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ABSTRACT

A soft x-ray tomography experiment has been performed on the Alcator C
tokamak. An 80-chord array of detectors consisting of miniature PIN photodiodes
was used to obtain tomographic reconstructions of the soft x-ray emissivity func-
tion's poloidal cross-section. The detectors are located around the periphery of the
plasma at one toroidal location (top and bottom ports) and are capable of yielding
useful information over a wide range of plasma operating parameters and condi-
tions. The reconstruction algorithm employed makes no assumptions whatsoever
about plasma rotation, position, or symmetry. Its performance was tested, and it
was found to work well and to be fairly insensitive to estimated levels of random
and systematic errors in the data.

The reconstructions of the soft x-ray emissivity can be used to study plasma
position and shape under equilibrium conditions (i.e., Shafranov shift and non-
circularity). MHD phenomena (e.g., disruptions and sawtooth oscillations), impu-
rity effects, and several other aspects of plasma behavior. Of particular interest is
the MHD activity which takes place in pellet-fueled discharges. Under these con-
ditions, the reconstructions appear to indicate the presence of the m = 1 magnetic
island structure associated with sawtooth oscillations. The behavior of the emis-
sivity enhancement factor in this type of discharge is also presented. In addition to
this rotating instability which accompanies sawtooth oscillations, the occurrence of
an unexplained instability not associated with sawteeth and not exhibiting rotation
is observed in other pellet-fueled plasmas.

A study was done of what further information could be obtained by installing
an additional array of detectors on a side port in order to have more views of the
plasma. Recommendations for future work along these lines are given.

Thesis Supervisor: Dr. Ronald R. Parker

Titles: Professor of Electrical Engineering
Associate Director, MIT Plasma Fusion Center
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Chapter I

INTRODUCTION

I.1 Thermonuclear Fusion and Alcator

The effort to achieve controlled thermonuclear fusion has been an ongoing

one in the study of plasma physics since the 1950's. The ultimate objective of

this endeavor is to demonstrate the technical feasibility of utilizing the tremendous

energy released by the nuclear fusion reaction to produce large-scale, commercially

usable electrical power.

Thermonuclear fusion (or nuclear fusion) refers to the following process: The

atoms in a gas are somehow fully ionized, thereby creating a plasma, or gas-like state

of charged particles. The positively charged nuclei undergo binary collisions, and if

they are given enough energy to overcome the Coulomb electrostatic repulsion force,

they will join after colliding to form heavier nuclei. In this reaction some mass is

converted into energy; this process is how the sun and other stars produce their heat,

as they are comprised of gases under intense gravitational pressure. Because the fuel

most likely to be used for nuclear fusion consists of isotopes of hydrogen (deuterium

and tritium), which are readily extracted from water or artificially created, the

fuel supply would be abundant and not subject to the control and monopolizing

influence of a particular nation or bloc of nations. Furthermore, any fusion reactor

would be inherently safer than a present-day nuclear fission reactor, as there is no

possibility of a catastrophic event such as a "meltdown." It is anticipated that

the problems associated with the nuclear radiation released by fusion would also

be more manageable than those associated with the radiation emitted by fission,

such as nuclear waste and the release of radioactive materials. Because of these

advantages, controlled thermonuclear fusion holds much promise for becoming one

ultimate long range solution to current energy problems of our society.

However, before this goal is achieved. much work remains to be done to demon-

strate that fusion is technically and economically feasible. Plasma physics is a
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complex subject, because the system of charged particles reacting to external and

self-generated electromagnetic fields can be very tenuous and unstable, and it is

difficult to describe with useful equations. Therefore, the behavior of a plasma is

often hard to predict. Furthermore, one needs to develop the mechanisms by which

the energy liberated in the fusion reactions can be converted to some useful form

of heat which can then be used, for example, to make steam and drive a turbine.

It is generally thought that it will be many years (perhaps several decades) before

a fusion reactor capable of generating usable electrical power is constructed and

operated successfully. Various experiments and studies are being conducted at lab-

oratories and universities around the world to obtain a better understanding of the

physics of fusion plasmas and to develop the engineering technologies that will be

needed to implement a fusion reactor.

At the Massachusetts Institute of Technology, the Alcator ("Alto Campo

Torus," or high field torus) program is one such experiment. The approach being

taken in this project is that of magnetic confinement. An intense, pulsed magnetic

field and an electric current driven through the plasma are used to confine the

charged particles; the plasma is heated resistively (ohmic heating) by the current

which passes through it in a toroidal (doughnut shaped) device which is generi-

cally known as a tokamak (from the Russian acronym for this kind of machine; the

concept for it was originally developed by physicists in the USSR'). Fig. 1 shows

the geometry of a tokamak device; Fig. 2 is an artist's rendition of the Alcator C

tokamak, and Table I lists the main operating parameters of Alcator C.

In order for fusion to become viable as a source of energy (from a physics point

of view), there are basically two parameters which must attain sufficiently large

values in the presently envisioned reactors. The first of these is the plasma tem-

perature T; for the deuterium-tritium reaction, which appears to be the first fusion

reaction that will be attempted for a reactor, enormous temperatures (T - 10 "'K,

or about 10,000 electron volts in the units commonly used in plasma physics) are

required.2 These high temperatures make the cross-section for the reaction appre-

ciable. so that enough fusion events take place to release a considerable amount of
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PLASMA SURFACE (r = a)

0

R

K
TOROIDAL MIDPLANE

Figure 1 - The geometry of a tokamak device. The plasma is confined
in the shape of a torus by magnetic fields. The (r,O) plane (the cross-
section of the torus) is the poloidal plane. The coordinate r is the minor
radius. R is the major radius, 0 is the poloidal angle, p is the toroidal angle,
and the Z-axis is along the vertical centerline. On Alcator C, a = 16.5 cm
and Ro = 64 cm.
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Figure 2 - The Alcator C tokamak (cut-away view).
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energy. The other necessary condition is that the product of the plasma particle

density, n, and the energy confinement time, 7E, must exceed a certain critical value

at which the power released by the fusion reactions equals that which is expended

to confine the plasma and heat it so that enough fusion reactions take place (this is

the so-called "breakeven point"). This parameter is known as the Lawson criterion,

and it is nrE - 6 x 1013 cm- 3 -s for a deuterium-tritium reaction. 3 With the use

of a hydrogen pellet injector, Alcator C has had densities and confinement times

large enough to reach nrE a 6-8 x 1013 cm 3 -s, thereby meeting or exceeding the

Lawson criterion. 4

Table 1

Alcator C Parameters

Major Radius

Minor Radius

Toroidal Magnetic Field

Plasma Current

Plasma Density

Electron Temperature

]on Temperature

Energy Confinement Time

Lawson Product

Ohmic Heating
Input Power

Duration of
Plasma Discharge

Ro = 64 cm

a = 16.5 cm

B, < 12 T

i, < 800 kA

n < 2 x 1015 cm- 3

Te < 3 keV

Ti < 1.5 keV

TE < 50 ms

nTE < 6-8 x 1013 cm 3-s

POR I.5'MW

Tplasma = 300-600 ms
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1.2 Motivation for and Objectives of a Tomography Experiment

The very nature of plasmas (especially fusion plasmas) often makes the mea-

surement of their basic parameters and properties quite a challenge to the re-

searcher, who must devote a considerable amount of time and energy to the task of

accumulating experimental observations and developing the techniques and equip-

ment for collecting data. Plasma physics provides a wealth of phenomena to be

studied, and the need to further the understanding of still poorly explained re-

sults which have a direct bearing on fusion's propects for success has motivated

a tremendous amount of work in the area of diagnostics for magnetically confined

plasmas.5

Measuring the intensity of soft x-ray emission from plasmas has been an impor-

tant means of studying and understanding various plasma characteristics. One of

the first uses of a soft x-ray emission diagnostic on a tokamak took place on the ST

device at the Princeton Plasma Physics Laboratory, in which internal disruptions

(the so-called "sawtooth" oscillation) and m = I magnetohydrodynamic (MHD)

oscillations were observed using silicon surface-barrier diodes.6 Subsequent work on

other machines has led to this becoming a standard tokamak diagnostic7 which can

be used for various purposes, as has been done on the Alcator machines at MIT.A

Soft x-ray emission from tokamak plasmas arises from a variety of sources. This

radiation is dependent on various plasma parameters, such as density and temper-

ature. and one can thus infer information about them by observing the soft x-ray

emission. This information can then be analyzed and related to properties such

as plasma position, shape, impurity distribution, and MHD instability phenomena.

It is therefore desirable to have as much knowledge of the soft x-ray emissivity

(power emitted per unit volume of plasma) as possible. One way to acquire this

information is by measuring the emission in a poloidal cross-section of the tokamak

plasma. If these measurements are suitably performed, one can reconstruct the

two-dimensional soft x-ray emissivity function in the given cross-section. This task

can be accomplished with the use of tomography, which is a non-invasive imaging

method in which multiple views of an object's x-ray emission or absorption along
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chords through a cross-section are taken. If a sufficiently large and properly ar-

ranged number of views is available, the object's spatial emission or absorption

distribution can be recovered. Various techniques and mathematical algorithms for

reconstruction tomography have been developed; in particular, absorption tomog-

raphy has found widespread use in medicine, in which Computer Assisted Tomog-

raphy devices (CAT scanners) measure how much of an x-ray source's energy is

transmitted through a certain portion of a patient's anatomy in order to obtain

reconstructed images of the patient's internal structure.10

In plasma physics, several researchers"- 6 have attempted to use the principles

of tomography to gain information about the soft x-ray emissivity. It has been

suggested' 7 that an x-ray tomography diagnostic would be helpful in the study of,

among other things, MHD activity in Alcator C and how such activity might be

related to various other aspects of plasma behavior (e.g., disruptions and density

thresholds for MHD activity). Subsequent investigation"8 demonstrated that such

a diagnostic would be feasible on Alcator C.

The purpose of this thesis. therefore, was to design. build, and implement

such a diagnostic and to analyze the data collected from it. This thesis report is

organized as follows: Chapter II presents some of the important theoretical aspects

of the problem. such as the nature and source of soft x-rays in a tokamak plasma

and the various mathematical methods which can be used to perform tomographic

reconstructions. Chapter III describes the details of the experimental apparatus,

and in Chapter IV the most interesting experimental results obtained in this study

are presented. These include computer simulations which test the performance of

the tomography algorithm used, reconstructions of an emissivity under equilibrium

conditions, and data from discharges that involved pellet injection, which triggered

large-scale MHD behavior. Finally, a conclusion summarizing the work conducted

and suggesting possible future research is given. This chapter includes a section

with the results of a brief study done to determined how much more information

could be obtained from an expanded array of detectors on Alcator C.
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Chapter II

THEORETICAL ASPECTS OF THE EXPERIMENT

II.1 Soft X-Ray Radiation from a Plasma

The topic of radiation processes from a plasma can be quite complex due to

the rich variety of phenomena which can occur when one has a collection of ionized

particles immersed in applied and self-generated electromagnetic fields and under-

going various kinds of accelerations and excitations. Most of the radiated power

from a typical Alcator C plasma is in the ultraviolet and "soft" (i.e., low energy)

x-ray portion of the electromagnetic spectrum; given the physical constraints in-

volved and the purposes of this thesis as detailed in the previous chapter, the focus

here is on those radiation mechanisms which give rise to emission in the soft x-ray

region of the spectrum (roughly about 0.2 to 20 keV, or 0.6 to 60 A). After having

described the nature of these mechanisms, the information which one can obtain

from this radiation will be discussed.

11.1.1 Mechanisms of Interest

There are three processes which contribute to the soft x-ray emission from an

Alcator C plasma: continuous radiation from unbound accelerated charges, contin-

uous radiation from free electrons which are then captured by ions and go into a

bound state, and discrete radiation from bound state electronic transitions within

atoms which are not fully ionized. These are referred to as bremsstrahlung radia-

tion, recombination radiation, and excitation (or line) radiation, respectively. All of

these forms of radiation can be very helpful in diagnosing a plasma.

Consider first the contribution due to bremsstrahlung. Suppose one has a

plasma composed of an arbitrary mixture of atomic species which are all completely

ionized, and that recombination radiation can be neglected. The radiation losses will

then be due to bremsstrahlung as a result of the deflection of charged particles by the

Coulomb electrostatic fields of the other charged particles. Unless the temperature
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of the plasma is very high (T > 50 keV, at which point relativistic effects need to be

taken into account). almost all such radiation arises from electron-ion interactions.

The positively charged nucleus remains relatively stationary (due to its much larger

mass, it will not be significantly accelerated by electrons), and the electron passes

by it and is accelerated by the field of the ion. Because the electron is unbound

before and after such an encounter with an ion, these transitions are often described

as "free-free."

Quantum mechanics must be used in order to compute rigorously the electron-

ion bremsstrahlung. However, from the classical expression for the rate at which

energy is radiated by an accelerated point charge. it is possible to obtain an expres-

sion for the power emitted which is of the correct functional form but differs only

by a numerical multiplicative factor from the result obtained in the more accurate

but much more complicated quantum mechanical calculation. This numerical factor

is on the order of unity. For present purposes, therefore, it will suffice to use the

classical model.

If one considers a single point particle of charge q. whose velocity is such that

v t c < 1, and it undergoes an acceleration of magnitude a, then the power radiated

by it is given by19 (in MKS units)

P I 2q 2a 2

47rfn 3c 3

In the plasma. let there be an electron moving past an ion of charge Zie (Zi is

the atomic number of the ion and e is the charge of a proton) at some speed v and

impact parameter b. The ion is assumed to be infinitely massive. From the Coulomb

force between the two charges, the magnitude of the electron's acceleration is

a e . (2)
47rcomeb2

Substituting this expression into Eqn. I gives

P ( .c (3)
(47rcc)3 3M2c00
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The total bremsstrahlung power density radiated by the electrons colliding with

ions of the given species at all impact parameters is then given by 20

1 2e neniZ """"db 2b
Pt, - (27rb)-- (4 )

(47r(r,) 3  3me2c' V t?

where ne and nj are the electron and ion particle densities, respectively.

There is virtually no interaction between ions and electrons at distances beyond

the Debye length. so that distance should be the value of bmax. In order to facilitate

the evaulation of the integral, however, one can let bmax -+ oo without introducing

a significant numerical error. However, one cannot let bmin -+ 0, as the integral

diverges in this limit; bmin, the distance of closest approach between the electrons

and ions, can be obtained from the Heisenberg Uncertainty Principle, AxAp > h/2.

Setting Ap = mev and Ax = bmim, and using the estimate AzAp : h, yields

bmin -h(5)
m v

If the electron velocity distribution is Maxwellian. then

meve = Te (6)

where Te is the kinetic temperature of the, electrons (in units of energy), and

ic 2  is the square of the thermal speed of the electrons (the average of v2

over the distribution). Substituting vte for t in Eqn. 5 gives

bmin h (7)
3meT. 1

so that upon evaluating the integral in Eqn. 4 one obtains

8reGnniZTe/2

V' (47r( o) 3/2c~

For a mixture of ion species, the quantity niZ? should be replaced by >jn,Z2,

where [ denotes a sum over all species. Defining

nZf(
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as the effective atomic number of the plasma. one obtains

8 e2nZeffT1/
Pb V'3(7re . Tc -. (10)

-v'3(47rto)3 m,' cah

The more precise quantum mechanical treatment yields 20

f32ivI2eGn ZeffTe/ 2

Pt, = gf (11)
3V'3 (47r 0 )3 m,' 2c3h

where gff is the so-called free-free Gaunt factor which describes the quantum me-

chanical correction. At high temperatures, gff -+ 2\/3/r; upon substituting in all

the numerical values for the physical constants and converting the units of ne from

m~ 3 to cm- 3 and Te from joules to keV, one has

P, ; (5.33 X 10~3 1)Zeff n2 T1/ 2 watts-cm 3 . (12)

This is the bremsstrahlung power radiated per unit volume from the plasma. The

preceding derivation gave the bremsstrahlung emission over all frequencies. In order

to obtain the spectral distribution of this emitted power. one needs the classical ex-

pression for the rate of bremsstrahlung emission per unit volume per unit frequency

in the frequency range from v to v + dv. This is given by a Boltzmann energy

distribution. and is 20

327r -/ r e6n Z
dP = gff ,-nZeff T,-1/ 2 exp (-hv/Te)dL . (13)

3v'3 (4mc) m,1 2 c-

Upon integrating Eqn. 13 over all frequencies, one recovers the expression in Eqn. 11.

By using the relationship c = Av, one can also obtain the rate of energy emission

per unit volume per unit wavelength in the interval from A to A + dA:

dPA = gf f 327rvre6n 3/2 T- 1 / 2 A- 2 exp (-hc/ATe) dA
3v'3 (47r o) 3 me /2 c2

= (6.01 x 10 3 1)gff Zeff n T' 1/2 \ - 2 exp (-12.4/ATe) dA watts-cm~ 3

(14)
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Figure 3 -- Bremsstrahlung power spectral distribution at kinetic tem-

peratures of 1. 10, and 100 keV (from Ref. 20). The maximum occurs at
A = 6.2'T, A. To the left of the maximum the emission is dominated by
the exponential term and decreases rapidly with decreasing wavelength.
To the right of the maximum the dependence goes as A -2, so the emission
falls off more slowly with increasing wavelength.

where T, is in keV and A is in angstroms. A graph of this power distribution at

three different values of T, is shown in Fig. 3.

Fig. 3 shows that at the temperatures of interest in Alcator C (T, ~ I keV),

a considerable portion of the emitted power lies in the soft x-ray region of the

energy spectrum (about 0.2 to 20 keV), so that, it is indeed an energy range worth

observing.

For a purely hydrogenic plasma (Zef f = 1), one finds that there is some amount

of recombination radiation because of the distribution of energies involved. In this
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mechanism, the free proton of the hydrogen nucleus captures a free electron, re-

sulting in the emission of radiation due to the electron's transition to lower energy

level and the formation of a neutral hydrogen atom. However, it can be shown that,

except at low temperatures, the contribution from it is negligibly small compared to

that of hydrogenic bremsstrahlung." Furthermore, one need not consider the con-

tribution from excitation radiation, because the ionization potential of hydrogen is

only 13.6 eV, and hence this radiation does not fall into the soft x-ray portion of

the spectrum (it is in the visible and ultraviolet).

One therefore needs to examine the role of non-hydrogenic impurity species in

the plasma. As can be seen in Eqn. 8, the Z? dependence of P, can cause significant

radiated energy losses from the plasma which can lead to a premature termination of

the discharge. It is thus very important to maintain the concentration of impurities

to a minimum. Moreover, at typical Alcator C temperatures, one finds that species

with sufficiently high atomic number are not fully ionized and therefore undergo

free-bound or bound-bound transitions which can contribute significantly to the

energy loss. The presence of such impurities leads to recombination and excitation

radiation.

These two mechanisms are more difficult to describe analytically than brems-

strahlung, and for the purposes of this thesis it will suffice to describe them in a

more qualitative way. In recombination radiation, a partially ionized atom captures

a free electron; this transition from a free to bound state is what causes the emission

of a photon. The contribution to recombination radiation from higher Zi impurities

(such as silicon, for example) can be comparable or considerably larger, in fact, than

the contribution that they make to the bremsstrahlung radiation.2 ' The presence

of impurity atoms may thus add substantially to and even dominate the emission

due to hydrogenic bremsstrahlung. This emission also depends on temperature and

density, which determine the extent to which the impurities are ionized and how

likely they are to capture free electrons. It will thus vary according to how the

impurities are spatially distributed in the plasma. The spectrum of this emssion is
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in the form of a continuum down to the energy level at which the captured electron

reaches its final state.

Substantial radiation losses can also occur due to excitation radiation from

impurities. most of which originate from the materials comprising the chamber in

which the plasma is situated. Excitation radiation comes about when the absorp-

tion of energy in an atom causes the formation of an electronically excited state;

the excited energy is subsequently emitted when the electron goes to a lower energy

level. This radiation has a discrete spectrum (hence the name "line" radiation),

with the frequency of the emitted photons being determined by the difference in

the energy levels which the electron transits. As with bremsstrahlung and recom-

bination radiation, this mechanism is temperature and density dependent, as those

parameters determine the ionization states of the impurities. Again, therefore, line

radiation will vary according to the spatial distribution of the impurities.

11.1.2 Information Contained in the Soft X-Ray Emission

What interesting plasma characteristics can one relate to the temperature, den-

sity., and impurity dependence of the three soft x-ray emission mechanisms outlined

above? In general, it is not a trivial problem to determine immediately which specific

emission mechanism is responsible for a given feature in the emissivity. Neverthe-

less. there are some interesting pieces of information which can be inferred from a

reconstruction of the emissivity's poloidal cross-section. These data tend to fall into

two broad categories: MHD equilibrium and stability, and impurity distribution.

A relationship between MHD equilibrium and stability and the soft x-ray emis-

sion can be established if one considers only the contribution from hydrogenic

bremsstrahlung radiation and assumes that recombination and line radiation are

not significant. In equilibrium, the magnetic field in an axisymmetric toroidal sys-

tem (e.g., a tokamak) is such that most of the field lines continue indefinitely around

the volume of the torus. ergodically covering a set of simply nested toroidal sur-

faces. These are called magnetic surfaces (see Fig. 4). In the elementary MHD
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theory of such a system. it can be shown that the sum of the electron and ion ki-

netic pressures, p = (nT - niTi), is a surface quantity, meaning that the pressure

is constant on a given magnetic surface. 2 2 The limiting magnetic surface. which

approaches a single magnetic line where the pressure is a maximum (for a centrally

peaked pressure profile), is called the magnetic axis. Magnetic surfaces are also

known as flux surfaces, as they are surfaces of constant toroidal and poloidal mag-

netic flux. There are also toroidal magnetic surfaces in which the field lines, rather

than being ergodic. close upon themselves after a finite number of transits the long

way around the torus. These are known as rational surfaces; they are nested in

between the ergodically covered magnetic surfaces, in much the same way that the

rational numbers are interspersed among the irrational numbers.

Figure 4 - Magnetic surfaces in a well-confined toroidal equilibrium.
These are also the surfaces of constant kinetic pressure (from Ref. 23).

The thermal conductivity parallel to the magnetic field lines is much greater

than the conductivity perpendicular to the field lines, even when neoclassical trans-

port effects are taken into account. 23 Thus, temperature equilibrates very rapidly
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along the magnetic field in a toroidal geometry (assuming that there are no anoma-

lous heat transport mechanisms). If n, z ni (as is the case in most plasmas), then

p z ne(Te + T1 ), and both T e and Tj should each be essentially constant on a given

toroidal magnetic surface, because the field lines along which the temperature equi-

librates are on those surfaces. It thus follows that. if each temperature is constant

on a magnetic surface, the density ne must also be constant on that surface, because

pressure is a surface quantity. If Zeff = 1 is taken, then all the soft x-ray radiated

power density is proportional to n.Te'/ 2 (see Eqn. 12), provided one ignores re-

combination radiation from hydrogen; this assumption is a good one across most

of the discharge in an Alcator C plasma, in which the values of T e are high enough

to make hydrogen recombination radiation negligibly small compared to that of

bremsstrahlung. 2 Therefore, if ne and Te are both constant on a flux surface, the

bremsstrahlung power emitted by the particles on that flux surface will also be con-

stant there. Thus, in principle, when Zeff = 1, the surfaces of constant soft x-ray

emission should be the same nested toroidal surfaces which are associated with the

magnetic field topology.

A poloidal cross-section of the emissivity function which displays the contours of

constant emissivity should thus also reflect the structure of the surfaces of constant

poloidal magnetic flux., and hence reveal information about the nature of the MHD

equilibrium of the plasma. It should be noted, however, that it is not possible to

associate each value of the observed emissivity with a unique value of the poloidal

flux function, p. All that can be inferred in this case is that, on a given flux

surface, there should be one and only one value of the emissivity. Different values

of 0' may yield the same emissvity values, depending on the distribution of density,

temperature, and impurities.

The structure of the MHD equilibrium is directly related to features such as

plasma position, shape, and motion. For example, in a straight circular cylinder.

the magnetic surfaces would all be concentric circles. The effect of bending such

a cylinder into a torus is that, to first order, there is a small outward shift of the

centers of the circular flux surfaces (known as the Shafranov shift)." The contours
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of constant soft x-ray emissivity should thus show what the Shafranov shift is, which

for typical Alcator C parameters should be about one centimeter. The shape of the

flux surfaces as revealed by the contours of constant emissivity should also provide

information about the degree to which the plasma is non-circular and thus deviates

from the analytically predicted equilibrium. If there is any bulk plasma motion,

that should lead to motion of the flux surfaces and hence motion of the emissivity

contours.

When time-dependent MHD phenomena are investigated, one is led to the

study of instabilities. These will lead to some alteration of the magnetic surfaces,

and the manner in which the surfaces change or deform is indicative of the nature

of the instability. Instabilities can also cause perturbations in density and temper-

ature which thereby perturb the emissivity because it depends strongly on these

parameters. Thus, the occurrence of MHD instabilities in the plasma should be

reflected in the contours of constant emissivity. Of particular interest in Alcator C

are the resistive tearing modes. These are non-ideal modes which come about due

to the small but finite electrical resistivity of the plasma, which at the temperatures

of interest has such a low resistivity that it can usually be taken to be a perfect

conductor (the ideal MHD model). The name "tearing mode" comes from the fact

that. in order to reduce the total energy of the system, the perturbed currents which

arise from the finite resistivity will cause the field lines and flux surfaces to "tear"

or "break up" and form magnetic islands, which are filaments of plasma with their

own set of nested flux surfaces surrounding their own local magnetic axes. This

perturbation leads to flux contours which are no longer simply nested toroidal sur-

faces around a single magnetic axis. Each island twists helically around the torus,

following the closed field line that forms its magnetic axis. The whole structure of

the island closes upon itself after going the long way around the torus a rational

number of times.

A perturbation is called a resonant mode if its helicity matches that of the equi-

librium field lines at a radius r, where q(rs) = m/n (in a tokamak, q(r) z rB,,/RoBo

and is a measure of the helicity of the equilibrium field lines). The indices rn and
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n are referred to as the poloidal and toroidal mode numbers, respectively. For given

values of m and n. the perturbed current will be exactly paralled to the equilibrium

field lines at the resonant radius r,. When added to the equilibrium fields, the

magnetic fields caused by the perturbed currents lead to the formation of magnetic

islands centered at the resonant surfaces (see Fig. 5). If energy considerations re-

quire that the mode grow in time in order to bring the system to a lower energy

state. one has a tearing mode instability.

The effect of magnetic islands on the plasma should be important. For exam-

ple, it is believed that the m = 1/n = 1 resistive kink mode, a special case of a

tearing mode, causes the sawtooth oscillations observed in the soft x-rays emitted

by tokamak plasmas.22 ,24 These are small internal disruptions which are relatively

minor in that they do not seem to have a very deleterious effect on global plasma

stability and confinement, since they occur around the q = 1 surface, which is usu-

ally well within the plasma core. However, they can be dangerous if they play a

role in a more extensive disruptive instability or become too large.

Higher order instabilities may have more harmful effects on the plasma. Energy

transport should increase in the presence of magnetic islands because, as explained

above. regions of the plasma connected by magnetic field lines (and hence on the

same flux surface) are essentially "shorted together" as far as temperature and

density are concerned. In equilibrium, thermal energy flowing radially out of the

plasma has to traverse the field lines, and therefore it must proceed on a relatively

slow collisional time scale, as opposed to the very rapid thermal equilibration time

scale of energy transport parallel to the field lines. However, once magnetic islands

are present, energy flow is effectively shunted across the width of the islands, because

the inner edge and outer edge of the islands are on the same flux surface. This

enhancement of cross-field energy transport should lead to a decrease in the energy

confinement time, which is certainly not a desirable effect. If the islands become

very large, or if the instability never saturates, the situation can become even worse

in terms of global plasma confinement. Even if the islands did saturate at some

fixed width after initially growing in size, those existing at different radii could
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Figure 5 - Flux surface contours in a poloidal cross-section showing
m = 1, 2, and 3 magnetic islands (from Ref. 17). The islands are brought
about by the perturbed currents of the resonant modes which are allowed
in the resistive MHD model. These islands also twist around in the toroidal
direction; this variation is represented by the toroidal mode number n.
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overlap and effectively cover the entire plasma cross-section, leading to a total loss of

confinement of the plasma volume. Ideas along these lines have been proposed2 5 as

mechanisms to explain the so-called major disruption, which is a sudden and violent

termination of the plasma discharge brought about by a large scale MHD instability.

Knowledge of the soft x-ray emissivity may thus improve one's understanding of

these instability phenomena because it can provide a picture of the magnetic surface

behavior as a function of time.

Recall that the foregoing discussion has been conducted under the assumption

that Zeff = 1 and that recombination and line radiation are neglibible relative

to bremsstrahlung. If these assumptions are relaxed, then clearly the relationship

established above between the soft x-ray emissivity and MHD phenomena will not

be as easy to unfold from the data present in a tomographic reconstruction. One

can still ignore recombination radiation from hydrogen, as it is only near the edge

of the plasma that the temperatures are low enough to make it comparable with

bremsstrahlung, and the primary interest is in the hot, central region of the plasma.

However, the introduction of even a small concentration of impurities can signifi-

cantly alter the details of the emissivity.

Impurities in the plasma can emit soft x-rays via bremsstrahlung, recombina-

tion, and line radiation. Without some form of energy filtering, it is impossible to

distinguish between them., as the detectors used in this experiment respond to total

integrated power over the spectrum to which they are sensitive. Impurities in the

plasma can radiate copiously under some circumstances, however, so their presence,

whether it manifests itself via bremsstrahlung, recombination, or line radiation, can

be observed. A tomographic reconstruction of the emissivity would therefore con-

tain information regarding the extent to which impurities are present in the plasma

and how they are distributed in the poloidal cross-section.

One way to quantify the degree to which impurities contribute to the over-

all emissivity is to compare the measured emissivity values with those which one

would obtain if all the radiation were due only to hydrogenic bremsstrahlung and

recombination, the absolute minimum which a hydrogen plasma would radiate at
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a given density and temperature. As explained above., hydrogen recombination ra-

diation can be neglected for the most part because it is only worth considering at

low temperatures. The local emissivity values arising from this purely hydrogenic

emission can therefore be calculated by using the readily measured density and

temperature profiles and substituting them into Eqn. 12. The local ratio of the

measured emissivity to the calculated hydrogenic emissivity of the given plasma is

know as the enhancement factor. It is a measure of the extent to which radiation

from impurities contribute to the soft x-ray emission from the plasma.

By examining the spatial variation of the emissivity enhancement factor, one

can develop an idea of the impurity distribution across the poloidal cross-section of

the plasma. The temporal behavior of the enhancement factor can be of particu-

lar interest if it is observed with MHD activity and if one attempts to determine

the correlation which might exist between it and instability phenomena. All this

information can then perhaps lead one to a greater understanding of the role that

impurities play in an Alcator C plasma.
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11.2 Tomographic Reconstruction

Various mathematical methods have been developed to perform tomographic

reconstructions of objects which emit or absorb x-rays. This section presents an

overview of the principles and techniques which can yield a tomographic reconstruc-

tion of the cross-section of a radiating object's emissivity (the same ideas apply for

absorption tomography). For the purposes of this discussion, the schemes for obtain-

ing reconstructions are grouped into two basic categories: finite element methods

and analytic methods. There also exist algorithms which combine both finite el-

ement and analytic techniques, such as the Filtered Back-Projection algorithm. 10

They are optimal for a large number of regularly arranged views; such a set-up is

not feasible on Alcator C, so these algorithms will not be discussed.

11.2.1 Finite Element Methods

Suppose that one has an object with an emitting cross-section which is of

arbitrary shape, and that it is divided into N finite elements or pixels (from the

words "picture elements"). These pixels can be of arbitrary shape and varying

size. Situated around the exterior of this planar region, let there be M detectors

which measure the power of the radiation incident upon them. The field of view of

each detector is determined by the solid angle defined by known apertures and/or

collimators. In order for these methods to work accurately, the dimensions of the

pixels must be such that the actual emissivity is essentially constant over the area

of the pixel. This constraint requires that one take into account the scale lengths

of the various plasma parameters which influence the emissivity (in particular, the

density and temperature). Furthermore, the radiation from each pixel is assumed

to be isotropic.

With these assumptions in mind, one can proceed to calculate how much of the

power emitted from each pixel contributes to the total signal on a given detector.

The signal S (in watts) on the mih detector can be expressed as a linear combination
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of the emissivities E (in watts-cm~ 3 ) of each pixel, with each one being appropriately

weighted:

Sm = 4 7 m, El + Wm,2e2 +-+ WM,N EN

or
N

Sm = : Wm,nEn (15)
n= I

where I < m K M, I < n < N, M is the number of detectors, and N is the number

of pixels, so there are M equations in N unknowns. The coefficients Wm,n are the

weighting factors which indicate what fraction of the total power radiated from each

pixel is actually incident on the given detector. Fig. 6 shows the viewing geometry

under consideration. One can see that many of the Wm,n coefficients can be zero

for a given detector m, because there are pixels which are not in the field of view

of the detector. Thus, the power emitted from them is not "seen" by the detector

in question.

For a fixed viewing geometry, the weighting coefficients can be pre-calculated

and depend only on the parameters of the geometry. This calculation can be done

by a simulation in which one assumes a unit emissivity distribution for the pixels

and then computes what the signals on each detector should be. Given the known

weighting coefficients and the experimentally measured signals, one must then ex-

tract the emissivity information contained in Eqn. 15. This problem can be cast

into a linear algebra formulation. One can think of Wm,n as comprising an M x N

matrix, Sm as comprising a column vector with M elements, and En, as comprising

a column vector with N elements. Hence,

S, W,,1 WI.2 .. - -W,N EI
S2 W2,1 W2,2 -- W2,N E2

SM WMJ WuM.2 ... WM.N EN

or, more compactly,

S = W- (16)

This equation must be solved for E, which contains the unknown emissivities.
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EMITTING CROSS-SECTION

Figure 6 - Pixel viewing geometry. The emitting cross-section can be of
arbitrary shape, and the pixels (drawn here as squares) can be of arbitrary
shape and varying size. The shaded regions indicate what portion of each
pixel is "seen" by each detector.
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For the case in which M = N (equal number of detectors and pixels), there is

exactly one solution for the pixel emissivities, as W becomes a square matrix which

can be inverted provided that it is not singular. If M < N (fewer detectors that

pixels), then the problem is underdetermined and there are an infinite number of

solutions. One can impose constraints on the problem, however, by making certain

assumptions regarding the emissivity (e.g., symmetry in some dimension or about

some axis., "smoothing" equations, or "maximum entropy" equations) which may

make it possible to arrive at some solution. However, depending on the assumptions

which one makes about C, one is not necessarily assured that the solution obtained

is a faithful reproduction of the actual emissivity function. The third possible case,

in which Al > N (more detectors than pixels) has an overdetermined system with

no exact solution. However, as will be shown, it is the most interesting and desirable

one with which to work.

There are several ways to solve for t in the case for which the number of equa-

tions (known detector signals) exceeds the number of unknowns (pixel emissivities).

Iteration schemes have been developed in which an initial solution is assumed or

guessed at, and then it is adjusted iteratively until a solution which matches the

observed data to within some specified error is obtained. Iterative reconstruction

algorithms are classified according to the sequence in which corrections are made

and incorporated during an iteration, as this choice has a significant bearing on

the performance of the algorithm. Several variations have been proposed and are

described in the literature; they are referred to by their acronyms, such as ILST 21

(Iterative Least Squares Technique), SIRT 27 (Simultaneous Iterative Reconstruc-

tion Technique), and ART28 (Algebraic Reconstruction Technique). The drawback

of these reconstruction techniques is that the solution obtained is not necessarily

unique (it may depend on the initial guess). nor does there appear to be any guar-

antee that the solution will converge to some final value as the number of iterations

is increased.
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Another approach is made possible by the advent of fast, modern computers.

It is possible to solve Eqn. 16 in a reasonable amount of time by directly inverting

the matrix W. In other words,

e = W-1 -S. (17)

This is similar to the case in which M = N, where W-1 is unique and well-

defined provided that its determinant is non-zero. The problem with the exact

solution is that, in practice, noise will be present in the measured signals, which

can greatly alter the solution or make it impossible to find one because the system is

so close to being underdetermined. With an overdetermined system, the equations

are inconsistent and there exists no exact solution. However, it can be shown that

in this case there is an "optimal" solution which minimizes the least squares error

arising from the difference between the observed data and the solution. Of all the

inverses of W which are possible in this situation, there is one in particular, denoted

by W. and known as the pseudo-inverse or generalized inverse, which yields the

solution in the least squares sense." The details of how this inverse is calculated will

not be given here; it suffices to state that it can be uniquely determined and that

there are commercial software packages readily available which provide routines for

evaluating the pseudo-inverse of an M x N rectangular matrix.

The attractive feature of this method over the iterative reconstruction algo-

rithms is that it does provide a particular solution to the problem which is well-

defined and does not require one to make assumptions or initial guesses about the

emissivity (except for the assumptions mentioned at the beginning of this section).

Furthermore, the most attractive feature is that W need be inverted only once, be-

cause it depends on the detector and pixel geometry, which is presumed to be fixed.

Once this operation is performed. the inverse can be stored in computer memory or

on a computer disk file. Given a set of measured detector signals, the least squares

fit solution for it is found simply by one straightforward matrix multiplication,

which is easy to program.
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It is preferable to have the system substantially overdetermined; i.e.. to have

M be greater than N by a large margin. The reason for this is that, there will always

be unavoidable random noise in the system, and hence the more equations (data)

one has, the less sensitive the reconstruction will be to that noise. The situation

is analogous to fitting a line to a large set of data points as opposed to fitting

a line to only two data points. In the first case, one has a much more accurate

determination of the line even though the line does not pass through all the points.

The fit is not terribly sensitive to a small amount of random noise in the data. In

the second case. however, only a slight change in one of the data points due to

the introduction of noise can significantly affect the equation of the line. Studies

have been done in which the Alcator C plasma cross-section was divided into about

100 square pixels. each 3 cm on a side;'8 what the overdetermination requirement

translates into is that, for such a 100-pixel cross-section, one needs roughly 150 to

200 detectors placed around the periphery of the plasma in order to obtain reliable

reconstructions using the matrix inversion method. Placing such a large number of

detectors may not be feasible on a machine such as Alcator C, however, given the

tight confines of its port space, which is mandated by the structure of the toroidal

field magnet. Furthermore, the presence of other diagnostics and experiments on

the machine may make it very difficult or impossible to mount such an array of

detectors on the tokamak.

The finite element matrix inversion approach is thus conceptually simple and

easy to implement on a computer. with the algorithm for it working extremely fast.

It can handle odd geometric configurations, accomodating pixels of arbitrary shape

and varying size (as long as they do not violate the requirement that each pixel's

actual emissivity be approximately constant). Detectors need not be arranged in

any specific way, such as in parallel arrays or having "fan-like" chords of view. Also,

for a system which is sufficiently overdetermined, one need not make any a priori

assumptions about the nature of the emissivity in order to obtain a reasonable

solution.
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As for disadvantages, one is that finite element techniques may be wasteful in

the sense that the pixels can support arbitrarily complex emissivity patterns when

only a simple one is enough to describe the soft x-ray emission. This problem may

become particularly apparent when dealing with tokamak plasmas, which, for the

most part, are thought to have emissivity cross-sections that contain only very low

order Fourier harmonics (the plasma equilibrium is basically cylindrically symmetric

except for a slight outward shift of its center). One thus needs only fairly simple

patterns in order to describe the emissivity well. Secondly, as mentioned above,

having a sufficiently overdetermined system may not be practical or feasible given

the space contraints on Alcator C. Finally, it is still not possible to be completely

assured that accurate reconstructions of the emissivity can be obtained, even for

the case in which 150 to 200 detectors are viewing a 100-pixel plasma, until some

other issues which need to be considered are investigated. Understanding this point

requires some further analysis, and the reasons for it will be made clear in the

following section.

11.2.2 Analytic Methods

The analytic methods which have been developed for tomographic reconstruc-

tion usually use one or two dimensional Fourier transforms. These techniques are

based on having views of the emitting or absorbing region which are along chords

through that region. The signal on each detector is thus the line integral of the

emissivity or absorption function along its chord of view. These measurements are

often referred to as ray sums or ray projections.'0

Assume that one has an emitting plasma of arbitrary cross-section. The plasma

must be of finite spatial extent, so that beyond some radius from a specified origin

there is no soft x-ray emission. A circle, whose radius is normalized to unity, is

imagined to enclose the emitting cross-section. Detectors are located around the

periphery of the circle, with each one viewing the plasma along a chord defined by
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its aperture and/or collimators. For the case of a tokamak, this viewing geometry

is pictured in Fig. 7.

The chords are denoted by L(p,4), because each one can be uniquely identi-

fied by its impact parameter or radius p (the perpendicular distance from the origin

to the chord) and its impact angle 4 (the angle the chord makes with the x-axis).

Therefore, each detector's measurement is also uniquely specified by its viewing

geometry. If the emissivity at each point (r,O) along a chord L(p,4) is S(r,O) (in

watts-cm- 3 ), then the contribution of each point toward the total detected signal,

measured in units of brightness, is given by e (r, e)dL, where dL is the infinitesimal

directed line element along the chord. Adding up all these infinitesimal contribu-

tions along the chord gives the total ray sum f corresponding to the particular p

and #:

f (p, 4) = L(p, (r,)dL. (18)

This expression holds true as long as the plasma is optically thin in the soft x-ray

spectral region, which is the case for Alcator C.

However, because the dimensions of the emitting region are normalized to unity,

one must write dL = rcds, where ds is now a dimensionless line element and r, is

the normalization radius of the unit circle. One then defines an emissivity density

function, denoted by g(r,O) =_ roe(r,O). Thus.

f (p, J) = g(r, O)ds. (19)

A complete set of these ray sums at a given angle 6 is called a projection or a

profile.10

As will be seen, the actual experiment has apertures which establish each de-

tector's field of view, and the line chords become solid angles because of the finite

size of the apertures. The measured quantity f(p, $) is called the brightness and

has units of watts/cm2 /steradian. Eqn. 19 can still be used, however, to describe

correctly the detector signals if the width subtended by each solid angle "chord"

remains small compared to the scale length of the emissivity's spatial variation as
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Figure 7 - Chordal viewing geometry. Note that the plasma need not
be centered at the origin nor circular in cross-section for the purposes of
the experiment.
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one goes across the chord. In other words, the emissivity must not vary signifi-

cantly over the width of the detector's field of view in the poloidal plane. This

requirement imposes a limit on the size of the aperture in the poloidal direction, as

that determines the extent of the chord's width in the cross-section. The emissivity

is assumed to be uniform in the toroidal direction (over the extent to which it is

viewed), so the width of the aperture in that direction need not be so strictly con-

strained. One can thus still approximate the measured quantity as a line integral

along a chord which passes through the center of the solid angle defined by the aper-

ture (see Fig. 8). However, as will be discussed in the next chapter, one does need

to establish a relationship between what is actually measured (a detector signal in

watts) and the brightness (in watts/cm 2 /steradian). This relationship takes into

account the effects of finite chord width and of chords which are not perpendicular

to the plane of their detectors (i.e., finite angle of incidence). Once these effects are

incorporated into the calculations (it amounts to a constant geometrical factor for

a given detector), the line integral formulation put forth here can still be used.

For the moment. the problem at hand is to invert Eqn. 19 in order to determine

what g(r.9) is. One can see that Eqn. 19 is a transformation from (r,O) space

into (p,() space. as the values of f(p.4) are determined uniquely by the values

of g(r.0) along a given chord L(p,0). The domain of f in the (p,o) plane is the

same as the domain of g in the (rO) plane--a circle of unit radius. Clearly. one

needs an adequate sampling of (p,o) space in order to have enough information

to reconstruct the emissivity. For example, a detector configuration consisting of

only a few arrays of parallel chords cannot reconstruct, a complicated emissivity;

the brightness f(p, 0) is sampled at many values of p but only at a few values of

0, so one lacks angular information. Consequently, only the lowest order Fourier

harmonics in poloidal angle (cos mO, sin mO) could be resolved when reconstructing

S (r.0). Similarly, one might have many chords covering a wide range of 6 values,

but if they all pass through the origin, for example, where p = 0, then information

about the radial variation of e (r, 0) is lacking. The necessity of having a sufficient

sampling of (r, 0) or (p, 4) space exists for any tomographic reconstruction method,
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Figure 8 - Solid angle viewing geometry when finite aperture size is
taken into account. If the width subtended in the poloidal plane by the
solid angle Afl (shown here in a 2-D cross-section) is not too big compared
to the distance over which E (r, 0) varies, then one can describe the detector
signal as a line integral of E (r, 0) along the chord shown without incurring
much of an error. Furthermore, at each point on the chord. the increase in
the subtended area as one goes further along the chord is exactly cancelled
out by the I/L 2 dependence of the radiation observed from each point.

and it explains why, as alluded to in the previous section, the pixel method does

not necessarily yield believable reconstructions even when the system is considerably

overdetermined. One must also have an arrangement of chordal views which will

measure brightnesses at many values of both p and 0. Ideally, one would like to

have chords which are equally spaced in both p and 0.

Assuming that one has detector measurements which adequately cover (p,4)

space, one can now proceed to solve for g(r,0). The problem is two-dimensional,

and Fourier analysis can be used to separate the coordinate dependencies and re-

late the Fourier coefficients of g(r,0) to those of f(p, 0). In principle, all analytic

reconstruction methods are equivalent, but the various forms of solution lead to

significant differences in their implementation. One such method, for example,
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begins with the density function g expressed in rectangular coordinates. It is writ-

ten as a two-dimensional Fourier integral in terms of the spatial frequencies k, and

g(z, y) f dky G(k., ky) exp 2ri(kx + k y) (20)

where

G(k.,ky) f dxdy g(x,y) exp[-27ri(kx + kyy) . (21)

By appropriately rotating the (x, y) coordinate system of Fig. 7, one can write

G(k., kY) = dp f ds g(x, y) exp(-27rikp) (22)

f (P'O)

where k 2 k - k 2. The integral with respect to s is taken along the chord L(p,4).

It is therefore just the integral in Eqn. 19 for f(p, $). Thus,

G(kx, ky ) = dp f (p, 0) exp(-27rikp) = F(k, 4) (23)

where F(k, 0) is the Fourier transform in k of f(p, $).

Eqn. 23 states that each Fourier coefficient of g(x.y) is equal to the corre-

sponding Fourier coefficient of the projection taken at the same angle as the Fourier

wave. By measuring f(p, 0) and computing its transform in k, one has the Fourier

coefficients of g(x, y) and can thus reconstruct the emissivity by numerically inte-

grating Eqn. 20. This procedure can be implemented on a computer using a Fast

Fourier Transform (FFT) routine. The only assumption required is that the spatial

resolution of the reconstructed emissivity be bandlimited to some maximum spa-

tial frequency. However, in this experiment, this type of solution in not practical

because there are not enough projections available due to the space constraints of

Alcator C. The data, which are on a (r,O) grid, would have to be mapped onto a

rectangular coordinate system. and the large number of interpolative calculations

which that entails renders this method prohibitively time-consuming.

Another approach involves the use of Fourier series expansions to decompose

the two-dimensional problem into two one-dimensional problems, whose equations
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can then be solved in order to obtain the desired result. A method which uses this

tactic is the one developed by Cormack. 3 ',3 1 One begins by expressing both the

density function and the brightness as Fourier series in cosines and sines:

00
g(r,0) g (r)cosm# + g'(r) sin mO] (24)

and
00

f(p, 0) =Z f (p) cos m6 + f, (p) sin m4] (25)

where the superscripts c and s denote the Fourier cosine and sine coefficients, re-

spectively. These coefficients are given by

1 2r
gM(r) = g(r,O)(cos mO, sin m6)dO (26)

and

fm (P) = f(p, 0)(cos m4, sin mo)do. (27)

These expansions assume that g(r, 0), and thus f(p, 0), are well-behaved functions.

Upon substituting the expressions for g(r, 0) and f(p, 6) into Eqn. 19, and using the

fact that s = v'r 2 - p2 and 0 - cos- 1 (p/r) (refer back to Fig. 7), one obtains

SI r g'(r) T,.(p /r)f, (p) 2 Mg(rTr_ p2) dr (28)

where Tm(x) = cos(mcos' x) is the mth Tschebycheff polynomial of the first kind.

One now wishes to invert Eqn. 28 in order to obtain the Fourier coefficients

g9c(r). Cormack3 ' showed that the solution to this problem is

C'Sr) d- rf '(p) T(pr) dp. (29)
gM (r 7 r dr ,. p( p2 -- r2)1.!2 d .(

Note that if m = 0, Tm(p/r) 1. It can be shown that in this case Eqn. 29 reduces

to the familiar Abel inversion. Cormack3" showed that gg'(r) determines fmc(p)

in Eqn. 28 uniquely, and that the inversion formula in Eqn. 29 determines gm'(r)

uniquely.
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A reconstruction based on direct numerical implementation of Eqn. 29 can

be obtained. However. because it involves differentiation, such a solution can be

very sensitive to noise present in the actual data. Nevertheless, it is possible to

circumvent this problem by expanding f,;'(p) in some suitable series of functions

which are complete in the interval (0,1). Of all the possible sets of such expansions,

Cormack3" found a special one which leads to particularly simple expansions for

the Fourier coefficients. For a given brightness measurement, let

2
fm(P) 2  sin F(m + 21 + 1) cos -' p] (30)m +- 21 + I

where m and I are non-negative integers and 0 < p < 1, and insert this expression

into Eqn. 29. The result obtained after evaluating the integral is a relatively simple

function which can be expressed analytically. One finds that gm(r) = Rmi(r), where

Rmi(r) is called a Zernicke polynomial and is defined by

Rmi(r) (-1) (m + 21 - s)! r I+21-2,

Rm! (r(r)- ) (i , ) (31)S S! (M + -S)! (Y - s).

The different values of I which can be used in Eqn. 30 yield polynomials of different

order. They are polynomials of degree m + 21 in r with rm as the lowest power

of r. These polynomials were originally developed by Zernicke 32 in connection

with diffraction and are described in some detail by Born and Wolf. 33 They are

orthogonal and form a complete set over the unit circle, so they can be used as

basis functions for expanding any function within that domain. The problem is

linear, so for a general set of measurements f','(p), an expansion of the form

C

fm"(p) = 2 a sin[(m + 21 + 1) cos-'p] (32)

will yield
C

gif (r) = (m + 21 + 1)a"'Rmi(r) (33)

where a"' are the (complex) expansion coefficients for fmf(p) and g'f(r).

The complete density function, g(r,0), can thus be obtained from the sum

in Eqn. 24; the emissivity e(r,f) is then found by multiplying this result by the
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normalization radius ro. The elegance of this approach is that it bypasses the

numerical differentiation which one would have to perform in Eqn. 29 and yields

a solution which is relatively insensitive to random noise in the numerical data or

to detector positioning errors. It is because of this feature, the relative simplicity

of the solution, and the practical constraints of the experiment, that Cormack's

reconstruction method was chosen for this application.

In the actual experiment, f(p, $) is measured at only a finite number of points

in (p, 6) space. It might therefore be somewhat difficult to find f I"(p) via Eqn. 27.

Moreover, if the data are not regularly spaced on a grid in (p, 4) space, it is not

possible to treat the angular harmonics and radial harmonics separately, unless one

does a two-dimensional interpolation onto a two-dimensional grid. This interpola-

tion is very time-consuming and usually yields unsatisfactory fits as well. In this

situation. therefore, one needs to perform a full two-dimensional fit to the available

data in order to determine the ac"" coefficients. It is possible to show how this

fit can be accomplished by using the assumed form of f','(p) from Eqn. 32 and

substituting it into Eqn. 25. The result is

f(p,. ) = 2 F Z(ac, cos mp + a',I sin mn) sin (m - 21 - 1) cos- P . (34)
m M (

Thus. one can obtain the a"' coefficients by performing a least squares fit to the

f(p,4) data points which are measured. Let there be N detectors in the system,

and thus N distinct points in (p, 0) space for which one has a value of f. At each

such point (Pn, On), where I < n < N, one has, from the previous equation,

f~ ~ ~ ~ m (CO, M. (k on +4 a',t sin MOO) sin [(m + 21 + 1) cos~-' p,] . (35)

The quantities on the right hand side of this equation which depend on pn and 4

can be evaluated at each available (p, 0) point, so the only quantities which remain

unknown are the a"i coefficients. Of course. it is not possible to take both sums to

infinite values of m and I when numerically evaluating them, so one must truncate

the sums at some maximum values of m and 1. This truncation will determine the
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degree to which angular and radial variations (represented by m and 1. respectively)

in the emissivity can be resolved. As long as one terminates the sums at values of

m and I which keep the number of the unknown coefficients less than the number

of known brightnesses. one can arrive at a least squares fit solution (this problem is

similar to the one encountered in the pixel method, in which the pseudo-inverse was

introduced in order to arrive at a least squares fit solution for the overdetermined

system). If the maximum value of m is M. and that of I is L, then it can be easily

shown that the sum for each f(p,,4,) contains (2M + 1)(L + 1) terms. There

are thus N equations in (2M + 1)(L + 1) unknowns. Therefore, by using some

appropriate fitting algorithm, one can arrive at a solution for the a" coefficients in

the least squares sense, if the number of detectors exceeds the number of unknowns.

Such is the case with this experiment, in which there are eighty detectors making

brightness measurements of the plasma soft x-ray emission and low order harmonics

(m = 0.1 and I = 0,1,... ,6) are used to obtain the fit to the observed data.

It is worth pointing out that even if one has a limited number of views (as

is the case in many actual plasma tomography experiments), it is still possible

to obtain reconstructions using analytic solutions by making certain assumptions

which effectively increase the number of available measurements. For instance, in

some experiments, 1,13,14 it is assumed that the oscillations typically observed in

soft x-ray signals are due to perturbations in the emissivity which rotate in the

poloidal or toroidal direction. If one takes this rotation of the plasma fluid to be

rigid, if the rotation frequency w is constant in time and can be determined (either

from the magnetic fluctuation signals arising from MHD oscillations or from the

soft x-ray signals themselves), if the center of rotation can be ascertained (from the

profile of the signals), and if the amplitude of the oscillation remains essentially

constant during one period, then signals from one detector array at different times

are equivalent to signals along chords at different angles. This situation is equivalent

to having several "virtual" detector arrays around a stationary plasma, separated

by a distance equal to that covered by the rotating plasma in one data sampling

period (data acquisition is usually done by digitization at some fixed rate). The
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angle 6 is calculated from the expression $ wt + 4c, where Oc is the angle of the

chord L(p, 0) at t = 0.

Clearly, however, assumptions about rotation will build into the emissivity cer-

tain features which might actually not be present; furthermore, there is no assurance

that the plasma's rotation can always be taken to be rigid and uniform. In particu-

lar, if the rotation frequency varies with time, the location of the virtual detectors

effectively changes, and hence the viewing geometry becomes time-dependent, which

greatly complicates the problem. Non-uniform rotation requires more views of the

plasma; the amplitudes and phases of the harmonics must be determined from an

actual Fourier analysis of the mode structure viewed from as many directions as

necessary so as to avoid aliasing." Such a large number of views is generally not

obtainable on tokamaks, so one must assume that only low order harmonics are

present. For these and other reasons, therefore, it would be preferable not to have

to resort to any assumptions about rotation.

There are other simplifying assumptions which one can make when there is

an insufficient number of views to yield useful reconstructions. For example, these

could involve postulating a specific functional form for the emissivity which has

adjustable parameters." One must then find the values of the free parameters which

best reproduce the observed signals. In situations in which the number of views is

very limited, only simple functional forms with one or two adjustable parameters

can be assumed.

Because of the limitations inherent in the those reconstruction algorithms which

require certain assumptions about the plasma emissivity to be made, one would like

to have enough views, adequately distributed in (p, 4) space, to yield reasonably

good reconstructions using the technique based on Cormack's solution described

above. As will be demonstrated, the eighty views used in this experiment are

enough to meet this objective, provided that only low order m and 1 harmonics are

included in the reconstruction.
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Chapter III

EXPERIMENTAL APPARATUS

III.1 Detector System

Designing an experimental apparatus with enough detectors to yield useful

data for tomography on Alcator C is complicated by the fact that there is very

limited viewing access to the plasma. Among tokamaks, the problem of having

good views of and easy access to the plasma is particularly acute in Alcator C

because of its compact Bitter magnet structure. The ports consist of stainless steel

flanges which have very narrow slots leading into the vacuum chamber from the top,

side, and bottom (see Fig. 2). Because of the stringent space constraints involved,

it is necessary to find a detector system other than the silicon surface-barrier diodes

which are typically used in other soft x-ray plasma diagnostics. Their fairly large

size does not enable one to have the required number of views. Furthermore, the cost

of many surface-barrier diodes would make this experiment prohibitively expensive.

Fortunately. compact arrays of relatively inexpensive miniature PIN (p-intrinsic-n)

planar-diffused silicon photodiodes are readily available commercially. They are

intended to be used for visible light measurements, but they have been shown to

work well as soft x-ray detectors and for the purposes of tomography. 34 '35 Their

small size and low cost not only allow for the placement of many detectors, but also

for greater proximity of the detectors to the plasma, which leads to larger signals

and thus an improved signal-to-noise ratio.

An assembly of eighty such detectors was placed on Alcator C. Forty of these

viewed the plasma from the top, and forty from the bottom, at one toroidal location

(the port designated as "C" port, one of six on the machine). Views from the side

of the tokamak would have also been desirable, but the presence of a waveguide

array for the lower hybrid RF heating and current drive experiments made that

impossible. Other ports were not available, either because their dimensions are

incompatible with the design of the apparatus, or because they were occupied by
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other experiments. There is space available for more detectors on the top and

bottom, but they were not installed because of a shortage of the required data

acquisition and storage equipment.

The detector system is composed of individual arrays of photodiodes which

are all situated at the same radius (approximately 22 cm) from the center of the

vacuum vessel (the minor radius of the plasma in these experiments is the nominal

16.5 cm). A detector array consists of eight individual photodiodes on a common

silicon substrate (a "chip"). Each detector has a 1.5 mm x 2.8 mm active area

and a total silicon thickness of about 0.3 mm. The entire chip is soldered by the

manufacturer onto a small printed circuit board with leads attached to each detector

and a ground plane (see Fig. 9). The circuit board's sides are trimmed off so that it

will fit in the required space; its final dimensions are about 6.4 mm x 19 mm. The

chip of detectors is then mounted on a block of G-10 material (made of fiberglass and

epoxy) which is designed to position each chip in the proper location and orientation

for its designated view (see Fig. 10). The center conductor of a miniature coaxial

cable is soldered to each detector lead, with the ground lead (the shield of each cable)

common to all eight and eventually common to all forty detectors from a single

port once they are connected their respective amplifiers. Aluminum tubes (outer

diameter of 3 in) are screwed into each G-10 block which carry the coaxial cables

out to the entrance of the port at the top or bottom of the machine (approximately

1 m away from the edge of the vacuum vessel).

The viewing geometry of each detector is defined by an appropriately positioned

aperture. The components of each array of eight detectors are placed inside a

stainless steel tube. At the end of the tube there is a rectangular aperture to

provide the desired view (the tubes are also part of the required vacuum system,

which will be discussed in more detail in the next section). There is no significant

transmission of soft x-ray radiation through the stainless steel, so the aperture

serves to define each detector's field of view for a given chip of eight detectors.

However, because the detectors are quite responsive to visible light (recall that

they were originally manufactured to be visible light sensors), the aperture must
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Figure 9 - PIN photodiode chip. There are eight detectors on the chip.
The lead on the left is soldered to the ground plane on which the chip is
mounted; it serves as a common connection onto which the appropriate
bias voltage for all eight photodiodes can be applied.
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Figure 10 - Detectors mounted on a G-10 block. A miniature coaxial
cable is soldered to each detector lead. A strain relief is located just
before the coaxial cables go into the block (it is clamped down by two
nylon screws). Also visible beyond the block is the aluminum tube which
takes the cables to the entrance of the port.
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have the property that it does not let visible light from the plasma pass through

while still remaining reasonably transparent to soft x-rays in the spectral region

of interest. A very thin piece of beryllium has such properties, so an opening is

machined at the end of each tube, where a 50 Am thick piece of beryllium is sealed

onto the aperture. The dimensions of the beryllium aperture are 2 mm x 3 mm.

Its thickness is determined by the requirements of the vacuum system and by the

need to have the aperture allow soft x-rays to pass through it without too much

attenuation, a factor which depends strongly on the beryllium's thickness. The

area of the beryllium "window" is large enough to insure that the soft x-ray flux

passing through it provides a good-sized signal on each detector; however, they are

not so large that the view through the aperture has a solid angle which subtends

too large a section of the plasma and, as discussed in Sec. 11.2.2, would thereby

invalidate the assumptions required to treat the problem as a line integral of the

emissivity along a chord (i.e., the aperture is no longer approximately a "pinhole").

The 2 mm dimension of the aperture in the poloidal direction yields a solid viewing

angle which subtends about 2 cm in the poloidal plane near the center of the plasma.

This figure is somewhat less than the scale lengths of the equilibrium density and

temperature in Alcator C. It should thus be possible to satisfy the requirement that

the emissivity not vary much over the distance subtended by each detector's solid

viewing angle. as the density and temperature are the two parameters which most

strongly affect the local emissivity values.

With each detector's view thus established, the photodiode arrays can be placed

at their designated positions inside the tokamak to observe the plasma. The top

and bottom ports both have three slots. In the central slot is placed a group of

three separate detector chips (each with its own aperture) for a total of twenty-four

detectors; the inner and outer slots have one detector chip each (and each has its

own aperture) for the remaining sixteen detectors which comprise the 40-detector

array that goes on the top or bottom port. The machine is symmetric about the
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toroidal midplane. and so are the top and bottom arrangements of detectors. A

diagram of the detector viewing design is shown in Fig. 11.

An important issue, as discussed in Sec. 11.2.2, is whether or not the specified

detector configuration provides an adequate coverage of (p, 4,) space. One can plot

points on a (p, 0) coordinate system that represent which chords L(p, 4,) have signals

measured along them (see Fig. 12). The extent to which these points fill up such

a graph is a measure of how good one's coverage of (p, 4) space is. Because of the

restrictions mentioned above which exist regarding the availability of space in Al-

cator C, the coverage is not optimal. The detectors are not equally spaced in p and

p. and they leave some regions of (p, 4) space completely unsampled. Nevertheless,

as will be shown, the designed arrangement of eighty detectors does provide for sat-

isfactory reconstructions of actual emissivity functions, as long as one is interested

only in emissivities for which the poloidal and radial mode numbers are suitably

restricted (how these restrictions are determined will be discussed later). Recon-

structions with higher order harmonics would be meaningless, as the data obtained

with the present configuration simply does not contain the necessary information.

One must also establish, for a given viewing geometry, the relationship between

the signal in watts which is actually measured by a detector, and the brightness in

watts 'cm 2 steradian which is required for the reconstruction algorithm (this point

was mentioned briefly in Sec. 11.2.2). It is not. immediately apparent that there

does exist a direct relationship which allows one to express the measured quantity

in terms of the line integral formulation of the tomographic reconstruction problem

developed in Sec. 11.2.2. In order to derive the required relationship, one must use

the actual detector, aperture, and solid angle viewing geometry. Fig. 13 shows the

geometry in question for a single chip of eight detectors and its associated aperture.

Consider what the contribution to the total signal in watts on one detector is from

a small radiating volume element 6VU in the volume enclosed by the solid angle

through which the detector views the plasma. Assume that the emissivity e(r,O)

does not vary much over the volume elements 6V, and that the poloidal and toroidal

angles covered by the solid angle are small (i.e., tO < 1 and 6op < 1). One can then
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Figure 11 -- Arrangement of detectors on Alcator C. Each* set of eight
detectors views through its respective aperture with the beryllium window,
thus establishing "fan-like" chordal views such as the ones shown. The
detectors are numbered 1-80, starting at the lower inside of the vacuum
vessel and proceeding counter-clockwise from there.
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Figure 12 - Detector coverage of (p. 0) space for the viewing configu-
ration of Fig. 11. Each point indicates the impact parameter and angle of
each of the eighty viewing chords in the system.
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Figure 13 - Detector viewing geometry. The drawing is not to scale.
The plane of the detectors has been oriented parallel to the x-axis for
convenience only; any other orientation can be treated in the same way as
described here.
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treat the volume elements essentially as point sources. The detectors are treated

as points of area Ad (they are small enough relative to other relevant dimensions

that it is alright to think of them as points; one could divide the actual area of each

detector into smaller elements or "chunks" and treat each one of those as a point

in order to make a better approximation, but such an effort is not justified here).

If the power from the volume element 6V0 is being radiated isotropically, then the

contribution from it to the power incident on one detector is given by

6P' = &(r, 0) A4a rs 6Vfl. (36)
4?r L2

The factor of Ams gives the fraction of the power radiated by the element which

arrives at the detector of area Ad at a distance L. The factor of cos a arises from

the fact the the plane of the detector is oriented at an angle of incidence a with-

respect to the chord L(p, 0), and hence the detector "sees" less of the emission from

6Vr-, by that factor. It should be pointed out that this calculation does not take into

account the attenuation or filtering of the radiation due to the beryllium window.

This effect will be discussed later.

One now needs to calculate 6VC = 6= b 6z bL. where 6b is the element of width

which the solid angle of view subtends in the poloidal plane, bz is the length sub-

tended by the solid angle in the z direction, perpendicular to the plasma cross-

section (which corresponds to the toroidal direction), and 6L is the line element of

length along the chord L(p, ). Referring to Fig. 13 again, one can write, by virtue

of the fact that there are similar triangles,

6 - = Cosa - cos2 a (37)
L d/ cos a d

where w. is the width of the aperture in the x direction and d is the distance

between the planes of the aperture and the detector. The width w- is effectively

reduced by the factor of cos a because the chord is at an angle a with respect to

the plane of the aperture. Similarly. one also has

6z =_ =- cos a (38)
L d/ cos a d
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where w, is the width of the aperture in the z direction. Notice that in this case

wz is not effectively reduced by cos a because in the z direction the chord has no

component in the plane of the aperture. One thus has

w, L cos 2 a (39)
d

and

bz Lcos a (40)
d

from Eqn. 37 and Eqn. 38, respectively. The last two equations yield

w~wL 2 gos a
b = d2 6 L. (41)

Substituting the previous equation into Eqn. 36 gives

6Pi = &(r, 0) Ad wXw cos4 a6L. (42)
47rd2

Notice that the expression becomes independent of L, as the factor of L 2 in bVfl

cancels the one in the numerator of 6Pi.

The total power incident on the detector is therefore the sum of 6P over all the

small 6V volume elements in the given solid angle. However. one can let 6L -+ dL

and express the sum as an integral, because it is only along the dimension specified

by the chord L(p, 4) that one must perform the sum. Thus,

Pi=4 A 2 ww cos 4 a (r,6)dL (43)

gives the total signal in watts on the detector. Notice that A w'W' cos 4 a is a

constant with respect to the integration along a given chord, as Ad, we, w2, and

d are all pre-specified parameters, and cos a can be calculated from the known

coordinates of each detector and its aperture. Furthermore, as can be seen in

Fig. 13, cos a - cos0, so that cos 4 a = cos 4 . Hence, letting K A E wxw,

one has

p, = K cos4 ( JL(T) (r, O)dL . (44)
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Dividing this equation by K cos4 0 yields

=i0 E (r, 0) dL .(45)
Kcos4 4 JLpgp (

This quantity is a brightness and has units of watts/cm 2 /steradians; it is exactly

the expression for f(p, 0) given in Eqn. 18. Thus, one does indeed have the problem

posed in Sec. 11.2.2. The line integral of the emissivity gives a function of p and

d which can be inverted according the the techniques described in Sec. 11.2.2; one

need only adjust the measured quantity, Pi, by the factor K cos' 0 for each detector

in order to obtain a brightness which can be related to the emissivity via Cormack's

reconstruction method.

To conclude this section, a brief discussion of how the detectors actually work

and what their features are is presented here. Although the photodiodes are in-

tended for use with visible light, the characteristics described herein also hold true

in the case for which the incident radiation consists of soft x-rays. The photodiodes

employed are commercially manufactured silicon PIN planar-diffused devices. A

PIN photodiode is a diode in which a heavily doped p region and a heavily doped n

region are separated by a nearly intrinsic and highly resistive i region. In its usual

form of operation, the diode is reversed biased to such an extent that the intrinsic

region is depleted of mobile charge carriers and the applied voltage produces a large

electric field which extends across the entire region. Hole-electron pairs which are

generated by photons absorbed in the i region can then be swept out of it by drifting

in the electric field. These charge carriers produce a current in the external circuit

to which the diode is connected. Under the appropriate operating conditions, the

amount of current produced is directly proportional to the power incident on the

diode; for the detectors used in this project. 3.3 ysW of incident power yields 1 uA

of diode current (according to the manufacturer's specifications).

The advantage of a PIN structure over an ordinary PN structure for photode-

tection is that the former has better response time, responsivity (sensitivity to

incident light), and linearity. The diode is made in such a way that the i region

is much longer than either the p or n region. The depletion region depth is thus

59



much larger in a PIN device that in a PN device. and it is this feature which leads

to the better performance of PIN photodiodes, as incident photons are absorbed

in the i region, and the optically generated charge carriers are then swept out by

the applied electric field. In practice, however, it is found that the diodes work

well even when zero bias voltage is applied to them, and for reasons which will be

discussed in Sec. 111.3. it was decided to operate them in this manner.

Typical dimensions for the devices used in this experiment are a 0.5 Ism thick

p region on top (where the radiation is incident), about 300 gm of intrinsic silicon,

and a I prm thick n region at the bottom. There is also a 0.1 um thick protective or

"dead" layer of SiO 2 on top of the p region. Knowing the dimensions of the different

layers in the device and thethickness of the beryllium window, one can calculate

how efficiently a detector can absorb photons (i.e., what fraction of the incident

photons at a given energy is actually absorbed in the given thickness of silicon).

The efficiency of detection can be found using the mass attenuation coefficients of

beryllium and silicon as a function of the energy of the incident radiation (these

numbers are tabulated). Fig. 14 shows a plot of the detector efficiency as a function

of incident photon energy.
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DETECTION EFFICIENCY OF X-RAYS

10010

PHOTON ENERGY (KEV)

Figure 14 - Plot of detector efficiency (from Ref. 21). The sudden
drop which occurs around 2 keV is the K-shell electron absorption edge
in the silicon of the photodiode detector.

61

1.0 I I I I I l ii I I I I I II

0.81

0.61E
F
F
I
C
I
E
N
C
Y 0.4

0.21

0.0
1

--



111.2 Vacuum System

If the ultra-high vacuum in Alcator C is to be maintained (which is on the

order of 10- torr partial pressure of N 2 ; i.e., air), it is necessary to isolate the

components described in the previous section (detectors, G-10 blocks, cables, etc.)

from the evacuated volume in the machine's vacuum chamber. Therefore, each

chip/mounting block/aluminum tubing assembly (with eight detectors each) is slid

down a stainless steel tube of rectangular cross-section ( in x 1 in). At the detec-

tor end of the tube, 2 cm away from the plane of the detectors, the tube is sealed

off by welding a stainless steel endpiece onto it. The -L in thick tube wall keeps the

detector set-up isolated from the Alcator vacuum once the array is installed on the

machine, and it also has the aperture which defines each detector's field of view.

The beryllium windows are sealed onto each aperture by means of a high-vacuum

epoxy in order to insure a good separation between the volume inside each tube

and the Alcator C vacuum chamber. The thickness of the beryllium windows is

determined by the need to have them be strong enough to withstand up to one at-

mosphere of pressure while still maintaining a good seal with the Alcator vacuum,

and thin enough to allow soft x-ray radiation to pass through without unacceptably

high attenuation. It is found that windows of 0.002 in (50 pm) thickness work well

in this respect, as extensive vacuum tests were performed before actually installing

the apparatus on the machine.

The other end of each tube is welded onto a small rectangular flange with an

opening where the cables come out; these flanges are then bolted (vacuum tight)

onto a 16-inch diameter rotatable flange. The 16-inch flange is in turn bolted onto

the entrance of the port (which is a stainless steel "can") at the top or bottom of the

machine in order to seal the Alcator vacuum off from the atmosphere. The volume

inside the tubes can thus be maintained at atmosphere (or some other desired

pressure), while outside the tubes is the Alcator vacuum. The final assembly is

such that the tubes come down (or go up) from the 16-inch flange at the entrance

to the port and enter the slots which lead to the edge of the vacuum vessel, where
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the detectors are located. Fig. 15 and Fig. 16 show photographs of the stainless

steel tubing assembly attached to the 16-inch flange.

On the outside of the 16-inch flange, a rectangular stainless steel enclosure

(about 4 in x 4 in x 13 in) is bolted on so as to isolate a volume over the small

flanges from which the detector coaxial cables exit. There is a q in thick piece of4

plexiglas bolted on the top, with forty coaxial vacuum feedthroughs epoxied into

holes which are drilled in the plexiglas.. The detector cables are connected on the

inside of the enclosure to these feedthroughs, and cables connected on the outside

then take the detector signals to the electronics and data acquisition systems. The

enclosure has an outlet and valve so that it can be evacuated by an external vacuum

pump. In this manner. the volume inside the tubes where the detectors are can be

pumped down to some pressure less than that of atmosphere (a "rough" vacuum).

The extent to which the pressure can be lowered is limited by the outgassing rate

of the coaxial cable insulation and the plexiglas cover on the box. This part of the

hardware is shown in the photograph of Fig. 17.

Having this external rough vacuum feature is desirable for two reasons. First,

the beryllium windows are very thin and fragile and must withstand very high pres-

sures. and if there should be a failure in one of them and a vacuum leak develops,

one would not want to have the Alcator vacuum directly contaminated by the atmo-

sphere. Having an intermediate vacuum system would mitigate the harmful effects

of such a leak. and one could conceivably still keep the diagnostic operating on the

machine, if the leak were small enough, by pumping continuously and maintaining

the inside volume of the tubes reasonably well evacuated. The second consideration

stems from the fact that Alcator's Bitter magnet is cooled by liquid nitrogen, and

thus the temperature at the viewing end of the tubes can be quite low, as it is very

near the magnet structure (the temperature in this area inside 4 tube has been

measured to be about -95' C during the operation of the tokamak). If there were

an atmosphere of air pressure inside the tubes, water vapor present could condense

on the surface of the detector arrays, and the frost might lead to electrical short
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circuits, cause damage to the beryllium windows, and attenuate the soft x-ray sig-

nals. An atmosphere of pressure in the 2 cm gap between the windows and the

detector viewing surface would not attenuate the signal noticeably, but having that

volume evacuated eliminates that loss as well. In practice, it is found that pumping

down the detector assembly before each day's experimental run is sufficient to avoid

the aforementioned problems. However, one of the beryllium windows did in fact

develop a minor leak, which eventually required that the assembly on which it was

be pumped continuously in order to avoid contamination of the Alcator vacuum

and the formation of frost on the detectors.
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Figure 15 - Photograph of stainless steel tubing assembly attached to
16-inch flange (Alcator vacuum side). The beryllium windows can be seen
at the end of each tube. The tubes are about 1 m long.

65



Figure 16 - Photograph of stainless steel tubing assembly (atmosphere
side). The forty miniature coaxial cables from the detectors come out of
the opening in the small rectangular flanges which are bolted onto the
larger 16-inch flange.
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Figure 17 - Photograph of external rough vacuum enclosure, bolted
onto the 16-inch flange. There are forty coaxial vacuum feedthrough con-
nectors epoxied in the plexiglas cover which seals the enclosure. From
there, cables go to the electronics.
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111.3 Electronics, Data Acquisition, and Calibration

Once the power incident on each photodiode has produced a current, this sig-

nal must be measured and recorded so that it can be used for tomography. The

first step in this process involves the use of miniature coaxial cables to transmit

the signals from the detectors through the rough vacuum housing to the electronic

circuitry which amplifies them. The rest of the process involves equipment designed

to sample and record the data into a form which is compatible with the computer

that will ultimately be used to perform the calculations which yield tomographic re-

constructions. In order to obtain more understandable and reliable reconstructions,

one must consider how the various components of the system affect or change what

is being measured (soft x-ray power emitted by the plasma). Before any radiation

at all is incident on the detectors, the beryllium windows alter the emission from

the plasma, so one must understand the filtering effects of the beryllium windows.

Furthermore, the detectors and electronics in this system must be calibrated some-

how in order to account for the non-uniformity which exists among detectors and

circuits and to have a more accurate representation of the relative magnitudes of

the signals involved.

The first stage of the electronics is, of course, the photodiode detectors. As dis-

cussed in the previous section, PIN photodiodes are usually operated in a reversed

biased mode in order to facilitate the efficient collection of the charge carriers gen-

erated by incident photons. In this experiment, however, it is found that a non-zero

bias voltage produces an unacceptably high "dark" current (the current from the

photodiode when no radiation is incident upon it). Also, no noticeable improve-

ment in photodiode response is observed when the bias voltage is increased, as one

would expect. Thus, in order to minimize the dark current, which produces an

unwanted background signal, the photodiodes are operated in an unbiased mode.

The I-V characteristics supplied by the manufacturer (shown in Fig. 18) indicate

that a photodiode is still in the linear region of operation (for signals of interest)

when the bias voltage is zero and a nearly zero load resistance is connected to it.
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1

-3

+1.0 +0.05

RADIANT
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Load Line #1: Zero bias voltage and near sero load resistor
Load Line #2: -7 V bias voltage and near zero load resistor
Load Line #3: Zero bias voltage and large load resistor

Figure 18 - I-V characteristics of PIN photodiodes. The signals mea-
sured in this experiment rarely exceed 100 pA, so the photodiodes are in
the linear region of operation for load line #1, the one on which they were
operated.

Such is the case in this experiment, as the amplifiers to which the photodiodes send

their currents have a very low effective input impedance.

The amplifiers used in this experiment are commercially available logarithmic

amplifiers -(each one contained in an encapsulated package) which take the current

signal from a photodiode as the input and produce an output voltage which is

proportional to the logarithm of the input current. These amplifiers offer a good

combination of fast response (200 kHz bandwidth at signal levels on the order of

1 MA), wide dynamic range (six decades: I nA to I mA), high precision (on the order

of one percent maximum error), and relatively low cost. The transfer function for
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these amplifiers is shown in Fig. 19. Using logarithmic amplifiers is found to be very

convenient in this application. Because of the wide range of plasma parameters over

which Alcator C can operate, the amplitude of the peak soft x-ray signal can vary

considerably (the range of observed signals covers four orders of magnitude). If

linear amplifiers were used, it would be necessary to incorporate some kind of "gain

knob" into the system, and one would have to adjust it accordingly, depending on

the signal levels expected. These levels can vary from discharge to discharge and

from detector to detector. The measurement would therefore become somewhat

problematic. because if the gain were not properly set, the recorded signals might

be too small (not enough gain) or too large (saturation) in amplitude to yield useful

results. However, logarithmic amplifiers enable one to follow the wide variation in

signals without recourse to any gain adjustment. Fig. 20 is a schematic of the

photodiode/amplifier circuitry.
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20 1-1>- 19-4 10-3
E- 0
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0
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INPUT CURRENT (Amps)
Log Scale

Figure 19 - Transfer function of the model 759N logarithmic amplifiers.
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Figure 20 - Schematic of photodiode/amplifier circuitry, as used in
this experiment. Pin #4 is used if the input signal is a voltage instead of
a current. Pin #1 and/or pin #2 are used to set the scale factor for the
output signal. Pin #9 can be used for an external trimming resistor.

71



Once the signals have been amplified logarithmically. a data acquisition sys-

tem records them and eventually transfers them to a computer for subsequent data

processing. The voltage signal outputs from the amplifier units are sampled in real

time at 10 kHz by analog-to-digital converter CAMAC modules. Each sample has

a resolution of twelve bits, which corresponds to about 2.5 mV resolution on a digi-

tizer's -5 V to -5 V scale. The data are then temporarily stored in several CAMAC

memory modules. In the time between plasma discharges ("shots"), which is usu-

ally about five minutes long, the data are read out from the memory modules via a

CAMAC serial highway network which is interfaced to a VAX 11/780 computer. A

data compression program structures the digitized data into a more compact for-

mat; they are then stored in a disk file and ultimately recorded on magnetic tape,

from which one can retrieve the information later for analysis. The "raw" data

(current signal from each detector) can be displayed almost immediately on a com-

puter terminal CRT in order to determine whether or not the system is operating

properly and for the purposes of premliminary examination. A block diagram of

the electronics and data acquisition system is shown in Fig. 21.

As a result of the fact that there are so many channels of data (eighty) to be

recorded and that data acquisition and memory units are expensive, and in the

interest of not occupying too much disk space in the computer to which the data

are eventually sent, one is limited in terms of how much information can actually

be recorded and stored for a given plasma shot. Hence, data are usually taken only

for a 200 ms time frame within a shot which, in these experiments, typically lasts

for almost 600 ms (the time during which the plasma current is non-zero). The

location of this time frame within the duration of the shot can be set beforehand

by appropriate adjustments to the data system time sequencer which triggers the

CAMAC digitizer modules. One must therefore anticipate which segment of the

shot will yield the most interesting data; typically, this is during the time when the

plasma current is constant ("flattop," which lasts roughly about 250 ms).

Once the data for each shot are finally recorded and stored in some suitable

form, they can then be processed by the appropriate computer software in order
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Figure 21 -- Block diagram of electronics and data acquisition system.
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to produce tomographic reconstructions of the emissivity. The computation should

include those factors which account for the ways in which the quantity which one

seeks to measure is modified by the components in the system. Specifically, one has

to contend with the effects of the beryllium windows, which act as soft x-ray filters,

the variation in performance from photodiode to photodiode and chip to chip, and

any non-uniformities which might exist in the logarithmic amplifier circuits. One

must therefore perform some sort of calibration measurement or have some other

way of incorporating these effects into the reconstructions.

An absolute calibration measurement is of no interest in this situation, as

the effect of the beryllium filtering, which cannot be fully accounted for unless

one knows the complete spectrum of the radiation from the plasma, precludes the

determination of an absolute emissivity level. Although the windows do allow soft

x-rays of various energies to pass through at acceptable levels of attenuation, it still

alters the radiation from the plasma in such a way that the actual numerical values

of the emissivity cannot be determined unless one knows or makes assumptions

about the energy distribution of the radiation emitted. What is actually measured

can be described by considering how the beryllium windows affect the distribution

of energies which characterize the radiation incident upon the detectors. If the

frequency (or equivalently, energy) distribution of the radiated power density in the

plasma is given by dP,/dv, then the total "filtered" emissivity is

&(r,9) = " r (v) du (46)
dv

where r(v) is the transmission function which indicates what fraction of the energy

at a given frequency makes it through the 50 pm thickness of beryllium. The values

of r(v) range from zero to unity and can be readily obtained from the tabulated

mass attenuation coefficients for beryllium. It is this emissivity in Eqn. 46 which

appears in the expression for the brightness, f(p, ), which is the line integral of

e (r,B) along a chord L(p,#). Notice that dP,/dv depends on various parameters in

addition to frequency, such as density and temperature, but these quantities can be

expressed as functions of position, and thus F is written in terms of r and 6. In order
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to obtain the actual emissivity of the plasma. one has to determine what dP,/Idv

is and integrate it over all frequencies. This information is virtually impossible to

unfold from the data under the present circumstances, as the actual spectrum of the

radiated power can vary significantly (depending on the conditions of the discharge)

and is very difficult to ascertain in its entirety. Thus, the reconstructions obtained

in this experiment do not have the magnitude of the emissivity corrected for the

effects of the beryllium windows.

One can obtain an estimate, however, of how much the calculated emissivi-

ties would have to be modified by considering the case in which Zeff = 1. At the

temperatures of interest, in Alcator C, this situation will lead to a spectrum which

is dominated by bremsstrahlung radiation. One could then use the expression for

dP,/dv in Eqn. 13 and evaluate the integral in Eqn. 46 to find that the correction

factor is approximately four. The degree to which the correction factor is greater

than this number is a measure of the extent to which impurity radiation contributes

to the soft x-ray emission and is essentially the emissivity enhancement factor dis-

cussed in Sec. 11.1.2. It is clear, therefore, that this experiment can yield useful

information, even if the beryllium filtering is not accounted for. The general shape

and qualitative features of the emissivity function will still be reflected in the un-

corrected measurement, and any fluctuations which may be indicative of MHD or

other interesting phenomena should still be observable.

Another useful piece of information is the relative calibration factor of each de-

tector. These numbers can be obtained by measuring the signal from each detector

when they are all exposed to the same source of x-rays. By computing an average

signal based on those measurements and then calculating how much each detector

signal differs from that, average, one has a notion of how much the detectors deviate

from being uniform in their response to incident power. These measurements were

conducted over a range of energies (a few keV to about 30 keV) by using a labora-

tory x-ray source in order to observe how the detector response varies as a function

of the incident energy over the range of interest. It is found that the response is
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essentially independent of the energy of the incoming radiation, and that the varia-

tion from photodiode to photodiode and chip to chip is quite small. The detectors

all have relative calibration factors close to unity, exhibiting a standard deviation of

about four percent around the mean signal. These measurements were made with

each detector connected to the same amplifier used when taking actual data on Al-

cator C. The relative calibration factor thus also includes any possible effects arising

from variations in the amplifier electronics. In addition, voltage calibration factors

were determined for each channel of the CAMAC modules which digitize the data.

By incorporating these factors into the computations which yield the reconstructed

emissivities, one can compensate for the relative variations which are present among

the eighty channels of data by simply applying a constant multiplicative correction

to each signal.
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Chapter IV

EXPERIMENTAL RESULTS

IV.1 Testing the Reconstruction Algorithm

As discussed in Sec. 11.2.2, the tomographic reconstruction method developed

by Cormack was chosen for the purposes of this experiment, and it is implemented

in a computer code. The program takes the voltage signals recorded by the CA-

MAC data acquisition system, converts them to current signals via the transfer

function of the logarithmic amplifiers, converts these signals to their equivalent in

watts and then brightness, and then calculates the emissivity based on the algo-

rithm described in Sec. 11.2.2. The emissivity is computed at a single point in time

during a given plasma shot. The code produces plots of the emissivity and other

calculated quantities. as well as plots of the raw signals. The calculations involved

in performing a reconstruction based on eighty channels of data typically take about

three seconds of CPU time on a VAX I1/780 computer; the total amount of CPU

time is somewhat longer due to the several plots which are generated.

In order to test the algorithm. another code is used to generate the signals

that should appear on each detector for any specified emissivity function, based

on the given viewing geometry. These test signals are then given as inputs to the

reconstruction code. The emissivity function produced by the code is compared

with the originally specified function. A useful means of comparison is to plot the

Fourier components of the input and reconstructed emissivities as a function of ra-

dius for each poloidal mode number m. Based on this comparison, one can assess

how faithful a reproduction of the prescribed emissivity function the reconstructed

one is. One can also introduce random or systematic errors into the simulation and

observe how sensitive the algorithm is to them. It is on the basis of such tests, by

a process of trial and error, that it was determined that believable reconstructions

are obtainable for the given coverage of (p, 0) space if one restricts the range of

the m and 1 mode numbers (poloidal and radial, respectively) to be m = 0,1 and
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I = 0,1,... ,6. This range of mode numbers satisfies the constraint that the number

of unknown a" coefficients not exceed the number of known brightnesses (recall

the discussion in Sec. 11.2.2 regarding the solution for the a" coefficients). It is

also possible to satisfy this constraint by extending the maximum poloidal mode

number to m = 2 and reducing the maximum radial mode number to I = 4, for

example. and thereby increase the ability to resolve the poloidal mode structure.

In this situation, one has to sacrifice some of the radial resolution in exchange for

the increased poloidal resolution. For the case of functions without much radial

variation, this set of mode numbers may yield an adequate reconstruction, and the

trade-off in resolution may be acceptable. However, simulations show that functions

whose poloidal components do possess appreciable radial variation cannot be reli-

ably reconstructed because of the decreased ability to resolve the radial structure.

The primary interest of this work is in being able to reconstruct, with a reasonable

degree of confidence, the m = 1 component present in the emissivity, so it is prefer-

able to limit the maximum poloidal mode number to m = I and opt for the best

radial resolution which can be obtained in that situation. Tests show that, in this

case, optimal reconstructions are performed when the maximum radial mode num-

ber is 1 = 6 (beyond that. and with the introduction of noise, the reconstructions

begin to exhibit oscillations in radius which are not present in the input functions).

In Alcator C, it is observed that the measureable soft x-ray emission goes to

zero around r : 10-11 cm (a = 16.5 cm is the minor radius of the plasma) because

of the decreased temperature and density beyond that radius and the filtering effects

of the beryllium windows. Thus, for the purposes of the reconstruction algorithm

used here, one seeks to force the emission to zero for r > 10 cm. By artificially

introducing data points for f(p, 0) of zero value at various angles 4 in the range

10 < p < 12 cm. the least squares fitting routine which computes the ac" coefficients

in Eqn. 35 can more readily produce fits to the data which go to zero smoothly at

r ; 10 cm and remain zero thereafter. Computer tests show that the introduction

of ninety-six such data points of zero value does not alter the fits which one obtains

for the m = 0 component, and it makes it possible to obtain realistic fits which go
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to zero smoothly and without undue oscillations for the m = 1 component. As there

is never any signal beyond p = 12 cm. the normalization radius r, which appears

in the definition of g(r,0) in Eqn. 19 is taken to be r, = 12 cm.

Using these assumptions, various emissivity test functions are used to establish

the performance of the reconstruction algorithm and its sensitivity to errors and

noise in the data. As an extreme case, one can attempt to reconstruct an emissivity

function which is hard to reproduce exactly using only low-order mode numbers.

One such function is an emissivity which is constant out to a certain radius and then

drops instantaneously to zero and stays there beyond that radius (a "step" function

in radius). An infinite number of radial harmonics is required in order to generate

an exact fit, and the discontinuity in the function at the radius where it goes to

zero makes it difficult to obtain a good reconstruction because of the rather sparse

coverage of (p, 4) space and the limited number of m and 1 values. Fig. 22 shows

the result of a reconstruction in which the input function is £ (r, 0) = 0.2 watts/cm3

for r < 10 cm, and e (r, 0) = 0 for r > 10 cm (0.2 watts/cm3 is a typical uncorrected

emissivity level). Notice that the simulation is performed under the assumption that

no beryllium windows are present in the apertures; hence, there is no attenuation or

filtering factor included in the calculation of the detector signals when the simulation

code computes the line integrals of & (r.0) along each chord L(p, ). One can see

that even with the low harmonic numbers used, the reconstructed function does

not deviate too badly from the input function, except for the "overshoot" (Gibbs

phenomenon) which is expected in a situation such as this one. The reconstruction

in this case is made particularly difficult because of the fact that e is non-zero out

to r = 10 cm, whereas the data are available only out to p = 6.2 cm. The residual

"ripple" noise in the reconstruction is about five percent.

It is also important that no spurious harmonic content be introduced when

attempting to reconstruct functions which do not possess certain poloidal mode

numbers. Ideally, in the case of a constant emissivity test function, there should be

no Fourier component for m = 1, as a uniform emissivity function has no poloidal

variation (no effort is made to recover higher order poloidal mode components).
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Figure 22 - Test reconstruction of uniform emissivity function (Fourier
components).
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That the introduction of non-existent harmonics does not happen is evident, as there

is no appreciable m = I component in the reconstruction of the constant emissivity

function. One can thus be confident that the numerical calculations performed

yield good fits even when the input function has stringent conditions for matching

it. Furthermore, the process does not produce artifacts in the reconstruction when

the mode numbers are suitably restricted.

Another case which is simulated is that of a peaked emissivity function. A

convenient function to use is a Gaussian, as many equilibrium (m = 0) emissivities

exhibit Gaussian-like shapes. The plasma equilibrium is also usually shifted about a

centimeter toward the outside (due to the Shafranov shift). In order to incorporate

this feature into the test, the Gaussian emissivity input function has its peak shifted

both vertically upward and horizontally outward by one centimeter with respect to-

the center of the vacuum vessel, which is taken to be the origin of the coordinate

system (a vertical shift is also included in order to test the algorithm's ability to

reconstruct up-down shifts. if there are any). In order to illustrate the intermedi-

ate steps in the reconstruction process. the computer code generates a plot of the

brightness measured on each detector channel, which can be seen in Fig. 23. The

code also produces a plot of the brightness data in (p, 0) space and of the surface

which is fitted to that data from the least squares fitting routine that computes

the a"' coefficients. Such a plot is given in Fig. 24. As one can see in Fig. 25,

the reconstructed functions match the input functions rather well. Fig. 26 shows a

plot in the poloidal cross-section of the contours of constant emissivity values for

the reconstructed emissivity; from it, one can see that the peak of the emissivity is

horizontally and vertically displaced by about +1 cm from the origin, as it should

be. A three-dimensional plot of the reconstructed emissivity is shown in Fig. 27.

One of the goals of this experiment is to observe the magnetic island structure

associated with the rn = I resistive tearing mode, which is believed to occur dur-

ing sawtooth oscillations. Thus, another useful test is to reconstruct an emissivity

input function which simulates an m = I island structure. Fig. 28 shows such a

reconstruction, and Fig. 29 is a contour plot of the reconstructed emissivity. Again,
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Figure 23 - Brightness test data from a shifted Gaussian emissivity
function. The detectors are numbered 1-80. starting at the lower inside
of the vacuum vessel and proceeding counter-clockwise from there (see
Fig. 11). Each set of eight detectors comprises one photodiode chip and
hence one "fan" of views, yielding the profiles shown above.
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Figure 24 - Brightness test data and fitted surface in (p,O) space for
a shifted Gaussian emissivity function. Solid lines from a point to the
surface indicate that the point is above it, whereas dashed lines from the
point to the surface indicate the opposite. The artificially introduced zero
values for f(p, o) can be seen at the largest values of the chord impact
parameter p. It can be seen that the fit of the surface to the f(p, 0) data
points is a good one.
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Figure 25 - Test reconstruction of shifted Gaussian emissivity function
(Fourier components).
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Figure 26 - Test reconstruction of shifted Gaussian emissivity function
(contour plot).

85

16.

12.

8.

- I.

U

I-0.

CD

-12.

-16.
. -1 6.



SOFT X-RRY EMISSIVITY
MPX 0.19 WRTTS/CM3

Figure 27 -Test reconstruction of shifted Gaussian emissivity function
(3-D plot).
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Figure 28 - Test reconstruction of an m = I island structure (Fourier
components). A "hollow" m = 0 profile is required in order to obtain an
island structure.
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Figure 29 - Test reconstruction of an m = I island structure (contour
plot). The position of the island is reproduced well, as it was specified to
be at 0 = 450 in the input function.
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the reconstruction matches the input reasonably well, and the plot of contours of

constant emissivity shows that the island is clearly discernible. The position and

extent of the perturbation are resolved quite satisfactorily. In this simulation, the

peak amplitude of the m = I perturbation is chosen to be about one-half of the

peak amplitude of the equilibrium emissivity. A perturbation of this magnitude is

required if an island structure is to be observed with the given detector configu-

ration; as will be shown, perturbations of this relative amplitude are observed in

pellet-fueled discharges after the pellet injection, when large scale m = 1 oscillations

are induced.

The restrictions placed on the maximum values of m and 1 which can be used

in order to obtain believable reconstructions are determined by the limited coverage

of (p,4) space and by means of an error analysis which attempts to accounts for

those deviations in the viewing geometry and detector measurements that degrade

the accuracy of the reconstructions. Noise is introduced into the system via random

and systematic errors in the simulated data. Random errors, which can represent

calibration inaccuracies or some other unpredictable fluctuations in the measure-

ment. are incorporated into the calculations of a reconstruction by simply increasing

or decreasing the magnitude of each detector signal. The amount by which the sig-

nal is changed is generated from a Gaussian distribution of numbers; one specifies

the standard deviation in the errors which are added to or subtracted from each

detector signal. The systematic errors are most likely due to the uncertainty in

detector positioning. Great care was taken in the machining of the apparatus and

in the installation of the arrays on the machine so that all the detectors and their

respective apertures would be where the design calls for them to be with respect to

the center of the vacuum vessel.

Test cases were thus run for emissivities whose signals had five percent (stan-

dard deviation) random error and for which the shift in detector positions is given

by a randomly generated offset whose standard deviation is estimated to be 1 mm.

It was found that, at these prescribed error levels, using m = 1 and I = 6 as the

maximum values of m and 1, one can still obtain believable reconstructions with the
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given coverage of (p, 4) space. Fig. 30 and Fig. 31 show the result of a reconstruc-

tion under these conditions. The input function is the same shifted Gaussian used

above and reconstructed in Fig. 25 and Fig. 26. Note that the corrections for the

relative calibration factors are already included in the reconstruction. The shift in

the detector positions accounts for most of the deviation from the input function,

and so the greatest uncertainty in this experiment arises from the differences be-

tween the actual detector coordinates and their design values. The errors incurred

in this simulation are not found to be too excessive, as the information regarding

the position of the emissivity peak and the general shape of the function is still

well-preserved (see Fig. 31). In fact, the plot in Fig. 30 does not differ very much

at all from the reconstruction in Fig. 25 of the same input function without the

inclusion of errors, indicating that error levels comparable to the ones tested here

should not introduce significant deviations between the actual emissivities and the

reconstructed ones.

More detailed numerical analysis and testing indicate that this diagnostic can

resolve features and perturbations in the emissivity (fairly near the central region

of the plasma) which have a spatial extent as small as 1 cm. and that it can detect

changes in plasma position of a few millimeters. The resolution degrades somewhat

as one goes further out in radius.
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Figure 30 - Test reconstruction of a shifted Gaussian emissivity with
errors (Fourier components).
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Figure 31 - Test reconstruction of a shifted Gaussian emissivity with
errors (contour plot).
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IV.2 Reconstruction of an Equilibrium Emissivity

The first example of actual data to be presented is from a typical sawtoothing

discharge under equilibrium conditions. Fig. 32 shows the plasma current and line-

average electron density traces as a function of time during the shot. Fig. 33 presents

a trace of the current signal from one of the photodiodes which views the plasma

along a chord that passes near the center of the plasma. This sawtoothing soft x-ray

emission is typical of those observed in the hot, central core of the plasma under

these discharge parameters. The rising part of each sawtooth corresponds to the fact

that the plasma's central temperature is increasing as a result of the ohmic heating

input power. The plasma current in the center is also increasing, because plasma

resistivity drops with rising temperature. When the current reaches the point at

which it makes q(r = 0) < 1, an MHD instability sets in and very rapidly "flattens"

the temperature, current density, and particle density profiles in the central region.

The instability which leads to the flattened profiles is believed to be the m = 1/n = 1

resistive tearing mode, in which a magnetic island forms and grows until an internal

disruption occurs via magnetic reconnection or turbulence.3 6' 3 7 It is this flattening

which leads to the sudden drop or "crash" in the sawtooth signals.2 2 ,2 4

Obtaining reconstructions of the soft x-ray emissivity just before and just after

a sawtooth crash is therefore a case of interest. The trace of the current signal in

Fig. 33 is shown on an expanded time scale in Fig. 34, with two points labelled,

indicating the times at which reconstructions were made. Fig. 35 has the brightness

data obtained from the raw signals (arising from the pre-crash emission) on each

detector channel. Fig. 36 shows the brightness data and fitted surface in (p,4)

space for the pre-crash reconstruction as an example of a fit which is calculated

for real data. A contour plot of the plasma cross-section showing the surfaces of

constant emissivity is given in Fig. 37 for the same time. The peak of the emissivity

is seen to have both an in-out and up-down displacement relative to the origin

(the center of the vacuum vessel; recall that the reconstruction algorithm makes no

a priori assumption about the position of the plasma center). The in-out shift is

about 0.5 cm, whereas the up-down shift is about 1.5 cm (both are in the positive
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Figure 32 - Plasma current and line-average electron density of dis-
charge under equilibrium conditions.
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Figure 33 - One of the eighty detector signals from an equilibrium
sawtoothing discharge. The impact parameter of this detector's chord of
view is p = 0.9 cm, so it is viewing almost directly through the center of
the plasma.
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Figure 34 - Detector signal from equilibrium sawtoothing discharge

(expanded time scale). Points (a) and (b) indicate the times chosen for
the tomographic reconstruction.

96

I I

60



6.0

5.0

ci 4.0

CJ

3.0

(Jn
2.0

CE

1.0

BRIGHTNESS

I I I I I I I I

- - - - - - - - - - - - - - - - - -

- -- - - - - - - - - - -

- - - - - - - - - - -

- - - - -- - - -- -

-- - -I - - - - - - - - - - - - -

0.01 I I I I I

0. 8. 16. 24. 32. 40. 48. 56. 64. 72. 80.

DETECTOR NUMBER

Figure 35 - Brightness data from equilibrium discharge taken at
point (a).
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Figure 36 - Brightness data and fitted surface in (p, $) space for
equilibrium sawtoothing discharge at point (a). Solid lines from a point
to the surface indicate that the point is located above the surface; dashed
lines indicate that the point is below the surface.
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Figure 37 - Reconstruction of equilibrium emissivity (contour plot) at
point (a).
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direction). The horizontal displacement can be attributed to the Shafranov shift

which is expected for the MHD equilibrium in a tokamak. The vertical displacement,

however, is a bit more mysterious, especially because it is rather large and therefore

within the spatial resolution of the viewing system. Hence, it is not immediately

attributable to the uncertainties or limitations of the experimental apparatus.

It might appear that this feature reflects a real property of the emissivity or

perhaps an actual physical phenomenon. However, if one computes the centroid of

the emissivity (the emissivity's "center of mass") and examines its location rather

than the location of the emissivity's maximum value, one finds that the outward

shift remains about the same (0.5 to 1 cm), but that the upward shift becomes about

1 or 2 mm, which is quite small and less than the uncertainty of the measurement

arising from systematic or random errors. Furthermore, the central portion of the-

emissivity is fairly flat (much like a Gaussian function) and the exact location of

the peak is quite sensitive to any small variations or errors in the signals. The

centroid, however, is not so dependent on the variations or errors in the signals and

therefore is not shifted by such large amounts. Thus, it is not clear how meaningful

the vertical displacement of the peak is.

One explanation as to why the peak of the emissivity is shifted vertically by a

fairly large amount is related to the possibility of upward-drifting impurities. These

species can contribute significantly to the emission and perhaps even dominate the

background bremsstrahlung emission. leading to a biasing of the emissivity values

in the direction of the impurity drift. One can only speculate, however, about what

mechanism(s) would bring about such an upward drift in the impurity distribution.

Another possible explanation is that the absence of views from the side results in a

lack of information about up-down motion which, because of any unduly large errors

or uncertainties in detector positioning, might cause the reconstruction algorithm

to produce emissivities whose peak values are shifted vertically by an inordinate

amount. However, a considerable effort was made to insure that the detectors were

correctly positioned and to minimize the uncertainties in their location, so it is not

likely that this explanation accounts for the observed shift.
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The next set of figures illustrate the change with takes place in the emissivity

after the sawtooth crash. Fig. 38 is a plot of the magnitude of the m = 0 and

m = I Fourier components as a function of radius for the pre-crash and post-crash

reconstructions. The flattening of the m = 0 profile in the central region and its

broadening in the outer regions is readily resolvable and provides a nice picture of

what happens to the plasma at a sawtooth crash. The m = I components, which

also change somewhat because of the crash, are present due to the fact that the

plasma equilibrium has a Shafranov shift and not because there is an m = 1/n = 1

instability.

Fig. 39 shows three-dimensional plots of the emissivity before and after the

sawtooth crash. One can observe a slight hollowing in the central portion of the

post-crash emissivity; however, it should be recalled that only a finite number of

harmonics are used in the reconstruction, and thus there is a residual ripple noise

which is of the order of five percent (as discussed in the previous section). Because

the hollowing is so small, then, it may not be real. The last figure in the sequence

for this shot is Fig. 40. In it, the two three-dimensional plots are superimposed.

The portions of the graphs which intersect are seen as a white "ring" in the top half

of the plot; this feature physically represents the inversion radius of the sawtooth

crash, which should be indicative of where the q = I surface is.
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Figure 38 - Reconstruction of equilibrium emissivity before (point (a))
and after (point (b)) the sawtooth crash (Fourier components).
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Figure 39 - Reconstruction of equilibrium emissivity before (point (a))
and after (point (b)) the sawtooth crash (3-D plots).
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Figure 40 - Overlay of pre-crash and post-crash 3-D plots of equilibrium
emissivity.
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IV.3 "Giant Sawteeth" after Pellet Injection

Experiments have been performed on Alcator C in which pellets of frozen

hydrogen or deuterium are injected into the plasma at high velocities (almost

10 5 cm/sec).' The purpose of these efforts is to study pellet injection as an al-

ternative to the standard method of fueling fusion plasmas, which is by the gas

puffing of neutral atoms at the plasma edge. Because of the considerable perturba-

tion in the plasma density and temperature caused by pellet injection, interesting

MHD activity is induced. One phenomenon which is observed is the occurrence of

"giant sawteeth," which are similar to ordinary sawteeth, such as those analyzed

in the previous section, but larger in amplitude and exhibiting a longer period of

oscillation. Their longer period and larger amplitude enable one to resolve the pre-

cursor oscillations which take place just before a sawtooth crash. These oscillations

are not readily observable in the case of ordinary sawteeth because they are varying

too rapidly compared to the data digitization rate and their amplitude is too small.

However, the data digitization rate (10 kHz) is fast enough to sample adequately

the larger-amplitude precursor oscillations which take place after pellet injection.

Because the oscillations are believed to be caused by the m = 1/n = I resistive

tearing mode, it is desirable to study them with tomography. The fact that they

can be clearly measured should facilitate the effort to resolve the magnetic island

structure which is theoretically present.

Fig. 41 shows traces of the plasma current and line-average density for a shot

in which pellet injection took place. The sudden increase in the line-average density

as a result of the ionization of the atoms in the pellet is clearly visible. Fig. 42 is a

trace of one of the central-viewing detector signals. The sudden drop in soft x-ray

emission which takes place at the time of the injection is brought about by the

sudden drop in plasma temperature (the pellet particles are initially quite cold).

After recovering to a level which is greater than the pre-pellet one, the post-pellet

signal exhibits the larger sawteeth, with the precursor oscillations occurring before

each crash. An expanded time scale view of two such sawtooth crashes is given in

Fig. 43, and the time frame during which six tomographic reconstructions of one
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Figure 41 - Plasma current and line-average electron density of pellet-
fueled discharge with giant sawteeth.
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Figure 42 - Detector signal from giant-sawtoothing discharge. The

impact parameter of this detector's chord of view is p = 2.8 cm.
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Figure 43 - Detector signal from giant-sawtoothing discharge (ex-
panded time scale). The cycle during which the tomographic reconstruc-
tions are performed is indicated.
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cycle of the oscillating emissivity were performed is indicated. Contour plots of

the six reconstructions from that cycle are shown in Fig. 44; each successive one

is separated by a time interval of 100 gs. A perturbation to the nearly circular

equilibrium can be observed as one follows the peak of the emissivity from frame

to frame. In frames (c) and (e) of Fig. 44. a flattened region near the q = 1 surface

can be seen. It could conceivably be the center of a magnetic island. However, this

feature is not present in the other frames, and-the reason for this is not apparent. It

is possible that the perturbation changes shape as it rotates from the high magnetic

field region to the low magnetic field region. These reconstructions represent the

best example, in all the data which were taken, of what appears to be an m = 1

island structure.

The spatial viewing resolution of the system is such that it can easily image

perturbations of the extent of the one observed in this case (refer to the discussion

in Sec. 111.1 regarding the coverage of each detector's solid viewing angle, and the

discussion in Sec. IV.1 in which the simulation of an m = I island perturbation is

described). Hence, the reconstruction of the island in this sequence of frames is a

believable one.

The perturbation is rotating in the electron diamagnetic direction. but this

rotation is not exactly sinusoidal. as the motion of the peak in the emissivity is not

uniform from one frame to the next. The rotation of the perturbation accounts for

the precursor oscillations in the soft x-ray signals, as the detectors see alternatively

hotter and colder parts of the plasma pass through their respective fields of view.

If the perturbation is indeed a magnetic island, then its rotation is believed to be

brought about either by w. diamagnetic effects (the so-called drift tearing mode 3 ),

or by radia electric fields which give rise to an E x B drift,39 or by a combination

of the two.

In Fig. 45, plots of the magnitude of the m = 0 and m = I Fourier components

are given for the six reconstructions. One can see a rather dramatic change in

the shape of the m = 0 profile in going from frame (b) to frame (c). The peak

value drops noticeably, and the profile becomes hollow. Because the location of the
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Figure 44 - Reconstruction of a sawtooth precursor oscillation during
a giant-sawtoothing discharge (contour plots). Each successive frame is
100 As apart in time (t = 357.2 ms to t = 357.7 ms).
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m = 0 peak is shifted outward and moves closer to the location of the peak of the

m = 1 component, the sum of the two leads to the structure which is suggestive

of a magnetic island. The peak value of the m = 0 profile then increases again in

the span of 100 gs, as can be seen in frames (d) and (e), with another noticeable

drop taking place in the last frame at the end of the oscillation cycle. After that

frame, the sawtooth crash occurs, and the cycle begins to repeat itself again with

the sawtooth rise. Three-dimensional plots of the emissivities for this cycle are

displayed in Fig. 46.

Another point of interest in the study of a discharge such as this one is the

analysis of the soft x-ray emissivity enhancement factor. As discussed in Sec. 11.1.2,

one can obtain a measure of the extent to which impurities contribute to the over-

all emissivity by comparing the reconstructed emissivity to the absolute minimum

emissivity which one would measure if there were no impurities in the plasma. In

other words, one can take the ratio of the measured emissivity to the absolute

minimum emissivity which would be observed at the given density and tempera-

ture. The radiation in the case of the minimum emissivity is all from hydrogen

bremsstrahlung and recombination. The enhancement factor is thus defined as

R (r,6,t)R(r, 0. t) = e(,0t)(47)
n (r, t) FH , (r ,)]

where E(r,0,t) is the reconstructed emissivity. ne(r,t) is the plasma electron den-

sity, and FH jTe(r,t) is the so-called filtered power density for a hydrogen plasma

(normalized to ne) which describes how much of the bremsstrahlung and recom-

bination radiation from a pure hydrogen plasma (Zeff = 1) makes it through a

given filter (in this case, the beryllium aperture windows and the layer of silicon

on the detectors). This function can be computed by combining the spectral dis-

tribution of the power radiated via bremsstrahlung and recombination at a given

temperature (see Fig. 3 for the bremsstrahlung power spectral distribution), with

the filtering/transmitting properties (mass attenuation coefficients) of the beryllium

windows and the silicon in the detectors (this information is available in tabulated

form as a function of wavelength). Knowing the actual density and temperature
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Figure 46 - Reconstruction of giant-s aw tooth ing emissivity (3-D plots).
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distribution in the plasma (these are measured). one can then calculate what the

emissivity would be if Zeff = 1, in which case R -+ 1.

The enhancement factor analysis presented here is rather cursory and primar-

ily intended to show the potential utility of this diagnostic in terms of studying

the behavior and effects of impurities in Alcator C plasmas. Fig. 47 is a plot of

the enhancement factor at the point of maximum emissivity (which is usually the

point of maximum density and temperature and at or near the center of the plasma

chamber) for several points in time during the same shot studied above. Of partic-

ular interest is what happens just after pellet injection and just before and after a

giant sawtooth crash. The enhancement factor increases by about a factor of three

quite rapidly as a result of the pellet injection because of the sudden drop in Te,

which lowers FH, and the fact that impurity radiation becomes the dominant radi-

ation mechanism at these lowered temperatures. However, as the density begins to

build up and the plasma reheats, the enhancement factor drops to levels which are

lower than those observed before pellet injection. Then, when the giant sawteeth

occur, one finds that the enhancement factor undergoes noticeable and rather sud-

den drops after each sawtooth crash, coming back up to a level comparable to the

pre-crash value. This behavior is in qualitative agreement with the one observed in

other Alcator C experiments" in which the central enhancement factor was studied

as a function of time for pellet-fueled discharges with giant sawteeth. The values of

R found here, however, are somewhat larger than the ones encountered in the pre-

vious study described in Ref. 40. For example, the maximum central enhancement

factor observed in this shot is R = 29.11 (at t = 315 ms, just after pellet injection)

vs. R = 8.25 in the other experiment. The minimum values obtained are R = 3.35

(at t = 374 ms, just after a giant sawtooth crash) in this experiment vs. R = 1.30

in the previous one.

The fact that R decreases after each giant sawtooth crash may be indicative of

a reduction or expulsion of impurities from the central core of the plasma. In order

to investigate this point further, one can take the measured density and temperature

profiles and determine, from the reconstructed emissivities. what the radial profile of
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ENHANCEMENT FACTOR
AT POINT OF MAXIMUM EMISSIVITY
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Figure 47 - Enhancement factor at point of maximum emissivity,
density, and temperature as a function of time. The giant sawtoothing
activity starts at about t = 345 ms.
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the enhancement factor is along the toroidal midplane, for instance. Plotting these

at different times may indicate what happens to the distribution of impurities. In

Fig. 48, four such profiles are shown. The first two (at t = 308 ms and t = 315 ms)

show the difference between the pre- and post-pellet injection profiles. The other

two are taken before and after a giant sawtooth crash. The rather large increase in

the values of R which occurs after pellet injection is consistent with the observations

made in previous experiments.4 0

In general, it is not entirely obvious why the enhancement factor at a given

time is usually greater on the outer major radius side than on the corresponding

inner one. Of course, there is an m = I component present due to the Shafranov

shift, and it is reflected in the location of the point of maximum emissivity and

in the temperature and density profiles. both of which are symmetric about that

point. It is not clear, however, that the Shafranov shift by itself can account for

the rather large asymmetry observed in the enhancement factor profiles.

After a giant sawtooth crash (the profile at I = 374 ms), one can see that the

enhancement factor profile becomes rather flat and that its magnitude drops in the

central region of the plasma. As one goes beyond the q 1 surface (r z ±5 cm),

however, it is found that the values of the enhancement factor are greater after the

giant sawtooth crash than before it. Previous work" done to model the impurity

distribution in the plasma indicates that, before the giant sawtooth crash, there is

a highly peaked impurity density profile (consisting of either carbon and/or molyb-

denum, the dominant light and heavy impurities in Alcator C). After the crash, a

significant absolute reduction in the central impurity density (by a factor of about

five) is believed to take place. This reduction of impurities may account for the de-

crease observed in the central values of R, whereas the increase in its outer values

may confirm the suspicion that these impurities are expelled from the central region

and deposited in the outer region by the redistribution of density which occurs at

the giant sawtooth crash.

One can extend the study of the enhancement factor by investigating its be-

havior across the entire two-dimensional poloidal cross-section of the plasma (with
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370 ms), and 4) Post-giant sawtooth crash (t = 374 ms).
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contour plots similar to the those used in the tomographic reconstructions) and

determining how it correlates with overall plasma behavior. In this manner, one

may be able to develop models for the impurity distribution and how it changes

with or affects the state of the plasma.
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IV.4 Non-Sawtoothing Oscillations after Pellet Injection

The last discharge to be shown is from pellet-fueled plasmas which have lower

current than the previously studied discharges and do not exhibit sawtoothing be-

havior. Instead, the plasma simply undergoes large m = 1 oscillations after pellet

injection, the onset of which takes place well after the plasma has equilibrated. The

plasma current and line-average electron density for the shot under investigation are

shown in Fig. 49. Fig. 50 is a trace of one of the detector signals, with an expanded

time scale view displayed in Fig. 51, indicating the oscillation cycle during which six

reconstructions of the soft x-ray emissivity were computed. Analysis of the analog

signals before digitization indicates that the 10 kHz sampling rate is sufficiently

fast to prevent aliasing, so the signals used here are accurate representations of the

actual variation in the soft x-ray emission.

At first glance, it appears that the observed oscillations indicate mode rotation.

However, the reconstructions clearly show that this mode does not rotate, in contrast

to the perturbation analyzed in the last section. In this situation, the instability

seems to grow and compress the plasma on the inner major radius side, as can be

seen in the contour plots of Fig. 52. Note that the lower current leads to a "skinnier"

emissivity, as the size of the hot central region of the plasma is smaller than that of

a higher current discharge, which has a larger current channel. The plasma starts

out with its normal circular shape and then undergoes the compression on one

side. Then, within 100 pts (from frame (e) to frame (f) of Fig. 52), the instability

disappears and the plasma returns to the state in which it was at the beginning of

the oscillation cycle. The mode reappears afterward as the process repeats itself

over and over again, resulting in the oscillations measured in the individual soft x-

ray signals from each detector. In Fig. 53, the m = 0 and m = 1 Fourier components

are plotted, and one can see the growth in the amplitude of the m = 1 component,

accompanied by a decrease in the amplitude of the m = 0 component, as the

instability develops. The sudden return to the initial state can also be seen quite

clearly by noticing the change which occurs in going from frame (e) to frame (f) in

the same figure. The last sequence of plots, in Fig. 54, shows the three-dimensional

119



Shot #20 12 October 1984

200 300

ms

B,=8.4T

H2 pellet -4 H 2 working gas
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pellet-fueled discharge with non-sawtoothing oscillations.
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Figure 51 - Detector signal from non-sawtoothing oscillating discharge
(expanded time scale). The cycle during which the tomographic recon-
structions are performed is indicated.
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representations of the reconstructed emissivities for this cycle. The indentation

which takes place in the plasma can be seen in these plots as well (frames (c)-(e)).

Thus, it is obvious that there is a major difference between the type of discharge

described above and those which exhibit sawteeth (giant or otherwise). One should

keep in mind that it is possible to observe this non-rotating instability because

of the fact that the reconstruction algorithm makes no assumption about plasma

rotation, position, or symmetry, given the large number of views available. Hence,

one is able to reconstruct soft x-ray emissivities which indicate that, in one class

of plasma discharges, m = 1 oscillations which had previously been ascribed to the

rotation of an MHD instability are actually not rotating at all.

There is no immediately apparent explanation for the difference in the dis-

charge analyzed here and the one presented in the previous section. Both involve

pellet injection. but in the latter case, no sawtoothing activity occurs after the in-

jection. As can be seen in the raw signal trace in Fig. 50, the post-pellet signal

goes to a level which is about a factor of three greater the the pre-pellet level; the

soft x-ray emission then breaks into the peculiar oscillations in a rather sudden and

spontaneous fashion for no clear reason. In the two types of discharges under con-

sideration, there is no major difference in the pressure gradient. Thus, one would

expect that any rotation due to w- diamagnetic effects would remain approximately

unchanged. It was also suggested in the previous section that a radial electric field

may be causing the mode rotation observed in the discharge with giant sawteeth.

Substantial differences in E,, therefore, may lead to the different rotation behav-

ior. This change in electric field would be expected to affect the radial impurity

transport (among other things), and, in fact, this is indeed the case. In Alcator C.

non-sawtoothing plasmas have soft x-ray fluxes which are larger than those from

sawtoothing plasmas, and this feature is presumably due to enhanced impurity ra-

diation. Furthermore, there are indications that the impurity confinement time in

Alcator C, which is usually finite, becomes essentially infinite in non-sawtoothing

discharges." In other words, impurities may accumulate on axis.
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Chapter V

CONCLUSION

V.1 Summary of Present Work

The feasibility of soft x-ray tomography on Alcator C has been demonstrated.

An apparatus for performing tomography was successfully designed, built, and im-

plemented on the tokamak. The experiment has yielded reconstructions of the soft

x-ray emissivity which have provided good information about plasma equilibrium

and behavior during sawtooth oscillations and other instabilities. Unlike many

other tomography experiments, the reconstruction method employed here involves

no assumption whatsoever about plasma rotation, position, or symmetry, and thus

allows one to obtain a more realistic representation of the soft x-ray emissivity and

the features which influence it. The major findings of this thesis are:

" Reconstructions of emissivities which show the effects of an or-
dinary sawtooth crash on the plasma equilibrium. The equilib-
rium reconstructions reveal information about the Shafranov
shift and the circularity of the magnetic flux surfaces. The
m = 0 profile may be slightly hollow after the sawtooth crash.

" Evidence which indicates that a rotating m = I magnetic island
structure is present during the giant sawtooth precursor oscilla-
tions that occur after pellet injection. Mode rotation is in the
w. electron diamagnetic direction.

* Analysis of the emissivity enhancement factor, in the pellet-
fueled discharge with giant sawteeth, which serves as an exam-
ple of how this diagnostic can be used to study the behavior and
effects of impurities in the plasma. The results are in qualita-
tive agreement with observations from previous experiments on
Alcator C.

" The occurrence, in another type of pellet-fueled discharge, of
an m = 1 instability (not as yet explained) which is not associ-
ated with sawteeth and does not exhibit rotation but rather a
compression of the plasma.
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Another highlight of this experiment is that a new technology in fusion plasma

soft x-ray detection, involving the use of miniature PIN photodiode arrays, has been

demonstrated. This development was motivated by the need to have the many de-

tectors required by the reconstruction algorithm placed in a highly confined area.

These detectors performed successfully in conjunction with logarithmic amplifiers,

which made it possible and convenient to obtain measurements over a wide range of

plasma parameters and operating conditions. The small size of the detectors per-

mitted good viewing access to the plasma, even in a machine with very constrained

port space such as Alcator C. They are also relatively inexpensive. Both of these

facts allowed for many views, which eliminated the need of assumptions such as

rotation and led to reconstructions of the emissivity function that have reasonably

good resolution.
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V.2 Recommendations for Future Work

Given the success of this experiment in terms of being able to obtain good

reconstructions with eighty detectors and the questions raised by some of the find-

ings, there is a definite incentive to pursue further work along these lines. The

obvious next step in this research would be to increase the number of views by

adding arrays of detectors on the side port. Such work is presently underway. This

added number of views will improve the coverage of (p, #) space, especially in those

regions for which there are no chords in Fig. 12. One should therefore be able to

include higher order poloidal harmonics (and possibly radial harmonics as well) in

the reconstructions.

As an example of what one could do with more detectors, computer simulations

were conducted in which a total of 200 detectors were involved (eight chips on each

of the top and bottom ports, and nine chips on the side port, with each chip

containing eight detectors as in the real experiment). The design made use of all

the space available in each port in order to maximize the number of detectors. The

coverage afforded in (p, 4) space by such a set-up is shown in Fig. 55. The simulation

consists of attempting to reconstruct test emissivities which have m = 0, 1, and 2

poloidal mode numbers, using 1 = 0, 1,... ,6 for the radial mode numbers. Fig. 56

shows the result of such a reconstruction; it displays good agreement between the

input harmonics and the reconstructed ones. A contour plot of the reconstructed

emissivity is given in Fig. 57. Reconstructions going up to 1 = 8 also yielded fairly

good results, but they are more sensitive to noise in the data introduced by small

random or systematic errors.

It thus appears that one should be able to resolve up to and including the m = 2

poloidal component (at least) in the emissivity with the design under consideration

here. However, it should be pointed out that, in a typical Alcator C discharge, the

q = 2 surface is located at r 2 10 cm or beyond, whereas the simulation presented

above has the m = 2 perturbation peaking at r = 8 cm and is thus performed under

optimistic circumstances (no noise or errors have been included either). In practice,

therefore, it may still be very difficult to resolve the m = 2 structure because it is

129

--- I



DETECTOR COVERRGE

30. 180.
PHI (IMPRCT

270.
RNGLE)

Figure 55 - Detector coverage of (p, 4) space for a 200-chord system.
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usually located at radii from which there is still no information available in the de-

sign in question. Furthermore, one should keep in mind that a 200-detector system

is probably too ambitious given the limitations on the amount of data acquisition

and storage equipment available. Thus, a more modest 128-detector system is cur-

rently being built. It will use four chips with twelve detectors each for the side array,

so that the coverage of (p, 0) space will be extended to include up to p = 10 cm.

This feature may facilitate the reconstruction of m = 2 poloidal harmonics.

With this array of detectors, one may be able to explain the rather large upward

shift observed in the peak of the emissivity discussed in Sec. IV.2. The addition of

side views should provide better information about plasma shape and its position

in the vertical direction. Furthermore, studies of pellet-fueled discharges with giant

sawteeth may provide a more detailed picture of how the m = I magnetic island

evolves and changes shape as it rotates around in the plasma. Finally, the nature of

the non-sawtoothing oscillating instability presented in Sec. IV.4 may be understood

better by investigating it with the expanded tomography system. In particular,

the issue of how impurities are related to the different rotation behaviors can be

addressed by using this diagnostic to conduct a more extensive analysis of the

enhancement factor than the one presented in Sec. IV.3.; e.g., one could study its

dependence on position in the poloidal cross-section and attempt to derive models

for the impurity distribution in the plasma. Also, by intentionally injecting minute

quantities of impurities into the plasma, one can measure accurately the difference

in impurity confinement between rotating and non-rotating discharges, which is

another issue raised by the two types of discharges studied in Sec. IV.3 and Sec. IV.4.

Work in this direction has already begun.4
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