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ABSTRACT

A study of the electron temperature evolution has been performed using ther-
mal electron cyclotron emission. A six channel far-infrared polychromator
was used to momtor the radiation eminating from six radial locations. The time
resolution was < 31As. Three events were studied, the sawtooth disruption,
propagation of the sawtooth generated heatpulse and the electron temperature
response to pellet injection.

The sawtooth disruption in Alcator takes place in 20 -50 ps, the energy mixing
radius is ~ 8 cm or a/2. It is shown that this is inconsistent with single resonant
surface Kadomtsev reconnection. Various forms of scalings for the sawtooth period
and amplitude were compared. A study of exotic sawteeth has also been done.
These differ from the normal sequence in that they exhibit very large m = 1 suc-
cerssor oscillations and involve a double disruption. The exotic sawtooth event is
found to be strongly correlated with the presence of impurities. We suggest a model
which may unify normal and exotic sawteeth.

The electron heatpulse propagation has been used to estimate x,(the electron
thermal diffusivity). The importance of non-diffusive effects on the evolution of the
heatpulse has been considered and it is found that at moderate to high densities
(n > 2 x 10 4cm- 3 ) coupling between the electron and ion heatpulse may be impor-
tant. A method of analysis has been developed which accounts for a non-quiescent
background and near-field effects. We show that near-field effects are important in
estimating x,. The X, estimate in this model reflets a local value rather than an
average value. Comparisons have been done of the heatpulse estimated x, with that
estimated by power balance. The agreement is found to be within a factor of two.
Using the heatpulse technique a scaling has been done of X, as a function of the
density. We consider the possible implications this has in interpreting the global
confinement saturation observed in Alcator.

The fast temperature relaxation observed during pellet injection has also been
studied. Electron temperature profile reconstructions have shown that the profile
shape can recover to its pre-injection form in a time scale of 200 ps - 3 ms dependin v
on pellet size. The transition between the slow and fast decay is rather adrupt. How
this transition correlates with various plasma parameters will be discussed. The
pellet generates transport coefficients which are roughly two orders of magnitude
arger than the bulk. It is shown that the region o anomalous electron thermal
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transport propagates with the pellet. The improved impurity confinement observed
after pellet injection is strongly correlated with the form of the electron temperature
relaxation that takes place early during injection. Pellet injection has also been used
to study profile consistency. For qJ < 8, the post pellet electron temperature profile
recovers its pre-injection profile width. For qI > 8 a noticeable deviation from, the
self-consistent profile width takes place, with post-injection profile being different
from the pre-injection profile.

Thesis Supervisor: Dr. Stephen M. Wolfe
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0) Introduction to thesis

0.1) Fusion in a very small nutshell

Let us begin by giving a very rough picture of the fusion process, which is of

course at the heart of our efforts to harness fusion energy.

Fusion involves the collision of two or more nucleii, in the process changing their

nature as well as converting some of their mass into energy. This is to be compared

to the fission reaction in which a single unstable nucleus decays into two lighter

stable ones, in this process energy is also liberated by the loss of some of the original

nuclear mass. The fusion reaction of most interest to the civilian fusion effort is that

of deuterium and tritium, both isotopes of hydrogen (fig. 0.1). The reason for this

is that it is the one with the largest fusion cross section at the lowest temperatures,

making it the easiest to achieve. The envisioned cycle is as shown in (fig. 0.1).

The two nucleii (D, T) are heated to a temperature of 0.02Mev (1Mev ~ 101 'K),

this is necessary so that the nucleii can overcome their electrostatic repulsion and

fuse. The by-products of the fusion reaction are an alpha particle (He4 ) with an

energy of 3.5Mev and a neutron with an energy of 14Mev. The way a stable cycle

is expected to be produced is by 'igniting' the fusing medium. This can be done by

confining the alpha particles so that they will dissipate their energy in heating the

fuel (D and T) to the required temperatures. The neutron can not be confined as

easily and will usually escape the reaction region. It is the energy of the neutron

that is expected to be harnessed. In the picture in (fig. 0.1) the neutron is absorbed

by a surrounding wall (blanket), heating the blanket in the process. This can then

be used to produce steam to drive a turbine to produce electricity. This of course is

only one of many schemes for harnessing fusion energy. Because of the abundance

of hydrogen in the universe, the harnessing of the controlled fusion process promises

a nearly unlimited energy source.

At these temperatures the natural state for the reacting fuel will be that of a

plasma. This is were plasma physicists come in. A plasma is an electrically neutral

gas of ions and electrons (fig. 0.2). The goal of a sucessfui fusion reactor is to be

9~



able to confine the reacting plasma at sufficiently high density and temperatures

for a sufficiently long time in order to produce enough fusion reactions to give a net

energy gain.

As can be appreciated from the high temperatures involved, no ordinary con-

finement vessel will do to contain a burning plasma. In nature these conditions

may exist in stars which by their sheer size can gravitationally contain the plasma.

One approach for confinement on earth is to build a magnetic 'bottle' to contain

the plasma. If a magnetic field is imbeded in a plasma the motion of the ions and

electrons will be to gyrate about the field lines (fig. 0.2). By properly tailoring the

magnetic field, the plasma can be trapped in it. In practice this is an extremely

difficult problem, for the physics that governs the behaviour of a plasma is not well

understood. The great promise of fusion and the complexity of the plasma physics

problem has motivatied an intense international effort to try to understand basic

plasina physics and harness fussion.

0.2) The Alcator tokamak

The most most succesful scheme to date for confining a plasma magnetically

is that of the tokarnak. The original tokamak concept was proposed by the So-

viets(1.1](tokamak is the Russian acronym for toroidal magnetic chamber). The

concept involves forming the magnetic field into a closed toroidal geometry(like a

doughnut). Early successes on the T-3 tokamak{l.2] stimulated growth in pursuing

this concept.

The tokamak used for study in this thesis is the MIT ALCATOR C device(

Alcator is an acronym for ALto CAmpo TORus), a schematic of which is shown in

(fig. 0.3). The plasma is created and confined in the toridal vacuum chamber. T he

toroidal magnetic field used to provide plasma stability is produced by a stack of

Bitter magnets surrounding the vacuum chamber. The plasma is generated through

electrical breakdown of the gas. The closed loop created by the plasma acts as I he

secondary of a transformer; current can be driven through it by inducing an electric

field generated by a primary winding located at the center of the machine. The

10



current performs a dual function in the plasma. First it provides an effective way

of heating the plasma and second the magnetic field generated by it confies the

plasma. Alcator like most other present day tokamaks is designed to study the

plasma physics involved in a fusion reactor not the fusion reaction itself. As such

the working gases that form the plasma are H 2 , D2 , and He. Tritium is not used

because its radioactive properites would make handling very expensive.

The Alcator parameters are:

Major radius Ro = 64cm

Minor radius a = 16.5cm

Toroidal magnetic field BT < 12T

Plasma current 4 < 800kA

Plasma density n < 2 x 10 1 5 cm 3

Electron temperature T, < 3keV

Ion temperature T < 1.5keV

What makes Alcator unique among tokamaks is its rather high magnetic fields

and small size. Internal disruptions in tokamaks(sawteeth, to be discussed in great

detail in chapter II) limit the current density that can be achieved. This is a serious

limitation in terms of heating a plasma Ohmically and in plasma confinement. The

central sawtooth limited current density scales as

BT

thus the higher the magnetic field and the smaller the major radius, the larger the

current density that can be achieved.

0.3) Motivation of thesis

The hostile conditions in a high temperature plasma prohibit any direct sam-

pling of the plasma properties. These must be inferred by use of some benign

technique. This can take the form of measuring the electro-magnetic radiation or

particles emanating from the plasma or by injecting laser or particle beams and

observing their interaction with the plasma.

11



In this thesis we shall focus on the use of electron cyclotron emission (ECE)

to measure the electron temperature of the plasma. As the electrons in the plasma

gyrate about the magnetic field lines, the continual acceleration causes them to

radiate. The radiation tends to have peaks at the cyclotron harmonics of the local

magnetic field at the radiator. For the case in which the emission is black-body(i.e.

it reflects the local temperature at the radiator) and the magnetic field profile is

known, we can then associate a given frequency with a given spatial location in the

plasma. The toroidal field in Alcator is such that the useful radiation is in the far

infrared(FIR) range of frequencies. A six channel FIR grating polychromator was

used, allowing continuous measurement of the electron temperature at six radial

locations in the plasma.

Sawtooth disruptions (fig. 0.4) as was mentioned earlier represent a limitation

on the current density that can be achieved in a tokamak. The periodic disruptions

will dominate the transport and profiles in the central region of the plasma. Our

dealings with sawteeth will involve two phases. The first is the direct study of the

sawtooth disruption and the second concerns the plasma response to the sawtooth

disruption. The most common diagnostic used to measure the dynamics of the

sawteeth has been the soft-Xray emission(O.3,0.4]. While this technique has good

signal to noise and good spatial resolution, the signal is a complicated function

of electron temperature, density and impurities. This leads to great ambiguities

in trying to unfold the electron temperature evolution. The ECE techniques as

described above provide a unique opportunity to measure the electron temperat ire

evolution in sawtoothing plasmas.

Several models have been proposed to explain the mechanism of a disrup

tionO.5,0.6,0.7]. The most detailed of these have been that of Kadomtsev[0.5 an I

Jahns[O.6]. We shall use these models to predict how the electron temperattir,

should behave in Alcator during a sawtooth disruption. We can then make com

parisons to gauge which of these models or part thereof agrees or disagrees with t he

observed behaviour. In the end we suggest a model which we feel fits the Alcator

results.

12



The sawtooth disruption leads to a rapid redistribution of the energy in the

central region of the plasma. This generates a heatpulse which propagates out of

the plasma. Callen and Jahns [0.4] first proposed to study the evolution of this

pulse to infer what the transport coefficients are in the-outei- regions of the plasma

where the sawtooth disruption does not have a direct effect. They used the soft-

Xray emission to try to follow the evolution of the electron heat pulse. Because

of the ambiguities involved in the soft-Xray signal, they were limited in how much

information could be used to infer the electron thermal diffusivity. By using the

ECE we actually measure the electron temperature; thus fuller use of the electron

temperature evolution can be made.

We shall develop a general formalism to describe the heatpulse evolution based

on a Fourier decomposition of the sawtooth signal. This differs from previous treat-

ments in that it explicitly accounts for the fact that the plasma is not in a quiescent

equilibrium. A study will be done of the effect non-diffusive terms have on the

estimate of the electron thermal diffusivity. Previous workers have assumed these

to be negligible, however we shall find that at high densities some of these effects

can be important. We shall use the techniques developed in this thesis to study the

scaling of the electron thermal diffusivity.

Pellet injection promises to be an efficient way of fuelling a thermonuclear reac-

tor. It has been found that pellet fuelled discharges exhibit improved confinement

over gas fuelled discharges[0.8]. Most workers have focused on the long time scale

effects of pellet fuelling, leaving the actual physics involved in pellet penetration

into the plasma largely unexamined. We shall use the ECE techniques to measure

the evolution of the electron temperature during the injection process (fig. 0.4). W

find that the transport rather than being dominated by the transprot coefficient

active before injection are enhanced by as much as two orders of magnitude. A -

we shall see, this self generated transport can have important implications whe1

considering the fuelling process.

A common observation in several machines, including Alcator, has been that

under certain conditions the electron temperature profile seems to have a canonical

13



shape. During pellet injection we have found that this mechanism is active under

certain conditions. Pellet injection has provided us with a way to perturb the plasma

by generating electron temperature profiles which can differ from the canonical

shape. The general observation has been that the electron temperature profile, for

high current discharges, recovers its canonical shape on extremely fast time scales

which are consitent with the large pellet generated transport.

0.4) Organization of thesis

This thesis is divided into five chapters beyond this one. Each chapter is fairly

self contained and may be read independent of the others.

Chapter I deals with a discussion of electron cyclotron emission. We discuss under

what conditions the radiation can be used to make a temperature measurement. A

discussion of the instrumentation is also given.

Chapter II discusses the nature of sawteeth. A review of the various models

proposed is given as well as their implications for Alcator. A summary of results is

given.

Chapter III develops the formalism used in studying the heatpulse propagation.

We also discuss a single sawtooth model used to asses the importance of non-diffusive

terms. A summary is given. .

Chapter IV gives a treatment of the electron temperature evolution during pellet

injection and a discussion of profile consistency. A summary of results is given.

Chapter V gives a summary of the main conclusions found.

14
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Figure 0.4 -- This is a trace of the evolution of the central
temperature showing the characteristic sawtooth like disrup-
tion. The large drop in temperature at t ~ 300m.9 is due to
the injection of a pellet.
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I) Electron Cyclotron Emission and Instrumentation

1.1) Introduction

Electron cyclotron emission (ECE) is common to all magnetically confined

plasmas. Because of the continual acceleration of the electrons in their helical orbits

about the magnetic field, they radiate with peaks at harmonics of the local cyclotron

frequency. Under certain conditions the electrons can be treated as free radiators.

The ions also undergo radiation, but because of their large mass and shielding by

the plasma, the frequency and intensity of their radiation is much lower than that

for the electrons.

Interest in ECE was first motivated in considering the power loss in a ther-

monuclear plasma [1.1]. In this work it was found that ECE would contribute a

substantial loss of energy from the plasma. Engelman and Curatolo [1.2] wrote an

influential paper suggesting the use of ECE as an electron temperature diagnos-

tic. In the case of a monotonically varying magnetic field such as in a tokamak,

the highly' localized radiation peaks and the use of optically thick lines (that is

lines with very high absorption), could give a local measurement of the electron

temperature. Technical problems have tended to limit the development of this di-

agnostic. The magnetic field 'values in current and future tokamacs put the useful

ECE harmonics in the far-infrared range of frequencies 60 - 600GHz. The tech-

nology has advanced to the point were ECE has become a routine diagnostic in all

major tokamaks [1.3,1.4,1.5,1.6].

The most common forms of instrumention have been the scanning Michelson

interferometer [1.7] and more recently the scanning Fabry-Perot [1.8]. The Michel-

son allows measurement of a wide frequency range of the ECE spectrum. A more

specialized instrument is the scanning Fabry-Perot which measures a much narrower

range of the spectrum, but has higher time resolution (3ms vs. 15ms for the Michel-

son). This instrument is usually used to monitor the electron temperature profil'.

Another instrument in common use is the FIR grating polychromator[1.5,1.7]. ThiS

instrument allows measurement of a finite number of frequencies with very high

20



time resolution (1 - 5pAs), the limitation in this case is the detector response, rat] wr

than the scan frequency as in the Michelson or Fabry-Perot.

In this thesis we have used a modified version of the grating used in [1. ].
Because of its fast time response, the. grating is well suited for the study of transie it

temperature phenomena, which is the subject of this thesis. In the following sectiois

of this chapter we discuss the principles involved in electron cyclotron radiation ts

well as how to use it to arrive at the electron temperature profile. A description of

the grating instrument is also given.

21



1.2) Radiation transport

Let us begin our discussion by considering how radiation in general is trans-

ported through an active medium. The radiation transfer equation is:[1.9,1.10]

1.2.1)

r)= jr- '

I:intensity of radiation per unit solid angle along ray path

j:volume emissivity

a:absorptivity

The ray refractive index n, is defined in [1.10] as

n2 =n21 sinO
r cos,3-k(COs (0 - )

where 6: is the angle of propagation relative to B (fig. 1.2)

n:real index of refraction

tanp = --- kkae
an k' 89

k' = Re(k)

For the case of an isotropic plasma or when 6 = ir/2 in a toroidally and poloidal

symmetric plasma then ilk'/96 -+ 0 and n' -+ n2 . Eq.1.2.1 is valid for a particu lI

frequency and mode of the medium. Eq. 1.2.1 can be integrated to give

1.2.2)

1(0) = 1(2) f
n2 (0) n2(2)

0

where dr = ads. Refer to fig.' 1.1 for an explanation of coordinates
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-2 is the integrated optical depth from r = 0 to point (2).

S(r) = j/n 2a is the source function.

If we make the assumption that at points 0 and 2 , n ~ 1 and the medium

is passive (non absorbing, non emitting ) between point 1 and the detector then

-r= 0 , -2 = ro then we can write eq. 1.2.2 as

1.2.3)
To

1(0) = I(2)e'"O + J S(r)e~'dr

0

If we assume that at the frequency of interest, the medium is passive except

for a well localized resonance, then the contribution to r comes from the resonance

layer. The source function can be taken as constant over the range of r . Eq. 1.2.3

then becomes

1.2.4)

1(0) = I(2)e--O + -1-(1 - e~O)
na

j/n2 a is evaluated at the resonance.

For the case in which the medium is in local thermal equilibrium (LTE), that

is the local temperature of the plasma and that of the radiation are the same then,

1, = w2 T
n2 a 8irac2

For the remainder of this work I will concentrate on frequencies and modes for

which ro > 1 and LTE is satisfied. Then eq 1.2.4 becomes

1.2.5)
j w2T

na= 8,r 3 c 2

The intensity at 1(0) reflects the 'blackbody-body' temperature at the resonant

surface.

Up to now our discussion of radiation has been general; it can be applied to

electron cyclotron emission as well as any other emitting and absorbing proces;.

If we want a temperature diagnostic we need a mechanism for which the black
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surface for a particular frequency and mode is well resolved in space. We must now

become more specialized in our treatment and discuss electron cyclotron emission,

which is a mechanism that satisfies the above conditions to give a spatially resolved

measurement of the electron temperature.
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1.3) Discrete particle treatment of electron cyclotron emission.

In this work I will not try to give anything close to a comprehensive review of

electron cyclotron emission(ECE). There are numerous works in the literature that

do an outstanding job(.9,1.10,1.11]. I will present the salient results as they relate

to temperature measurements.

A single electron placed in a homogeneous magnetic field will undergo gyrating

motion (fig 1.2). Because of continual accele-ation it radiates with the following

intensity distribution at the particle:[1.9]

1.3.1)
d2 p ,22 00

dwdfO- 2 E6[(1 -,3j coa)w - lwe] x

ScosO 2
& (cosa - i31)JI() + (-4i0)J '( ) + !(coaO - 0I)JI(O)

where

C

(= -sine
We

One observation that can be made is that emission takes place at a discrete set

of frequencies.

1.3.2)

(1 - 0j1 cose)

WCO is the rest fundamental cyclotron frequency. The discreteness of the spectrum

can be understood from the periodic motion of the electrons. The radiation can be

decomposed into two modes, the extraordinary mode(X mode) with E.IB. and the

ordinary mode (0 mode) with EI|B,.
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The radiation emanating from the plasma is not due to a single electron but

rather an ensemble. If eq .1.3.1 is to have any relevance, the plasma must be su-

ficiently tenuous so that collective effects can be neglected. We integrate eq 1.3.1

over the particle distribution function to get the emissivity. From eq 1.3.2 we can

see two mechanisms that will introduce a shift in the radiation frequency due to

motion of the electrons;

1)Doppler broadening

1 - 311cosa

2)Relativistic broadening

The angle of propagation determines which of these two effects is important.

In general if

cosa < 3

relativistic broadening will be dominant. For a plasma of T, ~ 1keV , this

corresponds to an angle ±3* from the perpendicular of the magnetic field. In

Alcator C because of limited port access, we are confined to viewing in a region

where relativistic broadening is the dominant mechanism.

The lines for which ro >> 1 in Alcator like plasmas turn out to be 2 "d harmonic

X-mode and fundamental 0-mode eq. 1.3.3. Because of the spatial variation in t he

magnetic field, absorption takes place over a region of the plasma of length:

L ~w d(M
1d;_

If relativistic broadening is dominant

AW T
meC2
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and

= 'no
R

so

T
L ~ R

mec 2

for Alcator

R = 64 cm

T - 1 key

L ~.13 cm

Because of the small size of the absorption region, the optical depth for a fixed

frequency can be treated as a local quantity.

The optical depth can be calculated in several ways. The imaginary part of

the index of refraction can be considered, or, since we are looking at lines which

radiate from a population in LTE we can relate c to j by using Kirchoff's relation

(eq. 1.2.5).

Useful approximate expressions for the optical depths have been given by [i.

for w, < w and perpendicular propagation

R W kT.
T!=2 =4-yr '

c w mec2

1.3.3

ir Rw kT.
Ars 2 by T }2

A more accurate formalism is discussed by Tamor [1.111.
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1.4) Toroidal plasma effects.

The toroidal geometry modifies the ECE spectrum in some very important

ways. The most salient of these is the inhomogeneity of the magnetic field.

1.4.1)

R

This has two effects; it broadens the line width of the harmonics (figl.3a) and

because it is monotonically varying, it establishes a 1:1 correspondence between

frequency and spatial position (fig 1.3b). We see that over certain regions of space

there is harmonic overlap, however these take place at the edge which contains little

energy. By considering fig. 1.4 we can arrive at the overlap condition for a harmonic

I >e

Ro:major radius

a: limiter radius

The plasma also modifies the spectrum through its dielectric properties. These

affect the ray path and can thus add uncertainty to the measurement of the tem-

perature profile. Another important effect is that of resonance and cutoff.

The plasma dispersion relation for the X and 0 modes are, for perpendicular

propagation

2 (w2 - W2)(W2 - W 2)nx = (X-mode)w2 (W2 - W2)

1.4.2)

w2

w2= - (0-mode)

28



where

2 W2 + W2)1±
L

WU 2 Wpe + W2

w,, is the electron plasma frequency

The condition for cutoff is n 2 => 0, that for resonance is n 2  o

For the X-mode this implies a non-propagation region of

WV < W < WA

W <WL

for the 0-mode

W < Wp,

see fig 1.4

Because we are restricted to view from the low field side, the fundamental

X-mode will always encounter the upper hybrid resonance layer, thus it does not

propagate out of the plasma. The 0-mode is limited by the w,, cutoff. The right

hand cutoff is usually well below the 2 'd harmonic X-mode thus leaving this line

relatively unaffected by dielectric effects.

Because the plasma in the laboratory is usually inside some sort of container,

the radiation can be modified by interaction with the container. Reflections from
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the walls tend to enhance the observed radiation and thus 'thicken' the line. Because

tokamak walls are not usually smooth, a fraction of the reflected radiation tends to

be scattered into the other mode of polarization. This effect will tend to isotropise

the radiation inside a tokamak. This isotropization has been used to explain the

large ratio of the ordinary to extra-ordinary emission of the harmonic [1.4,1.12].

The spectra of the horizontal and vertical emission were compared and found to

be similar [1.3,1.131. Since the field in the vertical direction is uniform, we would

expect the spectrum to consist of a series of lines at the cyclotron harmonics of the

field along the viewing chord with the broadening determined by the beam spot

size. The observed lines have a width consistent with the horizontal spectrum. The

interpretation is that reflections from the back wall scatter radiation from other

regions of the plasma.

A simple model has been proposed in [1.4] to explain the enhanced polarization

ratio. Consider the plasma to be between two parallel walls and consider only per-

pendicular propagation with only X and 0 modes. Define r as being the coefficient

for reflection into the same polarization and p the coefficient for reflection into the

other polarization. The ratio of polarization for a harmonic becomes (-ro < 1)

10 P.
Ix 1 - r

the intensity for the X mode is then

rx = Ibb -'
1

1 - pe x

P2

P = r +
1 - r

We see that as p -+ 1 the intensity approaches the black body level.
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1.5) Measurement of the electron temperature profile.

We have shown that for an optically thick harmonic eq. 1.2.5 gives

I ~w 2 T,

For a tokamak like Alcator, the optically thick lines are the 0 mode fundamental and

the X mode second harmonic. Because of the w2 dependence, the radiation intensity

for the second harmonic is a factor of four higher than that for the fundamental.

Because of the higher frequencies plasma effects are less on the second harmonic

than on the fundamental. For these reasons we have used the second harmonic in

making our electron temperature measurements. The requirement that r > 1 is

satisfied for the second harmonic if

B.0,, > 8.3 x 104

B2

where ,3 = nT,/( ) and B, is the local magnetic field in Tesla. Fig 1.5 shows

r as a function of plasma position for typical Alcator parameters.

Central to the profile measurement is the assumption that we know the mag-

netic field in the plasma. For a given cyclotron harmonic, an uncertainty in the

magnetic field leads to an uncertainty in the location of the point of emission. This

will affect the apparent temperature profile. We can make a lowest order estimate

of the spatial uncertainty by using the vacuum profile:

R
|SR| = -- |jbB|-jBj

SB is the difference between the real field and the assumed vacuum field, SR is

the difference between the location of the real field and that corresponding to the

vacuum profile. In order to find estimates for SB we need to consider the plasma

effects that lead to deviation from the vacuum field. Two effects will be considered
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1) 3@ effects, 2)uncertainty in field calibration. The proper scale length with which

to compare SR, is the effective spatial resolution of the instrument used in making

the measurement.

Plasma effects will change the value of B, from that of its vacuum value. From

simple MHD equilibrium considerations we can show that the change in B at the

center is

6B=( - B8(a)
2 B,

correct to order (a/R)2. Here for simplicity we have assumed a uniform current

profile and
Pe (0) + pt(0)
Be(a)2 /2po

This introduces a shift in the apparent position of the emitting surface of order

b R = R -B,2(a)
2 B2

For a plasma of f! = 2 x 10"cm- T. ~ 2keV Bt = 8T R = 64cm

= 0.65

SR =0.16cm

The instrumental resolution for the far-infrared grating used here is of order 2

cm, thus Oa effects should not be important.

Although field calibration does not affect the profile shape, it is important in

relating the measured temperature profile in frequency to absolute spatial locat i I

in the plasma. A 3% uncertainty in the magnetic field yields a spatial uncertainty

of - 2cm. Field calibration for the ECE was accomplished in the following way

By measuring the center of sawtooth activity using the ECE which is frequency

resolved (equivalently B resolved) and comparing it to the center found from sone

other diagnostic which is spatially resolved, we can arrive at a self-consistent fieli

calibration. It should be pointed out that for the case of measuring the profile shape

the situation is better.

32



Let

C
B1

R1 is the major radius location associated with the ECE measured field B 1 .

C is a coefficient which contains the field calibration. The distance between two

points in the plasma along the toroidal plane is

d= R1 -R 2 =C

the uncertainty in d is

6d 6C 6R
d C R

so

6R

For Alcator plasmas d ~ 10cm R = 64cm using SR 2cm then

6d ~ .3cm

which is much less than the instrumental resolution of 2cm.

Another issue that must be considered is the effects of finite instrumental res-

olution. This washes out features of high spatial frequency. We can relate the

measured temperature profile to the actual profile by the equation
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1.5.1)

Tm(d) J dZ'g(x - x')T,(x')

Here we have made the conversion to spatial coordinates

T. is the measured temperature profile

T,. is the 'real' temperature profile

g is the normalized instrumental function

dxg(x) 1

If the spatial extent of g(z) is much less than that of T(z) we can expand T, (z')

about x' = x.

8T, 1 82 T
+ 2T,(-') =T,(X)+ lo#I= (X' -X)+ 2 o5'2 (- X

then

Tmx) = T )dz'g(z-z')(z'-x)+1 d'g(x-')(_'-x

If we take the instrumental function to be symmetric about x then

dz'g(x - x')(z' - z) = 0

defining

a 2(X) dx'g(x - x')(x' -) )2

then
82T

Tm(Z) = T,.(x) + a 2 (z)

if

2 T(Z)
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we can neglect the contribution from the second term. This condition is well

satisfied in the measurement of the background temperature profile. However in

studying the, heatpulse propagation, we need to study the evolution of the incre-

mental temperature profile which may have a large second derivative term. The

measured incremental profile can be related to the real profile by replacing the total

temperature with the incremental piece. It is convenient to express the incremental

temperature normalized to the backgound temperature. This eliminates the effects

of calibration from affecting the deconvolution

1.5.2)

____) , T,.()=-X dx g(z - ) T()
T.~x T,.(W

For computational ease I will assume a gaussian line shape, with a resolution

of 2.5cm, which is consistent with the grating resolution. Fig. 1.6 shows examples

of the convolution of two possible incremental profiles. Case no 1 represents an

experimental profile, case no 2 is a profile consistent with a flattening of the electron

temperature out to a radius of ~ vf2ri(inversion radius of sawtooth oscillation). We

see that for the case of the experimental profile, the effect is small, at least it is

within the mesurement error. The difference between the convoluted profiles of

case no. 1 and 2 is sufficiently large, such that we can differentiate between the two

profiles for the given grating resolution.
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1.6)Instrumentation

The instrument used to make the ECE mesurements in this thesis has been a

six channel far-infrared(FIR) grating of the Czerny-Turner type[1.5,1.7,1.14]fig. 1.8.

This instrument is ideally suited for this kind of measurement, for it allows many

spatial points with good time resolution (< 3ps). The number of spatial locations

is limited by the number of detectors and grating geometry and the time resolution

by the detector response.

The grating achieves frequency selection by scattering radiation from a periodic

structure. The direction of the reflected radiation will depend on the wavelength.

In the following I will give a scalar treatment of grating performance. In the strict

sense this is not valid since d(grating constant) ;:: 1.5A, however it is the simplest

theory that allows understanding of grating efficiency at different orders and does

give qualitative agreement with actual performance.

Fig 1.7 shows the kind of grating geometry used to describe the grating dis-

persion. By considering a plane wave incident on the grating, the intensity of the

diffracted wave is of the form:

1.6.1)

2 n 2(IN77)
I(P', ) = I(k) fO', s2())

i2

fo :grating efficiency for a given mode.

N:number of lines illuminated
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In eq.1.6.1 the quantities I(k), IfoI2 vary slowly as a function of , '. It is

found that the line shape is determined by the function

sin2 (y k)

It has primary peaks at

q = ±27rm m = 0, 1, 2,...

secondary peaks at

77 = ±i'(1 + 2p) p = 0,1,...

and zeroes at
21r

77 = k-n n = 1,2,...

The ratio of the primary to secondary peak intensity is found to be over an

order of magnitude, so energy is contained mostly in the primary peaks. The grating

equation is given by the resonance condition

1.6.2)

mA = d(sina + sino)

For most grating arrangements as well as the one used here the angle betweern

the incident and diffracted beams is held fixed. We can then rewrite eq 1.6.2 i1

terms of two new angles 6, q defined in fig 1.7 as

1.6.3)

mA = 2dsin6cosk

is the - angle between the incident and diffracted beams

0 is the angle between the grating normal and the ray bisect or
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The first zeroes about the resonance define the minimum line width. We can

show the resolving power to be

1.5.4)

- Nm

Typically we operate with m = 1 N z 200- so A/6A = 200; in practice this

value is very hard to achieve, but as we shall see this is generally not important

since the limiting resolution will be defined by the slit size. What we require is that

the grating resolving power be much greater than that defined by the slit.

As mentioned above the slits determine the resolving power of the grating; the

reason for this is that the resolution is detector limited, that is if we could build

an instrument with a resolving power approaching that of the grating, the power

reaching the detector would give an unacceptably low signal to noise ratio.

The size of the entrance slit is chosen so that for the given etendue of the

system the input radiation illuminates all of mirror M1 fig 1.8. The system etendue

is defined at the machine side of the optical path to insure optimum power coupling.

To estimate the bandwidth of the grating we can use eq. 1.6.3 to arrive at an

expression for the rate of change of wavelength with exit plane position, fl is the

focal length of the mirrors, a is a displacement in the exit plane.

1.6.5)
SA A 2dcos4 2

The bandwidth of the instrument is defined as

bA

where As.ff is the effective slit width of the instrument , accounting for diffraction

and mode effects. Measurements have been done using a grating of d=1.733mm wit h

A ~ 2.3mm - 17.8*; the measured bandwidth for this case is AA = 0.038mm.

This gives an effective slit width of ~ 1.4cm and the actual slit width is 1.5cm. For

operation at Bt = 8T, this implies a radial resolution of bR - 2.5cm.
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For operation, it is more convenient to define e = O, - 0, where 0,, is the angle

between the incident ray and the grating normal. Eq. 1.6.3 can now be written as

1.6.6)

mA = 2dsin(a - 4)cos4

The grating constant d and 0, determines the dispersion of the grating. Since

the slit locations are fixed, they determine which frequencies are seen by each de-

tector. We pick d so that each channel sees a frequency which corresponds to a

location in the plasma., Fig 1.9 shows the corresponding plasma positions for a

toroidal field Bt = 8T as a function of grating angle (0,) for d = 0.867mm.

We improve considerably on the grating efficiency by tailoring our choice of

blaze angle 6O see fig. 1.7 to match the spectral range of frequencies used. We see

from fig 1.7 that if the diffracted angle for wavelength A is equal to the angle of

specular reflection from face (a) of the grating, this wavelength will be diffracted

very efficiently. We define the blaze wavelength as

1.6.7)

AB = 2dsin(OB)

This is the wavelength of maximum efficiency for the grating.

The theoretical efficiency has been calculated using scalar theory as described

in [1.14]. Since we want maximum efficiency at AB ; 0.6mm and d = 0.867mm

gives a blaze angle of 05 = 23*. The efficiency calculated for this grating is shown

on fig 1.10. We see that at the blaze wavelength all orders are equally efficient but

higher orders fall off much faster than first order when one goes off the blaze angle.

Generally one would operate at 0 > OE to reduce the transmission of higher

orders. However at the frequencies we operate (* 500GHz) the detector response

for the higher harmonics is negligible. Also these higher orders correspond to fourt h

or higher harmonic emission from the plasma which is down by a factor of -

or more from the second harmonic, also whatever overlap there is between the fourt h

and third harmonic takes place at the edge of the plasma.'So we can operate at

close to the blaze angle in first order without much contribution from the higher
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harmonics thus optimizing the grating efficiency. The above argument does not

hold for plasmas with a significant non-thermal electron population.

To get the radiation to the grating we use an optical system like the one shown

in fig 1.11. Imaging is done with a TPX lens of fI = 57cm. The iris is focused at the

plasma center with a magnification of 1.2, defining vertical and azimuthal resolution.

It is the iris that determines the vertical and horizontal resolution. This is normally

set to match the radial resolution as fixed by the grating. A 1000 1/in polarizer is

used as a mode selector to pick between the X and 0 modes. The etendue of the

system is defined by the lens diameter and the chosen iris diameter. For maximum

efficiency the remainder of the system is designed to have the same etendue. From

the iris the radiation goes into a - 10ft straight light pipe for low loss transmission.

A beam splitter is then placed in the beam path to allow operation of a scanning

Fabry-Perot from the same beam line. A matching cone is then used to couple the

radiation from the larger diameter light pipe to the entrance slit. The system from

the machine window to the matching cone is designed to operate in low vacuum to

eliminate any water vapor absorption.

Detection is done by using six He cooled InSb detectors [1.15]. By cooling

to liquid He(~ 4K) the thermal noise of the device is reduced to < 1nV/vfI .

Radiation is absorbed by the electrons in the conduction band. For very pure

crystals at low temperature the coupling to the lattice is low and because of the

low electron density large changes in the effective electron temperature (and thus

the resistance of the crystal) can be effected with low signal levels. The noise in the

system is limited by that of the first amplifying element. This was reduced by using

a large gate FET (no. 2N6550). The pre-amplifier used is based on one suggested

by Hutchinson [1.16], the circuit is shown in fig. 1.12. The overall gain of the circuit

shown is ~ 100 set by R 3/R 2 with an effective input noise of 1 - 1.5nV/V/ffz. The

bandwidth is - 100kHz set by R 3 , C1 . The signals were then amplified by a second

stage to an overall gain of 1000. The signals were then recorded on two Le Croy

8210 digitizers at a rate of 200kHz allowing a 40m. slice of the plasma shot to be

recorded.
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Figure 1.2 - Electron orbit in homogeneous magnetic field.
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Figure 1.3 - a) This figure shows the broadening of the
emission line due to the inhomogenity of the magnetic field.
b) If the field varies monotonically with radius and we exclude
regions of harmonic overlap, there is a 1:1 correspondence be-
tween the major radius position and frequency.
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Spatial dependence of spectrum
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Figure 1.4 - Spatial dependence of cyclotron frequency for
the first four harmonics. The magnetic field is assumed to vary
as 1/R, the density profile is taken to be a parabola going to
zero at R = 48,80cm.
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Optical Depth Profile
X-mode

Teo=2keV
Width=9 CM
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Figure 1.5 - Optical depth of the X mode second harmonic
using eq. 1.3.3. The density profile is a parabola and the
temperature Gaussian.
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EFFECTS OF INSTRUMENTAL WIDTH

RESOLUTION(CM)=2.5

case 1
-- - convolution

case 2
- - - convolution

of case 1

of case 2

JNN

/
a a a a~a-a-a

* I'!

- II!

- //
I

- a

a

0 2 4 6 8 10 12 14

R(CM)

Figure 1.6 - Results of convolution using a Gaussian instru-
mental line shape with a 1/e width of 2.5cm. Case 1 assumes a
parabolic temperature perturbation, while case 2 is consistent
with a measured profile.
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GRATING GEOMETRY
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Figure 1.7 - Grating geometry and coordinate system used
to describe the incident and scattered rays.
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InSb Detectors
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M 2;f=45cm MI; f=45cm

Figure 1.8 - Instrument geometry. The grating config-
uration is of the Czerny-Turner form. Frequency selection is
achieved by rotating the graitng.
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Plasma position with grating
ating Constant(mm)-S.g7E-OL B

angle
rIELD(T)=s

32 34 36 38 40 42 44 46 48 50

Grating angle(deg)

Figure 1.9 - Plot of the effective major radius position
seen by the six channels as a function of grating angle 8,.
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GRATING EFFICIENCY

BLAZE(DEG)=23

- M=1
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-M=3
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Figure 1.10 - Grating efficiency using scalar theory for a
grating of d = 0.867 and OB = 23*. the blaze wavelength is
A5 = 0.6mm. The efficiencies shown are for the first three
orders.

51

0.80

0

z

.60

.40

0.20

0.00



x-
S C0 0 U

4

E
ELO

0C

ow

E6
0

U

Ow

Figure 1.11 - Diagram of optical system.
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II Sawteeth

2.1)Introduction

The sawtoothing phenomenon in plasmas was first observed in the central soft

Xray emission. It is characterized by a periodic 'sawtooth' like structure (fig. 2.1).

Subsequently the same behaviour has been observed in other plasma parameters

such as electron and ion temperatures, density, etc. Sawtooth oscillations were

first observed on the TA device[2.1] and later, on the ATC tokamak[2.2]. The first

attempt at a description for sawteeth was given by von Goeler et. al. using results

from the ST tokamak[2.3]. It was found that the sawteeth led to a redistribution

of energy and particles, near the center of the plasma. Using a diode array, they

were able to characterize the evolution of the soft Xray emission. For illustration

fig. 2.1 shows a set of Xray traces for the case of Alcator C. Near the center of

the plasma the sawteeth exhibit a slow almost linear rise and then a sudden decay.

Farther out in the plasma the sawteeth undergo inversion, with a rapid rise followed

by a slow decay. The rapid spatial phase reversal suggests a fast redistribution of

energy from the plasma center to the region outside the inversion radius. This rapid

mixing leads to no immediate loss of plasma energy. By examining the behaviour

of the outer traces we see that they all exhibit the inverted shape, however the

time of arrival of the peak increases with radius. This suggests the existence of

an outwardly propagating energy pulse. The evolution of this pulse is found to k

diffusive as will be discussed in great detail in the next chapter.

The radius of inversion of the soft Xrays was found to be near the q=1 sur-

face[2.3]. The safety factor q describes the magnetic field topology in a tokamak, in

the cylindrical limit it is defined as

rBT
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where ,r: minor radius

R:major radius

Be:poloidal field

BT: toroidal field

see fig. 2.2. The magnetic field lines can be shown to follow a trajectory of the form

e i(mO+n,)

where 0 :poloidal angle

S: toroidal angle

m :poloidal number

n :toroidal number

The angular numbers are related to the safety factor

q = m
n

Thus the inversion surface takes place at radii in which m/n = 1. The angular

numbers m,n are in general non-integral values; for the special case in which they

have integral values they represent modes of the toroidal cavity. It was also found

that the disruption would be preceded by oscillations with an m = 1 character.

They tend to have a maximum at the inversion radius, suggesting that the magnetic

topology of the perturbation at q = 1 is m = 1,n = 1, generally exhibiting an

exponential growth, reaching a maximum just before the disruption. Von Goeler

et. al. (2.3] suggested that these precursors were the trigger for the sawtooth

disruption.

Kadomtsev[2.4,2.5] proposed a heuristic model to explain the observed be-

haviour of sawteeth. In it he assumed the existence of a time growing perturbation

which has the same topology as the magnetic field at the resonant surface. The ef-

fect this has on the plasma is to shift the center, introducing an m = 1 asymmetry.

In the ideal MHD limit this shifting causes a pinching of current over a small region

of the plasma around the resonant radius. The large current generated causes the
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low resistivity of the plasma to have an important effect over this small region.

Current diffusion leads to a reconnection of the field lines, with lines inside of the

resonant surface connecting to those outside. It is this reconnection that leads to

the rapid mixing of energy and particles along field lines. To describe the process,

he introduced an auxiliary field (which for the resonant surface at q = 1) is

B. =i-BT

In [2.6].it is shown that the MHD equations can be recast in terms of this field.

Physically what we are doing is moving our reference frame to be parallel to the

field lines at the q = 1 surface, so that at this surface B. = 0, and has opposite sign

to either side (fig. 2.3). As the plasma is pushed towards the outside, the current in

the pinched layer begins to diffuse causing the field lines to reconnect and reducing

the energy of the system. The reconnection increases, the magnetic pressure in the

region opposite the reconnection layer, thus driving the center of the plasma into

the reconnection layer at an ever faster rate. The process will not stop until the

whole central section of the plasma has been reconnected, and the field lines j.

have the same sense and q > 1 everywhere. This has is to flatten the current profile

near the center, as the current begins to peak up again due to diffusion, a small

reversed field layer is generated in the center of the plasma and grows outward with

the peaking current. This will continue until a sufficiently large pinched current is

reached and the reconnection begins again. This kind of a process is what leads

to the cyclic nature of the sawteeth. During this process most of the perturbed

magnetic energy is dissipated in Joule heating at the reconnection layer. Although

this model does not specify the instability that drives the reconnection, it does give

a specific mapping of the field lines between the initial to final state. In [2.4,2.5
reconnection was considered for the case of a single resonant surface. Parail and

Pereversev [2.7] later gave a more detailed description of the reconnection process

with more than one resonant surface. Although these models leave many questions

unanswered, they do form the basis for one of the most succesful descriptions for
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the sawtooth phenomenon. As such we shall devote the next section of the chapter

to a more detailed discussion of magnetic reconnection.

One of the requirements of a succesful model is that it give a self consistent

description of the problem. Experimental verification of the Kadomtsev model

has been very difficult, however extensive numerical simulations have been done

which show the model to be at least self consistent. One weakness of the model

is its inability to give the proper trigger mechanism for the onset of the instability

causing the sawtooth disruption. The simulations discussed below all have imposed

an artificial trigger to the problem.

Early numerical simulations were done by Waddel et. al. [2.8] and Sykes and

Wesson [2.9]. In ref. [2.8] the reconnection started when the width of the m = 1

island was approximately twice the resonant radius. The model was applied to

ST data and the predicted disruption time showed good agreement. Sykes and

Wesson[2.9] gave a description which tried to simulate the periodic behaviour of

sawtoothing. The qualitative behaviour of the sawteeth was able to be generated

for a few periods, however after several periods a saturated m = 1 island developed

with q > 1 everywhere preventing any further reconnection. Dnestrovskii et. al.

[2.10] overcame this problem by including a self consistent solution to the transport

equations. The onset of the reconnection was taken when q < 1 at the observed

inversion radius. During reconnection the profiles were governed by the Kadomtsev

model. Afterwards the profiles evolved according to the transport equations. Wit h

this, they were able to simulate T-4 discharges with good agreement, giving rise

to stable sawtooth oscillations. Parail and Pereversev [2.7] gave simulations which

agreed well with T-10 results. In them, they required the current profile to be

hollow giving rise to two q = 1 surfaces. With this model they were able to predict

the inversion radius as well as the sawtooth period and amplitude. The particulars

for this model will be discussed in a later section after the idea of flux function,

have been introduced.

Jahns et. al. [2.11] proposed a model which attempts to arrive at a self con-

sistent description for the sawteeth, while assuming an explicit mechanism for t he
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instability. They assume that the instability is driven by the m = 1 tearing mode.

Von Goeler [2.31 found that the simple m = 1 tearing mode growth rate was too

large to explain the growth of the m = 1 precursors. By including the effects of

diamagnetic drifts Janhs et.al. were able to reduce the growth rate of the tearing

instability. Rather than follow the strict Kadomtsev prescription for profile rear-

rangement, they assumed that all profiles were flattened about the inversion radius,

the extent of the flattened region was determined by conservation of the plasma pa-

rameter being rearranged. They pointed out that the slow almost linear recovery of

the center was due to the domination of Ohmic heating over diffusive loss. Farther

out in the discharge because of the large gradients set up by the mixing, diffusion

dominated the evolution. They tried to develop experimentally measured scalings.

The reduced growth rate is taken to be of the form

3
7= T~

for

W.i wee

2 2

where
a 2/3

72T = 511/1A

is the tearing mode growth rate

dq

is the shear,r, is the resonant radius,r limiter radius.

7A

is the magnetic Reynolds number

27
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resistive skin time
- pp) 1/ 2

=Bz

poloidal Alfven transit time.

The drift frequencies are defined as

1 m dPi
eB, nr. dr r.

I m 1i 8
.= a PO +0.71--T.

eB, r, n r r .

To estimate the shear a the current profile was assumed not to change appreciably

due to diffusion during reconnection. The change in J is dominated by the change in

Y the resistivity, due to the temperature fluctuations. The temperature perturbation

near the center is assumed to evolve as

T,(r, t) = T.(0, t)(1 + ar' + br 3 )

with T,(0, t) linearly increasing with time and a, b are time independent.

Using this form for the temperature they arrive at the shear rate

a = aO + dt2

where ao is the initial shear and

E = 9 go 7*1 7oJzo
B#0 r2 -

3nT.0
T-277J2

reheat time. The growth rate is then given by

(ao + t 2)2

The amplitude of the m = 1 oscillations are related to the growth rate by
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a8-=

with the solution

in - 'y(t')dt#
A(O) Jo

They take the solution in two limits

ao >
A
In--= -tot

A()

A

A(0)-

- 2
C= Ct

5frA. 'U

f = 1.71-*
T.

eBzr M . 0 Jr.

They apply these results to ORMAK discharges and show that both limits can be

seen depending on discharge conditions.

An expression for the sawtooth repetition time was developed using the more

common limit of ii > ao . The disruption condition was taken when the width of

the m = 1 island is equal to the inversion radius. The island width is given by

In-Wt = - to-(t' )dt'
Wi 2 fo

Solving explicitly for to we arrive at the scaling

to ~ d(nB,TiTr.2R2/v 3)1/3  ma
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d = 13 [Ln(W,/W)]

While this model had success in explaining ORMAK data, it's general validity is

unclear. The t5 dependence of the m = 1 growth is sensitively dependent on the

form we take for the temperature profile evolution near the inversion radius. This

region in general has a complicated time history, not necessarily linear as assumed

in this model.

Several researchers have developed empirical scaling laws to describe the saw-

tooth behaviour. There is some question as to whether the reduction of the m = 1

tearing mode growth rate due to diamagnetic drifts is required in accounting for

the precursor evolution. By taking a sufficiently small shear the growth rate can be

reduced to match that observed. McGuire and Robinson [2.12] developed a scaling

of the sawtooth period based on both forms of the tearing mode growth rate. The

general form for the scaling is

to = Kitmt't.

where ti, t 2 , t3 ... are the characteristic time scales of the problem and K is a dimen-

sionless constant. One general requirement is that 1 = -a + b + c . In considering

the m = 1 tearing mode and the diamagnetic drift corrected tearing mode, the time

scales of interest are:

resistive skin time

Alfven time
R R(po p)1/2

VA B

reheat time
3nT.

Th 2J2

diamagnetic drift frequency

w. = ( P)/eBrr,n

If y is the uncorrected growth rate they found the appropriate scaling to be

tr3/7 2/7 2/7
to - 77A Th
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If -y is reduced by diamagnetic drifts

o /s 2/5 2/5 2/5

An empirical fit was done to data from a variety of machines. Using the uncorrected

form

0o 42 014,r,0.44

with a linear correlation of 0.985 For the reduced form

to ~-14 3~ 0.04 0.44 -0.16
7. A rho W-

with a linear correlation of 0.986 For practical purposes the data is well fit

by both scalings, however the coefficients for the unshifted scaling are in better

agreement with the theoretical values.

An extensive amount of work has been done by the TFR group in studying

the sawtooth phenomenon[2.13,2.14,2.15,2.16]. A series of empirical scalings were

found for the sawtooth period, amplitude and inversion radius. They are

a
Ta F/-q,~ (a)1/ 2

to nr2R

8A 1.5
A (a))3/2

They also found that the m = 1 oscillations previously seen only before the

crash, could persist at a lower frequency after the crash. At high density operation

the m = 1 oscillations were hardly visible. Measurements implied that the m = I

island width was only r./3, much smaller than that which most models required

for reconnection to the center. In conjunction with the sawtooth crash large high
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frequency spikes were observed near the inversion radius which are unaccountable

with a reconnection model.

For the above reasons the TFR group came to the conclusion that the recon-

nection mechanism and the m = 1 instability could not be the cause of the sawtooth

disruption. To do so it would require an abnormally large growth rate which is not

predicted by theory. An alternative model was proposed, in which the sawtooth

disruption was caused by the rapid propagation of a turbulent region originating at

the inversion surface. The turbulence could be driven by the large current gradients

set up by the m = 1 mode.

To compare both models, simulations were done in which (1) the Kadomtsev

reconnection is followed but the growth rate of the m = 1 is enhanced to match

observations and (2) a small scale turbulent region is created when the island is

small. By enhancing the growth rate in the first case by as much as a factor of

100, they could not.duplicate the large transient spikes near the inversion radius.

The agreement found using the turbulence model was much better. One of the

problems that this model has is that it does not specify how the turbulent region

comes about, or how it propagates through the plasma.

The purpose of this chapter is to study in some detail the evolution of sawteeth

in Alcator C. Previous studies have used the soft Xray signals which measure the line

integral of a complicated function of temperature, density and impurities. This has

led to some question as to which plasma parameter is responsible for the sawteeth

and how the actual profiles change. By using the six channel FIR grating discussed

in the previous chapter, we can essentially make a point measurement of the electron

temperature, thus removing many uncertainties inherent in the Xray measurements.

In the next section we give a detailed discussion of magnetic reconnection,

focusing on the single resonant surface (i.e. single q = 1 surface) reconnection.

We shall arrive at some basic measureable properties of single resonant surface

reconnection. In the subsequent sections we will study the properties of 'normal'

and 'exotic' sawteeth. In the process we shall try to develop a unified picture of

sawteeth which includes both the 'normal' as well as the 'exotic' cases.
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2.2)Magnetic reconnection

In this section we shall give a fairly detailed discussion of magnetic reconnec-

tion in tokamaks, establishing measureable properties for the various reconnecting

models. Those who wish to skip the details can read the last paragraph of this

section where the main results are summarized.

We begin our discussion by developing as auxiliary field B. following the de-

velopment of Kadomtsev2.5]. We assume the existance of a helical perturbation of

the form,

f(r, e - az)

If there are field lines in the plasma which have this topology, we can expect strong

coupling of the perturbation. An auxiliary field is defined to be of the form

2.2.1)

B, = B, - OarB,

The coefficient a is set by requiring B.. = 0 at the radial location r.(resonant

radius) where the helicity of the perturbation and the magnetic field match. In this

frame, the fields to either side of r, have opposite sense. This allows us to see how

the field lines reconnect in a very intuitive way. Then at r, we relate Be, B, and a

Be = arB,

Using the safety factor at r,

rB, 1
q, = --- = a = --

RBS Rq,

giving

2.2.2)

B. = Bp-R rB
SR q,
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For the case of sawteeth q, = 1

2.2.3)

J. = Bp - r B.
R

We can express the auxiliary magnetic field in terms of a flux function

2.2.4)

B. = X V

to find 0, we solve the equation

-r = B.. = B -R-Brr R

At the resonant radius

Or

Whether this is a maximum or a minimum depends on the unperturbed safety factor

profile. The second derivative of ik is

82 B8 1 Bz
-- = + (-- 1)--

5:2 Rq 2 Or q R

if q = 1 at a resonant surface then

2.2.5)
82 B.

If q is a monotonically increasing function of r as is the case for a peaked current

profile then 0(r,) will allways be a maximum. If q is not monotonic as in the case of

a hollow current profile, then 8q/Or may be < 0 in which case 0(r,) is a minimum.

To develop the general principles involved we shall consider the case of only

one resonant surface with a monotonically increasing q profile fig. 2.4 . The flux

function is

Si- n = sdr'(rB w Bi)

Since 0, is arbitrary we shall set it to zero.
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By considering figs. 2.3,2.4 we see that the volumes that reconnect are those

with the same 4'. If the plasma is taken to be incompressible then the area of the

reconnecting region is conserved. This leads to the expression

2.2.6)

1P,&rdr = Oo(rj)ridrj + i'o(r2 )r 2dr2

which is a specific example of flux conservation

J Ordr = canst.

In the above 00 is the initial profile while 40, is the profile after reconnection.

We can easily see that after reconnection the maximum value of 0(r.) ends up

at the center. Since it is the V; values that are conserved, we shall use it as the free

parameter to express r. For a given Oo there are two possible values for r (r1, r2)

about the resonant surface. Eq. 2.2.6 can be written as

2.2.7)

rdr= r1dr1 + r2 dr2

and

-1

dr2 = d4

dr2 = ~1d#
f2 (4)

where

fi =

ar

The eq. 2.2.7 can then be written as

r'dr' = -r1(r) (0) do
fi (00) + 2 ('0)
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Integrating the LHS from 0 -+ r and the RHS from l k - we have

2.2.8)

2 rj Eri(Oo) +7(OQ)#o
2=2 +Y2 - d(

J i(ko) 2(ko

This integral gives the general mapping for the final 0. profile given the initial

profile. The radius of extent of the reconnection is determined by flux conservation

or

2.2.9)

0o(0) ='ko(rm)

The final profile will have if() = o(r,) and k.(rm) = o(rm). To better un-

derstand reconnection, consider the following problem. Assuming that the current

profile near the center of the plasma is peaked and can be modeled by a function

of the form

2.2.10)

j= jo(l - (r/aj)')

where (a,) is the scale length of the current near the center of the plasma. The

poloidal field is then

2.2.11)

Be ar 2+# -3_

where
B2  1
R q, (2 +0 - )

Using eq. 2.2.11 we can find the initial 0 profile to be

2.2.12)

&(r)=a -& 2 3
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The simplest thing that can be done is to find the magnetic mixing radius rm

using eq. 2.2.9. This gives the relation.

2.2.13)

r, DO

This is a monotonically varying function of 3 with

(m 0+o) = 1l/

Since eq. 2.2.10 can be adjusted to approximate all single resonance surface cases,

the maximum possible ratio of rM/r. consistent with a single resonant surface is

e1/2

To find the final 0 profile, the inverse of eq. 2.2.12 has to be found, which in

general is not trivial. In order to proceed with our discussion we shall consider the

special case of 3 = 2. This gives

and

2.2.14)

1 a r -- 2

The above can be inverted to give

r 2 =i--

The integral of eq. 2.2.8 can be evaluated and inverted to give

2.2.15)
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Since we require V to be continuous at r = rM and not 80/ar, we will usually

end up with a return skin current at the mixing radius. It is Kadomtsev's contention

that this skin current dissipates in a very short time scale.

To examine this question we solved the magnetic diffusion equation for a skin

current at r = rM

j ~ 6(r - rm)

The equation solved is

8. 10 a a .
&t r O r y~o

we assume 7/7IO is constant over the central region and set

r

27 2.

77t

if zu =v1Z th-

jhor2

then the solution to the equation can be written as

=('r je~ 2 4 dxzlie-'/4 o ()j(xr' 0)

Z= ie2/4re-m"/4I(,

if xM = 2- then

jZ )= 1.e (-z2/4+1/2)/lo()

Fig. 2.5 shows the evolution of the current assuming Spitzer resistivity and T,

1500ev. The evolution was followed for 3ma which is the typical sawtooth period.

Within 300us the current peak has essentially washed out and thus the current

profile should be continuous. If this were not the case, the reconnection model
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would lead to the permanent existance of a return skin current near the center of a

sawtoothing plasma.

The sawtooth disruption takes place on a much faster time scale than that for

cross field diffusion. According to the reconnection model the rapid rearrangement

of the plasma profiles comes about by the rapid transport along the field lines as

they open up and reconnect. By neglecting any perpendicular transport we can

arrive at a prescription for how plasma parameters should mix.

Any quantity that must be conserved can be mapped in a similar way as eq.

2.2.6

2.2.16)

Z.(r)rdr = Zo(r 1)r dr1 + Zo(r 2 )r 2 dr2

using eq. 2.2.7 for the incompressible plasma case we have

Z. (r) =Zo(r 1 )rldr + Zo(r 2 )r 2 dr2
r1 dr, + r 2 dr 2

expressing the problem in terms of dik we have

Z.(r) = Zo(r 2 )r2 /f 2 - Zo(r 1 )rl/f1
r 2 /f 2 - ri/li

The density becomes

,r) _no(r2 )r 2 /f 2 - no(ri)rj/fi
r2/f2 - ri/f,

using energy conservation

(nT)o(r) = (nT)o(r2 )r 2/f 2 - (nT)o(ri)r1/fi

r2/2 - r 1 /f 1

A point should be made that this is only an approximation, for during reconnection

a large fraction of the perturbed magnetic energy is converted into heat by Joule

heating in the reconnection layer. However this is typically < 2% of the total

redistributed thermal energy.

The temperature can be expressed by taking the ratio of the pressure and the

density

2.2.20) (nT)o(r2 )r2 /f 2 - (nT)o(ri)rl/fx

no(r 2 )r 2 /f2 - no(rl)r 1 /f 1
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To proceed we shall look at the example of 2.2.14. If we assume a constant density

and the initial temperature profile of the form

2.2.21)

TO(r) = T,(1 - r2/aT)?

where aT is the temperature scale length near the center. Using eq. 2.2.20 then the

final temperature profile is

2.2.22)

T.(r) = (1 - r/4 + r2/2a')2 + (1 - r!/4 r2/24Y)}

For the case of y = 1 , we have

2.2.23)

T. = T,(1 - r /4)

the profile is flat and has the value of the temperature at the resonant radius. This

is the kind of profile that is assumed by Jahns et.al. [2.11] as discussed earlier.

In general however this is not the case, the final profile can remain peaked or

become hollow depending on the initial profile. To address this question we consider

the second derivative of T. with respect to r2/4 at r = 0

2.2.24)

/aaT

Then if r, < aT we have

y < 1 peaked final profile

2.2.25) 7 > 1 hollow final profile

y = 1 flat final profile

Thus depending on the details of the initial current and temperature profile the

final temperature profile can be either flat, hollow or peaked.

Another question that should be considered is how the temperature inversion

radius (ri) relates to the resonant radius r,. By equating the initial and final profiles

of eq. 2.2.21 and 2.2.22 we get
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2.2.26)

(1 - r? /4[)? ( r,2/4+ r /24?)1 + (I - r2/a' - r 2 /2a)

this in general can not be solved in closed form, but if we assume that r~ r,, we

can expand in I(ri - r,)/aTI. Defining z2 = r2/a2 and z2 + 6 = r/a2 we get

2.2.27)

}{(1~ ~ ~~)- -Iz) 1-( - (1 - X2)

-(1 - z)-- (- ~IX2) -1 + 1 - j2)71

In most cases the temperature profile will be bounded by the following cases, con-

sider -y = 0.5, z. = 0.3, then 6 = -. 0005, for y = 2, z, = 0.3, then 6 = 0.0008. Thus

the maximum discrepancy between the profile inversion radius and resonant radius

is 0.4%. This means that for the case- of a single resonant surface, the inversion

radius is very close to the resonant radius.

Kadomtsev's reconnection model allows prediction of the disruption time. We

will briefly outline the argument given by Kadomtsev[2.4]. Plasma is pushed out of

the reconnection layer as the central plasma column is pushed into it. The velocity

with which mass moves out of the region is fixed by the Alfven velocity (in the

transformed magnetic field) vi; as the plasma is tied to the magnetic field. Fig. 2.6

shows the geometry used here. The velocity at which the central plasma column

should move towards the reconnection layer is

Vreco

where V 6,.,, ~ 61 volume of reconnection layer

Vc ~ r2 volume of central plasma

The width of the reconnection layer is determined by the width of the diffusing

current layer

62 , xmdto
77

XMag= lAO
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to is the average time scale that a field line remains in the reconnection layer. Since

it is tied to the plasma, it is given by

Ito -

The width is then

The reconnection time is roughly the time it takes for the center of the plasma to

reach the reconnection layer

which gives
3

we can expect the length I of the reconnection to scale with r, , so that the recon-

nection time t, becomes

2.2.28)

t ,. = ( : ) 1 / 2

tr XM69,V!
= (r,.rl)1/2

where
r2

r,, = *r

Xmag

For the typical Alcator parameters

t,. ~ 200 - 300 As

which can be an order of magnitude larger than the disruption times measured in

Alcator, which are typically 20 - 50pts.
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Parail and Pereversev [2.7] discussed reconnection with multiple resonant sur-

faces. Their original motivation was the observation that the mixing radius of

sawteeth could be as large as half the minor radius. The kinds of flux functions

considered are shown in fig. 2.7. The non-monotonic q profile is generated by a

hollow current profile. The mechanism which generates the hollow profile may be

attributable to the internal disruption themselves. As in previous cases the instabil-

ity leading to the sawtooth crash was taken to go unstable when q < 1. They invoke

the presence of a magnetic barrier which prevents the growth of the instability when

O(r,2) < 0(0)

They assume the barrier can be overcome and the instability develop when

2.2.29)

(r,2) ~ 0(0)

The picture as described by this model is the following. Immediately after

the disruption a flat 4 profile is generated as shown in fig. 2.7. As the current

diffuses back in, the value of ib at r.2 increases, when condition 2.2.29 is met then

reconnection can proceed all the way to the center. Fig. 2.8 shows plots of the B.
field for this case. We see the formation of two opposing islands during the growth

of the m = 1 instability. This may contribute to the suppression of the observed

m = 1 precursors in the temperature. We shall discuss this more later with regards

to exotic sawteeth. The mapping function for this kind of reconnection can easily

be generalized from eq. 2.2.8. The plasma parameters profiles generated do not

differ in shape from that of single reconnection. The reconnection in this case is the

time it takes for the center to reconnect with r. 2 . Thus we expect the same scaling

as found in eq. 2.2.28 however this time using r.2 rather than r,,.

At this time we should pause and recapitulate the main results arrived at in

this section, so that they can be kept in mind while examining the sawteeth in

Alcator C. From the reconnection of a single resonant surface, we found that thw

maximum value the ratio rm/r; could have is e1/ 2. This is important because

it gives us an experimentally measured number, which we can use to see if the
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sawteeth are consistent with a single reconnecting surface. After developing the

mapping function for the reconnection process, we saw that an initially peaked

temperature profile could either become peaked or hollow depending on the degree

of initial peakness and the current profile shape. The required degree of detail is

more than the available diagnostics can give. Thus comparing the initial and final

temperature profiles can not tell us whether Kadomtsev reconnection is consistent

with the process or not. By considering the simple parabolic current profile and

the more generalized temperature we showed that the observed inversion radius

corresponds to the resonant radius. A scaling law for the reconnection time was

developed similar to that in [2.41. We found the predicted values for the disruption

time to be as much as an order of magnitude higher than the measured values.

This discrepancy may arise from the crudeness of the estimation rather than a

discrepancy in the physics. Finally we considered reconnection of two resonant

surfaces. The profiles arrived at by this method may allow larger values of rm/ri

than the single resonant surface. The generation of two opposing m 1 islands, as

we shall argue later, may account for the reduction of m = 1 precursor oscillations

in normal sawteeth. In discussing exotic sawteeth we shall see that the multiple

resonant model may be applicable, thus allowing a unified explanation of all these

seemingly disparate forms of sawteeth.
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2.3)General observations

We have reviewed in some detail the results arrived at by other workers in

the area of sawtooth activity, and have discussed with particular emphasis the

magnetic reconnection picture. The reason for this as we shall show in this and the

following sections is that this picture seems to provide a'succesful explanation of the

wide variety of sawteeth seen on Alcator C. In this section we shall give a general

overview of the sawteeth seen on Alcator C, leaving the more detailed discussion of

their various aspects to later sections.

Sawteeth are generally seen during normal Alcator operation, when the q,

(safety factor at limiter)< 7. This condition is associated with qo < 1 which as

we saw in the previous sections is required for the sawtooth instability to take

place. Several diagnostics show the signature of sawteeth, the rapid decay followed

by a slow rise near the center with an inversion outside a given radius. Fig.2.9 shows

some traces for the case of Alcator C. We see the sawtooth signature clearly on the

central temperature and soft-Xray signals. Although the density is also expected

to be rearranged during the disruption, because of its much flatter profile it will

have a smaller sawtooth amplitude. Also the density interferometer measures the

line integrated density, this will also tend to reduce the apparent amplitude of the

density. The lack of current fluctutation implies that the total current is conserved,

although the internal current profile is expected to be rearranged. The oscillations

seen on the loop voltage are not due to the sawtooth oscillations, but are ripple

from the OH power supplies. The signal due to the sawteeth is very small, reflect-

ing the plasma's tendency to shield its interior from the outside. This is supported

by simulations which show that for large internal voltage fluctuations, the external

response is strongly suppressed.

In this thesis we shall concentrate on the sawtooth behaviour from the point of

view of the electron temperature as measured by the ECE. This has the advantage

that it is a local measurement of a single parameter. The disadvantage is that

it has fewer spatial channels than the soft Xrays. To overcome this limitation,
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profile parametrization was used. The form was determined from spatial scans of

plasma shots with constant conditions. The initial incremental temperature profile,

is defined as the difference between the final temperature profile and the initial.

The initial and final times of the disruption are determined by fitting the channel

closest to the center with a three step linear function around the time of the sawtooth

crash. Fig.2.10 shows the data set used in the fitting. The pressure rather than the

temperature is used in the fitting for later we shall impose energy conservation on the

profile. The incremental pressure is here defined as the product of the incremental

temperature times the unperturbed density profile, with the assumption that the

density fluctuations do not make a large contribution. The functional form used in

the fitting is:

2.3.1)
Acos(xz 2 ) X < 1

8(nT) = 2 -
fB(z - 1)e'('1) x > 1.

where z = r/ri, ri is the profile inversion radius. The fit was done by adjusting the

parameters ri, A, B, a. Energy is conserved to better than 90%, which is consistent

with total energy given the error bars. In doing the fit to only six channels, we shall

remove one free parameter by imposing energy conservation giving the relation

2.3.2)

B =-A
r(1 + 1 l)'

Using this parametrized profile, a comparison of the initial and final total pro-

files are shown in fig. 2.11.

Fig. 2.12 shows the time trace for the six ECE channels for a plasma shot

exhibiting the most common('normal') sawteeth found in Alcator. We note t hs

absence of large precursor oscillations. This has long been taken as a problem for t le

reconnection model as proposed by Kadomtsev (2.4]. In it the generation of a large

m = 1 island is required before reconnection can occur. The island is expected to

rotate with the electron diamagnetic drift frequency. Fig. 2.12 shows some evidence

of small m = 1 precursors, the measured frequeny for these is - 8.2kHz. If we use

the diamagnetic drift frequency arrived at by Jahns(2.11] the estimated frequency
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is 11kHz in good agreement with the observed value. The amplitude seen however

indicate an island width at the time of disruption that is much smaller than the

observed inversion radius. Similar observations have been made on TFR[2.14]. At

lower densities they found evidence for m 1 activity, but at high densities the

m = 1 was strongly suppressed. However in all cases they found the expected

island width to be < ri/3. They also found that after the disruption there would be

m = 1 successor oscillations, indicating that the island did not completely reconnect.

This led them to propose that the m = 1 precursors are not directly responsible

for the disruption. They attribute the sawtooth disruption to the formation of a

turbulent region, emanating from the resonant layer. This turbulence could possibly

be driven by large current gradients set up by the m = 1 instability. As the

turbulent region propagates the disruption takes place, with the m = 1 island

surviving. The successor oscillations rotate with a slower frequency, reflecting of

the new smaller gradients. In the case of exotic sawteeth we see successor oscillations

with amplitudes larger than the precursors. We shall discuss them later in more

detail when considering exotic sawteeth.

At this point we would like to suggest an alternative explanation which will

be developed throughout this chapter. In the previous section we considered the

magnetic topology of two resonant surfaces (fig. 2.8). As the current penetrates

two islands develop concurrently and opposite each other (fig. 2.13) about each

resosnant surface in such a way as to reduce the net m = 1 signature as seen on

the ECE. This process continues until the disruption begins which would normally

involve the complete reconnection of both islands. This picture of multiple m =

1 islands will be used in later sections to explain the wide variety of sawtooth

behaviour found in Alcator.

In the following sections we shall discuss in detail how various properties of

the sawteeth scale and compare them to those of other machines as well as those

predicted by models. The most common sawteeth are those which exhibit little

if any m = 1 activity; these will be characterised by the inversion radius, energy

mixing radius, sawtooth period, disruption time and central sawtooth amplitude.
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We shall find that the data is not generally consistent with a single resonant surface

model, but may be accounted for if we allow multiple resonant surfaces. In another

section we shall discuss a number of exotic sawteeth which differ significantly from

the normal case. These are generally seen in plasmas with a large impurity content.

We shall see that the multiple resonance model may be capable of explaining much

of this behaviour.
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2.4)Scaling of sawtooth parameters

A study of the scaling of the temperature inversion radius and energy mixing

radius has been done for the case of 'normal' sawteeth over a wide range of plasma

parameters. The fill gases used were H 2,D 2 ,He, spanning a density range of 1 <

fi < 5 x 10 4 cm 3-, plasma current of 320 < I, < 500kA, a range of Z0ff from

1.1 < Zff < 1.3 and Z,ff ~ 2.2 for H,. In each case the initial perturbation

profile was fitted by a function of the form of eq. 2.3.1 and from this the temperature

inversion radius was determined.

At the time of the disruption, energy is displaced from the center of the plasma

to the outer regions. The extent of this displacement will be known as the energy

mixing radius. Any displacement that takes place on the disruption time scale must

be associated with the magnetic disruption, since any bulk diffusive effects take

place on a much longer time scale. From this argument we can expect the energy

mixing radius to be a good measurement of the magnetic mixing radius. Since the

parametrized profile is infinite in extent, we shall define the energy mixing radius

as that which contains 95% of the redistributed energy. We shall denote it here as

rM and it is found from

2.4.1)

F(rM) = aU - j dz2rzn(x)T(z) = 0

where

Ui = j 27rxn(x)T(x)

is the total displaced energyfor the 95% energy mixing radius we have Q = 0.05.

To see if q is consistent with q - 1 in the region of the inversion radius we can

estimate the value of q at ri by assuming that j ~ T./2 and T. ~ e- / 4 then the

safety factor profile has the form

'--a/2a2.
q(r) = 2 -3a( )O

a 1 - e3r 2 /2a.

since a2 > a , we can write
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2.4.2)

q(r) ~r()2 1 r/243at - e -r.

Previously it has been shown that a,, scales with the safety factor for sawtoothing

discharges[2.17]. Fig. 2.14 shows q to be independent of qI and within the accuracy

of this model to be qi ~ 0.96. Some qualifications need to be added to the results

as given by this model. Since the plasma is not in steady state, the electric field

profile is not constant across the plasma thus our assumption of j ~ T.3/2 is strictly

not valid. As we shall see in the next chapter the current profile just before the

disruption may be somewhat flatter than the temperature profile.

A scaling for the inversion radius can be developed assuming qi is a constant.

Eq. 2.4.2 can be recast in terms of the central safety factor to give

2.4.3)

q(r) 
1 

ql( )2
1 e-qW 2 /qga2

since ri < a we can expand the exponent to get

2.4.3)
2 _ 

2 2q ,q~
qi q qo

If we use the value of qi = 0.96 and qo = 0.87 (shown in ref.[2.17]) then we arrive

at a scaling

2.4.4)
a

ri = 0.44

This value is close to that arrived at by the TFR group[2.13]

ri = 0.5-a

Fig. 2.15 shows a plot of the inversion radius and energy mixing radius with a/ .-

The data set is not sufficiently wide to verify the scaling as shown in eq. 2.4.4, but

we can see whether the scaling is at least consistent with the data over the narrow

region. The average value of ri in fig. 2.15 is < ri >= 3.63cm, using the scaling of

eq. 2.4.4 gives ri = 3.7 and the TFR scaling gives r - 4.24. Thus we see there is
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good agreement at least within this narrow data set between the TFR results and

ours.

The average ratio of rm/ri for the cases shown in fig. 2.15 is < rM/ri >= 2.2.

This isa number which can be compared to theoretical predictions. The first is the

model proposed by Jahns[2.11] in which the pressure profile is flattened about the

inversion radius and the mixing radius is determined by energy conservation. If we

assume that the central pressure profile before the disruption can be represented

by a parabola then this model predicts an rm/ri = v. This is the same result we

would arrive at had we used the Kadomtsev model with a parabolic current profile.

If we use the current profile of eq. 2.2.10, the maximum value of rm/r; is

2.4.5)
rm = el/2

Fig. 2.15 shows both of these cases to be below the measured value of rM. For the

Jahns case it implies that the data is inconsistent with a flat temperature profile

outside ri, but we knew this from actual measurements of the profiles. A more

subtle implication is that we can not account for the measured ratio of rm/r with

any reconnection model that assumes a single resonant surface. The form of the

current of eq. 2.2.10 can account for all single resonance cases. What this implies is

that the mechanism active in these sawteeth is probably not single resonant surface

reconnection.

Although the trigger mechanism for a sawtooth is not well known, all theories

proposed depend on the form of the current profile. In estimating the scaling of

the sawtooth period we only need to consider how long it takes for the background

plasma profiles to reach the critical condition for disruption. The actual time of the

disruption contributes a negligible amount to the sawtooth period.

TFR performed a series of scaling studies in varying plasma conditions awd

arrived at a simple scaling for the sawtooth period of the form

ro ~ fir R
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The scaling can be understood in terms of the time scale for the current to reach

the critical profile. The change in the current due to diffusion happens in a time

scale which varies as r?. The time scale for the temperature to recover varies with

the energy confinement time rs ~ia'R. Since for the case of Alcator R, at are

constant we arrive at the scaling.

2.4.6)

.- , I~r

Fig. 2.16 shows the scaling for this case. Although the data has the general trend the

agreement is not very good. The squared linear correlation coefficient is C 2  0.86

for this case.

Using the Jahns [2.11] scaling as discussed in sec.2.1 we have

to ( IB,TTr?R2/V 3)1/ 3

In our case we can neglect the R2 scaling since it is a constant. Fig. 2.17 shows

the result for the same data set considered in fig. 2.16 showing the TFR scaling.

In this case the quality of the fit is much better, giving a correlation coefficient of

C2 = 0.97.

McGuire and Robinson[2.12] developed a scaling relation based on the tearing

mode growth rate. The empirical scaling found by fitting a number of machines is

of the form

to ~0 .042,0.14, 044

where as discussed in sec. 2.1, r,. is the skin time, rA Alfven transit time, -r the

Ohmic reheat time. Assuming Spitzer resistivity the sawtooth repetition time scales

as

to,- e
BT

where ri:cm

ni:10 1 4 cm-3
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T:eV

BT:Tesla

Fig.2.18 shows the scaling for this case. The linear correlation coefficient for

this case is C2 = 0.99.

Of the three scaling relations the McGuire and Jahns forms give the best agree-

ment with the data. Although the McGuire scaling gives a slightly better correla-

tion, the scatter in the data is such that we can not differentiate between the two.

Thus sawtooth period scaling can not tell us which of the two forms of the growth

rate is responsible for the disruption, if any of these are.

TFR used a turbulent model to explain the disruption. Fitting the decay to

a diffusive model they found effective diffusivities of - 10 2 cm2 /ms while the bulk

diffusivity was ~ 1cm 2 /m. or a two order of magnitude enhancement. Making

a similar estimate for the Alcator data, the effective anomalous diffusivity is

400cm 2 /m9 while the bulk ~ 2cm 2/ms. This is of importance in the next chapter

when we consider estimating the bulk thermal diffusivity by following the evolution

of the sawtooth generated heat pulse. We must make sure not to include any section

of the temperature trace which includes effects from this larger diffusivity.

The last parameter we look at in the case of normal sawteeth is that of the

sawtooth amplitude. Here we shall refer to that found at the center of the plasma.

The purpose here is to compare the empirical scaling found for the TFR case with

that of Alcator. We can also develop a sawtooth scaling based on the sawtooth

period and assuming that the central temperature evolution between disruption is

dominated by Ohmic heating. It can be argued that the relative peak sawtooth

amplitude must scale as

SA ro

A 7 r

where ro is the sawtooth period and rh is the central reheat time.
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By using the McGuire-Robinson scaling as discussed in the previous section

0.
8 4 -0.s1r.42

To r n
BT

and a reheat time of the form

B 2

gives a relative sawtooth amplitude of the form

6A r_-__B_I B
A (--.4Th.77 )

Fig. 2.19 shows the results of using this scaling on Alcator data.

TFR developed an empirical scaling of the form

6A 1.5
3/i2A qI

Fig. 2.20 shows the scaling of Alcator data with a function of 1/q,/2. The data

shows reasonable agreement with this kind of scaling, however rather than having

the 1.5 factor as found for TFR, we find a constant closer to unity.

The fact that the simpler TFR scalings seem to work as well as those based on

more complicated models, has been taken at times to indicate that simpler physical

processes are active in the sawtooth disruption than the models proposed. A more

likely explanation may be that because of other constraints in the system many of

the assumed free parameters in the complicated sawtooth scaling may not be free

at all, and may be represented by fewer plasma parameters.
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2.5)Exotic sawteeth and impurities

Up to now we have been discussing the most common(normal) form of sawteeth

seen in Alcator C. In this section we shall discuss the qualitative features of sawteeth

that deviate from this category. These exotic sawteeth (examples of which can be

found in figs. 2.21, 2.22,2.24) are seen in plasmas with large impurity concentrations.

Unlike normal sawteeth, exotic sawteeth do not exhibit periodic behaviour, that is

an exotic sawtooth event is usually preceeded and followed by either a normal

sawtooth event or some other form of exotic sawtooth event. Exotic sawteeth in

Alcator can be divided into three classes, although as we shall see later the normal

as well as the exotic sawteeth may be explained as different manifestations of the

same mechanism.

The first category of sawteeth we shall describe we shall call 'partial' sawteeth

shown in fig. 2.21. These are characterized by two separate disruptions that are

close to each other. The first disruption takes place at the same time as if it

was a normal sawtooth. However in this case the disruption is arrested before

completion, leaving the plasma inside of the profile inversion radius with a strong

m = 1 oscillation. These oscillations can continue for several periods at which time a

second disruption takes place. The overall amplitude of this complicated behaviour

is consistent with the normal sawtooth amplitude. Outside the inversion radius, the

electron temperature rises in response to the first disruption, in a manner similar to

a normal sawtooth. However instead of breaking into m = 1 osillations like inside

the inversion radius, these outside channels decay monotonially as in a normal

sawtooth. At the time of the second disruption, there is again a rapid rise followed

by a monotonic decay. The m = 1 oscillations are largest in the region nearest the

inversion radius. After the first disruption they appear, but their amplitude changes

little if any until the second disruption. The oscillation frequency for the case shown

here is 4.2 - 4.6kHz. If we consider the electron diamagnetic drift frequency using

a flattened temperature profile which corresponds to that measured after a normal

sawtooth disruption, we calculate a rotation frequency of 4.5kHz for the above shot.
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The second type of sawteeth we shall denote as 'giants', an example of which

is shown in fig. 2.22. Their main characteristic is the large amplitude disruption,

which can be up to twice that of a normal sawtooth. At the center of the plasma the

temperature rises linearly at the same rate as for normal sawteeth, however the time

of the disruption is delayed thus generating the large amplitude. Many times on

the channels near the inversion radius there is evidence of a minor disruption at the

time which would correspond to a normal sawtooth crash. Inside of the inversion

radius are seen small m = 1 oscillations as in the partial sawtooth case. Except for

these small oscillations the giant sawtooth looks like a normal sawtooth. Sometimes

they take place several at a time with similar properties, but most frequently only

one giant disruption takes place with the subsequent one being a normal sawtooth.

Fig. 2.23 shows a reconstruction of the incremental profiles after a giant sawtooth

crash and that of a normal sawtooth crash. The inversion and mixing radius are

the same, the only difference is the overall amplitude.

The third form of sawtooth is a 'compound giant' shown in fig. 2.24. This

type of sawtooth generally starts off like a partial sawtooth, but rather than have

the second disruption the m = 1 oscillation decay away as the central part of the

plasma reheats, then after approximately twice the normal sawtooth period a large

disruption takes place. Again the m = 1 oscillation exhibit the same behaviour as

in the previous two cases. The incremental profile of the giant crash has the same

form as that for the giant sawteeth shown in fig. 2.23.

The shots discussed in this section are all taken from a set of runs with similar

plasma conditions. Fill gas was H2,f = 1.7 x 10 1 4 cm-3,I = 470kA with a baseline

global Z.ff ~ 1.2. Varying amounts of Ar were injected into the plasma changinst

global Zeif ~ 1.4 - 2.4. The central Zf f rather than the global Z~ff may be t he

important parameter affecting the sawtooth mechanism. A better indicator of He

central impurities is the central soft Xray emission as enhanced by line radiation

ECE data was recorded over a 40m. window during the flat top of the discharge

From this trace a frequency of incidence of exotic sawteeth can be established. FiiK

2.25 shows the scaling of this frequency with soft Xray signal. There is a clearl.
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marked threshold with impurity density. A similar plot with global Zeff does not

exhibit a clear threshold as above.

Pfeiffer[2.20,2.21] has reported giant sawteeth and what they call double saw-

teeth on Doublet-III during beam heating. These resemble the giant and partial

sawteeth as seen on Alcator C. TFTR[2.19] has reported what they call a compound

sawtooth which is very similar to the compound gaint seen on Alcator C.

The explanation given in [2.19,2.20,2.21] is based on a two resonant surface

model, similar to that proposed by Parail[2.7]. However instead of the trigger

condition being 0(r,2) ~ ?(0), reconnection can take place when (r,2) < 4(0),

the trigger condition for the disruption being in this case the overlap of the islands

created at each resonant surface. In these cases reconnection does not take place all

the way to the center (fig. 2.26), it is referred to as partial reconnection. For the case

of Alcator this interpretation at first has many appealing features. The presence of

the impurities increases the local resistivity possibly allowing reconnection to take

place at a much lower threshold. However this would imply that the time delay

between the last disruption and the start of the next exotic sawtooth disruption

should vary in a fashion according to the specifics of the impurities. In Alcator we

have seen that exotic sawteeth do not take place in any extended sequence, they

are usually bounded by normal sawteeth. We observe that the initial disruption

which corresponds to an exotic sawtooth is delayed by the same amount from the

previous as are normal sawteeth in the same sequence. For the case of partial

sawteeth it is the first minor disruption that is delayed by this amount with the

second disruption varying in delay. For the case of a giant sawtooth we have shown

that there is evidence for a very small disruption which does not affect the center,

however the delay of this disruption is the same as that for a normal sawtooth. The

main crash can vary in delay after this, thus exhibiting a somewhat random period

if taken as a single sawtooth. The compound giant is an even more special case. The

first disruption takes place after one normal sawtooth period with the second large

disruption after approximately another normal period, making the overall period

twice that of a normal sawtooth.
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What these observations imply is that the trigger mechanism active in the

normal sawteeth must also be active in the exotic sawteeth. If we take the current

as the trigger, then the current or 0 profile can not be very different for the case of

an exotic sawtooth or a normal sawtooth. The difference between the normal and

exotic sawtooth are their subsequent evolution. For the case of an exotic sawtooth

the disruption is arrested before reconnection to the center can take place. The

impurities probably play a role in modifying the evolution of the disruption. Further

evidence for this view, lies with the observation that the profile inversion radius for

the temperature and energy mixing radius do not differ significantly from that of a

normal sawtooth. This implies that the initial and final current profiles must not

differ significantly from those of a normal sawtooth. In [2.19,2.20,2.21] differences

have been noted in the incremental profile of the soft Xrays, but (assuming these

cases are also tied to the impurity content) these may stem from differences in the

impurity profiles rather the temperature or density.

In all cases of exotic sawteeth we have discussed, we see evidence for m = 1

oscillations immediately after the first disruption and ending with the secondary

disruption. If the reconnection process were as described in fig. 2.26 for the case of

partial reconnection, the final state will have a single magnetic axis and probably

be axi-symmetric. Evidence for m = 1 activity after reconnection tends to weigh

against this picture for the case of Alcator. The m = 1 oscillations seem to start with

maximum amplitude and either remain constant until the second disruption as in

the case of the partial sawtooth, 'or decay away as in the giant and compound giant.

In all of these cases there is little if any evidence for any m = 1 oscillations before the

disruption. One possible explanation is that there are two m = 1 islands which exist

before the disruption. As proposed in sec.2.3 they evolve in such a way as to reduce

their net signature of on the ECE signal. In a normal disruption, reconnection

would take place all the way to the center thus destroying both islands. In the case

of partial reconnection, the symmetry with which the islands have evolved up to

that point is destroyed and thus we are able to clearly see the signature of one or

both islands. The second disruption finishes reconnection to the center.
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The model for sawteeth we are suggesting is the following. For the case of

Alcator both normal and exotic sawteeth involve at least a two resonant surface

reconnection. For simplicity we shall discuss only two resonant surfaces, the model

can be extended to more resonant surfaces easily. After a sawtooth disruption the

current evolves so as to become hollow, as discussed by Parail and Pereversev[2.7]

the sawteeth themselves may drive the current hollow. The evolution of the two

resonant surfaces is such as to reduce the net m = 1 signature of any precursor

oscillations. The trigger condition for the instability must be the same for the case

of a normal sawtooth as well as for an exotic sawtooth. This is suggested by the

observation that the delay for the main disruption in a normal sawtooth and the

first disruption in an exotic sawtooth is the same.

Their is some question as to what form the trigger condition should have.

Pfeiffer [2.20,2.21] has taken the trigger to be the overlap of the magnetic islands

generated around each resonant surface during the linear rise of the sawtooth. The

problem with this trigger is that the delay for a normal sawtooth disruption may be

different than for a partial reconnection case. Also as pointed out before, the partial

reconnection as proposed in [2.20,2.21] will lead to a state with a single magnetic

axis and possibly be axisymmetric. This is not compatible with the large m = 1

oscillations observed in Alcator an exotic sawtooth crash. Parail and Pereversev

{2.7] have taken the trigger to be of the form 4?(O) - ik(r.2 ). When 0(0) > 0(r.2)

they invoke the existance of a magnetic barrier, preventing the development of the

sawtooth instability. Since 0(0) according to the reconnection model should not

change before and after the disruption, this form of a trigger has the property that

the delay to the next sawtooth disruption is constant whether the disruption ends

as a normal sawtooth or as an exotic sawtooth.

If we use the Parail and Pereversev [2.7] trigger in our model, then the difference

between a normal sawtooth and an exotic sawtooth depends on the subsequent

evolution of the instability. Both cases have the potential for complete reconnection.

For the case of a normal sawtooth the reconnection is complete and thus we see

little if any evidence for m = 1 activity, before or after the disruption. For the case
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of an exotic sawtooth the disruption begins as if it was a normal sawtooth, but its

development is arrested, possibly by another magnetic barrier before reconnecting

to the center. In this case the system is left with two magnetic axes and a highly

asymmetric state(see 'reconnecting state' in fig. 2.8). This kind of a picture would

naturally explain the large m = 1 oscillations seen after the first disruption. The

plasma is left in this intermediate state until it can overcome the second magnetic

barrier, at this time reconnection can proceed to the center. The difference between

the partial, giant and compound giant, is the evolution of the intermidiate state.

As we have seen there is a clear correlation between the incidence of exotic

sawteeth and impurity concentration. This suggests that the impurities may play a

role in the generation of the second magnetic barrier. In order to create a magnetic

barrier, we only need to change the topology of a few flux surfaces, so as to make

it energetically unfavorable for reconnection.

This picture would also explain the apparent causal link between the first and

second disruption in an exotic sawtooth. After the first disruption, the second dis-

ruption always proceeds to the center. This would suggest that the first disruption

changed the plasma conditions so as to allow the second disruption to reconnect

to the center. In our picture after the first disruption the plasma overcomes the

magnetic barrier insuring that the second disruption proceeds to the center.
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2.6) Conclusions

Previous workers studying sawteeth have done so using soft-Xray emission.

This has led to a considerable source of uncertainty as to how each plasma parameter

is behaving. The study done here, has focused on the evolution of the electron

temperature using electron cyclotron emission, which may be quite different than

that 'of the soft-Xrays.

The magnetic reconnection model as proposed by Kadomtsev[2.4], and later

improved and modified by various authors, remains the most detailed description of

the sawtooth disruption. It gives a specific prescription of how the profiles should

change before and after the disruption. We considered the simplest case-of magnetic

reconnection; that involving a single resonant surface. Using a fairly general current

profile near the center of the plasma, we showed that the maximum ratio of mixing

radius to resonant radius (rm/r,) consistent with a.single resonant surface is e1/2.

We showed that for this case the resonant radius should be very close to the observed

profile inversion radius(ri), this inplies that rm/ri should also have a maximum of

e'/ 2 . A multi-resonant surface model such as that discussed in [2.7] can be used to

arrive at ratios of rm/ri larger than e1/ 2 . The rm/r; parameter is readily measured

and thus provides a test to whether single resonant surface reconnection is consistent

with the observed disruption.

The reconnection model specifies only that 4 be continuous at r = rM. In

general this will introduce a discontinuity in O/r or equivalently in J.. The

discontinuity reflects itself in the generation of a return skin current at the mixing

radius. If the reconnection model is to be consistent with the periodic behaviour of

sawteeth, this return current must dissipate within one sawtooth period. To address

this question, the magnetic diffusion equation was solved for the case of a current

ring at r = rM. It was found that the current distribution flattened on a time scale

of 300pa as compared with a sawtooth period of 3ma.

One question that is of importance is whether the measured change in the

electron temperature profile is consistent with the Kadomtsev reconnection model.
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We considered the simple case of a parabolic current profile and a more general

initial temperature profile. It was found that the final temperature profile could

be hollow, peaked or flat depending on what we chose for the initial profiles. This

showed that the final profile is sensitively dependent on the initial temperature and

current profile. We have measurements of the electron temperature profile, but we

have no measurements of the current profile, thus making profile comparison an

inconclusive test of the model.

A comparison of the total reconnection as predicted by Kadomtsev[2.4] and the

measured disruption time was done. The results are that the predicted reconnection

time is an order of magnitude larger than the measured disruption time. However

this discrepancy may arise from the very rough nature of the modelling used in

arriving at an estimate of the reconnection time and not necessarily a discrepancy

in the physics.

We have identified the energy mixing radius with the magnetic mixing radius.

Since the parametrized profile is infinite in extent we set the energy mixing radius

to be that which contains 95% of the re-distributed energy. If we assume that

the disruption involves a single resonant surface, then the profile inversion radius

should be very close to the resonant radius. For the case of normal sawteeth we

found an average value of rm/r = 2.2. According to the single resonance model

as developed in sec. 2.2 the maximum possible value that rm/r could have is

e2/ ~ 1.65. The implication is that normal sawteeth, are incompatible with single

resonance reconnection.

In Alcator as in TFR[2.13,2.14,2.15,2.16] precursor oscillation are usually very

small with a frequency consistent with the electron diamagnetic frequency. By

assuming a single resonance reconnection model the TFR group came to the con-

clusion that the width of the m = 1 island before the disruption was too small for

any significant amount of reconnection to take place. This led them to suggest that

magnetic reconnection could not be responsible for the sawtooth disruption. For

the case of Alcator multiple resonant surface reconnection may explain the absence

or reduction of the m = 1 precursors. The evolution of the magnetic islands in a
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two resonant surface model may evolve in such a way as to reduce their net m = 1

signature. The size of the islands can be significant, but if they tend to evolve in a

symmetric manner, their net signature will not be as evident as if there was only a

single island.

A number of empirical studies have been done to determine scalings for the

various sawtooth parameters. Since these are phenomenological in nature, it is

necessary to have a sufficiently wide data base in order to gain confidence in them.

Alcator's operating regime is rather unique among present day tokamaks. It will

then be useful to compare Alcator sawtooth parameters with these various scalings.

We will limit ourselves to study the case of normal sawteeth, since it is for these

that scalings have been developed. The parameters studied are, sawtooth period,

inversion radius and sawtooth amplitude.

The sawtooth period is the most widely studied sawtooth parameter, since it

is the easiest to measure. Three scalings were compared, TFR[2.13], Jahns et. al.

[2.11] and McGuire and Robinson [2.12].'Of the three the TFR scaling fit the data

the worst although it showed the correct trend. The scalings developed in [2.111

and [2.12] are in good agreement with the data. The scaling in [2.12] was developed

assuming a tearing mode growth rate that is uncorrected for diamagnetic drifts,

while that developed in [2.11] is reduced by diamagnetic drift effects. The fact

that the two agree fairly well implies that the sawtooth period can not be used to

differentiate between the two forms for the instability which may be responsible for

the disruption.

A scaling for the inversion radius could not be done because of the narrow

parameter range in Alcator for which sawteeth are present. However we found the

TFR scaling to be consistent with the values of r; found for Alcator.

The last parameter studied was the central sawtooth amplitude. Here we com-

pared two scalings, one was a TFR scaling and the second was one based on the

McGuire-Robinson scaling for the sawtooth period. Both cases showed fair agree-

ment with the data.
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It is interesting to note that the simpler TFR scalings have faired well relative

to the more complicated scalings driven by theoretical models, when compared to

Alcator data. This has sometimes been interpreted to mean that the sawtooth

mechanism may be of a simpler form than the present theories predict. A more

likely explanation might be that the simple TFR scalings reflect the fact that some

of the parameters which are assumed free in the more complicated scalings are

actually constrained through mechanisms which may or may not be related to the

sawtooth disruption.

We have also studied the special case of exotic sawteeth. These have been

shown to be associated with larger than normal impurity concentrations near the

center of the plasma. Sawteeth of a similar nature have been seen on TFTR[2.19]

and Doublet III[2.20,2.21]. In Alcator exotic sawteeth seem to come in three va-

rieties described in sec. 2.5, partial, giant and compound giant. All three cases

are characterized by two consecutive disruptions separated in time by less than one

sawtooth period. Large m = 1 oscillations near but inside the profile inversion

radius, are seen between these two disruptions, the frequency of which seems to be

consistent with the electron diamagnetic drift frequency, if we account for the flatter

pressure gradients. Normally in these cases there is little if any m = 1 precursors.

The delay between the previous sawtooth disruption and the first disruption of an

exotic sawtooth has been found to be the same as for a normal sawtooth. This has

led us to conclude that the trigger for the disruption must be the same in an exotic

sawtooth as that in a normal sawtooth.

Based on the above observation of normal and exotic sawteeth a model was

proposed which may explain both of these cases. We suggest that the trigger con-

dition for the case of normal and exotic sawteeth is the same. What makes them

different is their subsequent evolution. The normal sawteeth reconnect to the cen-

ter, while the exotic sawteeth have their initial disruption arrested before complete

reconnection can take place, leaving the plasma in an intermediate highly asym-

metric state until the second disruption takes place. The role of the impurities

may be to modify the evolution of the disruption. When considering sawtoothing
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after pellet injection we will again find the impurities play an important role in the

evolution of the sawteeth.

Each component of the model proposed was introduced to explain an observ-

able. What needs. to be done in the future is to show if the model is internally

consistent. A better understanding of how magnetic barriers could arise in toka-

maks is needed. The strong correlation between impurities and the incidence of

exotic sawteeth suggests that if such a barrier exists, the impurities may play a role

in generating it. Simulations have to be done to see by how much the m = 1 precur-

sors are suppresed in a multiple resonance model. How the impurities can affect the

reconnection process, needs to be understood. Direct evidence for the existance of

two islands must be found. Tomographic reconstruction of the sawtooth disruption

has failed to do so, however for the case of Alcator the spatial resolution of the soft

Xray tomographs is ~ 1cm, thus if the islands do exist they may not be resolved.
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III) Heat pulse propagation

3.1) Review of subject

The essence of heatpulse propagation studies, is to measure the thermal *re-

sponse of the medium (in this case the electrons in a plasma) to a known temper-

ature perturbation. From this, in principle, we can infer the thermal conductivity

of the electrons. In the case of a plasma, if the electron thermal response time is

much shorter than any other energy transport time scale, the electron temperature

will evolve in a decoupled manner dominated by the diffusive term in the transport

equations; the evolution will then reflect the electron thermal conductivity. The

sawtooth phenomenon in tokamaks provides a time resolved pulse, localized near

the center of the plasma. By following the evolution of the electron temperature

after each sawtooth crash, x., the electron thermal diffusivity can be measured.

Callen and Jahns (3.1] were the first to report results using this technique on the

ORMAK tokamak. They pointed out that if one follows the perturbation in time

and space, it evolves with the signature of a diffusive process. Fig 3.1 shows a set of

traces from Alcator C using the FIR grating see sec. 1.6. If we follow the perturba-

tion radially outward after each sawtooth crash, we find that the time of arrival of

the peak increases with radius. This behaviour suggests the presence of a heatpulse

that propagates out of the plasma. Callen and Jahns found that beyond the region

immediately affected by the sawtooth, the delay (ir,) increased as r 2 .(Fig. 3.2 shows

similar evolution for Alcator). Based on the radial scaling of the delay it was as-

sumed that the evolution of the pulse was dominated by the diffusive component of

the thermal transport equation. Ref{3.1] treated the sawtooth generated heatpulse.

as a perturbation on an otherwise quiescent background. Assuming a flat densit

and X, profile they arrived at a diffusion equation for the perturbation.

3.1.1)
3 VT,. X, 8  T,
2 &t r 5r' &r

The diagnostic used in making the measurements was an array of soft X-ray

detectors looking through various chords in the plasma. Since the signal generally
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depends in a complicated way on the electron temperature and other plasma param-

eters, inversion to estimate the local electron temperature is not reliable. For this

reason ref[3.1] and others have selected a parameter from the raw signal which is

felt to be representative of the electron temperature evolution. Historically this has

been the delay for the signal to peak at a given radial location after the sawtooth

crash (r,).

In solving eq(3.1.1), it was assumed that 1)the disruptions were periodic in

time(this is important to account in a simple way for the effects of multiple saw-

teeth.) 2)observations are made in the far field and 3) we can represent the pertur-

bation as a monopole. They then arrived at a simple relation for rp,.

3.1.2)
3 r 2

TjP = - Xe8 x,

By fitting the measured time delay they arrived at a self consistent X,. They found

that the X. derived from this method (xH') was about an order of magnitude

higher than that calculated from power balance (xefb) considerations. Jahns and

Soler [3.2] later gave a more sophisticated description of the sawtooth crash (see

the previous chapter for further details), which led to an improved estimate for the

initial perturbation used in solving eq.(3.1.1). The sawtooth crash is assumed to

flatten the temperature profile about the inversion radius out to a mixing radius

(rm) determined by energy conservation. Ref. [3.2] recognized that the initial

perturbation can be so broad that a far field solution is not strictly valid anywhere

in the plasma. For this reason they found a Green's function solution to eq. (3.1.11

assuming a flat n, and x,. For the purpose of comparison with ref [3.1] they found

a far field solution using a dipole perturbation as the lowest order profile, since the

volume integrated energy of the perturbation is required to be zero. In this case

the relation for r, is

8

which gives a lower estimate for x. in the far field than [3.1]. For a given ri(inversion

radius) an initial perturbation of the form of fig. 3.3 was used in the Green's function
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solution to eq. (3.1.1). The effective x. was adjusted so that the generated lj, curve

matched that measured. In this way much lower estimates of xf were arrived at.

A number of discharges were compared and the average XHP/Xf)b 1.7, however

the error in the measurement was such that no clear correlation was found over the

range of plasma parameters used.

Soler and Callen (3.3] later put the above formalism on a stronger mathematical

foundation. They start with the general transport equation and assume that the

electron temperature profile can be represented by two components

T,(r, t) = To(r)+ (r, t)

It is assumed that just before the sawtooth disruption the electron temperature

profile reaches a quiescent value To(r). This assumption is strictly not correct, as

we shall see in the last paragraph of this section and later in the chapter. T(r, t)

represents the response of the plasma to the sawtooth crash. By subtracting the

equation for To from that for T,(r, t) and neglecting time changing quantities in the

non-diffusive terms, we arrive at an equation for T

3.1.3)
38- 10 8~-Te= C9 Xe (9T.

which in the limit of x,(r) = const. becomes the same as eq. 3.1.1. They also discuss

density profile effects as well as the possibility of measuring X,(r). The diffusion

equation depends logarithmically on the denstiy and thus it is not expected to be

important. They proposed a method by which one can measure the local diffusivitV

exactly. If we consider eq. 3.1.3 at the radial location where 07,/or = 0, the value

of x. at this location is

x(r) = 3-8T/&
2 82j /ar2

This expression is local and thus allows determination of the x, profile. The draw-

back to this method is that very accurate knowledge of T, is needed.
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Bell [3.4] proposes a more general approach to solving the heatpulse problem.

Eq. (3.1.1) is first expressed in flux coordinates. He then solves the diffusion

equation numerically for a given initial T.(taken, to be the same as in [3.2]),n,(p),

x,(p). The resulting T evolution is then used to generate a line integrated soft X-

ray profile. The rp profile calculated and measured are then matched by adjusting

parameters in X,(r). Three profiles for x. are assumed x.(r) = const.,Xe(r) ~ 1/n,

x.(r) = MxXf&, xf' is determined from power balance calculations. A study is

made of the scaling of x, with injected beam power for constant background shots.

xf P is found to be within a factor of two from xf b. The error bars in the experiment

are such that it is not possible to distinguish between the three different models for

x,(r). A sensitivity analysis is done which finds the most important parameter to

be pT.(the inversion radius of the temperature) . This can change the estimate of

X, by as much as 50% . We will find later that this is a simple manifestation of

sensitivity to the initial profile.

Fredrickson et. al.[3.5] have performed similar heatpulse measurements on

TFTR using an array of soft X-ray diodes and some ECE. In their analysis they

use several methods proposed in previous works, as well as expand on a Fourier

analysis method proposed by Jahns[3.81. A phase analysis is developed which is the

equivalent of the pulse delay method previously used. An effective flat X, can be

found from the measured phase of each harmonic at a given radial location.

Xt 3po dlp2
4 dr

w:sawtooth frequency

p:harmonic number

0,(r):phase of signal for harmonic p at radius r.

They find that for the case of TFTR all these methods give approximately

the same results. The discrepancy between Xf and Xf 6 seems to increase with

sawtooth number. For the case of the first sawtooth the ratio of X. /xC6~

increasing with subsequent sawteeth to a factor of 4-10 . They perform a sensitivity

analysis to try to see if the discrepancy arises from the method of analysis or because
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for some physical reason the transient heatpulse actually evolves with a larger X,

than the bulk. To do this they solved eq.(3.1.3) numerically. To investigate the

effects of initial conditions they tried a variety of different profiles, with a mixing

radius, of rm/a = 0.2(a is the plasma minor radius). They find no significant change

with r, in the region 0.7a2 > r2 > 2ro. Different profile shapes for the density and

x. were also used, all arriving at essentially the same conclusion, that is, that the

change that can be attributed in the estimate of xHP by inclusion of the above

refinements is not sufficient to account for the discrepancy between xf' and Xe -

They conclude that the discrepancy must be attributed to' a physical mechanism

not observable in the smaller tokamaks where all previous measurements have been

done. Three possible mechanisms discussed are 1) a time changing X,, j. which

need only be a factor of 2 larger than the Xb since it comes into the equation for

Sas

which can be large because.of the zeroth order temperature gradient, 2) use of the

so called marginal stability argument, in which any deviation from the canonical

electron temperature profile, leads to the generation of a large X, to eliminate the

perturbation. 3 )X, is really the x P, but for some unaccounted inward pinch, the

power balance estimates yield a much lower value.

Heatpulse measurements have been done on JET[3.17] using a 12 channel grat-

ing polychromator. The heatpulse delay is found to vary linearly with radius. To

estimate X, they solved eq. 3.1.3 numerically assuming X~ 1/n,. Comparisons

were made of the simulated temperature traces using their method with those those

arrived at using the method discussed in [3.31. It is found that at various radii

their numerical results agree much better with the measured time evolution than

the result of (3.3]. A plasma parameter scan was done arriving at a scaling for X, (0)

of the form

X,(O) n,(O)
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The values of X, arrived at agreed with those of power balance to within a factor

of two, however they were consistently higher.

Experiments have also been carried out on the T-10 tokamak [3.7]. Results

of x. agree well with the power balance xf. They measure an effective mixing

radius that is 2-2.5 times larger than that predicted by the Kadomtsev model. The

electron thermal diffusivity is found from the formula

Xe _ (r - rm)2

8rp

The agreement of xe" estimated this way with the x' 6 was very good.

Heatpulse propagation measurements have also been done by perturbing the

plasma with RF electron heating. Ejima and Okabashi (3.6] first used the method

on the spheromak FM-1. Experiments on tokamaks have been done on T-10[3.7]

and Doublet III [3.8]. On the T-10 machine the agreement between the power

balance estimates and the heatpulse results are in reasonable agreement. In [3.8]

the analysis was done by using a Fourier analysis-technique, the heating pulse was

applied periodically and the heatpulse detection was synchronized to this. The ratio

x'/xr6 varied between 2-4, although the data sample used was limited.

One of the aims of'this thesis is to re-examine the assumptions made by previous

workers and establish limits for their validity. The first comment to be made has

to do with the assumption of the plasma relaxing to a quiescent profile. This

requires for 6To/8t = 0 everywhere just before the sawtooth disruption, while

this may be approximately true in the outer region of the plasma, it is rarely seen

in the inner regions. For the case of Alcator C, 8T,/t at the center can be as

large a 100 eV/ms just before the sawtooth crash. This means that the plasma is

never in a quiescent equilibrium, but rather a dynamic equilibrium that is probably

dependent on the sawtooth mechanism for stability. By using the profiles just before

the sawtooth crash as the time independent profiles, we will be underestimating the

'true' quiescent profiles. This will lead to reduced values of Te and overestimates of

X,. In the work done previously, there is an implicit assumption that the heatpulse

evolves in the far field where the initial profile effects are not critical. As we shall
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show and as Bell[3.41 has pointed out, if the initial profile extends to a radius of

order a/2, near field effects become inportant in the measurement. For the case

of Alcator C the energy mixing radius extends 1.5 - 2 times that predicted by the

Kadomtsev model(see chapter II). As we shall see later, accounting for near field

effects can reduce the estimated x. by a factor of 3 -6.

Firstly we will develop a single sawtooth model to examine the importance

of the non-diffusive terms. The assumption that the electron heatpulse evolves

in a decoupled manner is essential to this measurement for it allows estimation

of x, without accurate knowledge of other plasma parameters. Secondly we will

propose an analysis technique which does not require the quiescent assumption, but

rather relies on measured profiles. We will allow X, to have a simple polynomial

dependence on r, so as to make a measurement that reflects a local quantity rather

than an average.
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3.2) Transport equations

We begin development of our model by defining the transport equations. Since

one of our objectives is to focus on the important physics under various plasma

conditions, we must start from a general set of equations from which to derive

the equations describing the electron heat pulse evolution. In solving the problem

we shall assume cylindrical symmetry. The electron heat balance equation is from

[3.20]

3.2.1)

=18 8 18 5\ + Q
-n, = -- r nx T. TOr T

where

a
r. =- n,V, - D.e1 n.

QC =1fj - v.;n,(T - T) - Rad

V, :radial electron convection velocity

D. : particle diffusivity

771,1,:is the Ohmic heating term. In our model it is taken as the only source ot

input power.

vene(T, - T) :is the electron-ion energy exchange term

where v,, = 3m./(mj-r,) see eq. 3.3.18 for expression.

Rad :is a loss term from radiation damping due to Bremsstrahlung and lin

radiation.

In our model we will assume a single species of ions. The impurities will be

accounted for by the Zeff parameter.
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Similarly for the ions the thermal transport equation is:

3.2.2)

- (ni - 9 r nixs-Ti) ---- r(Tiri +Qi2 8tro r r r 2

8rri ni i -D 5ni

Qi= v.in,(T. - Ti) :energy gained by ions from the electrons. In our model

this will be the only source of energy to the ions.

The electron density equation is:

3.2.3)

49,+ V. e=S

S, is a density source term generally taken to be significant only in a region

near the edge of the plasma.

For the ions

3.2.4)

T+ V -. = Si

Si is the ion source term, again taken to be significant near the edge of t he

plasma.

The sawtooth is usually associated with breaking and rearrangement of mag-

netic field lines. This gives rise to a magnetic pulse which propagates out of the

plasma and through joule heating can couple to the electron heat pulse. To describe

this we use Maxwell's equations:
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a)V x B - po = 0

b)V x f+ - = 0

3.2.5)

c)V. =O

d)V -E= -C

We can recast eqs 3.2.4 into a more useful current diffusion equation.

Take the time derivative of eq. 3.2.5a

81 aA
Fo-V = V x ---at at

use Faraday's law eq. 3.2.5b to get

f.so =-V(V-E)+V2 Eat

if we assume quasi-neutrality (V. E : 0) giving

1A-= V 2 E
at

using Ohm's law

we get

3.2.6)

f - .(7 J
&t1 p0
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3.3) Single sawtooth model

3.3.1) Outline of model

One of the goals of the electron heatpulse propagation diagnostic is to provide

an independent measurement of the electron thermal diffusivity. To do this the

evolution of the heatpulse must be dominated by the diffusion term in the electron

heat balance equation. All previous workers [3.1-3.8], have taken this condition as

a given. For the case of Alcator C under certain operating conditions(i.e. in high

density plasmas), it is found that non-diffusive terms may have an important effect

in the estimate of x,.

Our goal in this section will be to determine whether the diffusive character

of eq 3.2.1 is dominant in Alcator. Recognizing the perturbative character of the

sawtooth oscillation, we can develop a set of linearized equations from eqs 3.2.1-

3.2.6 by expanding in Sy/yo where 6y is the magnitude of the sawtooth oscillation

for a particular parameter and yo is its background profile. To simplify the analysis

we will use a single sawtooth model, in which the plasma is taken to be quiescent

before the sawtooth crash, and relaxes back to the same initial state. One of the

assumptions here is that the presence of multiple sawteeth will not affect greatly

the relative magnitude of the various terms. The quiescent profiles are taken to

satisfy the time independent forms of eq. (3.2.1-3.2.6) in one dimension.

3.3.1)
18 8 1 aQ5

0 = --- rneXeO-TO - -- r( 2T,.o + Qeo
rr 49r e r 9r 2

3.3.2)
1 8 8 18 (5

0 = --- rnioxio-;To- -- r Tiorio) + Qio0 r r (\2 '-

3.3.3)
18

0 = - -r.o - seo
r or

3.3.4)
1 8

0 = r ;r - Sio
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3.3.5),

0 - -- o3o

In the following analysis we will assume x, and x< have no time dependence.

By requiring n, = ni and r, = ri the density evolution can be described by a single

diffusion coefficient D and radial convection velocity V, both are also taken to be

time independent. We can express all the time dependent quantities in terms of the

quiescent profile plus a time dependent incremental piece.

T(r, t) = T~o(r) + T(r,t)

T,(r, t) = Tio(r) + 7i(r, t)

n,(r, t) = lo(r) + n-,(r, t)

ni(r, t) = nio(r) + ni(r, t)

17(r, t) = 7o(r) + ;j(r, t)

j(r) =jo(r) + j(r, t)

ve;(r) = vieo(r) + -i.(r, t)

Rad = Rad +Rad

By subtracting eq 3.3.1 from 3.2.1 we get

3.3.6)

3 a- 1 I +~ 1. C9r 5(
(fneo5iTe + Te 0 i ) r 5; x2

18 0 18 a 5 1 a 5 49
+ r (neXtO Teo) !r 2RV.TeO + r 2 TeoD i,

-LeioneO ( -!Ti - VeioR~(Teo - Tio) - ,e-ineo (Teo - Tio)

+2 7 ojoj + iO - Rad

135



similarly for the ions we get

3.3.7)

3, 8- 8.' 18 / 8~\ 18 (5~
no a + T on r (niox o Ti r Tirio

at at 1 a

18 - 18 f5 \ 18/5 8
+;r Fnixifli TiO ) - rfnliVTo) + 1r ToD ai)

+veoneo - TO + V.ei (Teo - Tio) + .ilneo (TO - Tio)

To get the electron density equation we subtract eq 3.3.3 from 3.2.3

3.3.8)
a I a/a

n, -5;r D 5;Re - VCi)

for the ions

3.3.9)
a 1 I a

The equation that describes the evolution of the current pulse (magnetic pulse)

becomes from eq 3.2.6 and 3.3.5

3.3.10)
89 18 8 a~o

8t r IAr Mry a

The profile shape of X, should not affect the relative importance of each term, so

we will take the simplest case of x. = const. The background electron temperature

and density profiles will be taken as input to the model, all other profiles will be

calculated to be consistent with these. The initial incremental profile for the electron

temperature has the following form

Tmco(j y 2) Y < 1
,(y,0) 0.63Tm(y - 1)e-3(V-1)3 Y , 1

y r/ri

ri :is the inversion radius

136



This form has been found to fit consistently with the experimental initial pro-

files(fig 3.4). TM is chosen so as to flatten the central value of the electron tem-

perature to that at the inversion radius. When the initial perturbation for another

parameter is needed it will be taken to be proportional to the electron temperature

perturbation unless stated. We can non-dimensionalize the equations in terms of x,

and (a), the scale length of the problem ,in this case taken to be the limiter radius.

Then the distance becomes z = r/a and the time r _ (2xt)/(3a2 ) . Quantities

with a hat (^) are normalized to the central electron temperature.

The task of determining the limits in which the diffusive term is dominant

in eq. 3.3.6 is complicated by the large number of free parameters present in the

problem. The way we will proceed with the anaysis, is to include one non-diffusive

effect in eq. 3.3.6 and solve it numerically along with any auxiliary equations. In

the next subsections we shall consider the effects of the non-diffusive terms for a

parameter range consistent with Alcator. From this study we can focus on the

dominant physical effects which limit the validity of the purely diffusive model.

To avoid any boundary effect problems the numerical solution is extended to

r/a = 3.0. The boundary conditions are 8f(0)/0x = 0.0, T(3) = 0.0. The inital

profiles are set to zero beyond r/a = 1.0. Then an effective time compression and

amplitude scaling factor will be found for the decoupled solution to give a best fit at

a fixed radius. The time compression is equal to the ratio of the thermal diffusivit ies

xci f/x, where X, is the 'real' x and Xygr is the x we get in trying to fit a decoupled

solution to a coupled problem.

3.3.2 Decoupled equation

The equation to which all others in this section will be compared is the decou

pled diffusion equation, which from eq. 3.3.6 becomes

3 Of, X.o a a0

-n~o- = ; - -r (no::-
2 &t r r r

This equation can then be non-dimensionalized as described above
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3.3.11)

C(xn(x)-)
'Ir n z ax

The effect of changing the thermal conductivity is simply a rescaling of the

time coordinate. As a check on the code we have assumed a flat density profile

and initial conditions as described above and solved the equation foward in time.

With the same initial conditions, the Green's function integral, as found in [3.21,

was evaluated and the two solutions match.

3.3.3) Transport coefficients

In this section we will discuss the form of the transport coefficients used in

solving the equations. Even though we are solving a dimensionless problem, we must

assume models for the plasma parameters so that we can estimate the values of the

dimensionless parameters appropriate for Alcator. The global energy confinement

time will be consistent with neo-Alcator scaling[3.9]

3.3.12)

TE ~ 115R 2.3 (m)a0 8 (m)fi(1014 cm 3 ) ms

In all the cases of interest here R = 0.64m, a = 0.165m giving

3.3.13)

9.8W(10's) ms

An effective diffusivity can be found from the simple relation

3.3.14)
3 a2

Xe- E

which assumes a parabolic temperature profile and uniform density and power de-

position. Giving

3.3.15)

Xe 10 C m ms~

Over the range of interest 1 < i(10"4 ) < 5, the diffusivity can vary from

10 > X, > 2.
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The ion thermal diffusivity will be assumed to have a form similar to the

electrons

3.3.16)

Xi(r) = const.

The parameter P~ x;/x. will be a free parameter in our solution. For the purposes

of estimating the range of 3, we can estimate Xo as being the value of 4 times the

Chang-Hinton result (3.10] evaluated at the half minor radius. The largest values

of Xo for Alcator are expected at the highest densities, for i ~ 5 x 10 14 cm-a X0

4XcH(a/2) ~ 4cm 2 /m, X. 2, so~maa 2.

The particle diffusivity will be taken to be consistent that with measured for

the impurities. In Alcator impurity transport has been studied by injecting a trace

impurity into the plasma and following its evolution[3.18]. There is evidence which

suggests that the impurity D is similar to that for the background. The maximum

value of D is D ~ 3cm2/mi. The parameter to study particle transport will be

y M D/X., which for the range of Alcator parameters is 0 < y < 1.5.

For the particle convection we will again assume a number that is consistent

with impurity convection. The form will be

3.3.17)

v(r) = vo X > 1

In impurity transport measurements the parameter S _ (avo)/(2D) has been found

to be between 0-2[3.18]. With a D ~ 2 cm2 /ma this gives a convection velocity of

VO ~ .5cm/ms.

In the following analysis we shall neglect particle trapping effects since at the

lowest densities the ratio of the collision time/bounce time (v.) at the half radius

- 2. Although this is somewhat close to the transition region for the purpose of th is

model the effect on the transport parameters can be neglected. For the electron-ion

energy equilibration frequency we will assume the classical value.
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3.3.18)

ve= 7.3 x 103 n(0 1 4 )1 for x <
y T(ev))1-

V'- 0 X > 1

At the higher densities we see that the electron-ion equilibration time 1/vj can

be faster than the time for the heatpulse to escape i ~ 5 x 10 1 4 cm-3, T, (a/2)

600eV,yu = 1, Z = 1 => 1/v.i = 0.22ms. The heatpulse delay at the half radius

r, ~ 0.5 - 0.75ma. From this simple argument we expect electron-ion coupling

effects to play an important role in the evolution of the heatpulse at higher densities.

The relevant dimensionless collissionality parameter is

a 2 e

Xe

which scales as the ratio of the collision frequency to the confinement time. For

typical Alcator parameters this will range between 0 < v < 140.

The model of radiation loss will include two mechanisms. From the background

plasma we get bremsstrahlung radiation and from a single impurity(Carbon in our

case) bremsstrahlung plus line radiation. For the background

3.3.19)

PB = 1.05 x 10~1Zbn./T(ev) eVms 1 cm-3 X < 1

PR = 0 forz > 1

To model the impurity radiation, we use a coronal equilibrium model as outlined

by Post(3.11].

3.3.20)

i=5
P, = 6.24 x 10 8 nenf J 1 0 A(logio2)'(InT(heV))' eVms--1Cm- 3 for < 1

i=O

P.=0 forz>1

nc:carbon concentration

140



The coefficients A; for carbon in the range 200ev < T, < 2000ev are

AO =-21.2 A = -. 37

A 2  0.73 A3 = -. 19

A4 ='-.13 A 5 = -1.5

To find the parameter range for maximum radiation, let us consider a low

density case with H ~ 101 4 cm- 3, Z'ff ~ 1.5, T. - lkeV, and a high density case

Fi 5 X101, Zq, f - 1.2, T, ~ 0.7keV. If the only impurity in the plasma is assumed

to be carbon, then the impurity density can be found from

(Zgff - 1)
nc= Z2 - Ze n,

For the low density case n, = 1.7 x 10 1 2 cm-3, the total radiation is P =

P, + PB = 6.3 x 10 14eVma-'cm-3 . For the high density case nc = 3.3 x 10 12 cm- 3,

the total radiated power is PT = 8.6 x 10 1 5eVms-cm-3 . From the above result

we can expect the largest effects of radiation to take place at the higher densities.

From the relation above for PB and P. we can arrive at the form for the

incremental term of the radiation (Rad in eq. 3.3.6)

3.3.21)

Rad = {2PB + P.} + {!PB + 2.3P, iA;(Iog12) (1nT(keV))'~1} T
n 2T

We define two dimensionless parameters for the radiation

a2  
/

P1(r) = . )a (2PB + P.)
X,T,(O)n

P2(r) = xT(0){ P + 2.3PE i Aj(Iog12)'(InT.)*~

which for Alcator parameters vary as

0 < P1 < 1.0

-0.6 < p2 < 0
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Both of these parameters scale as the ratio of the incremental energy loss due to

radiation and that lost by diffusion.

The resistivity will be modelled in the following way

3.3.22)

771 =[. ]5.22 x 10-3lnAT(eV)~1 fcm form < 1
Tiel

771i = 771(1) : > 1

where we have neglected trapping effects, for the reasons discussed above. The term

i1/77cl accounts for the presence of impurities, the relation to Z0 f1 is given by [3.121

7 0.914Zff +O.58Zeff
7cL = 1.077 + Zq, f

For the range of Z, f of interest 1 < 7/77, < 2.

In discussing the effects of Ohmic heating we will define two parameters

a2  M

x. nT(0)

Mm 1 = (Xn )
M'oX. x

The first parameter scales as the ratio of the Ohmic heating rate and that lost by

diffusion. The second parameter is the ratio of the magnetic and electron thermal

diffusivities For Alcator parameters the values of A, M will vary as

1<A<4

0.03 < M < 0.1
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What is left to be discussed in this section is the form of the background profiles

to be used in the analysis. For the density, a profile of the form

n,(r) = no(1. - )2)m x<

n,(r) = n,(a) x > 1

6=1 - 2cm .2 < a < 2.0

The reason for the introduction of 6 is to avoid a 1/n singularity at r = a.

The temperature profile will be of the form

T,(r) = Toe-''4&2 x < 1

T,() = T,(1) xz > 1

where 6.0 < aT < 9.0 cm. no and To are taken as free parameters.

The ion density profile is taken to be the same as for the electrons with n, =

Zn . The ion temperature profile will be solved self consistently using eq. 3.3.2

with Te(r) as a driving term.

We conclude this section with a summary of the dimensionless parameters that

will be used in the subsequent sections.

Parameter

v a 2 Vei/x,

= a27oj2/(xenT(0))

xi/x,

S avo/2D

-y D/xe

PI(see text)

P2(see text)

M XmagXe

Parameter table for Alcator

Range for

Alcator

0 < V < 100

0 < A < 4

0 <,S < 2

0 < S < 2

0 < -Y < 1.5

0 < P, < 1.0

-0.6 < P2 < 0

0 < M < 0.1

electron-ion coupling

Ohmic heating

ion transport

convection

density transport

radiation damping

magnetic diffusion
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From the scaling above we can easily see that the electron-ion coupling effects

may play an important role in our analysis. The magnitude of the dimensionless

coefficients indicate the relative sensitivity of T, to the particular effect that the

parameter represents.

3.3.4) Density pulse effects

Previous works assumed the density to be unaffected by the sawtooth crash.

However measurements in Alcator indicate a central density fluctuation of ~ 5%.

We see from eq. 3.3.6 that terms involving a density fluctuation are multiplied

by background quantities which may be large(such as FiX,8T.O/8r). To study the

density pulse effect in estimating X, we will write eq. 3.3.6 keeping only the diffusive

term involving Te and all terms involving ii. The equation becomes

3.3.23)
3 nT, Xe 9 4T.
-n -5 r n ---

3 T o5+ x,& (87Teo) 10 CVCT )+! Q& TD8 i-T~O--f + 2earn, ("0 ' r -ni.V,.) + -r('T,.D-R,
2 & rr 8r 2 rOr r

-eio ie(To -T 1 0 - {2PB + P.e

Together with this equation we must consider the linearized density equation

(3.3.8)

3.3.8)
&n 1 8 rDf V-

-= -rD - n)

We can non-dimensionalize the equation in a similar way as done in sec. 3.3.2

In the equations below we have defined

r ~ 2 X.
a 3a 2

$el T ,/To(O) To T.o(x)/To(O) Tio To(x)/To(O)

D avo

xe 2D

Sa 2 Vea2PP(Z+2

xe nTeo()xe{2PB + P.I
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The equation for the electron thermal perturbation becomes

3.3.24)

8f, 1 1 8 o

-, - 3T~ 1?e 1

Qrn, n, z ax n. xz

i o 8,- 8.
n, r er - ;I,-

-TO - Tio -p1

The density equation becomes

3.3.25)
--- - 2 sz
or x ax 19X

For Alcator a = 0 - 2.0,7 - 0 - 1.5 . The parameters i,p, are functions

of z, for which the central value will be the free parameter. The range of the

collisionality term v(0) - 0 -140. The radiation parameter is taken to vary between

pI(0) ~ 0 - 1.0. The temperature profile width will vary aT - 6 - 10 cm and the

density profile shape factor a ~ 0.5 - 2.0 . The initial temperature is the same as

prescribed before. The density perturbation will have the same shape as that for

the electron temperature, with the maximum chosen so as to flatten the density

profile(see fig 3.4).

The error in our estimate of x. is defined as

dx. = (x. - x.ff)

Xeff Xeff

The dependence of the error with relevant plasma parameters is shown in fig. 3.5.

The strongest variation is found to be with a, the density profile coefficient (fig.

3.5a). For a value of a = 2 this effect can introduce an error of - 34%. In the case of

Alcator for gas puffed discharges a < 1, so the expected error in this case is < 20%

The results for fig. 3.5a correspond to a y = 1.5, v = 80, . = 1, pi = 0.6 at a radius

of 8cm, to see how the error varies with the other parameters, a scaling was done
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for the case of a = 2 and changing one other parameter. The range of parameters

shown in all cases is larger than that expected for Alcator. A modest variation is

found with -y D/X, fig. 3.5b, changing between 0.25 < dx,/xff < 0.45. The

scaling with v, a are shown in fig. 3.5cd respectively. We see that in neither case

there is a significant variation in the error. The scaling with p1 has not been shown,

however the change in the error over a range of 0 < p, < 1 is less than 1%.

The dependence on a correlates with the size of the perturbation, rather than

with any background profile effect. As we shall see latter, the inferred value of x"

is weakly dependent on the background density profile. The extra density in the

outer regions of the plasma due to the sawtooth tends to slow down the temperature

response as compared to the unperturbed density case, thus reducing the apparent

Xe.

3.3.5) Radiation damping

All the remaining terms in eq. 3.3.6 which were not included in the analysis of

the previous section involve factors of T.. We shall proceed by breaking the analysis

into physical effects, first considering radiation damping. The governing equation

is

3.3.26)
8Ti 1 P2 $, ,
6T a z T. I

where

P2(Z) -xen.To(0) 2 PB + 2.3P, iAj(logIo2)(InT)'~
i=O

PB and P, are as explained in section 3.3.3 , all other parameters are as defined

before. The maximum radiation takes place at the higher densities. For parameters

consistent with H = 5 x 10"cm-" the central value of p2 ~ -0.6. A parameter scan

was done with P2(0) - -0.6 - 0 and a = 0.5, aT = 8cm, ri = 4cm. In all cases x, f

differed from X. by less than 1% .

146



3.3.6) Thermal convection

A competing transport process to thermal diffusion is convection. This comes

about from the motion of the fluid elements in the plasma.- This effect is represented

in eq. 3.3.6 by the 5r.oT./2 term. The convection is driven by two mechanisms,

the first is a particle flow due to the density gradient and of the form -DVne. The

second is a center of mass velocity for the particles and is independent of density

gradient, it has the form n.V. The total zeroth order flux as discussed before is

a
r,, = noV - D neo

In our model V will be taken to represent a radially inward particle pinch and

Vn, < 0 giving an outward flow. Since the model assumes that the background

profiles are in equilibrium, by considering particle transport eq. 3.3.3 and neglecting

any sources near the center, thus

3.3.27)

reo = 0

Thus we can expect no contribution from this term. However convection does affect

the thermal transport through the V. term which comes about from the fluctuation

in the density. This effect has already been taken into account in the density pulse

term.

3.3.7) Ohmic heating

Along with the heatpulse there is an associated magnetic pulse caused by the

redistribution of the magnetic field at the time of the sawtooth. This pulse, which

can also be described by the current evolution, can couple to the electron heatpulse

via Ohmic heating. The temperature fluctuation will also cause a change in the

resistivity which can change the heating rate. The resistivity will be taken to be

Spitzer with corrections for the presence of impurities as discussed in sec. 3.3.3.

The change in the resistivity due to a temperature fluctuation can be written as
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3 T,

2 T.0

The form of eq. 3.3.6 which describes the evolution of the current pulse then

becomes.

3.3.28)

O 1 1 1 49 n" , j 3 ,1
&r n. z 8z Ox + 2jo 2fTE0

where A (a 2 /Xe)(1o32/n.)

The equation that describes the evolution of the current is 3.3.10, here recast

with the assumption for the resistivity.

3.3.29)

--=--Z -Mjo(
Xr 49M CZ JO 2-,

where

Ms = " = 70
-OX (Xmau)

Since we have made the assumption that the background profiles satisfy the

quiescent equations, from eq. 3.3.5 we have

7o jo = const.

since 7o ~ T~ => jo Te

In this analysis we will specify the electron temperature profile aT, the inversion

radius r,, toroidal magnetic field Bt and adjust the total current such that q(r,) = 1,

where q is the safety factor.
rBt

q = B

The above, specify profiles for A, we will use the central value of A(0) = Ao as a

free parameter. The value of Ao - 1 - 4 for Alcator. The central value of the ratio

Xmag/X, is varied between 0.03 - 0.1. Thus we do not expect much in the way of

heating from the current pulse itself, since it hardly evolves during one sawtooth

period(fig. 3.6). There can still be an effect from the change in heating due to the

resistivity fluctuation. The sawtooth is taken to flatten the current profile about
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the value at the inversion radius(fig. 3.6). The extent of the mixing is determined

from current conservation, where for this case r =/r = 2.1. From the simulations

we find an effect no larger than 3% on the estimate of xff /Xe, again due mostly

to changes in the resistivity.
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3.3.8) Electron-ion coupling

Because of collisions with the ions, the evolution of the electron heatpulse is

coupled to that of the ion heatpulse. During high density operation this can have

a significant effect on the evolution of the electron heatpulse since the electron-ion

energy equilibration time can be less than r. (1/v - 0.22ma,- ~ 1ms). The

equation to describe the electron heatpulse in this case is 3.3.6

3.3.30)

&,1 118 8 ' 3,
_fle 0) Tr, - v( - -Ti) + -v(To -Ti -&r n, z oz az 2 T.0

where v = via2/x.. From eq. 3.3.7 we get the equation for the ions

3.3.31)

_T _ 11 e- i _ 3 _e I
q !0- + Z (T,1 - i - -Z T. 0 ) Tio -
or ni z,9z 9z \ _2 /T.0

where 3 xi/x, and Z is the ion charge. The initial ion temperature perturbation

profile was taken to be the same as for the electrons, the peak amplitude fixed to

flatten the central temperature to that at the inversion radius. Fig. 3.7a shows

the result of a set of simulations for v(1/2) = 90. The parameter dX./Xff =_

(xe - xeff)/xff. In fig. 3.7b we can consider the evolution of dx,/x.If as a

function of v (1/2) for two extreme cases of 3 = 0.1, 3.

We can understand fig. 3.7a in the following way. When 3 < 1, the leading

edge of the electron heatpulse will store energy in the ions reducing Te. For the

trailing edge of the heatpulse, when T.' < ti, the ions will dump their energy back on

the electrons thus raising T., this action delays the arrival of the apparent peak and

reduces Xff. When /3> 1 the ion heatpulse propagates faster than the electron

heatpulse. Since the leading edge of the ion arrives first it heats the electrons,

as it goes by the electrons begin dumping their energy back on the colder ions.

The net effect is to increase X~ff above the real value. For the case of / > I

the ions will rapidly dissipate any energy that the electrons give it. In this limit

Tio < Teo, Ti < T after a finite time and the form of eq. 3.3.30 becomes
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We see that the term that dominates the ion coupling in the equation comes from

the fluctuation in vi, due to the electron temperature change T'. As the electron

heatpulse arrives, the increase in T reduces the coupling to the ions; this increases

the reheat rate for the electrons. In the trailing edge, the reduced , increases the

coupling, thus increasing the cooling rate. These effects cause the T. perturbation

to peak earlier, thus X~ff > x.. The effects also show a saturation with 3. This is

an important result, because if in high density operation the ions are the dominant

loss channel /3> 1, the saturation with 8 sets an upper limit for fixed v on the ion

effect in estimating Xe.

3.3.9) Comments on the single sawtooth model

The single sawtooth model allows us to examine the importance of various

terms in the electron thermal transport equation. It has shown that electron-ion

coupling is the first important non-diffusive effect in the transport equation. Fig.

3.7b shows that we can underestimate X, by as much as 80% for high collissionality

and low 3. For the expected range of operation for Alcator this corresponds to the

highest densities. For high j6(i.e. 3 > 1) the largest we can overestimate x, by

about 20%. These results will be of importance latter on when we consider how '

scales with plasma parameters.

Another effect which can be of importance is that of coupling to the density

pulse. For values of a ~ 2 this can have an effect of - 30%. However since we will be

operating with gas puffing the expected value of a < 1, thus the error < 10 - 20%.

Given the present accuracy of the measurement for our case, we can neglect this

effect.
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3.4) Method of analysis

3.4.1) Motivation

The problem at hand is to develop a method of inferring the electron thermal

diffusivity from the heatpulse measurements. We will obtain an equation which

adequately describes the temperature evolution and find a self consistent x, which

gives a solution that matches the measured parameters. The model used by pre-

vious workers is not greatly different from the single sawtooth model developed in

sec. 3.3. Although conceptually simple for understanding the physics of heatpulse

propagation it is inadequate for describing the evolution in a real plasma. Hereun-

der we will elaborate more on some of the shortcomings of previously used models

and develop a model which attempts to overcome them.

The first topic to be discussed is the question of a baseline profile. All mod-

els which deal with the problem use an incremental temperature to describe the

evolution of the heatpulse, the incremental temperature being equal to the differ-

ence between the instantaneous electron temperature and some reference profile. In

refs.[3.1-3.81 this has been taken to be the quiescent profile i.e. that which satisfies

eq. 3.3.1. However this profile never exists in most plasmas and the profiles that

are actually measured are strongly determined by the sawtooth mechanism. This

leads to considerable uncertainty in determining the initial profile used to solve

the diffusion equation. One approach that has been taken is to find the solution

in the far field, which is insensitive to the particulars of the initial perturbation

This requires that the measurements be done sufficiently far away from the region

directly affected by the sawtooth crash. With the results discussed in chap. II, the

mixing region can extend half way out into the plasma(at least for Alcator); thus

the far field solution is not appropriate. Ref.[3.21 tried to overcome this problem by

including a theoretically determined profile. Since the diffusion equation is linear im

T, we need only to specify the initial profile to within a multiplicative factor; from

the solution we can determine the r, profile. The problem with this is that our

theoretical understanding of the sawtooth event is poor. As we shall see in the next
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section, what we take for the initial profile can have a significant effect on the value

of X,. Another consequence of the quiescent assumption has to do with multiple

sawteeth. By requiring the profile to relax back to the quiescent profile, one makes

the implicit assumption that all previous heAtpulse effects have dissipated. As was

shown in ref.[3.5] multiple sawtooth effects can cause a factor of two increase in the

apparent Xe, which for our case is a large effect. Thus the previously used models

do not account for multiple sawteeth in a self-consistent manner. The approach

that we will adopt in this work is to develop a model which uses experimentally

measured profiles. This avoids the problems with the quiescent assumption and

automatically includes multiple sawtooth effects.

A second point to be made has to do with making the X. measurement immedi-

ately after a sawtooth crash. In making a r, measurement we use the sawtooth crash

as a time reference and follow the evolution of T'. for a fixed radius until it peaks.

According to the model proposed in ref. (3.21, the magnetic field should be com-

pletely reconnected when the temperature profile reaches its minimum value, and

its evolution should reflect the bulk properties of the plasma thereafter. However

if there are any remnant effects of the sawtooth disruption which reflect themselves

in a time changing X., which need only last a short time and does not contribute

to global confinement, this can have a large effect on F, since

a9- 8a 1
- T e ~ -rx,- Teo

This can propagate the temperature perturbation out much faster than bulk

diffusion. In this case r, should reflect strongly the effects of the transient x. rather

than the bulk. To minimize any transient effects,we will analyze the section of the

temperature trace starting several disruption times after a sawtooth crash and end

several reconnection times before the next crash.(see chapter II for explanation of

reconnection)

3.4.2 Fourier transform method

Given an initial and final electron temperature profile, we must find a x. that

will propagate the initial profile to the final profile in a manner consistent with
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the observed temperature traces. The initial and final profiles are refered to the

same sawtooth interval (fig. 3.8), so as to. avoid sawtooth boundary effects and

allow treatment of non-identical sawteeth. Each sawtooth interval will be treated

as independent of the others.

Because of the finite time interval, we can apply a finite Fourier transform

technique. This has the advantages that it improves signal to noise and since most of

the relevant information is in the lower harmonics, we need to analyze fewer points.

Noise in the time signal tends to be at higher frequencies than that associated with

the sawtooth evolution, so that the lower harmonics will be less affected by noise.

To see why the lower harmonics are more sensitive we consider an exponentially

decaying signal

T(r, t) = A(r)e-*/r

Since we generally look after the trace has peaked, this function is a reasonable

representation of the signal. If we Fourier decompose the signal over a period At

and define the quantity z At/r (which is proportional to x,) we get

A (z + i2p)
(z2 + (27rp)2)

where p is the Fourier harmonic number. We find that 8T,/8z decays monotonically

with p. Thus we expect the lower harmonics of the signal to be the most sensitive

to x..

We begin our development of the formalism by expressing the electron temper-

ature profile in terms of a Fourier series.

3.4.1)
00

T(r,t) = Tp(r)e-"wP
,=-OC

where w, = 2rp/At

The coefficients can be found by use of the finite Fourier transform

3.4.2)

T.p(r) = FT] = I f dt'T(r, t')ei-It'
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We immediately see that for p = 0, To is just the time averaged temperature.

The incremental component T corresponds to all the p : 0 terms. The equation

for T., is found by applying the operator F, to eq. 3.2.1. Here we shall write it by

condensing all the non-diffusive terms into L(r, t).

3.4.3)

2 8t * ) r ;rn. x. 5= T, + L(r, t)

The left hand side(LHS) of eq. 3.4.3 gives

3 a 3 (n,T,)It=At - (nT,)It=o 3.F[ (nT,)] = 2 apFp[nT.]

If we allowed n, to have a time dependence we would have F[nT,] become a

convolution term. However we will assume to operate in the 'flat top' region of the

density and with parameters for which the density pulse is unimportant. Then we

have

308 3 i(nT,)t=t - (nT,)t=o- 3
F,[ (n,T.)] 2 At ~ iP3le TP

The diffusion term on the RHS of eq. 3.4.3 becomes for time independent

n,(r), x,.(r)

1 a a
r 5rleXe'5Tep

For brevity we shall define

R 3 (feTe)1t=&t - (n.eT.)Ii=o

2 At

The Fourier transformed version of eq. 3.4.3 is

3.4.4)
3 1 a 8

R - -iwn T, = rn.X ex, Tp + Lp(r)
2 P e

where L, is the pth Fourier component of the non-diffusive terms.

For p = 0 we get the equation for the time averaged temperature profile.
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3.4.5)
1 8 8

R . r Xrnex Teo + Lo(r)

Since R A 0 everywhere, we immediately see that the sawtooth averaged tem-

perature profile,although time independent, does not satisfy the quiescent equation.

We shall neglect the non-diffusive terms in our estimate of x. (i.e. L, - 0). As we

saw in sec. 3.3 under certain possible limits these effects may be important. How-

ever since we do not have good knowledge of the profiles to account for these, what

can be done instead is to recognize the uncertainty introduced by their neglect. The

equation for p thus becomes,

3.4.6)
3. 1 8 8

R - 2iwpTP = r 5rnfeXe;Tep

The term R has the dimensions of a reheat term. It's function is to specify the

initial and final profiles in the problem. The condition for R to- be unimportant in

eq. 3.4.6 is

3w,nTp > R

To estimate the terms we again assume T ~ e-/, taking r ~ ims which is

consistent with the parameters specified above and using At - 3ms. Then

3 W 3 (1- e-)
22 z 2 + (2irp)2

which for p = 1 gives

13wTP 429A

We can express R ~ 1/At - 333. So we find that the reheat can play a very

important role in eq. 3.4.4. The reheat term can be neglected in the far field since

R -+ 0 as r -+ oc. In the special case in which we can neglect R, eq. 3.4.3 takes on

the form derived in ref.[3.51.
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3.4.3) Sawtooth averaging

A technique that can be used to improve the signal to noise is that of sawtooth

averaging. We take an ensemble of sawteeth and average the corresponding com-

ponents to arrive at a composite sawtooth; this reduces the effect of random noise.

For the purpose of analysis, we will treat the sawteeth as independent events. We

can then represent any time changing quantity as

yl(r, t) =< y(r, t) > +byl(r, t)

where

l:is the sawtooth index

< >:is the ensemble average operator

byi (r, t):is the deviation from the average for sawtooth I

we have < byl >= 0 by definition.

Using the above definitions to express the quantities R, n., TX,,,Lp eq. 3.4.4

becomes

3
< R > +1RI - iw,(< n > +6bn1)(< T.p > +6T.,-p)

. 2

r(< n > +6n )(< X, > +6xe) 9(< Tp > +6T.,p)

+ < LP > +6L,

Averaging over the ensemble we get correct to order 6

3.4.6)

3 1 9 8
< R > -iiw, < n >< T2, >= < n >< x, > - < Tp > + < L, >

Thus this technique will give us a measurement of the sawtooth averaged 1,

An implicit assumption in the above equation is that 62 < 1, that is, the dissirni

larity between sawteeth must be sufficiently small. To insure this we shall use thi

criterion of (bT/ < T >) < 0.3, to determine which sawteeth will be included in
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the averaging. The contribution of the neglected terms in determining the ensemble

average quantities is 0(62) < 0.1.

3.4.4) Measurement procedure

We now want to tie together the various techniques and equations that have

been justified in previous sections. Here we describe the sequential procedure that

has been followed to make the X, meassurements.

1)A 40ms window of the data from the ECE grating was digitized at a rate of

200kHz. The window size allowed sampling of between 10 - 25 sawtooth intervals.

2)The ECE channel nearest the center was used to find the times of the saw-

tooth disruptions. This channel generally has the best signal to noise, which is

important for good synchronization.

3)The sawtooth boundaries, that is the sections of the trace not used in fitting

for x.(fig. 3.8), were set at ±l00u. about each sawtooth crash.

4)The data was then broken up into sawtooth intervals, starting with the first

point after a sawtooth boundary and ending with the point just before the next saw,

tooth boundary. We refer to the points in a single sawtooth as 'bins'. A particular

point is referenced by a spatial location, sawtooth interval and a bin number.

5) The sawtooth averaged trace at each radial location was found by averaging

the temperature at a particular bin number over all the sawtooth intervals. The

number of bins in the sawtooth averaged trace is equal to the minimum number of

bins in any of the sawtooth intervals. This keeps the noise amplitude approximately

constant from bin to bin. Refer to fig. 3.9 for a graphical explanation. The period

At was set by the minimum number of bins times the sampling time.

6)We assumed that the density remained constant during the sawtooth evolu-

tion, thus the reheat term was determined by the temperature change. The value of

the reheat profile at the measured radii was found by subtracting the temperature

at the last bin number from that at the first and dividing by At. To arrive at

a continuous form for < R >, the six measured values were fit with an empirical

profile of the form
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3.4.7)

Acos(12") x <
< R >= 2e" -

~>

where z r/r.

The particular form above was arrived at by fitting a number of shots simultane-

ously.

7)Up to three of the outermost traces which have the best signal to noise,

were chosen to be used in estimating x.- The innermost traces are dominated by

either Ohmic heating or X, 8oTo/ 8 r terms and thus have essentially a linear time

dependence. It is the traces with significant curvature which are most sensitive to

the heatpulse.

8)The equation that we solved is of the form of eq. 3.4.6. Here we neglect the

< L, > term for the same reason as was done in eq. 3.4.5. We will drop the < >

notation with the understanding that all quantities for the remainder of the chapter

are sawtooth averaged unless otherwise stated. We divide eq. 3.4.6 by n to get

3.4.8)

R 3. 118 8
R ZWPTP = - rnexe -TPn, 2 n, r B B

The form of x, used is

x, = ci + C2( ) + C3( )2
at a

The boundary condition at r = 0 is &T,,I/r = 0.0 and at r.= at is T, 0.0.

Forcing T,, = 0 at the limiter radius does not seem to affect our result for X, in an

appriceable way except at the very edge of the plasma.

9)We then found a self consistent x, which minimizes the sum of squares be-

tween the measured and calculated spectra of the first six harmonics at the given

radial locations found in step 7.

3.4.5)Sample result

Let us discuss an example in some detail. We consider a D 2 shot with the

following parameters: Bt = 8.25T , i~ = 2.1 x 104cm- 3 , 4, = 457kA, To =
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2000eV, aT. = 9.5cm. The time evolution of the shot is shown in fig. 3.10. Fig.

3.11 shows the background profiles used in the fitting. The density profile was

determined using a five channel interferometer and Abel inversion. The electron

temperature profile was measured using the ECE grating as explained in chapter I.

Fig. 3.12 shows the raw traces contained in the sample window, with the fitted

sawtooth averaged traces.

By taking the difference between the final temperature and the initial tempera-

ture we can arrive at the reheat profile as described in sec. 3.4.4. Fig. 3.13 shows a

graph of R/n . We see that it is significant well past the radius V2-r; and extending

to r/a - 0.5 .

The sawtooth averaged signals from the grating were Fourier transformed, fig.

3.14a shows a comparison between the absolute value of the calculated and measured

spectrum. Fig. 3.14b shows a time reconstruction of the calculated spectrum for

fig. 3.14a with the corresponding sawtooth averaged trace.

Fig. 3.15a shows the estimated X, profile. The data can be fit with the central

value of x. varying between - 0 - 2 cm 2 /ma. This is not a reliable measure since

it is an extrapolation of measurements done in the region near the half radius.

However it does show that the value of X, near the center is much lower than that

at the half radius. As we shall see in the next section, the data can discriminate

between a flat X, case and one changing with radius.

For comparison, we show two reference profiles for x.. The first is a power

balance estimate for that shot using the background profiles averaged over sawteeth.

The second represents an average model which is consistent with neo-Alcator scaling

[3.13] and which has been used to simulate Alcator C discharges.

5 x 103 r

n(r) R

the density is expressed in units of 10 1 4 cm-3 and radii in cm.

We see the neo-Alcator profile agrees well with the heatpulse profile. The dis-

crepancy at either the center or the edge comes from extrapolating the values of X,

based on a model valid near the half radius region. The power balance model gives
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agreement within a factor of two from that estimated by the heatpulse. The flat

feature near the center of the plasma in the power balance model is due to sawtooth

averaged effects from the simulation. The simulations were done with a modified

version of ONETWO [3.19,3.21]. The rapid energy transport due to sawteeth is

simulated by introducing a large value of X, near the center, at the time of the

sawtooth disruption. The time averaged effect this has is to increase the apparent

x. near the center of the plasma. The heatiulse measurement is not sensitive to the

large transient x,. at the time of the crash, thus it predicts a lower value than power

balance at the center. Fig. 3.15b shows the corresponding plots for the electron

thermal conductivity. Over the region of the plasma that is measured, we find the

heatpulse r, to increase linearly with radius. For the case shown agreement with

the Alcator model is very good and in general the agreement is within a factor of

two. The power balance electron thermal conductivity profile is flatter than that

from the heatpulse technique. Part of this flattening may be attributed to sawtooth

averaging effects as discussed before. The discrepancy between the heatpulse and

power balance values are also larger in this case, still the agreement is within a

factor of two.

We have also performed the calculation using a method described in ref.[3.51.

The trace at r = 7.55cm from fig. 3.12 was fit with a function of the form

3.4.9)

T(r, t) e 3(1 za

A~t)= -;= =
T(r,r,) (t/r,)2

giving a time to peak of -r, = .25ma. The X, can then be estimated by

3.4.10)
3 (r - ri)2,
2 7r 6 + (r - r) 2 /rr

with r = 7.55cm, ri = 3.6cm, r. = .15ma we find

X, ~ 14cm 2/m.9

or about a factor of four higher than that found by the method proposed here. Fig

3.16 shows the estimated X, from the r, profile of fig. 3.2. using the same equation
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from ref.[3.5]. The agreement with the neo-Alcator estimate improves at larger

radii. We believe the discrepancy comes from near field effects being important

at the smaller radii. At larger radii near field effects are less important, thus the

agreement improves.
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3.5) Sensitivity Analysis

In making the X, measurement we have assumed that diffusion governs the

-evolution of the electron heatpulse, and have arrived at a X, by solving the transport

equation using measured profiles. We have addressed the question of the importance

of non-diffusive terms in the transport equation, in discussing the single sawtooth

model. In solving the diffusion equation we need to use measured profiles whose

uncertainty can affect our estimate for x,. We also solve the problem on a finite grid,

specifying that all perturbations go to zero at the boundary. The real boundary

conditions are unclear, thus we must see how sensitive the value of X. is to boundary

value effects. It is the purpose of this section to study the sensitivity of X, to the

various parameters that characterize the measured profiles.

Four effects will be examined. The first is sensitivity to channel calibration.

The grating calibration is determined by using an independently measured tempera-

ture profile and arriving at a self consistent calibration factor for each of the grating

channels. Any error in our calibration will reflect itself as a change in the reheat

profile as well as in the measured spectrum, possibly changing X,. Second as the

gradient of the density plays a role in the transport equations, we would like to see

if this has a major effect on the diffusion. Third we consider the sensitivity of X. to

the model used for the reheat profile. This result has bearing on our measurements

as well as those of others, for it determines the importance of near field effects. The

parameters for the sample case are B = 8.325T, i = 2.9 x 1014, I = 556kA

As was discussed in chapter I, the ECE grating was calibrated using a self-

consistent scheme. The way this was accomplished was by using the measured

temperature profile from some other diagnostic (i.e. Thomson scattering or using

the ECE fast scanning Fabry-Perot). The electron temperature profile measured by

these instruments was parametrized by a function of the form T,(r) ~ Toe~2 1-.

The calibration for each of the grating channels is then

Toe~'laaM-
K, =

Sig(j)
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where Sig(j) is the signal from the detector for channel (j) consistent with the

Thomson or Fabry-Perot. Any error in our channel calibration comes from an error

in estimating the reference profile. An error made in estimating To will not affect

the resulting x,, since the diffusion equation is linear in T,. The parameter that

does matter is aTe, changing this is equivalent to changing the channel calibrations.

Fig. 3.17 shows the dependence of X, for a range of aT. wider than expected. We

see that the variation is no more than 20% over this range.

The density comes into the diffusion equation as the ratio of the density profile

gradient to the total density

x, -+-In(n) -T
r Cr r

so that the important parameter is the profile shape and not its magnitude. If we

take

n ~ ( ()2)c,
a

then

8 2a r

or (1 - (.)2) a2

For measurements at a fixed radius the density term varies liniarly with a. A

reasonable condition for neglecting density profile effects is then

- > In(n)|

for the case we have measured a ~ 0.5,r ~ 8cm,a = 16.5cm which gives &in(n)/8r

0.04cm- 1 and 1/r ~ 0.125cm-'. From this result we expect density profile effects

to play a weak role in the region of interest. Fig. 3.18 shows the scaling of X, with

a holding all other parameters constant. We see very little variation as expected

from the above argument.

In our analysis the reheat profile is the driving term in eq 3.4.8. We would

like to find out how sensitive our results are to the form of the reheat profile, in
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particular we are interested in varying the spatial extent (or mixing radius) of the

perturbation. We will compare two forms for the reheat profile. The first is the

one we have already calculated using the measured profiles. The second will be

consistent, with a post disruption profile which is flat out to a radius of ~ 2r;.

The central reheat rate and the inversion radius are kept the same in each model.

Fig. 3.19 shows the profiles. We find that the diffusivity goes up by a factor of ~ 3-5

at r = 8cm becoming larger with radius (fig. 3.20). Thus the extent of the initial

profile is very critical in the estimate of X,. This may have some consequence to the

results arrived at in ref. (3.51, in which the authors find values of x. that are about

an order of magnitude larger than those found from power balance. As mentioned

earlier in this chapter, their conclusion was that some physical mechanism may

allow the heatpulse to diffuse faster than the bulk. The above analysis suggests

that near field effects may increase the apparent x, sufficiently to account for the

discrepancy. Thus the problem may lie in. the analysis technique rather than any

new physical effects.

By forcing the perturbations to zero at the boundary, we effectively introduce

a reflective layer to the problem. In the real case the boundary conditions at the

edge of the plasma are unclear. We have performed a sensitivity study to see how

much of an effect forced boundary conditions have on our estimate of X,. To check

this, a case was run in which the reflection layer was moved to twice the limiter

radius. The estimated x. using this model varied by less than 3% from that found

by putting the boundary at the edge of the plasma. The reason for this is that we

make the x. measurement near the half radius of the plasma, so that any boundary

effects take longer than a sawtooth period to propagate to this region.

Fig. 3.21 shows the variation in X,, by varying the measured parameters used

in the diffusion equation. For the case discussed the average parameters are aT, =

10.4cm, a = 0.5, ri = 3.7cm. To estimate the change in X, due to an error in any of

these parameters, a number of cases were run with the input parameters varied over

the expected range of error fig. 3.21. We immediately see that the most sensitive

parameter is the form of the reheat profile or equivalently, the initial perturbation.
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In this study ri was varied while keeping the shape of the reheat profile constant

and conserving energy. The results from the analysis show a variation of up to 30%

in the estimate of x,(a/2) due to uncertainties in the initial profile.

One of the main objectives in this work has been to -make a local measurement

of x,, rather than an average value. To do this we must ascertain wether our exper-

iment can differentiate between different fit profiles. The three profiles considered

will be,X, = const.,Xe = c1 + c2(r/a) and X. = cI + c2(r/a) + c3(r/a)2 . To see

if the goodness of fit changes as a function of the x, profile assumed, we use the

reduced x2 test, since this is insensitive to the number of fit parameters. We have

used the value of x2 for the parabolic model as a reference (X, 0.9. For the

case we have considered Xlin/x,,. = 11 and M, /,, = 1.6 We see a clear

preference for a spatially varying X, profile. The difference between the parabolic

and linear profile shapes is small, but there is an increase in x2 when the data is

fitted with a constant profile. In fig. 3.22 we compare the estimates for the three

profiles. We see that the linear and parabolic models agree well over the region

where the measurements are done r -+ 6 - 10cm.
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3.6) Scaling of X,

In, this section we discuss the scaling of the heatpulse x. with line averaged

density and with the X, inferred from power balance calculations. In order to

reduce electron-ion coupling effects we have used D2 plasmas which have a lower

Z/p than H2 plasmas. Scalings with plasma current and toroidal fields were not

possible because the range of parameters and the experimental error were such that

no definite scaling was discerned.

3.6.1) General observations on Xe scaling

Comparisons have been made of X, determined by heatpulse propagation and

that determined by power balance. A modified version of the ONETWO[3.19,3.21
code has been used to arrive at the power balance X,. Fig. 3.23 shows a scatter

plot of x.,,(heatpulse) vs. Xepb(power balance) at three radial locations r/a =

0.3,0.5,0.7. The data seems to be bounded by 1 < xhp/X,-b < 3 with an average

slope of Xhp/Xepb = 1.7. The scatter in the data is due to two things. The

first is experimental error made in the heatpulse measurement. For similar plasma

conditions the value of XIp can change by as much ±30%. The largest scatter takes

place at the largest radii, this may be attributed to the fact this radius (r = 11.5cm)

lies at the edge of our region of measurement with the lowest signal to noise. Thus

this region is not constrained as well as those at the two inner radii. Another

source of error comes from the power balance estimates. In moderate to high density

operation the transport equation becomes very sensitive to the electron-ion coupling.

To take proper account of this term, we need a good knowledge of the electron and

ion temperature profiles, since a small error in these will be 'amplified' by the large

value of v.i. One source of error in this case is the ion temperature profile, since

it is not measured. The ion temperature profile is found self-consistently from the

transport equation assuming a form for xi and requiring the central value of T, to

match that measured. Error in estimating the electron-ion coupling term can also

lead to a large discrepancy between the value of Xhp and X,,p. In this case we
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would expect the scatter in the Xpb estimates to increase with fii. Fig. 3.24 shows

a scaling of 1/Xhp and 1/Xpb vs. W for values at the half radius. As we shall

argue below rE. 1/Xe, the electron energy confinement time. We see that the

discrepancy increases at high densities.

The estimates for XI,, although scattered, are consistently higher than the

power balance estimates. This may be an effect of electron-ion coupling, when

# > 1 it can lead to an overestimate of the apparent x,. In considering the single

sawtooth model we considered only single effect terms. In a real plasma multiple

effects act simultaniously, possibly combining to reduce the threshold at which

non-diffusive effects become important and increasing the magnitude of the total

shift. Another possibility may be a systematic underestimation of the initial profile

width, which as we saw earlier can increase the apparent x,. This explanation is

unlikely, since the measured profile would tend to be slightly broader than the real

profile due to finite instrumental resolution. Another possibility as was mentioned

before, might be the existence of a time changing Xe, which when multiplied by the

gradient of the background proffles may lead to a rapid evolution of the apparent

heat pulse. As was discussed in the introduction, TFTR[3.5] measures a discrepancy

of Xehp/Xepb ~ 10-20. They attribute it to a mechanism which causes the heatpulse

to evolve with a X, which is larger than that which controls bulk energy transport.

Although our discrepancy is smaller such a mechanism may not be discounted.

A scaling has been done of X, as a function of line averaged density. This is

another test which we can apply to see if the Xhp, has a similar scaling as that

which governs bulk transport. The electron energy confinement time can be related

to the electron thermal diffusivity at a given radius by the relation

f
TEe =-

Xe

where f is a proportionality constant that depends on the profile shape of Xe, thus

for constant X. profile, rEe should scale with 1/xe. The parameters for the scan

were (1.5 < R < 4.7) x 10 1 4 cm- 3 , (500 < I < 560)kA and Bt = 8T. The range of

the toroidal field is limited by instrumental constraints. We want a reasonably high
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field to increase the available signal, while at the same time higher fields increase

the channel spacing in the plasma, reducing the number of channels in the region

of interest.

Fig. 3.25 shows the scaling of 1/Xhp with line averaged density at three radial

locations (r/a = 0.3,0.5,0.7). The points shown represent the average trend of a

much larger data set. Each data point represents the average value of I/X, for

that region of density with the error bars representing the scatter in the data. For

comparison we have included the scaling of 1/X. based on a model for X, which

has been used to simulate Alcator discharges and is cosistent with neo-Alcator

scaling[3.13]. The reduced form for this model is

1.22r m/m
X,(r) =.2 CM 2/Man,(r)

n,(r) is in units of 10"cm-3 , the profile assumed for the density is

n(r) = n, 1 - r2)/

for this case

n, 1.27n,

Fig. 3.25 shows good agreement between the standard model discussed above and

the measured values of 1/Xhp. Again the data suggests that Xhp is greater than

the value derived using the model above, but the data is consistent with 1/X, F,

at all three radii. The ratio of the average values of X. at the various radii is fairly

constant, suggesting that the average profile shape is only weakly dependent on

the line averaged density. This is consistent with 1/n scaling since for gas puffed

discharges the shape of the density profile does not change much in the central

region of the plasma (i.e. it is fairly flat). There is however some scatter in the

profiles when considered shot-shot as evidenced in fig. 3.26. Here we plot the inverse

scale length of the X, profile at r/a = 0.5.
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3.6.2) Scaling of x, at high densities

In this section we consider the heatpulse inferred x, as a method for stud'ying

the mechanism of confinement saturation observed in Alcator C[3.141.

Power balance calcualtions, have shown the electrons to be the dominant loss

mechanism at low densities(3.14], with the total energy confinement time scaling

with the density. This is contrary to that predicted by neo-classical theory, which

predicts the ions to be the loss channel at these densities. In fact the empirical X,

is found to be several orders of magnitude higher than that predicted by theory. At

higher densities W > 3 x 10 1 4 cm 3 we find a saturation -in the confinement fig. 3.27.

The saturation density is too low to be explained by neo-classical ions, in ref. [3.151

it has been suggested that the ion conduction is anomalous with Xi ~ 4 XjNC and

the electrons X, ~ 1/n This picture has been supported by experiments done at

low densities ref[3.16]. It is found that Xi/XiNO ~ 3 - 5 for W < 3 x 10" with the

electron thermal diffusivity scaling as X, ~ 1/n. In fig. 3.28 we show the scaling

of 1/X, with line averaged density for (r/a) = 0.5. In this case the complete data

set is shown. Confinement saturation according to fig. 3.27 takes place between

(2 < We < 2.5) x 104cm-1, but as we see from fig. 3.28, 1/X, continues increasing

with density. At first this would tend to support the idea of X, ~ 1/n and the ions

becoming the loss channel. However since we are in the high density region we must

consider the effects of the non-diffusive terms. We expect from the results of sec.

3.3 for electron-ion coupling effects to be most dominant since the density profiles in

all cases considered had a < 1.0. In order to calculate the collissionality parameter

we must use the measured x.. For the point of i, = 4.6 x 10 4 cm-3, 1/X, = 0.44

We arrive at an effective vff = 115 (see sec. 3.3.8). Based on the results of the

single sawtooth model fig. 3.7b dx,/xqi = 0.82 for P = 0.1 and dX,/Xef f = -0.25

for 3 = 3. Since we have no knowledge of 3 the range

-0.25 < dX,/Xef f < 0.82

represents the maximum possible variation for the 'real' Xe. If 3 > 1 then X,! f

would overestimate the real x., this case is consistent with the ions being the energy
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loss channel. If 8 < 1, then x.ff underestimates the real X,. -This is consistent

with the case for which the electron energy confinement time saturates with density,

making the electrons the energy loss channel. In fig. 3.28 the error bar at the point

at i = 4.6 x 10 14cm 3 shows the maximum possible variation as predicted by

the single sawtooth model. This comparison is strictly not valid, since the single

sawtooth model makes assumptions which are not true in the real case, however

it can give a rough estimate for the range of possible values for x,. The above

discussion indicates that the heatpulse propagation technique for measuring x, at

moderate to high densities may be strongly influenced by the evolution of the ion

heatpulse. In order to differentiate between the electrons and ions, measurements

of the ion heatpulse are necessary.
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3.7)Conclusions

In this section we shall recapitulate the main results for this chapter and make

suggestions for future work.

Except for the JET [3.17] and TFTR[3.15] results, all previous measurements

of the heatpulse evolution have involved use of soft-Xray signals. Although this

technique provides a large number of spatial channels and good signal to noise,

it has the drawback that it does not measure the electron temperature alone, but

rather it is a strong function of the electron density and the impurity concentration.

The measured signal is also the line averaged value of the local emissivity, so that

deconvolution of the electron temperature profile requires an accurate knowledge

of the density and impurity profiles. For this reason workers using this technique,

have been limited to parametrizing the signal in terms of a simple parameter felt

to be representative of the electron temperature evolution. This parameter has

been the delay for the signal to peak after a sawtooth crash (r,) at a given radial

location. The electron thermal diffusivity was inferred by simulating the -r, profile

with the solution of the electron thermal energy transport equation assuming the

diffusive term dominates and X, = const. The use of r, only, limits the amount of

information available and the parameter may be strongly influenced by any transient

transport effects due to the sawtooth itself.

In this thesis we have used a six channel FIR grating polychromator to study

the evolution of the temperature at six radial locations. The advantage this tech-

nique has is that it is a single parameter measurement which is spatially resolved.

This allows use of the complete temperature trace in inferring the electron thermai

diffusivity. In performing the measurements we have weighted the fitting to t he

decaying portion of the trace.

A single sawtooth model was developed to study the parameter range over

which the diffusion term dominates the electron thermal transport equation. Thi%

model represents the lowest order attempt at assessing the effects of non-diffusiv

terms on the evolution of the heatpulse. It assumes the idealized model of a single
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sawtooth perturbation, with the background profiles satisfying the quiescent diffu-

sion equation. The electron diffusivity profile is assumed constant. A dimensionless

linearized set of equations was developed to describe the evolution of the heatpulse.

The model considers only one non-diffusive term at a time, thus excluding the

possibility of multiple terms combining to reduce the effective threshold for which

non-diffusive effects become important. The effect of the non-diffusive term was

determined by fitting the decoupled diffusion equation (eq. 3.3.11), to the tempera-

ture trace determined by solving the coupled diffusion equation with X. (the real x).

In this way eq. 3.3.11 gave a Xff, the apparent x which includes the non-diffusive

effects. The ratio Xef f /X, is then a measure of the importance of the non-diffusive

term. Five non-diffusive effects were considered, density pulse, radiation damping,

thermal convection, Ohmic heating and electron-ion coupling. Of these, electron-ion

coupling is the most significant effect, defining the lowest threshold for non-diffusive

constributions. This effect couples the evolution of the electron and ion heatpulse.

In this case the measured Xff should reflect in some complicated way both the

electron and ion thermal transport. The dominant parameters for this effect were

found to be 3 and v (defined in sec. 3.3.3). Fig. 3.7a shows how dX,/Xf f varies as

a function of/3 for v = 90. The largest values of dX,/Xff are found for 3 < 1, with

more moderate values found for # > 1. Taking extreme values for 3 (i.e. 3 = 0.1, 3)

fig. 3.7b shows how dX,/Xff scales with the collisionality parameter. We found

that for even moderate values of v (v ~ 50), electron-ion coupling could still have

a significant effect (dX./Xeff ~ 0.7 for 3 = 0.1). It is for v < 20 that the predicted

deviations are less than the experimental error.

The second dominant effect was found to be that of the density pulse. The

parameter for which the strongest dependence was found is a, the density profile

parameter. It was found that for a - 2 the X, would be underestimated by 30%.

We can interpret the dependence on a more as a dependence on the size of the

initial density perturbation than on any basic transport effect. According to the

initial models used, the peak density perturbation can be related to a by
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bn(O) r?
n(0) a2

the peak temperature perturbation is

6T(O) r?9

T(0) a,

for a = 2, ri = 4cm, a = 16cm, a'T = 10cm then

~ 0.12 6T(O) 0.16
n(0) T(0)

This leads to the intuitive condition that the density pulse effects become important

when

Sn(0) bT(0)
n(0) T(0)

For Alcator a - 0.5 for the case of gas puffed discharges, so that we can expect

density pulse effects not to be important.

Starting from the general transport equations and neglecting the non-diffusive

terms, a Fourier transform hierarchy was developed to describe the evolution of

the heatpulse. The signal is Fourier decomposed over a time interval shorter than

a sawtooth period. This method gives rise to a natural ordering of the various

terms, with p = 0 representing the background sawtooth averaged profile. All terms

with p > 0 represent the incremental profiles. The method of analysis proposed in

[3.12], assumes that the background profile satisfies the quiescent transport equation

(i.e. 8T./8t = 0). In general the equilibrium achieved by the plasma is dynamic,

determined by the sawtooth mechanism. The method proposed here takes this

into account automatically, manifesting itself in a non-zero reheat, term (R), which

appears in the equation for every order p. It is through this reheat term that the

initial and final profiles are specified. The lowest orders in p are the ones most

sensitive to x., in our case we only used the first six harmonics beyond p = 0. Each

equation was solved numerically using an empirically determined reheat profile.
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A sensitivity analysis was done to determine how each of the input parameters

affects the estimated x. The parameters studied were channel calibration,density

profile,reheat profile and boundary effects. It was found that the most sensitive

parameter is the spatial extent of the reheat profile. Fig. 3.20 shows the estimated

X. profile from the same shot using the experimentally measured reheat profile (trace

A) and a reheat profile consistent with a mixing radius of rm - V~ rj Variation

with the other parameters is not as severe as shown in fig. 3.21.

We used the expression for x. derived in ref. [3.5] and compared it to the

result arrived at by using our method. The estimated x. using the model of ref.

[3 .5}(x. ~ 14cm 2 /ms) was a factor of three larger than that found using our method

(X , ~5cm2 /ms). This shows the importance of having a good estimate of the reheat

profile, for the evolution of the heatpulse in the plasma is clearly very sensitive to

near field effects.

We also checked to see whether the data showed any preference for a spatially

varying Xe profile. Comparisons were made between three models, a constant Xe

profile, a linearly varying X, and a parabolic X, profile. The reduced x 2 test showed

a preference for the spatially varying models over the constant model. The difference

between x 2 for the linear and parabolic models is too small to be able to differentaite

between them.

The estimates for X, (heatpulse) were compared to those arrived at by two

other models, power balance and a model which has been used to simulate Alcator

discharges and which is consistent with neo-Alcator scaling. One problem of making

these comparisons is that both of the 'reference' models have uncertainties which are

comparable to that of the heatpulse propagation. Because of high density operation

there is considerable uncertainty in estimating the electron-ion energy coupling term

in the power balance formulation. This leads to large variations in the estimates

for Xep. The second or standard model as it has been refered to in this work was

developed to simulate the transport over a wide range of parameters and as such

there can be large variations in the value this model predicts and that are actually

present in the plasma.
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In comparing the profiles we found the power balance estimates to be flatter

than the heatpulse estimate and the overall magnitudes to be within a factor of two

from each other in the measurement region. Part of the reason for the flatness of the

power balance profiles is due to sawtooth effects incorporated in the analysis. The

standard model gives x, profiles which give better agreement with the heatpulse

estimates. The overall agreement is also within a factor of two. The heatpulse

estimates for x. give a profile which increases roughly linearly with radius over the

measurement region fig. 3.15b.

Fig. 3.23 shows the scaling for Xehp vs. Xep. Although there is scatter, the

trend is for Xehp to increase with Xpb. The ratio Xehp/xepb is bounded between

1 - 3, with a mean value of 1.7. As we can see from the figure all the data points

lie above X,p = Xpb line, suggesting a systematic over estimation of the thermal

diffusivity especially at the higher densities. The reason for this remains unclear,

although several possible effects were proposed. Multiple non-diffusive effects could

be acting together to increase the estimated x.. A systematic under estimation of

the reheat profile could account for the discrepancy, however this seems unlikely

for if anything, instrumental width effects will tend to overestimate rm. In chapter

II we found that the effective Xe during a sawtooth disruption can be two orders

of magnitude larger than the bulk. There could be a time changing remnant of

this anomalous value affecting the evolution near the center of the plasma. This

can have large effects on the evolution of the incremental profiles and not on the

time averaged profiles. A similar trend is found in TFTR[3.5], however they find a

discrepancy which is a factor of Xhp/Xp, - 10-20. They attribute this discrepancy

to the possibility that the heatpulse may evolve with a x, which is higher than that

effective for the bulk.

We argued that the quantity 1/x, is proportional to the energy confinement

time. In fig. 3.25 we showed the scaling of 1/Xe at three different radii. At all

three radii the data is consistent with I/X, ~ f. This also implies that the average

profile shape for X, must be weakly dependent on ,.
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The scaling of 1/x. shows no saturation with density as does the global energy

confinement. While this picture is consistent with the ions being the loss channel, it

is not definitive because as we have shown electron-ion coupling effects axe important

in this region. If P < 1, which is the case for the electrons being the loss channel (i.e.

xc > xi), electron-ion coupling effects indicate that xr,1 > xf f. This picture is

consistent with the 'real' electron energy confinement time saturating with density.

If #> 1, which is the case for the ions being the loss channel(i.e. xi > x,), electron-

ion coupling gives X,..l < Xeff. In this case the 'real' electron energy confinement

time continues rising with density. The final interpretation thus depends sensitively

on the value of 3, without knowledge of x. this introduces large variations in the

possible values for the real x.. In order to make the measurement in this region, a

simultanious measurement of the ion heatpulse will have to be done.

We believe future work in this area, should center on improving the model which

describes the evolution of the heatpulse. With emphasis in trying to understand

why xeh, seems to be always higher than Xpb. If this technique is to be used

to measure the energy transport at high densities, ways must be found to include

the effects of the ion heatpulse. We only considered simple non-diffusive effects in

our single sawtooth model, however multiple effects may combine to reduce, the

effective threshold below that defined by electron-ion coupling.
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Figure 3.1 - Example of output of six channel grating
showing evolution of electron temperature at six radial loca-
tions during sawtoothing.
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Figure 3.12 - ECE traces for sample case of sec. 3.4.6.
Fig. a shows the trace data for the six grating channels, the
other three figures show the sawtooth averaged traces used in
the fitting.
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Figure 3.13 - Reheat profile for sample case of sec. 3.4.6.
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Figure 3.14 - a)Comparison of absolute value of calculated
and measured spectrum for sample case of sec. 3.4.6. b)Time
reconstruction of spectra shown in (a).
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Figure 3.15 - a)Comparison of x. profile as estimated using
heatpulse propagation,'neo-Alcator' model (discussed in text)
and power balance model. We also show (bullet) the X, esti-
mated by using the form of ref. (3.5. b)Thermal conductivity
profiles for traces shown in (a).
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Figure 3.18 - Estimated values of x, using the r, data from
fig. 3.2 and the model from ref. [3.51. The solid line represents
the 'neo-Alcator' model.
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Figure 3.17 - Sensitivity of X. on background profile width.
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Figure 3.20 - Sensitivity of x. to initial reheat profile.
Trace A uses the measured reheat profile while trace B uses a
parabolic profile.
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Figure 3.21 - Variation of x. with background pro-
file parameters. The standard parameters for this case were
aT, = 10.4, a = 0.5, ri = 3.7. Each parameter was var-
ied within the expected error. Trace 1- aT. = 9.5cm,trace 2-
aT = 11.5cm, trace 3- c = 0.4, trace 4- a = 0.6, trace 5-
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Figure 3.22 - Comparison of x. estimates for three different
profiles. X. = const., x, = c1+c 2(r/a) and x. = c1+c2(r/a)+
c3(r/a)2.
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bar represents the average and scatter of a larger data set.
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IV) Electron temperature response to pellet irdection

4.1)Introduction

In order to develop a thermonuclear reactor, an efficient way of delivering fuel

to the burning plasma must be found. There are a variety of methods under current

investigation. The most common of these is gas puffing, in which neutral gas(the

fuel) is puffed in at the edge and then transported into the core of the plasma by

some mechanism. Two possible models of the inward transport which have been

proposed are an inward particle pinch (either Ware pinch[4.1]or of anomalous form)

or multiple charge exchange. Another technique of fuelling which has increased in

popularity in recent years is pellet injection. In this method the fuel is frozen into a

solid pellet and then injected at high speed into the hot plasma. This enables fresh

fuel to be deposited deep inside the plasma.

Although gas puffing is a much simpler method, its efficiency for fuelling has

.been shown to have limitations which may make it unfavorable for a reactor. It

has been found that at high densities, the energy confinement time of gas puffed

discharges saturates [4.2], while pellet fuelled discharges exhibit improved confine-

ment[4.3]. The high recycling rates needed for high density operation can also lead

to detrimental effects which have been found to reduce the efficiency of bundle di-

vertors[4.4]. For these as well as other reasons, activity in understanding the pellet

fuelling method has increased.

Spitzer [4.5] suggested pellet injection while considering fuelling for the stel-

larator concept. The general requirements arrived at, were that the pellet should be

large and fast so as to deposit fuel directly into the core of the plasma. The first pel-

let injection experiment carried out on tokamaks was on the ORMAK device [4.61.

In this experiment, small H 2 pellets(721Am and 210pm dia.) were injected into the

plasma at velocities of - 100m/s. Because of their small size and low speed, they

penetrated a maximum of 6 cm from the edge of the plasma or r/a - 0.74 before

being consumed. This experiment created no discernable difference in the central

line averaged density(< 1%), however it did show that a pellet could be injected
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into a plasma without detrimental effects to the stability. It also allowed study of

the pellet, ablation process, but because of poor diagnostics and the size of the pellet

perturbation, a study of the plasma response was not possible.

The next set of experiments were done on ISX-A(4.7] with pellets that con-

tained 30 times the mass of those in the ORMAK experiment and an injection

velocity of 300m/s. A penetration depth of ~ 12cm or an (r/a - 0.5) was achieved

with a density increase of ~ 30%. Subsequent experiments on other machines

[4.3,4.8,4.9,4.10,4.11,4.12] have been carried out in which pellets have been able to

more than triple the background density. In the case of Alcator C, experiments have

shown an improved confinement time over gas puffed discharges and have exceeded

the Lawson n-r criterion (at a lower temperature than required for breakeven[4.51).

The injector used in the Alcator C experiments is based on a prototype used

on ISX-A[4.15]; a much more complete description of the MIT injector can be

found in[4.16]. Here we will only present an outline of the injector characteristids.

A schematic of the injector is shown in fig. 4.1. Pellets are injected along the

toroidal midplane, perpendicular to the magnetic axis. Up to 4 pellets of H 2 or D 2

can be injected simultaneously or delayed. The H 2 pellets contain an average of

NH - 5.4 x 1019 atoms and D 2 pellets ND - 6 x 1019 atoms. The shape of the

pellets are appraximately a right circular cylinder with a base diameter of ~ 1.4mm

and a height of ~ 1mm. The propellant normally used is He at 300psi, giving a

terminal velocity of vH ~ 850m/s for H 2 pellets and VD ~ 625m/3 for D 2 pellets.

The penetration depth achieved is anywhere from a few centimeters to > 10cm from

the plasma edge or an r/a - 0.76 -0.39 depending on plasma and pellet conditions.

Fig. 4.2 shows a set of traces for a pellet fuelled plasma shot in Alcator C.

Although this shot is particular to Alcator, the same general behaviour has been

observed in other machines. Immediately after pellet injection we see a rapid rise in

the line averaged density as the pellet atoms are ablated and ionized. Simultaneous

with this, there is a fall of the electron temperature as the cold pellet fuel dilutes

the background plasma. This process in Alcator C and elsewhere has been found to

be adiabatic[4.3,4.9,4.13]. The temperature recovery is on a time scale of 15-20ms.
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The total current is found not to change appreciably during injection. Because the

readjustment time is much shorter than the skin time and the fact that the electron

temperature profile remains constant, leads us to expect the current density profile

to be relatively unaffected. The increased resistivity due to the colder temperatures

raises the loop voltage at the edge. Magnetic transport codes indicate the voltage

at the center to be much higher. This causes the increased heating rate, which leads

to the fast recovery of the temperature. The higher value of , indicates a higher

plasma energy content. The case shown is for injection of a D2 pellet into a D

plasma; the rapid rise in the neutron rate represents the increasing concentration of

deuterons near the plasma center and/or an increase in the central ion temperature.

During injection, in many cases the electron temperature profile has been seen

to relax on a very fast time scale across the whole plasma, even though the pellets

usually do not reach the central region. The time scale of pellet penetration 'in

Alcator is 100 - 150psA while the central temperature is observed to fall in some

cases as fast as 2001.. The fast evolution is also observed for the density, which

seems to relax on a time scale ~ 5O0As. This is surprising since we would expect

the evolution of the central values to be much slower if the transport coefficients

are consistent with the pre-injection values. Similar results have been found on

PDX[4.9],ASDEX[4.13], TFR[4.121, DIII[4.11]. Early measurements on Alcator-

C(4.14) showed two different kinds of behaviour for the relaxation. In one, the

electron temperature profile readjusts in a time scale of 200pa (type A fig. 4.3).

In the other (type B), the edge channels where the pellet penetrates, behave in a

similar fashion as type A, but the channels near the center evolve much slower. At

the time, a qualitative correlation was found with pellet size or increase in density.

Similar evolution of the temperature was found on DIII[4.11]; there however it was

found that the fast relaxation took place when the pellet crossed the q = 1 surface.

Understanding of the initial plasma response to the pellet will be important in

determining injector requirements for fuelling a hot plasma. The fast relaxation of

the electron temperature can reduce the ablation rate of the pellet over one arrived

at by assuming a slower response of the plasma. There is also evidence that the
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pellet generates large inward flows of particles. This may reduce the requirement

of the pellet having to directly fuel the center of the plasma.

In this chapter we shall study the scaling of the fast electron thermal relaxation

with plasma parameters. Based on these results we shall try to develop a qualitative

picture of how the eletron thermal transport must behave in order to simulate the

experiment.

Pellet injection provides a unique way in which to study 'profile consistency'.

Profile consistency states that the electron temperature will always tend to relax

to a canonical profile; the shape of this profile depends only on qI. Pellet injetion

can generate electron temperature profiles which differ from the canonical shape,

we will then be able to see whether the electron temperature recovers its canonical

form.

A wide variety of sawteeth have been observed after pellet injection. We shall

discuss some of these as well as the possible interpretations that have been sug-

gested. Recent experiments of impurity injection in post pellet plasmas, show im-

proved impurity confinement with the same scaling on plasma parameters as the

fast electron temperature relaxation that takes place during pellet injection. This

is interesting because the improved impurity confinement takes place a long time

after injection, while the fast relaxation takes place during injection. This implies

that events taking place during injection are linked to the long time behaviour of

the plasma.
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4.2)Initial response of temperature

4.2.1)General observations

As was mentioned above we observe two types of temperature relaxation rates

in pellet fuelled plasmas. Fig. 4.4a,b show the time evolution of the temperature

at six radial locations as measured by the FIR grating polychromator described in

chapter I of this'work. The parameters for the fast case shown here are, Bt = 10T,

I, = 443kA, fi, = 2.6 x 10 14 cm- 3 (target line averaged density), An = 2.3 x

10 14cm- 3 (maximum change in central line averaged density); for the slow case,

Bt = 10, 4 = 458kA , Wi = 2.15 x 10 1 4 cm-3 , Ai = 1.16 x 10 1 4 cm-3. The fast or

slow labeling at the moment is somewhat arbitrary but the distinction will become

more meaningful later. The depth of penetration in these shots was determined from

the delay between the end of the Ha signal and the estimated time that the pellet

crosses the limiter radius, assuming a linear constant velocity trajectory. The depth

of penetration for the fast case is I = 9cm or r = 7.5cm(ablation minor radius) and

for the slow case I = 7.7cm(r = 8.8cm). From fig. 4.4a,b we see that the evolution

of the temperature in the channels which the pellet crosses is similar in both cases.

The difference in the two types of evolution comes from the channels inside of the

ablation radius. A reconstruction of the profiles has been done and is shown in fig.

4.4c,d. For the fast case the reconstruction has been done over a 300pIs period and

for the slow case the period is 5ms. We see that in both cases the profiles decay

nearly continuously to a final profile, the discontinuity in the evolution of the slow

decay case in this example is associated with a sawtooth crash that takes place at

t = 9ma. The increased amplitude of the crash during this period may be due to the

more peaked electron temperature profile. Both profiles seem to decay to the same

final profile shape with nearly the same amplitude. For the fast case AR/W = 0.88,

for the slow case AR/Ei = 0.54, since the initial parameters in both shots are similar

we would expect the final temperature in the fast case to be lower than that in the

slow case. One possible resolution for the discrepancy is that the change in line

averaged density is only a rough indicator of the actual pellet size, the pellets in
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these two cases may actually be closer in size than the line averaged density change

indicates.

4.2.2)Propagation of leading and trailing edges

As an indicator to the dynamics of the evolution we will study the difference in

the propagation of the leading and trailing edges for both cases. Fig. 4.5 shows the

temperature evolution for the location r = 10cm and the evolution of the Ha signal.

We define the leading edge of the pellet 'heat pulse' to have reached a given radius

if the temperature changes by an amount larger than the pre-injection noise level.

A similar definition holds for the trailing edge. For the case shown, we see that

the leading edge has reached the r = 10cm radius while the pellet is crossing the

r = 13cm radius. Fig. 4.6 shows a propagation study done for the two cases of fig.

4.4. The leading edge behaviour is found to be similar in both cases and propagates

with a velocity - 1500m/s or about twice the pellet velocity. The trailing edge

seems to track the pellet trajectory outside the ablation radius(the minor radius

location at which the pellet is completely consumed). However inside the ablation

radius, the fast case evolution seems to propagate into the center at a rate similar

to the pellet velocity, while the slow case shows a much slower propagation of the

effect into the center. The pellet affects the edge similarly in both cases fig. 4.4a,b

suggesting that the mechanism that generates the leading edge effect, originates at

the edge of the plasma and then propagates into the plasma independent of the

pellet. The mechanism that transports the bulk of the energy as evidenced by

the propagation of the tail seems to be strongly coupled to the subsequent pellet

evolution. The almost linear propagation of the leading and trailing edges does not

rule out a diffusive process since it is a complicated problem with a moving source,

time changing density and diffusivity.

Since the key difference between the two cases seems to lie in the temperature

evolution near the central region, we shall use the central decay rate as an indicator

of the profile evolution. To try and shed some light on the mechanisms that drive

the bulk evolution, we have done a series of scaling studies of the central electron
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temperature relaxation time (Ato). The central decay time is determined by fitting

the decay of the central trace with a three step linear function. The time difference

between the two intersects of the three lines defines At o .

4.2.3)Correlation of Ato vs central line averaged density and change

in central temperature

In ref. [4.14] we made the suggestion that pellet size was correlated to the rate

of decay of the electron temperature. Fig. 4.7 is a plot from (4.14] showing this

difference in behaviour. The discrepancy is seen most clearly near the center of the

plasma, while the edge decay rate in the two cases is similar. The trace marked

by the triangles represents a case of a fragmented pellet, thus the cascade effect

in the outer trace. The difference between the two is the overall change in central

Aff caused by the pellet and the penetration depths for the two cases. For the fast

case An = 2.4 x 101cm-3 and I = 11cm, while for the slow case AR = 10 1 4 cm-3

and I = 8cm. The pre-injection background density is ff = 2 x 10 1 4 cm-3. The

interpretation given in [4.14] was that the larger pellet could generate larger inverted

density profiles and that this somehow could drive the fast relaxation in response

to the pellet.

To expand on the scaling suggested in [4.14] we show in fig. 4.8 how Ato scales

with the change in central line averaged density normalized to the pre-injection

density (An/W). There appears to be a threshold in the value of Ato for

0.8 < -: < 1.1

in this region Ato changes by over an order of magnitude. The width of the tran-

sition region can be attributed to several things. As we have mentioned before the

change in line averaged density is somewhat insensitive to profile effects, which if

accounted for may remove some of the scatter.

The central electron temperature may be a better indicator of events taking

place near the center, for this reason we have done a scaling of Ato vs the fractional
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change in the central temperature (AT/T) fig. 4.9. The threshold can be seen much

better in this case, with the transition region being

AT
0.4 < < 0.6

and a residual slope to either side. This is consistent with the pellet size scaling

since as shown in fig. 4.10 larger pellets tend to make larger changes in the central

temperature.

4.2.4)Scaling of Ato with penetration depth and q(safety factor)

In trying to make a connection with the results of ref.4.11], which suggest that

the two types of decays depend on whether the pellet crosses the q = 1 surface or

not, we have done a study to see if there is a correlation between penetration depth

and Ato. Fig. 4.11 shows such a scaling. We again see a transition in the region

8 < I < 9 or 8.5 < r < 7.5.

To see if this transition is associated with a critical q, we have plotted Ato vs

the pre-injection q profile. As we have argued before, the current profile should

not change much during injection thus not changing the safety factor profile. If we

assume the temperature to scale as T - Toe-' 2/'r and that the current roughly

follows the temperature as J T/ 2 in the outer region of the plasma. This form

of the current profile gives a safety factor profile of the form,

q(r) = q,(r)2 (1 - e_ 2 /2)

where qI: safety factor at limiter, a:limiter radius, aT: temperature profile width.

Fig. 4.12 shows the scaling of Ato vs q estimated at the ablation radius. We

see that none of the pellets penetrate the q = 1 surface. Between q ~ 1.3 - 2.5

the cases seem to be evenly distributed with respect to the relaxation time. The

splitting for q > 2.5 is an artifact of the data. The fast relaxation cases correspond

to a penetration depth I > 8 and low current in fig.4.11, while the slow relaxation

cases, having similar qgbILtiof, correspond to shallow penetration in high current

shots. As a further check to see if the central relaxation time is somehow related to
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the sawtooth mechanism, we have compared the central relaxation time Ato with

the sawtooth phase of the central decay(p). The parameter (p) is defined by

d
p .

d:is the time delay between the start of fall of the central temperature due to

the pellet, and the previous sawtooth crash.

8t: is the sawtooth period immediately preceding injection.

For shots which are outside of the transition region in fig. 4.11, no correlation is

found with sawtooth phase. However some correlation is found for the shots which

lie inside of the transition region. Fig.4.13 shows two types of shots. The ones for

which I > L = 8.5cm tend to have a fast decay, and are uncorrelated with the

sawtooth phase. However the ones for which I < l, show a rather clear correlation

with pellet phase. For low (p) the decay tends to be slow, while for p ~ 1 it is fast.

A possible interpretation is that immediately after a sawtooth crash the current

profile is at its most stable point with respect to the sawtooth instability, as the

current peaks it becomes progressively more unstable to the sawtooth instability.

If a pellet is injected with a phase such that p ~ 1 it encounters a more unstable

current profile, the pellet may then drive the magnetic fields into reconnection and

help drive the fast relaxation. If the pellet is injected with p - 0, it will encounter

the most stable current profile and thus the temperature relaxation is much slower.

4.2.5)Scaling of relaxation with density gradient

Although some correlation was found in the previous section between the tem-

perature relaxation and the sawtooth mechanism, it is clear that it does not play a

role as the primary driver of the fast relaxation. One likely candidate is the large

inverted density gradients expected to be set up by the pellet, which can then drive

an instability which generates the rapid transport. One of the problems was esti-

mating the inverted density profile since no direct measurement was available for

the set of shots analyzed. It can be argued that the Hct signal is proportional to

the ablation rate profile[4.8]. If we assume there is no radial particle diffusion on
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a time scale of ~ rp/v (r, is the ablation cloud radius,v pellet velocity), then the

initial density profile has a shape determined by the ablation profile. We find that

the Ha signal can be parametrized by a function of the form (see fig. 4.14)

X sin(7r-)

where L:is the Ha length.

The penetration depth as used in the previous section is not necessarily the

same as the Ha length. The Ha length is usually found to be slightly less than the

penetration depth; this is probably because very little of the pellet is deposited at

the edge of the plasma.

The initial density profile is assumed to be of the form

6n = C- sin(ir )

The coefficient C is found by requiring this profile to match the incremental

change in the central line averaged density immediately after injection. We can

show that the maximum slope set up by the profile is proportional to aAW/(LD).

Fig. 4.15 shows the scaling of Ato with aAK/(LE). The data does not show a

transition as in the previous cases, but it does show a clear dependence on the

density gradient. The central decay rate grows exponentially with the ratio of the

density gradient set up by the pellet to that of the background plasma.

To see if there was a similar correlation with the temperature gradient , we

modelled the transient temperature profile with a function of the form Toe- /4

at 'each point in time. It can be shown that the quantity To/aT scales with the

maximum gradient(the dimensionless parameter in this case is a/aT). No clear

scaling was found with the temperature gradient as was found with the density. A

reason for this can be attributed to the fact that the transition profiles do not differ

greatly for the fast and slow relaxation cases.
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4.3)Model of fast relaxation

Several questions have been raised by the measurement of the evolution of the

electron temperature during pellet injection. One of these is whether the relaxation

has a diffusive or convective character. If it is diffusive, is the transport coefficient

consistent with bulk diffusion? To try and answer this question, we have used a

simple one dimensional model to simulate the injection. We expect the diffusion

of temperature and density to be much faster along the magnetic field lines than

across it, so we assume poloidal and toroidal symmetry in the source term and in

the subsequent evolution. Because the density and temperature change on similar

time scales, we must solve the density and temperature equation simultaneously.

4.3.1)
30 18 0--anT. = L9-rnx,-- T.2 8t rOr Or

4.3.2)
8 1 8
-n= -- 5rD -n + Sn

rr

where Sn is the particle source term. In the above equations we have neglected the

possibility of convection, and, because of the short time scales involved, we may

neglect contributions from Ohmic heating. Other contributions such as electron-ion

coupling are not as clearly negligible, but for the qualitative picture we will ignore

them as well.

The particle source term is related to the ablation rate and has been taken to

be of the form

28
1 er()'/-N

77at
where z(t) is the radial trajectory of the pellet. The exponential is the radial depo-

sition shape function of the pellet, and we assume that in the other two directions

the deposition is uniform. The factor ON/t is the total ablation rate; as was men-

tioned in the previous section, this is related to the Ha intensity. We will take a

function consistent with the shape of fig. 4.14
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4.3.3)

N =K -1 sinb(Ir

Here I is the penetration depth from the edge of the plasma and L is the

maximum penetration depth. The constant K is set by the total number of particles

in the pellet,which works out to be

K = 5.26ZNT

v:pellet velocity

NT:total number of particles

Because of the tinuous nature of the plasma and the large momentum carried

by the pellet we have assumed a trajectory of constant velocity. We can then arrive

at an effective density source

4.3.4)

t 4f2\/fRora at
where RO is the machine major radius.

A useful quantity to use for comparison is the line averaged density of the static

distribution, that is, the profile we would get in the absence of any radial particle

transport. This is related to the total number of particles by

4.3.5)
5.26 L

65 = W ( )NT
Ana2ROaL a

where

4.3.6)
S2

W~p~m dy sinxryW(p) ]dl( P) 8nr

where p = L/a. If we assume the pellet does not go through the center then p can

only vary between 0 -+ 1; the value of W(p) over this range is shown in fig. 4.16.

We shall analyze a case with the following pellet and plasma properties L =

12cm, v = 850m/s, NT = 5 x 10 19atoms, fi = 2 x 10 4 cm- 3 , Afi, = 1.9 x 10 1 4 cm- 3 ,

Teo = 2000eV, aT, = 10cm.
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To address the question of whether the fast decay could be accounted for by

bulk diffusion, a case was run in which the diffusivity value used is consistent with

the pre-injection value. The model used is that of a flat X, whose value is determined

by eq. 3.3.14, which for the above specified parameters gives X, ~ 5cm 2/ms. We

have very little information on the transient density profile, for this series of shots.

We do know from previous cases that the inverted density washes out on a time

scale of 500pAs. This is not a very stringent condition for determining the consistent

value of D, but from the point of view of the temperature it is not a very sensitive

number. For the bulk density diffusivity we shall take D 3cm 2/ms consistent

with eq. 3.3.16. The result of the simulation is shown in fig. 4.17. We see from fig.

4.17a that steep profiles are set up with the central channels decaying on a time

scale much longer than 200A.a (fig. 4.17d). However in the channels which the pellet

crosses, the decay is much faster and as we shall see, do not differ significantly from

the fast diffusion case. The small pressure inversion that develops around r ~ 5cm,

can be attributed to the large temperature density gradients set up by the pellet

(fig. 4.17a) in this region. Fig. 4.18 shows a case for which X, = 300cm2 /ms,

D = 90cm2 /ms. The value of the thermal and particle diffusivity was calculated to

be consistent with the evolution of the lowest eigenmode of the diffusion equation

using as electron temperature relaxation time of - 2 5 0 pg and a particle relaxation

time of ~ 500s. While this model does maintain flat profiles, the evolution as

seen from fig.4.17d is clearly not consistent with observed plasma behaviour. The

instantenious response of the temperature everywhere in the plasma comes from

the immediate change in the transport coefficients.

What the above two cases tell us is that the pellet must generate a very high ,%

in order to drive the fast decay diffusively, and the anomaly must propagate into the

center with the pellet. One idea that has been suggested is that the large inverted

density and pressure gradients can drive an instability which generates the fast diffu-

sion. One possible scenario is for the large density gradients, set up by the pellet, to

generate drift waves which can then cause the magnetic fields to become stochastic.

The magnetic field turbulance can then give rise to large perpendicular transport.
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To study how this kind of transport coefficients would affect the temperature evo-

lution, a case was run in which, if the local density gradient is negative, the local

thermal diffusivity is consistent with the bulk value, however if the density gradient

is positive the local diffusivity is equal to the bulk plus an anomalous value. For

the case shown in fig. 4.19, x. - 5cm 2 /ms(bulk), Xi ~ 250cm2/ms(anomalous),
for the density Do = 3cmn2/ms, D, = 90cm 2 /ma. We see that there is qualitative

agreement between this case and a fast case as shown in fig. 4.20. We see that

the edge behaviour in this case and that shown in fig. 4.17 are very similar, the

main difference comes in the evolution of the central channels, something that is

reminiscent of the difference between the slow and fast decay cases shown in fig.

4.4.

We have done a propagation study (fig.4.21) of the simulation cases in (fig.

4.17,4.19). The leading edge in both cases propagates at about the same rate and

about a factor of two faster than the pellet. Since case in (fig. 4.17) does not

contain any anomalous diffusion, this would suggest that the leading edge in both

cases propagates with a diffusion coefficient consistent with the bulk. This same

kind of behaviour is seen experimentally (fig. 4.6), with the leading edge of the slow

and fast decay propagating at roughly the same rate.

The initial behaviour of the trailing edge is not as well simulated by the model.

However the evolution of the two cases is similar until the ablation radius is ap-

proximately reached. From this point on the two models differ significantly. The

implications this has is that the fast decay case seems to be able to generate an

anomalous X, which is roughly two orders of magnitude higher than the bulk, while

the cases which exhibit the slow decay are somehow not able to drive as large an

anomaly. The anomaly need only be driven near the center of the plasma, thus not

leading to a net loss of energy from the plasma.

Another question that may be addressed with this model is whether the driving

mechanism is the density gradient or the pressure gradient. As we see from fig.

4.18b, for the case of the fast decay no large pressure gradients are generated, while

a much larger density gradient is possible. Although there are large uncertainties in

our modelling of the density evolution, we believe the qualitative behaviour to be

correct. Thus the mechanism may be density driven or be very sensitive to inverted

pressure profiles.
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4.4)Profile consistency during pellet irection

It is a general observation in many machines, that under certain operating con-

ditions the gross profile shape of the electron temperature is primarily determined

by Ro, at, q1 (major radius, limiter radius, limiter safety factor). This phenomenon

is usually called profile consistency, that is, given enough time the electron tempera-

ture profile will relax to a canonical shape dependent only on the above parameters.

For the case of Alcator-C, the sawtooth averaged temperature profile can gen-

erally be well fit by a function of the form

4.4.1)

T,(r) = T.(O)e-' 34

In the steady state limit the temperature profile and the current profile are

tied together through the resistivity. We assume Spitzer resistivity and neglecting

neo-classical effects as discussed in sec. 3.3.3, the current profile has the form

4.4.2)

J(r)= Joear lT

We can then relate aT to the poloidal magnetic field profile. In tokamaks a

usefull parametrization for ar is q, the cylindrical safety factor defined as

q(r) = ~
RoBe(r)

where RO:is the major radius of the magnetic axis, Bt: the toroidal field at the

magnetic axis, Be(r)-poloidal field at minor radius r. In a sawtoothing plasma,

the current profile of eq. 4.4.2 is not expected to hold since the sawteeth will tend

to flatten the current near the center. However for the purposes of estimating the

gross profile width of the temperature, the above model has proved an excellent

approximation.

We can then relate the parameter aT to the safety factor at the limiter q1, an

effective central safety factor qo and assuming the current to be of the form 4.4.2

giving
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4.4.4)

3 q1oa=

al:is the limiter minor radius.

A sawtoothing plasma is never really in static equilibrium, thus qo, as defined

above, should not be strictly identified with the real central safety factor. In a

sawtoothing discharge we can expect qo - 1, from stability considerations. Studies

have previously been done on Alcator C, with gas puffing discharges, under a variety

of plasma parameters[4.171. It is found that for sawtoothing discharges qo is bounded

by

0.8 < qO < 1.0

and qo > 1 increasing with q1 for non-sawtoothing discharges.

Pellet injection provides a powerful way by which to study profile consistency

by comparing the pre and post injection profiles. Early indications that the profile

consistency mechanism was active during pellet injection came from data measured

with the Fast Scanning Fabry-Perot[4.18]. The FSFP scans the plasma in frequency

of the second harmonic spectrum X-mode, or, equivalently, in major radius position,

with a plasma scan period of 2ma. Fig. 4.22 shows a case in which the pellet was

'caught' near the center of an FSFP scan,(trace 2). We see that even before the scan

is finished the temperature profile has relaxed to the canonical shape, as evidenced

by the right side of trace 2. Fig. 4.23 shows the peak electron temperature and

width on a much longer time scale. We see no apparent change in the profile width

even though the peak electron temperature undergoes a drastic fall and a slower

recovery. Results from the grating, fig. 4.4, show that the profile width recovers on

.a time scale consistent with the central relaxation time, or in 200 - 300ps for the

fast decay and somewhat longer (1-3 ms) for the slow decay.

The plot of fig. 4.24 shows the change in the electron temperature profile width

as a function of q1, for pellet injection shots. The data represents the value of aT

immediately before injection, and 5ms after injection. The reason for the 5ms delay
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is to allow comparison between the fast and slow decaying cases. The' location of

the data point represents the width just' before injection, while the tip of the arrow

extending from the data point represents the width 5ms after injection. Points

which have no arrow represent cases which had the same profile width, within the

accuracy of the measurement. For comparison we have plotted several traces of eq.

4.4.4 for different values of qo and al = 16.5cm. We shall define profiles widths for

which qo ~ 0.8 - 1.0 as the self consistent profile width.

For qI < 6 all cases are well within 0.8 < qo < 1.0 before as well as after

injection; the profile width change is < 10%. The behaviour is consistent with

the change in temperature as described in ref.[4.17J, with the pre-injection (high

temperature) cases close to qo - 0.8 and after injection (low temperature) either

having no change in the small pellet case or increasing towards qo - 1.0 in the large

pellet case. For q1 > 6, the pre-injection profile width begins to go above the self

consistent value. The discrepancy between the pre and post injection values also

tends to increase-with qI. What this suggests is that the self consistent mechanism

has turned itself off somewhere around qI ~ 6-8 the value of qI at which sawtoothing

ceases. The general trend seems to be for aT to increase after injection, although

there are a few cases for which ar decreases after injection. For these latter cases

the final value of aT seems to fall within the self-consistent limits, even in the case

of qJ ~ 10.5 - 11.0 .

Profile consistency seems to hold even in cases for which the plasma was saw-

toothing before injection and stopped afterwards. These cases are associated with

a large influx of impurities into the plasma, which can stabilize the sawtooth insta-

bility.

A possible explanation that has been suggested is that at high current (low

qI) the electron temperature profile is primarily determined by the current profile,

which is determined by stability considerations, such as the sawtooth condition. At

lower currents (high qI) the stability condition is not the limiting criterion and the

profiles become dominated by transport.
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We believe that the similarity in the value of qI at which the profile consistency

seems to turn off and the sawteeth cease, is no accident. We propose the following

interpretation which is consitent with the results of fig. 4.24. Suppose that eq.

4.4.4 with qo ~ 0.8 - 1.0 represents the narrowest possible T profile width that

can be achieved, if the width becomes narrower than this, the sawtooth instability

will broaden it back to the width as defined by eq. 4.4.4. Whether this width is

accessible or not depends on plasma transport. If the plasma transport is sufficiently

good, such that the transport determined aT. (that is the one we would get if we

ignored the sawtooth. instability) is less than that from eq. 4.4.4, then the current

profile can peak sufficiently to turn on the sawtooth instability and 'clamp' the value

of aT, to that determined by eq. 4.4.4. If the plasma transport is sufficiently bad

such that the final transport determined a'. is wider than that determined by eq.

4.4.4, then the current profile never peaks sufficiently to turn on the sawtoothing;

in this case the stable profile width is determined by the transport. Thus we can

express whether profile consistency is active or not by an accessibility condition of

the form

4.4.5) If aT.(trans) < aTr.(q) then we have sawtooth limited profiles

4.4.8) If aT,(trans) > aTr.(q) then the sawtooth limited profile is not accessible

with the final profile determined by the transport.

In the above aT.(ql) is the sawtooth limited width determined from eq. 4.4.4 and

aT,(trans) is the final width of the electron temperature profile that would be

achieved through the transport equations without considering MHD stability.

Armed with this model we can understand the results of fig. 4.24. For

low qI operation even in a non-pellet plasma the confinement may be sufliciently

good that aT.(trans) < aT,(qi) and thus the observed profile width is limited by the

sawtooth instability. For this range of qI, pellet injection is normally associated with

improved confinement thus it would be natural to expect aT,(trans) in this case to

be even narrower than in the pre-injection case. Since the post-pellet ar.(trans)

satisfies the accesibility condition for eq. 4.4.5 we expect then the profile to be saw-

tooth limited. Since current is conserved, q, is the same before and after the pellet
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and since qo is determined by the sawtooth instability, we would not expect it to

change. With this picture then it is not surprising that the post pellet temperature

profile width is not very different is not very different from that before the pellet.

As was mentioned before, in some of the low qg cases, either sawtooth oscillations

were not observed after the pellet or their start was delayed. All of these cases are

associated with large impurity concentration in the center. An interpretation that

has been suggested by Petrasso et. al. [4.22] is that the build up of impurities,
hollows the condictivity profile which can then flatten the current profile in such a

way as to stabilize the sawteeth. One perplexing question is that for the same gI

in the low qg regime, the measured aT. in the non-sawtoothing case does not differ

significantly from that observed in the sawtothing case. A possible explanation for

this may be that, long before the impurity concentration has reached a sufficiently

high level so as to broaden the current profile width significantly, a disruption limit

is reached. Thus in low qI operation we can never see a plasma with significantly

broader aT. than that defined by the sawteeth.

For high qI the transport may have degraded sufficiently so that

aT.(trans) > aT.(qI)

In this case the profile width is no longer limited by sawteeth, but rather by the

transport properties of the plasma. In fig. 4.24, we see that the profile width tends

to broaden after injection suggesting a degradation of confinement. However there

seem to be a few notable exceptions around qI ~ 10 - 11, in these cases as was

mentioned before, the final profile width was narrowed by the pellet and consistent

with the sawtooth limited values. In none of these cases were sawteeth observed,

although at these high qI's the sawtooth amplitude can be expected to be very small

thus they might be present but not observable.

The transition between the two regions is then aT.(trans) ~ aTe(qi). For

the case of Ohmic heated Alcator plasmas this takes place around qJ - 6 - 8. The

transition layer then in general is determined by the particular of the transport

independent of MHD, and the MHD limitations. The reason why the electron
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temperature seems to be the only measureable plasma parameter which obeys profile

consistency, may be because it is the one parameter that is the strongest coupled

to the current profile(i.e. through the resitivity and Ohmic heating). Thus we can

expect any limitation placed on the current profile to reflect itself most strongly on

the electron temperature.
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4.5)Sawtoothing and impurity confirnement in post-pellet plasmas

Sawtooth oscillations in post-pellet plasmas can evolve in four different ways.

Fig. 4.25

a) for small pellets no significant change in the sawtooth characteristics take

place, except for a brief increase in frequency immediately after injection.

b) for medium to large pellets, the initial recovery is accompanied by an in-

crease in the sawtooth frequency and a decrease in amplitude. During recovery

the sawtooth frequency drops below the pre-injection value and undergoes a slow

recovery back to the pre-injection value. During this time the sawtooth amplitude

increases and ultimately becomes as large as that at pre-injection.

c) there are cases for which the initial recovery is the same as in case (b),

but undergoes a suppression for a long period of time (20-50ms) and then ressumes

sawtoothing with the frequency increasing asymptotically to the pre-injection value.

Again the amplitude does not increase appreciably above the pre-injection value.

The long suppression of sawteeth and the subsequent crash are always associated

with the giant sawtooth event as seen by the soft-Xrays.

d) this is one in which the plasma never sawtooths, this seems to be a radical

extension of case (c) above.

The time evolution of the sawtooth period for the first three cases discussed is

shown in fig. 4.26.

The case of the giant sawtooth is seen much more dramatically by the soft

X-rays fig. 4.27. However as was mentioned above, the corresponding change in

the central electron temperature is too small to account for the large change in the

soft X-rays. It has been found, that just before the large X-ray crash the impurity

profile is very peaked and subsequently flattens after the disruption[4.19. This is

consistent with the finding that the impurity confinement increases dramatically

just before a giant sawtooth and immediately relaxes to a much lower value[4.20'.

Case (d) discussed above is one in which the improved impurity confinement never

degrades.
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Impurity conifinement measurements have been carried out in pellet plasmas.

By using a laser blow off tehnique a highly localized source of tracer impurities

can be injeted into the plasma. The evolution of these impurities can be followed

by spectroscopic method. From this, the effective particle transport can be de-

duced[4.21j. Fig.4.28 shows the result of scaling Trj[4.20](the impurity confinement

time) with peak n,,pa/i.,,, for q1 < 6.5, where R.,.,t is the post-pellet density and

., is the pre-injection density. We see a transition at around e,,t/,,,., 1.8

between the long and short confinement regimes. We see that it has the same scal-

ing as for the transient T. evolution during pellet injection although the two events

are wide apart in time. The impurity confinement time is measured 5 - 20ms after

pellet injection. For ep..t/.p,, > 1.8 we find a significantly improved confine-

ment compared to that at pre-injection confinement. For ,,/ , < 1.8 the

post pellet impurity confinement is similar to that in the pre-pellet plasma. Fig.

4.29 shows the scaling of ri. with Ato (the central T. relaxation time). For the case

of q1 < 6.5 we see a clear correlation between the two. For the case of q1 > 6.5

we find that the impurity confinement time does not improve after the pellet. The

apparent degradation in this case may be due to a current dependence of particle

transport as is suggested by fig. 4.30. Here we show the fringe added interferometer

trace for the central line averaged density. Fig. 4.30a has q1 - 8.5, while fig. 4.30b

has q1 - 4.5. We see that the particle decay time for case (a) is much shorter than

that for case (b).

These results suggest a link between the events happening during injection and

the subsequent evolution of the plasma. One possible interpretation is that the

profile set up during injection sets the initial conditions for the physics that governs

the subsequent evolution of the plasma and through this the two are linked. Another

possibility may be that both the profile evolution during injection and the long time

evolution of the profiles are governed by the same physical mechanism and thus each

may be a reflection of the same thing.
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4.6) Conclusion

Most workers have focused on the long time behaviour of the plasma after pellet

injection. We have focused on the transient behaviour of the electron temperature

during the injection process. The initial behaviour has been found to be much more

complicated than initially expected. Evidence indicates that the events taking place

at this early stage may play a role in the subsequent evolution of the plasma.

The studies done in this chapter were performed primarily using an FIR grating

polychromator (see chapter I). This allowed us to monitor the evolution of the

electron temperature at several radial locations with very good time resolution. Soft

Xrays have been the primary diagnostic used by other workers to make any transient

measurements, the problem with these is that the signal depends on a number of

plasma parameters. The ECE in the regime used in this thesis is sensitive only to

the local electron temperature at the location of the emission.

During injection we observe two types of relaxations of the electron temperature

in the central region of the plasma. A fast relaxation case which takes place on a

time scale much faster than bulk diffusion and a slow relaxation case in which the

central region of the plasma evolves on a time scale consistent with bulk diffusion.

The fast relaxation is associated with large AR/5- and the slow relaxation with

low An/W. This seems to imply that the pellet size relative to the number of

plasma particles is what determines the fast or slow relaxation. The evolution of

the channels which the pellet reaches, seem to evolve in a similar manner in both

cases.

Energy transport during injection can be described by the evolution of a

heat(cold) pulse in the plasma. This pulse can be characterized by the propa-

gation of its leading and trailing edges. In fig. 4.6 we show the propagation of the

leading and trailing edges, for the fast and slow central decay cases. We see that the

leading edge in both cases propagates at the same rate, with roughly twice the pel-

let velocity. The difference in behaviour is noticed most clearly in the evolution of

the trailing edge. Outside the ablation radius the evolution of both cases is similar,
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with a propagation velocity that is less than or on the order of the pellet velocity.

However inside the ablation radius, the relaxation of the tail is very different. The

tail for the fast decay case continues propagating into the center at roughly the same

rate as outside the ablation radius, while the slow decaying case slows its evolution

dramatically. Since the difference in the two cases lies in the central temperature

evolution, we used the decay of the center to characterize the slow and fast decay

case.

A scaling was done of Ato with AW/W fig. 4.8. We found a transition in the

region of 0.8 < AR/i < 1.1 in which Ato changes by an order of magnitude. For

AR/W < 0.8 the central decay time is Ato > lms increasing with lower Ai/i.

For AE/I > 1.1 the decay times are Ato < 200pe. A scaling has been done with

AT/T fig. 4.9 which is a parameter much more sensitive to events taking place at

the center, than the line averaged density. In this case we see the transition more

clearly and taking place at 0.4 < AT,/T < 0.6.

In ref. [4.11] it was suggested that the two types of decay depend on whether

the pellet crossed the q = 1 surface or not. We have done a scaling of the relaxation

time with the penetration depth from the edge of the plasma fig. 4.11. We found

the fast decay turned on for I > 8cm. To see how this radius relates to the q = 1

surface, we compare the relaxation Ato with q.abjion fig. 4.12. We see that none of

the pellets penetrate the q = 1 surface and yet are able to drive the fast relaxation.

A dependence was found between Ato and the sawtooth phase of the pellet fig. 4.13

for pellets in the transition region, suggesting that the sawtooth mechanism may

still play a role in the fast relaxation eventhough the pellets do not penetrate q = 1.

To see if the fast relaxation could be driven by density gradients a study of Ato

and a parametrized value of the density gradient was done. By assuming a constant

deposition profile shape, we showed the appropriate parameter to be aAi/(Li).

Fig. 4.15 shows that the central decay rates tends to grow exponentially with the

density gradient parameter.

To try and understand the evolution of the anomalous transport involved in

the fast relaxation, a simple diffusive model was used to simulate the temperature
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evolution during injection. The deposition was assumed adiabatic with the profile

being consistent with the Ha: signal. Three cases for the transport coefficients

were studied. The first consisted of both x, and D being consistent with the bulk

transport active before the pellet. In this case it was found that the leading edge

of the temperature perturbation propagates into the plasma at roughly twice the

pellet velocity. The propagation of the trailing edge tracks the pellet up to the

ablation radius, at this time the evolution becomes much slower. This behaviour is

qualitatively consistent with the slow decay case of fig. 4.4b. The second case had

the transport coefficients become anomalously high as soon as the pellet penetrates

the plasma. While this case could make the central temperature response be on a

time scale consistent with the fast case, the start of the decay was immediate. This

model then is clearly not correct, for it can not reproduce the observed propagation

delay. A third model was studied, in which the transport coefficients were composed

of two parts. The first component was consistent with bulk transport and the second

had an anomalous value roughly two orders of magnitude larger than the bulk,

which was turned on for positive density gradient. These results were qualitatively

consistent with the observed behaviour of the fast T (0) relaxation case. What these

simmulations imply is that the anomalous transport necessary for the fast relaxation

must propagate into the plasma with the pellet. The leading edge propagation for

the first case (consistent with the slow decay case) and the third case (consistent

with the fast decay case) are similar. This implies that the leading edge in both

cases propagates with a thermal diffusivity consistent with bulk transport.

By considering this model we can draw some conclusions as to what may be

the driving mechanism. We found that the inverted pressure profiles are much

less than the inverted density profiles. If the deposition process is adiabatic, the

pressure profiles should remain constant. It is only through the fast transport of the

background plasma that a significantly inverted pressure profile can be generated.

However this requires the anomalous transport to exist before the inverted pressure

profiles. Both of these observations support the model in which the inverted density

profiles drive the anomalous transport.
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Pellet injection has been used to perturb the plasma in order to study the evo-

lution of the electron temperature. In this way we were able to study' the so called

profile consistency principle. In all cases for qI < 8 the final electron temperature

profile always re-adjusted back to its pre-injection shape consistent with the canon-

ical form whose width is given by eq. 4.4.4. This was found to be true even for cases

in which the plasma was sawtoothing before, but not after injection. When q, > 8

the pre-injection T. width is found to be wider than the self-consistent width, in this

region it is transport which determines the profile widths. The effects of the pellet

were generally to- broaden the T. width, however there were a few cases in which

the post-pellet T. width was narrower, all these never went below the self-consistent

limit.

A possible interpretation is that the self-consistent width as defined by eq.

4.4.4 is a limit which represents the narrowest stable width that can be achieved by

the plasma. Whether this limit is achieved depends on the plasma transport. This

reflects itself in.the conditions of eq. 4.4.5 and 4.4.6. The transition between the

two regimes according to this model is when aT.(trans) ~ aT,(qI), which for the

case of Alcator may be when qI - 6-8. In this respect the term 'profile consistency'

is somewhat of a misnomer, for in this case the current and electron temperature

profiles are sawtooth limited and in the time averaged sense independent of the

transport. In this case transport only plays the role of taking the plasma to the

sawtooth limit.

In sec. 4.5 we discussed the variety of sawtooth behaviour found in a post pellet

plasma fig. 4.25. The evolution of the sawtooth is probably dependent on a number

of plasma parameters, one parameter which may play a role in the evolution of the

sawteeth is the behaviour of the impurities, whose confinement generally improves

after injection. The factor by which rr improves seems to be dependent on pellet

size, in a similar manner as the fast temperature relaxation. This suggests a link

between the events taking place during the injection process, and the subsequent

evolution of the plasma. Thus in order to understand the long term behaviour of

the plasma, we must also understand the fast time scale physics taking place during
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injection. It was also found that the improved confinement could only take place

when q1 < 6 -8, which is the same condition for plasma to be in the self-consistent

regime.

Future work should include efforts to understand how the density evolves during

pellet penetration, this will provide important information about the pressure profile

and about the transport. Theoretical efforts towards understanding the mechanism

by which the pellet can effect rapid transport in the plasma are essential. The model

discussed here to explain profile consistency can explain the data shown. Further

support for the model must await numerical simulations. Impurities may play an

important role in sawtooth stabilization in low q1 discharges. We must understand

what kind of electron temperature profiles can be set up by the impurities and how

the electron temperature profile may differ from the canonical shape.
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Figure 4.5 - The top trace is the evolution of the Ha signal
and the bottom trace is that for the electron temperature at
r = 10cm.

239

END
OF
PELLET

/ R=4CM

R---10cm

4.1

I '

II



0 Ln 0

(wo) snipo8 jouiV4

Figure 4.6 - Propagation study of leading and trailing
edges for the fast and slow decaying cases.
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Figure 4.7 - Comparison of evolution of fast and slow
decaying cases as discussed in ref.[4.14]. The main difference
found between the two cases is the size of the density change
due to the pellet.
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Figure 4.8 - Scaling of central T, relaxation time with
normalized change in the central line averaged density.
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Figure 4.11 - Dependence of central T, relaxation time on
penetration depth of pellet measured from the plasma edge.
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Figure 4.14 - Ha signal with parametrization function as
discussed in sec. 4.2.5
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Figure 4.20 - Detail of evolution of fast decay case.
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Figure 4.24 - Scaling of T. profile width with qI(limiter
safety factor). The data markers represent the value of aT,
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Figure 4.25 - Evolution of central T, showing four different
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Figure 4.27 - Time evolution of central T and soft-Xrays.
At t - 425ms we see a giant sawtooth crash on the Xrays but
no abnormal change in T,(O).

261

LL

--IWF ------

...........

I

Ut TIMF IMSI



H 2 pellets into p1

00 0

0
0 0

0o0

0
0

asmas

0 I
0

4 I I I

1.4

Figure 4.28 - Dependence of post pellet ri on pellet size

(from ref. [4.201).

262

For
150

00%
%A 100

50

1.0 1.8

npost/
e

2.6

npre
0

t-Ij

I I I I

7
1

01



1

X qj
[9 qi

1000

(' 100

10 1
0.0 0.1

6.6
6.6

1

At (ms)

Figure 4.29 - Scaling of rr (impurity confinement time)
and central T, relaxation time.

263

x
x

x x
x-
x

ek x

X0x

. . .. . . 1 . . . .X

10



100 200 300
trMW (m'S)

100 200 300
t'm- (s)

- normalized
decay from
case b

3

46

*00 s00 500

Figure 4.30 - Time evolution of central line averaged den-
sity for pellet fuelled plasmas. a)high qa case(qi = 10.8), b)low
qg case (qj = 4.8).

264

a

L I L I I

V

ft

9
I
S

2

a)

400 00 00
01

0

7

ft

9
I
I

b)

-

2

01
0

I I T
I I



V) Conclusions

In the previous chapters we have discussed the study of sawteeth and the plasma

response to pellet injection from the point of view of the electron temperature. The

diagnostic technique used has been electron cyclotron emission(ECE). This is a

rather unique diagnostic for it is capable of making essentially a point measurement

of the electron temperature without directly sampling the plasma and with a single

view. Most other diagnostics involve the measurement of line integrated quanti-

ties which have to be deconvolved to arrive at a profile. Because of instrumental

and space limitations the deconvolution ususally must employ assumptions about

the plasma, which of course limits the kinds of profiles one is sensitive to. What

gives ECE its ability to make spatially resolved measurements is the monotonically

varying toroidal magnetic field in a tokamak.

Cyclotron radiation takes place at the harmonics of the local cyclotron fre-

quency at the radiator. If we know the spatial distribution of the magnetic field

then under certain conditions a frequency can be identified as originating at a spe-

cific spatial location in the plasma. The frequencies of interest to ECE in Alcator

are 60 - 600GHz, which lie in the far-infrared range.

In order to make a temperature measurement we need to look at regions of the

spectrum which are optically thick. In this case the radiation intensity is propor-

tional to the local electron temperature at the emitter. For the case of Alcator, two

harmonics are optically thick, the 0 mode fundamental and the X mode second

harmonic. For this thesis all measurements have been done using the second har-

monic, because of its higher frequency and thus intensity. This allows measurement

of the electron temperature profile to at least ±13cm in the minor radius.

The instrument used in making the measurements has been a six channel FIR

grating polychromator(fig. 1.8). This allows the simultanious monitoring of the

electron temperature at six radial locations. The effective spatial resolution of

this instrument for typical Alcator toroidal fields (BT = 8T) is about 2.5cm along

the major radius. The vertical and horizontal resolution is fixed by the imaging
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system to match the radial resolution. Signal detection was done through six InSb

detectors. The time resolution of the instrument is detector limited. The detectors

have a maximum time resolution of ~ 1As, the actual time resolution was bandwidth

limited by the preamp in order to reduce noise, giving an effective resolution of

In this thesis we have focused on the study of some cases of transient phenom-

ena. By studying the transient behaviour of a system we can have access to physics

which is normally shielded from us on a longer time scale, but which can have an

important effect on the long time behaviour of the system. The study involved the

temperature evolution in a sawtoothing plasma and in a pellet fuelled plasma.

In all these cases previous workers have used the soft-Xray emission to study

the dynamics of the plasma. While this has the advantage of very good signal to

noise and many spatial channels, it has the disadvantage that the signal depends

in a complicated way on a number of plasma parameters. This has limited the

usefulness of, the technique in determining. the behaviour of the plasma. Use of

ECE to study these effects constitutes a novel approach in many of these areas.

The first subject we considered was that of the sawtooth disruption. This is

important to have done first because in the third chapter we use some of these

results to drive the development of the model used to study the problem of the

electron heatpulse propagation.

The magnetic reconnection model was used to describe how the current profile

rearranged itself during the disruption. We showed that for the case of Alcator the

skin current which would be generated according to Kadomtsev, dissipates within

3 0 0 ps. The reconnection time as predicted by Kadomtsev2.4] can be as much as an

order of magnitude larger than the measured disruption time. The discrepancy is

such that it may reflect the roughness of the model used in the estimation. For the

case of Alcator a more detailed calculation may reduce the discrepancy. Results from

TFTR[2.19] indicate however that the discrepancy is even larger. They measure

disruption times which can be as low as 401A a number which is not consistent with

their predicted Kadomtsev reconnection value.
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By considering the incremental profiles set up during normal sawteeth we found

the ratio of the energy mixing radius to the profile inversion radius (rM/ri) to be >

2. By considering single resonant surface reconnection we showed that the maximum

possible value this ratio could have is el which is well below that measured.

The implication is that even the case of normal sawteeth is incompatible with

single resonant surface reconnection. To account for the large values of rM/ri the

disruption must either involve multiple resonace surface reconnection as discussed

by Parail(2.7] or some other mechanism such as the turbulent model proposed by

TFR[2.13]..

The m = 1 precursors found on Alcator have a frequency of oscillation consis-

tent with the electron diamagnetic drift. The amplitude however is incompatible

with a single resonant surface model. This was one observation used by TFR to pro-

pose that the m = 1 precursors could not lead to the sawtooth disruption. Another

interpretation which we have suggested is that if two resonant surfaces develop they

evolve in such a way as to reduce their net m = 1 signature, in this way rather large

islands may develop without large precursors.

Empirical studies of the sawtooth period, amplitude and inversion radius were

done to compare the behaviour of these parameters with scalings developed for

other machines. The sawtooth period compares well with the scaling of McGuire

and Robinson [2.12] and Jahns et. al. [2.11]. It was found that the inversion radius

agreed well with the TFR scaling[2.13]. The sawtooth amplitude showed reasonable

agreement with the TFR scaling and a scaling based on the McGuire-Robinson form.

These scalings are empirical in nature, the fact that they agree with Alcator results

gives more confidence to their use, since in general Alcator operates in a different

regime than the ones for which the scalings were developed(except the McGuire-

Robinson case). Any theory developed to explain the sawtooth mechanism should

compare favorably with these scalings.

We have studied the case of exotic sawteeth which seem to come in three

varieties, partial(fig. 2.21), giant (fig. 2.22) and compound giant (fig. 2.24). The

frequency of ocurence for these is a strong function of impurity content (fig. 2.25).

267



All three cases are characterized by two consecutive disruptions separated by a

time less than or equal to one sawtooth period. Between the disruptions large

m = 1 oscillations are seen inside of the profile inversion radius. Their frequency is

consistent with the electron diamagnetic drift frequency. In these cases there is little

if any precursors before the first disruption or successors after the second disruption.

The delay between the previous sawtooth disruption and the first disruption of the

exotic sawtooth is the same as a normal sawtooth period. This implies that the

trigger condition in the case of a normal sawtooth and that of an exotic sawtooth

must be the same.

Based on the results arrived at from the study of both normal and exotic

sawteeth a model was suggested which may explain their respective behaviour in

a unified manner. We assume that the trigger condition for the normal sawtooth

and an exotic sawtooth is the same. Normal sawteeth reconnect to the center,

while exotic sawteeth have their initial disruption arrested before reconnection to

the center can occur. In the latter case the system is left in a highly asymmetric

state(thus the m = 1) until the second disruption takes place, which completes

reconnection to the center. A possible mechanism to arrest the disruption may

be the creation of a magnetic barrier. The delay between the first and second

disruption is the time the plasma takes to overcome the magnetic barrier. The

creation of this barrier may be associated with the presence of impurities. The

absence of m = 1 precursors may be due to the development of multiple resonant

surfaces as suggested. This model is suggested by the data although it is not the

only possible interpretation. The self consistency of the model must be checked.

Work must be done studying how magentic barriers may arise in a tokamak and

whether impurities may play a role in their creation.

The heatpulse generated by the sawtooth disruption has been used to estimate

the transport coefficients. Previous workers in the area have used the soft-Xray

signal to make these measurements(3.1]. Because of the uncertainty in making

a temperature measurement using soft-Xrays, workers have been limited to using

-r(the delay for the signal to peak at a given radial location after the previous
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sawtooth crash) to parametrize the diffusion process. Using ECE to measure the

electron temperature, has allowed us to make use of the complete temperature trace

in inferring the electron thermal diffusivity.

In order to infer the electron thermal diffusivity, the diffusive term of the elec-

tron thermal transport equation must dominate. Previous workers have assumed

this to be the case, however in Alcator the situation is not as clear. During high

density operation the ions may have a significant effect on the electron energy trans-

port. A single sawtooth model was developed to study the parameter range over

which the diffusion term dominates the electron thermal transport equation. Five

non-diffusive effects were considered, density pulse, radiation damping,thermal con-

vection, Ohmic heating and electron-ion coupling. Of these electron-ion coupling

was found to be the most significant. This effect couples the evolution of the elec-

tron and ion heatpulse, thus the measured X.ff reflects a complicated function of

the two. The degree of coupling is a sensitive function of the dimensionless col-

lisional coupling coefficient v and 3 M Xi/X,. Electron-ion coupling effects may

play a significant role even at moderate collisionalities (v ~ 50) depending on the

value of 0. For the case of Alcator these correspond to densities > 2.5 x 10 1 4 cm 3 .

Density pulse effects were found to be important when the size of the density pulse

perturbation is roughly the same as the temperature perturbation.

A method of analysis was developed which automatically accounts for the

plasma not being in a quiescent state. Starting from the general transport equations

and neglecting the non-diffusive terms, a Fourier transform hierarchy was developed

to describe the evolution of the heatpulse. This method gives rise to a natural or-

dering of the various terms, with p = 0 representing the time averaged profiles and

p > 0 the incremental profiles. The reheat term R which appears in the equation for

every order p, specifies the initial and final profiles over the interval of the solution.

Based on results of chapter II, we found the initial perturbation to extend far out

into the plasma, this may make near field effects important. For this reason we

have used measured profiles for R. The form for X. was allowed to have a simple

parabolic dependence on radius. It is found that the lowest orders of p are the ones
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most sensitive to x,. Thus only the six lowest harmonics in p beyond p = 0 were

used to find a self-consistent x,.

Analysis has shown that the most sensitive parameter in estimating X, is the

reheat profile R. A comparison was done of the estimated x, as found by the

method proposed in ref. (2.5] and the method used here. We find that our method

predicts a value for X, roughly three times lower than that of [2.5]. These results

show that at least for the case of Alcator near-field effects play an important role

in the Xe estimate.

The data showed a preference for a radially increasing X, over a flat X.. The

i,,(thermal conductivity) profiles were also found to increase with radius. Com-

parison with power balance estimates show X.&,/X.,& ~ 1 - 3 with a mean about

1.7. With the data showing a systematic overestimation of Xe over that of power

balance. The reason for this remains unclear although several were proposed. One

possibility might be a time changing X.(a remnant from the sawtooth) which affects

the central region of the plasma, power balance estimates may be-much less sensitive

to this than the heatpulse estimate. Another possibility proposed by TFTR[2.5] is

that the heatpulse evolves with a X, different than that for bulk transport.Multiple

non-diffusive effects may also play a role in the enhancement of X..

A scaling of 1/X, with density showed no saturation as does the global energy

confinement time. While this result is consistent with the ions being the loss chan-

nel, it is not definitive because of the possible importance of non-diffusive effects.

In the high density regime the final interpretation is very sensitive to the value of

0, which has large uncertainties.

Because of the importance of non-diffusive effects in regimes like Alcator's,

explicit accounting of non-diffusive effects must be done in our estimates for x,.

Multiple non-diffusive effects may lower the threshold at which xeff becomes sig-

nificantly influenced by them.

In studying the evolution of the electron temperature during pellet injection we

focused on the transient behaviour during the early stages of injection. The physics

taking place at this early stage not only plays an important role in the ablation and
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deposition process, but evidence shows that the events taking place at this stage

may play a role in determining the subsequent evolution of the plasma.

With reguards to the evolution of the electron temperature we have observed

two types of' relaxations. A fast relaxation which takes place on a time scale much

faster than would be predicted by bulk diffusion and a slow relaxation which is more

consistent with bulk diffusion. Which of these two cases takes place seems to be a

function of the pellet size relative to the plasma.

A propagation study of the pellet generated heat(cold) pulse was done. We

found the leading edge in both the slow and fast decay case to propagate into the

plasma with a velocity roughly twice that of the pellet. The difference between the

two cases is found with the behaviour of the trailing edges. This is not surprising

since it is the trailing edge which reflects the main energy transport of the pulse.

Outside the ablation radius the evolution of both cases is similar and consistent

with the pellet velocity. Inside the ablation radius the evolution is very different

for the two cases. The tail for the fast decay case propagates into the center at

the same rate as outside the ablation radius. The slow decaying case undergoes a

drastic reduction in the rate of propagation (fig. 4.6).

A scaling has been done of the central relaxation time Ato with ARR/H. A

transition is found between the slow and fast decay around Afi/f - 1. A similar

correlation was found with the change in central temperature. Larger temperature

variations tend to have fast decays.

In ref.[2.11] it was suggested that the fast relaxation is triggered by the pellet

crossing the q = 1 surface. In Alcator we find that none of the pellets studied

penetrated to q = 1, yet were able to drive the fast relaxation. The fast decay was

found for pellets that are able to penetrate past the half radius with a transition

at I ~ 8cm, in this region a correlation of the decay time with sawtooth phase was

found, suggesting that at least in this region the sawtooth mechanism may play a

role in the relaxation. No correlation with sawtooth phase was found for the cases

which lie outside this region. If I < 8cm the relaxation was always slow and if I > 8

the relaxation was fast.
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During injection we expect the density profile to develop large positive gradi-

ents toward the center of the plasma. A scaling was done which showed that the

fast relaxation scaled with the parametrized maximum density gradient.- This is

consistent with the picture that it is the density gradients which may drive the

instability which leads to the fast relaxation.

A model was developed to simulate the electron temperature relaxation during

injection assuming it is diffusive. It was found that the fast propagation of the

leading edge in both cases is consistent with bulk diffusion. The evolution of the

tail for the slow decay case was also consistent with bulk diffusion. The fast de-

cay case could only be simulated if we assume an anomalous x. about two orders

of magnitude larger than the bulk, which operates whenever the density gradient

becomes positive.

The pressure profile is not as strongly affected by the injection process as is the

density profile, large changes in the pressure profile can only come about if preceeded

by anomalous transport. These results coupled with the measured correlation of

relaxation time and density gradient suggest that it is the density gradient which

drives the fast relaxation.

Pellet injection has been used to study the effect of profile consistency in the

plasma. When q1 < 8, the initial and final electron temperature profiles are found

to be similar. This was found to be true even for the cases in which the plasma was

sawtoothing before but not after injection. When q1 > 8 profile consistency seems

to turn itself off.

The results suggest that profile consistency is a limit which represents the

narrowest stable width that can be achieved by the plasma. Whether this limit is

accessible or not depends on the plasma transport. Low q1 discharges exhibit better

confinement than high q1 discharges. According to this picture accesiibilty to profile

consistency is expressed by conditions of eq. 4.4.5 and 4.4.6. The transition takes

place when aT.(trans) ~ aT.(qJ) which for Alctor is when q, - 6 - 8.

A wide variety of sawtooth behaviour was found in post-pellet plasmas. Impu-

rities seem to play an important role in controlling the sawteeth just as in the case of
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exotic sawteeth. The impurities exhibit improved confinement for the case of larger

pellets. A transition in confinement is seen with AR/R which is sinilar to that for

the central electron temperature relaxation. This suggests a link between events

taking place early during injection and the long time behaviour of the plasma.

Future work in this area should improve our understanding of how the density

may generate such fast transport in the early stages of injection. A better measure-

ments of how the density profile evolves, are needed in order to assess the evolution

of the pressure profile and provide more information about the transport in the

plasma. Based on results of the temperature profiles for different values of qI, it

is found that the pellet seems to improve confinement for low qI discharges and in

some cases degrade confinement for high qI discharges. The dependence of trans-

port on current is not well understood. The impurities again have come to center

stage in determining sawtooth behaviour as in the case of exotic sawteeth. We must

understand how the impurities affect the sawteeth. For the case of non-sawtoothing

plasmas in which the electron temperature profile seems to have the self-consistent

profile width, we must understand how the impurities can affect the temperature

profile and how different can it be from the canonical shape.
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