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ABSTRACT

The linear theory of wave propagation in the lower hybrid range of

frequencies is presented. The topics of accessibility, linear and quasi-

linear theories of electron Landau damping, and the linear theory of ion

Landau damping are covered. The theory of wave propagation is extended

to include the effect of toroidal geometry. A simulation model incorporating

these theories is described and numerical results obtained with the model

are given.
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I. INTRODUCTION

The availability of megawatt microwave sources in the lower hybrid range

of frequencies and the use of waveguides external to the vacuum vessel make

plasma heating using lower hybrid waves extremely attractive. The original

proposals for the use of this method were by Parker and Hooke in 1971 [1]

and an extensive review of the linear and nonlinear theory of plasma heating

in the lower hybrid range of frequencies was given by Bers in 1978 [1].

In this paper only topics related to the linear theory of wave propagation,

linear and quasilinear theory of electron Landau absorption, and the linear

theory of ion Landau absorption will be discussed. Important work related

to the linear and nonlinear theory of waveguide coupling, the nonlinear theory

of parametric processes and the theory of lower hybrid wave scattering from

density fluctuations will not be discussed.

The outline of this paper is as follows. In Sec. II the linear theory

of wave- propagation in slab geometry is presented. The topics of accessibility,

linear and quasilinear theory of electron heating, and linear theory of

ion heating will be covered. In Sec. III the problem of wave propagation

in toroidal geometry will be treated utilizing the technique of geometrical

optics and ray tracing. In Sec. IV numerical results of the toroidal ray

tracing will be presented for parameters relevant to the Alcator C and

Versator II lower hybrid heating experiments. In Sec. V a brief discussion

will be given of a simulation model which incorporates a radial transport

code, toroidal ray tracing code, and one dimensional Fokker Planck calculation.

Numerical results of the model will be .given for the Alcator C lower hybrid

heating experiment.
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II. LINEAR WAVE PROPAGATION AND ABSORPTION IN SLAB GEOMETRY

A. Cold Plasma Electromagnetic Dispersion Relation

The lower hybrid range of frequencies w satisfies 2 >> 2
ce ci'

where Q2a weB /m. and ce Mci ) is the electron (ion) gyrofrequency. For

typical tokamak magnetic field strengths B - (1.5 T-lOT) this range is

roughly w/27T- (0.5-5.0) Ghz with w 2 ̂  c . The wave propagation is described

by a dispersion relation which can be derived as follows [2]. Consider a

plasma with density gradient in the x direction direction N(x), a uniform

magnetic field in the z direction B -e*B , unperturbed electric field E =0,

and unperturbed electron and ion fluid velocities v - 0 and -0. The

perturbed electric field E, magnetic field B, and current density J are then

described by Maxwell's equations,

V x B -yE Z-E + y ,(l0x=~ 0 (t1)
- - o o t - 0 -

1%

x E 0 Z B .(2)
- - ot -

Assuming that the wave fields vary as exp[i(k.x - wt)] and IkI>>/3x

(WKB approximation), Eqs. (1) and (2) can be Fourier analyzed in space and

time to yield the wave equation,

-k x k x E - (w/c)2 E + iWu J . (3)
- - - - 0 -

Note that no assumption has been made about the electric field polarization,

i.e. E - e E + e E + e E . In the limit of a "cold" plasma [T -0
- -x x -y y -z z e

and .5 = 0, where 7 (. ) is the electron (ion) temperature], the perturbed
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current density J can be expressed as J - Ne(v - v ). The perturbed electron

(ion) fluid velocities v (v ) can be expressed in terms of E using the two-

fluid momentum equations,

m a - - e(E + v x B.)

m v - e(E + v x B)
-i -tLoi

(4)

(5)

that v vary as

(5) to obtain,

exp(i(k-x-wt)) one then uses Eqs. (3),

k x k X E + (W/c)2 j - E-0 ,

S-

xy
0

0i1
XY

0 0 1

(6a)

(6b)

is the familiar cold plasma dielectric tensor of Stix [2] whose elements

2 2 2
are evaluated in the limit 2 >> 2 >> 2. and are given by,ce cl

C, (W 1 pe1 ce~ 2W -

1 + (W / ) - (W ) 2

pe p

2 2
XY pe ce

(7a)

(7b)

(7c)

2 1/2
Here pa (Ne / m a) and wp (w p) is the electron (ion) plasma frequency.

Equation (6) may be written in a more compact form by first defining

Assuming

(4), and
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D- k x k x + (w/c)2 C . Then,

D -E - 0-()W -0 (8)

The solution to the system of equations (8) will be nontrivial provided the

determinant of the system vanishes, D det D - 0 . This condition yields0 M

the cold plasma, electromagnetic, lower hybrid dispersion relation,

D (x,k,w) - P n + P - 0(9)

P ((2 2 C2

P2  (C, + c1) (2 - c) + C2
xy

where t k, c/w, n, kc/w, k - B/lB| and k, -k - k/B. Equation

2
(9) indicates two modes of wave polarization in terms of n,

2 1 1/2nU=- ( - P 2  /) (10)

- 2 P ) 2

2 PP 4

In the lower hybrid frequency range 11 >> C,, C , so that typically

? > 0 and P2 < 0 . The "slow" wave branch (small w/k,) of the dispersion

relation then corresponds to the positive sign in (10) and the "fast" wave

branch (large W/k,) corresponds to the minus sign in (10). The slow wave

branch will have a cold plasma resonance (n, -- ) for P = e - 0 , thus

defining the lower hybrid frequency ;Zh such that [see Eq. (7a)],



6

we~h /pi/(1+ )l/2. It is this slow wave branch of the dispersion'

relation one typically associates with the lower hybrid wave.

2'
Figures l(a) - 1(c) show plots of n, versus density N(x) for three

diLfferent values of [using Eq.(10)]. It is important to note that there

exists a critical value of the parallel index of refraction =na for which

a wave which is launched at the slow wave cutoff (n,- 0 denoted by Ns in Fig. 1)

with na, will propagate to its resonance (n,- - denoted by NM in Fig. 1)

without converting to the fast wave. This situation ( >na) is depicted in

Figs. 1(b) and 1(c). If jj<na:[see Fig. 1(a)] then a wave launched at the

slow wave cutoff Ns will mode convert to the fast wave at a density denoted

by NTl in Fig. 1, thus propagating out to the fast wave cutoff (n, a 0 denoted

by Ny in Fig. 1). The fast wave will then reflect and mode convert back to

the slow wave at NT, this process being repeated ad infinitum. A detailed

analysis [2,3,4,5,6] of Eq.(10) gives the lowest value of i, -na for which the

lower hybrid or slow wave will be able to propagate from its cutoff to the

miximum plasma density in the presence of a density gradient without mode

converting to the inaccessible fast wave (A .0). Two cases can be distinguished

and they comprise the accessibility condition [2,3,4,5,6],
2

( i f il2 <1 and -' > il2 /(Q2 ), then
2

a 2 /2

2

(ii) If .2 > 1 or 42 < 1 and pio < 12 /(1_2) then

n Wpe + 1/2 (11b)a o -

Here -W 2 2 Mce 2ci) and the subscript o denotes evaluation at the maximum

plasma density.
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B. Cold Plasma Electrostatic Dispersion Relation

If one considers propagation of the slow wave at densities much greater

than those corresponding to the cutoff densities N and Nt, hen the lower

hybrid wave polarization is essentially electrostatic (k,/wl>> 1). In this

case the dispersion relation (9) reduces to the familiar result,

D (x, k, w) - £, k2 + k -0. (12)

The idea [7] of a lower hybrid wave propagating along a well-defined resonance

cone can be motivated using Eq. (12) [3]. Consider a point source which

excites an electrostatic disturbance in a plasma with frequency and wave-

number (w, k ), satisfying the dispersion relation (12). For simplicity

take k -e k + eZk4 and E - - V $, where $'\exp[i(k, x+kzz --wt)]. Then

the Fourier transforms in (12) may be inverted to give,

, 2 (13)
;2 a, 2

This equation is identical to the familiar wave equation,

2 2

2 C2
;t Oz

2
if x is reolaced by t and -(Cli/c,) is replaced by C . The solutions of

Eq. (14) propagate along characteristics z ±ct. In analogous fashion, the

1/2
solutions of (13) propagate along characteristics z 2 (-c /C/) x . These

are the resonance cones, representing the propagation path of a singular

lectrostatic disturbance excited by a point source and obeying the lower

hybrid dispersion relation. In reality a lower hybrid wave launching

structure on a tokamak will have a finite poloidal extent. In this case
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t:ie antenna can be modelled by many point sources and cone theory can be

u ed to calculate the electric field excited by such a structure [9,10)

(:his field resulting from the superposition of the resonance cone patterns

evolving from each point source). Resonance cones were first observed

ecperimentally by Fisher and Gould [11] and lower hybrid resonance cones

wrre first observed by Briggs and Parker [12].
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C. Warm Plasma Effects

The cold plasma singularity for n, is removed by including finite electron

and ion temperature in the analysis of Sec. ITA. An analysis identical to

that of Sec. IIA is followed, except that the perturbed current density J is

expressed in terms of the perturbed electron and ion distribution functions

f (v) and f (v), as

J - Ne [ vf.(v)dv - vf (v)dv] . (15)
-)- i - - J- e - -

The 'perturbed functions fe(v) and f (v) are solved by first linearizing

the Vlasov equation for each species about the unperturbed distribution

functions f and f . [131,
eo 2.0

f + v - f - v xB f
at. e - ax e m - av e

- (E+v x B) - f , (16a)
m - - - av eo

af.
2. a vCI-+v. f. +-vxB - f

at - ax i m - -o 9v 'i

- (E+vxB) a f. . (16b)M - - - V 2.0

Ihe ecuilibrium distribution functions are assumed to have the form

2 2 
1 1 +

f - - exp
eo 2)3/2 .,3 IV2

(27 e .
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1 1 2 1
i- 3/2 3 "

(27r) v

where ve - (T /m ) is the electron thermal speed, v, - (T i/m )/2 is

the ion thermal speed, and v, (v) denotes the magnitude of velocity

perpendicular (parallel) to the applied magnetic field BO. Using the method

of characteristics, (or integrating along the orbits of the particles in

the unperturbed fields) [2,13], the perturbed distribution functions can be

solved from Eqs. (16a) and (16b). Using this result in Eqs. (15) and (3)

one then obtains the following result for the thermal correction to the

lower hybrid disper'sion relation [2,14,15],

6 4 2
D , , - P6n, + Pgi+ P2 + P0-0,(7

2 2 2 2 2

P 3 - i 31 3 e w ve
6 W 2.- 2 4 Q 2 Q 2 C 2 '

ce ce

where P , P and P were defined earlier. In deriving Eq. (17) it has been

assumed that (k,P ) 2<< and Q >>S12 >> 2 . Here P -v e/ce is the

electron Larmor radius and the ions are taken to be essentially unmagnetized

(straight line orbits).

The n, term is the thermal wave branch of the dispersion relation (ion

plasma wave). This branch is shown in Figs. 2(a) - 2(c) for three different

values of na. The density MC at which an incoming lower hybrid wave is

mode converted to an ion plasma wave is found by taking the electrostatic

limit of Eq. (17) (kc/w >>l),
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4 2 2
6k0 , (18)

6 - (c/W)2 6

Notice that the electromagnetic fast wave branch has been eliminated. The

density at which the lower hybrid and ion plasma wave branches coalesce

i.e., 2 - 46k j;) is then given by,

2 2 ~ v eT )1/2 T 4 1/2 -

(2 c) W 1+2' ( ) 1+ - Q (19)

$quation (19) can be combined with the fact that at the point of ion mode

2
conversion k - c,/(26), to yield a useful expression for the ratio of

perpendicular phase velocity to ion thermal speed [15],

W 4.4

(vrlkvi)c 1/2 [ T.(keV)7

S1/2

Here it has been assumed that [1 + L T 4 1 . For parameters

typical of the Alcator C lower hybrid heating experiment n 3 and

Ti ^- keV, so that (w//2k v 2.54.. It is worth noting that just as
.C

the accessibility of the lower hybrid wave is determined by its axial

index of refraction (Sec. IIA) so also does determine the spatial

location of ion mode conversion [see Eq. (19)].
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. Linear Resonant Wave Absorption

In deriving Eq. (17) one also finds resonant imaginary contributions

to the dispersion relation due to electrons and ions. These contributions

give rise to Landau damping of the lower hybrid wave on plasma ions and

electrons and are given by [2,15,16,17],

2 2

D ( 271/2 2 3 oe (20a)

1 ~ 2 one-o

2

- (k ve/pc)

x W/ /(2k v)

W , 1 2 2 22
2 2 n-i i )2,

i

022

- ~ ci/b~1i

Ihere I is the modified Bessel function of order n. The electron

contribution can be easily simplified since X <<l (strongly magnetized

#lectrons). The ion contribution must be evaluated carefully in the large

. limit using a Hadamard expansion [15,16.17]. The results are,
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22

D (e) 271/ 2  2 3 oe (21a)
w

2 2 2

(i) 271/2 fpi 4 3 o I ci ni (212w 2 1 C i z - xde12 I (21b)

The ion damping term consists of a piece which is identical to the electron

damping term, except that it is multiplied (or "modulated") by an infinite

sum. In the limit where f2 /(2kv)<<l, the e-folding length of the

exponential in the infinite sum of Eq. (21b) is large compared to the

distance between adjacent ion-cyclotron surfaces where x -0 (i.e. -cnc ).ni ci

In this case the infinite sum can be converted to an equivalent spatial

integral over many cyclotron harmonics of the plasma. The resulting

integral is approximately equal to unity and the ion damping term takes

the form of the electron damping and the result is identical to treating

the ions as unmagnetized [15,18]

2 2
(1) .2r1/2 'Pi 4 3 1

D x2 n ox . (22)

However the inequality Q i p v )<<l is not usually satisfied in the lower

hybrid frequency range. Instead one might attempt some type of numerical

evaluation of the infinite sum in (21b) [15,19,20,21]. Alternatively one

can adopt the viewpoint that Eq. (22) can be used to evaluate the ion

damping so long as a physical mechanism exists which destroys phase correlations

over a cyclotron period. In the limit w>> ci, phase mixing occurs on 'time

scales much shorter than a cyclotron period nc1, but after a whole period

the exact phase correlations are restored, and no damping is recovered [22).
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However a de-correlation mechanism has been proposed by Karney [23,24,25]

in the form of stochastic ion heating. Stochastic ion motion could arise

in the presence of a lower hybrid wave (with electric field amplitude above

a certain threshold) due to the nonlinear interaction of the resonances

between the cyclotron motion and the wave motion even for w>>C2 [241. The

ions would then be heated since much of the phase space is accessible to

a given ion. Furthermore if the lower hybrid wave amplitude is far above

the stochasticity threshold, ion Landau damping (Eq. 22) is recovered [25)

(because the ion motion is stochastic, the cyclotron harmonic resonance

is destroyed since an ion will now forget its phase relative to the wave

in a cyclotron period). For the purposes of this paper it will be sufficient

to take the electron and ion damping terms to be those. given by Eqs. (21a)

and (22) .

A simple estimate of the critical parallel phase velocity at which

(c)
electron Landau damping becomes important x and the critical perpendicularoe.-

(c)
phase velocity at which ion Landau damping becomes important x can be

made from Eqs. (21a) and (22). The spatial resonant damping of the wave

takes the form,

x

P(x) - P0exp 2 f k,(x)dx

where P(x) is the power in the wave, Po -P(x-0), and k, is the imaginary

part of k -kR +ik . An expression for kI is found in the usual way by

expanding D (x, k, w) D (, k, w) (e), , (x, k, w) -0

about kR in the limit of weak damping k,<<k, . The result is

D(e) (xkw) + (i)
k -- (DR/;k, )k . (23)

-D-R
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The damping for electrons and ions becomes important when 2k 1  1"4, where

!xD is a typical scale length of the damping. The electron contribution

to ki is then evaluated using the cold plasma electrostatic limit of

Eq. (17) in Eq. (23), along with (21a). The condition for significant

damping then becomes [1,3,5,26],

2
3/2 1/2 (w/2) 3 ~ oe

4 m/me) c T o e 1. (24

Assuming typical Alcator C parameters with w/2r- 4.6 GHz, V-2, and

;A% 'l cm, (24) then yields x :x (c) = 2.8 -3.0 . A similar analysis ofoe oe

the ion contribution to k using Eq. (22) yields x .=x = 2.8 -3.0I ~oi xoi
(c) (c)These values of x C)and x ( are the linear limits of ion and electron

Landau damping. Recalling Eq. (19) it can be seen that at the point of ion

mode conversion the perpendicular phase velocity should be small enough

to satisfy x < x0c and thus significant ion Landau damping would be

expected at this point. Just as played an important role in determining

accessibility and ion wave absorption, it can also be seen that it

determines electron Landau damoing x x

oe oe

E. Linear Nonresonant Absorption

In the low temperature region near the edge of, a tokamak plasma, the

3/2electron-ion Coulomb collision frequency v a N/T can become important

relative to the wave frequency w. This gives rise to a nonresonant

contribution to the imaginary part of the dispersion relation proportional

to (., /w). This contribution can be evaluated -by repeating the analysis

of Sec. IA with a collision term included in the electron momentum

equatlon (4),
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m - e ( E+v xB )+ m (v -v) v (25)

The use of the cold plasma equations is justified here since the collisional

damping is expected to be most important in the low temperature region.

The result for the imaginary contribution'is [8],

V 2 W2 1
D (x,k,w) - n+ n (26)

ce

F. Quasilinear Electron Landau Damping

A better estimate of the electron Landau damping can be made by the

use of quasilinear theory [27]. It is no longer assumed that the steady state

distribution function is a Maxwellian but rather evolves according to the

one dimensional Fokker Planck equation [28],

. D ( ) + a ) 1 F+ v 2 (27)

43

\On log A w4 -/(27rNv )(2+Z )/2
o pe .e e

Log A is the Coulomb logarithm, Z is the effective charge state of the plasma,

I(v) is an effective collision frequency, D (vj) is a quasilinear diffusion

coefficient due to Landau damping [30] and proportional to the power spectrum

22
of lower hybrid waves. In deriving (27) a form for f a exp(-v /v )F(v1)

has been assumed and the limit v, >>v has been taken (high velocity equation).



17

- The resulting distribution function is then a result of the competition

between the quasilinear "flattening" or plateau formation due to the parallel

velocity diffusion of electrons (Di) and the effect of electron collisions

(which tend to restore F to a Maxwellian). A quantitative assessment of

this effect can be obtained by integrating the steady state equation (27)

'F/at- 0 to obtain,

F(x ) 2x F(x ) -

3xoe 1+2 3 q /(No) e
oe

where v1 has been conveniently normalized to x 11/(v). Note that D

2
is a ratio of the quasilinear diffusion to collisional diffusion (V v ).

Integrating (28) yields,

2x dx
F(x ) F 0exp -C oe . (29)

0 *~ 1+2r'Dx
x oeoe

From Sec. IIE one -can guess that the region of power D 0 of the lower

hybrid wave should extend down to phase velocities x x (c) 'V3 if Landau

damping is to occur. At this point the denominator in the exponent of

(29) will be large for values of D.,(1/2. There a plateau will then form

on F with a value F[lx ) F exp -(x ) , where F(x ) is assumed to
oe o L_ oe (oe)

be Maxwellian in the part of velocity space below the region of power

x < X(C). The slope of F near the critical velocity for Landau dampingoe oe

is then given by (28) as,

2

F 2_ oe F o e 3 F e (30)

(C) oe (c)
S -x

oe oe
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where Dl %1/2 has been used. A crude estimate of the new quasilinear limit

(c)for x can then be made by substituting Eq. (30) into Eq. (24) in place

2
of -2x exp(-x )' FIBx . The result is,oe oe oe

2
3 ~ e

41r3/2 (/M)1/2 w/21 oe e i1 .(31)
Se x 1| 1+ vlx3-

oe

Again assuming typical Alcator C parameters w/2rr- 4.6 GHz, t,'2.0, and

AxD "l cm, one obtains x Ex = 2.3 [5,26,27,31). Thus the quasilinearoe oe
(c)

estimate for x is considerably smaller than the linear estimate of

S 3.0, so that a lower hybrid wave with fixed (w,1I) should penetrate

to a higher temperature region of the plasma in the quasilinear limit,

before being absorbed via electron Landau damping.
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III. Linear Wave Propagation and Absorption in Toroidal Geometry

It can be seen from the discussion of Sec. II that the accessibility

and absorption of the lower hybrid wave depend sensitively on the parallel

index of refraction . In the slab model of wave propagation in a one

dimensionally inhomogeneous plasma, the kE kz (or ) of the incident lower

hybrid wave would be fixed by the axial dimensions of the antenna launching

structures (in this case a set of waveguides) or "Grill" [29]. The dispersion

relation D (x, k , kz, W) - 0 is all that is needed to prescribe k (x).

The results of the slab theory can be extended to a cylindrical (r,6,z)

geometry by considering a plasma with axial (z) and poloidal (e) symmetry,

a radially varying density N(r), and magnetic field B- e B + eeBe(r), with

constant B and B <<B . The perturbed fields are assumed to vary as

expti(m6+ kzz -wt)] with m and k fixed by the launching structure (note

that m and kz are constant owing to the poloidal and axial symmetry of the

plasma). Taking k - erkr +e (m/r)+ ezk, then k- k-B/IB is given by,

k [(m/r)Be(r) +kzB I/B

and k, is approximately constant since B,(r)'r near r-0 and m==0 at the

waveguide is fixed. Again the dispersion relation D (r,k r,k ,W) - 0 prescribes

k r(r) completely.

In an axially symmetric tokamak geometry (r,6,$) the toroidal magnetic

field is B (r,e) =B /[1l+ (r/R )cos6e and the equilibrium is two dimensionally

inhomogeneous in (r,e). Here t is the toroidal angle, R is the torus major

radius, and a is the torus minor radius. In addition, the concentric flux

surfaces of constant density and constant radius in the cylindrical geometry

become shifted, nonconcentric flux surfaces in the tokamak geometry [32].
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The degenerate (r-0) flux surface called the magnetic axis is shifted from

the geometrical center of the tokamak chamber by an amount which is of the

order of c B a/R (the inverse aspect ratio of the torus) [32). The perturbed

field quantities now vary as expfi(n$-wt)], where n is the toroidal mode

number, k-r k r+e (m/r)+ (n/R), and R- R +rcose is the major radial

position. The toroidal mode number n is constant owing to the axial symmetry

of the tokamak, whereas the poloidal. mode number is no longer a conserved

quantity because of the poloidal asymmetry of the equilibrium. There are

two interesting consequences of this. First is that the dispersion relation

D (r,e; k r,m,n,)- 0 no longer completely prescribes k (r). Instead the

wave is confined to a path in (r,e; kr,m) space. The second consequence is

that k* can now change significantly as the wave propagates. Taking

B=eB(r,)+ eBe(r,6)+e B (r,8) with BI «B« <B [32), is given by,

(k B + Be + B. )/B
r r r .R <p

changes due to variations in m (toroidal effect) and magnetic shear (B8).

Thus the accessibility and wave -absorption determined by the value of the

wave (w,k1) at the plasma edge will change as the wave propagates to the

plasma interior, making global predictions of wave accessibility and

absorption impossible..

This situation can be treated by application of the eikonal method [33].

The essence of this method lies in assuming that although an electromagnetic

(EM) wave may not be able to be characterized as a plane wave in general,

that within each small region of space, the EM wave possesses plane wave

properties. That is, within each small region the amplitude and direction

of the wave remain nearly constant over the distance of a wavelength.
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This satisfied, one then constructs surfaces of constant phase (wave surfaces),

where a plane wave surface is simply a plane perpendicular to the direction

of propagation. In each region of space one has a direction of propagation

of the wave, normal to the wave surface. The propagation of the wave is

then described through the concept of a ray - which would just be a curve

whose tangents at each point coincide with the direction of propagation of

the wave. Clearly this picture of treating the propagation of waves as

simply the propagation of rays becomes more and more accurate in the limit

of the wavelength X-0 (i.e., limit of geometrical optics) [33). One then

proceeds to represent field quantities such as the electric field as

.E - E expfiS(x,t)] , (32)

where in the zeroth approximation E is constant aind all the spatial and
-o

time changes in E are contained in the large, rapidly varying phase factor

S(x,t), which is also known as the eikonal. For each small region of

space where the plane wave representation for E is valid [i.e., E E

exp(ik.x-iwt)), the eikonal may be expanded in a Taylor series as,

S -S + x- + t as

Comparing this with the plane wave representation one sees that

k s S , ' (33a)

at -(33b)

One of the main results of the eikonal method is that Eq. (33a) is the

solution of the local dispersion relation D (x,k,w)- 0 and that the wave
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evolves in (x,k) space according to the ray equations of geometrical optics

[2,34],

dx BD /ak
-:-- 0 - (34a)

-3D /3w
0

dk 3D /3x

dt + aD / a (34b)
0

The condition that the wavelength X be much less than a typical plasma

scale length is well-satisfied for the lower hybrid wave except near the

plasma cutoffs (n, +0) and turning points (dk,/dx > k_). Following Ref. [35],

the ray equations can be written in a particularly simple form in toroidal

geometry if one utilizes their Hamiltonian nature. Letting x-(r,9,) and

k-(k ,m,n) the ray equations (34) become [35],

-t 3D /3

.9% - *(35a)
dt -- 3D /3w

0

de aD 0/am (35b)

- 3D /3n
- (35c)

dk ,3D /3rr 0 (35d)
dt 3D/3W

0

3D /3e
dm 'D0o (35e)
dt 3D /aw

0-

dn 3D /'34
d S 0. (35f)

0
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Equations 35(a) -35(c) comprise the group velocity equation and Eqs. (35d)

-(35f) are equivalent to a Snell's Law. Notice that the nonconstancy of

m due to the lack of e symmetry is reflected in Eq. (35e) and the constancy

of n due to toroidal symmetry is reflected in Eq. (35f). Equations (35)

can then be integrated numerically to obtain the ray trajectory in (x,k)

space which satisfies the local dispersion relation D -0. Here the form

D WD R(x,k,w) -0 given by Eq. (17) is used.

The wave absorption can be calculated by integrating rate equations

for the power deposition simultaneously with the ray equations,

- - 2 yP , y Z y . (36)
Tt p

Here P is the power in the heating wave and y is the damping decrement of the

wave y <<w . The subscript p denotes the various damping mechanisms

included in y with p -e,i,Z for electron Landau damping, ion Landau damping,

and collisional damping respectively. y is calculated in a manner similar

to that used for the -spatial damping in Sec. IID by writing D(x,k,w-iy)

- D (x,k,w -iy) + i Z D (x,k, -iy), where D and D are real for0- .pI - - 0 1

y -0. Expanding D for small y and D and assuming D (x,k,w)- 0 yields,
- -

(p)
Y p D, (x,k,w) (7

(D/ (37)
0 f

The forms for Dused in Eq. (37) are given by Eqs. (21a), (22), and (26).
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IV. Numerical Results For Toroidal Ray Tracing

The ray equations and deposition equations can be integrated numerically

(16,35-421, using an equilibrium constructed from Shafranov's aspect ratio

expansion [32] with a lowest order cylindrical equilibrium of the form,

(i) Valid for 0 r a ,

S (n (r/a)2

e n

T (r)- (T -T ) e -e 2 + T, (38b)

e e a eea
* -le

( Cr/a)2

T (r) -(T -Tia )e - e + Tia , (38c)

1- e

B,(r) q 0(r/R )B (11+& (r/a)2 (38d)

(ii) Valid for a fr faw

N(r) N, (39a)

a -r
T (r) - (T -T ) 2+ T (39b)

0

a -

T (r) - (T -T W + T , (39c)

i a -a-aa
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Be(r) B (r-a)(a/r) (39d)

Here ,(,,E and B are all specified profile constants, q is the value

of the safety factor at r-0; N , T , Ti are respectively the central

electron density, electron temperature, and ion temperature; Na, Tea, T.

are respectively the electron density, electron temperature, and ion temperature

at the limiter radius r-a; and Tew, Tiw are respectively the electron and ion

temperatures at the virtual limiter (or plasma wall radius, r-aw).

Case A: The first case studied is for parameters typical of the Versator II

lower hybrid heating experiment with a- 13 cm, a, - 15.5 cm, R -40 cm,

w/2r-0.8 GHz, B -14 KG, I -50 kA, T -400 eV, T. -150 eV, T -T.:20 eV,
o eo 10 ea la

T -aTw -10 eV, N -2xlO13 cm-3, N 2x102 cm-3, q -1.0, e -3.94,ew o a o e

E -3.94, E -0.1, Z - 2.0, and hydrogen ions. A toroidal mode number n- 44.6

was chosen which corresponds to an initial value of .5.0 . For these

parameters the slab theory of Sec. II predicts that n =1.85 for accessibilitya
(0) (c) <

so that initially >na. . The linear limit [x 2.8) and quasilinear

limit Ix ( M.2.3) for electron Landau damping that were derived in Sec. II

imply critical values of = c) for Landau damping at a given temperature

of the form,

(c) > 5.7 (40a)
L [Te(keV)]

C c) > 7.0 (40b)
QL [T (keV)]

For the chosen parameters, Eqs. (40) give n4c > 9.0 and (c) 11.1 for
L ,I0L

electron damping at r-0. Equation (19) can be inverted to give a critical
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value of = at which ion mode conversion and Landau damping should
'MC

occur,

Cc) +6.5T 4]-1l/2 2  (41)
I) , 1/ 4 1+ 2
MC T (keV) 11 (r C

(c)For the chosen parameters, (41) predicts MC 7.50 at the plasma center

(o) C(rMCO0). Since n =5.0, the results of Sec. II would predict no electron

or ion Landau damping of the incident lower hybrid wave.

- In Figs. 3(a) - 3(e) the results are shown for a ray trajectory which is

started at the plasma edge on the low magnetic field side of the tokamak

with r=1.15a, 6-0, m-0, $-0, and kr calculated to satisfy D (r,8 ; kr'

m,n,o) =0. Picking the initial condition m=0 implies a poloidally symmetric

antenna where the incident waveform is not dependent on e (or alternately

where the vertical dimension of the waveguide is greater than the plasma

minor radius). However these conditions-are not always satisfied, in which

case one might use cone theory [9,10] (as mentioned in Sec. II) to accurately

reconstruct the electric field in the plasma due to a particular antenna

structure. From Figs. 3(b) and. 3(c) it can be seen that as the ray

propagates from e = 0 to 6 = , m decreases from m - 0 to m= - 85 and n

likewise decreases from n - 5.0 to n,= 2.0 . The ray then undergoes a radial

reflection (k + 0) in the plasma interior and propagates out to the plasma

edge, unable to satisfy any of the local conditions for wave absorption

[Eqs. (40) - (41)]. The ray finally undergoes a radial reflection at the

plasma edge near . = - /2 and m increases rapidly from m = - 120 to m- 100

as the ray propagates inward. Correspondingly, n increases from n1 1 = 2

to n =13. From Figs. 3(d) -3(e) it can be seen that at the point of

absorption x o2 .8 and x =3.4 . During this final pass into the plasma
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interior the wave damps 70% of its power to plasma el-ectrons at a radial

location 0.35 1.r/a c 0.6, and none of the wave power is absorbed on plasma

ions. As the wave propagates along its entire trajectory, 29% of its power

was damped nonresonantly due to collisions at a radial location 0.4 r/acl.l

Case B: A sharp contrast to Case A is shown in Figs. 4(a) -4(e). Case B

is identical to Case A except that the ray is launched from a position

in the poloidal plane defined by 6-37/2. -see Fig. 4(a). Clearly the ray

damps on its first pass to the plasma center, with m increasing from m- 0

to m-60 [Fig. 4(b)] and increasing from -5.0 to -9..0 [Fig. 4(c)).

The corresponding values of x =2.7 and x . =2.9 at the end of the ray canoe o

be seen in Figs. 4(d) -4(e). Here 67% of the wave power is damped due to

electron Landau damping in a radial location 0.05 , r/a 'c 0.25, 21% of the

wave power is damped due to ion Landau damping in a radial location

0.05(r/a'0.25, and 11% of the wave power is damped collisionally.

The behavior observed in Cases A and B can be understood in the following

way [16,37,40,43]. Consider a simplified model using the cold plasma, electro-

static dispersion relation Eq. (12), B-ezB0+ Be(r), B B /[l+(r/R )cosl,

and N- N(r). Then k, and k are given by k,= k +[(m/r)- (n/R)B /B 2 and

SI= [(m/r)Be/B + (n/R)]. The ray equations can then be used to calculate

the instantaneous value of dm/de,

- eD /e - IRoq(r) 1 + r sine (42)Te D / mR
0

where q(r) is the local safety factor, q(r)=rB /(R B ). Clearly for

> 0 and q(r) > 0, the value of dm/.de is positive and maximum near 8 -31/2

whereas for 0 S9e7/2 the value of dm/d6 is negative. This would explain why

rays launched near 6 0 have their m numbers and values of downshifted
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initially, whereas rays launched near e- 37r/2 undergo immediate upshifts

in m and 11. In fact the ray launched in Case A exhibits the same behavior

along the final part of its trajectory (final edge reflection near e - 37r/2)

that the ray in Case B showed initially. Note that if the sign of the

toroidal mode number (i) were reversed or the sign of the toroidal current

(Be) were reversed, then the point corresponding to a maximum positive value

of dm/de would be e -7/2 [see Eq. (42)]. This purely toroidal effect is

the basis of a top launching waveguide structure being tested on the

Versator II lower hybrid heating experiment at MIT [44].
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V. Simulation Model for Lower Hybrid Heating

A detailed simulation model has been developed [45] to study lower hybrid

heating, incorporating the various theories of wave propagation and wave

absorption discussed in Secs. II- IV into a transport code [46]. Here a

brief description of this simulation model is given along with a numerical

example relevant to the Alcator C lower hyb.rid heating experiment.

A. Transport Code

The radial transport code [46] consists of a set of mass and energy

conservation equations for ions aud electrons. *For simplicity, the density

profile is taken to be constant in time (no density transport). The electron

and ion energy conservation equations include source terms due to the

electron and ion Landau damping and collisional damping of a longitudonal

(k) spectrum of lower hybrid waves launched at the plasma edge. Also

included is a source due to electron-ion collisional equilibration [47]

and a source due to ohmic heating. The ion thermal conductivity is of the

(NEO) (NEO)form Xi =(3-5)X , where Xi is the neoclassical ion conductivity

of Hinton and Hazeltine [48). The electron thermal conductivity is taken

to be of the form [49] XeaBe(r)(a/r)/(N 4/5T ) for the ohmically heated

plasma. When the RF is turned on, X is taken to be of the same form as

above, except that it is evaluated using the value of ohmic temperature

T OH)(r) before the RF was turned on.

B. Poloidal Field Evolution

The evolution of the poloidal field is determined from Maxwell's

Equations and Ohm's Law. A Spitzer resistivity is assumed [50].
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C. Quasilinear Calculation

The one dimensional (parallel velocity) Fokker Planck equation given

in Sec. IIF [Eq. (27)] is solved assuming steady state (aF/at -0), at each

radial location of the plasna. The resulting electron distribution function

F(r,vj) is used in the toroidal ray tracing to evaluate the electron Landau

damping. The quasilinear diffusion coefficient D a P() is evaluated

using the toroidal ray tracing.

D. Toroidal Ray Tracing

The ray equations and rate deposition equations (35) - (37) are solved

using the thermal, electromagnetic dispersion relation (17). A Shafranov

equilibrium is calculated based on the zeroth order cylindrical equilibrium of

the transport code [actually the transport code quantities N(r), T (r), T i(r)

and Be(r) are fitted first to Eqs. (38) - (39)]. The resonant and nonresonant

wave absorption is evaluated using the results 6f Sec. II, Eqs. (21a), (22),

and (26). The electron Landau damping contribution (21a) is evaluated

using the resulting quasilinear F rather than a Maxwellian,

2
(e) T 2  W 2 aF

D1  -c 2 n, (43,

-1/2 -l
where F has been normalized so that F(n- 0)- (270 v . A Maxwellian

distribution function is assumed for the ions (for all time) so that the

form given for D(U) in Eq. (22) is appropriate. The interaction of the three

units of the simulation model can be summarized as follows. The transport

code first advances the quantities N,T ,T , and Be. The toroidal ray

tracing calculates source terms and a D (vn) based on these transport

quantities assuming initial axwellian distribution functions for
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both ions and electrons. The Fokker Planck code then calculates a quasilinear

distribution F for the electrons based on the initial Dq( (vn). The transport

-quantities are then advanced in time and the toroidal ray tracing is repeated

using the new quasilinear F to calculate the sources and a new D (V ).

D. Numerical Results

Here numerical results are presented for parameters relevant to the

Alcator C lower hybrid heating experiment operating in the electron heating

mode. A spectrum of lower hybrid waves calculated using a Brambilla code

[1] is launched at the plasma edge. The spectrum is characterized by the

longitudinal wavenumber or index of refraction and is given by

P(ni1 ) - P exp ap(Ini1no) 2 (44)

where a P=4.0, n U3.0, and P is chosen so that

P(n j)dnjj -PI,

where PIN is the total input power. For the example given, P -0.5 MW

and Eq. (44) corresponds approximately to the power spectrum launched by

the Alcator C four waveguide grill phased 0-7-0-Tr. Other parameters are

a -16.5 cm, R -64 cm, w/27 -4.6 GHz, B -90 kG, I, -410 kA, T (O)=2000 eV,o o eo
_(OH)_14

o -H)1000 eV, T e T. =30 eV, a =17.8 cm, T -T. T 5 eV, N a1.91X10toea l.a w ew t.w o

3 a -5.73x10 13 cm-3, q -1.0, r =0.44 (corresponding to a circular

density profile), Ze =1.5, and deuterium ions. The input Brambilla power

spectrum is divided into 32 components in the ranges -4.63 fni1 f -1.33

and 1.33 :1 fL.63, with spacing Ani, -0.22. For the chosen parameters,
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Eqs. (11) predict an accessible n 1  n 1.53 , so that most of the launched
Sa

power should be accessible to the plasma interior. During the simulation,

the RF was turned on for a pulse length AT -70 msec.

Before proceeding to discuss the simulation results, a typical ray

trajectory has been shown for these Alcator C parameters in Figs. 5(a) -5(b).

The damping for this ray is based on a Maxwellian distribution for both

electrons and ions and -. U3.11 has been assumed for the electron ande 2

ion temperature profiles. A toroidal mode number n -23.2 has been chosen

corxresponding to an initial ( -3.0 (maximum of power spectrum). The

ray trajectory and nl behavior are similar to that found in Sec. IV. The

ray damped 68% of its power resonantly on electrons in a radial location

0.1lr/a O0.4 and the remaining 31% of its power nonresonantly due to

collisions in a radial location 0.6 (r/a' 1.05. The highest value of

(0).
ni -5.0 represents a considerable upshift from the initial value of no -3.0

and the final value of x "3.0 is consistent with the linear Landau
oe

damping theory.

The results of the numerical simulation model are shown in Figs. 6(a)

-6(c). Figure 6(a) is the central electron and ion temperatures versus

time. The RF is turned on at T ET =100 msec where T(OH)=2080 eV andRF eo
-(OH)

T ( 21180 eV. The increase in central electron temperature is AT =276 eV

and the increase in central ion temperature is AT. 283 eV [Fig. 6(a)].

These temperature increases are consistent with those reported experi-

mentally [51] at the P RF-500 KW level in Alcator C using graphite limiters.

The rise in electron temperature is mostly due to resonant electron Landau

damping and the ion temperature increase is due to collisional equilibration

with the electrons. Figure 6(b) is a plot of the integrated RF power as

a function of radius and corresponds to a time 5 msec after the RF
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is turned on. The interesting aspect of this figure is that only 200 KW

out of the initial 500 KW of RF power is damped resonantly due to electron

Landau resonance in the inner half of the plasma (r 8 cm). The

remaining 300 KW is damped nonresonantly due to collisions in the outer

half of the plasma. This effect is a result of the high edge density

(N a=0.3 N 0). Figure 6(c) is a plot of the quasilinear electron distribution

function F showing in detail the region where the plateau has formed

(region of power). F has been conveniently plotted as a function of the

kinetic energy E where

E - -c 2 1/2E - m ac2 [y-1l) - [l -nil] 1 2  (47)

The plot is at a radius r -1.03 cm and corresponds to a time 1 msec after

the RF is turned on (T ). The endpoints of the plateau are worth examining.

The low phase velocity endpoint is given by E = 12 keV which corresponds

to n1=4.62. The electron temperature at this radius is Te= 2098 eV which

gives a value of x = w/(Yiv ) -2.37. Thus the lower hybrid wave spectrum

does indeed penetrate to a lower parallel phase velocity (or higher temperature)

before being absorbed via electron Landau damping - just as predicted by

the quasilinear theory of Sec. II. The high phase velocity endpoint is

given by an energy E = 158 keV which corresponds to nj =1.55. The critical

value of ni for accessibility at this density and magnetic field is na =1.5.

This agrees with the endpoint value of ni1 -1.55 to within the accuracy of

the grid in n1 space on which the quasilinear calculation was done (Anii -0.22).
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VI. SumMary

A review of the slab model of wave propagation was given, including the

topics of accessibility and linear ion mode conversion. The linear theories

of ion and electron Landau damping and quasilinear theory of electron Landau

damping for the lower hybrid wave were also reviewed. The extension of

the wave propagation theory to toroidal geometry was then presented. It

was found that global predictions of wave accessibility and wave absorption

were no longer possible because of variations in k due to the two dimensional

(r,e) inhomogeneity present in realistic tokamak equilibria. Finally a

simulation model was described which combines a radial transport code with

a toroidal ray tracing code and Fokker Planck calculation. As already

mentioned in the Introduction, nonlinear effects and the effect of density

fluctuations were not discussed. It is worth pointing out however, that

density fluctuations have been verified experimentally in PLT [521 and in

Alcator A and Alcator C [53,54). Extensive theoretical work [55,56,57]

has been done which indicates that scattering of the lower hybrid wave

from density fluctuations can result in significant rotation of the

incident wave k, vector. This effect combined with magnetic shear and

toroidal m variations can significantly alter the accessibility and

absorption of the lower hybrid wave.
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FIGURE CAPTIONS

Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:

2
n, versus N for fixed from Eq. (9). NS and N. denote densities

corresponding to the slow and fast wave cutoffs. N and N

denote densities corresponding to the confluence point for the.

slow and fast wave modes.

2
n, versus N for fixed from Eq. (17). NMC is the density

corresponding to the ion mode conversion point defined by Eq. (19).

Ray Trajectory data for Versator II parameters with - 5.0 and

6- 0 initially. (a) Ray trajectory in the (r-6) plane,

(b) Poloidal mode number m plotted versus 6, (c) Axial index

of refraction A plotted versus e, (d) x - w/(i/ k e) plotted

versus 6, (e) x - w/(r'k v .) plotted versus 6.

Ray trajectory data for Versator II parameters with - 5.0 and

6 - 37r/2 initially. (a) Ray trajectory in the (r- e) plane,

(b) Poloidal mode number m plotted versus e, (c) Axial index of

refraction 1 plotted versus 6, (d) x W/( v e ) plotted

versus 6, (e) x . auw/(r'kv .) plotted versus 6.

Ray trajectory data for Alcator C parameters with -3.0 and

6- 0 initially, (a) Ray trajectory in (r- 6) plane, (b) Axial

index of refraction plotted versus e.

Lower hybrid heating simulation for Alcator C parameters.

(a) Central electron temperature T and central ion temperature

T. versus time T. The RF turn-on time is TRF. -100 msec,



41

Fig. 6... (b) Integrated RF power versus radius r at a time T +5 msec,

(c) Electron distribution function F(E) versus kinetic energy

E at a radius r-1.03 cm at a time T +1 msec.
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