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Abstract

Estimating motion in scenes containing multiple moving objects remains a difficult
problem in computer vision yet is solved effortlessly by humans. In this thesis we
present a computational investigation of this astonishing performance in human vi-
sion. The method we use throughout is to formulate a small number of assumptions
and see the extent to which the optimal interpretation given these assumptions cor-
responds to the human percept.

For scenes containing a single motion we show that a wide range of previously
published results are predicted by a Bayesian model that finds the most probable
velocity field assuming that (1) images may be noisy and (2) velocity fields are likely to
be slow and smooth. The predictions agree qualitatively, and are often in remarkable
agreement quantitatively.

For scenes containing multiple motions we introduce the notion of “smoothness
in layers”. The scene is assumed to be composed of a small number of surfaces
or layers, and the motion of each layer is assumed to be slow and smooth. We
again formalize these assumptions in a Bayesian framework and use the statistical
technique of mixture estimation to find the predicted percept. Again, we find a
surprisingly wide range of previously published results that are predicted with these
simple assumptions. We discuss the shortcomings of these assumptions and show how
additional assumptions can be incorporated into the same framework.

Taken together, the first two parts of the thesis suggest that a seemingly complex
set of illusions in human motion perception may arise from a single computational
strategy that is optimal under reasonable assumptions. The third part of the thesis
presents a computer vision algorithm that is based on the same assumptions. We
compare the approach to recent developments in motion segmentation and illustrate
its performance on real and synthetic image sequences.

Thesis Supervisor: Edward H. Adelson
Title: Professor of Vision Science
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Chapter 1

Introduction

The thesis is presented in terms of three self contained papers. However, the three
papers are best read in sequence since they form part of a single line of study. In
this introduction we make this line of inquiry explicit. We first describe the problem
we wish to understand and the rationale for the method of investigation. We then

summarize the main results of the three papers.

1.1 The Integration versus Segmentation Dilemma

In this thesis we seek to understand how the human visual system solves what we call
“the integration versus segmentation dilemma”. This dilemma arises from the con-
flicting demands of motion analysis in scenes containing multiple motions (Braddick,
1993). Due to the inherent ambiguity of local motion measurements, local computa-
tions do not gather enough information to obtain a correct estimate. Thus the system
needs to integrate many local measurements. On the other hand, the fact that there
are multiple motions means that global computations are likely to mix together mea-
surements derived from different motions. Thus the system needs to segment the local
measurements.

To illustrate these conflicting demands consider the simple scenes depicted in fig-
ures 1-1 through 1-3. Figure 1-1 shows the inherent ambiguity of local motion mea-

surements. The well known “aperture problem” (Wallach, 1935; Horn and Schunck,
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Figure 1-1: a. The “aperture problem” refers to the impossibility of determining the
two dimensional motion of a signal containing a single orientation. Given a vertical
edge, only the horizontal component of motion can be determined. b. The family of
motions consistent with the motion of the edge can be depicted as a line in “velocity
space”, where any velocity is represented as a vector from the origin whose length is
proportional to speed and whose angle corresponds to direction of motion.
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Figure 1-2: a. A single translating figure generates different constraints at different
locations.b. When the constraints are plotted together they intersect at a single point
yielding the physically correct velocity of the square. This is an example of how inte-
grating multiple constraints can resolve the local ambiguity of motion measurements.

1981; Adelson and Movshon, 1982; Marr and Ullman, 1981; Fennema and Thompson,
1979) refers to the impossibility of determining the two dimensional motion when a
signal only contains a single orientation. For example, a local analyzer that sees only
the vertical edge of a square can only determine the horizontal component of the
motion. Whether the square translates horizontally to the right, diagonally up and
to the right, or diagonally down and to the right, the motion of the vertical edge will
be the same. The family of motions consistent with the motion of the edge can be
depicted as a line in “velocity space”, where any velocity is represented as a vector
from the origin whose length is proportional to speed and whose angle corresponds to
direction of motion. Graphically, the aperture problem is equivalent to saying that
the family of motions consistent with the information at an edge maps to a straight
line in velocity space, rather than a single point.

This ambiguity may be reduced by combining information over space. Figure 1-
2a shows velocity space representations of constraints from different image locations

along the square. At an edge, the constraint is a line in velocity space with the same
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Figure 1-3: a. When the scene contains multiple objects, a simple velocity space
construction is not sufficient to determine the motions. b. When the constraints
from multiple locations are plotted together they intersect at four points. Two of
these points correspond to the motion of a square, while the other two are spurious
— they result from integrating together constraints that belong to different objects.
This simple scene illustrates the need to simultaneously integrate and segment motion
measurements.

orientation as the edge, while at a corner, the constraint is a point in velocity space
— there is a single velocity consistent with the local data. Figure 1-2b shows all
of these constraints plotted in single representation — they all intersect at a single
point, and that intersection gives the physically correct velocity of the square.

If the visual system only needed to analyze motion in scenes containing a single
object, it would only need to solve the integration problem, and not the segmentation
problem. When the scene contains multiple objects, however, the situation is more
complex. Figure 1-3 shows an example (after (Burt and Sperling, 1981)). Here there
are two squares translating in different directions. As in the one-square case, mea-
surements along the edge are ambiguous while measurements obtained at junctions
are not. However, unlike the one-square case, the unambiguous measurements do not
necessarily correspond to the correct motion of either square. Furthermore, when the

constraints are plotted together they do not intersect at a single point. Rather four
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Figure 1-4: The three levels of analysis suggested by Marr and Poggio (reproduced
from (Marr, 1982)). This thesis focuses on the computational theory level of explana-
tion. We formulate a set of assumptions and constraints that may be used to analyze
motion and compare the predicted percept to psychophysical data.

intersections are found. Two of these points correspond to the correct motions of the
two squares. The other two points, however, do not correspond to any “true” motion
in the scene. They are a result of mixing together constraints derived from different
objects, of integrating together measurements that should be segmented.

As we show in this thesis, the simple two squares scene presents a problem for many
computer vision motion analysis systems. Local motion analyzers cannot overcome
the local ambiguity along the edges of the squares, while global approaches tend
to mix together information belonging to different squares and predict an incorrect
motion. Yet humans perceiving this scene have no trouble in indicating the motion
at different points in the scene; the human visual system seems to have found a way
to resolve the integration versus segmentation dilemma. The focus of this thesis is to

understand this performance.

1.2 The computational approach to vision

Trying to understand perception by studying only neurons is like trying to
understand bird flight by studying only feathers: It just cannot be done.
In order to understand bird flight, we have to understand aerodynamics;

only then do the structure of feathers and the different shapes of birds’
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wings make sense. (Marr, 1982) p. 27

In order to understand how the human visual system resolves the “integration
versus segmentation dilemma” we use the method of computational modeling. Marr
and Poggio (Marr, 1982; Marr and Poggio, 1977) distinguished between three levels
of understanding complex information-processing devices: the computational, the
algorithmic and the implementation levels. Figure 1-4 reproduces Marr’s summary
of the three levels. The computational level is the most abstract; it describes the
problem the system is trying to solve and the constraints it uses in order to solve it.
The algorithmic level addresses questions of representations and the algorithm used
to satisfy the constraints and assumptions of the system. Finally, the implementation
level deals with the details of the hardware in which the algorithm is embodied.

Here we focus on the most abstract level, that of computational modeling. Rather
than describing a particular biological implementation of a particular algorithm, we
attempt to find the constraints and assumptions used by the visual system when
estimating motion. The term “computational theory” is meant to emphasize the
difference between this approach and a “verbal theory”. A computational theory of
vision requires more than a list of assumptions and constraints; rather these assump-
tions and constraints should be formulated in such a way that they can be computed
for a given scene from the image data and therefore predict a percept for that scene.

In order to formalize our theory we employ a Bayesian inference framework (Knill
and Richards, 1996). In the Bayesian formalism, the assumptions are formulated as
probabilities and inference corresponds to finding the probability of hypotheses given
observations. In the context of motion analysis, we express our assumptions in terms
of prior probabilities — the probability of a motion hypothesis in the absence of any
data and likelihoods — the probability of the image data given a motion hypothesis.
We use the machinery of Bayesian inference to calculate the posterior probability —
the probability of a motion hypothesis given the image data.

Finding the most probable motion hypothesis may require rather sophisticated
computational algorithms. For example, in this thesis we use inversion of large matri-

ces and an iterative algorithm known as Expectation-Maximization (Dempster et al.,
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1977). We do not, however, claim that the brain uses these algorithms. We use these
algorithms here as tools in order to test our computational theory; the prediction of
the theory is obtained by finding the most probable motion hypothesis for a given
scene. We then compare this predicted motion to the human percept. If we find that
the predicted motion matches the human percept, this supports our computational
theory but says nothing about the algorithm or implementation the human visual

system uses in order to arrive at the same percept.

1.3 Part 1 - A computational theory of motion in-
tegration

Rather than immediately taking on the full “integration versus segmentation” dilemma,
the first part of the thesis deals only with the problem of integration. We address
situations in which subjects are told that there is only a single moving surface in the
scene and are asked to judge that motion. Thus there is no segmentation problem.
The system still has to combine multiple local measurements to arrive at the mo-
tion of the surface. The first part asks how the human visual system performs this
combination.

As mentioned in the introduction, given a stimulus with only a single orientation
there is not enough information to find the two dimensional velocity vector. However,
assuming the stimulus is translating in the image plane, two orientations should be
sufficient to determine its velocity. Perhaps the simplest stimulus containing two
orientations is the “plaid” stimulus in which two oriented gratings translate rigidly
in the image plane (figure 1-5a). Due to the aperture problem, only the component
of velocity normal to the orientation of the grating can be estimated, and hence each
grating motion is consistent with an infinite number of possible velocities, a constraint
line in velocity space (figure 1-5b). When each grating is viewed in isolation, subjects
typically perceive the normal velocity (shown by arrows in figure 1-5b). Yet when

the two gratings are presented simultaneously subjects often perceive them moving
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coherently and ascribe a single motion to the plaid pattern (Adelson and Movshon,
1982; Wallach, 1935).

Adelson and Movshon (1982) distinguished between three methods to estimate this
“pattern motion” — Intersection of Constraints (IOC), Vector Average (VA) and blob
tracking. Intersection of Constraints (IOC) finds the single translation vector that is
consistent with the information at both gratings. Graphically, this can be thought of
as finding the point in velocity space that lies at the intersection of both constraint
lines (circle in figure 1-5b). Vector Average (VA) combines the two normal velocities
by taking their average. Graphically this corresponds to finding the point in velocity
space that lies halfway in between the two normal velocities (square in figure 1-5b).
Blob tracking makes use of the motion of the intersections (Ferrera and Wilson, 1990;
Mingolla et al., 1992) which contain unambiguous information indicating the pattern
velocity. For plaid patterns blob tracking and IOC give identical predictions — they
would both predict veridical perception.

The wealth of experimental results on the perception of motion in plaids reveals a
surprisingly complex picture. Perceived pattern motion is sometimes veridical (con-
sistent with IOC or feature tracking) and at other times significantly biased towards
the VA direction. The degree of bias is influenced by factors including orientation
of the gratings (Yo and Wilson, 1992; Bowns, 1996; Burke and Wenderoth, 1993),
contrast (Stone et al., 1990), presentation time (Yo and Wilson, 1992) and foveal
location (Yo and Wilson, 1992).

The insufficiency of any of the three mechanisms to explain the human percept
may also be illustrated using the horizontally translating rhombus stimulus in fig-
ure 1-6. Although slightly more complicated than the plaid stimulus, the rhombus
also contains only two orientations and may be used to test the three mechanisms
suggested by Adelson and Movshon. A “narrow” rhombus whose corners are occluded
(figure 1-6a) appears to move diagonally and is therefore consistent with VA but in-
consistent with IOC or feature tracking. A “fat” rhombus whose corners are occluded
(ﬁgﬁre 1-6b) appears to move horizontally and is therefore consistent with IOC or

feature tracking but not with VA. When the corners are visible (figure 1-6c) and the
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Figure 1-5: a. Two translating gratings form a “plaid” stimulus. Each grating by
itself contains only a single orientation and its motion can not be estimated uniquely.
However when both gratings are added, subjects often assign a single motion to the
pattern (Adelson and Movshon, 1982; Wallach, 1935). For this reason, plaid stim-
uli are often used to study the method by which humans combine multiple motion
measurements. b. Two velocity space constructions that could be used to estimate
this “pattern motion” — Intersection of Constraints (IOC) and Vector Average (VA).
Neither of these mechanisms are sufficient to to explain the experimental data on
perceived direction of plaids. In the first part of the thesis we present a single com-
putational mechanism that can explain the range of percepts.

15
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Figure 1-6: The insufficiency of either VA, IOC or feature tracking to explain the
human percept. a. A “narrow” rhombus whose endpoints are occluded appears
to move diagonally (consistent with VA). b. A “fat” rhombus whose endpoints are
occluded appears to move horizontally (consistent with IOC or feature tracking). c. A
high contrast “narrow” rhombus with visible endpoints appears to move horizontally
(consistent with IOC or feature tracking). d. A low contrast “narrow” rhombus with
visible endpoints appears to move diagonally (consistent with VA). In the first part
of the thesis we show how these results are predicted by a single, simple model based
on a few assumptions.
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Figure 1-7: a. a “fat” ellipse rotating rigidly in the image plane appears to deform
nonrigidly. b. a “narrow” ellipse rotating rigidly in the image plane appears to rotate
rigidly. In the first part of the thesis we show that this phenomena is predicted by
that the same assumptions that predict biases in perceived velocity of plaids and
rhombuses.

contrast is high the rhombus appears to move horizontally, but when the contrast is
low it appears to move diagonally.

Thus even for very simple stimuli, the question of which combination rule is used
by human subjects is not easily answered. Conventional explanations involve multiple
mechanisms, each invoked in order to explain a portion of the psychophysical results.
The situation becomes even more complex when we consider non-translational mo-
tions. As an example, consider the perception of circles and derived figures in rotation
(figure 1-7). When a “fat” ellipse , with aspect ratio close to unity, rotates in the
image plane, it is perceived as deforming nonrigidly (Musatti, 1924; Wallach et al.,
1956; Musatti, 1975). However, when a “narrow” ellipse, with aspect ratio far from
unity, rotates in the image plane, the motion is perceived veridically (Wallach et al.,
1956).

Obviously, none of the three mechanisms suggested for perception of plaids can
be directly applied to explain this percept. These models estimate a single velocity
vector rather than a spatially varying velocity field. An elegant explanation of the
ellipse phenomena was offered by Hildreth (1983) using a very different style of model.
She explained this and other motion “illusions” of smooth contours with a model that

minimizes the variation of the perceived velocity field along the contour. She showed
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that for a rigid body with explicit features, her model will always give the physically
“correct” motion field, but for smooth contours the estimate may be wrong. In
the cases when the estimate was physically “wrong”, it qualitatively agreed with
human percepts of the same stimuli. Grzywacz and Yuille (1991) used a modified
definition of smoothness to explain the misperception of smooth contours undergoing
rigid translation (Nakayama and Silverman, 1988a; Nakayama and Silverman, 1988b).
Poggio et al. (85) have shown that the smoothness assumption is useful in many
aspects of computational vision.

In the first part of the thesis, we show that a single, simple model based on a
small number of assumptions can account for a wide range of percepts. The model is
essentially based on only two assumptions: (1) a likelihood term that assumes that
image measurements may be noisy and (2) a prior term that favors slow and smooth
velocity fields. We calculate the velocity field that maximizes the posterior probability
and compare this prediction to the percept of human observers. In reviewing a long
list of previously published phenomena, we find that the Bayesian estimator almost
always predicts the psychophysical results. The predictions agree qualitatively, and

are often in remarkable agreement quantitatively.

1.4 Part 2 - A computational theory of motion es-
timation and segmentation

In the second part of the thesis, we address the larger question — simultaneous in-
tegration and segmentation of motion constraints. The first part showed that the
assumption of slow and smooth velocity fields can account for the human percept in
a wide range of scenes containing a single motion. However, if the scene contains mul-
tiple objects, the “slow and smooth” assumption predicts percepts that are nothing
like the human percept. Figure 1-8 shows the predicted velocity for the two squares
scene — while humans perceive two rigid bodies, the “slow and smooth” assump-

tion predicts a single, elastically deforming body. In the second part of the thesis
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Figure 1-8: a. Two squares translate in the image in different directions. b. The
output of a standard smoothness algorithm on this sequence. The algorithm tries to
simultaneously fit the motion of both surfaces and recovers a single elastic deformation
that is not at all like the human percept.

we present an extension of the “slow and smooth” assumption to scenes containing
multiple motions.

The failure of global smoothness algorithms in scenes containing multiple motions
such as figure 1-8 is well known and several ways of fixing the smoothness assumption
have been proposed. Hildreth (1983) proposed a model whereby smoothness is only
assumed along contours. Her algorithm found the velocity field of least variation along
the zero crossings of the image. To illustrate her assumption consider the two squares
scene discussed in figure 1-8. Hildreth’s algorithm would first extract contours from
this scene and then combine measurements along the contour. Thus assuming that
the first step correctly extracted two contours, one for the boundary of each square,
her algorithm would only assume smoothness in the motion of each square. It would
not assume any relationship between the motions of the two squares. Thus for this
stimulus it would predict two rigid motions, consistent with human perception.

Although Hildreth’s assumption of smoothness along contours does solve some
of the problems associated with smoothness models, there is reason to believe it
is not exactly the assumption used by the human visual system. As pointed out
by Grzywacz and Yuille (1991) the Hildreth assumption would predict no influence

between features that are off the contour and the perceived motion of the contour.
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Figure 1-9: a. A horizontally translating diagonal line whose endpoints are invisible
is consistent with an infinite family of motions. Typically, under these conditions,
the normal velocity is chosen and the line appears to translate diagonally. (Wallach
35) b. When two horizontally translating dots are added to the display the line
appears to move in the direction of the dots (Wallach 35, Rubin and Hochstein 93).
This is inconsistent with a model that only combines information along contours (e.g.
Hildreth 83). c. The effect persists when the display is placed on a static texture
background. This is inconsistent with an algorithm that assumes “smoothness with
discontinuities” (e.g. Terzopoulos 86). The discontinuities formed between the dots
and the background would inhibit any interactions between the dots and the line.

This is inconsistent with experimental results that show a strong influence of features
in such displays (e.g.(Nakayama and Silverman, 1988a; Shiffrar et al., 1995; Weiss and
Adelson, 1995; Rubin and Hochstein, 1993)). Figure 1-9 shows an example dating
back to Wallach (1935). A line whose endpoints are invisible appears to move in
the normal direction, but when a small number of dots translating horizontally are
added to the display they tend to “capture” the line, and the line appears to move
horizontally. The fact that the dot influences the line when it is not part of the
line’s contour is inconsistent with Hildreth’s model or any other model that assumes
smoothness only along contours.

Rather than restricting the smoothness assumption to contours, other approaches
assume a smooth two dimensional velocity field with possible discontinuities. In
these models, e.g. (Terzopoulos, 1986; Hutchinson et al., 1988; Horn, 1986), nearby
points are assumed to have similar velocities, but if the velocities are too dissimilar the

assumption is abandoned and a discontinuity is assumed there instead. An advantage
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of these models over the standard smoothness models is that when the location of
the discontinuity is estimated correctly, there is no smoothing across boundaries.
This avoids many of the oversmoothing problems associated with global smoothness
algorithms.

Despite these successes, there exist scenes in which the discontinuities approach
predicts a motion that is very different from the human percept. Essentially, it pre-
dicts no interaction between two locations if there is a motion discontinuity between
them. Figure 1-9c shows a simple example in which the line and the dot translate
horizontally over a static background.The dissimilarity between the motions of the
dots and the background texture would give rise to a discontinuity as would the dis-
similarity between the line and the texture. Yet human perceiving this scene report
no difference between the percept with and without the static texture. The dots and
the line appear to be in front of the texture and are perceived as a single surface.
Thus while piecewise smoothness may be a reasonable assumption to make in many
contexts, it does not appear to be sufficient for modeling human motion perception.

As these simple demonstrations show, the visual system does not appear to assume
global smoothness over the image, nor does it assume smoothness only along contours,
nor does it assume smoothness with discontinuities. In the second part of the thesis,
we propose a formulation that we call “smoothness in layers”. We assume the scene
includes a small number of surfaces or layers (Wang and Adelson, 1994) and that
motion varies smoothly within a given layer. To illustrate this assumption consider
figure 1-10. Global smoothness would assume that motion varies smoothly over the
entire image, while smoothness in layers assumes that one velocity field will vary
smoothly over the front surface and a second velocity field will vary smoothly over
the back surface. There is no assumption of smoothness between two layers only
within layers. This distinction is illustrated in a 1D example in figure 1-11

Unfortunately, the input to the visual system is not a description in terms of
surfaces or layers. Thus if we wish to account for human motion perception by
assuming smoothness in layers, we need to also account for the formation of a layered

description from spatiotemporal data. In the second part of the thesis we present a
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Figure 1-10: Layered decomposition of image sequences (adapted from (Wang and
Adelson, 1994)). In a layered description, an image sequence is decomposed into
a small number of occluding layers or surfaces, and each layer has a corresponding
motion field. In this paper we propose that human motion perception assumes the
motion field of each layer is smooth, but does not assume smoothness between motion
fields of different layers.

computational model that receives as input a gray level image sequence and calculates
(1) the number of layers (2) the assignment of pixels to layers and (3) the velocity
field of each layer.

The model uses the statistical framework of mixture estimation to find the most
probable interpretation of a scene. It is based on three assumptions: (1) a likelihood
term identical to the one used in the first part that assumes image measurements
may be noisy (2) a prior term that favors slow and smooth velocity fields within a
layer and (3) a preference for a small number of layers. In order to validate these
assumptions, we compare the most probable interpretation under these assumption
to human percepts in previously published stimuli.

As an example of the type of data we would like to account for, consider figure 1-
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Figure 1-11: An illustration of the smoothness in layers assumption in 1D (adapted
from (Wang and Adelson, 1994)). a. Hypothetical velocity estimates as a function
of position. Such data would typically arise from two surfaces in depth. b. Global
smoothness assumption applied to this data. The measurements from the two surfaces
are mixed together rather than segmented. c. Piecewise smoothness. Information
is not propagated across discontinuities. The resulting estimate is rather noisy. d.
Smoothness in Layers. Two smooth velocity functions are found, one for each surface.
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Figure 1-12: Adelson and Movshon (1982) found that the tendency of plaids to cohere
depended on the difference between the principal direction of the two gratings. Thus
the plaid in a tends to cohere less than the plaid in b. In the second part of the
thesis we show that this tendency is predicted by the assumption of “smoothness in
layers”.

12. When the plaid on the left is shown to human subjects, they tend to see two
motions — the plaid does not cohere but each grating is seen as moving in its normal
direction. However when the plaid on the right is presented, subjects tend to see
a single, coherent pattern translating in the horizontal direction. The tendency of
plaids to cohere or appear transparent has been widely studied and has shown to be
influenced by speed, period, orientation and contrast (Adelson and Movshon, 1982;
Kim and Wilson, 1993; Farid and Simoncelli, 1994). As we show in the second part of
the thesis, these tendencies are predicted from the three assumptions outlined above
— there is no need for stimulus specific heuristics.

Although plaids present the most widely studied stimuli in which humans were
asked to judge whether one or two motions were present, the “smoothness in layers”
assumption is by no means restricted to plaid stimuli. Figure 1-13 shows the split her-
ringbone illusion (Adelson and Movshon, 1983). Two sets of diagonal lines translate
vertically in opposite directions. At high contrast (Adelson and Movshon, 1983) the
percept consists of two groups, one moving up and the other moving down. However,
if the stimulus is blurred, viewed peripherally or at low contrast, one perceives a single
coherent motion to the right. As we show in the second part, this “illusory” motion

at low contrast is actually the most probable interpretation given the assumption of
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Figure 1-13: The split herringbone illusion (Adelson and Movshon, 1983). Two sets
of diagonal lines translate vertically in opposite directions. At high contrast (Adelson
and Movshon, 1983) the percept consists of two groups, one moving up and the other
moving down. However, if the stimulus is blurred, viewed peripherally or at low
contrast, one perceives a single coherent motion to the right. In the second part
of the thesis, we show that this “illusion” is the most probable percept given the
“smoothness in layers” assumption.

smoothness in layers.

Since we estimate a smooth velocity field for every layer, the smoothness in layers
assumption can be applied to scenes in which the objects are undergoing nontrans-
lational motions. Figure 1-14 shows an example with the ellipse stimulus discussed
earlier. When a “fat” ellipse rotates rigidly in the image plane it is perceived as de-
forming nonrigidly (Wallach et al., 1956). When four rotating dots are added to the
display, the ellipse and the dots are perceived as moving together and the ellipse is
perceived as rigid (Weiss and Adelson, 1995). The effect of the four satellites persists
when a large number of vertically translating dots is added to the display (Weiss
and Adelson, 1995). In this case, humans perceive two groups — the ellipse and
the four dots are perceived as moving together but the vertically translating dots are
perceived as being in a separate layer. As we show in the second part of the thesis,
this tendency is also predicted by the smoothness in layers assumption.

Despite the success of the smoothness in layers assumption in accounting for a
wide range of stimuli, there exist stimuli for which these three assumptions are not

sufficient. The second part of the thesis also discusses these shortcomings. There are
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Figure 1-14: When a “fat” ellipse rotates rigidly in the image plane it is perceived as
deforming nonrigidly (Wallach et al., 1956). When four rotating dots are added to
the display, the ellipse is perceived as rigid (Weiss and Adelson, 1995). The effect of
the satellites persists when a large number of vertically translating dots is added to
the display (Weiss and Adelson, 1995). In the second part of the thesis we show that
this is also predicted by the “smoothness in layers” assumption.

many non-motion cues that influence the tendency of humans to segment or integrate
motion measurements. For example in the case of plaids, cues such as stereo depth,
the luminance of the intersections and the relative spatial frequencies cause the plaid
to appear more transparent (Adelson and Movshon, 1982; Stoner et al., 1990; Bressan
et al., 1993). These cues increase the tendency to see the plaid as two transparent
gratings even in a single static frame, and the three assumptions discussed above know
nothing about this static analysis. We discuss how to augment these assumptions so
they can incorporate additional cues and show preliminary results with the more

sophisticated set of assumptions.

1.5 Part 3 - Integration and Segmentation in ma-

chine vision

In section 1.1 we discussed the inherent ambiguity of local motion measurements. For
the synthetic ideal images we discussed the ambiguity only occurs at locations contain-
ing a single orientation. Locations such as corners, where multiple orientations exist

locally, are unambiguous. However, in the presence of noise, all local measurements
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Figure 1-15: The integration versus segmentation dilemma in natural images. a. A
single frame from the MPEG flower garden sequence. The sequence was shot by a
camera placed on a driving car, and the image motion is related to distance from the
camera. Thus the tree, which is closest to the camera moves fastest. b. The output of
state-of-the art local motion analyzer on this scene (Bergen et al., 1992). We show the
horizontal estimated velocity at a cross section of the image. Note that even though all
locations are textured and hence contain multiple orientations, the estimated local
flow is still quite noisy. ¢. The output of a global smoothness algorithm on this
sequence. The tree is predicted to move much slower than it really does because its
motion is combined with that of the flowers. The algorithm is integrating constraints
that should be segmented.
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Figure 1-16: The output of motion segmentation algorithms on the flower garden
sequence. b. A cross section through the horizontal flow field predicted by the
Wang and Adelson (1984) algorithm. Although the algorithm segments the tree from
the flowers, the motion of each layer is flat as if it were made of cardboard. c. A
cross section through the horizontal flow field predicted by the smoothness in layers

algorithm. Note that the algorithm more accurately captures the curved shape of the
tree and the flower beds.
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are ambiguous — even if the location contains multiple orientations the extraction of
the correct constraints is limited by the noise in the image. Thus in a noisy world,
the distinction between “corners” and “lines” is a slightly artificial dichotomy — all
locations have some ambiguity. Rather than “ambiguous” versus “unambiguous” lo-
cations, in a noisy world the degree of ambiguity of local measurements may take on
a continuum of values.

Figure 1-15 shows an example of the ambiguity of local measurements in real
world scenes. The sequence was shot by a camera placed on a driving car, and
the image motion is related to distance from the camera. Thus the tree, which is
closest to the camera moves fastest. Figure 1-15a shows the output of state-of-the
art local motion analyzer on this scene (Bergen et al., 1992). We show the horizontal
estimated velocity at a cross section of the image. The pixels corresponding to the
tree move fastest and the background pixels corresponding to the flower bed move
with spatially varying slower speed. Note that even though all locations are textured
and hence contain multiple orientations, the estimated local flow is still quite noisy.
At the border of the tree and the flower garden the local analysis gives an intermediate
velocity that is quite different from the true image motion, and along the flower bed
the local estimate varies noisily from location to location in a way that does not reflect
the true depth of the scene. Figure 1-15¢ shows the output of a global smoothness
algorithm on this sequence. Again we show the only the horizontal estimated flow
along a cross section. Now the estimate is highly smooth but quite wrong. Since the
algorithm assumes a smoothly varying velocity field, the tree is predicted to move
much slower than it really does. Its motion is influenced by the motion of the slowly
moving flowers. This is precisely the integration versus segmentation dilemma —
deriving reliable estimates requires integrating information from multiple locations
while segmenting information derived from different motions.

The problems with global smoothness approaches are well known and have prompted
a recent trend in computer vision towards approaches that fit multiple, global motion
models tovthe image data. (Darrell and Pentland, 1991; Jepson and Black, 1993; Irani
and Peleg, 1992; Hsu et al., 1994; Ayer and Sawhney, 1995; Wang and Adelson, 1994).
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While differing in implementation, these algorithms share the goal of deriving from
the image data a representation consisting of (1) a small number of global motion
models and (2) a segmentation map that indicates which pixels are assigned to which
model.

In order to segment images based on common motion, most existing algorithms
assume that the motion of each model is described by a low dimensional parameteriza-
tion. The two most popular choices are a six parameter affine model (Wang and Adel-
son, 1994; Weiss and Adelson, 1996) or an eight parameter projective model (Ayer and
Sawhney, 1995; Irani and Peleg, 1992). Both of these parameterizations correspond
to the rigid motion of a plane: the affine model assumes orthographic projection while
the projective model assumes a perspective projection.

Despite the success of existing algorithms in segmenting image sequences, the
assumption that motion segments correspond to rigid planar patches is obviously
restrictive. Non-planar surfaces, or objects undergoing non-rigid motion cannot be
grouped. Even when the segmentation is correct, the restriction to planar motions
means that the estimated motion for each segment may be wrong. Figure 1-16b
shows the estimated motion from a segmentation algorithm that assumes planar mo-
tions (Wang and Adelson, 1994; Ayer and Sawhney, 1995; Weiss and Adelson, 1996).
Figure 1-16b shows a cross section from the estimated flow — at each location we
plot the horizontal velocity of the segment to which that location belongs. Note that
unlike the global smoothness approach, the tree does not “pull along” portions of the
flower bed. The constraints from the tree and the bed are segmented rather than in-
tegrated. However, the motion of the tree and the flower bed are both approximated
by planar motions — as if they were painted on flat sheets of cardboard.

In the third part of the thesis we show that the “smoothness in layers” assumption
can be used to segment such scenes. We present an algorithm that segments such
scenes and estimates a smooth motion field for each layer or segment rather than a
low-dimensional parametric flow field. We combine the ideas of smoothness and seg-
mentation in a mixture model framework, and this leads to an efficient Expectation-

Maximization (EM) algorithm. An additional advantage of the mixture estimation
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framework is that additional cues for segmentation can be incorporated in a natural
fashion. Figure 1-16c shows the output of our algorithm on the flower garden se-
quence. The segmentation is similar to the one obtained using planar motions but
the estimated motion is rather different. Unlike the planar models, the velocity fields
have enough degrees of freedom in order to capture the curved nature of the tree and
the flower bed. Unlike the global smoothness algorithm, the algorithm avoids mixing
together constraints derived from different objects. These results suggest that the
same assumptions used in modeling the psychophysical result may also be useful in

improving the performance of computer vision systems.
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Chapter 2

Slow and Smooth: a Bayesian
theory for the combination of local

motion signals in human vision

Abstract

In order to estimate the motion of an object, the visual system needs to combine mul-
tiple local measurements, each of which carries some degree of ambiguity. We present
a model of motion perception whereby measurements from different image regions
are combined according to a Bayesian estimator — the estimated motion maximizes
the posterior probability assuming a prior favoring slow and smooth velocities. In re-
viewing a large number of previously published phenomena we find that the Bayesian
estimator predicts a wide range of psychophysical results. This suggests that the
seemingly complex set of illusions arise from a single computational strategy that is
optimal under reasonable assumptions.

2.1 Introduction

Estimating motion in scenes containing multiple, complex motions remains a diffi-
cult problem for computer vision systems, yet is performed effortlessly by human
observers. Motion analysis in such scenes imposes conflicting demands on the design
of a vision system (Braddick, 1993). The inherent ambiguity of local motion signals

means that local computations cannot provide enough information to obtain a correct
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Figure 2-1: a. Two gratings translating in the image plane give a “plaid” pattern.
b. Due to the aperture problem, the measurements for a single grating are consistent
with a family of motions all lying on a constraint line in velocity space. Intersec-
tion of Constraints (IOC) finds the single velocity consistent with both sources of
information. Vector Averaging (VA) takes the average of the two normal velocities.
Experimental evidence for both types of combination rules has been found.

estimate. Thus the system must integrate many local measurements. On the other
hand, the fact that there are multiple motions means that global computations are
likely to mix together measurements derived from different motions. Thus the system
also must segment the local measurements.

In this paper we are concerned with the first part of the problem, the integration of
multiple constraints. Even if we know the scene contains only a single object, estimat-
ing that motion is nontrivial. This difficulty arises from the ambiguity of individual
velocity measurements which may give only a partial constraint on the unknown mo-
tion (Wallach, 1935) ,i.e. the “aperture problem”, (Horn and Schunck, 1981; Adelson
and Movshon, 1982; Marr and Ullman, 1981). To solve this problem, most models
assume a two stage scheme whereby local readings are first computed, and then inte-
grated in a second stage to produce velocity estimates. Psychophysical (Adelson and
Movshon, 1982; Movshon et al., 1986; Welch, 1989) and neurophysiological (Movshon
et al., 1986; Rodman and Albright, 1989) findings are consistent with such a model.

The nature of the integration scheme used in the second stage remains, however,
controversial. This is true even for the simple, widely studied “plaid” stimulus in

which two oriented gratings translate rigidly in the image plane (figure 2-1a). Due
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to the aperture problem, only the component of velocity normal to the orientation
of the grating can be estimated, and hence each grating motion is consistent with
an infinite number of possible velocities, a constraint line in velocity space (figure 2-
1b). When each grating is viewed in isolation, subjects typically perceive the normal
velocity (shown by arrows in figure 2-1b). Yet when the two gratings are presented
simultaneously subjects often perceive them moving coherently and ascribe a single
motion to the plaid pattern (Adelson and Movshon, 1982; Wallach, 1935).

Adelson and Movshon (1982) distinguished between three methods to estimate this
“pattern motion” — Intersection of Constraints (I0OC), Vector Average (VA) and blob
tracking. Intersection of Constraints (IOC) finds the single translation vector that is
consistent with the information at both gratings. Graphically, this can be thought of
as finding the point in velocity space that lies at the intersection of both constraint
lines (circle in figure 2-1b). Vector Average (VA) combines the two normal velocities
by taking their average. Graphically this corresponds to finding the point in velocity
space that lies halfway in between the two normal velocities (square in figure 2-1b).
Blob tracking makes use of the motion of the intersections (Ferrera and Wilson, 1990;
Mingolla et al., 1992) which contain unambiguous information indicating the pattern
velocity. For plaid patterns blob tracking and IOC give identical predictions — they
would both predict veridical perception.

The wealth of experimental results on the perception of motion in plaids reveals a
surprisingly complex picture. Perceived pattern motion is sometimes veridical (con-
sistent with IOC or feature tracking) and at other times significantly biased towards
the VA direction. The degree of bias is influenced by factors including orientation
of the gratings (Yo and Wilson, 1992; Bowns, 1996; Burke and Wenderoth, 1993),
contrast (Stone et al., 1990), presentation time (Yo and Wilson, 1992) and foveal
location (Yo and Wilson, 1992).

Thus even for the restricted case of plaid stimuli, neither of the three models
suggested above can by themselves explain the range of percepts. Instead, one needs
to assume that human motion perception is based on at least two separate mecha-

nisms — a “2D motion” mechanism that estimates veridical motion and a crude “1D
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motion” mechanism that is at times biased away from the veridical motion. Many in-
vestigators have proposed that two separate motion mechanisms exist and that these
are later combined (Rubin and Hochstein, 1993; Lorenceau et al., 1992; Mingolla
et al., 1992; Alais et al., 1994).

As an example of a two mechanism explanation, consider the Wilson et al. (92)
model of perceived direction of sine wave plaids. The perceived motion is assumed
to be the average of two motion estimates one obtained by a “Fourier” pathway and
the other by a “non-Fourier” pathway. The “Fourier” pathway calculates the normal
motions of the two components while the “non-Fourier” pathway calculates motion
energy on a squared and filtered version of the pattern.

Both pathways use vector average to calculate their motion estimates, but the in-
clusion of the “non-Fourier” pathway causes the estimate to be more veridical. Wilson
et al. have shown that their model may predict biased or veridical estimates of direc-
tion depending on the parameters of the stimulus. The change in model prediction
with stimulus parameters arises from the fact that the two mechanisms operate in
separate regimes. Thus since plaids move in the vector average at short durations and
not at long durations, it was assumed that the “non-Fourier” mechanism is delayed
relative to the “Fourier” pathway. Since plaids move more veridically in the fovea
than in the periphery, the model non-Fourier responses were divided by two in the
periphery.

The danger of such an explanation is that practically any psychophysical result on
perceived direction can be accommodated - by assuming that the “2D” mechanism
operates when the motion is veridical, and does not operate whenever the motion
is biased. For example, Alais et al (1994) favor a 2D “blob tracking” explanation
for perceived direction of plaids. The fact that some plaids exhibit large biases in
perceived direction while others do not is attributed to the fact that some plaids
contain “optimal blobs” while others contain “suboptimal blobs” (Alais et al., 1994).
Although the data may require these types of post-hoc explanations, we would prefer
a more principled explanation in terms of a single mechanism.

Evidence that the complex set of experimental results on plaids may indeed be
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Figure 2-2: a. a “fat” ellipse rotating rigidly in the image plane appears to deform
nonrigidly. b. a “narrow” ellipse rotating rigidly in the image plane appears to rotate
rigidly.

explained using a single principled mechanism comes from the work of Heeger and
Simoncelli (Heeger and Simoncelli, 1991; Simoncelli and Heeger, 1992; Simoncelli,
1993; Simoncelli and Heeger, 1998). Their model consisted of a bank of spatiotempo-
ral filters, whose outputs were pooled to form velocity tuned units. The population
of velocity units represented an optimal Bayesian estimate of the local velocity, as-
suming a prior probability favoring slow speeds. Their model worked directly on the
raw image data and could be used to calculate the local velocity for any image se-
quence. In general, their model predicted a velocity close to the veridical velocity of
the stimulus, but under certain conditions (e.g. low contrast, small angular separa-
tion) predicted velocities that were biased towards the vector average. They showed
that these conditions for biased perception were consistent with data from human
observers.

The controversy over the integration scheme used to estimate the translation of
plaids may obscure the fact that they are hardly representative of the range of mo-
tions the visual system needs to analyze. A model of integration of local constraints
in human vision should also account for perception of more complex motions than
rigid 2D translation in the image plane. As an example, consider the perception
of circles and derived figures in rotation (figure 2-2). When a “fat” ellipse , with

aspect ratio close to unity, rotates in the image plane, it is perceived as deforming
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nonrigidly (Musatti, 1924; Wallach et al., 1956; Musatti, 1975). However, when a
“narrow” ellipse, with aspect ratio far from unity, rotates in the image plane, the
motion is perceived veridically (Wallach et al., 1956).

Unfortunately, the models surveyed above for the perception of plaids can not be
directly applied to explain this percept. These models estimate a single velocity vector
rather than a spatially Varying velocity field. An elegant explanation was offered by
Hildreth (1983) using a very different style of model. She explained this and other
motion “illusions” of smooth contours with a model that minimizes the variation
of the perceived velocity field along the contour. She showed that for a rigid body
with explicit features, her model will always give the physically “correct” motion
field, but for smooth contours the estimate may be wrong. In the cases when the
estimate was physically “wrong”, it qualitatively agreed with human percepts of the
same stimuli. Grzywacz and Yuille (1991) used a modified definition of smoothness to
explain the misperception of smooth contours undergoing rigid translation (Nakayama
and Silverman, 1988a; Nakayama and Silverman, 1988Db).

Thus the question of how the visual system integrates multiple local motion con-
straints has not a single answer in the existing literature but rather a multitude of
answers. Each of the models proposed can successfully explain a subset of the rich
experimental data.

In this paper we propose a single Bayesian model for motion integration and show
that it can account for a wide range of percepts. We show that seemingly unconnected
phenomena in human vision — from bias towards vector average in plaids to perceived
nonrigidity in ellipses may arise from an optimal Bayesian estimation strategy in

human vision.

2.2 Intuition — Bayesian motion perception

In order to obtain intuition about how Bayesian motion perception works, this section
describes the construction of an overly simplified Bayesian motion estimator. As we

discuss at the end of this section, this restricted model can not account for the range
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Figure 2-3: A restricted Bayesian estimator for velocity. The algorithm receives local
likelihoods from various image locations and calculates the posterior probability in
velocity space. This estimator is too simplistic to account for the range of phenomena
we are intersted in explaining but serves to give intuition about how Bayesian motion
estimation works. Here the likelihoods are zero everywhere except on the constraint
line and the MAP estimate is the IOC solution.
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Figure 2-4: A restricted Bayesian estimator for velocity. The algorithm receives local
likelihoods from various image locations and calculates the posterior probability in
velocity space. This estimator is too simplistic to account for the range of phenomena
we are interested in explaining but serves to give intuition about how Bayesian motion
estimation works. Here the likelihoods are zero everywhere except at distance e from
the constraint line and the MAP estimate is the normal velocity with minimal speed.
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Figure 2-5: A restricted Bayesian estimator for velocity. The algorithm receives local

likelihoods from various image locations and calculates the posterior probability in

velocity space. This estimator is too simplistic to account for the range of phenomena

we are interested in explaining but serves to give intuition about how Bayesian motion

estimation works. Here the likelihoods fall off in a Gaussian manner with distance
from the constraint line, and the MAP estimate is the vector average.
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of phenomena we are interested in explaining. However, understanding the restricted
model may help understand the more general Bayesian model.

While the Bayesian approach to perception has recently been used by a number of
researchers (see e.g. (Knill and Richards, 1996)), different authors may mean different
things when they refer to the visual system as Bayesian. Here we refer to two aspects
of Bayesian inference - (1) that different measurements are combined while taking into
account their degree of certainty and (2) that measurements are combined together
with prior knowledge to arrive at an estimate.

To illustrate this definition, consider an observer who is trying to estimate the
temperature outside her house. She sends out two messengers who perform measure-
ments and report back to her. One messenger reports that the temperature is 80
degrees and attaches a high degree of certainty to his measurement, while the second
messenger reports that the temperature is 60 with a low degree of certainty. The
observer herself, without making any measurements, has prior knowledge that the
temperature this time of the year is typically around 90 degrees. According to our
definition, there are two ways in which the observer can be a non Bayesian. First,
by ignoring the certainty of the two messengers and giving equal weight to the two
estimates. Second, by ignoring her prior knowledge and using only the two measure-
ments.

In order to perform Bayesian inference the observer needs to formalize her prior
knowledge as a probability distribution and to ask both messengers to report prob-
ability distributions as well — the likelihoods of their evidence given a temperature.
Denote by 8 the unknown temperature, and F,, F} the evidence considered by the two
messengers. The task of the Bayesian observer is to calculate the posterior probability

of any temperature value given both sources of evidence:

P(olEmEb) (21)
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Using Bayes rule, this can be rewritten:
P(\E,, Ey) = kP(0)P(E,, E;|6) (2.2)

where k is a normalizing constant that is independent of §. Note that the right hand
side of equation 2.2 reqﬁires knowing the joint probability of the evidence of the two
messengers. Typically, neither of the two messengers would know this probability, as
it requires some knowledge of the amount of information shared between them. A
simplifying assumption is that the two messengers consider conditionally independent

sources of evidence, in which case equation 2.2 simplifies into:
P(8|E,, Ey) = kP(0)P(E,|0)P(E;|0) (2.3)

Equation 2.3 expresses the posterior probability of the temperature as a product of
the prior probability and the likelithoods. The Mazimum a posteriore (MAP) estimate
is the one that maximizes the posterior probability.

If the likelihoods and the prior probability are Gaussian distributions, the MAP
estimate has a very simple form — it reduces to a weighted average of the two
estimates and the prior where the weights are inversely proportional to the variances.
Formally, assume P(FE,|0) is a Gaussian with mean g, and variance V,, P(E|0) is a
Gaussian with mean g, and variance Vj, and the prior P(9) is a Gaussian with mean

pp and variance V,. Then 6%, the MAP estimate is given by:

AR

0*
- 1 | 1 | 1
La. Lb Lp

(2.4)

Equation 2.4 illustrates the two properties of a Bayesian estimator — the two likeli-
hoods are combined with a prior and all quantities are weighted by their uncertainty.

Motion perception can be considered in analogous terms. Suppose the observer
is trying to estimate the velocity of a translating pattern. Different image locations
give local readings of the motion with varying degrees of uncertainty and the observer

also has some prior probability over the possible velocity. In a Bayesian estimation
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procedure, the observer would use the local readings in order to obtain likelihoods
and then multiply these likelihoods and the prior probability to find the posterior.

This suggests the restricted Bayesian motion estimator illustrated in figures 2-3—
2-5. The model receives as input likelihoods from two apertures, and multiplies them
together with a prior probability to obtain a posterior probability in velocity space.
Finally the peak of the posterior distribution gives the MAP estimate.

Figure 2-3 shows the MAP estimate when the two likelihoods are set to 1 for
velocities on the constraint line and 0 everywhere else. The prior probability is a
Gaussian favoring slow speeds (cf. (Heeger and Simoncelli, 1991)) — the probability
falls off with distance from the origin. In this case, the prior probability plays no role,
because when the two likelihoods are multiplied the result is zero everywhere except
at the IOC solution. Thus the MAP estimate will be the IOC solution.

A second possibility is shown in figure 2-4. Here we assume that the likelihoods
are zero everywhere except at velocities that are a fixed distance from the constraint
line. Now when the two likelihoods are multiplied they give a diamond shaped region
of velocity space in which all velocities have equal likelihood. The multiplication with
the prior probability gives a “shaded diamond” posterior probability whose peak is
shown with a dot. In this case the MAP estimate is the normal velocity of one of the
slower grating.

A third possibility is shown in figure 2-5. Here we assume that the likelihoods are
“fuzzy” constraint lines — likelihood decreases exponentially with distance from the
constraint line. Now when the two likelihoods are multiplied they give rise to a “fuzzy”
ellipsoid in velocity space. The IOC solution maximizes the combined likelihood but
all velocities within the “fuzzy” ellipsoid have similar likelihoods. Multiplication with
the prior gives a posterior probability whose peak is shown with the X symbol. In
this case the MAP estimate is close to the vector average solution.

As the preceding examples show, this restricted Bayesian model may give rise to
various velocity space combination rules, depending on the local likelihoods. However,
as a model of human perception the restricted Bayesian model suffers from serious

shortcomings:
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Figure 2-6: The global structure of our model. Similar to most models of motion
perception, our model can be divided into two main stages - (1) a local measurement
stage and (2) a global integration stage where the local measurements are combined
to give an estimate of object motion. Unlike most models, the first stage extracts
probabilities about local motion, and the second stage combines these local measure-
ments in a Bayesian framework, taking into account a prior favoring slow and smooth
velocity fields.

o The likelihood functions are based on constraint lines, i.e. on an experimenter’s
description of the stimulus. We need a way to calculate likelihoods directly from

spatiotemporal data.

e The likelihood functions only consider “1D” locations. We need a way to define

likelihoods for all image regions, including “2D” features.

e The velocity space construction of the estimator assumes rigid translation. We
need a way of performing Bayesian inference for general motions, including

rotations and nonrigid deformations.

In this paper we describe a more elaborate Bayesian estimator. The model works
directly on the image data and combines local likelihoods with a prior probability to
estimate a velocity field for a given stimulus. The prior probability favors slow and
smooth velocity fields. We review a large number of previously published phenomena

and find that the Bayesian estimator predicts a wide range of psychophysical results.

2.3 The model

The global structure of our model is shown in figure 2-6. As in most motion models,
our model can be divided into two main stages - (1) a local measurement stage and

(2) a global integration stage where the local measurements are combined to give an
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estimate of the motion of a surface. For present purposes we also include two stages

that are not the focus of this paper - a selection stage and a decision stage.

2.3.1 Stage 1 - local likelihoods

The local measurement stage uses the output of spatiotemporal filters in order to
obtain information about the motion in a small image patch. An important feature
of our model is that the filter outputs are not used in order to derive a single local
estimate of motion. Rather, the measurements are used to obtain a local likelihood
map — for any particular candidate velocity we estimate the probability of the spa-
tiotemporal data being generated by that velocity. This stage of our model is very
similar to the model proposed by Heeger and Simoncelli (1991) who also suggested a
physiological implementation in areas V1 and MT. Here we use a simpler, less physio-
logical version that still captures the important notion of uncertainty in local motion
measurements.

There are a number of reasons why different locations have varying degrees of
ambiguity. The first reason is geometry. For a location in which the only image data
is a straight edge, there are an infinite number of possible velocities that are equally
consistent with the local image data (all lying on a constraint line). In a location in
which the data is two-dimensional this is no longer the case, and the local data is
only consistent with a single velocity.

Thus in the absence of noise, there would be only two types of measurements —
“2D” locations which are unambiguous and “1D” locations which have an infinite
ambiguity. However when noise is considered all locations will have some degree of
ambiguity. In that case one cannot simply distinguish between velocities that “are
consistent” with the local image data and those that are not. Rather the system
needs to quantify the degree to which the data is consistent with a particular velocity.

Here we quantify the degree of consistency using the gradient constraint (Horn
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and Schunck, 1981; Lucas and Kanade, 1981):

Clvz,vy) = Y w(z,y,t)(Lvs + Lyvy + L) (2.5)

z,y,t

where v,,v, denote the horizontal and vertical components of the local velocity
I, 1,,I; denote the spatial and temporal derivatives of the intensity function and
w(z,y,t) is a spatiotemporal window centered at (z,y,t). The gradient constraint
is closely related to more physiologically plausible methods for motion analysis such
as autocorrelation and motion energy (Reichardt, 1961; Poggio and Reichardt, 1973;
Adelson and Bergen, 1986; Simoncelli, 1993).

Assuming the intensity of a point is constant as it moves in the image the gradient
constraint will be satisfied exactly for the correct velocity. If the local spatiotemporal
window contains more than one orientation, the correct velocity can be determined. In
the presence of noise, however, the gradient constraint only gives a relative likelihood
for every velocity — the closer the constraint is to being satisfied, the more likely
that velocity is. A standard derivation under the assumption of Gaussian noise in
the temporal derivative (Simoncelli, 1993) gives the likelihood of a velocity at a given

location:

L(vz,vy) = P(Ip, I, Log, v,) = ae™C=w)/2 (2.6)

where « is a normalizing constant and o? is the expected variance of the noise in
the temporal derivative. This parameter is required in order to convert from the
consistency measure to likelihoods. If there is no noise at all in the sequence, then
any small deviation from the gradient constraint for a particular velocity means that
velocity is extremely unlikely. For larger amounts of noise, the system can tolerate
larger deviations from the gradient constraint.

To gain intuition about the local likelihood, we display it as a gray level image for
several simple stimuli (figures 2-7-2-10). In these plots the brightness at a pixel is
proportional to the likelihood of a particular local velocity hypothesis - bright pixels
correspond to high likelihoods while dark pixels correspond to low likelihoods.
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Figure 2-7: A single frame from a sequence in which a diamond translates horizontally.
a-c. Local likelihoods at three locations. At an edge the local likelihood is a “fuzzy”
constraint line, while at corners the local likelihood is peaked around the veridical ve-
locity. In this paper we use the gradient constraint to calculate these local likelihoods
but very similar likelihoods were calculated using motion energy in (Simoncelli, 1993)
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Figure 2-8: When a curved object rotates, the local information has varying degrees of
ambiguity regarding the true motion, depending on the shape. In a “fat” ellipse, the
local likelihood at the top of the ellipse is highly ambiguous, almost as in a straight
line. In a “narrow” ellipse, however, the local likelihood at the top of the ellipse is
relatively unambiguous.
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stimulus likelihood in velocity space

Figure 2-9: The effect of contrast on the local likelihood. As contrast decreases the
likelihood becomes more fuzzy. (cf. (Simoncelli, 1993))
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t=4

Figure 2-10: The effect of duration on the local likelihood. As duration increases the
likelihood becomes more peaked.
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Figure 2-7a illustrates the likelihood function at three different receptive fields on
a diamond translating horizontally. Note that for locations which have straight lines,
the likelihood function is similar to a “fuzzy” constraint line - all velocities on the
constraint line have highest likelihood and it decreases with distance from the line.
The “fuzziness” of the constraint line is governed by the parameter o - if we assume
no noise in the sequence, o = 0 , then all velocities off the constraint line have zero,
but if we assume noise the falloff is more gradual and points off the constraint line
may have nonzero probability. Note also that at corners where the local information
is less ambiguous, the likelihood no longer has the elongated shape of a constraint line
but rather is centered around the veridical velocity. Our model does not categorize
locations into “corners” versus “lines” — all image locations have varying degrees of
ambiguity. Figure 2-8 illustrates the likelihoods at the top of a rotating ellipse. In
a “fat” ellipse, the local likelihood at the bottom of the ellipse is highly ambiguous,
almost as in a straight line. In a “narrow” ellipse, however, the local likelihood at the
bottom of the ellipse is highly unambiguous.

In addition to the local geometry, the uncertainty associated with a location varies
with contrast and duration. Although the true velocity will always exactly satisfy
the gradient constraint, at low contrasts it will be difficult to distinguish the true
velocity from other candidate velocities. The degree of consistency of all velocities
will be nearly identical. Indeed in the limiting case of zero contrast, there is no
information at all about the local velocity and there is infinite uncertainty. Figure 2-
9 shows the change in the likelihood function for a fized o as the contrast is varied.
At high contrasts the likelihood function is a relatively sharp constraint line, but
at lower contrasts it becomes more and more fuzzy — the less contrast the higher
the uncertainty. This dependence of uncertainty on contrast is not restricted to the
particular choice of consistency measure. Similar plots were obtained using motion
energy in (Simoncelli, 1993).

Similarly, the shorter the duration of the stimulus the higher the uncertainty. Since
the degree of consistency is summed over space and time, it is easier to distinguish

the correct velocity from other candidates as the duration of the stimulus increases.
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Figure 2-10 illustrates this dependence - as duration increases there is more informa-
tion in the spatiotemporal receptive field and hence less uncertainty. The likelihood
function becomes less fuzzy as duration increases. The quantitative dependence will
of course vary with the size and the shape of the window function w(z,y,t), but the

We emphasize again that in the first stage no decision is made about the local
velocity. Rather in each local region, a probability distribution summarizes the range
of possible velocities consistent with the local data, and the relative likelihood of each
of these velocities. The combination of these local likelihoods are left to subsequent

processing.

2.3.2 Stage 2 - Bayesian combination of local signals

Given the local measurements obtained across the image, the second stage calculates
the MAP estimate for the motion of a single surface. In the restricted Bayesian model
discussed in the introduction, this calculation could be easily performed in velocity
space — it required multiplying the likelihoods and the prior to obtain the posterior.

When we consider general motions of a surface, however, the velocity space rep-
resentation is not sufficient. Any 2D translation of a surface can be represented by
a single point in velocity space with coordinates (vg,vy). However, there is no way
to represent a rotation of a surface in a single velocity space plot, we need a larger,
higher dimensional space. Figure 2-11 shows a simple generalization in which motion
is represented by three numbers — two translation numbers and a rotation angle.
This space is rich enough to capture rotations, but again is nbt rich enough to cap-
ture the range of surface motions — there is no way to capture expansion, shearing
or nonrigid deformation. We need a yet higher dimensional space.

We use a 50 dimensional space to represent the motion of a surface. The mapping

from parameter space to the velocity field is given by:

ve(z,y) = i 0.G(z — i,y — y:) (2.7)

=1

vy(w,y) = Z O,G(m —ZHY — yi) (28)

1=26
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Figure 2-11: Parametric description of velocity fields. The two dimensional velocity
space representation can only represent translational velocity fields. A three dimen-
sional space can represent translational and rotational velocity fields. In this paper
we use a 50 dimensional space to represent a rich family of motions including rigid
and nonrigid velocity fields.

where {z;,y;} are 25 locations in the image equally spaced on a 55 grid and G(z,y)
is a two dimensional Gaussian function in image space, with spatial extent defined
by o,: g

G(z,y)=e¢ ?: (2.9)

There is nothing special about this particular representation — it is merely one
choice that allows us to represent a large family of motions with a relatively small
number of dimensions. We have also obtained similar results on a subset of the
phenomena discussed here with other, less rich, representations.

As in the restricted Bayesian model, we need to define a prior probability over the
velocity fields. This is a crucial part of specifying a Bayesian model - after all, one can
make a Bayesian model do anything by designing a sufficiently complex prior. Here
we choose a simple prior and show how it can account for a wide range of perceptual

phenomena.

Our prior incorporates two notions: slowness and smoothness. Suggestions that

33



Figure 2-12: Examples of the preference for slow motions. a. A temporally sampled
wagonwheel appears to rotate in the shortest direction. b. In the “quartet” stimulus,
horizontal or vertical motion is perceived depending on which is shortest. c. A
line whose endpoints are invisible is perceived as moving in the normal, or shortest,
velocity.

humans tend to choose the “shortest path” or “slowest” motion consistent with the
data date back to the beginning of the century (see (Ullman, 1979) and references
within). Figure 2-12a shows two frames of an apparent motion stimulus. Both hori-
zontal and vertical motions are consistent with the information but subjects invariably
choose the shortest path motion. Similarly in figure 2-12b, the wagon wheel may be
moving clockwise or counterclockwise but subjects tend to choose the “shortest path”
or slower motion. Figure 2-12c shows an example from continuous motion. The mo-
tion of a line whose endpoints are occluded is consistent with an infinite family of
velocities, yet subjects tend to prefer the normal velocity, which is the slowest velocity
consistent with the data (Wallach, 1935).

However, if taken by itself, the bias towards slow speeds would lead to highly
nonrigid motion percepts in curved objects. For any image sequence, the slowest
velocity field consistent with the image data is one in which each point along a
contour moves in the direction of its normal, and hence for objects this would predict
nonrigid percepts. A simple example is shown in figure 2-13 (after Hildreth, 1983). A
circle translates horizontally. The slowest velocity field is shown in figure 2-13b and is
highly nonrigid. Hildreth and others (Hildreth, 1983; Horn and Schunck, 1981; Poggio

et al., 1985) have therefore suggested the need for a bias towards “smooth” velocity
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Figure 2-13: Example of the preference for smooth motions. (after (Hildreth, 1983))
a. A horizontally translating circle. b. The slowest velocity field consistent with the
stimulus. Based only on the preference towards slower speeds, this stimulus would
appear to deform nonrigidly.

fields, i.e. ones in which adjacent locations in the image have similar velocities.

To combine the preferences towards (1) slow and (2) smooth motions, we define
a prior probability on velocity fields that penalizes for (1) the speed of the velocities
and (2) the magnitude of the derivatives of the velocities. Both of these “costs” are
summed over the extent of the image. The probability of the velocity field is inversely
proportional to the sum of these costs. Thus the most probable velocity field is one
in which the surface is static — both the speed and the derivatives of the velocity field
are everywhere zero. Velocity fields corresponding to rigid translation in the image
plane will also have high probability — since the velocity is constant as a function of
space, the derivatives will be everywhere zero. In general, for any candidate velocity
field that can be parameterized by § we can calculate the prior probability.

Formally, we define the following prior on a velocity field, V(z,y):
P(V)=ae’™ (2.10)

with:
J(V) = || Dv(z,y)|I” (2.11)

here Dv is a differential operator, i.e. it measures the derivatives of the velocity field.
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We follow Grzywacz and Yuille (1991) in using a differential operator that penalizes

velocity fields with strong derivatives:

o] an
Dv = Z ana—xv (2.12)

n=0

Note that the sum starts from n = 0 thus Dv also includes a penalty for the “zero
order” derivative - i.e. it penalizes fast flow fields. For mathematical conVenience,
Grzywacz and Yuille chose a, = A?"/(n!2") where ) is a free parameter. They noted
that similar results are obtained when a, is set to zero for n > 2. We have also
found this to be true in our simulations. Thus the main significance of the parameter
A is that it controls the ratio between the penalty for fast velocities (ap = 1) and
the penalty for nonsmooth velocities (a; = A?/2). We used a constant value of A
throughout (see appendix).

Unlike the restricted Bayesian model discussed in the introduction, the calculation
of the posterior probability cannot be performed graphically. The prior probability
of § for example is a probability distribution over a 50 dimensional space. However,
as we show in the appendix it is possible to solve analytically for the most probable

g. This gives the velocity field predicted by the model for a given image sequence.

2.3.3 Selection and Decision

As mentioned in the introduction, in scenes containing multiple objects, the selection
of which signals to integrate is a crucial step in motion analysis (cf. (Nowlan and
Sejnowski, 1995)). This is not the focus of our paper, but in order to apply our
model directly to raw images we needed some rudimentary selection process. We
make the simplifying assumption that the image contains a single moving object
and (optionally) static occluders. Thus our selection process is based on subtracting
subsequent frames and thresholding the subtraction to find regions that are not static.
All measurements from these regions are combined. The selection stage also discards
all measurements from receptive fields lying exactly on the border of the image, to

avoid edge artifacts.
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The decision stage is needed in order to relate our model to psychophysical exper-
iments. The fnotion integration stage calculates a velocity field, but in many exper-
iments the task calls for making a discrete decision based on the perceived velocity
field (e.g. “up” versus “down”). In order to model these experiments, the decision
stage makes a judgment based on the estimated velocity field. For example, if the
experiment calls for a direction of motion judgment, the decision stage fits a single

global translation to the velocity field and output the direction of that translation.

2.3.4 Model Summary

The model starts by obtaining local velocity likelihoods at every image location.
These likelihoods are then combined in the second stage to calculate the most probable
velocity field, based on a Bayesian prior favoring slow and smooth motions. All results
described in the next section were obtained using the Gaussian parameterization
(equation 2.7), with a fixed A. Stimuli used as input were gray level image sequences
(5 frames 1282128 pixel size) and the spatiotemporal window used to calculate the
likelihoods was of size 5z5z5 pixels.

The only free parameter that varies between experiments is the parameter o. It
corresponds to the observer’s assumption about the reliability of his or her temporal
derivative estimates. Thus we would expect the numerical value of ¢ to vary some-
what between observers. Indeed for many of the illusions we model here, individual
differences have been reported for the magnitude of the bias (e.g. (Yo and Wilson,
1992; Lorenceau et al., 1992)) although the qualitative nature of the perceptual bias
is similar across subjects. Although o is varied when modeling different experiments,
it is always held constant when modeling a single experiment, thus simulating the

response of a single observer to varying conditions.

2.4 Results

We start by showing the results of the model on translating stimuli. Although the

Bayesian estimate is a velocity field, we summarize the estimate for these stimuli
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using a single velocity vector. This vector is calculated by taking the weighted mean
value of the velocity field with weight decreasing with distance from the center of the
image. Except otherwise noted the estimated velocity field is roughly constant as a

function of space and is well summarized with a single vector.

2.4.1 The Barberpole illusion - Wallach 35

Phenomena: As noted by Wallach (1935), a grating viewed through a circular aper-
ture is perceived as moving in the normal direction, but a grating viewed through a
rectangular aperture is perceived as moving in the direction of the longer axis of the
aperture.

Model Results: Figure 2-14b,d shows the Bayesian estimate for the two stimuli. In
the circular aperture the Bayesian estimate is in the direction of the normal velocity,
while in the rectangular one, the estimate is in the direction of the longer axis of the
aperture.

Discussion: Recall that the Bayesian estimate combines measurements from dif-
ferent locations according to their uncertainty. For the rectangular aperture, the
“terminator” locations corresponding to the edges of the aperture dominate the es-
timate and the grating is perceived to move horizontally. In the circular aperture,
the terminators do not move in a coherent direction, and hence do not have a large
influence on the estimate. Among all velocities consistent with the constraint line,
the preference for slow speeds favors the normal velocity.

For the rectangular aperture the Bayesian estimate exhibits significant nonrigidity
— at the vertical edges of the aperture the field has strong vertical components.
We also note that although the present model can account for the basic barberpole
effect, it does not account for various manipulations that influence the terminator
classification and the magnitude of the barberpole effect. For example, Shimojo et
al. (1989) have used stereoscopic depth to place the grating behind the aperture and
their subjects tended to perceive the grating as moving closer to the normal direction
even in a rectangular aperture. A more sophisticated selection mechanism is required

to account for their effect.
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Figure 2-14: The “barberpole” illusion (Wallach 35). A grating viewed through an
(invisible) circular aperture is perceived as moving in the normal direction, but a
grating viewed through a rectangular aperture is perceived as moving in the direction
of the long axis. a A grating viewed through a circular aperture. b. The Bayesian
estimate for this sequence. Note that the Bayesian estimate is in the normal direction.
c. A grating viewed through a rectangular aperture. d. The Bayesian estimate
for this sequence. Note that the Bayesian estimator is now in the direction of the
longer axis. Because measurements are combined according to their uncertainty, the
unambiguous measurements along the aperture edge overcome the ambiguous ones
obtained inside the aperture.
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2.4.2 Biases towards VA in translating stimuli
Type II plaids - Yo and Wilson (1992)

Phenomena: Yo and Wilson (1992) distinguished between two types of plaid figures.
In “Type I” plaids the two normal velocities lie on different sides of the veridical
velocity, while in “type II” plaids both normal velocities lie on the same side and
hence the vector average is quite different from the veridical velocity (see figure 2-
15b,d). They found that for short presentation times, or low contrast, the perceived
motion of type II is strongly biased in the direction of the vector average while the
percept of type I plaids is largely veridical.

Model Results: Figure 2-15b,d shows the VA, IOC and Bayesian estimate for the
two stimuli. For type I plaids the estimated direction is veridical but the speed is
slightly slower than the veridical. For type II plaids the Bayesian estimator gives an
estimate that is far from the veridical velocity, and that is much closer to the vector
average.

Discussion: The decrease speed observed in the Bayesian estimate for type I plaids
is to be expected from a prior favoring slow velocities. The bias in direction towards
the VA in type II plaids is perhaps less obvious. Where does it come from?

As pointed out by Heeger and Simoncelli (1991), a Bayesian estimate with a prior
favoring slow speeds will be biased towards VA in this case, since the VA solution is
much slower. Consider figure 2-15b. Recall that the Bayesian estimate maximizes the
product of the likelihood and the prior of the estimate. Let us compare the veridical
I0C solution to the Bayesian estimate in these terms.

In terms of likelihood the IOC estimate is optimal. It is the only solution that
lies exactly on both constraint lines. The Bayesian solution does not maximize the
likelihood, since it does not lie exactly on both constraint lines. However, recall that
the local likelihoods are “fuzzy” constraint lines, and hence the Bayesian solution
which is close to both constraint lines still receives high likelihood. In terms of the
prior, however, the Bayesian solution is much preferred. It is significantly (about

55%) slower than the IOC solution. Thus a system that maximizes both the prior
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Figure 2-15: A categorization of plaid patterns introduced by Yo and Wilson (1992).
“Type I” plaids have component motions on both sides of the veridical velocity, while
“Type II” plaids do not. a a “type I” plaid moving upward is typically perceived
veridically. b. The IOC, VA and Bayesian estimate for this sequence. Note that the
Bayesian estimate is in the veridical direction. c. a “type II” plaid moving upward
is typically perceived to move in the direction of the vector average. d. The 10C,
VA and Bayesian estimate for this sequence. Note that the Bayesian estimator is
biased towards the VA motion, as is the percept of observers. Although the 10C

solution maximizes the likelihood, the VA solution has higher prior probability and
only slightly lower likelihood.
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and the likelihood will not choose the IOC solution, but rather one that is biased
towards the vector average.

Note that this argument only holds when the likelihoods are “fuzzy” constraint
lines, i.e. when the system assumes some noise in the local measurements. A system
that assumed no noise would give zero probability to any velocity that did not lie ex-
actly on both constraint lines and would always choose the IOC solution. Recall that
the degree of “fuzziness” of the constraint lines varies depending on the conditions,
e.g. the contrast and duration of the stimulus. Thus the Bayesian estimate may shift
from the VA to the IOC solution depending on the conditions. In subsequent sections

we show that to be the case.

Biased oriented lines - Mingolla et al. (1992)

Phenomena: Additional evidence for a vector average combination rule was found by
Mingolla et al. (1992) using stimuli consisting of lines shown behind apertures (see
figure 2-16a). Behind each aperture, a line translates horizontally, and the orientation
of the line is one of two possible orientations. In the “downward biased” condition, the
lines are +15, 445 degrees from vertical, in the “upward biased” condition, the lines
are —15, —45 from vertical and in the “no bias” condition the lines are +15, —15 degree
from vertical. They found that the perceived direction of motion is heavily biased by
the orientation of the lines. In a two alternative forced choice experiment, the upward,
downward and unbiased line patterns moved in five directions of motion. Subjects
were asked to indicate whether the motion was upward or downward. Figures 2-17a
shows the performance of the average subject on this task, replotted from (Mingolla
et al., 1992). Note that in the biased conditions, subjects’ percept is completely due
to the orientation of the lines and is independent of the actual motion.

Model Results: Figure 2-16b shows the IOC, VA and Bayesian solution for the
stimulus shown in figure 2-16a. The Bayesian solution is indeed biased upwards.
Figure 2-17b shows the 'percent correct’ of the Bayesian model in a simulated 2AFC

experiment. To determine the percentage of upward responses, the decision module
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Figure 2-16: A stimulus studied by Mingolla et al. (1992) suggesting a vector average
combination rule. a. a single frame from a sequence in which oriented lines move
horizontally behind apertures. b. The IOC, VA and Bayesian estimate for this
sequence. Note that the Bayesian estimator is biased towards the VA motion, as is
the percept of observers (Mingolla et al., 1992).

used a “soft” threshold on the velocity field:

1

= Treare) (2.13)

where « is the model’s estimated direction of motion. This corresponds to a “soft”
threshold decision on the model’s output. The only free parametér, o was held con-
stant throughout these simulations. Note that in the biased conditions, the model’s
percept is completely due to the orientation of the lines and is independent of the
actual motion.

Discussion: As in the type II plaid, the veridical velocity is not preferred by the
model, due to the prior favoring slower speeds. The veridical velocity maximizes
the likelihood but not the posterior. In a second set of simulations (not shown) the
terminations of the line endings were visible inside each aperture. Consistent with
the results of Mingolla et al. (1992), the estimated direction was primarily a function

of the true direction of the pattern and not the orientation.

A manifold of lines (Rubin and Hochstein 92)

Phenomena: Even in stimuli containing more than two orientations, the visual system
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Figure 2-17: a. Results of experiment 1 in (Mingolla et al., 1992). Three variations
on the line images shown in figure 2-16a moved in five directions of motion. Subjects
were asked to indicate whether the lines moved upward or downward. Note that in
the absence of features, the perceived direction was only a function of the orientation
of the lines. b. Results of Bayesian estimator output on the same stimuli. The single
free parameter o is held constant throughout.

may be incapable of estimating the veridical velocity. Rubin and Hochstein (1993)
presented subjects with a “manifold” of lines translating horizontally (see figure 2-
18a). They asked subjects to adjust a pointer until it matched their perceived velocity
and found that the perceived motion was diagonal, in the direction of the vector
average. The authors also noted that when a small number of horizontally translating
dots were added to the display (figure 2-18c), the veridical motion was perceived.

Model Results: Figure 2-18b shows the IOC, VA and Bayesian solution for the
manifold stimulus. The Bayesian estimate is biased in the direction of the VA. Fig-
ure 2-18d shows the estimate when a small number of dots are added. The estimate
is now veridical.

Discussion: The bias in the absence of features is explained in the previous dis-
plays — the veridical velocity maximizes the likelihood but not the posterior. The
shift in percept based on a small number of terminator signals falls naturally out
of the Bayesian framework. Since individual measurements are combined according

to their uncertainty, the small number of measurements from the dots overcome the
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Figure 2-18: a. A single frame from a stimulus introduced by Rubin and Hochstein
(1993). A collection of oriented lines translate horizontally. b. The VA, IOC and
Bayesian estimate. The Bayesian estimate is biased in the vector average direction,
consistent with the percept of human subjects. c¢. When a small number of dots
are added to the display the pattern appears to translate horizontally (Rubin and
Hochstein 92). d. The Bayesian estimate shifts to veridical under these circum-
stances. Since individual measurements are combined according to their uncertainty,
the small number of measurements from the dots overcome the measurements from
the lines.
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measurements from the lines.

In Rubin and Hochstein’s original displays the lines were viewed through an aper-
ture, unlike the displays used here where the lines fill the image. An interesting facet
of Rubin and Hochstein’s results which is not captured in our model is that the ac-
cidental terminator signals created by the aperture also had a significant effect on
the perceived motion. Similar to the results with the barber pole illusion, they found
that manipulating the perceived depth of the aperture changed the influence of the
terminators. A more sophisticated selection mechanism is needed to account for these

results.

Intermediate solutions - Bowns (1996)

Phenomena: The Bayesian estimator generally gives a velocity estimate somewhere
between “pure” vector average and “pure” I0C. Evidence against either pure mech-
anism was recently reported by Bowns (1996). In her experiment, a set of type II
plaids consisting of orientations 202 and 225 were used as stimuli. Although the
two orientations were held constant, the relative speeds of the two components were
varied. The result was a set of plaids where the vector average was always right of
the vertical while the IOC solution was always left of vertical. Figure 2-19 shows
examples of the two extreme plaids used in her study, along with their velocity space
construction.

Subjects were asked to determine whether or not the motion was left or right of
vertical. It was found that when the speeds of the two components were similar,
subjects answered right of vertical (consistent with the VA solution) while when
the speeds were dissimilar subjects answered left of vertical (consistent with the VA
solution). The circles in figure 2-20 show the percentage of rightward results for a
subject in her experiment.

Model Results Figure 2-19c and d show the Bayesian estimate for the two extreme
cases. Note that they switch from left of vertical to right of vertical as the relative
speeds change. In figure 2-20 the solid line gives the expected percent rightward

responses for the Bayesian estimator. Note that it gives a gradual shift from left to
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Figure 2-19: Experimental stimuli used by Bowns (1996) that provide evidence against
a pure vector average or [OC mechanism. a. A type Il plaid with orientations 202, 225
degrees and relative speeds 1,0.45. b. The VA, IOC and Bayesian estimates. The
IOC solution is leftward of the vertical while the VA solution is rightward. The
Bayesian estimate is leftward, consistent with the results of Bowns (1996). c. A type
IT plaid with orientations 202,225 degrees and relative speeds 1,0.75. d. The VA,
IOC and Bayesian estimates. The IOC solution is leftward of the vertical while the
VA solution is rightward. The Bayesian estimate is rightward, consistent with the
results of Bowns (1996).
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Figure 2-20: The results of an experiment conducted by Bowns (1996). Subjects
indicated if the motion of a plaid was left of vertical (consistent with VA) or right-
wards of vertical (consistent with IOC). The relative speeds of the two components
were varied. The circles show the results of subject LB, while the crosses show the
output of the Bayesian model (o constant throughout). The experimental results are
inconsistent with pure VA or pure IOC but are consistent with a Bayesian estimator.

right as the relative speeds are varied. The parameter o is held constant throughout.

Discussion: Here again, the prior favoring slower speeds causes the Bayesian esti-
mator to move away from the veridical IOC solution. However, the Bayesian estimator
is neither a “pure” IOC solution nor a “pure” VA solution. Rather it may give any
perceived velocity that varies smoothly with stimulus parameters.

The fact that a Bayesian estimator is biased towards the vector average solution
suggests that the VA bias is not a result of the inability of the visual system to
correctly solve for the IOC solution, but rather may be a result of a combination rule

that takes into account noise and prior probabilities to arrive at an estimate.

2.4.3 Dependence of VA bias on stimulus orientation
Effect of component orientation - Burke and Wenderoth (1992)

Phenomena: Even in type II plaids, the perceived direction may be more consistent

with IOC than VA (Bowns, 1996; Burke and Wenderoth, 1993). Consider, for exam-
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Figure 2-21: Stimuli used by Burke and Wenderoth (1993) to show that the percept
of some type II plaids is more consistent with IOC than with VA. a. A type II
plaid with orientations 20 and 30 degrees is misperceived by about 15 degrees.(Burke
and Wenderoth, 1993) b. The VA, I0C and Bayesian estimates. The Bayesian
estimate is biased in a similar manner to the human observers. c¢. A type II plaid
with orientations 5 and 45 degrees is is perceived nearly veridically. (Burke and
Wenderoth, 1993) d. The VA, IOC and Bayesian estimate. The Bayesian estimate is
nearly veridical. The parameter o is held constant throughout.
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Figure 2-22: Results of an experiment conducted by Burke and Wenderoth (1993)
to systematically investigate the effect of plaid component orientation on perceived
direction. All they plaids are “type II” and yet when the relative angle between
the components of the plaid is increased varied, the perceived direction shows a
gradual shift from the VA to the IOC solution (open circles replotted from (Burke and
Wenderoth, 1993)). The Bayesian estimator, with a fixed o shows the same behavior
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ple, the type II plaids shown in figure 2-21. Burke and Wenderoth (1993) found that
for the plaid in figure 2-21a (orientations 200,210) the perceived direction is biased
by about 15 degrees, while for the plaid in figure 2-21c (orientations 185,225) the
perceived direction is nearly veridical with a bias of under 2 degrees. Thus if one
assumes independent IOC and VA mechanisms, one would need to assume that the
visual system uses the IOC mechanism for the plaid in figure 2-21c but switches to
the VA mechanism for the plaid in figure 2-21a. Burke and Wenderoth systematically
varied the angle between the two plaid components and asked subjects to report their
perceived directions. The results are shown in the open circles in figure 2-22. The
perceived direction is inconsistent with a pure VA mechanism or a pure IOC mecha-
nism. Rather it shows a gradual shift from the VA to the IOC solution as the angle
between the components increases.

Model Results: Figure 2-22 shows the predicted IOC, VA and Bayesian estimates
as the angles are varied. The parameter o is held fixed. Note that a single model
generates the range of percepts, consistent with human observers.

Discussion: To get an intuitive understanding of why the same Bayesian estimator
gives IOC or VA type solutions depending on the orientation of the components,
compare figure 2-21b to figure 2-21d. Note that in figure 2-21b the two constraint lines
are nearly parallel. Hence, a solution lying halfway between the two constraint lines
(such as the VA solution) receives high likelihood for fuzzy constraint lines. However,
in figure 2-21d, where the components have a 40 degrees difference in orientation, the
two constraint lines are also separated by 40 degrees. Thus for a solution to have
high likelihood, it is forced to lie close to the intersection of the two lines, or the IOC
solution. Thus a single, Bayesian mechanism predicts a gradual shift from VA to IOC
as the orientation of the components is varied.

An alternative explanation of the shift in perceived direction was suggested by
Bowns (1996) who pointed out that there exist features in the “blob” regions of
these plaids that move in different directions as the orientations of the gratings are
varied. Our results do not of course rule out this explanation, but they show that

hypothesizing a specialized “blob” mechanism is not necessary.
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Orientation effects in occluded stimuli

Phenomena: We have performed experiments with the stimulus shown in figure 2-
23a. A rhombus whose four corners are occluded is moving horizontally. Note that
there are no features on this stimulus which move horizontally - the two normal
velocities are diagonal and the terminator motion is downward. This stimulus is
similar to a type II plaid in the sense that the two normal velocities lie on the same
side of the veridical velocity. However it requires integration across space rather than
across multiple orientations at a single point. We wanted to see whether the biases
in perceived velocity would behave the same way as in plaids.

We presented subjects with these stimuli while varying the angle of one of the
sides and asked them to indicate the perceived direction. Results of a typical subject
are shown in figure 2-23. Consistent with the result on plaids (Burke and Wenderoth,
1993) subjects percept shift gradually from a bias in the VA direction to the veridical
direction as the angular difference increases.

Model Results: Figure 2-23 shows the result of the Bayesian estimator with fixed
o. Similar to the results with plaids, the Bayesian estimate shifts gradually from a
bias in the VA direction to the veridical direction as the angular difference increases.

Discussion: It seems difficult to reconcile these results with a “multiple mecha-
nism” model in which the visual system uses a VA mechanism or an IOC mechanism
depending on the conditions. First, one would have to assume that the visual system
uses a different mechanism for nearly identical stimuli, when the relative orienta-
tions is changed. Second, the perceived direction changes continuously and includes
intermediate values that are inconsistent with either VA or 10C.

Likewise, these results are difficult to reconcile with a “feature tracking” explana-
tion of the sort proposed by Bownes (1996) or by Yo and Wilson (1992) . No matter
what the orientation of the rhombus sides are, there are never any trackable fea-
tures moving in the veridical direction. Yet subjects perceive motion in the veridical
direction when the angle between the two components is large.

In contrast, as we have shown, these results are consistent with a Bayesian esti-
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Figure 2-23: The stimulus used in an experiment to measure influence of relative
orientation on perceived direction. A rhombus whose four corners are occluded was
translating horizontally. The angle between the two orientations was varied. a. A
single frame from the sequence. b. The predictions of VA, IOC and the Bayesian
estimator for the direction of motion of the rhombus. One of the orientations is fixed
at 40 degrees, and the second orientation is varied. The VA solution is always far
from horizontal (by at least 50 degrees), the IOC prediction is always horizontal and
the Bayesian estimator predicts a gradual shift from horizontal to diagonal as the
angle between the two components is decreased. The results of a single subject are
shown in circles.

mation strategy where motion signals are fused in accordance with their uncertainty
and combined with a prior favoring slow and smooth velocities. Again, this does not
rule out the “multiple mechanism” explanation, but shows that it is not necessary.

A single Bayesian mechanism is sufficient.

2.4.4 Dependence of VA bias on contrast
Effect of contrast on type II plaids - Yo and Wilson (1992)

Phenomena: Yo and Wilson (1992) reported that the bias towards VA in type II plaids
consistently increased with reduced contrast. For example, Figure 2-24a,c show a type
II plaid at high contrast and at low contrast. For durations over 100msec the high
contrast plaid is perceived as moving in the veridical direction, while the low contrast
is heavily biased towards the VA solution (Yo and Wilson, 1992).

Model Results: Figure 2-24b,d show the VA, IOC and Bayesian predictions for
this stimulus. Obviously, both VA and IOC solutions are unaffected by the contrast
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Figure 2-24: A high contrast type II plaid (a) viewed at long durations, may be
perceived veridically, but the same stimulus at low contrast (b) shows a strong VA
bias (Yo and Wilson 92). As shown in (b) and (d) the VA and IOC predictions are
not affected by contrast, but the Bayesian estimator with a fixed ¢ shows the same
shift from veridical to biased as contrast is decreased.
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Figure 2-25: a. The local consistency (equation 2.5) for various vertical velocities
measured at a single location in the stimulus shown in figure 2-24. At low contrast
there is only a small difference between the degree to which the true velocity satisfies
the gradient constraint and the degree to which other velocities do so. b. The local
likelihood (equation 2.6) for various vertical velocities at the same location. At low
contrast there is a higher degree of uncertainty.

and hence cannot by themselves account for the percept. The Bayesian estimate, on
the other hand, changes from veridical to biased as contrast is decreased even though
the only free parameter o is held constant.

Discussion: To gain intuitive understanding of the change in the Bayesian pre-
diction as contrast as varied, recall from section 2.3.1 that the contrast changes the
“fuzziness” of the constraint line. Thus at low contrast, both constraint lines are
very fuzzy, and the VA solution receives relatively high likelihood relative to the IOC
solution. We emphasize that this change in “fuzziness” with contrast does not have to
be put in especially to explain this phenomena. It is a direct consequence of the prob-
abilistic formulation — at low contrast there is more uncertainty locally. Figure 2-25a
shows the consistency measure (equation 2.5) for different vertical velocities measured
at a single location in the stimulus shown in figure 2-24. At low contrast there is only
a small difference between the degree to which the true velocity satisfies the gradient
constraint and the degree to which other velocities do so. Therefore when the local
likelihoods are calculated (equation 2.6) one obtains figure 2-25b. At lower contrast
the likelihood function is less peaked, and there is more local uncertainty.

While the sharpness of the local likelihoods change with contrast, the prior proba-
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Figure 2-26: A stimulus used by Lorenceau et al. (93) suggesting the need for inde-
pendent terminator and line motion mechanisms. A matrix of lines moves oblique to
the line orientations. At high contrast the motion of the lines is veridical while at low
contrast it is misperceived a. A single frame from the sequence. b. The results of a
two alternative forced choice experiment (up/down) replotted from Lorenceau et al.
(1992) (average subject shown with circles). The solid line shows the predictions of
the Bayesian model. A single Bayesian mechanism would predict systematic errors
at low contrast with an increase in correct responses as contrast is increased.

bility does not change. As mentioned earlier, the prior probability of the VA solution
is higher, and hence at low contrasts the Bayesian solution is biased towards the VA.
At high contrast, however, as the likelihoods become much more peaked, the prior

has less influence and the Bayesian estimate approaches the IOC solution.

2.4.5 Contrast effects on line stimuli - Lorenceau et al 1992

Phenomena: Lorenceau et al. (1993) asked subjects to judge whether a matrix of
oriented lines moved above or below the horizontal (see figure 2-26a) as the contrast of
the display was systematically varied. The results are replotted in figure 2-26b. Note
that at low contrasts, performance is far below chance indicating subjects perceived
upward motion while the patterns moved downward. Lorenceau et al. modeled these
results using two separate mechanisms, one dealing with terminator and other with
line motion. The terminator mechanism is assumed to be active primarily at high
contrast and the line mechanism at low contrast.

Model Results: The solid line in figure 2-26b shows the simulated performance
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of the Bayesian model on this task. Again, the percentage of correct responses is
obtained by using a “soft” threshold on the model’s predicted direction of motion.
Although the model does not include separate “terminator” and “line” motion mecha-
nisms, it predicts a gradual shift from downward motion to upward motion as contrast
is increased. The parameter o is held fixed.

Discussion: The intuition behind the model’s performance in this task is similar
to the one in the plaid displays. At high contrast, the likelihood is peaked and
the estimated motion is veridical. At low contrast, however, the likelihood at the
endpoints of the lines and along the lines, is more “fuzzy” and the prior favoring slow
velocities has a large influence. Hence, motion is perceived in the normal velocity
which is slower than the veridical one. There is no need to assume separate terminator

and line mechanisms.

Influence of contrast on the speed of a single grating - Thompson et al

1996

Phenomena: Thompson et al. (1996) have shown that the perceived speed of a single
grating depends on the contrast. Noting that “lower-contrast patterns consistently
appear to move slower”, they conducted an experiment in which subjects viewed
a high contrast (70%) grating followed by a test low contrast (10%) grating. The
subjects adjusted the speed of the test grating until the perceived speeds were matched
(see figure 2-27a). Although the magnitude of the effect varied slightly between
subjects, the direction of the effect was quite robust. Typical results are shown in
figure 2-27b. In order to match the perceived speed of the low contrast grating, the
high contrast grating needs to move about 70% slower. Similarly, in order to match
the perceived speed of the high contrast grating, the low contrast grating needs to
move about 150% faster.

Model Results: Figure 2-27c shows the output of a Bayesian estimator on this
stimulus. For a fixed o the low contrast grating is predicted to move slower. The
predicted speed match is computed by dividing the estimated speeds of the two grat-

ings.
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Figure 2-27: An experiment conducted by Thompson et al. (1996) showing that low
contrast stimuli appear to move slower. Subjects viewed a high contrast grating
(70%) followed by a test low contrast grating (10%). They adjusted the speed of the
test grating until the perceived speeds were matched. b. Circles show the results
averaged over 6 subjects replotted from (Thompson et al., 1996). In order to match
the perceived speed of a low contrast grating, the high contrast grating needs to move
about 70% slower. Similarly, in order to match the perceived speed of a high contrast
grating, the low contrast grating needs to move about 150% faster. Crosses show the
output of the Bayesian estimator. At low contrast, the likelihood is less peaked and
the prior favoring slow speeds dominates. Hence the low contrast grating is predicted
to move slower.
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Figure 2-28: The influence of relative contrast on the perceived direction of a moving
type I plaid (Stone et al., 1990). When both components are of identical contrasts the
perceived motion is in the veridical direction. When they are of unequal contrasts,
the perceived direction is biased in the direction of the higher contrast grating. A
similar pattern is observed in the output of the Bayesian estimator.

Discussion: Again, at at low contrast the likelihood is less peaked and the prior
favoring slow speeds dominates. Hence the low contrast grating is predicted to move

slower than a high contrast grating moving at the same speed.

Dependence of type I direction on relative contrast - Stone et al. (1990)

Phenomena: Stone et al. (1990) showed subjects a set of type I plaids and varied the
ratio of the contrasts between the two components. They found that the direction of
motion of the plaid was biased in the direction of the higher contrast grating. The
magnitude of the bias changed as a function of the “total contrast” of the plaid, i.e.

the sum of the contrasts of the two gratings. When the contrast of both gratings was
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Figure 2-29: An experiment conducted by Stone et al. (1990) showing the influence of
relative contrast on the perceived direction of a moving plaid. Subjects viewed a set
of type I plaids and the contrasts of the two components was systematically varied.
a. Results averaged over subjects replotted from. (Stone et al., 1990). The direction
of motion of the plaid was biased in the direction of the higher contrast grating and
the magnitude of the bias decreases with increased total contrast. b. The Bayesian
estimator gives similar results. (cf. (Heeger and Simoncelli, 1991)).

increased (while the ratio of contrast stayed constant) a smaller bias was observed.
Figure 2-29a shows data averaged over subjects replotted from (Stone et al., 1990).

Model Results: The results of the Bayesian estimator are shown in figure 2-29b.
Similar to the results of human observers, the estimate is biased in the direction of
the higher contrast grating and the magnitude of the bias decreases with increasing
total contrast.

Discussion: Again this is a result of the fact that as contrast is decreased the local
uncertainty decreases. Thus in figure 2-28d, the likelihood corresponding to the low
contrast grating is a very “fuzzy” constraint line. In this case, although the Bayesian
solution does not lie exactly on both constraint lines it has very similar likelihood to
the IOC solution. In terms of the prior, however, the Bayesian solution is favored
because it is slower. When both gratings are of identical contrasts, the likelihoods
have equal fuzziness and the Bayesian solution has the correct direction (although the

magnitude is smaller than the IOC solution). When the total contrast is increased, all
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Figure 2-30: The influence of duration on performance in the experiment conducted
by Yo and Wilson (1992). At short durations, the perceived motion is heavily biased
towards the VA, and it approaches the IOC solutions at long durations. a. a single
frame from the sequence. b. The results of subject HRW replotted from (Yo and
Wilson, 1992). c. The predictions of a Bayesian estimator. The predicted velocity
shows a gradual shift from VA to IOC as duration increases.

the likelihoods become more peaked and the Bayesian solution is forced to lie closer
to the IOC solution.

Although the results of the Bayesian estimator is in qualitative agreement with
the psychophysical results for this task, the quantitative fit can be improved. Heeger
and Simoncelli (1991) have obtained better fits for this data using their model that

also includes a nonlinear gain control mechanism.

2.4.6 Dependence of bias on duration
Dependence of type II bias on duration - Yo and Wilson (1992)

Phenomena: Yo and Wilson (1992) reported that the perceived direction of type II
plaids changes with stimulus duration. At short durations, the perceived direction
is heavily biased in the direction of the vector average and gradually approaches the
IOC solution as duration is increased. Figure 2-30b shows the results of a single
subject.

Model Results: Figure 2-30c shows the predictions of the Bayesian estimator. The

model was given 5 frames of the video sequence, and the local likelihood was calculated
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Figure 2-31: The influence on duration on performance in the experiment conducted
by Lorenceau et al. (93). At short duration, performance is below chance indicating
subjects perceive motion in the normal direction, while at long durations the perceived
motion is largely veridical. a. a single frame from the sequence. b. The results of a
single subject replotted from (Lorenceau et al., 1992). Despite significant individual
variations, subjects consistently perform below chance at short durations and improve
as duration increases. c. The predictions of a Bayesian estimator. A single Bayesian
mechanism would predict systematic errors at short durations with an increase in
correct responses as duration is increased.

by summing filter outputs over space and time. In that respect the results in this
section differ from those reported in other sections, where only two frames were used
to calculate the local likelihoods. Note the change in model ou.tput with increased
duration.

Discussion: As discussed in section 2.3.1, short durations serve to make the local
likelihood less peaked. In fact, the short duration acts in the model much like low
contrast (figure 2-25). At short durations, there is only a small difference between
the degree to which the true velocity satisfies the gradient constraint and the degree
to which other velocities do so. However, as gradient information is combined over
time, the difference becomes more pronounced and the uncertainty in the local mea-
surement decreases. The shorter the presentation time the more the local information
is ambiguous.

While the sharpness of the local likelihood change with duration, the prior proba-
bility does not. Hence the VA solution which has a higher prior probability is favored

82



at short durations, while at long durations the Bayesian estimate approaches the IOC

solution.

Dependence on duration in line drawings — Lorenceau et al. 1992

Phenomena: Lorenceau et al. (1992) reported a similar effect of duration in the
discrimination of line motion. As explained in the previous section, subjects were re-
quested to judge whether the matrix of lines moved above or below the horizontal. At
short durations, they found that performance was below chance, indicating that sub-
jects perceived the lines moving in the normal direction, but performance improved
at longer durations. Figure 2-31b shows the results of a single subject replotted
from (Lorenceau et al., 1992). Despite significant individual variations, subjects con-
sistently perform below chance at short durations and improve as duration increases.

Model Results: Figure 2-31c shows the output of the Bayesian estimator. A single
mechanism predicts systematic errors at short durations with an increase in correct
responses as duration is increased. Note that this explanation does not require sepa-
rate “1D” and “terminator” mechanisms. Rather it is explained in the same way as
the influence of duration on plaids.

Again, at low durations all local measurements have higher degree of uncertainty.
In the Bayesian model there is no categorization of location into “1D” or “2D” but
at all locations the gradient constraint is accumulated over space and time. At short
durations, therefore, there is less signal in the local spatiotemporal window, and hence
more uncertainty in the local likelihoods. In this condition, the prior favoring slow
speeds dominates and perception is in the normal direction. At long durations, the
local uncertainty is decreased, and the prior has a much weaker influence.

Discussion: The results reported in this section were obtained by using a spa-
tiotemporal Gaussian window in equation 2.6. This gives an additional free parame-
ter to fit the data. However the qualitative nature of the results are unchanged when
the window function is changed. Any summation of information over time would lead
to a decrease in local uncertainty with longer durations. Thus a Bayesian estimation

strategy predicts highly biased estimates at low durations but more veridical velocity
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as duration increases.

2.4.7 Non-translational motions

So far we have discussed stimuli undergoing uniform translation. Although the model
returns a flow field we could capture it with a single velocity vector. Now we show
the output of the model on non-translational motions. We display the output of the

model by plotting arrows at different (arbitrarily chosen) locations of the image.

Circles and derived figures in rotation - Wallach 1956

Phenomena: Musatti (1924) and Wallach et al. (1956) observed that when circular
figures are rotated in the image plane (e.g by putting them on a turntable) they are
not perceived as rigidly rotating. A rotating circle appears static, a rotating spiral
appears to contract, and a rotating ellipse appears to deform nonrigidly. In the case
of the rotating ellipse, Wallach et al. (1956) noted that the perceived rigidity is most
pronounced when the ellipse is “fat” — with aspect ratio close to unity. Musatti
pointed out that when a small number of rotating features are added to the display,
the rigid percept becomes prominent.

Model Results: Figure 2-32 shows the output of the Bayesian estimator on these
stimuli. As in human perception the rotating circle is perceived as static, the rotating
spiral as expanding and the rotating ellipse as deforming nonrigidly. Figure 2-33 shows
the model output on a narrow ellipse and on an ellipse with four rotating features
added. Note that in this case, consistent with human perception, the predicted motion
is much closer to rotation. The parameter o is held constant.

Discussion: Why does the model “misperceive” these motions? First note that
for the stimuli in figure 2-32, the perceived motions and the rotational motions have
very similar likelihoods. That is, due to the low curvature of the figure, the local
likelihoods are highly ambiguous. Given that the likelihoods are nearly identical, the
Bayesian estimator is dominated by the prior. Here again, the “slowness” prior may

be responsible for the percept. Figure 2-34 shows the total magnitude of the velocity
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Figure 2-32: Biased perception in Bayesian estimation of circles and derived figures in
rotations. Due to the prior favoring slow and smooth velocities, the estimate may be
biased away from the veridical velocity and towards the normal components. These
biases are illustrated here. A rotating circle appears to be stationary, a rotating ellipse
appears to deform nonrigidly, and a rotating spiral appears to expand and contract.
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Figure 2-33: The percept of nonrigid deformation is influenced by stimulus shape
and by additional features. For a “narrow” rotating ellipse, the Bayesian estimate
is similar to rotation. Similarly, for a “fat” rotating ellipse with four rotating dots,
the estimate is similar to rotation. This is consistent with human perception. The
parameter o is held constant.
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fields. Note that the rotational velocity is much faster than the Bayesian estimate,
and hence is not favored.

The Bayesian estimate considers both the likelihood and the prior. Thus once the
rotating stimulus includes locations that are relatively ambiguous (e.g. the endpoints
of a narrow ellipse, or dots flanking the fat ellipse), the estimate resembles rotation.
The rotation still has lower prior probability but high likelihood.

A slightly different account of these illusions was given by Hildreth (1983). Her
model chooses the velocity field of least variation that satisfies the gradient constraint
at every location along the ellipse. Although her algorithm did not include an explicit
penalty for fast velocity fields it gave similar results to those shown here — a rotating
circle was estimated to be stationary, a rotating spiral was estimated to be expanding
and a rotating fat ellipse was estimated to be deforming.

Note however that by penalizing the magnitude of the first derivative, Hildreth’s
algorithm includes an implicit penalty for fast non-translational velocity fields. That
is, for all translational velocity fields, the first derivative is zero everywhere and there
is no distinction between fast and slow fields. For velocity fields whose first derivative
does not vanish, however, the magnitude of the first derivative increases with increased
speed. Thus Hildreth’s algorithm will in general prefer a slow deformation to a faster
rotation. It will not, however, prefer a slow translation to a faster one, and thus can

not account for biases encountered in translating stimuli (e.g. the VA bias in plaids).

Smooth curves in translation - Nakayama and Silverman 1988

Phenomena: Nakayama and Silverman (1988) found that smooth curves including
sinusoids, Gaussians and sigmoids, may be perceived to deform nonrigidly when they
are translated rigidly in the image plane. Figure 2-35a shows an example. A “shallow”
sinusoid is translating rigidly horizontally. This stimulus is typically perceived as
deforming nonrigidly. The authors noted that the perceived nonrigidity was most
pronounced for “shallow” sinusoids in which the curvature of the curves was small.
Model Results: Figure 2-35b shows the output of the Bayesian estimator. For the

shallow sinusoid the Bayesian estimator favors a slower hypothesis than the veridical
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Figure 2-34: The total magnitude of the velocity fields arrived at by the Bayesian
estimate for the stimuli in 2-32 as compared to the true rotation. Note that the
rotational velocity is much faster than the Bayesian estimate, and hence is not favored.

rigid translation. Figure 2-35d shows the output on the sharp sinusoid. Note that a
fixed o gives a nonrigid percept for the shallow sinusoid and a rigid percept for the
sharp sinusoid.

Discussion: Again this is the result of the tradeoff between “slow” and “smooth”
priors. The nonrigid percept is slower than the rigid translation but less smooth.
For shallow sinusoids, the nonrigid percept is still relatively smooth, but for sharp
sinusoids the smoothness term causes the rigid percept to be preferred. The shape of
sinusoid for which the percept will shift from rigid to nonrigid depends on the free
parameter A\ which governs the tradeoff between the slowness and smoothness terms.
The qualitative results however remain the same — sharp sinusoids are perceived
as more rigid than shallow ones. Similar results were also obtained with the other
smooth curves studied by Nakayama and Silverman — the Gaussian and the sigmoidal

curves.
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Figure 2-35: a. A “shallow” sinusoid translating horizontally appears to to deform
nonrigidly (Nakayama and Silverman 1988). b. The nonrigid deformation is also
prevalent in the Bayesian estimator. c. A “sharp” sinusoid translating horizontally
appears to translate rigidly (Nakayama and Silverman 1988). d. Rigid translation is
also prevalent in the Bayesian RBF estimator.
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2.5 Discussion

Since the visual system receives information that is ambiguous and uncertain, it must
combine the input with prior constraints to achieve reliable estimates. A Bayesian
estimator is the simplest reasonable approach and the prior favoring slow and smooth
motions offer reasonable constraints. In this paper we have asked how such a system
will behave. We find that, like humans, its motion estimates include apparent biases
and illusions. Moreover, this non-veridical perception is quite similar to that exhibited
by humans in the same circumstances.

In recent years a large number of phenomena have been described in velocity
estimation, usually connected with the aperture problem. In reviewing a long list
of phenomena, we find that the Bayesian estimator almost always predicts the psy-
chophysical results. The predictions agree qualitatively, and are often in remarkable
agreement quantitatively.

The Bayesian estimator is a simple and reasonable starting point for a model
of motion perception. Insofar as it explains the data, there is no need to propose
specific mechanisms that deal with lines, terminators, plaids, blobs etc. These other
mechanisms are often poorly defined, and they are often assumed to turn on or off
according to special rules.

The Bayesian estimator described here can be applied to any image sequence that
contains a single moving surface. It works with gratings, plaids, ellipses or spirals
without modification. It usually needs only a single free parameter o, which corre-
sponds to the noise or internal uncertainty level in the observer’s visual system. Even
this parameter remains fixed when the individual observer and viewing conditions are
fixed.

Beyond the specifics of our particular model, we have shown that human mo-
tion perception exhibits two fundamental properties of a Bayesian estimator. First,
observers give different amounts of weight to information at different locations in
the image - e.g. a small number of features can profoundly influence the percept

and high contrast locations have greater influence than low contrast ones. This is
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consistent with a Bayesian mechanism that combines sources of evidence in accor-
dance with their uncertainty. Second, the motion percept exhibits a bias towards
slow and smooth velocities, consistent with a Bayesian mechanism that incorporates
prior knowledge as well as evidence into the estimation.

Each of these properties have appeared in some form in previous models. The no-
tion of giving unequal weight to different motion measurements appears, for example,
in the model suggested by Lourenceau et al. (1992). Mingolla et al. (1992) suggested
assigning these weights according to their “saliencies” which would in turn depend on
contrast. In the Bayesian framework, the amount of weight given to a particular mea-
surement has a concrete source — it depends on its uncertainty. Thus the low weight
given to low contrast, short duration or peripherally viewed features is a consequence
of the high degree of uncertainty associated with them. Moreover, there is no need
to arbitrarily distinguish between “2D” and “1D” local features — all image regions
have varying degrees of uncertainty, and the strong influence of cornerlike features is
a consequence of the relatively unambiguous motion signals they give rise to.

As mentioned in the introduction, the models of Hildreth (1983) and Grzywacz and
Yuille (1991) include a bias towards smooth velocity fields. However these algorithms
do not have the concept of varying degrees of ambiguity in local motion measurements.
They either represents the local information as a constraint line in velocity space or
as a completely unambiguous 2D measurement. They therefore can not account for
the gradual shift in perceived direction of figures as contrast and duration are varied.

The smoothness assumption used by Hildreth (1983) and others, can be considered
a special case of the regularization approach to computational vision introduced by
Poggio et al. (1985). This approach is built on the observation that many problems in
vision are “ill-posed” in the mathematical sense — there are not enough constraints
in the data to reliably estimate the solution. Regularization theory (Tikhonov and
Arsenin, 1977) provides a general mathematical framework for solving such ill-posed
problems by minimzing cost functions that are the sum of two terms — a “data” term
and a “regularizer” term. For many problems, Bayesian MAP estimation and regu-

larization theory give mathematically equivalent algorithms (e.g. (Marroquin et al.,
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1987)). This is also true for the motion theory presented here — although we have
used the language of Bayesian inference we could have equivalently described the
theory in terms of regularization. In the appendix we make this mapping explicit.

The model of Heeger and Simoncelli (1991) was to the best of our knowledge, the
first to provide a Bayesian account of human motion perception that incorporatea
a prior favoring slow speeds. Indeed the first stage of our model, the extraction of
local likelihoods, is very similar to the Heeger and Simoncelli model. In our model,
however, these local likelihoods are then combined across space to estimate a spatially
varying velocity field. In spatially isotropic stimuli (such as plaids and gratings) there
is no need to combine across space as all spatial locations give the same information.
However, integration across space is crucial in order to account for motion perception
in more general stimuli such as translating rhombuses, rotating spirals or translating
sinusoids.

Another local motion analysis model was introuced by Bulthoff et al. (1989) who
described a simple, parallel algorithm that computes optical flow by summing activi-
ties over a small neighborhood of the image. Unlike the Heeger and Simoncelli model,
their model did not include a prior favoring slow velocities and therefore predicts the
I0C solution for all plaid stimuli.

We have attempted to make the Bayesian estimator discussed here as simple as
possible, at the sacrifice of biological faithfulness. Thus we assume a Gaussian noise
model, a fixed ¢ and linear gradient filters. One disadvantage of this simple model
is that in order to obtain quantitative fits to the results of existing experiments we
had to vary o between experiments (but o was always held fixed when modeling a
single experiment with multiple conditions). Although changing o does not in general
change the qualitative nature of the Bayesian estimate, it does change the quantitative
results. A more complicated Bayesian estimator, that also models the nonlinearities
in early vision, may be able to fit more data with fixed parameters.

How could a Bayesian estimator of the type discussed here be implemented given
what is known about the functional architecture of the primate visual system? The

local likelihoods are simple functions (squaring and summing) of the outputs of spa-
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tiotemporal filters at a particular location. Thus a population of units in primary
visual cortex may be capable of representing these local likelihoods (Heeger and Si-
moncelli, 1991). Combining the likelihoods and finding the most probable velocity
estimate, however, is a more complicated matter and is an intriguing question for
future research.

Indeed understanding the mechanism by which human vision combines local mo-
tion signals may prove fruitful in the design of artificial vision systems. Human
motion perception seems to accurately represent uncertainty of local measurements,
and to combine these measurements in accordance with their uncertainty together
with a prior probability. Despite this sophistication motion perception is immediate
and effortless, suggesting that the human visual system has found a way to perform

fast Bayesian inference.
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2.6 Appendix

2.6.1 Solving for the most probable velocity field

We derive here the equations for finding the parametric vector that maximizes the
posterior probability. To simplify the notation, we denote the location (z,y) with a
single vector r. Assume that the velocity field v(r) is composed of a sum of N basis
functions with the coefficients defined by the parameter vector 6. Define ¥U(r) a 2 by
N matrix which give the two components of the basis functions at location r, then
v(r) = ¥(r)d. Using this notation we can now rewrite the likelihoods and the prior
as a function of 6.

Recall that the local likelihood is given by:

L, (v) = ae™ L w0 Tvetlyvy+ 16?202 (2.14)

(we use the convention that for any probability distribution « represents the normal-
ization constant that guarantees that the distribution sum to unity). By completing

the square, this can be rewritten:

L.(v) = ae— =) ETH(r) (v=p(r))/20° (2.15)

where p(r), £71(r) represent the mean and covariance matrices of the local likelihood.

s [ B LELO
71(r) E rs ( LOLe)  I6) ) (2.16)
and p(r) a solution to:
E7H(r)u(r) = y(r) (2.17)
with
Y w I.(s)I:(s)
y(r) = Zs: TS ( Iy(S)It(S) ) (218)

Substituting v(r) = ¥(r)d into equation 2.15 gives the local likelihood of the
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image derivatives given 6:

L (6) = qe=(¥00-rE) S (@E)-4(r) 202 (2.19)

and finally assuming conditional independence, the global likelihood for the image

derivatives is given the product of the local likelihoods at all locations:
L(6)=11,L,(0) (2.20)

We now express the prior probability as a function of 6. Recall that the prior

favors slow and smooth velocities:
P(V) = ae= L D0 0)DD)/2 (2.21)

where D is a differential operator. Substituting v(r) = ¥(r)@ gives the prior proba-
bility on 6:
P(0) = e R0/2 (2.22)

Where R is a symmetric, Nz N matrix such that

Ri; = 3 (DE)(r)(DY;)(r) (2.23)

r

where we have used W;(r) the ith basis field, and DW¥;(r) the results of applying the
differential operator D to that basis field.

The posterior is given by:
P(0|I) = aP(0)P(1]0) (2.24)
The log-posterior is given by:

log P(0|1) = k — 6°R6/20? (2.25)
+E U(r)f = p(r)) Z7(r)(U(r)8 — p(r))/20”
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(note that the log-posterior is quadratic in @ or in other words the posterior is a
Gaussian distribution. Thus maximizing the posterior is equivalent to taking its
mean)

To find 6* the value of 8 that maximizes the posterior we solve:

A6* = b (2.26)

with:

A= (Z V() Z () U(r) /o + R/az) (2.27)

b= (z \I!t(r)E_lp(r)) [o? (2.28)

Specifically, the parameters we use in these simulations are as follows. The differ-
ential operator D was chosen so that the Green’s functions corresponding to it were
Gaussians with standard deviation equal to 70% of the size of the image. The basis
fields were also Gaussians with the same standard deviations. We used 50 basis fields,
25 with purely horizontal velocity and 25 with pure vertical velocity. The centers of
the basis fields were equally spaced in the image, i.e. were placed on a 5z5 grid. In
this case the matrix R has a particularly simple form. If ¥; and ¥; are both vertical
(or horizontal) then R;; is simply the value of the ¢th basis field evaluated at the
center of the jth basis field. Otherwise, R;; = 0.

To summarize, given an image sequence and a parameterization of the velocity
field, the Bayesian estimate of motion is obtained by solving equation 2.26. Finally

the optimal velocity field is obtained by v(r) = ¥(r)6*.

2.6.2 Relation to regularization theory

There are very close links between Bayesian MAP estimation and regularization the-
ory (e.g. (Marroquin et al., 1987)). For completeness, we now show how to rephrase
the Bayesian motion theory presented here in terms of regularization theory.

Regularization theory calls for minimizing cost functions that have two terms: a
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“data” term and a “regularizer term”. A classical example is function approximation
where one is given samples {z;,y;} and wishes to find the approximating function.
Obviously this is an ill-posed problem — there are an infinite number of functions that
could approximate the data equally well. A typical regularization approach calls for
minimizing:

J(f) = L(F@) =)+ A [ DS ()| da (2:29)

The first term on the right hand side is the data term and the second term is the
regularizer, in this case regularization is performed by penalizing for high derivatives.

Note that the log posterior in equation 2.25 can also be decomposed into two terms
that depend on § . The sum of the log likelihoods 3, —(¥(7)0 — u(r)) X~ (r)(V(r)6 —
1(r))/20? and the log prior —0°R6/20?. In the language of regularization theory, the
negative sum of the log likelihoods would be the “data term” and the negative log
posterior would be the “regularizer term”.

The negative log posterior, when considered as a “regularizer” is quite similar to
the smoothness regularizer in equation 2.29 in that it penalizes for values of § that
correspond to velocity fields that have large derivatives. Likewise the negative log
likelihood is similar to the data term in equation 2.29 in that it penalizes for the
squared error between the observed data and the predicted velocity field. The main
difference, however, is that different observations are given different weights in the
log posterior. Recall from section 2.2 that in Bayesian MAP estimation for Gaussian
likelihoods the weight of an observation is inversely proportional to its variance, hence
the ¥7! factor in equation 2.25. Although the regularization framework is broad
enough to encompass nonuniform weights for the data, the use of uniform weighting
as in equation 2.29 is most common (but see (Girosi et al., 1990) for an exception).

An elegant result that can be derived in the regularization framework shows that
the function f that minimizes J in equation 2.29 can be expressed as a superposition
of basis functions (see (Girosi et al., 1995) and references within). In contrast, here
we assume a particular representation for the velocity field rather than deriving it.

We do this because the number of basis functions required for the optimal function
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f is equal to the number of datapoints. In the case of motion analysis, this number
is prohibitively large and for computational efficiency we prefer a low dimensional
representation. A similar approach has been used in function approximation and
time series prediction (Broomhead and Lowe, 1988; Poggio and Girosi, 1989) when
the number of datapoints is large. We have found that as long as one uses the prior
over velocity fields, the exact form of the representation used is not crucial — very

similar results are obtained with different representations (Weiss, 1997).
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Chapter 3

Smoothness in Layers — a
framework for motion estimation

and segmentation in human vision

Abstract

A large body of experimental results in human motion perception is consistent with
the notion that the visual system pools motion information across space by assuming
that nearby points in the image have similar velocities. Although such “smoothness”
based models successfully account for the percept in scenes containing a single motion,
they can not by themselves account for percepts in scenes containing multiple motions.
More elaborate models that allow discontinuities in the motion field, or that restrict
smoothness to contours are inconsistent with human perception.

In this paper we suggest an extension of the smoothness assumption to scenes
containing multiple motions. We assume the scene contains a small number of surfaces
or layers, and that velocity varies smoothly within a layer but not across layers. We
present a computational motion analysis algorithm that calculates (1) the number
of layers (2) the motion of each layer and (3) the assignment of locations to layers.
We show that a simple model based on few assumptions can account for a number
of seemingly unrelated percepts — from transparency in plaids to motion capture in
smooth contours, without the need for stimulus specific heuristics. We discuss the
shortcomings of this simple model and illustrate how it can be extended to incorporate
static constraints on grouping.

99




3.1 Introduction

In order to reliably estimate the motion of a surface, the visual system needs to
combine multiple measurements across space. Often, the motion can not be reliably
estimated using only the local information. This difficulty arises from the ambi-
guity of individual velocity measurements which may give only a partial constraint
on the unknown motion (Wallach, 1935) , i.e. the “aperture problem”, (Horn and
Schunck, 1981; Adelson and Movshon, 1982; Marr and Ullman, 1981). To solve this
problem, most models assume a two stage scheme whereby local readings are first
computed, and then integrated in a second stage to produce velocity estimates. Psy-
chophysical (Adelson and Movshon, 1982; Movshon et al., 1986; Welch, 1989) and
neurophysiological (Movshon et al., 1986; Rodman and Albright, 1989) findings are
consistent with such a model.

Hildreth (1983) and others (Horn and Schunck, 1981; Grzywacz and Yuille, 1991)
have suggested models whereby the aperture problem is solved by assuming smooth-
ness of the velocity field, i.e. by assuming that adjacent points have similar velocities.
In such models the predicted velocity field is found by minimizing a cost functional
that has two terms — a “data” term that enforces that the velocity fields satisfy the
local motion constraints, and a “smoothness” term that penalizes velocity fields that
have large derivatives. Poggio et al. (85) have shown that the smoothness assump-
tion is useful in many aspects of computational vision. They pointed out that many
problems in vision are “ill-posed” in the mathematical sense — there are not enough
constraints in the data to arrive at a reliable solution. Solving ill-posed problems by
adding an additional smoothness constraint is common in applied mathematics and is
known as “regularization” (Tikhonov and Arsenin, 1977). Marroquin et al. (1987) de-
scribed a Bayesian interpretation of the functional minimized in regularization, where
the smoothness term corresponds to a prior favoring smooth velocities. Recently, we
have shown (Weiss and Adelson, 1998) that a Bayesian motion estimator with a prior
favoring slow and smooth velocity fields is consistent with a large number of published

phenomena in human motion perception when the scene contains a single motion.
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Figure 3-1: a. Two transparent rotating sheets rotating in opposite directions form
a single sequence. Humans perceiving this scene see the two rotations. b. The
output of a standard smoothness algorithm on this sequence. The algorithm tries to
simultaneously fit the motion of both surfaces and recovers a single elastic deformation
that is not at all like the human percept.
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Figure 3-2: a. Two squares translate in the image in different directions. b. The
output of a local motion analyzer on this scene. The estimate is correct at the corners
of the squares but two types of errors can be seen in the estimated motion. First,
at the straight edges of the squares the aperture problem is encountered, there is
not enough local information to determine the correct motion and normal velocity is
predicted. Second, at the junctions formed where one square occludes the other, there
is unambiguous motion information that is accidental — the motion of these junctions
is not related to the motion of either of the two squares. c. The output of a standard
smoothness algorithm on this sequence. The algorithm tries to simultaneously fit the

motion of both surfaces and recovers a single elastic deformation that is not at all
like the human percept.
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In scenes containing multiple motions, however, the smoothness assumption by
itself gives estimates that is nothing like human perception. Figure 3-1 shows an
example with two transparent surfaces rotating in opposite directions. Figure 3-1b
shows the output of a standard smoothness based algorithm (Grzywacz and Yuille,
1991) on this stimulus. The estimated velocity field tries to simultaneously fit both
motions. While humans looking at such a scene perceive two transparent surfaces each
with its own smooth motion field, the algorithm predicts a single, irregular velocity
field.

A second example of the problems associated with global smoothness is shown
in figure 3-2a. Two squares translate rigidly in opposite directions. Figure 3-2b
shows the output of a local motion analyzer on this scene (Lucas and Kanade, 1981;
Bulthoff et al., 1989). The estimate is correct at the corners of the squares but two
types of errors can be seen in the estimated motion. First, at the straight edges of the
squares the aperture problem is encountered, there is not enough local information
to determine the correct motion and normal velocity is predicted. Second, at the
junctions formed where one square occludes the other, there is unambiguous motion
information that is accidental — the motion of these junctions is not related to
the motion of either of the two squares. Figure 3-2c shows the output of a global
smoothness algorithm (Grzywacz and Yuille, 1991). Since it pools all measurements
together, the algorithm predicts a single elastic deformation rather than two rigid
translations.

The failure of global smoothness algorithms in scenes containing multiple motions
such as figure 3-1 is well known and several ways of fixing the smoothness assumption
have been proposed. Hildreth (1983) proposed a model whereby smoothness is only
assumed along contours. Her algorithm found the velocity field of least variation along
the zero crossings of the image. To illustrate her assumption consider the two squares
scene discussed in figure 3-2. Hildreth’s algorithm would first extract contours from
this scene and then combine measurements along the contour. Thus assuming that
the first step correctly extracted two contours, one for the boundary of each square,

her algorithm would only assume smoothness in the motion of each square. It would
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not assume any relationship between the motions of the two squares. Thus for this
stimulus it would predict two rigid motions, consistent with human perception.

Although Hildreth’s assumption of smoothness along contours does solve some
of the problems associated with smoothness models, there is reason to believe it is
not exactly the assumption used by the human visual system. As pointed out by
Gryzywacz and Yuille (1991) the Hildreth assumption would predict no influence
between features that are off the contour and the perceived motion of the contour.
This is inconsistent with experimental results that show a strong influence of features
in such displays (e.g.(Nakayama and Silverman, 1988a; Shiffrar et al., 1995; Weiss and
Adelson, 1995; Rubin and Hochstein, 1993)). Figure 3-3 shows an example dating
back to Wallach (1935). A line whose endpoints are invisible appears to move in
the normal direction, but when a small number of dots translating horizontally are
added to the display they tend to “capture” the line, and the line appears to move
horizontally. The fact that the dot influences the line when it is not part of the
line’s contour is inconsistent with Hildreth’s model or any other model that assumes
smoothness only along contours.

An alternative approach to “fixing” the problems associated with global smooth-
ness assumption was to assume piecewise smoothness, or smoothness with discon-
tinuities. In these models, e.g. (Terzopoulos, 1986; Hutchinson et al., 1988; Horn,
1986), nearby points are assumed to have similar velocities, but if the velocities are
too dissimilar the assumption is abandoned and a discontinuity is assumed there in-
stead. An advantage of these models over the standard smoothness models is that
when the location of the discontinuity is estimated correctly, there is no smoothing
across boundaries. This avoids many of the oversmoothing problems associated with
global smoothness algorithms.

Despite these successes, the piecewise smoothness assumption can not directly
account for the percept of transparency(cf. (Marroquin, 1992; Darrell and Pentland,
1991; Madrasmi et al., 1993)). For example, in the scene with two transparent rotating
sheets shown in figure 3-1, such algorithms would estimate a single velocity field with

many discontinuities. This does not seem to capture the salient part of the human
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Figure 3-3: a. A horizontally translating diagonal line whose endpoints are invisible
is consistent with an infinite family of motions. Typically, under these conditions,
the normal velocity is chosen and the line appears to translate diagonally. (Wallach
35) b. When two horizontally translating dots are added to the display the line
appears to move in the direction of the dots (Wallach 35, Rubin and Hochstein 93).
This is inconsistent with a model that only combines information along contours (e.g.
Hildreth 83). c. The effect persists when the display is placed on a static texture
background. This is inconsistent with an algorithm that assumes “smoothness with
discontinuities” (e.g. Terzopoulos 86). The discontinuities formed between the dots
and the background would inhibit any interactions between the dots and the line.

percept in such scenes — humans tend to report seeing two surfaces, each moving
with a smooth motion. The fact that there are two global surfaces is simply not part
of the vocabulary used by the piecewise smooth models.

In addition to the failure to account for the percept of surfaces, the discontinuities
approach also predicts an incorrect motion for certain scenes. Essentially, it predicts
no interaction between two locations if there is a motion discontinuity between them.
Figure 3-3c shows a simple example in which the line and the dot translate horizon-
tally over a static background.The dissimilarity between the motions of the dots and
the background texture would give rise to a discontinuity as would the dissimilarity
between the line and the texture. Yet human perceiving this scene report no differ-
ence between the percept with and without the static texture. The dots and the line
appear to be in front of the texture and are perceived as a single surface. Thus while
piecewise smoothness may be a reasonable assumption to make in many contexts, it

does not appear to be sufficient for modeling human motion perception.
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Figure 3-4: Layered decomposition of image sequences (adapted from (Wang and
Adelson, 1994)). In a layered description, an image sequence is decomposed into
a small number of occluding layers or surfaces, and each layer has a corresponding
motion field. In this paper we propose that human motion perception assumes the

motion field of each layer is smooth, but does not assume smoothness between motion
fields of different layers.
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Figure 3-5: An illustration of the smoothness in layers assumption in 1D (adapted
from (Wang and Adelson, 1994)). a. Hypothetical velocity estimates as a function
of position. Such data would typically arise from two surfaces in depth. b. Global
smoothness assumption applied to this data. The measurements from the two surfaces
are mixed together rather than segmented. c. Piecewise smoothness. Information
is not propagated across discontinuities. The resulting estimate is rather noisy. d.
Smoothness in Layers. Two smooth velocity functions are found, one for each surface.
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As these simple demonstrations show, the visual system does not appear to assume
global smoothness over the image, nor does it assume smoothness only along contours,
nor does it assume smoothness with discontinuities. In this paper we propose a
formulation that we call “smoothness in layers”. We assume the scene includes a
small number of surfaces or layers (Wang and Adelson, 1994) and that motion varies
smoothly within a given layer. To illustrate this assumption consider figure 3-4.
Global smoothness would assume that motion varies smoothly over the entire image,
while smoothness in layers assumes that one velocity field will vary smoothly over
the front surface and a second velocity field will vary smoothly over the back surface.
There is no assumption of smoothness between two layers only within layers.

Unfortunately, the input to the visual system is not a description in terms of
surfaces or layers. Thus if we wish to account for human motion perception by
assuming smoothness in layers, we need to also account for the formation of a layered
description from spatiotemporal data. In this paper we present a computational
model that does precisely that.

The model presented here is a computational theory in the sense of Marr and
Poggio (Marr, 1982; Marr and Poggio, 1977) who emphasized the different levels of
understanding at which perception can be investigated. Rather than describing a
particular biological implementation of a particular algorithm, we attempt to find
the constraints and assumptions used by the visual system when estimating motion.
Specifically, we employ a Bayesian framework and search for a probability model such
that the most probable interpretation under that model will correspond to the percept
seen by humans. In order to test such a model we need a way of (1) specifying the
probability of an interpretation given a gray level image sequence and (2) finding the
most probable interpretation. The validity of the model is obtained by comparing
the most probable interpretation to human perception of the same sequence. It is in
this sense that the models of Hildreth (1983) or Gryzywacz and Yuille (1991) are not
satisfactory — in scenes containing multiple motions the most probable interpretation
given their assumptions do not correspond to the human percept.

The subsequent section describes mixture estimation, the general statistical frame-
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work that we will to formulate our assumptions. Using that framework we then for-
mulate a simple model that is based on a minimum number of assumptions and see
the extent to which such a model can explain a range of percepts. The model re-
ceives as input a gray level image sequence and calculates (1) the number of layers
(2) the assignment of pixels to layers and (3) the velocity field of each layer. It is
built on the following assumptions: (1) a preference for a small number of layers and
(2) a preference for slow and smooth velocity fields within a layer. Surprisingly, we
find that these two assumptions can account for a large number of percepts ranging
from the tendency of plaid patterns to cohere to the rigid and nonrigid percepts of
smooth contours and dots. We then show, however, that this model is not suffi-
cient to account for other percepts, particularly due to a failure to combine form and
motion constraints. We end by discussing how these additional constraints can be

incorporated into the same statistical framework.

3.2 Mixture models for motion analysis

3.2.1 An illustration of mixture estimation

Mizxture estimation refers to the problem of inferring the parameters of multiple pro-
cesses from data. This framework served as the basis for the “mixture-of-experts”
architecture in neural networks (e.g. (Jordan and Jacobs, 1994; Jacobs et al., 1991))
and has become increasingly popular in computer vision for segmentation problems
(e.g. (Jepson and Black, 1993; Ayer and Sawhney, 1995)). To understand the ideas
behind mixture estimation we illustrate it first using an abstract problem — the fit-
ting of lines to data. Figure 3-6 illustrates the difference between mixture estimation
and the more commonly known method of regression. In regression, one is given noisy
data that was generated by a single line and the problem is to find the parameters
of the best fitting line. In mixture estimation, one is given noisy data generated by
multiple lines and the problem is to find (1) the parameters of the best fitting lines

and (2) the assignment of datapoints to a given line.
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Figure 3-6: To convert the “smoothness in layers” notion into a computational model,
we use the framework of mixture models. Here we illustrate mixture models in the
familiar setting of line fitting. In regression we are given data generated by a single
line with added noise, and we are trying to estimate the parameters of the line. In
mixture estimation, we are given data generated by two lines with additive noise and
we are trying to find (1) the assignment of points to lines and (2) the parameters of
the two lines. This second problem is analogous to motion segmentation.

Formally, in regression problems the assumption is that the points (z;,y;) satisfy
the equation:

yi=azr; +b+ov (3.1)

where v is normally distributed Gaussian random noise.

In a two component mixture model the assumption is that the points satisfy:

azi+ b +ov ,L;=(1,0)
Y, = (32)
axt; + by +ov ,L; =(0,1)

where L; is an indicator variable that determines whether point (z;,y;) was generated
by line 1 or line 2.

The well known least squares equations for regression arise from assuming the
generative model in equation 3.1 and finding the most likely parameter values for

O = (a,b) given the data. Thus in regression one maximizes:
P({z,y:}|©) = o [] e~ (lomitb-w)*/27 (3.3)
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Figure 3-7: a. The result of performing regression on the data generated by a mixture
model. b. The result of performing mixture estimation on the same data. Similar
to the situation in motion estimation, good estimates for the parameters of the line
requires combining the information from many points while avoiding the mixing to-
gether of points that belong to different lines.

(throughout this paper we adopt the convention of writing probability distributions
with a normalizing constant o that guarantees that the distribution integrate to 1).

Similarly, one can find the most likely parameter values © = [(ay, b1), (a2, b3)] given
the data assuming the generative model in equation 3.2. To maximize the likelihood

we need to maximize:

P({e1,3:}10) = a J[ 3 e-Cessttmur /2o (3.4)
i =1

Figure 3-7a shows the best fitting single line for the data (obtained by maximiz-
ing equation 3.3) while figure 3-7b shows the best fitting pair of lines (obtained by
maximizing equation 3.4.

Unlike regression, the mixture likelihood function cannot be maximized analyti-
cally. Typically, an iterative algorithm known as the Expectation-Maximization (EM)
algorithm (Dempster et al., 1977) is used. This algorithm is based on the observation
that mixture estimation can be thought of as the solution of two subproblems: (1)
the estimation of the hidden labels L; and (2) the estimation of the parameters of the
two lines. The intuition behind EM is that each subproblem is easy to solve assuming

the other one is solved. That is, assuming we know the assignment of each datapoint,
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Figure 3-8: An illustration of the Expectation-Maximization (EM) algorithm on the
data in figure 3-6. The algorithm iteratively updates the parameters of the two
lines (middle column) and the probability of assignment of points to lines (rightmost
column). Each panel in the rightmost panel contains two bar graphs — the probability
of assignment of points (as a function of z location) to line 1 and 2 respectively. Note
that for a fixed « location, the probabilities sum to 1. The iterations are guaranteed
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to increase the likelihood at every iteration.
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then we can estimate the parameters of each line by taking into consideration only
those points assigned to it. Likewise, if we know the parameters of the lines we can
assign each point to the line that fits it best.

This gives the basic structure of an EM algorithm:

e start with random parameter values for the two models.
e Iterate until parameter values converge:

— E step: assign points to the model that fits it best.

— M step: update the parameters of the models using only points assigned

to it.

In fact both steps are slightly more complicated, due to the assignment being
continuous rather than binary valued. In the E step the probability of every point
being assigned to a particular line is estimated, and in the M step these probabilities
are used as weights in weighted regression for the parameters of the models. The
algorithm is guaranteed to increase the likelihood at every iteration, and will typically
converge to a local maximum of the likelihood. The update rules for the EM algorithm
with line fitting are given in the appendix. Figure 3-8 shows an example run. The
algorithm is initialized with random initial conditions and iteratively estimates the
probability of assignment (right column) and the line fitting (middle column). Each
panel in the rightmost panel contains two bar graphs — the probability of assignment
of points (as a function of z location) to line 1 and 2 respectively. Note that for a
fixed z location, the probabilities sum to 1.

Figure 3-7 illustrates some of the commonalities between motion analysis and line
fitting in the presence of noise. Due to the noise in the data, a reliable estimate for
the parameters of the line requires using as many data points as possible. At the same
time, using all the data points will give the wrong answer. This is analogous to the
problem the visual system faces when estimating motion in scenes containing multiple
motions — due to the aperture problem a reliable estimate for motion requires using

as many locations as possible, but using all the locations (as in global smoothness)
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will give the wrong answer. This analogy suggests that mixture estimation may
be a useful framework for modeling human motion analysis. Before describing the
smoothness in layers motion analysis model, we first describe two variants on mixture
estimation — the use of prior probabilities on the curves and the estimation of the

number of models.

3.2.2 Mixture of smooth curves

In the previous example we used mixture estimation to fit multiple straight lines to
data. The framework, however, can also be used to fit multiple curves to data. Thus,
rather than using straight lines one could use parabolas, or higher order polynomials.
These approaches would restrict the possible curves that one can fit to a small para-
metric family. Alternatively, one could fit multiple smooth curves to the data, where
smoothness of a curve is defined in terms of a derivative operator.

An elegant result that can be derived in the regularization framework (e.g. (Girosi
et al., 1995)) shows that for many smoothness definitions, the opAtimal curve can
be expressed as a superposition of basis functions. A commonly used smoothness

operator yields the Gaussian basis function expansion:
y(z;0) = 3 0;G(z — ;) (3.5)
j

where G(z) is a Gaussian and 6; describe the particular curve. The mixture model

now becomes:

0 Gz — x5 ,L; =(1,0
i = ¥ 0:G(zi — z5) + ov (1,0) (3.6)
¥, 02G(zi — ;) +ov ,Li=(0,1)

where L; is an indicator variable that determines whether point (z;, y;) was generated

by curve 1 or curve 2. The likelihood function is now:

2 2 2
P({zi,yi}|0) = a J[ 3 ™o s Gteimm)-w/a0 (3.7)

i k=1

Note that the number of parameters describing a single curve {;} is equal to
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the number of datapoints. Thus there are twice as many unknowns as there are
datapoints in the mixture model. In order to make the estimation well defined, we

introduce a prior probability over curves y(z):
P(y(z)) = ae™’® (3.8)

with:

) = [I1Dy(z)|de (3.9)

where D is a differential operator (e.g. the first derivative, second derivative etc.).

We can use this to define a prior probability over the parameters:
P(0) = P(y(=;0)) (3.10)

Now rather than maximizing the likelihood of the parameters ©, we can maximize

their posterior probability:
P(O|{zi,y:}) = aP({z:,y:}|©)P(6")P(6%) (3.11)

Figure 3-9 shows the result of maximizing equation 3.11 for the data in figure 3-6.
Even though the data can, in principle, be fit with a single, oscillating curve, the two

relatively straight curves have higher posterior probability.

3.2.3 Estimating the number of components

The mixture likelihood equations (equations 3.4- 3.7) assume two components in the
mixture. How can this number be estimated from the data?

Consider the data in figures 3-6a-b. The data in figure 3-6a was generated by a
single line, while that in figure 3-6b was generated by a mixture of two lines. Suppose
we are trying to decide for each dataset whether to fit the data with a single line or
with two lines. A possible approach is to compare the likelihoods of the two solutions.

A first problem arises from the fact that equation 3.4 is by definition a function of
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Figure 3-9: The results of running the EM algorithm with arbitrary smooth curves
on the data in figure 3-6. Each curve has as many degrees of freedom as there are
datapoints and hence the entire data set can in principle be fit by a single, oscillating
curve. However, the fit with two curves maximizes the posterior probability
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four parameters (corresponding to two numbers for each line). This would suggest
that we need to calculate a separate likelihood for the one line case, using a mixture
model with a single component. It turns out, however, that the likelihood for a single
line in a one component mixture is equal by definition to the likelihood of two lines
in a two component mixture where both lines have the same parameters!. Thus
to calculate the likelihood of a single line with parameters (a,b) we can substitute
(a1 = a,by = b),(az = a,b; = b) into equation 3.4.

A second problem is that it may seem that we need to add an additional “com-
plexity” term to equation 3.4 in order to solve this problem. Given that equation 3.4
depends on the residual between the fit of the lines and the data, it seems that one
can always obtain a better fit using two lines rather than one.

In the absence of noise ¢ — 0 this intuition is correct — the maximum likelihood
solution will always contain two distinct lines rather than one. However for nonzero
o the intuition is misleading. The likelihood may be maximized with a single distinct
line. In (Weiss, 1998) we derive analytical results regarding the conditions in which
one line maximizes the likelihood rather than multiple lines (see also (Rose et al.,
1990; Durbin et al., 1989; Tenenbaum and Todorov, 1995) for a similar analysis
in other contexts). Roughly speaking, if the fit with a single likelihood has mean
squared residual less than o then a single line will be preferred over multiple lines.
The intuition behind this is that additional lines will be fitting the noise and not the
data. Figure 3-10 illustrates this idea. It shows the relative likelihoods of one or two
lines for the two datasets in figure 3-6. The parameter o is held constant throughout.
Note that for data generated by a single one line, a solution with two lines actually
has lower likelihood. For the data generated by two lines, the solution with one line
has lower likelihood. Thus for a nonzero o the likelihood function can be used to
compare solutions with a different number of lines.

To summarize: mixture estimation provides a way to fit multiple models to data
in a principled statistical framework. Given data generated by multiple processes

and a probabilistic generative model it enables the calculation of (1) the number of

1the normalizing factor @ absorbs the difference.
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Figure 3-10: In mixture models with known o the number of lines can be estimated
by maximizing the likelihood. Here we show the log likelihoods (equation 3.4 with
a = 1) for two datasets and various solutions. For data generated by a single line
(top panels) the fit with a single line is favored over the one that uses two lines. For
data generated by two lines (bottom panels) the likelihood of a two line fit is higher
than the one that only uses a single line. For these examples, there is no need to add
an additional “complexity cost” to the likelihood. Analytical results showing this can
be found in (Weiss, 1998).
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processes (2) the probability of a particular datapoint being generated by each process
and (3) the parameters of the processes. In the next section we describe how this

framework can be used to formalize the idea of smoothness in layers.

3.2.4 The smoothness in layers mixture model

In line fitting, the problem was to account for the datapoints {z;,y;} with a small
number of lines. In our model we perform motion analysis in a similar way — the
problem is to account for the local motion data with a small number of surface
motions.

What do we mean by local motion data? One possibility would be to extract a
velocity vector locally and try to account for that velocity. However, such an approach
would ignore the fact that local motion data has varying degrees of ambiguity — from
ambiguous edges in which only one component of the local velocity can be estimated
to corners in which both components can be estimated. In (Weiss and Adelson, 1998)

we used the following likelihood model for the velocity at a given point:

L(ve,v,) = P(Ip, I, vz, v,) = ae™C=m)/2k (3.12)

where C(z,y) quantifies the degree of consistency of the velocity with the local data.
It is based on the gradient constraint (Horn and Schunck, 1981; Lucas and Kanade,
1981):

Cvg,vy) = Y w(w,y, t)(Love + Ly + I)? (3.13)

ot
where v;,v, denote the horizontal and vertical components of the local velocity
I, I,,I; denote the spatial and temporal derivatives of the intensity function and
w(z,y,t) is a spatiotemporal window centered at (z,y,t). The gradient constraint
is closely related to more physiologically plausible methods for motion analysis such
as autocorrelation and motion energy (Reichardt, 1961; Poggio and Reichardt, 1973;
Adelson and Bergen, 1986; Simoncelli, 1993). As we have shown in (Weiss and
Adelson, 1998) this local likelihood can describe a large range of local motion mea-

surements with different amounts of ambiguity.
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Equation 3.12 is the analogue of the regression likelihood (equation 3.3). It gives
the likelihood for a single velocity at location (z,y). When we are dealing with a
mixture model, say with two velocities (v,v;), (v2,v2) the likelihood becomes:

2 .
L(vy,vy) = @y e~ Ct=m)/2 (3.14)
=

This is the analogue of the mixture likelihood (equation 3.4) in the line fitting case.
As in (Weiss and Adelson, 1998) we use a 50 dimensional space to represent the

motion of a layer. The mapping from parameter space to the velocity field is given

by:

25
’Ui(:l,‘,y) = ZafG(.’E — Ty — yi) (315)

=1

50
vi(z,y) = Y 01G(z — i,y — i) (3.16)

1=26

where G(z,y) is a two dimensional Gaussian function in image space, with spatial
extent defined by o,: -

G(z,y) = e_%g— (3.17)
and (z;,y;) define a 525 grid that covers the image. Note that this parameterization
is the analogue of equation 3.5 in the curve fitting case.

We also include a prior probability over the parameters 6. Following (Weiss and

Adelson, 1998) we use a prior favoring slow and smooth velocity fields. Formally, we

define the following prior on a velocity field, V(z,y):

P(V) = ae™? ()2} (3.18)
with:
J(V)=>_||Dv(z,y)|” (3.19)
Yy

here Dv is a differential operator, i.e. it measures the derivatives of the velocity field.

We follow Grzywacz and Yuille (1991) in using a differential operator that penalizes
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velocity fields with strong derivatives:

©  gn

Dv = gan%v (3.20)
These equations are the analogue of equations 3.8-3.10 in the smooth curve fitting
case.

Thus we assume that the spatiotemporal data was generated according to the
following model. First, for each layer, a velocity field v/(z,y) is drawn from the
distribution favoring slow and smooth velocity fields. Then a labeling of the image is
generated, i.e. a vector L(z,y) at every location such that Li(z,y) =1 if and only if
position z,y will be assigned to group k. Given the labelings and the velocity field,
the likelihood of the observation at location (z,y) is given by equation 3.12.

To perform inference in this model, we need to find the values of 8 that maximizes
the posterior probability. Again, this can be done with the Expectation-Maximization
algorithm. In the E step, we calculate f,k(x, y) — the probability that the derivatives
at location (z,y) are due to layer motion k. In the M step we use these probabilities
as weights in a weighted least squares problem for 6*. Since EM may converge to a
local maximum, we use multiple restarts and choose the one that has higher posterior
probability. The update rules are given in the appendix.

The generative model has two important constants. o and og which describe the
standard deviations of the data noise and the prior respectively. The ratio between
these two numbers will determine the tradeoff between accounting for the data and
the smoothness assumption. If oy is much smaller than or then the MAP estimate
will fit the data well but may not be smooth. The absolute size of on will influence
the number of models in the MAP estimate. As mentioned in the previous sections,
for oy — 0 the posterior will typically be maximized with a large number of distinct
layers. However for nonzero oy the posterior may be maximized with a smaller num-
ber of layers that avoid overfitting. Given these two constants and the spatiotemporal
intensity function we can calculate (1) the number of layers (2) the motion of each

layer and (3) the probability of a measurement being assigned to a layer.
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3.3 Results of the simple model

The generative model described in the previous section attempts to account for the
motion data using smooth velocity fields. It can be thought of as having two main
assumptions (1) preference for a small number of layers (embodied in the nonzero
on) and (2) smooth and slow velocity fields within a layer (embodied in the finite
op). In this section we examine the extent to which the most probable interpretation
of a scene when using these assumptions correspond to human percepts. We refer to
this model as the simple smoothness in layers model, or simple SIL model.

To understand the output of the model, we first show the output on the stimuli
discussed in the introduction — two transparent sheets in rotation, two rigidly trans-
lating squares, and a diagonal line translating horizontally with added dots. The
algorithm used only two frames to calculate the spatio-temporal derivatives and the
window used to calculate the motion measurements was of size 3z3 pixels. The im-
ages were 64264 pixels. For computational efficiency, the algorithm was restricted to
find at most two layers, but it had to decide between one or two layers based on the
posterior probability. To avoid edge artifacts, all measurements obtained at the edges
of the images were discarded.

Figure 3-11 shows the output of the simple SIL model on the two rotations scene.
The output consists of (1) the number of layers (2) the motion of each layer and (3) the
probability of a measurement being assigned to a given layer. The right hand column
shows the two velocity fields estimated by the model. Unlike the global smoothness
output shown in the introduction, the two velocity fields have a strong rotational
component. The left hand column shows the probabilities of assignment displayed
as a gray level image. White pixels correspond to high probability, black correspond
to low probability and gray pixels denote intermediate probabilities. Note that all
locations that do not have any motion information (i.e 323 windows that have no
spatial gradients) the probability is gray. That is because such regions, based purely
on motion constraints, are equally likely to belong to either layer. The measurements

around the dots, however, are classified as belonging to one rotation or the other.
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Figure 3-12 shows the output on the two squares scene. The algorithm finds the
correct two translations and estimates the probabilities of all measurements belonging
to each of the translations. Note the grayness of all pixels in the interiors of the squares
— since there is no motion information there, there is equal probability they belong
to either of the two layers. The difficulty of the problem is perhaps more evident when
considering the output of the local motion analyzer shown in figure 3-2b. Note that
most of the local motions are either pure horizontal or pure vertical motion and yet the
algorithm is not confused by this fact. This is because it does not attempt to simply
fit the local motion data as is, but rather takes into account the local uncertainty.
Thus the algorithm knows that the many horizontal and vertical motions signals have
a high degree of local ambiguity — unlike the motion measurements derived at the
corners. Note also that the algorithm does not choose the two translations of the
junctions, but rather the correct two translations. This is simply a result of the fact
that there are more corners than accidental junctions — the posterior probability of
the interpretation with the correct two translations is higher. Note also that the two
velocity fields are highly smooth translations, rather than the relatively nonsmooth
deformation estimated with the global smoothness algorithm. Since the algorithm is
based on the assumption of smoothness within a layer, the two layered description is
favored over the single layer description.

Figure 3-13 shows the output on the diagonal line sequence. The model segments
the line from the static background and the motion of the line is estimated as diagonal.
This is because of the prior probability favoring slow and smooth velocity fields within
a layer. For a layer that only includes a single line, the slowest velocity field is the
normal velocity. This result is identical to that reported in (Weiss and Adelson, 1998)
where a single motion field was assumed. Here, however, the line is automatically
segmented from the background. Figure 3-14 shows the output when two translating
horizontal dots are added to the display. The algorithm again finds two layers — one
corresponding to the static texture and the other corresponding to the dots and the
line. Note that now, the moving layer is assumed to be moving horizontally. Thus

the motion of the line is now predicted to be horizontal rather than diagonal. This
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Figure 3-11: The output of the SIL algorithm on the transparent rotation sequence.
The left column shows the probability of a measurement belonging to a given layer,
and the right one shows the motion of the layer. While the global smoothness output
(figure 3-1) finds a single nonrigid deformation, the smoothness in layers model finds
the two rotational motions.
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Figure 3-12: The output of the SIL algorithm on the two squares sequence. The
left column shows the probability of a measurement belonging to a given layer, and
the right one shows the motion of the layer. While the global smoothness algorithm
(figure 3-2¢) finds a single elastic deformation, the SIL finds two smooth motion fields
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Figure 3-13: The output of the SIL algorithm on the plain translating line case. The
left column shows the probability of a measurement belonging to a given layer, and
the right one shows the motion of the layer. The line is segmented from the static
texture background and the line is predicted to move in the normal direction. This
is due to the prior favoring slow and smooth motions within a layer
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Figure 3-14: The output of the SIL algorithm on the line and dot scene. The left
column shows the probability of a measurement belonging to a given layer, and the
right one shows the motion of the layer. The line is segmented from the static texture
background and grouped together with the moving dots. Thus the line is predicted
to move in the horizontal direction, consistent with human perception.
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type of influence of features off the contour on the motion of the contour is a basic
prediction of the SIL approach in contrast to the smoothness along contours approach
of Hildreth (1983) that does not predict such an influence. Note also that the presence
of static texture between the dot and the line does not disable this influence. This
is in contrast to the piecewise smoothness algorithms (e.g. (Terzopoulos, 1986)) that
would predict no influence of the dot motion on the line motion in this case.

These simple stimuli show the advantage of the SIL framework — unlike global
smoothness algorithms it can handle scenes containing multiple motions, but unlike
the smoothness along contours or piecewise smoothness it can account for the in-
fluence of features off the contour on the motion of a contour. Note, however that
these results depend somewhat on the parameter settings op, on that determine the
tradeoff between preference towards slow and smooth on one hand, and preference to-
wards a small number of models. Obviously, there exist parameter settings for which
the algorithm will always find a single motion and reduce to the global smoothness
model. On the other hand, there exist parameter settings for which the scene will
be segmented into many layers, each of which moves very slowly and smoothly. In
that case, the model will never give capture. The SIL framework would be more con-
vincing if stimulus manipulations that affect the tendency to see one or two motions
in humans would have a similar effect on the model when the parameters are held
constant. In the next section, we examine some previously examined phenomena and

compare them to the SIL model.

3.3.1 The tendency towards coherence in plaids

Probably the most well studied stimulus in which the question of one motion versus
two has been studied is the “plaid” stimulus composed of two oriented gratings in mo-
tion. Since the days of Musatti (1924) (Musatti, 1924; Wallach, 1935) it was known
that such patterns can be perceived in two very different ways. Either both gratings
are perceived as moving coherently in a single direction, or they can be seen as sliding
over each other. Adelson and Movshon (1982) investigated systematically the con-

ditions under which one percept is preferred over another. Using sine wave gratings
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that were combined in an additive fashion, they found that the two gratings needed to
have different contrasts for the percept of transparency to occur. The amount of con-
trast difference needed “decreased as the speed of the components grating increased,
as the angle between their primary directions increased and as the difference between
their spatial frequencies increased.” The influence of speed and primary directions
was also observed in square wave plaids (Farid and Simoncelli, 1994), in addition to
a number of static transparency cues. Stoner, Albright and Ramachandran (1990)
manipulated the luminance of the “diamond” junctions formed when the two bars
intersect. When the luminances were consistent with static transparency subjects
were more likely to see two component motions rather than one coherent motion.
Bresssan et al. (1993) manipulated the widths and the luminances of the two square
waves and found that component motion was more common when the static cues
were consistent with occlusion.

Thus the tendency of plaids to cohere provides a rich set of phenomena to test
the SIL model. Although we can not expect the simple model to be influenced by
subtle form manipulations that influence the static segmentation, we wanted to see
how much of the motion related phenomena can be captured with the simple SIL

model.

3.3.2 Effect of component direction on coherence of plaids

Phenomena: Adelson and Movshon (1982) found that the tendency of two gratings to
cohere decreased as the angle between their primary direction increased. This result
was replicated in (Kim and Wilson, 1993) and extended to square wave plaids in (Farid
and Simoncelli, 1994). To illustrate this tendency consider the two plaid stimuli in
figure 3-15. The principal directions of the gratings are the direction at which each
grating would appear to move when displayed by itself and moving with the pattern
velocity. Thus for the plaid in figure 3-15a these two directions are 470, —70 while for
the one in figure 3-15b the directions are +20, —20. Hence the plaid in figure 3-15b is
more likely to be perceived as coherent. Obviously this tendency has nothing to do

with static cues for transparency — if the same two plaids translate vertically rather
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Figure 3-15: Adelson and Movshon (1982) found that the tendency of plaids to cohere
depended on the difference between the principal direction of the two gratings. Thus
the plaid in a tends to cohere less than the plaid in b.
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Figure 3-16: The output of the SIL algorithm on the sequence in 3-15a. The algo-
rithm finds two layers, one corresponding to each grating, and each moves with the
approximate normal motion.
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Figure 3-17: The output of the SIL algorithm on the sequence in 3-15b. The algorithm
finds a single layer corresponding to the whole plaid and whose motion is the pattern
motion. The parameters of the algorithm are identical to those used in figure 3-16.
Thus the algorithm’s tendency to see coherence in plaids depends on the differences
between the principal directions of the gratings, similar to human observers.

than horizontally the tendency to cohere is reversed and the one in figure 3-15a is
more likely to be perceived as coherent.

Model Results: Figure 3-16 shows the output of the SIL model on the stimulus in
figure 3-15a. The algorithm finds two layers — one corresponding to each grating.
The motion of each layer is roughly the normal velocity of the respective gratings.
Figure 3-17 shows the output of the SIL model with identical parameters on the
stimulus in figure 3-15a. Now a single layer is found corresponding to the plaid
and its motion is horizontal. An additional layer (not shown) was found with static
motion. This layer was assigned only two pixels in the entire image, pixels that due
to aliasing artifacts were not consistent with the plaid motion.

Discussion: This result can be interpreted as a tradeoff between the preference
for a small number of layers and the preference towards slow and smooth motions.
The plaid motion is always faster than the component motions, hence if the system
only had a preference towards slow speeds the plaid would never cohere. On the
other hand, the coherent motion uses only a single layer so if the system only had
a preference towards a small number of layers, plaids would always cohere. When
the angle between the gratings is varied, the difference between the plaid speed and

the component speed varies as well. Assuming the plaid speed is held constant at
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Figure 3-18: The posterior probabilities of the coherent and transparent percepts in
the case of an ideal plaid stimulus as a function of the angle between the two compo-
nents. For large difference between the two principal directions, the normal velocities
are much slower than the pattern velocities and hence the transparent percept has
higher posterior probability. For small (nonzero) differences between the component
motions, the difference in speeds is negligible and the preference for a small number of
layers causes the coherent percept to be preferred. When the two angles are identical,
the coherent and transparent interpretation-s are identical.
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1, the component speed is cos(a/2) where « is the angle between the two principal
directions. Thus for the plaid in figure 3-15a the pattern speed is much faster than
the component speeds, while for the plaid in figure 3-15b the the pattern speed is
only slightly faster. Farid et al (Farid et al., 1995) also pointed out that the effect of
angle on coherence may be a result of the bias towards slow speeds.

To formalize this intuition, we calculated the analytical posterior probability for
an ideal square wave plaid with fixed pattern motion as the angle between the princi-
pal directions is varied. In this case the likelihood function has a particularly simple
form (see appendix) and we compared the posterior probability of the coherent per-
cept (i.e. two layers with identical pattern motion) to that of the transparent percept
(two layers, each with the component motion). Figure 3-18 shows these predicted
posteriors. Since the pattern velocity is held constant, the posterior probability for
the coherent percept does not change when the angles are varied. The transparent
percept, however, changes as a function of angle. For large difference between the two
principal directions, the normal velocities are much slower than the pattern velocities
and hence the transparent percept has higher posterior probability. For small differ-
ences between the component motions, the difference in speeds is negligible and the
preference for a small number of layers causes the coherent percept to be preferred.
When the two angles are identical, the coherent and transparent interpretations are
identical. The parameters on,op are held constant throughout. Changing these
parameters will change the crossover point of the two curves, but the qualitative

behavior is unchanged.

3.3.3 Effect of pattern speed on the plaid coherence

Phenomena: For a given plaid direction and component orientation the tendency to
cohere is influenced by speed. The faster the plaid is moving, the more likely it is to
be perceived as transparent (Adelson and Movshon, 1982). Farid et al (Farid et al.,
1995) showed that this result also holds in square wave plaids up to a certain cutoff
speed — when the pattern moves too fast, subjects have difficulty in reporting their

percept.
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Figure 3-19: The output of the SIL algorithm on the plaid in 3-15a moving at a
slower speed. Even though the parameters are held constant, the algorithm now
finds a single layer corresponding to the whole plaid and whose motion is the pattern
motion. Thus the algorithm’s tendency to see coherence in plaids depends on the
speed similar to human observers.
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Figure 3-20: The posterior probabilities of the coherent and transparent percepts in
the case of an ideal plaid stimulus as a function of the speed. For fast speeds the nor-
mal velocities are much slower than the pattern velocities and hence the transparent
percept has higher posterior probability. For small (nonzero) speeds the difference
in speeds is negligible and the preference for a small number of layers causes the
coherent percept to be preferred. For zero speed, the two percepts are identical.
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Model Results Figure 3-19 shows the output of the SIL model on the stimulus in
figure 3-15a when it is moving at 1/10 the speed than in the previous section. Even
though all parameters are held constant, the model now prefers a coherent percept
for the plaid.

Discussion: Again this is the result of the tradeoff between number of layers and
slow and smooth motions within a layer. Although the plaid speed is always faster
than the component speeds the magnitude of the speed difference depends on the
speed of the plaid. For slowly moving plaids, this difference is small and therefore the
model prefers a single layer. However for fast plaids, the difference in speeds between
the pattern speed and the component speeds causes the noncoherent percept to be
preferred. Although there are two layers here, they each move much slower than the
plaid does.

To formalize this intuition, we again calculated the analytical posterior probability
for a plaid with fixed angles and direction as a function of speed. Figure 3-20 shows
the posterior probabilities for the coherent and transparent percept. For both per-
cepts, the posterior probability decreases with increasing speed. For fast speeds the
normal velocities are much slower than the pattern velocities and hence the transpar-
ent percept has higher posterior probability. For small (nonzero) speeds the difference
in speeds is negligible and the preference for a small number of layers causes the co-

herent percept to be preferred. For zero speed, the two percepts are identical.

3.3.4 Influence of contrast on coherence of square wave plaids

Phenomena: For square wave plaids, the tendency to cohere increases as contrast
increases (Farid et al., 1995). Thus when all other parameters are held constant, the
plaid in figure 3-15a will cohere more when the contrast is raised high.

Model Results: Figure 3-21 shows the output of the SIL algorithm on the plaid
in 3-15a moving at a higher contrast. Even though the parameters are held constant,
the algorithm now finds a single layer corresponding to the whole plaid rather than
the two layers found at low contrast.

Discussion: This result can be interpreted as the tradeoff between the likelihood
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Figure 3-21: The output of the SIL algorithm on the plaid in 3-15a moving at a
higher contrast. Even though the parameters are held constant, the algorithm now
finds a single layer corresponding to the whole plaid and whose motion is the pattern
motion. Thus the algorithm’s tendency to see coherence in plaids depends on the
contrast similar to human observers.

1 T T T

---  pattern
—— component

log(posterior)

35 1 1.5 2 25
Contrast

Figure 3-22: The posterior probabilities of the coherent and transparent percepts in
the case of an ideal plaid stimulus as a function of the contrast. The transparent
percept can account for all the measurements except those from the corners. Thus it
has lower likelihood but higher prior probability (it corresponds to slower motions).
At low contrast, the likelihoods are fuzzy and the prior dominates — hence the trans-
parent percept has higher posterior probability. But at high contrasts, the likelihoods
dominate and the coherent percept is preferred.
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Figure 3-23: The output of the SIL algorithm on a plaid with the same orientations
and speeds as that in 3-15 but at a lower period. though the parameters are held
constant, the algorithm now finds a single layer corresponding to the whole plaid and
whose motion is the pattern motion. Thus the algorithm’s tendency to see coherence
in plaids depends on the period similar to human observers.

term (explaining the data) and the posterior term favoring slow and smooth velocity
fields. The transparent percept can account for all the measurements except those
from the corners. Thus it has lower likelihood but higher prior probability (it corre-
sponds to slower motions). At low contrast, the likelihoods are fuzzy and the prior
dominates — hence the transparent percept has higher posterior probability. But
at high contrasts, the likelihoods dominate and the coherent percept is preferred.
Figure 3-22 shows the analytic posterior probability for the coherent and transpar-
ent percepts as a function of contrast. Since the coherent percept explain the data
perfectly well, its posterior probability is unaffected by contrast. The transparent
percept, however, does not explain the data at the corners and hence its likelihood
decreases with increasing contrast. The crossover point will of course depend on the

parameters op,onN.

3.3.5 Influence of period on coherence of square wave plaids

Phenomena: For square wave plaids, the tendency to cohere decreases as period

increases (Farid et al., 1995). Thus when all other parameters are held constant, the

plaid in figure 3-15a will cohere more than the same plaid with higher period.
Model Results: Figure 3-23 shows the output of the SIL algorithm on a plaid
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Figure 3-24: The posterior probabilities of the coherent and transparent percepts
in the case of an ideal plaid stimulus as a function of the period. The transparent
percept can account for all the measurements except those from the intersections.
Thus it has lower likelihood but higher prior probability (it corresponds to slower
motions). The number of intersections, however, changes with the period. As the
period is decreased, the coherent percept is favored.
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identical to that in 3-15 but with a lower period. Even though the parameters are
held constant, the algorithm now finds a single layer corresponding to the whole plaid
rather than the two layers found at higher period.

Discussion: This result can be interpreted as the tradeoff between the likelihood
term (explaining the data) and the prior term favoring slow and smooth velocity fields.
The transparent percept can account for all the measurements except those from the
corners. Thus it has lower likelihood but higher prior probability (it corresponds
to slower motions). The number of intersections, however, depends on the period.
Thus at low periods the coherent percept is preferred. Figure 3-24 shows the analytic
posterior probability for the coherent and transparent percepts as a function of period.
Since the coherent percept explain the data perfectly well, its posterior probability
is unaffected by the period. The transparent percept, however, does not explain the
data at the corners and hence its likelihood increases with increasing period. The

crossover point will of course depend on the parameters op, op.

3.3.6 Plaids — discussion

As the previous sections show, the tendency of the SIL model to see plaids as coherent
or transparent is influenced by stimulus manipulations in a manner similar to human
observers. Thus without invoking any stimulus specific heuristics, the model predicts
the influence of plaid direction, speed, contrast and period on perceived coherence.

The results of the previous section were on square wave plaids. What happens
when we use sine-wave plaids as stimuli? In general, the SIL model almost always
sees sine-wave plaids as coherent. Since the local velocity measurements are obtained
over a small local spatial patch, in sine-wave plaids all measurements have multiple
orientations and are therefore only fully consistent with the pattern motion. At very
low contrasts, however, and at very fast speeds, the SIL model does find two layers
rather than one. At that regime, we find a dependence on principal direction and
speed similar to that of square wave plaids.

There are several shortcomings of the SIL model in dealing with sine-wave plaids.

First, even when two layers are found, the assignment of location to layers does not
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Figure 3-25: The split herringbone illusion (Adelson and Movshon, 1983). Two sets
of diagonal lines translate vertically in opposite directions. At high contrast (Adelson
and Movshon, 1983) the percept consists of two groups, one moving up and the other
moving down. However, if the stimulus is blurred, viewed peripherally or at low
contrast, one perceives a single coherent motion to the right.

reveal the two component gratings. The model attempts to assign each location to
one layer or the other, but in a sine-wave plaid each location has contributions of
both layers. Second, the model is not influenced by the relative spatial frequencies
and contrast of the gratings in the same way that humans are. This may be similar
to the situation in square wave plaids where manipulations that serve as static cues

for transparency influence the human percept but are not part of the present model.

3.3.7 The split herringbone illusion

Phenomena: Adelson and Movshon (1983) conducted experiments with the “split
herringbone” shown in figure 3-25. Two sets of diagonal lines translate vertically
in opposite directions. At high contrast (Adelson and Movshon, 1983) the percept
consists of two groups, one moving up and the other moving down. However, if the
stimulus is blurred, viewed peripherally or shown at low contrast one perceives a
single coherent motion to the right.

Model Results: Figure 3-26 shows the output of the SIL model on the high contrast
sequence. T'wo layers are found and their motions are vertical. Figure 3-27 shows the

output on the low contrast sequence. A single layer is found moving horizontally.
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Figure 3-26: Results of the SIL algorithm on the high contrast split herringbone
stimulus. Two groups are found, one corresponding to each pair of diagonal lines
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Figure 3-27: Results of the SIL algorithm on the low contrast split herringbone stim-
ulus. One layer is found, corresponding to the full pattern. The parameters are held
constant.
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Figure 3-28: The occluded diamond (Lorenceau and Shiffrar, 1992). A diamond trans-
lates horizontally behind invisible occluders. At high contrast the percept consists of
two groups, one moving up and to the right and the other moving down and to the
right. However, if the stimulus is blurred or viewed peripherally or at low contrast
however, one perceives a single coherent motion to the right.

Discussion: As these results show, the “illusion” of the leftward motion is actually
the most probable interpretation assuming the SIL model. Recall that the model
attempts to account for the motion data with a small number of slow and smooth
layers. Since both the vertical and horizontal motions have equal speeds, the slowness
term does not come into play. The one layer description fits all the data except for
the vertically moving terminators, whereas the two layer description fits all the data
perfectly. At low contrast, however, the local likelihoods become much more fuzzy,
and therefore the one layer description is favored — even though it does not account
for the data perfectly, at low contrasts the fit is good enough to not require an

additional model.

3.3.8 The occluded diamond — Lourenceau and Shiffrar 92

Phenomena: Lorenceau and Shiffrar (1992) conducted experiments with the “oc-
cluded diamond” shown in figure 3-28. A diamond translates behind invisible occlud-
ers. At high contrast, the percept consists of two groups, each line segment moves
in the normal direction. Subjects are unable to resolve the “true” motion of the dia-
mond. However, if the stimulus is blurred or viewed peripherally or at low contrast,

subjects are capable of perceiving the correct motion.
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Figure 3-29: Results of the SIL algorithm on the high contrast occluded diamond
stimulus. Two groups are found, one corresponding to each pair of diagonal lines
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Figure 3-30: Results of the SIL

parameters are held constant.

algorithrh on the low contrast occluded diamond
stimulus. One layer is found, corresponding to the full pattern. Even though the
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Figure 3-31: When a “fat” ellipse rotates rigidly in the image plane it is perceived as
deforming nonrigidly (Wallach et al., 1956). When four rotating dots are added to
the display, the ellipse is perceived as rigid (Weiss and Adelson, 1995). The effect of
the satellites persists when a large number of vertically translating dots is added to
the display (Weiss and Adelson, 1995).

Model Results: Figure 3-29 shows the output of the SIL model at high contrast.
Two layers are found, each moving with a diagonal motion. Figure 3-29 shows the
output of the model at low contrast. The model finds a single layer moving rightward.

Discussion: This stimulus is nearly identical to the split herringbone and the
interpretation is the same. The “failure” to see the correct object motion is actually
the most probable solution at high contrast — by using two layers rather than one it is
possible to account for all of the data. At low contrast, however, the local likelihoods
become much more fuzzy, and therefore the one layer description is favored — even
though it does not account for the data perfectly, at low contrasts the fit is good

enough to not require an additional model.

3.3.9 Influence of features on percept of rotating ellipse

Phenomena: We have conducted experiments with the rotating ellipse stimulus (Weiss
and Adelson, 1995) (see figure 3-31). A “fat” rotating ellipse appears to deform
nonrigidly (Musatti, 1924; Wallach et al., 1956; Musatti, 1975). However, when
a small number of rotating features are added to the display, the ellipse appears to
rotate rigidly. The effect persists when the display is embedded in a field of translating

or static dots — the percept consists of two surfaces one containing the ellipse and
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Figure 3-32: a. A single frame from a sequence in which an ellipse rotates rigidly in
the image plane. b. The output of the SIL algorithm. A single layer is found with
nonrigid deformation.
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Figure 3-33: a. A single frame from a sequence in which an ellipse rotates rigidly

in the image plane with four rotating dots. b. The output of the SIL algorithm. A
single layer is found, with rotational motion

Figure 3-34: A single frame from a sequence in which an ellipse rotates rigidly in the
image plane with four rotating dots. An additional 50 dots translate vertically in the
image.
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Figure 3-35: The results of the SIL algorithm on the sequence in figure 3-34. Two
layers are found, one with rotational motion that includes the ellipse and the four
dots, and the other with vertical motion that includes the rest of the dots.
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Figure 3-36: a. The results of a global smoothness algorithm on the sequence in
figure 3-34. The algorithm oversmoothes and the rigid rotation of the ellipse can
not be seen. b. The result of the Hildreth (1983) algorithm on the the sequence in
figure 3-34. The algorithm predicts no interaction between the ellipse’s motion and
points off the contour. Hence the ellipse is predicted to be nonrigid.
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the rotating dots and the other containing the “background” dots.

Model Results: Figure 3-32 shows the output of the SIL model on the plain ellipse
stimulus. A single layer is found, deforming nonrigidly. Figure 3-33 shows the output
when four rotating dots are added to the display. Again, a single layer is found but
now the motion is rotational. Thus the ellipse would be predicted to be perceived
as rigid, consistent with human perception. Figure 3-35 shows the output when
the scene contains four rotating dots and 50 vertically translating dots. Two layers
are found, one corresponding to the ellipse and the four rotating dots, and the other
corresponding to the translating background dots. Thus the ellipse would be predicted
to be perceived as rigidly rotating, consistent with human perception. The parameters
are held constant.

Discussion: As explained in (Weiss and Adelson, 1998) the tendency to see the
ellipse by itself as nonrigid is a result of the preference towards slow and smooth
motions. When the four dots are added the model prefers a single layer description
to the two layers one (in which the ellipse continues to deform slowly and just the dots
rotate). The advantage of the two layer description is that the ellipse moves slower,
however it requires two layers where a single one suffices. Thus for these parameter
settings, the one layer percept is preferred. When the translating dots are added, one
would need a very nonsmooth motion to describe the scene using a single layer and
the two smooth layers are preferred.

For comparison, figure 3-35a shows the output of a global smoothness algorithm
on this sequence. The algorithm oversmoothess and does not predict a rigid rotation
for the ellipse. Figure 3-35b shows the output of the Hildreth algorithm on this
sequence. The algorithm only combines information along contours and hence there
is no influence of the dots on the motion of the ellipse. The predicted ellipse motion

is nonrigid.

3.3.10 Simple SIL model — discussion

Our approach throughout this paper has been to search for a small set of assumptions

about the world, such that the most probable percept given those assumption would
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correspond to the percept preferred by humans. The simple SIL model assumes the
world consists of a small number of layers, each with a slow and smooth motion field.
Unlike the assumption of global smoothness, these assumptions can handle scenes
containing transparency and occlusion. Unlike the assumption of smoothness along
contours, these assumptions predict an influence of features off the contour on the
motion of a contour. Furthermore, we have shown that these assumptions lead to
nontrivial predictions about stimuli that will have one motion versus two, and these
predictions agree qualitatively with previously published findings.

However, as we noted in the discussion of plaid stimuli, the simple SIL model can
not account for all cues that influence the tendency of plaids to cohere. Even for
these simple stimuli, static cues to transparency appear to have an influence. In the
next section we discuss extensions to the simple SIL model so that form influences

can be incorporated.

3.4 Extensions of the simple SIL model

3.4.1 Motivation — some failures of the simple SIL model

A glaring omission from the SIL model is the concept of intrinsic versus extrinsic
terminators (Nakayama and Shimojo, 1992). The model assumes that every motion
measurement belongs to one of the surfaces. However, there are many measurements
in images containing occlusion that are accidental — they are the result of an acciden-
tal alignment of two surfaces and their motion is not related to the motion of any of
the surfaces. Nakayama and Shimojo (1992) termed these accidental measurements
“extrinsic features”.

Several researchers have shown that “extrinsic” features tend to have a very week
influence on perceived motion (Shimojo et al., 1989; Vallortigara and Bressan, 1991;
Ramachandran, 1990). In fact, Anstis (1990) has shown that subjects have great
difficulty in tracking these “extrinsic” features when they are instructed to do.

Figure 3-37 shows an example of the weak influence of extrinsic features on mo-
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Figure 3-37: The importance of classifying features as extrinsic for motion analy-
sis (Lorenceau and Shiffrar, 1992). a. When an occluded diamond translates behind
an invisible aperture, two groups are perceived. b. When the aperture is made
visible, however, subjects tend to perceive the four segments as moving coherently
horizontally.

tion perception. Lorenceau and Shiffrar (1992) reported that when the occluders in
figure 3-37 were visible, subjects tended to perceive a single coherent diamond. They
were not influenced by the “features” caused at the intersection of the occluders and
the diamond. These features would be classified as “extrinsic”.

What happens when we run the simple SIL algorithm on this display ? We find
no effect of the visibility of the occluders. A typical output is shown in figure 3-
38. The model finds two layers, each moving with a smooth diagonal motion. The
visible aperture is now predicted to move along with the four line segments. This
interpretation seems ridiculous to a human observer but it is the most probable one
given the simple SIL model. The interpretation favored by humans — where the
four line segments move together and the aperture is static, is actually less probable
because it does not account for the motion of the endpoints of the line segments.
The motion of these endpoints is accidental, but the model has no way of knowing
that, nor can it even express the notion of a measurement that belongs to none of the
layers.

Static cues not only influence the classification of features into intrinsic or extrin-
sic, they also come into play when all features are intrinsic. Even after deciding which

features to ignore, a visual system still needs to decide which motion measurements
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Figure 3-38: The results of running the simple SIL algorithm on the occluded di-
amond stimulus with a visible aperture. Although humans now tend to perceived
the diamond as coherent, the simple model does not do so. Rather it still sees the
lines as moving independently and each aperture is predicted to move along its ma-
jor orientation. This failure of the model is due to the lack of distinction between
intrinsic and extrinsic features. Since the model is trying to fit all the motion data,
the interpretation that maximizes the posterior probability is “wrong” — it does not
correspond to the human percept.
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Figure 3-39: Examples of stimuli in which the motion information is not sufficient
to determine the assignment into layers, even if extrinsic features are ignored. a.
A single frame from a sequence in which two squares translate diagonally. b. A
schematic description of a scene in which an ellipse rotates rigidly in the image plane
and two sets of dots move in the image plane. The outer four dots rotate and the
inner four dots are consistent with nonrigid deformation. Subjects perceive the ellipse
as having the same motion as the closer dots.

go together and which do not. A simple example is shown in figure 3-39 where two
squares translate diagonally — one up and to the right and the other down and to
the right.

When we run the simple SIL model on this sequence we get the output shown
in figure 3-40. The two motions are correctly found but the model does not know
how to assign the vertical segments of the squares. These segments are equally well
explained by both motions, and yet humans perceiving this scene have no difficulty
in determining to which layer they belong. Note that this failure of the simple SIL
model has nothing to do with extrinsic/intrinsic classification. In this case, the model
is not fooled by the accidental motion of junctions. Rather it does not know how to
group together nonaccidental motion signals.

A second example is shown in figure 3-39b. An ellipse rotates rigidly in the image
plane and two sets of dots move in the image plane. The outer four dots rotate and
the inner four dots are consistent with nonrigid deformation. Subjects perceive the
ellipse as having the same motion as the closer dots (Weiss and Adelson, 1995).

The output of the simple SIL algorithm on this sequence is shown in figure 3-41.
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Figure 3-40: The results of running the simple SIL algorithm on the scene with two
squares (figure 3-39)a. The simple model correctly estimates the motion of the two
layers but does not know how to group the vertical segments of the squares.
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Figure 3-41: The results of running the simple SIL algorithm on the ellipse with two
sets of dots. Although subjects see the ellipses as grouped with the the ellipse, the
simple model does not do so. Rather it perceives the two groups of dots separately
but it does not how to group the ellipse. The measurements along the ellipse’s contour

are consistent with both motions.
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ki,

The algorithm correctly finds the motion of the two layers, but it does not know how
to group the ellipse. Individual pixels along the ellipse’s contour are grouped with
one layer or the other depending on local noisy measurements. Again, this is not a
failure of the intrinsic/extrinsic distinction but rather an inability to decide which

intrinsic features go together.

3.4.2 An extended generative model

In order to incorporate static constraints on the layered decomposition we need to
extend the probabilistic model. We present here two extensions to the basic model —
the use of outlier processes to model extrinsic features, and the use of Markov Random
Field priors on the assignments. The resulting model is still a mixture model, but a

slightly less standard one.

Extrinsic features as outliers

Recall that in the generative model behind the simple SIL model, each motion mea-
surement is generated is generated by one of the layers. In order to model extrinsic
features, i.e. ones that do not belong to any of the layers, we incorporate an “outlier
process” (Black and Rangarajan, 1994) that can also generate data, but does so
completely randomly. Outlier processes have been used in previous mixture model
formulations (Jepson and Black, 1993) and have an interesting connection to the the-
ory of robust estimation (Black and Rangarajan, 1994). In a typical use of outlier
processes in motion segmentation, measurements are classified as “outliers” if they
are not consistent with either of the layered motions. The generative model incor-
porates a prior probability of a measurement being an outlier, and the fact that this
number is small prevents all measurements from being classified as outliers.
Unfortunately, this method of adding an outlier process to the mixture model is
insufficient for achieving human level performance. While it is true that the motion
of extrinsic features will in general not be consistent with the motion of any layer, in

some of these displays that is not the case (e.g. figure 3-37). Rather, the junctions
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are extrinsic because of static cues. Even in the absence of any motion information,
it is more likely that T junctions be extrinsic as compared to L junctions. (Nakayama
and Shimojo, 1992; Sajda and Finkel, 1994).

To incorporate this into the mixture model, we have a spatially varying prior of
being an outlier. That is, rather than having a single, scalar number 7 that designates
the probability of a measurement being an outlier, we have a function 7(z,y) that
designates the probability of a measurement at a particular location being an outlier.
This probability is assumed to depend on static form analysis. For example, locations
that are adjacent to T-junctions would have a higher probability of being an outlier
compared to those adjacent to L-junctions. In the appendix we show how to perform

inference on the mixture model with the outlier process and spatially varying priors.

Prior probability on the labeling L

The generative model of the simple SIL model assumes that the labeling of the image
is generated randomly. In other words, in the absence of motion information, it is
assumed that all assignments of pixels are equally likely. Although this assumptions
simplifies the calculations, it is obviously misplaced in the case of motion segmen-
tation. It amounts to the assumption that knowing the membership of a particular
location yields no information on the membership of all other locations in the image.
In image formation, this is rarely the case: e.g. neighboring points with the same
intensity are likely to be from the same object.

In order to model the dependence between labelings at different sites, we add
a prior distribution over the labelings Li(z,y). We use a Markov Random Field
(MRF)(Geman and Geman, 1984) distribution:

P(L) = aexp ( Z Wyt Lz, y) L2, y’)) (3.21)
I,y,zl,yl

The link weights wg ., determine the distribution of labelings. For example
setting wg y o = 1 for neighboring sites and zero otherwise makes labelings in which

neighboring locations have similar labels more probable.
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Inference under this generative model is computationally much more difficult.
While an EM algorithm can still be used, the weights wy ., make an exact Ex-
pectation (or E step) intractable in the general case. Here we use a mean field ap-
proximation that has been shown to be relatively successful in other image processing
contexts (Zhang et al., 1994). The update rules with the mean field approximation

are given in the appendix.

3.4.3 Preliminary Results with the extended SIL model

The problem with the extended SIL model is that it has a very large number of free
parameters. The derived segmentations depend on the link weights w; . and the
prior probabilities 7(z,y) that are assumed to be calculated for a given image based
on static cues. The static analysis of surface cues is a complicated issue that will
necessitate complex models and a full characterization is beyond the scope of this
paper. We show here two results to illustrate the potential advantages of using form
analysis in this framework.

Figure 3-43 shows the results on the occluded diamond figure when we added
the space varying m(z,y). To set the prior probabilities for being an outlier, we
first ran a primitive “T-junction” detector on the image. The detector searches for
regions containing a trimodal intensity distribution. The output of the T-junction
detector is shown in figure 3-42 superimposed on the original image. Locations with
added white are those where a T-junction has been found. Although the primitive T-
junction detector gives reasonable answers for this particular image, it is by no means
a general purpose junction finder. More sophisticated junction finders are described
in (Freeman, 1992).

In the locations in which T-junctions were found we set n(z,y) = 1, i.e. these
locations are definitely outliers. The results shown in figure 3-43 are obtained with
the same parameters oy, op as in figure 3-38 but now the solution that maximizes the
posterior probability is the one perceived by humans. The model does not attempt to
fit the motions of the terminators because it classifies them as outliers. The diamond is

therefore predicted to move coherently, consistent with the results of human observers.
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Figure 3-42: The results of running a “t-junction” detector on the image in 3-37b
(the output of the detector is superimposed on the original image). We used a very
rudimentary “t-junction” detector here that searches for regions with a tri-modal
intensity distribution. More sophisticated and biologically plausible detectors have
been proposed elsewhere (e.g. (Freeman, 1992)). Our goal here is to show how the
outputs of such a detector could influence the motion grouping.

In our formulation terminators are weighted in accordance with their probability
of being extrinsic. That is, the formulation allows a gradual distinction between
intrinsic and extrinsic features, rather than a sharp classification. Thus in the classic
barberpole illusion (Wallach, 1935), the terminators are typically T-junctions and yet
they have an influence on the perceived direction of motion. Rubin and Hochstein
(1992) (Rubin and Hochstein, 1993) have shown that the influence of terminators
changes gradually as more information is available that they are occlusion related. In
our framework this would be modeled as an increasing probability of being an outlier.

We again emphasize that the simple junction finder used here is not meant to
give a full model of the interaction between surface cues and the intrinsic/extrinsic
distinction. Rather we wish to illustrate the capability of the mixture framework
for handling these additional cues. For example, the results of Stoner et al. (1990)
suggest that a particular type of X junction that is more consistent with transparency
is more likely to be perceived as extrinsic. This would of course not “fall out” of the
simple junction finder we use here. Rather it would have to be put into the model
specifically. The advantage of the extended framework is that it can incorporate form

cues for being an outlier. It does not, however, prescribe a method for finding the

form cues.

157



Figure 3-43: The results of running the SIL algorithm with spatially varying outlier
priors on the occluded diamond stimulus with a visible aperture. The output of the
T-junction detector was used to identify measurements that are likely to be outliers.
The parameters oy, op are identical to those used in figure 3-38 but the interpretation
that maximizes the posterior probability is now “correct” — i.e. it corresponds to
human perception of these displays.

158



EFCNEL IR S8 L0 SR N REE SUROEE TSI |

A AN A A

T

S w a a  e — — =NN

o a h e e o v =

Figure 3-44: The results of running the SIL algorithm with “proximity” priors on the
labelings on the stimulus in figure 3-39b. The parameters oy, op are identical to those
used in figure 3-41 but the interpretation that maximizes the posterior probability is
now “correct” — i.e. it corresponds to human perception of these displays. Because
the priors favor groupings that obey proximity, the ellipse is more likely to be grouped

with the set of dots that is closer to it.
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Figure 3-45: The results of running the SIL algorithm with “proximity” priors on
the labelings on the stimulus in figure 3-39a. The parameters oy, op are identical
to those used in figure 3-40 but the vertical segments are now assigned to one layer
or the other based on proximity. Note that the assignment is still not completely
correct, suggesting that more sophisticated priors may be needed.
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Figure 3-44 shows the output of the model when proximity priors are used on the
labelings. The link weights wy ./, Were set so they favored proximity:

(a:—z'}z-i-gy—y'f

Wa gty =€ 2w (3.22)

with the added constraint that wg ., was set to zero for locations that had no
motion information (i.e. the uniform background).

In this case, the ellipse is grouped with the set of dots that is closer to it, consistent
with the human percept. Evidence that the “proximity” prior is not enough, however,
is shown in figure 3-45. This is the output obtained by the model on two squares
scene of figure 3-39a. Note that the assignment is still not completely correct. One
of the vertical segments is accidentally grouped with the wrong square. In addition,
the insides of the squares are not assigned to either square. This suggests the need
for more sophisticated link weights w, e.g. incorporating “good continuation” or

“figure-ground”.

3.4.4 Discussion — extended SIL model

The preliminary results presented here illustrate both the advantages and the disad-
vantages of the extended SIL model. Unlike the simple SIL model, the extended one
can incorporate static form constraints to perform the classification of terminators
into extrinsic/intrinsic and the grouping together of intrinsic measurements. How-
ever, in order to do so, the extended model relies on static form analysis and has a
large number of degrees of freedom — what type of junction detector is used, the
numerical value given to the probability of a particular junction being extrinsic, the
link weights between various locations etc. Thus unlike the simple SIL model, the
extended model by itself does not give strong, nontrivial predictions. It remains a
challenge for the future to see whether a small number of principles can be incorpo-

rated into the extended SIL model so that they will explain a range of percepts.
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3.5 Discussion

Estimating motion in scenes containing multiple motions imposes conflicting demands
on the visual system (Braddick, 1993). In order to overcome the local ambiguity of
the individual measurements, the system must combine information across space. At
the same time, however, the system needs to avoid mixing together measurements
from different objects. In this paper we have proposed a computational framework
for this simultaneous estimation and segmentation, a framework we call “smoothness
in layers”. The model is primarily motivated by the inability of existing models to
handle basic percepts involving occlusion, transparency and motion capture.

Global smoothness algorithms can successfully account for human perception in
scenes containing a single motion. For scenes containing occlusion and transparency,
however, they predict a single nonrigid motion in cases where humans perceive mul-
tiple smooth motion fields. Algorithms that only assume smoothness along contours
are more successful at handling occlusion, but they predict no interaction between
features off the contour and the motion of the contour. The model presented here
can account for this range of percepts in a single framework.

The framework also provides a context in which to investigate the assumptions
that are used by the visual system in order to derive a surface representation from the
retinal input. We have shown that a simple model with a small number of assumptions
can account for a range of phenomena including the tendency of gratings to cohere
into plaids and the influence of dots off the contour on the motion of a smooth contour.
The simple model attempts to describe the motion data with a small number of layers,
each with a slow and smooth motion field. We have also shown stimuli that can not be
accounted for with these small set of assumptions and suggested how to incorporate
additional assumptions into the model.

The connection between perceived coherence of plaids and the tendency towards
slow speeds has been previously suggested in (Farid et al., 1995; Simoncelli, 1993).
Using a distributed model for local velocity, they suggested that plaids appear inco-

herent when the distributed representation of velocity tuned units is multimodal (Si-
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moncelli, 1993; Simoncelli and Heeger, 1998). Bimodality as a corelate of perceptual
transparency has also been suggested in (Wilson and Kim, 1994; Jasinschi et al.,
1992). Although these models can each account for a subset of the phenomena con-
sidered here, it cannot account for the more complicated motions such as the capture
of smooth curves undergoing rotation by a small number of dots. Here we have shown
how a single concept, smoothness in layers, can account for transparency in plaids,
occluded diamonds and rotating dots and ellipses.

A distributed representation of velocity was also the basis of the model of Nowlan
and Sejnowski (1995) . However, unlike the models surveyed above, their model in-
cluded two subpopulations of motion selective units: (a) velocity tuned units similar
to those used in (Simoncelli and Heeger, 1998) and (b) selection units. The selection
units calculate an estimate of confidence in the local velocity estimate, i.e. based
on the local spatiotemporal filters they estimate how good the evidence is for every
velocity. The selection units are trained and “become sensitive to regions containing
motion energy at several orientations, since velocity predictions from these regions
contain sufficient information to disambiguate the direction and speed of true mo-
tion”. They suggest that the activity of the selection units may be helpful in a later
segmentation stage, but their model does not explicitly decide which motions are
present in the scene or the assignment of locations to motions.

Shizawa and Mase (1991) suggested an alternative method for determining the
number of motions in a local region. They reformulated the standard local optical
flow constraints to allow for the input image being a linear superposition of two
images, each moving in a different direction. Their algorithm chooses a single motion
whenever the information can be explained with a single motion, and hence, would
never predicts incoherence in plaids.

Another interesting distinction between the Shizawa and Mase (1991) model and
many layered models (including our own) is that it actually assumes every motion
measurement was generated by a superposition of the two motions. In contrast, our
model assumes every datapoint belongs to one model or the other. Thus when we

segment an additive transparency stimulus (such as the plaids) we actually assign
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individual locations to one grating or the other. For our segmentation algorithm to
work, there need to be individual measurements that are predominantly due to one
surface or the other. Interestingly, Qian et al (1994) have found that displays that
appear transparent “always contain locally unbalanced motion signals, with some
local regions having net motion signals in one direction and some other regions in the
opposite direction”. However, the notion of “locality” used by Qiyan et al. includes
locality in spatial frequency and orientation. We require locality in space and hence
our inability to account for transparency in sine-wave plaids.

Layered motion models have become increasingly popular in computer vision (Dar-
rell and Pentland, 1991; Jepson and Black, 1993; Irani and Peleg, 1992; Hsu et al.,
1994; Ayer and Sawhney, 1995; Wang and Adelson, 1994). The model described here
shares many of the features of these algorithms but they needed to be modified in
order to account for human performance. First, these models typically assume that
each layer is moving rigidly in 3D but humans can perceive nonrigid motion groups
(e.g. the deforming ellipse with nonrigid dots). Hence the assumption of smoothness
in layers. Second, most of these algorithms assume the number of layers is given in
advance (although see (Ayer and Sawhney, 1995) for an exception). In order to ac-
count for human perception, the interesting question is when humans see one motion
rather than two. To the best of our knowledge, none of the layered motion models
cited above would predict incoherence in plaid patterns, to say nothing about the
change from coherence to incoherence when the speed is varied.

The method we propose here for estimating the number of layers is by no means
the only possible method. Alternative model selection methods include “minimum
description length (MDL)”, “minimum message length” (MML), “Akaiake informa-
tion criterion” (AIC) and “Bayesian information criterion” (BIC) (see (Torr, 1998)
for a recent review). These methods choose an interpretation that maximizes the
sum of the posterior probability and a complexity term that rewards simple descrip-
tions. For example, in the case of plaids, while we choose between the coherent and
the transparent description based on which maximizes the posterior probability, the

alternative methods would choose the description that maximizes the posterior plus
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the complexity term. In all these methods, however, the complexity term does not
depend on the motion data and hence would not change when stimulus attributes
are changed. Thus adding a complexity term would not change the pattern of results
reported here — it would shift the absolute threshold where the percept shifts from
transparent to coherent but the trends would remain identical.

From a computational standpoint, the smoothness in layers model is similar to
that proposed by Marroquin (1992) and by Madrasmi et al. (1993). They dealt with
the more general problem of surface segmentation and proposed a relaxation network
that estimates multiple, smooth surfaces by assuming smoothness within each surface.
The optimization was performed using simulated annealing. The main computational
difference between that work and our own is the introduction of the mixture model
in our case, that enables the estimation of the number of layers automatically in a
probabilistic framework. The probabilistic framework is particularly important when
dealing with motion measurements that have varying degrees of ambiguities.

Shizawa (1993) also considered the general problem of multiple transparent surface
estimation. He showed how to avoid the nonlinear optimization performed in (Mar-
roquin, 1992; Madrasmi et al., 1993) by a clever reformulation of the problem. This
leads to an approximation to the cost function that is linear in its parameters, can be
optimized much more quickly and allows for solving for the multiple surface values
without an explicit assignment of points to surfaces. Unfortunately, the approxima-
tion leads to erroneous results whenever the two surfaces intersect. As a framework
for modeling human visual performance this approach also suffers from its inability
to estimate the number of surfaces. Furthermore, it does not explicitly represent
the presence of multiple surfaces in the scene. Rather there are multiple values at
every location, but the grouping of these values into global surfaces is left for further
processing.

As mentioned in the introduction, the theory presented here is at the computa-
tional level in the categorization described by Marr (1982) — we make no claim about
the algorithm or the neuronal implementation. Given the complexity of maximizing

the likelihood in a mixture model, it seems hard to fathom how effortless the percep-
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tion of motions in scenes containing multiple motions is. Somehow, humans are able
to estimate the number of surfaces, the belongingness of locations into layers and the
motion of each layer. This suggests that the brain has found a way to solve the same

problems solved in mixture estimation, but in a remarkably fast and robust fashion.
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3.6 Appendix

3.6.1 EM update equations for line fitting

For completeness we give here the EM update equations for line fitting. Recall that

we are given {z;,y;} and wish to estimate {ax, by} the parameters of the lines.

E step: Define R%(i) = (axz;+br —y:)? the squared residual between the predicted

y(z;) and the actual y;. Compute the posterior probability:

e—Ri/202

Ly (1) = W
J

M step: For a given line k, minimize:

J(ak, bx) = D Le()(ari + b — :)?

Thus denoting the vector 9_1; = (a, bi)T, f is a solution to M 0, = b, with:

2 s
M=sz(l) ( szz szz)

a2l

and:

N DY
b= ZLk(Z)
i [ 2 Yi }

3.6.2 EM iterations for curve fitting

(3.23)

(3.24)

(3.25)

(3.26)

Here we estimate arbitrary smooth curves rather than a low dimensional parametric

curve. We assume a prior distribution over curves:
— 2
P(y(a)) = ac™/0)7

with:

Jw) = [IDy(@)|Pda
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We use a smoothness functional such that the optimal curve will be given by a su-
perposition of Gaussians (Girosi et al., 1995) y(z) = Y, 0;G(z — z;). We are given
{zi,y;} and wish to estimate {#*} the parameters of the curves. Note that 6* is a
vector whose length is equal to the number of datapoints.

E step: Define R}(i) = (X; 05G(z; — z;) — y;)* the squared residual between the
predicted y(z;) and the actual y;. Compute the posterior probability:

e—Ri/ZU%,

Li(3) = _—_Zj —F (3.29)

M step: For a given curve k, minimize:
2
J(6%) = X Le() R2() + Z—gaRe (3.30)

with R;; = G(z; — z;). Taking the derivative with respect to 6* gives the following
system of equations:

2
(WR+ Z—gl)() =WY (3.31)

where W is a diagonal matrix whose entries are W;; = Li(:) and Y is a vector whose

entries are y;.

3.6.3 EM Iterations for smoothness in layers

Here we estimate a smooth velocity field for every layer. We are given I, I, I; the
spatial and temporal derivatives at every locations. Recall that we parameterize every

velocity field with a 50 dimensional vector:

25

v(2,y) = D 0iG(x — i,y — i) (3.32)
1=1
50
vy(2,y) = D 0:G(z — iy —yi) (3.33)
1=26

where G(z,y) is a Gaussian in image space and {z;,y;} form a 525 grid over the image.

Throughout this paper we used Gaussian basis functions whose standard deviation
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was 2/3 the size of the image. We assume a prior distribution over velocity fields:

P(V) = ae™/V)/2% (3.34)
with:
J(V) = _||Dv(z,y)| (3.35)
Ty

here Dv is a differential operator, i.e. it measures the derivatives of the velocity field.
We follow Grzywacz and Yuille (1991) in using a differential operator that penalizes

velocity fields with strong derivatives:

o] an
Dv = s 3.36
v ;:%a F (3.36)
We again chose the differential operator so that the Gaussian basis functions would

be the Green’s functions for this operator. Recall also that we use a local likelihood

for a velocity at a pixel defined by:
P(Iy, Iy, Lo, vy) = ae™C=)/27 (3.37)

where C(z,y) quantifies the degree of consistency of the velocity with the local data.
It is based on the gradient constraint (Horn and Schunck, 1981; Lucas and Kanade,
1981):

C(vg,vy) = Y w(z,y,t)(Lvs + Ly, + I)? (3.38)

oyt
where v;,v, denote the horizontal and vertical components of the local velocity
I, I,, I, denote the spatial and temporal derivatives of the intensity function and
w(z,y,t) is a spatiotemporal window centered at (z,y,?).

E step: Given 0%, define CZ(z,y) by substituting the local velocities in equa-
tions 3.32 into equation 3.38. Compute the posterior probability:

2 /9,2
e——C'k/2aN

Li(z,y) = (3.39)

Z] 6_012/2‘7%’
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M step: The M step is identical to the equations detailed in (Weiss and Adelson,
1998) except that the local likelihoods are weighted by f/k(x,y). To simplify the
notation, we denote the location (z,y) with a single vector r. We define a matrix

U(r) whose components give the values of the basis fields at location r:
\Ilij(r) = G(’I‘ —_ Tj) (3.40)

So that v(r) = ¥(r)#.

By completing the square, the local likelihood at location r can be rewritten:

P(I;, Iy, It|vg, vy) = ae=Ce /20 (3.41)
— e (TI-u(r)) BT (r)(¥(r)o-p(r))/20% (3.42)

To find 6, we we solve:

A6 =b (3.43)

with:

A= (z Le(r) T ()= ()T (r) fo® + R/ag) (3.44)

b= (E f)k(r)\llt(r)E"lp(r)) /o? (3.45)

and R the prior matrix defined as in (Weiss and Adelson, 1998). If : <= 25,5 <=
25 or if ¢ > 25,7 > 25 then R;; = G(z; — zj,y; — y;). Otherwise, R;; = 0.

3.6.4 Posterior probability for smoothness in layers

Since EM may converge to a local maximum of the posterior, we use multiple restarts
of the algorithm and choose the output that has highest posterior probability.
Given a set of candidate parameter vectors ©, we first calculate the velocity fields

(equation 3.32) and that in turn gives us CZ(r) (equation 3.38). The mixture log

170



likelihood is:
1= log(3 e Ci/2k) (3.46)
T &

The log posterior can be written:

log(P(©)) = —-é% D (3.47)

and the sum of the log posterior and the log likelihood gives the log posterior.

3.6.5 EM update rules for smoothness in layers with outlier

process

Here we assume that there are K layers plus an additional outlier process. For every
location (z,y) we have a prior probability 7¢(z,y) that this location belongs to one of
the layers or the outlier process. The M step is unchanged, only the E step changes.
The E step now becomes:
-C2/202
A mr(z,y)e k2N
Lk( , ) ( 2 )

T = 3.48
VS (@ y)e Gl (348)

where Ck 41, the consistency of the outlier process is a constant. We used Cgy4q =
303,

As mentioned in the paper, mi(z,y) is set based on form processing. For the
examples in this paper, we first ran the primitive “T-junction” detector on the im-
age. For locations in which a “T-junction” was found we set mx41(z,y) = 1 and
mi(z,y) = 0 for all ¥ <= K. For locations in which no “T-junction” was found we

set 7x41(z,y) = 0 and 7(z,y) = 1/k for all k£ <= K.

3.6.6 EM with MRF priors and mean field approximation

In this case we are given a set of “link weights”: w,, that specify a prior probability
over weightings.

P(L) = aezn w"sLt(T)L(s) (349)
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Again the M step does not change. An exact E step is intractable but a commonly
used approximation is the mean field approximation. The E step under the mean field

approximation calls for iteratively updating f/k(r) by first collecting “votes” Vi(r):

Vi(r) =Y wpsLa(s) (3.50)

and then updating Lg(r) by:

e-—Cﬁ/Za?\, _ V;c

; e—CJ?/Za?v—Vj

Li(r) = (3.51)
We used a serial update schedule in which we visited all pixels once per E step in

scanline order.

3.6.7 Calculating the posterior probability for an ideal square

wave plaid

Consider a square wave plaid consisting of ideal lines at orientations 6,, 83, contrast C'
and period 1/p moving with velocity v. We assume the length of visible lines is given
by L. The spatio temporal derivatives are Cny; and Cny where n; is a unit vector
whose orientation is perpendicular to 6; and n, is perpendicular to 6. The temporal
derivatives are y; = Cv'n; and y; = Cv'na.

The likelihood (equation 3.46) has a particularly simple form for these sequences,

as there are only three types of terms:

= Y log(Y e Ci/hy (3.52)

k

= orlog(d_ e~ Di/2%) (3.53)
k
+azlog(3 e BR/2h) (3.54)
k
+azlog(Y e Ti/2k) (3.55)
k
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where oy = ay = Lp and a3 = p?, and:

Di = (nv*+y) (3.56)
E} = (ngv* +y)’ (3.57)
F? = (niv*+y1)? + (ngv* + y2)? (3.58)

where v* is the velocity of layer k.
If we are considering translational velocity fields for the different layers then the

prior also has a simple form:

log(P(v',v%)) = —[[v"|I*/20% — [[v*]12/20% (3.59)
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Chapter 4

Smoothness in Layers: Motion
segmentation using nonparametric

mixture estimation

Abstract

Grouping based on common motion, or “common fate” provides a powerful cue for
segmenting image sequences. Recently a number of algorithms have been developed
that successfully perform motion segmentation by assuming that the motion of each
group can be described by a low dimensional parametric model (e.g. affine). Typ-
ically the assumption is that motion segments correspond to planar patches in 3D
undergoing rigid motion. Here we develop an alternative approach, where the mo-
tion of each group is described by a smooth dense flow field and the stability of the
estimation is ensured by means of a prior distribution on the class of flow fields. We
present a variant of the EM algorithm that can segment image sequences by fitting
multiple smooth flow fields to the spatiotemporal data. Using the method of Green’s
functions, we show how the estimation of a single smooth flow field can be performed
in closed form, thus making the multiple model estimation computationally feasible.
Furthermore, the number of models is estimated automatically using similar methods
to those used in the parametric approach. We illustrate the algorithm’s performance
on synthetic and real image sequences.
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Figure 4-1: a. A simple three dimensional scene that can cause problems for existing
motion segmentation algorithms. A cylinder is partially occluded by two bars. b.
A cross section through the theoretical horizontal image velocity field caused by a
moving camera. ¢. The same data as in (b) but with added Gaussian noise. In
practice, the image velocity will be noisy. d. The desired description of the data.
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Figure 4-2: a. The fit of a single smooth curve to the data shown in figure 4-1c.
Regularization causes heavy over-smoothing. b. Regularization with line processes.
Fitting a smooth curve with discontinuities, or “line processes”, causes two problems.
First, there is no indication that the three occluded parts are part of a single object.
Second, since no information is propagated between the occluded parts, the curvature
of the cylinder is lost by the fit.

4.1 Introduction

Considerable progress in motion analysis has been achieved by systems that fit mul-
tiple global motion models to the image data (Darrell and Pentland, 1991; Jepson
and Black, 1993; Irani and Peleg, 1992; Hsu et al., 1994; Ayer and Sawhney, 1995;
Wang and Adelson, 1994). While differing in implementation, these algorithms share
the goal of deriving from the image data a representation consisting of (1) a small
number of global motion models and (2) a segmentation map that indicates which
pixels are assigned to which model.

The advantages of these approaches over previous ones are twofold. First, by
combining information over large region of the image, the local ambiguity of the
image data is overcome and a reliable motion estimate can be found. Second, the
derived segmentation map, in which individual pixels are grouped into perceptually
salient parts, is useful for higher level processing (e.g. video database indexing, object
recognition).

In order to segment images based on common motion, most existing algorithms
assume that the motion of each model is described by a low dimensional parameteriza-

tion. The two most popular choices are a six parameter affine model (Wang and Adel-
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Figure 4-3: a,b. Two outputs of a multiple line fitting algorithm. Three lines are
needed to achieve a reasonable fit, and the cylinder is broken apart. Various different
solutions are found, and only two are shown. c. A result of extending the order of
the models to quadratic. Although the model class is now rich enough to capture the
data, estimation becomes unstable.
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son, 1994; Weiss and Adelson, 1996) or an eight parameter projective model (Ayer and
Sawhney, 1995; Irani and Peleg, 1992). Both of these parameterizations correspond
to the rigid motion of a plane: the affine model assumes orthographic projection while
the projective model assumes a perspective projection.

Despite the success of existing algorithms in segmenting image sequences, the
assumption that motion segments correspond to rigid planar patches is obviously
restrictive. Non-planar surfaces, or objects undergoing non-rigid motion cannot be
grouped. In order for the motion segmentation map to be useful for higher level
processing, these methods need to be extended so they can deal with non-planar
surfaces and non-rigid motions.

Figure 4-1a shows a simple 3D scene that can cause problems for existing motion
segmentation algorithms. A cylinder is partially occluded by two bars. Figure 4-1b
shows a cross section of the horizontal component of optical flow when a camera,
viewing the scene head on, is rotated horizontally about a distant point. The bars
that are closer to the camera move fastest, and the velocity of points on the cylinder
trace out a smooth curve. In practice, of course the velocity field will not be so perfect
and Figure 4-1c shows the same data with added Gaussian noise.

One way to overcome the noisiness of the flow field is to use regularization to
approximate the data with a single smooth function. Figure 4-2a shows the result of
applying a typical regularization algorithm to the data shown in figure 4-1b. Although
the noise is smoothed out, the fit suffers from heavy over-smoothing: the motions of
the cylinder and the bars are averaged together. Figure 4-2b shows the output of a
“regularization with discontinuities algorithm” (Terzopoulos, 1986) on the same data.
Although this fixes the problem of oversmoothing, discontinuities are a bad model of
occlusion (cf. (Marroquin, 1992; Darrell and Pentland, 1991; Madrasmi et al., 1993)):
data in a scene containing multiple occluding objects is not generated by a single
discontinuous function but rather multiple smooth functions interacting nonlinearly.
The results of fitting a single discontinuous function causes two problems, which can
be seen in the fit. First, there is no indication that the three parts of the cylinder

are part of a single object. Second, because no information is propagated between
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the different fragments, the cylinder is fit with three nearly straight lines, rather than
curved segments. The cylindrical shape is lost in the fit.

These limitations of regularization motivated much of the recent work in motion
segmentation and led to the development of approaches that fit multiple global motion
models to the data. How would parametric segmentation work on the data in figure 4-
1?7 Figure 4-3 shows the output of a multiple parametric curve fitting algorithm to
this data. The number of models was estimated automatically as in (Weiss and
Adelson, 1996) (cf. (Wang and Adelson, 1994; Ayer and Sawhney, 1995)). When
the curves are restricted to be lines, different outcomes are obtained depending on
initial conditions, two of which are shown in figures 4-3a-b. Three lines are needed
to achieve a reasonable fit, and the cylinder is fragmented.

What about using a quadratic model? In this case, the model class is rich enough
to capture the data, but the estimation becomes unstable. Figure 4-3c shows a typical
output. The instability of fitting higher order models causes each of the two bars to be
fit with a parabola, an example of over-fitting. Although the correct fit is sometimes
obtained, it is in no way favored over other erroneous interpretations.

The instability problems associated with increasing the dimensionality of param-
eterization are, of course, not limited to motion analysis or even to computer vision.
It is generally accepted that one should avoid fitting high order polynomials to data.
Multidimensional splines and regularization theory present an elegant alternative -
the functions used in this approach are flexible enough to model the data yet avoid
the instability associated with high order polynomials. Regularization theory has a
long history of use in computer vision (Poggio et al., 1985) and has enjoyed consid-
erable success, yet its disadvantages are well known. First, smoothness is simply a
bad thing to assume over the whole image. Typically the image will contain multiple
occluding objects, and assuming smoothness will lead to terrible estimates particu-
larly in the regions of discontinuities. Second, calculating the regularized solution
has typically involved highly iterative algorithms (e.g. (Geman and Geman, 1984;
Terzopoulos, 1986; Marroquin, 1992; Madrasmi et al., 1993)) whose convergence may

be excruciatingly slow.
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Here we develop an approach to segmentation that is based on the assumption of
smoothness in layers. Rather than assuming that the motion of the whole image varies
smoothly, we assume that the motion of a given motion group or layer varies smoothly.
We show how this leads to the notion of nonparametric mizture estimation, where
the stability of the estimation process is ensured by means of a prior distribution on
the class of flow fields. We present a variant of the EM algorithm that can perform
the segmentation in a computationally feasible manner, and show how the algorithm

is able to segment higher order flow fields while avoiding over-fitting.

4.2 Algorithm Description

4.2.1 Generative Model

The model assumes that the image data (the spatial and temporal derivatives of the
sequence) were generated by K smooth motion groups. The velocity field of each

group is drawn from a distribution where smooth velocities are more probable:

P(V) = _Z.l_e— B 1050l /2 w1)

1

Here Dv is a differential operator that penalizes fields that have strong derivatives:

n

Dv = Z gV (4.2)

n=0

We follow (Yuille and Grzywacz, 1989) in using a, = 0?"/(n!2"), although similar
results are obtained with other choices.

The next stage is to generate a labeling of the image, i.e. a vector L(z,y) at every
location such that Lx(z,y) = 1 if and only if position z,y will be assigned to group

k. The labelings are drawn from a Markov Random Field distribution:

P(L) = ——ea:p( Z Wey,at,y' L ,y)L(:z:',y')) (4.3)

z,y,%’y’
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The link weights w4, determine the distribution of labelings. For example
setting wy,y .1y = 1 for neighboring sites and zero otherwise makes labelings in which
neighboring locations have similar labels more probable.

Now given the labeling and the velocity field of each group, the probability of

observing I, = g—ﬁ, y = %—f at location (z,y) is given by:

P(I,LIL,V) = exp(~ 3 Lu(Lbvi + L)*/0%) (4.4)
k

where, for clarity’s sake, we have omitted the dependence of Ly, I, I, I;,vg, Ly on
(z,y) and oy is the expected level of noise in the sequence. Similar likelihood func-
tions have been used for the single motion case in (Simoncelli et al., 1991; Luettgen
et al., 1994). Note that here the likelihood depends on multiple velocities, but if
Li(z,y) is known then the likelihood depends only on the velocity model to which a

pixel is assigned.

4.2.2 Nonparametric mixture estimation

To estimate the parameters of this model we use the Expectation-Maximization (EM)
algorithm (Dempster et al., 1977). The algorithm iterates two steps: (1) the Expec-
tation (or E) step in which the hidden labels are replaced with their conditional
expectation and (2) the Maximization (or M) step in which the velocity fields are
found by maximizing their posterior probability.

Previous implementations of the EM algorithm for motion segmentation are de-
scribed in (Weiss and Adelson, 1996; Jepson and Black, 1993; Ayer and Sawhney,
1995). Two aspects of the algorithm used here are similar to the implementation

described in (Weiss and Adelson, 1996) and will only be described briefly:

e The number of models is estimated automatically, by initializing the algorithm
with more models than will be needed. The algorithm merges redundant models

and the final number of models found depends on the parameter oy.

e The MRF priors on the labelings make an exact E step computationally expen-
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sive and hence a consistent approximation to the MRF distribution is used for

which an exact E step can be computed efficiently.

4.2.3 Estimating smooth flow fields using Green’s functions

The distinguishing feature of our algorithm in comparison to previous EM based
approaches is in the M step. It requires finding, for each model, the dense flow field

that maximizes the conditional posterior probability, or equivalently minimizes:

(V) = Y Li(e,y) (L2, y)v(e,9) + Liz,y))”

A [[Dv(z, y)| (4.5)

T,y

where the parameter A is determined by the ratios of oy and o in the generative
model. ﬁk(:c, y) is the “filled in” estimate for the labeling at location (z,y). It is these
weights in equation 4.5 that cause the estimated dense flow to differ from model to
model.

Since the nonparametric EM algorithm calls for minimizing equation 4.5 at every
iteration for all models, this approach can only be computationally feasible if the
minimization can be performed efficiently. We now show how this can be done.

Using the method of Green’s Functions (cf. (Yuille and Grzywacz, 1989; Girosi
et al., 1993)) it can be shown that the optimal velocity field V}* is a linear combination

of basis flow fields,B;(z,y):

Vi(z,y) = ZaiBz'(w, y) (4.6)

There is a basis flow field centered at every pixel where the image gradient is

nonzero.

Bi(x’ y) = G(SL‘ — Ty - yi) [Ix(wia yi)a Iy(xia yi)]t (47)

The scalar valued function G(z,y) is the Green’s function corresponding to the dif-
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ferential operator D in equation 4.5 (cf. (Strang, 1986)). It is a solution to:
D*DG = §(z,y) (4.8)

For the differential operator used here, the Green’s function is a two dimensional
Gaussian (Yuille and Grzywacz, 1989). The coefficients « are the solution to the

linear system:

(WM +M)a=WY (4.9)

With M;; is given by the scalar product of the basis field centered on pixel 7 and the
gradient at pixel 7, Y; is simply the temporal derivative at pixel ¢ and W is a diagonal
matrix whose diagonal elements determine the weight of a pixel in estimating model
parameters W;; = f)k(a:,-,y,-).

Although equation 4.9 gives a closed form solution for the optimal velocity field
for each model, its solution is still computationally prohibitive as it requires solving
a linear system whose rank is equal to the number of nonzero gradients in the image.
Are we then back to square one? No, because a remarkably good suboptimal solution
can be found using this method in a computationally feasible way.

The suboptimal solution is obtained by using only a subset of the basis fields in
equation 4.6. Denote by N the number of basis fields in the reduced expansion, then

the NV coefficients are a solution to:
(M'WM + AR)a = M'WY (4.10)

where M;; is again given by the scalar product of the basis field centered on pixel z and
the gradient at pixel j, R is a NeN submatrix of M in which only the pixels which
have basis functions centered on them are used, and W and Y are as before. Note
that equation 4.10 is of rank N independent of the number of pixels. Note also the
term AR in the left hand side of equation 4.10. It is this term that imposes the prior
distribution and makes the estimation well posed regardless of the dimensionality of

the parameter vector . In general, the solution obtained by solving equation 4.10
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will be different from one obtained by simply assuming the flow field is parameterized
by a spline basis set (e.g. (Szeliski and Shum, 1995)). Finally, note that the reduced
rank of the system is obtained by using only a subset of the basis fields, not by using
a subset of the gradient constraints. The solution of the system gives the flow field
spanned by the reduced basis set that best satisfies the gradient constraints at all
pixels.

The difference between the optimal and the suboptimal solution depends on the
image data, the differential operator D and the choice of subsets. In practice, we have
found the difference to be negligible when 50 basis fields are used, chosen so that they
are equally spaced on the image. To get an intuition regarding the optimal and
suboptimal solutions, we generated a synthetic sequence by warping the image shown
in figure 4-4a according to the superimposed flow. Figure 4-4b shows cross sections
from the estimated velocity fields. The suboptimal solution is plotted with crosses,
and the optimal one is plotted with circles. The solutions are indistinguishable. On a
R4400 Silicon Graphics workstation, solving equation 4.10 to calculate the suboptimal
solution took less than 1/100 of a second, while solving equation 4.9 to calculate the
optimal solution took over an hour.

Although we have used here the differential operator suggested in (Yuille and
Grzywacz, 1989) the exact same method can be used with other differential operators.
For example, we have been able to solve the Horn and Schunck (Horn and Schunck,

1981) equations in closed form using this method.

4.2.4 Algorithm summary

To summarize, the statistical assumptions about the generative model are charac-
terized by four numbers: o, which embody the smoothness assumption, oy the
assumed level of noise in the sequence and wgy,+,» Which specifies the probability that
a pixel will belong to a different model than its four neighbors.

Given these assumptions and spatiotemporal derivatives computed over the image,
we use a computationally efficient EM algorithm to calculate number of models, the

segmentation of the image and a smooth dense flow field for every model.
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Figure 4-4: Using the method of Green’s functions, a closed form solution can be
found for fitting a smooth dense flow field to the image data. A suboptimal solution,
which is computationally efficient can also be found. We have found the difference
between the optimal and suboptimal solutions to be negligible. a. A frame from
a test sequence. A second frame was generated by warping this frame with the
superimposed flow field. b. Cross sections from the estimated velocity field using the
full basis function set (circles) and using only 50 basis functions (crosses). The two
solutions are indistinguishable.

4.3 Results

Before showing the results of our motion segmentation algorithm, we show the per-
formance of a similar 1D nonparametric mixture estimation algorithm on the data
discussed in the introduction and shown in figure 4-1c. Although some of the prob-
lems characteristic of motion segmentation are not present in 1D (e.g. the aperture
problem), we choose to first illustrate the performance on a 1D problem because it
enables us to display the evolution of the model’s estimates. Figure 4-5 shows the line
fits and estimated labelings, f}k(x), as a function of iteration. Note that although the
label Ly (x) are assumed to be binary, their “filled in” estimates L () are continuous
valued and lie between zero and one. The algorithm is initialized with four curves
each of which has is initially assigned a random subset of the data. Hence the initial
fits are nearly identical. After six iterations, when the algorithm converges, two of
the models are merged and only two unique models are needed to explain the data.
Compare the fit obtained by our algorithm to those discussed in the introduction.

Unlike the regularization with discontinuities fit in figure 4-2b, our algorithm combines
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Figure 4-5: The performance of our algorithm on the data shown in 4-1c. The model
is randomly initialized with four curves and automatically decides that two curves
are sufficient in this case. The algorithm converges in seven iterations. Note that the
curvature of the cylinder is correctly estimated.

information across the different portions of the occluded cylinder and the curvature
of the cylinder is apparent in the fit. Since each of the models is flexible enough, our
algorithm can achieve a good fit with just two curves, unlike the line fit shown in
figure 4-3. Since our algorithm uses a prior favoring smooth fits, it does not over-fit
as does the quadratic fit shown in figure 4-3c.

We now show an example of the full 2D motion segmentation algorithm. We
generated a synthetic image sequence modeled after the scene in figure 4-1a. Fig-
ure 4-6a shows a single frame from the sequence. A textured cylinder is partially
occluded by two textured bars, and the camera is rotating about a distant center
and translating. The camera was assumed to be orthographic and the translation
was such that the mean horizontal velocity of the image was zero. Similar to the 1D
case discussed earlier, this sequence is hard to segment using parametric approaches.
Figures 4-6b-c show the output of our algorithm - it correctly estimates the number
of models and the segmentation. The high quality velocity field obtained using our
method enables us to reconstruct a three dimensional surface for each segment output

(assuming orthography, this is simply the horizontal component of the derived dense
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Figure 4-6: a. A single frame from the cylinder sequence. A textured cylinder is
partially occluded by two textured bars, and the camera is rotating about a distant
center. b. Reconstructed three dimensional surfaces obtained from the horizontal
dense velocity fields estimated by our algorithm. c¢. The segmentation maps displayed
on top of the surfaces, indicating the opacity of each layer.

flow fields). Figure 4-6b shows the surfaces obtained in this way, and Figure 4-6¢
shows the segmentation maps displayed on top of the surfaces, indicating the opacity
of each layer.

We have found that sequences which are easily segmented using parametric motion
models are also segmented using our approach. This is not surprising — the low
dimensional motion models are often smooth and hence favored as segmentations by
our model. Figure 4-7Ta shows a single frame from a sequence that was segmented
using translational models in (Jepson and Black, 1993; Darrell and Pentland, 1991).
A person is moving behind a plant. Figure 4-7b shows the segmentation derived by

our algorithm. The parameter settings are identical to those used in the cylinder
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Figure 4-7: a. The plant sequence. A person is moving behind a plant. b. The
segmentation found by our algorithm. Pixels belonging to the person are grouped
together. c. The velocity estimate obtained by plotting at each pixel the velocity of
the model to which that pixel is assigned.

sequence. The number of models is correctly estimated and the different fragments
corresponding to the person are grouped together. Figure 4-7c shows the estimated
velocities.

Figure 4-8a shows a single frame from the MPEG flower-garden sequence that was
segmented using planar models in (Wang and Adelson, 1994; Ayer and Sawhney, 1995;
Weiss and Adelson, 1996). Since this sequence contains large motions, we replaced
the temporal derivative in equation 4.4 with a calculated normal velocity at each
pixel. The normal velocity was calculated using a coarse-to-fine method (cf. (Bergen
et al., 1992)). The other aspects of the algorithm were identical to those used in
previous sequences.

For the value of oy used two segments are found, one corresponding to the tree
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(shown in figure 4-8b) and the other corresponding to the rest of the image. An
advantage of using nonparametric models for the segmentation, is that the nonpla-
narity of the scene can be captured in the output. Figure 4-8c shows a cross section
through the horizontal flow recovered by our algorithm (since the camera motion is
roughly horizontal, this flow is approximately related to distance from the camera).
The cross section is taken at the position indicated by the dotted line in figure 4-8a.
Note that the motions of the flower bed and the tree are smooth, curved functions.
This type of structure can be easily captured in a nonparametric technique, but is lost
when segments are assumed to be 3D planes. As a result, when we use the estimated
motions to align the two frames, we obtain a noticeably better alignment with the

nonparametric segmentation technique as compared to affine segmentation.

4.4 Discussion

Motion segmentation algorithms are often categorized as “direct” or “indirect” based
on whether they fit models directly to the image data (e.g. (Ayer and Sawhney, 1995))
or to local optical flow measurements (e.g. (Wang and Adelson, 1994)). The particular
implementation presented here would be classified as direct, since the models are fit
to the spatiotemporal derivatives (see equation 4.4). However, the framework we
have developed here is in no way restricted to spatiotemporal derivatives and can
also be applied to local optical flow measurements, in cases when an indirect method
is judged to be advantageous.

Our generative model assumes that for every pixel, there exists a motion model
that generated the spatiotemporal derivatives at that pixel. This formulation ignores
the accretion and deletion of pixels at occlusion boundaries that give rise to spa-
tiotemporal data that is not well explained by any of the motion models. In current
work, we are exploring the use of outlier models to deal with those pixels (cf. (Jepson
and Black, 1993)).

The preceding discussions highlight the relationship between our approach and

existing segmentation algorithms. Our approach fits a dense smooth flow field for
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Figure 4-8: a. The flower garden sequence. The camera is translating approximately
horizontally. b. The segmentation found by our algorithm. Two segments are found
- one corresponding to the tree (shown) and another corresponding to the rest of the
image. c. A cross section through the horizontal flow field taken at the dotted line
in a. Note that the algorithm correctly finds the nonplanar motions of the flower bed
and the tree.
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every segment, and this allows us to segment non-planar surfaces or objects undergo-
ing non-rigid motions. However, our approach shares the basic structure of existing
parametric segmentation algorithms, and thus when dealing with questions of model
selection, large motions and outlier rejection, we can build on the progress made by
existing algorithms.

The distinction between parametric and nonparametric estimation may seem rather
arbitrary. Indeed, the dense flow field by which we represent the motion of each group
may be thought of as a parametric description with the number of parameters equal
to the number of pixels. However, there is a fundamental difference between the two
approaches. The difference is not in the number of free parameters but rather lies in
what is responsible for making the estimation well posed. In parametric approaches,
this is accomplished by assuming a small number of unknowns, while in nonparamet-
ric approaches the well-posedness is a result of assuming a prior distribution over the
unknowns. In this work, we assumed a prior distribution where the probability of a
flow field is inversely related to its smoothness and showed how to efficiently maximize
the posterior probability under this assumption. An advantage of the nonparametric
mixture framework developed here, is that other types of prior distributions can be
easily incorporated in place of the smoothness assumption. Thus this framework can
be used to investigate what assumptions are necessary to achieve stable segmentation

of arbitrary image sequences.

4.5 Conclusion

Existing motion segmentation algorithms are able to segment image sequences by
restricting the motion of each segment to lie in a low dimensional subspace. This
approach has inherent limitations. If the subspace is small then it is too restrictive
and cannot group together pixels undergoing more complex motions. If the sub-
space is rich enough to capture complex motions, the dimensionality is large and the
estimation becomes unstable.

Existing regularization approaches avoid some of the shortcomings of parametric
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models but introduce new problems. The assumption of smoothness over the whole
image leads to erroneous estimates in any scene containing multiple objects, and the
solution involves slow, iterative calculations. The addition of “line processes” to the
regularization framework only partially addresses these problems: line processes are
a bad model for occlusion, thus disabling the propagation of information between
occluded fragments, and the computational cost associated with these algorithms is
even more prohibitive.

Here we have developed a new approach that builds on the recent progress made in
statistically based segmentation. We have presented a generative model that embod-
ies a prior towards smoothness, but smoothness in a layer and not smoothness over
the whole image. We have shown how this leads to nonparametric mixture estimation
and developed a variant of the EM algorithm that can efficiently perform segmen-
tation under this assumption. By deriving a closed form solution to the smooth
motion problem, we are able to avoid the slow iterative calculations of traditional
approaches. Based on the successful performance of our algorithm on synthetic and
real image sequences, we are optimistic that this framework will also be useful for

other segmentation tasks in computational vision.

192



Chapter 5

Conclusions

The main goal of this thesis was to understand how the human visual system solves
the “integration versus segmentation” dilemma. Using the method of computational
modeling we have shown that a large number of percepts are predicted by a Bayesian
estimator that incorporates a small number of assumptions. We have also presented
a computer vision segmentation algorithm that is based on similar assumptions and
illustrated its performance on real and synthetic image sequences.

The ability of our Bayesian model to account for such a wide range of phenomena
suggests the following conclusions regarding motion perception in the human visual

system:

o The system assumes image sequences may be noisy or ambiguous. The initial
stages of motion processing do not merely extract local velocity estimates but

also indicate the degree to which these estimates are ambiguous.

e The system assumes that velocity fields tend to be slow and smooth. The motion

percept is based on combining this prior assumption with the local estimates.

e The combination takes into account the uncertainty of the local estimates. Esti-
mates with high uncertainty (e.g. based on low contrast, or a single orientation)
are given low weight in comparison to other estimates and in comparison to the

prior assumption.
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¢ The assumption of slow and smooth velocity fields does not imply that velocity
changes smoothly over the entire scene. Rather the system assumes a small
number of layers in the scene, and assumes that the velocity field of each layer

is slow and smooth.

o The decision of whether to integrate or segment motion measurements is not
based solely on motion information. Static segmentation cues play an important

role in this decision.

Throughout this thesis we did not address the question of how these assumptions
and constraints may be mapped on to what is known about the functional architecture
of the visual system. This appears to be a promising area for future research. For
example: how can the uncertainty of an estimate by represented in early visual areas?
What biological mechanism is capable of combining together uncertain estimates
according to their uncertainty? How can something like the assignment of locations
to surfaces be represented in the brain ?

Obviously, the ability of computational modeling to answer these questions is
inherently limited. An integrative approach that combines psychophysics, neuro-
physiology and modeling is required. We would like to reemphasize, however, the im-
portance of a computational theory over a verbal theory in this integrative approach.
As we discuss in the thesis, the suggestion that humans may have a preference for
slow velocities goes back to the beginning of the century. But in the absence of a
computational formalization, it is far from obvious that this assumption would lead
to percepts such as the movement of a thombus in the vector average direction, the
apparent nonrigidity of fat ellipses and the incoherence of plaids with narrow angles.
The formal computational model bridges the gap between abstract assumptions on
the one hand, and a predicted percept for a gray level image sequence on the other
hand. We hope that this thesis will serve as motivation for continuing to pursue this

method for understanding perception.
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