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ABSTRACT

A kinetic theory of triggered VLF whistler emissions is given that is capable of pre-

dicting from a small scale numerical implementation the observed emission forms, and

frequency-time characteristics. The present paper focuses on the theoretical developments

and the explanation of the triggering process, complete with a demonstration of the thresh-

old behavior (sometimes known as the dot-dash anomaly) and the generation of specific

falling frequency emissions that compare quite favorably to typical observations made in

the controlled experiments based in Siple Station, Antarctica. The theory that gives these

results is a fully self-consistent nonlinear treatment based on kinetic theory and valid in the

asymptotic limit when several trapping periods occur within the interaction region. For a

typical set of parameters, I = 4.3, n = 400 cm- 3 , and amplitude, BT ~ 1.6 pT, for the

input wave magnetic field, one has about seven trapping periods in the triggering signal

and would expect good results from the asymptotic limit. In this limit the nonlinear dy-

namics can be reduced to the determination of the time, r, that the resonant particles are

trapped. The nonlinear currents can be expressed in terms of this function, r, by simple

integrals over the trapped particles' perpendicular velocities alone. Most of the features

of the emission process can be determined analytically and properties, such as the rate of

change of frequency, related to magnetospheric parameters. For more quantitative predic-

tions such as amplitude and frequency waveforms, a small numerical code which integrates

the nonlinear wave equations is used. The theoretical picture of the triggering mechanism
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contains the observed threshold behavior wherein short triggering pulses of nominal am-

plitude BT ~ 1 pT and 100 ms in duration or less cannot generate an emission, whereas

those in the 200 ms range and longer do. Similar sensitivity is found with respect to initial

frequency, where in some cases 5.5 kHz signals can trigger, but 5.0 kHz signals cannot.

Gains in the range of 20 - 30 dB are obtained with initial temporal growth rates in the

range 100 - 200 dB/sec. The emission process requires an inverted population in the per-

pendicular velocity distribution function but not necessarily linear instability. A sufficient

number of high energy electrons is required that the driven currents can offset convection,

but provided this is satisfied, a sufficiently long triggering signal will always generate a

self-sustaining emission. Interestingly, however, the self-sustaining emission does not de-

pend on the number of these high energy particles or the details of the velocity distribution

function but only on bulk magnetospheric parameters such as magnetic field, gradient scale

length, and the plasma density in the plasmapause. Also the marginal signals generated

just above the threshold are always fallers as is observed. These features have not been

explained by existing theories. Unresolved issues include the mechanism of termination,

the generation of risers and hooks for more intense emission situations, and the detailed

synchronization of the frequency time and amplitude waveforms. This last point requires

the solution of a peculiar singular two-way wave equation for the phase which is presently

solved in a subsidiary asymptotic limit valid within the interaction region. These unex-

plained points could well be explained within the present theory by the inclusion of the

variable resonant velocity in the projection of the electron distribution function.
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I. Introduction

Triggered VLF emissions have fascinated and challenged magnetospheric scientists for

several decades1 . Recently the observations have been carried into space 2-2 2 and provided

in situ measurements of the wave fields at the point of origin of the emission phenomenon.

Moreover, the spacecraft experiments have discovered similar emissions originating from

the magnetospheres of Jupiter 9 " 9 , Saturn 22, and most recently Uranus. In fact the cyclical,

quasiperiodic nature of the emissions from Jupiter are reminiscent of the kind of behavior

exhibited by pulsars 23 at much higher frequency. During these years of experimentation

on terrestrial whistlers a quite detailed and quantitative picture of the observational prop-

erties has been compiled 2
1

2
1. The challenge to theory has been to account for these

varied features. -Many of the qualitative physical features underlying these emissions have

long been identified and understood 2 7- 3 . Nonetheless, in spite of an impressive array of

excellent theoretical work 36 , the goal of a self-consistent, first principles theory capable

of predicting the observed emission forms, threshold behavior, and frequency-time char-

acteristics has remained elusive. The present paper describes such a theory (presented

elsewhere in abbreviated form3") and gives the first results obtained from it.

The theory focuses on the controlled emission experiments as reviewed recently by

Helliwell 3
1. Coherent VLF signals in the frequency range 1.8 - 7 kHz injected into the

magnetosphere from Siple Station (L = 4.2), Antarctica, can be amplified by some 30 dB

and, under the appropriate conditions, trigger intense narrowband whistler mode emissions.

A key parameter in the experiments is the spectral purity of the transmitted signal. If

the width of the signal spectrum exceeds 10 Hz, there is substantial loss of gain by as

much as 20 dB. The occurrance of triggering exhibits a sharp threshold behavior with

respect to input signal intensity and duration 8 . Onset of triggering appears at signal

lengths3
1 in the range of 50 to 100 ms and intensities of the order of kW, with these values

varying somewhat according to magnetospheric conditions. Additional transmitter power

has very little effect on received emission intensity once the threshold is exceeded. For near

threshold values, the emissions tend to be fallers3
1 following the termination of the input

signal. At longer trigger lengths and under active magnetospheric conditions the emissions
39tend to be risers triggered before the end of the pulse

Another key feature of the emissions is the constancy of their intensity, once they

have been triggered2 6 ,39 . Thus their nature is one of a rapidly varying frequency and

nearly constant amplitude - exactly the opposite characteristics from what would appear

in a linear amplification mechanism. The explanation of the observed features must lie
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in the nonlinear dynamics3 3 -3 5 . Accordingly, the theory here to be developed focuses
on the nonlinear dynamics surrounding particle trapping in the whistler signal. This is
the strongest nonlinearity present. In fact trapping occurs for ratios of signal strength to
earth's magnetic field40 , B,/Bo, on the order of 10-. Of course, linear mechanisms, such
as amplification of the trigger signal in propagating inside a duct from the ionosphere to
the equator may play an important role in the overall picture.

The theoretical developments have been reviewed" by Matsumoto 36 , and the reader

is referred there for more specific discussion of the various contributions. The work of

Nunn3 3 , however, should be emphasized as particularly insightful and instrumental to the

developments we report. Although the theory was limited by its semi-empirical nature

and required several ad hoc smoothing and damping parameters to render it numerically
stable, it is the only complete self consistent theory previously given. The equations

differ fundamentally from those of the present theory, which is, by contrast, a deductive

asymptotic calculation, but some structural parallels exist.

Matsumoto's paper also reviewed the experiments as they pertain to theory and gen-
erated a list of features of artificially stimulated emissions that theory should explain.

It is noteworthy that such a detailed morphology of the phenomenon can be ascertained

directly from the observations. The list is repeated here with minor revisions:

1) MECHANISM FOR TRIGGERING exhibiting,

a) Threshold behavior as a function of pulse length (also known as the dot-dash

anomaly).

b) Narrow frequency bandwidth (~ 100 Hz), and even narrower bandwidths (

10 Hz) required of the triggering signal.

c) Triggering by both high and low power transmitters.

d) Repeatability.

2) GROWTH OF SIGNALS by 20 to 35 bB.

a) Exponential phase of triggering wave growth with rate of 25 - 250 dB/sec.

b) Frequency lock to or within 200 Hz above triggering signal during growth phase.

c) Release of emissions at times of growth stop or of triggering wave termination.

3) VARIATION IN FREQUENCY
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a) Starting at the triggering frequency and rising initially.

b) Predominance of risers for longer triggering pulse and fallers for shorter pulse.

This is an almost verbatim version of Matsumoto's list, but organized under three

main headings. All the features on this list can be accounted for by the results in this

paper, discussed in section VII, with the exception of the first half of 31) - the risers.

Risers are not excluded by the theory, of course, but do not occur for the marginal case

near the triggering threshold which is emphasized in this paper. Although a suggestion

of how risers would form will be given in Section VII, they have not been generated in a

completely satisfactory manner to this point. There are several other important aspects

of the problem that the theory has not yet explained and must be regarded as limitations,

il spite of its ability to account for Matusmoto's list.

There are several specific points of the observational properties missing from Mat-

sumoto's list that should also be explained from the theory, (and will be accounted for

below):

4) Most active triggering occurring on times of low magnetic activity following substorms

by several days.

5) Acute sensitivity to the initial frequency. Appearance of frequent triggering on the

higher of two frequencies very close together, (5.5 kHz and 5.0 kHz), with no ASE's

associated with the lower frequency.

6) Relative insensitivity of the total gain and the frequency variation to large changes in

magnetospheric conditions.

Electrons moving along magnetic field lines can resonate with the perpendicular elec-

tric field of a right circularly polarized whistler wave propagating along field lines (because

of the "ducting" phenomenon4 1 ) if the condition,

w - Qc, = 1 , (1 -1)

is satisfied. Since w < fc,/2 is required for ducting to be effective 1 ,4 1 , eq.(1-1) implies that

VI < 0, or that resonant electrons move opposite to the wave propagation direction. The

resonance condition is not homogeneous since the magnetic field strength is a function of

arc length, s. Consequently, the dominant interaction occurs where the resonance condition

is locally stationary, or for constant frequency, near the magnetic equator. The concept of

inhomogeneity induced frequency changes was first introduced by Hansen4 2 and Helliwell".

Helliwell noted that if one requires equation (1-1) to be stationary as the electrons follow
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their adiabatic orbits along the field lines, then the frequency change in time, 0, seen by

the electrons is,

w oc -s , (1-2)

where s = 0 is the magnetic equator. Equation(1-2), known as the Helliwell condition, links

risers to upstream emission and fallers to downstream emission, with the flow direction in

our convention determined by the wave propagation. One of the problems for theory has

been to derive this condition, if correct, from the self consistent nonlinear currents.

The theory follows a physical picture based on trapping near the equator for sev-

eral trapping periods. This is a familiar idea and has been the basis of several previous

works2 9,33,34 37 ,43 . What is new in the present paper is to give this idea a complete math-

ematical formulation by deriving from it simple expressions for the nonlinear currents 6 .

This then provides a basis for a physical understanding of the emission process itself, and

detailed calculations of the frequency and amplitude waveforms, which is also new. The

key idea that evolves from the analysis is the representation of the nonlinear current in

terms of the time that each particle is trapped, r(vj, s, t). The nonlinear dynamics are

then reduced to the solution of a simple convection equation for r,

-+V4--r= 1, (1-3)49t 9S)

which is integrated subject to the trapping condition 28 - 37,40 ,4 2 -50 , eq.(3-45). In contrast,

in Nunn's theory33 there are three equations in place of (1-3), two for the trapping vortex

location in phase space and one for the volume of the this vortex. The trapping time, r, is

not explicitly computed in Ref.33 (although the trapping volume is given the symbol, r).

Recent theoretical interest 4 0 4 5' 47 ' 4 '5 0 has focused on the role of the untrapped res-

onant particles which may be important in some cases but are generally found to be a

smaller contributor 40 to the currents than the trapped particles. In the present paper,

these particles play a subdominant role and are absent from the leading order asymptotic

theory (although they could easily be added to higher order approximations within the

present framework).

Certain aspects of the theory and its applicability to observed phenomenon can be

understood from some very simple considerations and formulas. These have been known,

for the most part 28 ,2 9 ,3 2 ,34 ,35 ,40 ,44 , but are derived as byproducts of the theory below as

well. First there is the trapping threshold, determined by the condition that the resonant

electrons undergo a full trapping period in crossing the equator. This condition sets a
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lower bound on the wave magnetic field of the triggering wave,

BT >5.8 li 1 3 / 3 n/ 2/3(l L/) 2(/)1/ 6 1 22( 1 - O/) pT (1-4)

Here the field strength is given in picotesla, the plasma density in units of 100 cm- 3 , and

I-shell number in units of 4, as appropriate for conditions near the plasmapause. The

factor L/Ln gives the ratio of magnetic to density scale lengths, although the last factor in

square brackets is very close to unity, and this is not very important here. The quantity,
w, is the wave frequency and Q is the equatorial gyrofrequency. Note that the trapping

threshold is a very strong function of i-number and frequency, such that trapping becomes

much stronger at higher I and w. If ducting' is required for the emission process, however,
we must have w/11 < 1/2, so that emissions should occur most frequently near W ~ f.

This is indeed observed. The density dependence in eq.(1-4) will localize activity where

the density is highest, opposing the tendency to move to higher i-shells. The net effect is

to position the emission activity in the vicinity of the plasmapause m .

There is some question as to the input signal strength, BTR that actually arrives at the

field line equator for triggering. Most direct satellite measurements in situ have tended18

to find BTR ~ .05pT about an order of magnitude less than used in this paper and well

below the trapping threshold. However at least some of the data' is biased toward smaller

values of BTR, and other measurements1 1 have yielded BTR ~ .5pT, very close to what we

use. Also the satellites have always seen unducted signals whereas the emissions originate

in ducts6 . There is a likelihood that the ducted signals are much higher' because of linear

preamplification, as is suggested independently by the echo triggered emissions'. Also if

the coherency bandwidth condition 38 ,39 bw/w < 2 x 10~3 is used to infer the input signal

strength via bw( 1+ 11/2w) - we,,, one finds BTR ~ 1 pT. The "ramping" experiments 38 ,6 7

imply a similar number.

A related parameter is the inverse of the number of trapping periods, the expansion

parameter of the asymptotic theory. This is measured by the factor,

9 2 B 0 3/

*1 = 212 R 2 W2 BT Lwo -//o- I

= 57 1-9 42 -' B )3/2
=~ ~~~0 5. xBT*l2(1-5

where w,/ = .4 has been used for simplicity. For a typical set of paralneters, 1 = 4.3,

n = 400 cm-3, and BT/B = 4 x 10-' (this corresponds to BT ~ 1.6 pT), one has CO ~ .15,

implying about seven trapping periods.
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Finally, the energies of the electrons responsible for the emission process4 0
,
5 2 can

be obtained from the resonant velocity and the dominant perpendicular velocity, v' , of

eq.(4-29). This gives the minimum resonant energy,

-. 1 1 2 Q( gl222( ,/)

ER 2 - -
2 [9 + (1 - 2L 2 /L)(1 -/

- 5.75 14'np 0  (1 - w/)2 [9 + (1 - 2L 2 /L2)(1 - w/o)] keV . (1 - 6)

This exhibits a scaling with parameters that is similar to the trapping threshold.

Section II sets forth the WKB equations used as the framework for the theory. In

section III, the asymptotic ordering is established and used to compute the electron orbits

throughout the inhomogeneous trapping process. These orbits are used as characteristics

to compute the nonlinear currents in section IV. This section obtains the expression for

the trapping time, r, as well as the trapping and cutoff conditions, to give the theory a

self-consistent, closed form. Section V draws the picture of the emission process that can

be inferred directly from the nonlinear theory. Features that can be seen from the theory at

this level include: 1) the relation of triggering to an inversion in the perpendicular velocity

distribution function (without requiring linear instability); 2) the dot-dash anomaly; 3)

the appearance of an initial rise in frequency followed by a rapidly falling tone for the

marginal self-sustaining emission. Section VI describes the numerical procedure used to

advance the nonlinear wave equations. A detailed discussion of the numerical results and

comparison with the experimental observations is given in section VII. The main results

and conclusions are summarized in section VIII.
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II. WKB Wave Equations

Observed emissions satisfy the general requirements of WKB in that the propagation

characteristics of the waves are linear 33 (due to the cold electrons). The wave length is

the shortest spatial scale and the wave period is smaller than the time scale of amplitude

evolution. We follow the formal developments as given by Bernstein"3 , but include in the

first order current a general non-linear dependence on the complex wave amplitude. The

wave electric field is represented in the eikonal form, to leading order, as

E(.s,t) = a1(s,t)eV'(S t)ej (2- 1)

where s is the arc length coordinate along the field line and el = (e, + iey)/2 is the

Whistler polarization vector, and the wave frequency and wave number are given by

= - , k = .9" (2-2)
at 09s

The WKB equations are obtained by an expansion in a , giving, at first order,

an evolution equation for the complex amplitude, a1 ,

-e!- -el +[(Vwe):ele -Vaj = , (2-3)
Z{-e 3 . e9WE a 23

where,

)3j= ale a (WL) - a,+ 2 el_w = a at a

- [(Vei)T . Vk] - OT - [V (VkwC)] - el
= 2

+ 4rpH . el - 41re~~ w e* -JNL [ETAe'(u+")e1], (2 - 4)

and the sum, in eqs.(2-3)and(2-4), runs over the system eigenmodes. The dielectric tensor,

g(k, w) ,is written,

E = e iee* + E2 e 2 e* + E3 e 3 e*. (2 - 5)

We assume there is no coupling of modes or degeneracy in the propagation of the Whistler

emission, so that e2 5 0, E3 : 0, and

c 2k 2  W2
C,=1- 2 , -- (2-6)
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2gives the Whistler dispersion relation. In here wp, represents the local plasma frequency

and 9 the local gyro frequency. In this case the following relations hold,

a a
e* - (we) - ei = -wei, (2-7)

& &
-el=0; Ve =0; --el=0, (2-8)
at at

and,

Vkwe : eie* = VkweI (WE,) =V av (WEi). (2-9)

Using eqs. (2-7), (2-8), and (2-9), eq. (2-3) for the complex Whistler amplitude be-

comes,

Ba1 ~~41re-'1O-e* - JNLE A +2
ac, + V * I + Ya = - 4 N TAei(w+±-)el
at Wt9 Ei/&W

Q1V- V9 (E) (2-10)
2 -(wEj) V .,W

where,
-y = 1 - 1 (2-11)

W&Ei/&W '

is the linear damping decrement due to the background plasma which contains the Her-

metian piece of the conductivity tensor oH,

We now specialize and scale these equations to the problem at hand. First we neglect

the linear damping and the divergence of the group velocity (as higher order in the E"/

expansion as outlined below). The field amplitude is written

a, = ETrAeiw, (2- 12)

where ET is the field of the triggering wave, so that A is a dimensionless, order unity,

slowly varying amplitude. We then scale the velocity to V, = cno/w1 ,,o (gyrofrequency

and plasma frequency values at the equator) and the time period to w., = VffpET/B.

Then eq.(2-10) and eq.(2-12) combine to

eiw -- + V9a A + i Ae* --( +g a) =
at V, as at V, as -*-JL(-3

47re "-e. JNL [ETAe +q)e] (2 - 13)

(W8E1 a/w)w, ET
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Defining the real and imaginary parts of the non-linear current as,

., 4 r e iy V + w ) e * l - J N L
Ia ,= Im{ (2 - 14)

and,

Ir =M Im e'V+we N (2 -15)
1 (U.'E/aW)w, ET

gives the dimensionless wave equations

- + V9aA =-IR (2-16)
at V, as

and,

-+ - = -- II/A (2 -17)
at V, a s

which are in form similar to wave equations in References [31,33,45].

Note that the slowly varying wave phase W is included with 0,4 in computing the non-

linear current, so that frequency shifts, bw = -80/Ot , away from the triggering frequency,

w = -Oi/ t, are included in the non-linear current.
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III. Asymptotic Orbit Theory

The wave magnetic fields" 4 0 , B,, encountered in artificially stimulated emissions as

well as in natural whistlers, emissions of chorus54 and hiss, are in the range of 10 pT or less.

This is some five orders of magnitude smaller than the background magnetospheric field,

B, at the plasmapause and provides an excellent smallness parameter, e ~, B./B, for an

asymptotic theory. The inhomogeneity is likewise small as measured by the dimensionless

parameter, c/(Wpe RE) ~ 10- . These two parameters can be related by a formal ordering

which turns out to be c/(wplRE) ~ (B2/B)/ 6 (and is, therefore, quite realistic as well)

leading to analytic expressions for the orbit characteristics, as required for the kinetic

theory.

The number of trapping oscillations a particle undergoes in passing through the in-

teraction region is nominally e-1/3 7, for the triggered emission problem. For the field

strengths found in chorus, this number could be somewhat larger. The theory developed

here considers the limit where many trapping periods occur within the interaction region

and the relative oscillations in the parallel velocity are small. Then, because the rate of

change of wave frequency with time is slow and the spatial inhomogeneity in the magnetic

field is weak, motion along the field lines occurs on a slower time scale than trapping.

There is an adiabatic invariant3 4 'o associated with this motion that allows an analytic

description of the detailed structure of the trapping vortex in phase space.

A. Asymptotic Ordering

The exact equations for the orbits 2 8 - 3 4 ,4 0 ,4 5- 4 9 ,5 5 - 5 8 are

dt = og , (3 -1)

dv1  BW 1 vi 2B
= --- v1 cos - , (3-2)dt B 2 B s

dvj B("- . ! 1 vj e9B-v (Vil - W-)Q- c s CO + , lvL8 (3 - 3)dt k B 2 B s

dq5p (v1 - w/k) BW- = - w --f2 sin + 1, (3- 4)
di v1 B

where Bw is the slowly varying wave magnetic field amplitude which is related to the

electric field amplitude, ETA , of eq.(2-12) by

ck
B = - ETA. (3-5)

Lo
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The phase, 0 , in equations (3-1) to (3-4) gives the phase of a particle with respect to the

wave and is expressed as,

0 = 0. + (P + 0, (3-6)

where 0 is the particle's gyrophase angle. Equation (3-4) may be expressed in terms of

the phase 4,

dO ds 80. O'.+ dOb do

dt d s &t dt dt
_ (v1 - w/k) BW

= - B sinV+kvi -w + . (3 -7)

The frequency, w, in eq.(3- 7 ) includes the contribution from the slowly varying phase

change, ay/at , driven by the nonlinear current.

The emission process occurs in a region near the magnetic equator where the equilib-

rium field strength is taken to be29,33

B = B0 (1+ s), (3-8)

and the scale length, L, ignoring any corrections 9 ' 60 to the dipole 24 field, is expressed in

terms of the field line 1 number and earth radius, RE, as34

v/2
L = -iRE- (3-9)

3

To develop an asymptotic theory for the orbits note that eq.(3-7) can be written

difi
dt= kvj - w + 1 + 0(,-2). (3 -10)

The correction term in eq.(3-10) is much higher order than we will work to and can be

ignored3 3 4 0 ,4 9 henceforth. Orbital behavior similar to trapping occurs near the equator

where the gradient terms are small. Without the gradient terms the trapping oscillations

are evident from eqs.(3-2) and (3-10), giving a trapping frequency, wt, = flkv±Bw/B.

Particles with parallel velocities on the order of

VR = (w - f)/k = VR(s,t), (3-11)

are resonant and stay in nearly constant phase with respect to the wave2 9 . It is then

convenient to define a new velocity variable

V = V11 - VR, (3-12)
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anticipating that v/VR < 1 .

In terms of this new variable the equations of motion become,

ds
= V + V, (3-13)

d = B. 1 2 1 OB OVR OVR _ + 314)
dt B 2 B s Os Os k 2'

where the last term arises from evaluating

.OVR W u - Q ak

OW = - k 2 - W. (3- 15)

The time derivative of o is L =($ + VR )w. The remaining equations are,

dvj B, 1 1 OB
(/k - v)f cos 4 + - V(VR + v) -- (3-16)

dt B 2 B s

dt = kv + O(2 (3-17)

The basic velocity scale, V,, is set by the resonance condition. Since frequencies are

comparable to the gyrofrequency in the triggering problem, actually w S1/2, one has

VR ~ Q/k. From the whistler dispersion relation for frequencies near fc, the wavelength

is of the order of the collisionless skin depth, or k Wp,/c. Thus we take the velocity scale

to be,

V, Q-. (3-18)
ope

It turns out, as will be seen shortly, that the perpendicular velocities for particles subject

to trapping are of the same order4 6 so that V, characterizes all velocity directions.

The time scale is set by the trapping period which, using v1 ~ V and k ~ Wpe/c,

implies a frequency scale,

0, ~ /B:/ B. (3 -19)

Now we can define a smallness parameter, C, as

W r- < 1, (3-20)
no

indicating at the same time that BW/B ~2 as noted above.

Assuming the time scale in equation (3-14) to be the trapping period, the first term

on the right hand side of eq.(3-14) implies that

V ~ W . (3-21)
VR kVR --a (
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To the order we work then, v is always negligible compared to VR . The fourth term on

the right hand side of eq.(3-14) my be dropped.

The asymptotic ordering is determined in three steps. First note that for trapping

and entrapping and detrapping to all occur, the wave and inhomogeneity terms must be

comparable. The terms on the right hand side of eq.(3-14) scale respectively like (dropping

the fourth),
B. vjs ___ a

VLS -- ~ -- ~ 1g- (3 - 22)
B L 2  kkL2

Taking the velocities of order V,, eq.(3-22) essentially determines s to be of order s, where,

- BwwPeL (3-23)
L B c

gives the length of the interaction region29'3 in which trapping can occur. Also the mag-

nitude of frequency changes as seen by the particles, e, is bounded by C < £12Bw/B.

Secondly, we want the s motion along the field line to be on a slower time scale than

trapping so that s will vary adiabatically while the trapping oscillations occur. This is the

condition that many trapping periods34 span the interaction region. Therefore, we require

/S, ~ V,/s 0 ~ EW.tr , where 0 < a < 1 remains to be determined. This implies,

S ) 2 ( B )3 / 2  . (3-24)
WpeL Bw

Satisfying condition (3-24) for some a, is the key assumption in the theory. This requires,

with (Bw/B) 3/2 > (C/WpeL) 2 , that the wave field exceeds the critical value for trapping over

a full period. A more precise rendering of this condition, and its relation to observations,
is given in equation (1-4). Although we will stipulate a third condition below that will

uniquely determine a and relate the scale length, L, and wave field, B", this third condition

is largely a matter of convenience. A very similar asymptotic theory would be possible

without the third condition. It would just contain more complex s dependence in the

inhomogeneity terms.

In addition to the explicit inhomogeneity terms involving spatial derivatives in eqs.(3-

13) to (3-17), there is considerable s dependence due to fl(s) and k(s) . These effects are

corrections of order (s/L) 2 as compared to unity. It is convenient, as a third condition, to

have these variations enter on the next slower time scale, I2" ,thus

* ~ (Bw) 2 (PePL) 2 , 2 (3-25)
L B c
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Using equations (3-24) and (3-25) it follows that,

c B,)5/, (3-26)
WpeL B

and,

a -, (3-27)
37

which completes the ordering by expressing all the small parameters in terms of ei/3 . The

time scale ~ e-1/3 covers the motion of the resonant electrons completely through the

interaction region.

For conditions at the edge of the plasmasphere5 1 , I ~ 4, n ~ 400 cm- 3 , one has

C1/3 - .15 which implies a nominal interaction length of 7 trapping periods. Note also

that as B, increases, the number of trapping oscillations increases and condition (3-24)

gets stronger even though in the formal theory el/3 is larger. The asymptotic ordering

breaks down at larger B, values due to the third condition chosen largely to streamline

the ordering and to eliminate some of the messy s dependence. Paradoxically, the validity

of an asymptotic treatment of the orbits at larger B, is actually improved.

The equations for the orbits correct to order e1/ 3 are,

s = VR, (3-28)

dv_ B, EvI ' 2 ( (1+W2w)
= -V_ B CRokL S -L2 3-2 - /1 k ' (3- 29)

=- k , (3- 30)
dt

where the perpendicular velocity changes are higher order3-3 7 ,4 0 . All quantities such as

f , k, and VR can be evaluated at the equator on account of eq.(3-25). The inhomogeneity

term in eq.(3-29) has been evaluated expressing the wave number derivatives in terms of

the density gradient where the parameter L, is defined through the expression for the cold

electron density 3 3

S 2
n(s) = n, 1 + . (3-31)

L 2

In the diffusive equilibrium model40' 1 , L/Ln is very small, but we retain the term here for

generality. The equatorial plasma density is given 29 ,4 0 ,6 2 in terms of the I-shell number by

n0 () = 4000exp(2 - 1). Note that the amplitude, A, and frequency w in eq.(3-5) contain

s dependences on the scale of the interaction region, f1/3, that have not been denoted

explicitly.
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The perpendicular velocity is constant to the order we work in the trapping dynamics.

However, this small change in perpendicular velocity, dv_/dt ~ E, is required for the

calculation of the current. To leading order ,

d. (I ! ) ( (9 J_ VL Q2 B,,
-p =- + VR - -B -- cos 4 (3-32)dt dt 2 B at 495 2 B B k B'

where, it = ILY/B, is the magnetic moment, an adiabatic invariant in the absence of the

wave fields. In here equatorial values can be taken since corrections from B = B(s) are

of order s2 /L 2 -2/3 higher and, therefore, negligible in the present ordering scheme.

That is, we may take vi ~ const as far as the trapping dynamics are concerned. The

same holds for the calculation of the leading order change in p.The v± on the right hand

side of eq.(3-32) may be taken to be constant. In what follows, we will regard v1 in the

driving terms as a constant (essentially the equatorial value), and compute the wave driven

changes in p that create the current.

It will be convenient for the remainder of this paper to work with dimensionless

equations. The velocity scale is given by V,, eq.(3-18), using equatorial values. The

frequency scale is given by w, (eq.(3-19)) using the field of the triggering wave. Expressed

in terms of the electric field strength, the frequency scale is,

n, e ET? B (3 -33)

where again, equatorial values are implied. For monochromatic triggering signals, one can

use,
ET BTr O wo

T -- 1, (3-34)
B B wpe 0 Wo

where wo is the triggering frequency.

Instead of the deviation v of the parallel velocity from the resonance velocity it is

more convenient to use the frequency u defined by kv = u in eq.(3-29) and to scale this to

w,. This amplifies the small velocity perturbations, v, to be of order unity and sets their

scale to be much smaller than V. By the same token we scale ; by w., in the dimensionless

equations, which then become,

ds Q
-= V = -- (- - 1)3/2, (3-35)

dii v1 A

dt - cos - sS'(v±, w) - T,
dt 1 - LO/Q

vjA
S- cos '- S (3-36)

1 - /
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dt = U, (3-37)

where S' has the form,

_' Cv+ D. (3-38)

The quantity S = S's + TL. has been termed the inhomogeneity factor3 6 4 0 , 4 6 -4 9 and was

written in this form by Nunn 33 . The coefficients, C, D, and T, are,

V2  B 1 C, (339)C =- - - -- ,(-3)
;2L 2  EW P

D wO L2
- w 2(3- L (1 - ) (3-40)

T =+ - (3-41)
2w

The magnetic moment or perpendicular velocity change can be found from,

-- = -v- A cos , (3- 42)

or,
dvj _,

dt - Q A cos4', (3-43)dt Q W

where the second form expresses the change in the equatorial value, neglecting the order

~ E2/3 changes arizing from the adiabatic variation of the perpendicular velocity along the

inhomogeneous field line.

Note that C, depends on the inhomogeneity scale length, L, and wave magnetic field,

BT, such that, C, oc L-2BT3/2. Thus, recalling (3-24), C, < 1 is the primary condition

for validity of the asymptotic theory. Since S ~ 1, this implies s > 1, which is the

dimensionless form of the condition of many trapping periods.

B. Perturbation Theory and Adiabatic Invariant for Trapping

For known functions of amplitude, A(s, t), and frequency, w(s, t), equation (3-35) may

be integrated to give the arc length as an explicit function of the time along the orbit.

This allows the inhomogeneity parameter, S, in eq.(3-36), to be evaluated as an explicit

function of time. We can then combine eqs.(3-35) and (3-36) to obtain 33- 374 0

d2 1+ 1- A/ cos4'= -5. (3-44)
dt2 _ I
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There exist bounded oscillatory solutions to this equation as long as the inhomogeneity

parameter on the right-hand side satisfies,

I S1 (1 - W/Sl)
A- QI <1, (3-45)

v1 A

assuming for now that the frequency stays constant. Equation (3-45) is called the trapping

condition2 -3 7 4 0 ,4 2 -4 4 4 7 ,5 0 ,5 2 , 3 ', 5 - 7 . The rescaled inhomogeneity parameter, Q = S(1 -

w/f2)/(v±A), has been defined here for convenience. It will reappear frequently in the

development of the currents in the next section.

This equation can be solved by an expansion in powers of e1/3 using the method of

multiple time scales6 3 ,6 4 ,

V=P, +01 +02 +- (3-46)

S=SO+ S2+--- (3-47)

d a 0 a
-= -a+ a+ a+-- (3-48)dt 0 Ot 1  at 2

Then
d2 2p 1 3  24, a2p
dt2  t 2 atot)

e21 3  2 024, a2 p &2 p+ 6t( +2 + 92 + + - (3-49)
0t &toot1 t&&2 1t

and

cos'/= (cos P) - (7P 1 sin P,) - ( 02 cosP, +02 sin P,) + (3-50)

with corrections to S coming in at second order by virtue of the ordering, eq.(3-25). There-

fore, the stable phase, P, about which the trapped particles oscillate, is a function of S

and does not change on the fast time scale,

= - 0. (3-51)
ato &to

Using these expansions in eq.(3-44), the leading order is,

vj A
Acos Po + So = 0, (3-52)1 - W/Q

yielding

P. = P" (s(t)) = cos- 1 (- S(1-w/f)) =cos-1 (-Q). (3-53)
v1 A
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To next order one finds,

02 v1 A
2 1 j/A sin(-P) 1 = 0, (3 - 54)

which is an oscillator equation with oscillation frequency,

vAsin(--P) vA (1/4.
;0 =w =n1 Q2) .(3-55)

Thus 4'1 becomes,

01 = 60(ti, t2, *) sin (to, t1 ,t2,) (3-56)

where

=wo. (3-7)
ato

Since 0 is inherently secular on the fast time scale, one must compute dk/dt to requisite

order to evaluate 4. To find a4/8t, the next equation in the expansion hierarchy is needed.

It reads

(292 2 -2 0 24 --2 2P p a2P + 12 v_ A
+0 at2 = --2 - 2 + - 1/ cosP 0 -S 2 . (3- 58)

0t 1to1 8ot t 2 '1--w/n

The objective is to eliminate secularities of '2 on the fast time-scale. From equation (3-

51) aP/to vanishes, thus eliminating the second term on the right-hand side of equation

(3-58). The third term cannot drive the left-hand oscillator at frequency wo. The fourth

term,

I(cos P)6'2 sin2 (wot +--) = 2 2(cos P)[1 - cos(2wot +-

contains second harmonic time dependence and cannot produce secularities either. It is

then left to require that,

821k, 9 0
[ (6bwo) cos 4] = cos 4--(60wo) - 6&wo sin 4' (3-59)&t1to ~t t1 at1I at1

contain no harmonic time dependence at frequency, w,, which would lead to a secularity

in 02. This will be guaranteed under the following two conditions,

60WO = 0 (3-60)

and

I=0 (3-61)
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Therefore, the combination 6&wo, the amplitude of trapping oscillations in phase 4' times

the frequency is constant on the slow time-scale. The orbits during trapping can now be

evaluated. These will be accurate through the e-1/3 time scale and are, therefore, valid

during all of the transition of the interaction region from entrapping through detrapping.

From eqs.(3-57) and (3-61), 0 can be obtained as,

f v±A(s(t ), t) sin( -P0 ( s(t )))
I = V 1 - W(s(t), t)/f8 (3-62)

It follows that the particle's phase, 4, is,

4' Po + 6V' sin 0, (3-63)

where,

6Vpw, = const =6v , (3-64)

is an adiabatic invariant as noted previously in Refs.34 and 40.

The parallel velocity perturbation can be written, from eq.(3-37) and (3-64), as

u = P" + 6V cos 0(t), (3-65)

which makes use of the adiabatic invariant. The time rate of change of the center of

oscillation 3 0 ,3 3 '" P is given by

. M S'VR _ P0
P-= ,at (3-66)

V 1 - Q2 at1

which completes the analytic solution of the trapped electron orbits.

C. Phase Space Analysis and Numerical Orbits

The system of coupled eqs.(3-36) and (3-37), that was just solved, is nearly au-

tonomous because the explicit time dependences in the inhomogeneity S, the amplitude

A, and the frequencies w/7l are slow. One can, therefore, illustrate the orbital motion

which they contain by trajectories in a u - V, phase space. For this purpose all slow time

dependences are considered frozen such that S, A, vt' and w/11 function as parameters for

different phase space realizations. That allows to integrate the system of equations once.

The resulting constant of integration is

h = 1u 2 + sin V + S. (3-67)
2 W

19



(see also Refs.[33,40,45,46]). This constant parameterizes the orbits of individual electrons

as they move in u - 0 space. From eq.(3-67) the functional form u.(4') of each trajectory,

symmetric about the resonance line, u = 0, is found to be

u = iv2V/h - sin4' - QO, (3-68)

where we have chosen

vLA/(1 - w/) 1, (3 - 69)

for convenience. A particular choice of h gives one member of the family of orbits that

fills the phase plane. This is depicted3 3 " in Figs.3.1-3 which display the relevant phase

space near resonance (u = 0) for three different values of the inhomogeneity parameter,

Q = 1, Q = 0.5 and Q = 0. From these figures and eq.(3-68) it can be seen that the range

of 4 for each orbit is limited. The restriction is imposed by the radicant in (3-68) which is

positive only for 4 < 0, when Q > 1 and 0 > 0,, when Q < -1. The value 4', of course,

is determined by eq.(3-68) when u = 0.

To illustrate the untrapped resonant particle motion downstream of Q = 1 consider

Fig.3.1 . Electrons will flow into the u - 4 window from the top left and exit at the bottom

left. Upstream of Q = -1 (not shown explicitly) phase space looks as if turned around by

1800, Electrons enter from the bottom right and disappear to the top right. These orbits,

for large inhomogeneities, are essentially those employed in a linear theory of the current.

Small inhomogeneity, IQI < 1, produces an additional class of trajectories, called

trapped orbits, see Fig.3.2 . In this case eq.(3-68) has three solutions, 4,4b, c, for any

given h and u = 0. A particle that starts with 4 between 0,a and 4b gyrates clockwise

about P.. For an initial 0 ; 0, at Q < 0 the electron will not become trapped and

hence will continue on a slightly perturbed adiabatic orbit after passing through resonance.

Electrons with a given value h can not exist in between ob and Oc nor can they achieve

larger (smaller) values than 4'i on the right (left) side of P. for Q > 0(Q < 0).

One critical point of the system of eqs.(3-36) and (3-37) is the center or o-point, P.,
defined by cos 0. = 0, u = 0, sin 0, < 0. The other critical point, in a given 21r range of

', is a saddle or x-point, defined by cos4'. = 0, u = 0, sin > 0. Associated with the

latter is a special orbit, with

hX = sin # + Q4,', (3-70)

whose two intersection points with the resonance axis, V'b and i/c, coincide. This orbit

is called the separatrix. It's circular portion separates the trapped resonant particles
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inside the vortex about P from the untrapped resonant particles. The open ended branch

associated with Vc splits the untrapped resonant electrons into two groups, those which

pass through resonance before 4'. and those which have to wind around the trapping vortex

in order to cross the resonance axis.

The electrons inside the separatrix spend many trapping periods in resonance with the

wave at an average phase of 0 = P. According to eq.(3-42) they experience a nearly con-

stant acceleration of magnetic moment, while their parallel velocity follows the resonance

velocity, not the adiabatic orbit v 2j = 2(E - -pB)/m. The passing electrons, by contrast,
resonate for roughly one trapping period after which their phase quickly increases. This

phase mixing leaves little net change in the magnetic moment of individual electrons.

The size of the trapping vortex can be expressed in terms of the height Au of the

separatrix,

2vi-A
AU = V sin4' - sin P + Q(4 - P.). (3 - 71)

See also eq.(4-15) in the next Section. Note also the overall nonuniform distribution of

orbits. Specific nomenclature for this was introduced in Ref.47.

At the equator, Q = 0, the separatrix stretches over the full 27r range in 4' (see

Fig.3.3). This point represents to the homogeneous magnetic field case where all resonant

electrons are trapped at infinitesimal amplitude. Because of the parallel motion of the

electrons, which changes Q, this isolated point is of no practical significance. At every

other point along the field line the inhomogeneity requires a finite amplitudes, eq.(1-4), for

recognizable trapping to occur.

When Q is not frozen during the electron's motion near the resonance line in u - 4
phase space, the separatrix can be crossed. This generates a qualitatively different class

of orbits , although, it hardly affects the appearance of phase space at any instant in time.

These orbits can now enter and leave the interior at the x-point where their orbital speed (t

and 4') becomes very small. While they stagnate, near the x-point, the virtual separatrix

crosses their location. This process is called entrapping. Entrapping of particles inflates

the trapping vortex downstream and deflates it upstream in the reverse manner. Notice

that only a small sliver of phase space close to the separatrix40 undergoes in succession

entrapping downstream, trapping oscillations about P while crossing the equator, and

detrapping upstream. The center of trapping oscillations also migrafes in time. Its location

depends only on the inhomogeneity parameter Q. Starting at -7r for Q = 1, P reaches

- 7r for Q = 0 and disappears at 4' = 0 for Q = -1. The average position of the trapped
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particles, which is P, controls the energy transfer (through eq.(3-42)) to the wave and in

turn to the nonlinear currents.

The chain of events entrapping, trapping and detrapping is shown in Figs.3.4-6 for one

electron. The parameters used in the Runge-Kutta integration for both figures are exactly

the same as in the faller of section VII. See there for details. Figure 3.4 shows the whole

path in u - 4' phase space of a single electron for the duration of entrapping, trapping
and detrapping. It makes the slow migration of the orbit center point P. clearly visible.

Figure 3.5 shows u(t) (solid line) and V'(t) (broken line) separately. An amplitude of A = 3

in Fig.3.4 and 3.5 leads to 61 trapping oscillations. Notice the remarkable constancy of

the amplitude in u throughout the trapping state as expected from the adiabatic invariant

eq.(3-65). Figure 3.6 shows the equivalent of Fig.3.4 for the triggering amplitude A = 1.

The number of trapping oscillations in this particular case is small. This reflects the

conditions of low magnetospheric activity or a weak input signal which are known to lead

to falling emissions.
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IV. The Non Linear Current

Observed emissions satisfy the general requirements of WKB in that the propagation

characteristics of the waves are linear33 (due to the cold electrons). The wave length is

the shortest spatial scale and the wave period is smaller than the time scale of amplitude

evolution. We follow the usual development 3 , but include in the first order current a

general non-linear dependence on the complex wave amplitude.

Defining the real and imaginary parts of the non-linear current as,

'I-f4,re-'(V'+w)e* . JNL
IR Re JNL (2-14)

(w~e/&w)wET

and,

I f = im{ (+cP)e* (2 - 15)1I In I (waE/aw)wET2-5

gives the dimensionless wave equations

-9 + VaA = -IR (2-16)
at V, as

and,

- + - = -II/A (2-17)tV, as
which are in form similar to wave equations in References [31,33,45].

Note that the slowly varying wave phase e is included with 7, in computing the non-

linear current, so that frequency shifts, 6w = -49/8I , away from the triggering frequency,

= -a9O',/t, are included in the non-linear current.

With the knowledge of the response of single electrons subject to a narrowband

Whistler signal as described in the previous section one can generate the orbital char-

acteristics and construct the nonlinear current. The current components required are

indicated in equations (2-16) and (2-17), which single out the e* v = vje-'4 component.

The complex dimensionless non-linear current is given as,

INL = IR + ii = - (4-1)
(waEi/wo)w,ET

Thus when the velocity moment of the distribution function, f, required for the current is

computed we have,

W2 B V
INL = Lpe B V, d 3 / E-t e-'F. (4-2)

(wael1/8w) cfl ETUO,
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The normalization f = nF is used in equation (4-2) to explicitly display the ambient plasma

density, leaving F normalized to unity. Also the velocity space in eq.(4-2) is dimensionless,

scaled to V, as in the previous section. Since the velocity integrals are taken at a fixed

position .9 and time t the angular integral in eqn.(4-2) is taken over 7P instead of the original

# (see eq.(3-6)). The expression for the wave energy is,

PC _/___=___. (4-3)Q2 W (I _ g32

To conform with the scalings of section III, we rescale the parallel velocity in the differential

to u, and write the differential in terms of 4 and the magnetic moment, p, giving,

do -V -__ Q BdudPdy. ( 4- 4)
Q cw

The current then becomes,

INL - - 5 -2  BdV'dud pV2pBe-' F. (4-5)

The distribution function F is governed by the Vlasov equation, which advances the

system such that phase space volume is conserved. An equivalent description is the con-

stancy of F along particle orbits, i.e. Liouville's theorem3 ' 5 . Explicitly, the Liouville

theorem is,

F(vjj, V, p, t) = F (vlle(tc; u, V,, y, t), *Oc(tc; u, ip, p, 1), pc(tc; u, 0, p, t), tc) , (4 - 6)

where the subscript c on the right hand side of eq.(4-6) denotes characteristics. When tc

is pushed far enough into the past, all particles near the equator at time t will be far away

and not interacting strongly with the wave. The distribution then assumes its equilibrium

form, stationary and independent of phase, 0 . The interaction of the electrons with the

wave causes only small fractional changes for both vjj and P . Therefore, it is convenient

to expand about vU = VR , and the initial p = tc , giving

F(v, 4, p, t) = F(VR, pc) + ve (VR, Ac) + Aa (VR, ,). (4 - 7)

The first term on the right cannot contribute to the current. One can anticipate

similarly that circulating particles will be distributed uniformly in phase and will not

contribute significantly. The parallel velocity perturbation v, is of O(e), as seen in section
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III. The perpendicular velocity perturbation, although changing at the rate 6, is secular.

It undergoes monotonic acceleration or deceleration over a period of 0(e)1 1 3 which is the

length of time the particle is trapped. This, therefore, is the dominant contribution to the

current. Then equation (4-5) becomes to leading order,

wINL ( /2 BdiIdudV/2 pBe- (4-8)

The needed expression for Ap can be obtained by integrating eqn.(3-42) backward in

time along the characteristics 27 ,33 . However, since the theory pertains to the interaction

region, s 2 /L 2 _2/3, corrections due to the s dependence of B are negligible, and it

is unnecessary to retain them in the current. Accordingly, the form of eq.(3-43), which

expresses the change in equatorial vi due to the wave, is sufficient and more convenient to

use. Henceforth, vI will be used as the independent variable with the understanding that

it refers to the equatorial and not local value. The particle orbits from eq.(3-28), (3-62),
and (3-63) give the past history integral for Av 1 the form

Avj = d7'A(s +Tr'VR, t -,r')
U) f

0

X cos Po + - sin -Jdr'wo + r7  , (4-9)

0

or,

Avj = f, dr'A A [eiPo*Jn(b)einO(r')

+ e p*Jn( )e-in(r') , (4 - 10)W, Iwo

where 6(r') is the phase of the sine function in eq.(4-10). Recall that these expressions

apply only to the trapped phase of the orbits. Thus ein6(r') is rapidly oscillating on the

trapping time scale while wo , P, and A are all varying slowly. Provided, C1/ 3 < 1, only

the n = 0 terms from the sum survive, leaving

AVe =a e /dr' S J,, "' ; + (, - P1)2 , (4-11)
U) V- a iti)2/Ws2

where we have used cos Po = -S(1 - w/1)/viA. Note that the untrapped particles will

not contribute to the current to leading order in e1/ 3 . Except during a time"0 period
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of 0(1) when they are near the trapping boundary, the untrapped particles undergo a

perturbation independent of phase. Or, rather, the phase dependence mixes away44 on a

very fast time scale relative to that of the integral (4-11). In contrast the trapped particles

contribute to the current for a time of 0(e)-'/ 3 , or for all the time they are trapped4 0 ,4 4 .

By the same argument, the details of the trapping boundary - where particles reside for a

time of order one while passing to and from trapped space - are not important either.

As the integral for the current, using eq.(4-11) in (4-8), one obtains to leading order

w w 8 J I OvINFL = -1 -dv - -du dV e~0v* dr' S J, .9 (4 -- 12)

tr o

The argument of the Bessel function J. is the same as in eqn.(4-11) and the integration

reaches over all trapped space.

We now replace the argument of the Bessel function by the local (r' = 0) values. Then

using cylindrical coordinates in u, 4 space

u2 + W 2(0 -Po)2 = r2

u = r sinO

4 - PO = - cos 6
Wo

dud, = 1 drdr, (4 - 13)
Wo

equation (4-12) becomes

V W\ 7/ 2  f 27 1
'INL -i1- dv L v-j d8-

W\.? W, J J W0
tr 0

r a
Jdrre-* * d,' S J((-) (4-14)

W, &Vj_
0 0

where Au is the width in u of the trapping separatrix given by

Au = V2w, 1 - 0 . (4-15)

Performing the angular integral in (4-14) gives

INL - 7/ 2  dvvt7 e~P*27rwo J dxx J,(X)
t7 0
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OF
x dr'(S'(s+r'VR)±+T) Ov. (4-16)

0

Equation (4-16) completes the non-linear theory. Taking real and imaginary parts of INL

to give IR and Ir , respectively, specifies the currents needed to advance the wave equations

(2-16) and (2-17).

First of all, recognize that the Bessel function integral in eq.(4-16) is effectively a

trapping volume is phase space, an order unity quantity. It is, therefore, convenient to

define a trapping volume,

A/w

a,(Q) = 27r(1 - Q 2 )1/4 dxx J2(X), (4-17)

0

where part of the oscillation frequency, w,, in the integrand of eq.(4-16) has been absorbed

into the definition (4-17). The time integral in eq. (4-16) is easily carried out. Expressing

P0 in terms of S , vj, and A , we then get handy expressions for IB and I-

-~ ~ ~ ~ 2d 3/ (.-~ 9 A~~Jvvja(Q)Q(ST - VRS) 0  (4-18

and,

I1 = /2 - A Jdvv/2 v(Q) 1- Q2V/1 -r _yS 2) 4F _19)

tr

In comparison with this the currents of Nunn's theory7 appear somewhat similar but

are expressed in terms of the vortex phase center, rather than the trapping time, and

require parallel velocity gradients in addition with the consequence that only systems with

linear instability can cause emissions, in contrast to the findings below.

There remains to determine r, the time spent trapped. This can be done by propa-

gating the trapping condition along the the particle orbits into the past to determine when

the entrapping first occurred. Thus, for r to be non-zero, the trapping condition,

1Q1 =_(1 - w/; )|S'(s + IVRIr) + Tc (s + VRq-r, t - r)l < 1, (4-20)
v± A( +IVRr,t - r)

must be satisfied. Then r is the time, into the orbit's past history, that equation(4-20)

was first satisfied. That is

vjA~ +I R J, -r=_ S'(s +IVRIr) )+ TL (s +|IVRIr,t - r )|. (4 -21)1 - W/n
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This algorithm for determining r is not particularly convenient for numerical purposes as

it requires retaining lengthy time history data for A and L , and finding roots of potentially

very complex functions.

We can develop an alternate procedure for finding r by noting that eq.(4-21) is in-

variant under the transformation,

t -+ t + At

s -+ s - VA . (4-22)

This means that the root, r = r(s, t), satisfies the condition,

r(s, t) = r(s +IVRIAt, t - At) + At. (4-23)

This has a clear physical interpretation. A particle trapped at position s and time t has

been trapped an additional time, At, since being at position s + V I At. One can also form

a differential equation from (4-23) by taking the limit At, As -+ 0, with As/(VR IAt) = 1,

Or Or
--7 +JVRJ &r-- = 1. (4 -- 24)

In physical terms, the rate of change of r with time, along the particle orbit, is one -

provided the particle is trapped. Thus (4-24) must be augmented by the condition (4-20).

Equation (4-24) advances r if eq.(4-20) is satisfied. Otherwise r is zero.

The assumption of many trapping oscillations during trapped state is expressed by

the condition 34

WtrT > 27r, (4-25)

which requires a trapping duration r of at least one trapping period. The smallness of

the expansion parameter e1/3 guarantees the constancy of A,w, ; during one trapping

oscillation such that eq.(4-25) functions as a limit on the range of perpendicular velocities

(see Fig.7.4 and Ref.[19]). In general, for constant A, w,( the interaction region is located

between the points, Q = ±1. Note that a constant L merely shifts the trapping equator.

The length As of the interaction region to one side of the equator is given by

2S'As(1 - j) 2(Cv2 + D)(1 - A)As
A - -I= 1 (4-26)

v1 A v1 A

so that r = 2As/IVRI. The condition, (4-25), of trapping for a, full period, is then

A3 >ir 2 V 2 c 2 (1 7 3 ()V2 + D/C) 2
A[ 4 C _) - . (4-27)
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Cutoffs to the velocity integrals for the currents (4-18) and (4-19) are obtained from the

two real roots of equation (4-27) which is fourth order in v1 .. For large amplitudes the

lower cutoff, vi, is proportional to the inverse of the amplitude (v- ~ A-), while the

upper cutoff obeys v1 ~ A 3 . This implies a very rapid increase in the number of trapped

particles with amplitude40 , one of the nonlinear feedback mechanisms that is critical to

the triggering process. There is also a minimum amplitude, AmIN, at which real roots for

equation (4-27) exist. This occurs for the velocity

D = , (4-28)

(see also Fig.5.1) at which the right hand side of equation (4-27) is a minimum. Evaluating

equation (4-27) at vo gives,

a o O 1 2 L 2 -1/6
AMIN 3.75C. (13- -) 2 (-) ( (4 - 29)

O w ~ [3Li i

which is the trapping threshold, below which the nonlinear currents are effectively zero.

Since the equations have been scaled using BT, the amplitude of the input signal is A = 1.

Therefore, AMIN < 1 is a necessary condition for triggering in the dimensionless picture.

In the numerical implementation of the theory the quartic (4-27) is solved to give cutoffs

v-- and v{, and AMIN < 1 is assured by proper choice of the initial conditions.
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V. Triggering Mechanism

The purpose of this section is to give the theoretical picture of the triggering of emis-

sions that follows directly from the nonlinear theory developed above. It will be possible to

show in simple terms how triggering is related to an inversion in the perpendicular velocity

distribution function (although not requiring a distribution that is linearly unstable). It

also is possible to see how the occurrence of triggering is a consequence of the length of

the input signal and thereby to understand the dot-dash anomaly'". The discussion of

this section will focus on those features of the emission process which can be immediately

inferred from the theory. A more detailed discussion of some of the results and explana-

tion of some of the unexpected consequences of the numerical integration will follow in

subsequent sections.

The equations of the self-consistent theory are collected here for convenience. First

we have the equations for the wave amplitude and phase propagation equations (2-16) and

(2-17)

( 9 v-+ V9a A = -IR( - )
at V,as

and,

19 V9 4
-+ <=-IIA (5-2)

at V, s

accompanied by equations (4-18) and (4-19) for the nonlinear currents

IR =-3A1/ 2 Jdvavi/2Q,(Q)Q(ST - -VRS'T 2 ) F (5-3)
1 vi,

and,

I= A112  dviv a,(Q) 1 - Q2 ryVRS2) 8, (5-4)

where,

) = 1- -W -. (5- 5)

The currents contain the trapping volume a, defined in equation (4-17)

Au /w 0

a, (Q) = 27r(1 - Q2 )14 J dxxJ;2(x), (5-6)

0
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where Au/w0 is given in equation (4-15),

-= 2 l - Q2 - Q cos-1 Q. (5 - 7)

and the trapping time r which evolves according to equation (4-24)

Jr Or
- + IVR I- 1, (5-8)q8t 49s

If the trapping condition (4-20),

1Q1 =IO-WQ <, (5-9)v1A

is satisfied. A cut-off in the perpendicular velocity integrals is implied by the trapping

threshold condition, eq.(4-27),

3 > .7r2 V2C 2 (1 - (ti + D/C)2

A 3 , (5-10)
Q ~V 1I

indicating the existence of at least one trapping oscillation as the resonant electrons pass

through the interaction region. These ten equations constitute a highly nonlinear system

whose full ramifications can be understood only by numerical integration, to follow in

subsequent sections. The present section is devoted to the qualitative aspects of the theory

that can be inferred directly from the equations and will allow us to form a simple picture

of the triggering process.

Consider a constant amplitude or square wave triggering pulse 30 ,33,49 of constant fre-

quency approaching the equatorial region from upstream (-s). In order for the currents to

form, the triggering amplitude must exceed the threshold value for trapping, as indicated

in equation (5-10). For amplitudes slightly above this value particles will be trapped down-

stream (at ositive a) within a narrow window in perpendicular velocity space centered

on vo_ = 3D. The window falls into a region of the distribution function with positive
In L C.

slope. This situation is illustrated in Figure (5.1) for the distribution function

= -/" 1 - e-v-/vb . (5 - 11)

This form of the high energy distribution function underlies all of the subsequent examples.

If the pulse is long enough and spans the equator, the form of the input, wave implies

that the trapping condition is satisfied, for any perpendicular velocity by eq.(5-10), between

two conjugate points, the entrapping point (s+) and detrapping point (s-). Both points
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in this case would be symmetric about the equator. Since the nonlinear currents are

determined by the particle's spatial location and phase space location as expressed by the

average phase, Po, one can think in terms of representative electrons each parameterized

by its perpendicular velocity and weighted by the trap size a,.

The real current integrand as given in equation (5-3) for such a representative electron

has the form
1 OF

S(Sr - 1VR|S'T2) . (5-12)
2 av I

When there are no frequency changes (& = 0) the effective inhomogeneity, S = S's, is

proportional to the arc length since S' is usually a positive constant. The trapping time
r is also linear in the arc length since the resonance velocity is constant to leading order.

In the interaction region then the trapping time r can represented by

r= .9(5-13)
VR

It increases linearly from the detrapping point

v 1 AS+ = j , (5 -14)
(1 - w/Q)S'

in the upstream direction. With these two expressions the integrand of the real current in

eq.(5-3) takes the form
s'2 aF

-s~s s+)s - +) ,(5 -15)+2VR| Ovi

which has a cubic dependence on the arc length. This form allows one to understand

easily how the supply of free energy in the distribution function (OF/Ov.i > 0) is related

to triggering of emissions. Note that this form exhibits the current zeros at a = 0, s =

s+, s = -s+. Therefore, if RF/8v > 0 the current amplifies (is negative) between the

entrapping point and the equator as well as upstream of -s+ while it damps the wave

(positive current) between the equator and s = -s+. In short, one can expect upstream

damping and downstream emission. Of course the current is zero downstream of S+ where

no trapped electrons exist. This characteristic waveform is illustrated in Figure 5-2.

The triggering of emissions proceeds as follows. The triggering wave propagates to-

wards the equator from upstream. The first currents which form upstream (when .s+ < 0)

amplify the front end of the incoming pulse. Once the triggering wave has propagated

across the equator (s+ > 0) the upstream current becomes negative and begins to dampen

out the remaining incoming portion of the trigger wave. Simultaneously the downstream
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waveform amplifies as indicated in Figure (5-2b). As the trailing edge of the morse dash

approaches the equatorial region it is damped until all of the upstream portion of the signal

is eliminated. Since trapping can occur at zero amplitudes at the equator, the waveform

can begin from zero amplitude at the equator2 9 and grow to some amplified value down-

stream. As the signal level grows, the initially narrow window of trapped perpendicular

velocities in the unstable portion of the distribution function expands, therewith supply-

ing more current to the amplification process. Provided this current is sufficiently large to

offset convection the emission sustains itself. One ends up with a wave train emanating

from the equator at zero amplitude and growing to some final value downstream. The

input waveform is no longer needed. The self-sustaining emission can grow to a very large

amplitude downstream. If the total currents are not sufficiently strong, that is too small in

magnitude or spatial extend, the triggering signal will experience transient modifications

but ultimately disconnect from the equator and propagate downstream without amplifica-

tion. The spatial extend of the current depends on the inhomogeneity and the length of

the triggering signal. This is why the process exhibits threshold behavior with respect to

pulse length, input power, density of tail electrons, and the other parameters. It is clear

that reversing the sign of the distribution function slope would eliminate any possibility of

triggering, since initially the weak triggering signal would be damped instead of amplified

thereby preventing the development of sufficiently strong currents.

As the amplitude grows to a very large value the range of perpendicular velocities,

which is allowed by condition (5-10), passes into the stable region of the distribution

function, as indicated in Figure (5-1). At first sight this would seem to imply a saturation

of the growth process. It turns out, however, that this saturation is only local, as we will

discuss in detail along with the rest of the numerical results in Section 7.
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VI. Numerical Implementation

This section describes the numerical code developed to solve the equations (5-1) to (5-

10) of the self-consistent theory. A discussion will be given of the numerical schemes, their

stability criteria, and certain minimal smoothing procedures which are required to render

the asymptotic theory numerically well posed.

Consider first, the amplitude equation (5-1). Since it is hyperbolic, the Lax-Wendroff

difference scheme6 6 would be the immediate choice. However, the nonlinear current driving

equation (5-1) invalidates the usual derivation. To adopt the scheme to our purposes we

start with the basic idea behind Lax-Wendroff by discretizing equation 5-1 with a forward

difference in time, a centered difference in space, and by adding diffusion. Then the

amplitude for the next time step is predicted by

A' +' = A? - !Ig\(An I - A _1 -At(I')' + (AA+(An 2Aft + A _) (6 -1)3 3 2(+6-1)A j j 3

here \ = At/Ax while e is the diffusion parameter. The need for diffusion in this scheme

is twofold. On the one hand, diffusion is needed for stability in the usual Law-Wendroff

scheme. On the other hand, it eliminates grid oscillations that can arise due to sharp

transitions or boundaries in the amplitude evolution. The price for adding this numerical

dissipation is signal degradation. The proper value for the diffusion coefficient is then

found as a trade-off between stability and signal degradation. In Lax-Wendroff one uses

C = VzAt/2 which is the minimum value of the diffusion parameter required for stability.

One can analyze the difference scheme (6-1) for stability in the usual way by examining

the behavior of linearized Fourier perturbations Af = Mneikh . Then finds a formula for

the amplification coefficient is

M = 1 - Ati) + pA (cos[kAx] - 1) - ivAsin[kAx], (6 - 2)

where
2= , (6-3)

and

I= a .7 (6-4)

Thus the condition for stability is 11M11 1. This implies

!At < 1,1 < ,c V 2 -(6-)
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To this one should add the requirement that At ~ Ax 2 for consistent accuracy, although

this latter condition is more stringent than required for stability. The minimum value of

e required for stability is, E = v2 t/2, which reduces the scheme to pure Lax-Wendroff

with an additional first order term due to the nonlinear current. We sometimes find it

convenient to have additional smoothing and allow e to be variable.

The phase equation (5-2) can be rewritten as

&t V, '9s

+ W) 1/23/2 aF
A-a/2 dvvi2 a, (Q) 1 - Q2 F2w LO W f, aBo

1 j A- 1/2 dvi 23/ Q| 2 g {s R2) 9F (6 -6)~ (i -~ A" 2 ]fV±v jfa 1 (Q) 1~ - Q 2 S' (sr - !VRT
2 

-( -6

or more compactly

A -+ -) =-TB ( a-V4 6w-E (6-7)A t as -TB + R 9

where TB is the coefficient of ; in the first term on the right hand side of eq.(6-6) and

E represents the second term. (see also eqs.(7-12) through (7-14)). The numerical diffi-

culty associated with the phase equation can be seen rather clearly from equation (6-7).

This is a peculiar two-way wave equation which changes its character in response to the

variable coefficients B and E. In the initial phases of evolution of a triggered emission

the coefficients B and E are zero since there are no currents, and we have a simple wave

equation propagating the phase downstream. As the emission develops the coefficients E

and B grow very large, and the equation is dominated by propagation upstream of the

perturbed frequency. It is non trivial to obtain a stable difference scheme for these two-way

propagation characteristics in response to the variable coefficients. Here we will utilize a

subsidiary asymptotic limit valid in the interaction region wherein the left hand side of

equation (6-7) is neglected. The motivation for this arises out of a similar feature in the

amplitude evolution which will be discussed in Section 7. The equation for the change in

frequency is merely

TBL = -E (6-8)

where e is the convective derivative following the resonance velocity. The numerical calcu-

lations show that the coefficients E and B are very large within the interaction region and
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go to zero abruptly at the edges of it. In fact the ratio E/TB needed to evaluate ; can

be found quite accurately, simply by evaluating these coefficients at a dominant velocity

(e.g. Vu = V/D/C). In this case the integrals defining E and B don't have to be carried

out, and we find simply

= (2s - VRr) (6-9)
T

From this expression one can compute the instantaneous change in frequency by integrating

along the characteristics of

- +w=w (6-10)

which results in
detr

6wW =ds. (6-11)
fe.n tr VR

Expression (6-10) for c. as well as expression (5-6) for a, and (5-8) for r are valid only

within the trapping region and go abruptly to zero outside of it. These discontinuities

are a natural by-product of the asymptotic theory but present problems for any numerical

scheme. To render the asymptotic theory well posed numerically, some minimal smoothing

must be introduced. This smoothing is also justified from a physical point of view in that

particles take a finite time to become entrapped downstream and subsequently to detrap

upstream. It is only in the asymptotic limit that this transition occurs instantaneously.

Allowance for the finite times for trapping and detrapping leads one to construct equations

valid not only in the trapping region but outside as well. This continuity is needed to ensure

a stable numerical transition from one region to the other. The finite time for trapping

and detrapping is of order of the trapping period or 1/wt, = v. This time varies with

velocity wt, ~ fi in a way that is important to include to avoid oversmoothing of the

large perpendicular velocity particles (for simplicity we neglect the A and w dependence

of Wt,).

For example, in the case of the trapping volume a , we utilize the following equation

(k ~ a,, + &f, = Va1,  (6-12),
(9t + R41

where a,, is given by the eq.(5-6) and a', is the desired smoothed trapping volume needed

in the numerical prescription. Notice that the decay toward the asymptotic value pro-

ceeds along the particle orbits. This will shift and distort somewhat the waveform in the

upstream direction. A similar equation will be used to smooth L. Equation (6-12) is
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differenced using the Lax-Wendroff type of scheme with additional variable diffusion to

eliminate grid oscillations.

a'"1 = a n'" (1 - vAt + -v 2 At 2 ) - I VRI\ (1 - vAt) (a'" - I'nL1)

+(IV2A 2 + eA/Ax) (a'+ -2a';+a'"_1)+a (-vZt+Iv2 At 2 )
1

+ _vAtVR (a,+1 ~ a7_1) + .v t (l+1 -an) (6-13)

Fourier stability analysis indicates the following stability criteria

2e, 2\
VAt < 1, VA 2 + -< 1, O < < 1 (6-14)

A similar problem arises in connection with the r equation (5-8) which is valid only

in the interaction region. This is particularly critical since r is the principal dynamical

quantity and according to (5-8) would jump abruptly from a maximum value near the

detrapping point to zero. Making this drop to zero to proceed smoothly corresponds phys-

ically to allowance for the finite time of particle detrapping and dephasing. We represent

this outside of the interaction region by evolving r according to the equation

a a
+ VR - = -- V7 (6 -15 )

The difference scheme parallels those above, giving

+1 _ V-R- + (12 2 + ( 1 n -rn + -j_1 ) ( -16)'r! +2! - + 1 VR .1Xj+ 27

which is

r7+ 1 =r! (1 VAt + IV2At 2 ) - VVA(1 -vAt)(T,± 1 -r,_ 1)

+ (v2 2 + (,-+ 1 - 2T7 +7-1). (6 -15)

The logic of the marching scheme that evolves the amplitude and the other dynamical

quantities in time is based on these difference approximations. Initially a triggering signal

of amplitude equal to 1 is propagated into the grid from the upstream side. This is a

rounded-off square wave pulse with continuous first derivative. At each time step the

trapping condition (4-20), as well as the cut-off condition equation (4-27) (evaluated using

the average amplitude over the interaction region) is checked for all perpendicular velocities

and grid points. If the particles in question are trapped -r, a, and L are stepped using the
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above schemes and the real current is accumulated. If the velocity corresponds to a particle

that is not trapped long enough r, a, and c> are stepped using the decaying equations.

Then we can compute the instantaneous change in frequency 6W as well as the corrected

frequency w throughout the grid as needed to advance the current.

This code runs in a stable manner until amplifications on the order of ten are obtained.

At this point oscillations in the waveform tend to appear at the equator which are difficult

to eliminate but decrease by simply reducing the step size. This is connected to the fact,

discussed in the following section, that the intrinsic value of the currents are large and a

numerical cancellation to a high degree of accuracy is required to evaluate the vanishingly

small current near the equator where the cancellation must be perfect. We anticipate

that this problem will be cured when additional physical features such as the variation

in resonance velocity are included. Such additional effects should stop the downstream

growth of the interaction region, therewith limiting the total amplification to 20 - 30dB

for which the scheme in its present conception appears adequate.
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VII. Discussion of Results

This section presents the detailed results obtained by numerical integration of the

wave equations. The full wave equation (5-2) for the phase has not been integrated at this

time. Rather, a subsidiary asymptotic limit is utilized instead, as introduced in section

VI and described below. The method for determining the frequency arose out of the

understanding of the amplitude evolution at constant frequency, which must, therefore, be

considered first. However, since the frequency changes affect the amplitude evolution only

weakly2 6 , we present in the figures the waveforms that result when the whole evolution,
including frequency changes, is done self-consistently.

The self consistent numerical determination of the waveform evolution that was ideal-

ized in section V (Figures 5.2a,b,c) is given in Figures 7.1a,b,c) . A comparison of the two

sets is instructive. Apart from some ripples on the amplitude waveform, the idealized and

actual pictures do not differ significantly until frame c. Here, what was initially a rather

unexpected result appears. The amplitude has a triangular waveform where the upslope is

linear to high accuracy implying that the nonlinear currents of the self-sustaining emission

are very nearly constant in space, see Fig.7.1c), in spite of the large variability, with S,
of the integrand in eq.(5-3) (see also Fig.7.5). This comes about because as the emission

grows and more particles become trapped, the intrinsic size of IR gets very large. It can

only be offset by the trapping of stable, 9F/av- < 0, particles to bring the full integral in

eq.(5-3) to near zero (recall Fig.5.1). In fact, the asymptotic condition, IR ~ 0, implies a

linear waveform for A, as will now be shown now.

Two strong physical mechanisms necessitate this simple result. The first mechanism

is the local feed-back between the amplitude and the real part of the current linked by the

trapping condition. The trapping condition,

A -i ;> (1 - w/1) I(C'vI + D)s + TdI, (7 - 1)

sets the range of perpendicular velocities that can be trapped at the value, A, of the

local amplitude. From the condition of trapping for a full period, eq.(4-27), it can be seen

that the relevant range of integration in the real current integral (eq.(5-3)) expands quickly

towards high perpendicular velocities. If the amplitude is small, then this integration region

is small. Since triggering requires this small perpendicular velocity region to fall into the

unstable part of the distribution function the resulting current is negative downstream.

Hence a small amplitude is amplified. On the other hand, if the amplitude is large, the

range of trapped perpendicular velocities is very large. Since high perpendicular velocities
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enjoy a stronger weighting in the current integral and their distribution function gradient

is negative, the resulting current will be negative. Hence a high amplitude is damped.

This stable feed-back between the amplitude and the current drives the amplitude to

a local equilibrium value which balances the competing current contributions from low

and high perpendicular velocities against each other. One can formulate this mechanism

mathematically by a perturbation expansion of eq.(5-1) whose leading order is,

IR = 0. (7 -2)

This will determine A' = aA/&s. The next order then gives from A' the residual current

necessary to balance convection,

v9 A' = IR. (7-3)

The second mechanism involved in the linear amplitude shape results from the prop-

erty of the trapping condition to favor an intermediate perpendicular velocity v' with a

minimum absolute inhomogeneity parameter JQJ. In other words, the interaction regions

which are centered about the equator Q = 0 shrink spatially for both higher and lower

perpendicular velocities than vT. This is visualized in Fig.7.2 which shows the location of

the entrapping points,

S+ = -V _A TL (7-4)
CI + D G - W/(

and the detrapping points,

s_= C2+1 (j_%-Tc) (7-5)
CVL + D (1 - woI'

for different perpendicular velocities at constant A, w/Ol and & = 0. In this case the largest

interaction region is associated with

vi= D/C. (7-6)

Note that if L > 0 (u5 < 0) the drop shaped curve is pushed upstream (downstream) for

small perpendicular velocities, but for simplicity ignore c. in the following derivation.

As was pointed out earlier for triggering it is necessary that vt falls into the unstable

part of the distribution function (aF/&9± > 0). Consequently, far downstream there

will be a region where the current is dominated by the amplifying neighborhood of vT

since the amplitude is initially too low to trap enough stabilizing perpendicular velocities.

Therefore, a negative current spike forms, which raises and steepens the front of the wave.
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This shrinks the spread in entrapping points until all velocities are entrapped at practically

the same point. Then the real current can be written in the following form,

IR= -- s(s - 3+)(8 + S+) dv± av(Q)S' , ( -OF
2VR VA OVJ_

tr

where the common entrapping point s+ is just a number independent of the perpendicular

velocity. To satisfy eq.(7-2) at every s-location it is, therefore, necessary to require in

eq.(7-7) that

dvi fvCYQ(Q)S'2 - 0. (7-8)

tr

The factors in the integrand are positive except for the gradient of the distribution

function which changes from a positive sign for low perpendicular velocities to a negative

sign for high perpendicular velocities. Therefore, the only way eq.(7-8) can be satisfied

is* by adjusting the upper limit v{ of integration such that the contributions from low

perpendicular velocities (with F > 0) to the integral cancel the contributions from high

perpendicular velocities (which have OF < 0). The resulting upper perpendicular velocity

boundary v +is the same for every grid point since all entrapping points have collapsed

at the front end of the wave. Since v+ is the largest perpendicular velocity that can be

trapped at all points its inhomogeneity parameter must be unity, Q(vh) = 1. This is only

possible if the amplitude has (from eq.(7-1)) the shape

A(s)= (1 I- (v+) (7-9)

Hence, the arclength dependence of the amplitude is determined by that of the inho-

mogeneity S. This wave form is a stable solution. The entrapping and detrapping points

are found to be the same to lowest order for all relevant electrons as was assumed in Ref.34.

The amplitude is a linear function of s when the u contribution to the inhomogeneity

S is negligible or linear. Then the inhomogeneity parameter is constant for each perpen-

dicular velocity and takes the simple, arc length independent form

( W) Cv D 
(7-10)

Q Q vtA'

With this expression the perpendicular velocity weighting of the gradient of the distribution

function is fixed, which allows one to integrate the integral in (7-8) once and for all. For the

distribution function of eq.(5.11) and other input parameters employed in Fig.7.1 one finds
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the value v+ = 7.1. Then equation (7-3) in combination with eq.(7-9) predicts a residual
current of IR = -1.017. This value is in excellent agreement with the value IR = -0.995
obtained from the self-consistent numerical integration of Fig.7.1c after the fivefold display

magnification is divided out.

In summary of the above:

The nonlinear dynamics embodied in IR and not the wave equation (5-1) dominate in

determining the emission waveform;

IR ~ 0 =-> A'.

Analogous considerations apply to the phase equation (5-2). However, since IR and

I/A have different integrands, the waveform, A(s), that made IR ~ 0 will yield an II/A

that is non-zero and large. To offset this the frequency must evolve to drive Ii ~ 0. In

fact, in a remarkable mimicking of the amplitude dynamics:

The nonlinear dynamics embodied in II and not the wave equation (5-2) dominate in

determining the frequency waveform;

I ~- 0 => .

Noting that ci appearing in the inhomogeneity factor is the change seen by the resonant

particles, setting I0 = 0 gives an equation for the frequency change, 6W,

'a a
TB(- + V4-)6w = -E, (7-11)

where the factors, T, B, and E are defined as,

T = 1 + n/2w. (7-12)

B = PA-1'2 dvy2a,(Q) V1 Q2r , (7-13)
tr

E = )3A-1
/
2  dvv3Qa,(Q) 1 - Q2 (S'sT - y8 (7-14)

f 1 Fj
ti.

The factors B and E are large in the interaction region where the trapping condition is

satisfied. Since eq.(7-11) is a wave equation propagating opposite to the group velocity

of the whistler waves, one cannot expect numerical schemes based on eq.(5-2) to be very
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effective. This may account for much of the numerical stability problems encountered in

related schemes previously33 .

If the ratio E/B is evaluated for the dominant velocity, v' = ID/C, one finds,

D
w= D(2s - Vr). (7-15)

T

Since T > 0 generally and D > 0 for most magnetospheric conditions, eq.(7-15) is just

a modified Helliwell condition, here derived from the nonlinear currents. Since, in the

marginal case emphasized in this paper, the emission sets up downstream after initiation
26

upstream, one can expect a faller preceded by an initial small offset rise

The frequency-time curve for the emission of Fig.(7.1) is displayed in figure (7.7)

along with a similar observed emission triggered by a Siple transmission39 . At this level

of comparison, the agreement between theory and observation is excellent, although some

qualifications need to be made. The principle shortcomings are: 1) that the emission does

not terminate, but continues to grow in amplitude downstream while dropping further in

frequency, and 2) that the amplitude and frequency-time waveforms cannot be synchro-

nized without solving the two way wave equation (6-7) to propagate the frequency signal

out of the interaction region. Demonstration of termination may be related to allowance

for variation of the distribution function with frequency and arclength due the change in

resonant velocity. This in turn effects the synchronization question since as long as the in-

teraction region grows downstream, with the wavefront propagating at the group velocity,

propagation of the frequency waveform out of the interaction region is unnecessary.

In addition it should be noted that the asymptotic coefficient is, C = .48. This is

probably too large to trust the asymptotic theory, quantitatively, in the initial phases of

triggering. Of course, by the time the amplitude grows to A - 3, there would be some 6

trapping oscillations and thus one could have confidence in the asymptotic theory through

most of the emission process. We feel that the qualitative picture is very likely to be correct

anyway. In fact for very similar parameters, as will be shown below, one can get emissions

at C, ~ .15 or less where the asymptotic theory would be valid throughout. However, no

significant differences in the final emission forms are found in such cases. The larger C,

case of Fig.7.1 is presented first because of the simplicity of the waveforms.

Note alsp the value chosen for the ratio of density to magnetic field scale length,

L,/L - .735, which is quite a bit smaller than the values one wotld use based on the

diffusive equilibrium model"1 (L/L ~ oo) or the collisionless model2 9 ,"'" 2 (L,/L ~ 1)

of the magnetospheric density. This choice was made to adjust the frequency fall rate, via
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the coefficient D in equation (7-15), to conform with observations. At larger values of L ,

i.e. L, -4 oo, the L value would be some 20% higher.

The real current, IR, and trapping time, r, as functions of perpendicular velocity

and arc length are shown for this case in Figures (7.3-7.6). Observe that the intrinsic

magnitude of the current, in both positive and negative regions, is much larger than the

final value shown in Fig.(7.1) and that it varies significantly as a function of arc length.

This bears on the discussion above explaining the origin of the triangular waveform of the

amplitude. Both the current and trapping time originate at very nearly that same spatial

location on the upstream side for all significant perpendicular velocities once the emission

is underway. This property was also necessary to account for the triangular waveform.

An input signal with a 100 msec long pulse, but identical in all other respects does not

yield an emission, as shown in Fig.(7.8). The frequency-time curve, showing some small

changes associated with the waveform distortion is given in Fig.(7.9)

The sensitivity of the triggering process to the initial frequency" is displayed by com-

paring the sequences of Figures (7.10) and (7.12). The frequency-time curve corresponding

to Figure (7.10) is shown in Fig.(7.11). In the first sequence (Fig.(7.10)) with an initial

frequency of 5.5 kHz, triggers an emission while a 10% lower frequency, 5.0 kHz does

not. Although some small currents form (as indicated by the dotted line in the figure),

their is no discernible change in the input signal and no emission. The parameters used to

obtain these data are only slightly different from those used above, however, the difference

is significant in the following way. The adjustments in the parameters were made to raise

Amin (eq.(4-29)) to a value near unity so that triggering becomes more sensitive to the

trapping threshold than to the number of high energy electrons. Then, because of the

sensitive inverse dependence of Amin on frequency, emissions can be eliminated by a slight

reduction of the triggering frequency if one is very near the threshold initially. The previ-

ous case is in a regime that is farther way from the trapping threshold where triggering is

primarily determined by the electron density. Since the factor 3 in front of the current is

an inverse function of frequency, lowering the frequency there has the opposite effect.

A case having a larger amplitude triggering signal is shown in figures (7.13) and (7.14).

In this run the asymptotic parameter, C,, is .15 so that one would expect the asymptotic

theory to be valid throughout the process. The basic features of the emission remain the

same as in figure (7.1) and the frequency-time curve, Fig. (7.14), is very similar to (7.2).

An otherwise identical pulse, but with a 100 msec length, failed to trigger. The new feature

is the appearance of a kind of double layer in the current near the origin. This provides
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some deterrence to emissions, but is not critical in this case. It arises when the initial pulse

traps a wide range of perpendicular velocities that includes some of the particles on the

downsloping portion of the distribution function. These high velocity particles contribute

strongly to the current near the equator with the opposite signature to the currents created

by the destabilizing particles discussed in section V. This accounts for the double layer,

and its tendency to interfere with the emission process since it has the stable signature.

The localization near the equator can be seen from the trapping condition, eq.(5-9) and

Fig.7.2, for a constant amplitude pulse.

For parameters such that the initial interaction length exceeds the pulse length another

phenomenon appears. This is shown in Figures (7.15) and (7.16). In this case substantially

more high energy electrons are required to initiate an emission. However, the characteristic

constant current waveform does not have time to form until after the trailing edge of the

triggering signal passes the equator. This prevents the development of the triangular

amplitude form originating from the equator. Instead the signal drifts downstream for

some distance until the marginal currents necessary to produce the slope required by,

I = 0, are formed. Interestingly this disconnected signal has exactly the same slope as

the triangular form and it has the same underlying cause. If the slope were continued to

the upstream side past the trailing edge of the waveform it would intersect the equator.

It is as though the emission "remembers" this location. This gives some indication of the

strength of the marginal condition, IR = 0. The currents necessary to bring the amplitude

up to the value required by this condition are provided by the spike at the trailing edge.

Finally we have a case that is driven so hard that the emission process begins before

the leading edge of the triggering pulse has crossed the equator, shown in Fig.(7.17). Notice

that after some evolution a triangular waveform oriented in the reverse direction begins

to form on the upstream side. A short inspection will show that the same arguments,

stemming from the necessity of cancelling the large currents, apply to the upstream side

and give the reversed triangle there (eq.(7-9)). Eventually the downstream triangle also

forms, with a spike due to the double layer near the equator. Note that the upstream

triangle is also a selfsustaining form. Eventually, the rising frequency generated on the

upstream side is canceled by the falling contribution due to the downstream triangle. The

frequency-time curve Fig.7.18, in fact, resembles an inverted hook. If the downstream

portion were diminished, a sustained riser would be the result. This gives some indication

of how a riser, and various hooks might form. To demonstrate ties, forrms compellingly,

however, the physics responsible for the termination and the full phase evolution using the

two way wave equation must be added.

45



VIII. Conclusions and Summary

To summarize the triggering picture, a rather strong threshold behavior has been

exhibited in that the nonlinear currents must be driven up sufficiently by the trigger signal

to offset convection. Otherwise a self-sustaining emission cannot form. The conditions

needed for triggering are:

1) An inverted population, 9F/a± > 0, in the trapped range of perpendicular veloc-

ities. Linear instability of the tail distribution F(;1 , vI) is not necessary.

2) Sufficient amplitude for trapping in the triggering signal.

3) Sufficient density in the resonant portion of the distribution function such that the

driven current can offset convection.

If these conditions are satisfied a long enough input wave will always trigger a self-

sustaining emission. Furthermore, the resulting emission is independent of trigger length

or amplitude, or the number density of high energy electrons. This comes about because

of the marginal condition, IR = 0, which determines the amplitude slope, A', in terms

of only the magnetospheric parameters which characterize the inhomogeneity and distri-

bution function. The same is true of the frequency change rate as expressed in equation

(7-15). These are very persistent features of the emissions that are found over a wide range

of parameters.

We conclude by returning to Matsumoto's list" of observed features to show how

and to what extent they can be explained by the theory. The threshold behavior (points

1a) and 5)) was displayed explicitly. The narrow bandwidth requirement, 1b), follows

from the necessity of trapping. In fact, in the example of figure (7.1), the initial trapping

frequency was 21 Hz, implying initial frequency bandwidths somewhat less, or near the

10 Hz quoted by Helliwell". Triggering by both high and low power transmitters, 1c),

can be understood from the independence on trigger signal of the emission waveform and

frequency behavior. Thus high power has no effect once threshold is passed. Matsumotos's

point 1d) is somewhat obscure. We take it to mean that emissions can occur repeatedly

with no evidence of any recovery time for the phenomenon. This can be accounted for by

a small region of distribution function and resulting small energy extraction used in the

triggering process. Thus emissions may occur repeatedly.

The growth characteristics described in point 2) are very much in line with the nu-

merical calculations given above. The initial growth exhibited by the exponential rise to

the triangular peak at the leading edge is in the range of 100 - 200 dB/sec in our runs.
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Total growth shown is in the 20 to 30 dB range, although, as mentioned above we have

yet to get the emissions to terminate and so the final value to be obtained must await

further study. During this initial growth phase the frequency is rising slightly, less than

200 Hz, accounting for point 2b). The frequency waveforms superposed on the amplitude

show that the frequency drop or "release" begins at the peak of the triangle when growth,
as viewed from downstream, stops. This is point 2c).

The frequency variation described in point 3) is evident above for the marginal emis-

sions near the threshold. The fallers observed in the code correspond in some detail,
including the initial rise in frequency, to the observation. Risers have not yet been well

documented in the theory, for the reasons discussed above. Some indication of how they

would arise for longer pulses and more intense magnetospheric conditions was given, how-

ever.

Point 4) can be understood if the population inversion required for the emission process

is produced by the precipitation of electrons following substorms, but several days are

required to reestablish the ducts. Point 6) is related somewhat in that the high energy

electron population is expected to vary greatly in quantity and distribution. That this

variation is not observed to effect the emission characteristics theoretically was discussed

at length above.

The main unanswered questions concern the mechanism behind the termination of

the emissions, and the detailed synchronization of the amplitude and frequency waveforms

requiring the solution of the two-way wave equation. These points could be resolved within

the present theoretical framework. Activity on these issues is currently underway.
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Figure Captions

Fig.(3.1): Family of electron orbits in u - V, phase space. The horizontal axis is a 27r interval in

V, while an interval in u about the resonance line i = 0 is drawn vertically. Fast time

scale electron motion for a constant inhomogeneity parameter Q = 1 and different

values of the integration constant h (for more details see text).

Fig.(3.2): Same as Fig.(3.1) but Q = 0.5. The broken line represents the separatrix which divides

trapped and untrapped orbits. For the definition of Oa, ,4, and P, see text.

Fig.(3.3): Same as Fig.(3.1) but Q = 0.

Fig.(3.4): a) Single electron orbit in u - 0 phase space. The input parameters were taken from

the faller in Fig.(7.1-7.3), with vj = f3D/C = 1.662 . On the horizontal axis V' is

drawn, on the vertical axis u. Contrary to Figure 3.1-3 the exact equations of motion

were integrated for a long period of time. The electron enters the window from the top

left, becomes entrapped and executes 6.1 trapping oscillations while it streams along

the field line along the field line across the equator. After detrapping the electron

leaves to the top right. A constant amplitude (A = 3) and frequency (CL = 0) was

used.

Fig.(3.5): u ( solid line) and 4 (broken line) of the previous graph were plotted individually versus

time. The constancy of the amplitude of u oscillations during the trapped state was

predicted by eq.(3-64). The continuous rise of the V'(t) curve reflects the slow drift

of the center of oscillation P in Fig.(3.4) caused by the change of the inhomogeneity

parameter Q during the drift of the electron across the field line equator.

Fig.(3.6): Similar as in Fig.(3.4) except the triggering amplitude A = 1 was used. Only 21

trapping oscillations are possible indicating the closeness to the triggering threshold.

Fig.(5.1): High energy electron distribution function F versus perpendicular velocity. This form

of distribution was underlying all numerical integrations displayed in this paper. The

shape of F is given in eq.(5-11). In this Figure A = 1 was used. The dashed line

represents the velocity, v'- = f3D/C, of maximal number of trapping oscillations in

the triggering wave of Fig.(7.1). The dotted lines show the lower vI and upper v+

velocity boundary opened by the quartic condition (5-10) for A = 1 and the data of

Fig.(7.1).

Fig.(5.2): Expected pulse and current evolution. a) Characteristic current signature for undis-

torted triggering wave. b) Subsequent evolution in the presence of input wave. c) Self
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sustaining waveform and current after passage of input wave.

Fig.(7.1): Self-consistent numerical determination of Whistler wave amplitude and real current

displayed versus grid points. The position 0 on the x-axis represents the field line

equator. The current (dotted line) has been magnified five times for display. a)

Low amplitude triggering wave generates small characteristic current signature. b)

The triggering wave has propagated into the interaction region spanning the equator.

Upstream portion of wave pulse begins to dampen away while downstream portion

is amplified. c) The dynamical equilibrium of downstream emission is reached. The

downstream current spike indicates the intrinsic size of the current while the constant

portion shows the small residual value necessary to balance convection of the wave.

The amplitude is essentially a linear function of arc length along the field line.

Fig.(7.2): Trapped perpendicular velocities in a constant amplitude, constant frequency wave

versus arclength. The s+ and s- curves enclose the interaction region which is longest

for vj = VD/C.

Fig.(7.3): Real current JR versus perpendicular velocity and grid points for Fig.(7.1b)

Fig.(7.4): Trapping time r versus perpendicular velocity and grid points for Fig.(7.1b)

Fig.(7.5): Real current JR versus perpendicular velocity and grid points for Fig.(7.1c).

Fig.(7.6): Trapping time r versus perpendicular velocity and grid points for Fig.(7.1c).

Fig.(7.7): Frequency-time curve for the emission depicted in Fig.(7.1).

Fig.(7.8): Amplitude and current evolution for a 100 msec pulse, identical in all other respects

to that of Fig.(7.1). Although there is some distortion of the initial pulse, a self-

sustaining emission does not form.

Fig.(7.9): Frequency-time curve for the case depicted in Fig.(7.8).

Fig.(7.10): Evolution sequence illustrating the sensitivity to initial frequency, 5.04 kHz in this

case. A self-sustaining emission is seen to form.

Fig.(7.11): Frequency-time curve for the case depicted in Fig.(7.10).

Fig.(7.12): Evolution sequence illustrating the sensitivity to initial frequency, 4.5 kHz in this

case. No emission forms and the current attains negligible magnitude. The change in

the frequency is not discernable.

Fig.(7.13): Emission sequence showing characteristic waveform for larger amplitude input signal.
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In this case the asymptotic parameter is, C, = .15. Note the formation of a current

double layer near the equator superimposed on the standard signature of Fig.(7.1).

Fig.(7.14): Frequency-time curve for the case depicted in Fig.(7.13).

Fig.(7.15): Emission sequence of a disconnected emission, corresponding to shorter input signal

length.

Fig.(7.16): Frequency-time curve for the case depicted in Fig.(7.15).

Fig.(7. 17): Very strongly driven emission sequence, showing the development of self-sustained up-

stream currents. A rise in frequency is associated with the dominance of the upstream

emission as shown in Fig.(7.18).

Fig.(7.18): Frequency-time curve for the case depicted in Fig.(7.17).
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