

does is that tensor notation is used to write the equations concisely, and so one is, in

some sense, doing "tensor algebra". Don't panic. You don't need to know anything

about tensors to understand this. If you do, fine, but all you really need to know is

that quantities with more indices than you are used to (in the usual vanilla matrix

algebra) will appear. Multiplication of these quantities looks more or less like matrix

multiplication, except it will be necessary to note along which index of each quantity

the sum of products proceeds. This is the "repeated index" rule of tensor notation.

Aside for the Mathematically inclined. Forget about contra- and co-variant indices for the

moment. The notation here uses super- and sub-scripts to keep some things clear, but no

implication about the way these things transform from one coordinate system to another is meant.

Because of this outer product nature it is significantly easier to deal with a mesh of

knots that is (topologically) rectangular.
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The Collocation Operator in \Iulti-Diniensions

Without worrying about boundary conditions yet, let's show the general form of a

collocation operator in two dimensions. The example will be to it a spline on knots

evenly spaced in the x direction (spacing h,) and in the y direction (spacing hY).

For the moment, let the knots in the x direction run from i = 0 to L, and in the y

direction from j = 0 to M. Extra knots will be added to cope with the boundary

conditions later. The spline is a double sum:

S(x, y) = E AjjN ,1 (x, y) (5.2)

over all the basis functions. (Compare this to equation 2.6.) Separating the two

dimensional basis functions:

S(x, y) = E >Aj5Nj(y)Ni(x) (5.3)
ji

we form a system of (L + 1) -(M + 1) equations, each corresponding to one point at

which we match the spline and the function value:

~~lh h' fo f = 0, 1, ... , L
EA,jNi(1hz)Nj(mhy) =f(1hx, mhy) for 1 0 L, (5.4)

Si 0,1,.. ., M.

(Compare this to equation 3.1.) In the compact tensor notation, equation 5.4 is written

A23N(N f'm. (5.5)

(Note that certain indices have been changed to superscript status.)

The quantities N( and NT are not complete yet; they lack pieces which denote

the boundary conditions. Once this has been completed they look exactly like their

equivalents in the one dimensional problems. They may be inverted in a standard

manner, just as you would solve the one dimensional problems such as 3.4. It is this

ability to separate the multi-dimensional operator into a product of single-dimensional
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operators that makes the collocation problem in many dimensions no harder than the

single dimensional one.

Aside for the Nlathenatically Inclined. The outer product formulation above is, of Course, a

special case of a block-structured matrix. While block-structure techniques may be applied to

solve these systems, there is no need to even fimn the complete block matrix when we have

separability as above.

Extra Knots in Multiple Dimensions

Extra knots and basis functions may be added in multiple dimensions, in the same

manner as in one dimension. If Nij(x, y) is kth order in x, and k'th order in y, then

its non-zero extent covers a rectangular region from X = z to X = Xi+k and from

Y = Yj to y = Yj+k'. The same rule that we applied before in one dimension can be

applied here: all (two dimensional) segments of the xy plane should have the same

number of basis functions contributing to the spline in those segments.

For example, suppose we are approximating with splines of order k = 3 in z and

k' = 4 in y, and the x and y axes are the lower and left boundaries respectively of the

approximation region. For the sake of simplicity, let the knot spacing be 1. There are

k - k' = 12 basis functions contributing to every segment. For the segment 0 < z < 1,

0 < y < 1 they are N;i= -2, -1,0; j= -3, -2, -1,0.

Boundary Conditions in Multiple Dimensions

The purpose of introducing boundary condition equations into the system to be solved

is to make a complete, well posed (fully determined) set of equations. In multiple

dimensions this is no different. There is the additional requirement, though, that the

separability introduced above be kept in the full system.

Consider one row of N4 (summing along i) in 5.5 above. That row refers to the

contributions of various basis functions in x (the various basis functions are indexed

by i), to the point xi. But that row appears in M + 1 different equations, depending

on the y coordinate of the point where we are matching the function.
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In order to maintain the separability of the N matrices, this principle must also apply

to any boundary condition equations we add to the system. For example, let us add

equations which specify the partial derivative of f with respect to x to the system

described in 5.4. Taking the partial derivative of 5.3 and equating the spline and the

original function at x = 0, say:

a a
Ai a- Ni(x = 0)Nj(mhy)= f(x=0,mhy) form=0,1,...,M. (5.6)j Jax ax

This set of M + 1 equations appears as another row of N(.

Now do the same thing across a y boundary. This yields an extra L + 1 equations:

A ZAjNj(1hr)- N(y = 0) = -f(1h,y = 0) for 1=0,1,...,L. (5.7)

This introduces another row of NT.

We have regarded equation 5.5 as representing a set of linear equations. There is one

scalar equation for every pair of values of the indices I and m. By including the set

5.6 as an extra row in N! and the set 5.7 as an extra row in NT, and insisting on the

separability of 5.5, we have included one more equation in the system to be solved.

This equation corresponds to the case in 5.5 when both I and m take on values which

yield the boundary condition rows. It is:

a a 82
A= 0)E N-Z(y = 0) = Axf(x = Oy = 0). (5.8)

In general, if there is a boundary condition which is reflected in the matrix of N(x)

values, and another which appears in the matrix of N(y) values, then an equation

will appear in the system which represents the concatenation of the two boundary

condition operators.

This point is often misunderstood. As long as there are sufficient independent linear

equations, the system 5.4 may be solved. It is the requirement that the system be

separable that coerces the form of certain equations in the system.
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Equations such as 5.8 are often called "corner- conditions, because they apply to a

corner point of the interpolation range. This is not the only possibility though. It is

more general to think of them as the intersection of two sets of extra equations, whether

those sets describe derivatives on a boundary, periodicity, "not-a-knot" conditions, or

anything else.

In more dimensions, the number of possibilities grow. In three dimensions there

will be two dimensional subsets (faces) where one boundary condition is applied, one

dimensional sUbsets (edges) where two boundary conditions intersect, and individual

equations (corners) where three boundary conditions intersect.
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6. Approximating a Magnetic Field with B-splines

This section considers the approximation or interpolation of a multi-dimensional

function (i.e. a vector function) of a multi-dimensional space. The main result is

a negative one: that there is no ideal vector basis function and we will be left to

combine the scalar basis functions of section 4 as best we can. Nevertheless, several

examples (both good and bad) can be presented as guidelines for good practice.

Yes, we have no ideal vector basis functions.

In section 2, when the B-spline basis functions were first introduced, part of the

rationale for their form was that desirable properties of the approximation should put

into the basis functions, so that constraints ensuring those properties could be left out

of the solution procedure. It would be desirable to put the divergence-free nature of

the magnetic field into the basis functions used to model the field.

It is possible to build a divergence-free basis for a vector field if we abandon

the separability of dimensions. This is commonly done for finite element models.

Unfortunately, the requirements of locality, smoothness and separability that have

been with us from the beginning work against achieving zero divergence or curl of a

vector basis function made from splines. We are left then to examine the curl and

divergence of our approximation after the fact; a topic that will surface again in the

last section.

Choice of Quantity to Approximate

An arbitrary vector in three-dimensional space can be specified by three scalars; the

next decision is how to do this with the scalar basis functions. Any quantity that is
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not approximated directly, will have to be derived from the approximation.

This choice is application dependent. Even so, certain guiding principles are apparent.

First of all, if we are going to approximate a vector, one of the most obvious choices,

especially in an orthogonal coordinate system, is to approximate each component of

the field separately. (For instance, another possibility would be to approximate the

magnitude and direction cosines.) Approximating the components is a good choice

numerically: it will be superior to approximating the magnitude and two direction

cosines, because subtraction of quantities with similar magnitudes will be needed to

find the remaining component in the other method.

In a given application, we must also chose the physical quantity to approximate.

Because a set of B-spline coefficients can yield the derivative of the spline as easily as

the spline (see section 7 for a Fortran function example), it is possible to approximate

the vector potential A with the spline, and evaluate its curl directly, producing a

divergence-free field.

Example: A Field-Line Follower using Spline Fields

As an example of a simple spline application, consider the general organization of a

field line follower before and after conversion to use a spline representation of fields

from flamentary conductors.

The purpose of this software was to model the static fields of a toroidal magnetic

configuration; tracing out the shapes of flux surfaces and finding integral surface

properties such as rotational transform.

In the "before" version, the set of software contains three programs.

* A Model Generaor, which takes as input the parametric form of the stellarator

helical windings, and other field coils. This program writes a file, usually called

the model data file, which contains a model of the stellarator windings in terms

of straight and curved filamentary conductors.
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" A Field Line Integrator, which reads the model data file, and a set of commands,

specifying the initial and final conditions for the integration. These consist of

starting points and directions in space and maximum lengths. This program writes

the field line, as it is integrated, to a file called the line data file. In this program,

the field at a point is found by summing the analytic expressions for the field

(derived from the Biot-Savard law) over the filaments of the model.

* A Graphics Post-Processor, which produces "puncture plots", rotational transform

values, and other average quantities from the field line.

In the "after" version, the same function is performed by live programs.

* A Mode! Generator, the same as before.

. A Program to Evaluate the Field at intervals on a three-dimensional grid. This

reads the model data file, evaluates the field using the analytic Biot-Savart

expressions, and writes a field grid data file.

. A Program to Fit Cubic B-splines to the field values. This reads the field grid

values and writes spline coefficient values for the field data.

* A Field Line Integrator, which performs the same integration as above, except

that the field evaluation is done using the spline coefficient values which are read

instead of the model.

* A Graphics Post-Processor, the same as before.

Typically, the programs would be used as follows. Having chosen to analyze a

particular configuration, three or four model data files would be created for it. These

models would differ in the number of consecutively linked filaments used to model

the curve of a helix, and the number of parallel filaments used to model a conductor

with finite cross-section. Using the old set of programs one would follow most field

lines using the cruder model, using the more detailed model for final calculations.
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Figure 6.1: The economics of following field lines using a spline model.

When using the new (spline) set of programs one would create fewer filament models,

usually one or two. Running the field grid and spline fitting programs once or twice

for each model, with different grid sizes, spline coefficient data could be created for

those grids. These sets of spline coefficients become the new models of the machine

for input to the new integrator. They would be saved in long term storage, just as

filament model files were saved previously.

The Economics of Spline Modelling

It is worthwhile to examine the comparative costs of using the two sets of programs

above. In both cases there is a fixed "setup" cost, incurred before any field lines

have been calculated, followed by an incremental cost, proportional to the length of

lines followed. This model of the cost is fairly accurate - it ignores only small things

such as the difference in the amount of file storage needed and the in-core size of the

programs.

The start-up cost of the spline model is higher than the conventional one. Biot-Savart

evaluations of the field have to be included in the spline start-up, and so does the

spline fitting procedure. On the other hand, the cost of evaluating the field per

integration step is lower. As illustrated in figure 6.1, there will be a break-even point

at some finite amount of line following.
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Specific values of the four constants (two fixed costs, two slopes) in the cost model

above are application dependent. It is worthwhile estimating them for any large

application. As an example, here are the figures for a typical problem.

Filamentary Model Complexity : 576 straight filaments

16 circular arcs

Spline Grid 163 cells (173 points)

Biot-Savart model setup 1.21 secs

Spline model setup : 6.3 secs

Biot-Savart integration : 3.35 secs / 1000 steps

Spline integration : 0.78 secs / 1000 steps

For this problem, both the filamentary model and the spline grid were quite coarse.

Increasing the complexity of the spline grid would increase the start-up time for the

splines, but not the integration cost. Increasing the number of filaments in the initial

model would increase all costs except the spline integration cost.

One additional economy in using splines has not been mentioned in the scenario above.

Suppose we want to compare the effect of different currents in a vertical field coil,

while leaving the rest of the conductors unchanged. The linearity of splines is useful

here. Since splines are linear: if S1(x) approximates f(x), and Sg(x) approximates

g(x), then Sj(x) + S,(x) approximates f(x) + g(x).

Spline coefficients can be created for that particular conductor in which one wishes

to change the current. Then this set of coefficients can be added to or subtracted

from the set describing the entire configuration. There is no need to perform the grid

evaluations or spline inversion again.

This approach serves to reduce the start-up cost of the spline model; essentially we

are spreading the cost of fewer models over the same number of lines to follow.

Splines in Other Magnetic Field Applications.

The example above has used field line following to illustrate the implementation
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decisions and costs of modelling a magnetic field with splines. Field line following is

one of the simpler applications of magnetic field modellino even so, it illustrates most

of the tradeoffs involved. Here I will briefly consider some other common applications

and point out similarities and differences.

Collisionless particle following, using the guiding center approximation, is a similar

process of integrating a set of coupled ordinary differential equations. We have

seen above how the savings in computer time increase as we follow more-field lines

through a given configuration. This effect will be greater for collisionless guiding

center integration as an interesting set of initial conditions must now span a four

dimensional space (pitch angle as well as the three spatial coordinates). The details of

the implementation would be quite similar.

When scattering is added to a particle following model, the dimensionality of the

phase space increases again to five (energy is not conserved). In a typical test-particle

- field-particle problem, with a Fokker-Planck scattering operator, the electric field

is usually added to the model of the test configuration. It is quite easy to add the

electric potential as a fourth scalar in the model on the same spline grid; the electric

field is found directly from the spline coefficients by evaluating the derivatives of the

basis functions.

Another common magnetic field calculation is the evaluation of forces on a conductor.

Here it is less likely that you will model the self-fields of the test conductor with

splines. The background fields are a suitable candidate for spline modelling though.

Effects of Grid Size

The effect of the choice of knot spacing, or grid size, on the costs mentioned above

is clearly a strong factor. This decision should be made with some knowledge of

the errors involved. While errors are covered in section 8, 1 will mention the basic

concepts here.
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If the field is sampled on a grid that is extremely coarse, important information about

the shape of the field is lost. This happens when the field values change on a distance

scale shorter than the spacing between grid sampling points. The approximation may

bear no resemblance to the original field.

As the sampling grid gets finer, the approximation assumes the form of the original

field, and the difference between the two scales as some integer power of the knot

spacing. This is the region where the return on computational investment is most

clear.

When the grid gets extremely fine, other factors: round-off error, error from the

numerical integrator, become significant. The increasing cost of a finer grid ceases to

pay off and diminishing returns set in.
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Notes on Matrix Inversion

Examples of the matrices that we need to invert, to perforn collocation, appear in

section 3. As was pointed out, these matrices are often banded and close to symmetric.

When fitting cubic B-splines, with function values matching on the knots, for instance,

there was a tridiagonal matrix with a few extra elements in the first and last rows,

depending on the boundary conditions. The choice of solution method comes down

to three choices.

One possibility is brute force, using a completely general solution routine. The

advantages are: no conditioning of the matrix is needed beforehand, plenty of software

library routines are available, and if a new boundary condition is added (producing

an unforeseen first or last row) no changes to the solution routine would be needed.

Modified LU decomposition methods, such as a tailored tridiagonal solver, are another

set of candidates. Their main advantage is their efficiency. Also, only a small number,

if any, of preconditioning row operations have to be performed.

For B-splines on uniform knots, the collocation matrices are almost symmetric. A few

row operations can make them symmetric and positive definite in most cases. Iterative

solution methods, such as conjugate gradient, are therefore a possibility.

As often happens, the choice comes down to a tradeoff between efficiency and

generality. When the software described here was written, generality was chosen for

two reasons. Firstly, the matrices are fairly small in most applications, and the spline
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data is stored (as described in section 6) as a new model afterward. Once solved for,
the splines are evaluated millions of times. So the cost of fitting the splines is a small

part of the total computational cost. Programmer's cost also contributed in the same

manner. It was easier to get software running, using the general tools, than it would

have been with specially tailored routines.

These choices, listed above, are not the same for all applications. In some cases it

may be worth writing the specially tailored tridiagonal solver. But the same sort of

analysis should go into the choice as above.

Data Organization During Use of the Splines

Scientific programmers often give little thought to data organization within their

programs. -Sometimes little thought is needed. However it is worth considering how

the spline coefficients will be stored in an applications program because the coefficients

will often make up a significant proportion of the entire memory space.

Two main points to.consider in the design of the data structure are: the advantages

of linearity - spline representations of two fields can be added: and the question of

storage order - storing one scalar at a time or one vector quantity at a time.

Combining sets of spline coefficients is quite easy to prepare for. The programmer

should be aware that it is desirable to be able to read from more than one model file,

storing a linear combination of the sets of coefficients to be used.

The choice between storing one scalar at a time, i.e. all the B__ values, then all the

By values..., or storing all quantities one point at a time, i.e. (B2, By, B2) at the

first point, (B2, By, B.) at the second point..., is harder to make. The spline inverter

definitely wants to see one scalar at a time. However the spline evaluator deals with

the evaluation of all quantities at one point at a time.

In this software, one entire scalar field is stored consecutively. The main reason for

this was to be able to add another scalar (the electric potential) afterwards without
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having to re-order all the other data.

Common Blocks and Argument Lists

In "old-style" Fortran programming, it was common to store all arguments to a

function in a common block. This is because computers with "old-style" architectures

extracted a penalty for the indirect reference through the address passed in an argument

list. This made for less clarity in the program, and less flexibility in compiling pieces

of the program separately.

On newer architectures, the penalty for this indirect reference is insignificant. The

three-dimensional cubic spline evaluator, described later in this section, was tested on

a Cray-1 in two versions: one with the coefficients in a common block, the other with

them passed through the argument list. With the size of the array in common declared

at compile time, there was less than 5% difference between the two methods. With the

address calculations done at nm-time, to provide equal flexibility, the common-block

version was actually 25% slower. Common blocks have their uses. But they do not

replace argument lists.

An Implementation of de Boor's Triangle

Here is a MacLisp implementation of de Boor's triangle (see equations 2.24 and 2.26).

This evaluates splines of arbitrary order. The order of the spline is given by the

argument k. Three arrays, a, dm, and dp are supplied for temporary storage. Array

a stores successive columns of de Boor's triangle, the other two are used for the

coefficients in equation 2.24.

The only non-standard features are the array-reference macro ar e f$, and the array-

storage macro aset$. The function 1 uf is the look-up function.

This function is based directly on de Boor's description of how to implement it; for

a full description of the algorithm involved, the original reference [8] is well worth

reading.

50



7. Algorithms and I) iia Siruciure

(defun sval (x knots coefs k a dm dp)

(let ((i-k+1 (- (1+ (luf x knots k)) k)))

(do ((r 0 (1+ r))

(j i-k+1 (1+ j)))
((= r k))

(aset$ (aref$ coefs j) a r)
(aset$ (-$ x (aref$ knots j)) dm r)

(aset$ (-$ (aref$ knots (+ j k)) x) dp r))

(do ((kk (1- k) (1- kk))

(s 1 (1+ s)))

((= kk 0) (aref$ a 0))
(do ((r 0 (1+ r)))

((= r kk))

(aset$ (//$ (+$ (*$ (aref$ dp r) (aref$ a r))

(*$ (aref$ dm (+ r s)) (aref$ a (1+ r))))

(+$ (aref$ dp r) (aref$ dm (+ r s))))

a r)))))

Incidentally, this function evaluated the splines for a Lisp package that produced all

the illustrations in this paper.

Cubic Spline Evaluation on Uniform Knots

Here is a Fortran implementation of one-dimensional cubic spline evaluation on

uniform knots, using the piece-wise polynomial formulation of the basis functions. As

mentioned earlier, the spline coefficients are passed in the argument list for greater

flexibility without loss of efficiency.

The inline functions pol f 1, pol f 2, po1 f 3, and pol f 4 contain the fourpieces of the

cubic basis function as described in equation 2.30. The local variable x corresponds

to i of equation 2.29. The knot spacing hx appears in the argument list, but is not

used. That is a stylistic choice to make the call to this function look the same as a

call to the derivative function s1d i v, shown next.
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Note that xmin is the start of the function interpolation range. It is the coordinate

of the second knot, but the naive user need not know this. Also note the use of max

and min functions so that if you try to evaluate outside the interpolation range, the

effect is to extrapolate the polynomial in the nearest interval.

real function sival (xx, nx, hx, rhx, xmin, alpha)
integer nx
real xx, hx, rhx, xmin, alpha(nx)

c xx : independent variable
c nx : number of knots
c hx : knot spacing
c rhx : reciprocal knot spacing
c xmin : start of (independent variable) interpolation range
c (actually coordinate of 2nd knot)
c alpha : vector of basis function coefficients

parameter (c116 = 1.0/6.0)
polf4(x) = 1.0 + (-3.0 + ( 3.0 - 1.0 *x)* x)* x
polf3(x) = 4.0 + (-6.0 + 3.0 *x)* x * x
polf2(x) = 1.0 + ( 3.0 + ( 3.0 - 3.0 *x)* x)* x
polfl(x) = x *x x

x (xx - xmin) * rhx + 2.0
ix = minO (maxO (ifix(x), 2), nx-2)
cdx = x - float(ix)

sival = c116*( alpha(ix-1) * polf4(cdx)
% + alpha(ix ) * polf3(cdx)
% + alpha(ix+1) * polf2(cdx)
% + alpha(ix+2) * polfl(cdx) )

return
end

Here is the similar evaluation of the derivative of the spline. Note that the argument

list looks the same as sival. The inline functions poldi, pold2, pold3, and

p o1 d 4 implement the derivative of equation 2.30.
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real function sldiv (xx, nx, hx, rhx, xmin, alpha)

integer nx
real xx, hx, rhx, xmin, alpha(nx)

C xx : independent variable
C nx : number or knots
c hx : knot spacing
c rhx : reciprocal knot spacing
c xmin : start of (independent variable) interpolation range
c (actually coordinate of 2nd knot)
c alpha : vector of basis function coefficients

pold4(x) = -1.0 + ( 2.0 - 1.0*x)* x
pold3(x) = (-4.0 + 3.0*x)* x
pold2(x) = 1.0 + ( 2.0 - 3.0*x)* x
poldl(x) =X * X

x (xx - xmin) * rhx + 2.0
ix = min0 (maxO (ifix(x), 2). nx-2)
cdx = x - float(ix)

s1div = 0.5*( alpha(ix-1) * pold4(cdx)
% + alpha(ix ) * pold3(cdx)
% + alpha(ix+1) * pold2(cdx)
% + alpha(ix+2) * poldl(cdx) ) * rhx

return
end

Finally, here is the corresponding three-dimensional evaluator. For the version that

is used in practice, the inner two do loops at the end are unrolled, but they have

been written explicitly here for clarity. Also, anyone planning to implement this on

a vector machine should be aware that on the Cray-i at least, those loops are faster

un-vectorized. This is probably because of their short length; the overhead in setting

up a vector loop outweighs the savings.

53



7. Algorithms and Data Structure

real function s3val (xx, hx, rhx, xmin, narow, nacol, alpha)

integer nx(3), narow, nacol

real xx(3), hx(3), rhx(3), xmin(3), alpha(narow,nacol,1)

c xx independent variable

c hx mesh spacing

c rhx reciprocal mesh spacing

c xmin start of independent variable interpolation range
c (actually coordinate of 2nd knot)
c narow : row dimension of alpha (1st dimension varying fastest)
c nacol : column dimension of alpha
c alpha : three dimensional vector of basis function coefficients
c (x coordinate varying fastest, y next fastest)

real xt(4), yt(4), zt(4)

parameter (c116 = (1.0/6.0)**3 )
polf4(x) = 1.0 + (-3.0 + ( 3.0 - 1.0 *x)* x)* x
polf3(x) = 4.0 + (-6.0 + 3.0 *x)* x * x
polf2(x) = 1.0 + ( 3.0 + ( 3.0 - 3.0 *x)* x)* x
polfI(x) x xx

x = (xx(1) - xmin(1)) * rhx(1) + 2.0
y = (xx(2) - xmin(2)) * rhx(2) + 2.0
z = (xx(3) - xmin(3)) * rhx(3) + 2.0
ix = minO (maxO (ifix(x), 2), nx-2)

iy = minO (maxO (ifix(y), 2), ny-2)
iz = minO (maxO (ifix(z), 2), nz-2)
cdx = x - float(ix)

cdy = y - float(iy)

cdz = z - float(iz)

xt(1) = polf4(cdx)

xt(2) = polf3(cdx)

xt(3) = polf2(cdx)

xt(4) = polfl(cdx)

yt(1) = polf4(cdy)

yt(2) = polf3(cdy)
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yt(3) = polf2(cdy)

yt(4) = polfl(cdy)

zt(1) = polf4(cdz)

zt(2) = polf3(cdz)

zt(3) = polf2(cdz)

zt(4) = polfl(cdz)

s3val = 0.
do 1 kz = 1, 4

do 1 ky = 1, 4
do 1 kx = 1, 4

s3val = s3val + alpha(ix-2+kx,iy-2+ky,iz-2+kz) *

% xt(kx)*yt(ky)*zt(kz)
s3val = c116 * s3val
return
end
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Sooner or later someone is going to ask - "how good is this approximation?" To

answer this properly it is necessary to know something about both the theory of error
in polynomial interpolation, and how to test a specific application for error. The

question can be put in slightly sounder terms by posing it in three parts.

* If some properties of the "ideal" or "real" function are known, what's the worst
error to expect in the approximation, compared to this?

* How much improvement can be achieved by increasing the number of data input

to the approximation procedure?

* If some of the data input to the approximating algorithm change, how does the

approximation change?

(There is no hope of doing justice to the mathematics of approximation theory in this

small a space; rather certain tools with which to examine approximation algorithms

will simply be mentioned.)

The concept of norm is introduced first. This leads to the notion of a best

approximation, which is a standard with which to compare different approximation

techniques. As mentioned at the end of section 6, we will need to measure the

"bumpiness" of a function, or how much the function changes over various scale

lengths. This is done with the modulus of continuity.
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Next, carizinal functions are described. These functions provide a tool to examine

the sensitivity of an approximation to changes in the data. Finally, some practical

techniques to measure the error in a magnetic field approximation are mentioned.

Norms

A norm is a measure of distance in a space. The norm of something is a non-negative

real number. In a space, there may be many possible norms: when a norm is used,

it may refer to any norm, or it may be defined in a particular way. (Commonly used

norms are often named.) Regardless of which norm is used, a norm must have three

properties. They are: uniqueness of the zero element

hall > 0, |all = 0 iff a = 0, (8.1)

the homogeneity condition

iXal = Xl|al| (8.2)

where X is a scalar; and the triangle inequality

la + bhl < ||ail + hhb (8.3)

so called because the vectors making up the sides of a triangle provide the most

familiar example of this. By defining a norm in this way, [la - bhl is a suitable measure

of the distance between a and b.

Aside for the Mathematically Inclined. A normed space is more specialized than a metric space.
The distance function in a metric space must satisfy the triangle inequality, but the homogeneity
condition on the norm implies a zero element in the normed space.

One norm that most people are familiar with (if not by name) is the 2-norm. This

corresponds to the usual notion of distance in Euclidean space. For a vector x

IIX112 Xi2 ,(8.4)
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or for a function f on the range [a, b]

(fb1 := 1 j f() 2 d ). (8.5)

The only other norm that will be mentioned specifically here is the infniity-nonn:

:= max 1xj, (8.6)

or

1x~. :=max {f(x) : x E [a, b]}. (8.7)

The error in an approximation is simply the norm of the difference between the

original function and the approximation.

The Error in the Interpolating Polynomial

The expression for a single polynomial to interpolate a series of points was shown

in section 4 in the Lagrange form. It is shown here in the Newton form. (Many

elementary texts [6,7] show the equivalence between the two forms.)

Pf(x) = (X - Xo)(X - zi). - -( -Xn )f[o,x i, ..., n] (8.8)
i=O

The Newton form is more -general. If any of the xi approach each other, we get

higher order interpolation at that point without any changes to the representation.

In particular, if all the xi approach one point, we have the Taylor expansion of the

function about that point.

Using Leibniz' formula (section 4), one can also show that the error can be written in

a very suggestive form:

e(z) = f(x) - Pf(x) = (x - zo)(z - i)... (x - z,,)f[xo, z1, ... , x,, x] (8.9)
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which looks like the -next- term in the Newton form, should it be expanded one

more term. More importantly, it can be shown also that even if the xi remain distinct,

there exists a point such that

f[XzOX., X",- f( (8.10)
(n+ 1)!

where is within the smallest interval containing all the values Xj, X,,.... X", x. Again,

if all the xi approach each other, we get the standard remainder term for a Taylor

series.

This term will let Lis relate the error in an interpolating polynomial to the norm of a

higher derivative of the function.

Moduli of Smoothness

The modulus of continuity, which describes how a function varies over an interval, is

defined in an straightforward way. If the function f is defined in the range [a, b]:

w(f; h) := max{lf(x) - f(y): x, y E [a, b] , Ix - y! < h}. (8.11)

This is said "the modulus of continuity of f at h'

If we generalize this and take the maximum of the rth forward difference we obtain

the rth modulus of smoothness;

w,(f; h):= max{A ff(x) : x E [a, b - rj] , 0 < j h}. (8.12)

The modulus of continuity is therefore the first modulus of smoothness.

The modulus of continuity approaches zero as the interval approaches zero:

lim w(f; h) = 0 (8.13)
h-.O

and for a function with a continuous first derivative we can bound it:

w(f; h) < hIjf'II. (8.14)
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Best Approxinations and other Standards for Coinparison

One or the ways to approach the question of "how good is this approximation?", is in

a relative way. Once You have decided to approximate f with, let us say, a piece-wise

polynomial, you somehow conjure Lip an operator (an algorithm, if you wish) to apply

to f, that delivers a piece-wise polynomial for your approval. Now you can ask "how

good is this piece-wise polynomial approximation, compared to the best piece-wise

polynomial approximation around?" Of course, now you are left to define "best", but

this approach has some merit.

In typical mathematical fashion, the notion of a "best" approximation is defined in

a slippery sort of way. The best approximation is simply the approximation which

minimizes the norm of the difference between it and the original function. For a

proper definition, and proof that a best approximation exists in a normed space, see

Powell [14]. The question of what makes a best approximation has been reduced to

the choice of norm. Often it is possible to find the error of a best approximation

without constructing the best approximation itself.

This two-stage approach, finding the error of a best approximation and then finding

the error of a practical approximation compared to the best one, is the standard way

of establishing upper bounds for error.

For instance, it is well known [7, 10, 11, 14] that if we chose to approximate by

interpolating a polynomial at certain points of a function, then using the Chebyshev

points as the interpolation points yields the best approximation under the infinity-

norm. Moreover, it is also known that choosing a "better" polynomial by any other

means cannot improve the approximation by more than a multiplicative factor of 4.

Therefore by comparing any other approximation with polynomial interpolation at

Chebyshev points, one can measure the error in that approximation.

Sometimes it is useful to write the error in the best approximation as an algebraic

quantity. This is done by using the notion of distance from a set: that is distance
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froni a function f to a set S is

dist(f, S):= min{|If - sfl: s E S}. (8.15)

The Error in Approximating Functions with Splines

When measuring the error in a spline approximation, one must first describe how

the approximation is made. While the collocation methods described in most of this

report are not hard to understand, their properties are too complicated for some error

analyses. A method known as Schoenberg's variation diminishing approximation [101

is used as a highly tractable approximation method instead.

Let f(x) be the original function and Sf(x) be its kth order spline approximation

on knots yi. The variation diminishing approximation simply uses a point value of

the function "somewhere near" the support of the B-spline as the coefficient of that

B-spline.

Sf (x) := f(x)Bj() (8.16)

This approximation, poor though it may appear at first glance, has many useful

properties, including the property that it will reproduce a constant function exactly.

See de Boor [10] for many more properties, including an explanation of "variation

diminishing".

Following de Boor [10], we consider some specific i in the range xj < i < xj+1.

From the local nature of the B-splines we know

Sf()= f(zi)B(P) (8.17)
i~j-k+1

but from the fact that the B-splines sum to 1, we can write

f(z) = f(i) Bj(i) = f(i)Bjiz) (8.18)
i=j-k+1 i=j-k+1
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and therefore we can subtract and find the error

f(i) - Sf(z) = E (f(i) - f(xi)) Bi(i) (8.19)
ij-k+l

and since Bi(x) > 0 always, we can take the absolute value on both sides

If(P) - Sf()I L If(i) - f(X;) B;(i)
i=j-k+ I

<max{If(i) - f(xi)I} (8.20)

to get a bound for the error.

Now, having chosen each z to fall "somewhere near" the support of Bi, let us be

more specific and chose

i -(yi-k+1 + yi). (8.21)

Then
max{If(i) - f(xi)I} max{jf(x) - f(y)I} (8.22)

; x, y E {Yi-k+1,Zi} or x, y E {xi, yi}
which, now looks like the modulus of continuity

max{If(i) - f(xz)I} ! w(f; kIyj/2)

<k Wf iD(8.23)

where IyjI refers to the maximum knot spacing

I yiI :=max(yj - y-)

We can conclude, therefore that

k
dist(f, S) :5 -w(f; ly l). (8.24)-2

The Error in Approximating Continuous Functions with Splines

So far, we have not introduced any properties of the function f, such as continuity.

If f and the spline Sf have continuous derivatives, then improved estimates of the

error can be made using a procedure such as the one that follows.
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Consider the set Sk of all splines of order k on a set of knots. (It is understood that

this is the set of all splines on a particular set of knots ygi, say, and not the set of all

splines, even though the set of knots is not mentioned explicitly.) If the function f is
a spline, then the error in its best approximation will be zero. Therefore

dist(f, Sk) = dist(f - s, Sk) for all s E Sk. (8.25)

Using the limit on the the modulus of continuity for continuous functions

w(f - s; h) < h 1f' - Dsll (8.26)

where D is the derivative operator, we can conclude that

dist(f, Sk) K kyhf' - Ds|l. (8.27)

The set of all splines of lower order can produced by differentiating the continuous

members of the higher order splines on the same knots.

S 1 ={Ds : s E SkfCo}

So using equation (8.24) again,

dist(f, Sk) 5 kyjI dist(f', Sk.1) (8.28)2

dist(f, Sk) 4 k(k WV1) y w(f'; |I) (8.29)

This procedure may be applied recursively, until the requirement of continuity in the

function f or the spline cannot be met. Usually, we will end up with a limit like:

dist(f, Sk) < constant IyIkIIf ()1. (8.30)

Cardinal Functions

An interpolation method that is linear in the data fi = f(x ) can be expressed in the

following form:

S() = Z1'(z) f (8.31)
j
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where S(x) represents any approximation to f(x), not necessarily a spline. The Ij are

called cardinal functions - they depend on the positions of the xi, but not on the data

values fi. Because of the linearity of equation (8.31) the cardinal function 1& can be

obtained by applying the interpolation method to the points lk(xj) = 6 ik.

Let us examine the cardinal functions for cubic spline interpolation on evenly spaced

knots, where the approximation scheme matches function values on knots. If each

piece of spline was represented in the Hermite form (equation (4.6) or (4.7)), then in

the form of equation (4.8), continuity of the second derivative gives equations for the

unknown first derivative values. For evenly spaced knots we will have a system of the

form

'i_1 + 4's + '+1 = 3- fi- + + (8.32)

Consider what happens on an infinite set of knots. Equation (8.32) can be rewritten

in a recursive form:

i+1) = (-4 -1) (1.) + (-Ifi-I + 5 fi+)
= , + h (8.33)

and the stability of this recursion can be examined. The eigenvalues of the 2 by

2 matrix above are X = -2 ±v; one gives an oscillating function with decaying

magnitude, the other a oscillating function with growing magnitude. For the moment,

the functions will be referred to as ID and IG respectively. These cardinal splines are

shown in figure 8.1.

Both these cardinal splines pass through zero at all knots, except the central knot where

their value is unity. This fact, together with the slopes from the matrix equation (8.33),

defines the cardinal splines in terms of cubic Hermite interpolation polynomials.

Each cardinal spline 1(x), of a particular spline approximation (8.29), may be any

linear combination

xjlq(x) + (1 - Xj)lf(X) (8.34)
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Figure 8.1: The decaying cardinal spline for cubic splines on infinite knots I", on the left, and the

growing one 1(, on the right. Tlie vertical scale for the growing function, on the right. has been shnink

by two orders of magnitude, compared to the one on the left, to show the shape. Both these cardinal

splines have a value of 1 on their central knot.

of the two functions above. This combination is determined by the approximating

algorithm; not by the specific data values. In general, we want a particular

approximation to deliver as much of the decaying function and as little of the growing

one as possible. This will ensure that small changes in the input data do not cause

large oscillations of the spline.

The Effect of Boundary Conditions

An actual approximating algorithm, of course, must deal with boundary conditions.

When boundary knots are considered, it is easier to lump all the growing cardinal

splines for all the knots into two new cardinal splines. These two new cardinal

functions will be called left and right (IL and IR) because they decay from their

respective boundaries.

The linear combination (8.34) above can be rewritten as

l'?(z) + X(lq(x) - 1P(X)) (8.35)

showing explicitly the desirable and undesirable parts. Let us show the slopes of IG

and ID at a series of knots. Let X be the stable eigenvalue VF - 2.
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Figure 8.2: Lcft and right cardinal splines for boundaries. Note they have zero value at all knots.

knot j-3 j-2 j-1 j +1 j+2 j+3
10 -x3 x- 2 j_ - o x 1 X-2 X-3 (8.36)

1D .-x 3  -X 2  -1 0 X1 x2 X3

Now define 1L and 11? as oscillating splines in the same way. They pass through

zero at all knots. Their slopes at consecutive knots have ratio X. Let us chose their

magnitudes arbitrarily to have slope 1 at knot j. Then the slopes of IL and IR are

knot j-3 j-2 j-1 j j+1 j+2 j+3
IL >-3 X-2  X- 1  1 X X2  3 (8.37)
R 3 2 1 - 1  X-2 - 3

and we can see, by comparing column by column, that 1O - 1D can be replaced by
-_ IL. Different magnitudes for IL and IR will match the growing cardinal spline for

different knots. Therefore the effect of all the growing cardinal functions jO at the

different knots can be replaced by the two new cardinal functions IL and IR.

The shape of IL and IR shows why poorly chosen fitting procedures produce their

worst effects at the ends of the interpolation range.

Cardinal functions provide an explicit way to see the tradeoff between continuity and

locality in the approximation scheme. As the order of the spline increases, the order

66



8. Irror and Sensitivity Analysis

of the derivative that may have a discontinuity at the knot increases. So the process of

damping out the oscillations of the cardinal function takes longer. In general, lower

order splines have faster decaying cardinal functions.

A Cautionary Example

The example above showed the derivation of cardinal splines for cubic spline

approximation with collocation on the knots. Placing knots between interpolation

points can change an approximation algorithm greatly from the case where knots are

placed on interpolation points. This happens in the case of quadratic (3rd order)

splines.

The cardinal spline for quadratic spline interpolation on points spaced half-way

between equidistant knots can be derived in a similar manner to the case above. In

this case, there is a single zero crossing in each polynomial "loop" of the function.

The resulting cardinal splines look similar to the cubic case. There is one with a

decaying amplitude, and one with a growing amplitude; in this case the eigenvalues

are X =-3±2V2.

The cardinal spline for quadratic spline interpolation on equidistant knots has fewer

degrees of freedom than the previous case, because there are two zero crossings in each

piecewise polynomial. This yields a two term recursion relation for the derivatives at

the knots and a purely oscillating cardinal function.

A purely oscillating cardinal function implies that changing one input data value will

have an equal effect on all polynomial pieces throughout the range. This is generally

undesirable in a spline interpolation, and should be avoided.

The Error in Magnetic Field Approximation

Error is best tested after a working program has been debugged. This final section

therefore contains a collection of hints and techniques for after-the-fact checking of

error.
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It is useful to distinguish between explicil and implicil error computation. Explicit error

checking involves explicit knowledge of the original exact function and computing a

direct measure of the difference between the original and the approximation. For

magnetic field approximation this usually means comparing field values from the

Biot-Savart (or analytic, or other) model with those from the spline model. Implicit

error checking usually means comparing the results of some application of the two

models. An example would be to compare field lines computed from both models.

Examples of explicit error measurement could include:

. Direct differences between component values derived from original and spline

models.

. Angular error between field direction from the two models.

* The finite amount of divergence and curl in the spline fields.

Examples of implicit error measurement'could include:

. The difference between field lines or particle trajectories as a function of path

length through the two models.

* The difference between integral properties such as average field strength and

enclosed flux between surfaces in the two models.

Advantages of explicit measurement are:

* It is clear what is being measured (ie. in some of the implicit measurements it

may be hard to separate numerical error in an integrator, for instance, from error

in the model).

. The scaling of such error, and therefore the costs of improving it, are known

more easily from theory.

Advantages of implicit measurement are:
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. The effect of error upon the application will be clearer. In fact, proper modular

programming can let you run your application in both models -side by side" and

assemble a collection of benchmarks.

. The "point of diminishing returns" - ie when error in the spline model becomes

negligible compared to error in the other approximations involved - is more easily

identified.

69



References

1. Barsky, Brian A. and Spencer W. 'I'homas. "TRANSPLINE - A System for Representing Curves

Using Transformations among Four Spline Rcpresentations." The Computer Journal 24 3 (1981)

p 271.

2. Boehm, Wolfgang. "On Cubics: A Survey." Computer Graphics and Image Processing 19 (1982)

p 201.

3. Boehm, Wolfgang. "Inserting New Knots into B-spline Curves." Computer Aided Design 12 4

(1980) pp 199-201.

4. Brodlie, K.W. "A Review of Methods for Curve and Function Drawing." Mathematical Methods

in Computer Graphics and Design (Conference). Academic Press, New York, N.Y., (1980).

5. Cline, A.K. "Scalar- and Planar- Valued Curve Fitting Using Splines Under Tension." Communications

of the ACM 17 4 (April, 1974) p 281.

6. Conte, S.D., and Carl de Boor. Elementary Numerical Analysis: an algorithmic approach.

McGraw-Hill, New York, N.Y., (1972).

7. Dahlquist, Germund and Ake Bjorck. Numerical Methods. Prentice Hall, Englewood Cliffs, N.J.,

(1974).

8. de Boor, Carl. "On Calculating with B-splines." Journal of Approximation Theory. 6 (1972) pp

50-62.

9. de Boor, Carl. "Package for Calculating with B-splines." SIAM J. Numer. Anal. 14 3 (June,

1977) p 441.

10. de Boor, Carl. A Practical Guide to Splines. Springer-Verlag, New York, N.Y., (1978).

11. Holland, A.S.B. and B.N. Sahney. The General Problem of Approximation and Spline Functions.

Kreiger, Huntington, N.Y., (1979).



References

12. .e, .T.Y. "A Simplified B-Spline Computation Routine." Computing. 29 (1982) pp 365-371.

13. Nielson. Gregory M. "Some Piccewise Polynomial Alternatives to Splines Under Tension."

Compuler Aided Geometric Design (Conference). Academic Press, New York, N.Y., (1974) pp

209-236.

14. Powell, M.J.D. Approximation Theory and Methods. Cambridge University Press, Cambridge.,

(1981).

15. Schoenberg. I.J. Cardinal Spline Interpolation. S.I.A.M., Phila. Penn. (1973).

16. Schumaker, Larry L. Spline Functions: Basic Theoy. John Wiley and Sons, New York, N.Y.,

(1981).

71


