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ABSTRACT

A slotted-waveguide fast-wave coupler has been constructed, without
dielectric, and used to drive current on the Versator-II tokamak. Up to
35 kW of net microwave power at 2.45 GHz has been radiated into plas-
mas with 2 x 102cm™3 < 7, < 1.2 x 103cm™2 and B;,. = 1.0 T. The
launched spectrum had a peak near N = —2.0 and a larger peak near
N = 0.7. Radiating efficiency of the antenna was roughly independent of
antenna position except when the antenna was at least 0.2 cm outside the
limiter, in which case the radiating efficiency slightly improved as the an-
tenna was moved farther outside. When the coupler was inside the limiter,
radiating efficiency improved moderately with increased m.. Current-drive
efficiency was comparable to that of the slow wave and was not affected
when the antenna spectrum was reversed; however, no current was driven
for m. < 2 x 10'2cm™3. These results indicate the fast wave was launched,
but a substantial part of the power may have been mode-converted to the
slow wave, possibly via a downshift in IV}, and these slow waves may have
been responsible for most of the driven current. Relevant theory for waves
in plasma, current-drive efficiency, and coupling of the slotted-waveguide is
discussed, the antenna design method is explained, and future work, includ-
ing the construction of a much-improved probe-fed antenna, is described.
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1 BACKGROUND AND THEORY OF CURRENT-DRIVE

1.1 Magnetic Fusion and Current-Drive

Nuclear Fusion is the workhorse of the Universe. It supplies energy to the sun
and stars, making them shine and preventing their collapse. In an effort to harness
this energy source, physicists and engineers have been developing fusion since the
early 1950s. The easiest fusion reaction to accomplish is that of deuterium nuclei
(or ions), which consist of one proton and one neutron, with tritium nuclei, which

consist of one proton and two neutrons:

Dt + TT — He?T + n + 17.6 MeV

where He?" is a helium nucleus, n is a neutron, 17.6 MeV is the energy released per
reaction, and the superscripts indicate charge. This reaction requires some energy
input. For the nuclei to fuse, the Coulomb repulsive force must be overcome and
the ions brought together to within ~ 1075 meters. At this distance the nuclear
strong force, an attractive force, can overcome the Coulomb repulsion and pull the

nuclei together.

In magnetic fusion, the repulsive force is overcome by confining the ions by a
magnetic field and heating them to extremely high temperatures, forming a plasma.
The quality of a fusion plasma is measured by its ion temperature and Lawson
parameter,[!) which is the product of the plasma density n, and energy confinement
time 7. The energy confinement time is defined in equilibrium as the total plasma
energy divided by the total power input to (or loss from) the plasma. For an
economically feasible fusion reactor, the Lawson parameter must be greater than

about 10*%cm™3's, and the ion temperature must be about 200,000,000 K.

7



The most successful magnetic confinement scheme to date has been the toka-
mak (see Figure 1), which was invented by Russian physicists® in the 1950s and
is continually being refined and improved. As shown in Figure 1, the tokamak
has two components of the magnetic field—a toroidal component directed the long
way around the torus, and a poloidal component circulating the short way around.
These components add to give field lines that twist helically around the tokamak.

Both field components are needed for the equilibrium and stability of the plasma.

The toroidal magnetic field is produced by a set of coils that are outside the
plasma, as shown in Figure 1. The poloidal field is produced by a toroidal plasma
current (often several megaamps in contemporary tokamaks). Traditionally, this
current has been generated via induction, the plasma being a one-turn secondary
coil of a transformer. This current cannot be steady-state, because it is proportional
to the time-rate-of-change of the poloidal magnetic flux linked by the plasma (see
Figure 2). That is, the tokamak must be pulsed and the transformer recocked
between pulses. Pulsing a reactor fatigues its structure and lowers its average
power output. If current could be driven noninductively in plasmas, a steady-
state reactor could be realized. Methods have been proposed for driving current
using radiofrequency electromagnetic waves (rf), relativistic electron beams, phased
injection of frozen hydrogen pellets, and oscillating magnetic fields.[?] (41 5] [6] [7] [p
this thesis, I report my investigations on driving current using rf to excite the “fast

lower-hybrid wave” in the Versator-1I tokamak.

1.2 Cold-Plasmma Wave Theory

The polarization and dispersion of the lower-hybrid fast- and slow-waves can

be obtained for a cold plasma from Maxwell’s equations and the fluid or kinetic

8
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Figure 1: Schematic Diagram of a Tokamak. The toroidal-field coils are
spaced uniformly around the torus; only one is shown for clarity.
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Figure 2: The transformer circuit of a tokamak.
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equations. The cold plasma approximation accurately describes the wave dispersion
in the current-drive regime because in this regime there are no resonance layers
(kL — oo) in the plasma. Landau damping, the mechanism by which lower-hybrid
waves drive current, is a very important thermal effect that does not affect wave

dispersion.

Starting with Maxwell’s equations, assuming waves varying as exp(ik - r —iwt),
using the WKB approximation (k| > |0/0r|), and assuming a linear, dispersive

medium, we obtain the wave equation:

2 __

kx(kxE) + ZK.E = 0 (1)

c2

where the equation has been transformed in time and space, k is the wave vector,
E is the wave electric-field, w is the wave frequency, c is the speed of light, and K
is the dielectric tensor, incorporating free-current effects. It is defined as follows:

1

K-E=E+ —J (2)
Wwe€g

where J = Y jnjoZjevjy is the plasma current (summed over species), no is the
zeroth-order density, Z is the charge state of the species, e is the magnitude of
the charge of the electron, and v; is the first-order (wave-induced) particle velocity.
Applying cold-plasma theory, i. e. , using the fluid equations or the reduced kinetic

equations, the dielectric tensor for B = ZB(r) becomes

_ K., K. O
K = —K:cy K:c:: 0 (3)
0 0 K,,



where

2 2
Kpp = 1 — —B° “ri 4
Tz 2 2 2 2 ( )
W — Wee w® —we;
. 2 . 2
K WUdce wpe _ WWeq wpi (5)
Y w w?—w? w w? —w?
ce ci
2 2 -
W w,_ -
—_ pe pr
Koo=1 - S ®)
w w

Wpi = 4/Mj 62Zf /m;é€g is the plasma frequency of the jth species (e. g. electrons or
hydrogen ions), and w.; = Z;jeB/m; is the cyclotron frequency of the jth species.
For the plasma interior (i. e. , not in the coupling region), we may assume, without
loss of generality, the situation shown in Figure 3, so that N} = ck;/w = (ck/w) cos 8

and N, = ck, /w = (ck/w)sinf. Substituting into the wave equation, we get

K., — N||2 K,,y N”N_L E,
“Kuy  Kpp— N2 0 E, | =o. (7)
NN, 0 K,,-N2) \E,

The dispersion relation is obtained by setting the determinant of this system of

equations to zero. This yields the following quadratic equation for N?:

KeeN% + N3[(Koo + Koo)NP — (K2, + K2, + Koo Kos)]

K K (®)
+Kzz[(N|| —Kz:c) ‘+‘sz] = 0.

Applying the lower-hybrid approximating condition, w?, « w? <« w?,, yields
ppiymng g ci cer ¥

the following for the dielectric tensor elements:




Figure 3: Coordinate system for accessibility calculation in slab geometry.

A= (VK- \/—IE/_K_>2
B=(vVEn+ /K3 /K.)

no propagation

propagation '1—»

=
N

non-propagating
complex roots

Figure 4: @ versus le for accessibility.
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K.y = ww”e (10)
2
K,, ~1 - w”; (11)

Making the further approximations that |K..| > K., and |KZ, | > (N|'|" — K;z)?

yields the following dispersion relation(® :

2Kzz 2 2 K2y
K. TN (K""+ R..

2\ [V ~ VEee K2, K] (N2 - (Ve — JRZ K] (12)

Calling the quantity under the large radical (), we get the situation shown in Figure

4. Requiring N? to be positive yields the following condition on N ”:[8]

2

N”2>

\Y/ wczwce J wC‘LwCE w2 ( 13)

Waves are evanescent in regions of the plasma for which the above inequality is
violated. Making an equality out of it and solving for wy; gives the density at which
the fast and slow wave roots coalesce, i. €. , the mode-conversion layer. Here an

inward-propagating fast wave is converted to an outward-propagating slow wave:!°]

wpi

= NY = \/1+N[f(Y2——1) (14)

w

where Y? = w?/w? and w? = wcewei. Curves showing the accessibility condition

for the fast and slow waves with Y2 < 1 are shown in Figure 5.!% For Y2 > 1 the

14



accessibility curve looks like the left half of Figure 5a. For Y2 < 1 as shown in

Figure 5, a local maxima of /Equation 13 exists at w?; /w? = Y?/(1 — Y?) where
(15)

Propagation to higher densities requires no further increase in N}, as can be seen

from Figure 9.

To determine the fast-wave cutoff properly, all three components of the wave-
vector, N, Ny, and N,, must be explicitly included. This is necessary for the
following reason. For the accessibility calculation, the region of interest is near
the mode-conversion layer, inithe interior of the plasma. Therefore we may use the
WKB approximation and gsshrne theescale lengths for density and field gradients are
small compared to a Wa;ei;;xgth so w& may treat the plasma as locally homogeneous.
This enables us to rotate théqcoordinate system so that k and By are always in the
z-z plane and the problem is feducéd to two dimensions so k = k X + kjz. For

the coupling problem, however, the plasma boundary is an inherent inhomogeneity.

The direction of By and the normal to the plasma surface are innate to the problem.

<=

The wave-vector can havé:i,,gbmponents in each of these directions and perpendicular

1
to both. Hence, three components are required.

The wave equation becomes

K.e—N2-N? K, +N,N, N,N, E,
K,. + N,N, K, — N2— N2 N.N, E,| =0 (16
NN, NgyN, +  K,.—N2-nNZ) \E,

The dispersion relation is obtained:ms before by setting the determinant of this
system of equations to zero. The cold plasma approximation yields K,, = K., =
K., =K,. =0, K, = K, and K, = —K,,. The lower-hybrid approximating
condition gives simplified dielectricatensor elements as before, and the fast- and

-

15
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N.L? a) :
s/ ! Y2<|
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|
. 2 l
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' : L} l_YZ
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wiy Wi Wi, wdk WF
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Figure 5: Plot of N7 versus density (w?;/w?), showing the slow
and fast roots of the lower-hybrid dispersion relation.
The slow- and fast-wave cutoffs are w2,/w? and w2, /w?.
The lower-hybrid resonance is at w?, /w? and the points
where the slow and fast waves meet are w2_/w? and

w2, /w? (from reference [10]).
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slow-wave cutoff conditions can quickly be obtained from the resulting equation.

For cutoff, N, — 0, and we obtain the following:
2 2 2 2
K..(Kzz — N; — NJ)(K.: — N;) + K;.K;, = 0. (17

This equation has two solutions. The slow-wave cutoff density is given by K,, = 0,
so that the slow-wave is evanescent at electron densities below n],_,, = w?me€o / e2.

The fast-wave cutoff is given by
(Kzz — NI ~ Nj)(Kzz — N7) + KZy =0, (18)

giving an approximate cutoff density of

W piogs = (Me€o/€*wweer /(1 — N2 — N2)(1— N2). (19)

For typical Versator-1I parameters of w.. /27 = 28 GHz, w/2m = 2.45 GHz, N2 = 4,
Nf = 0, this gives nfut off = 34nyi05ss making the fast-wave more difficult to

launch with an external antenna.

17



1.3 Simple Picture of Current-Drive Efficiency

The current-drive efficiency, J/P;, is the toroidal current density divided by
the wave power dissipated per unit volume. An approximate expression for it can
be obtained by balancing the rf power required to diffuse electrons outward in

velocity-space with the power lost due to collisions with the bulk plasma.!l!]

Consider the resonant interaction of waves with phase velocity v, > v and
electrons with velocity v, parallel to the confining magnetic field, where v, =
V2T, /m, is the electron thermal speed. The current density generated from push-

ing the electrons in velocity-space with the rf is given by
J = n.ev, ' (20)

where n, is the density of the resonant electrons. These electrons are slowed by
Coulomb collisions with the bulk plasma, which exerts a drag force given by the

following:

47n

3 log A
F; = 'n,,.mevp_2 (‘ﬁ’_&_‘i@_) (21)

where log A is the Coulomb logarithm, n is the bulk density, and wpe = /ne€?/m.€o
is the electron plasma frequency. Note that F; is proportional to v, 2, For steady-
state current-drive, the rf power density is equal to the power lost to the bulk via
drag:
. [ wim.logA
Pd:Fd'Up:l(‘M“ ) (22)

Up 4mn

18



The current-drive efficiency is the driven current divided by the dissipated power

density:

J 9 4mne

— = _ ). 23

P, “r (wgeme log A) (23)
Volume averaging yields the following figure of merit for steady-state current-drive

in a tokamak:

=120, —3
= n(10*°m )I(kA)R(m) = v2 . constant (24)

Py (kW) P

where 7 is the line-averaged electron density, I is the driven toroidal plasma current,
and R is the major radius.

2

5> which shows higher phase-velocity

The figure of merit is proportional to v
waves drive current more efficiently. This is because they resonate with faster, less

collisional electrons.

1.4 Fisch-Karney-Boozer Theory of Current Drive

To gain a more realistic qualitative picture of how current-drive works, and to
obtain accurate quantitative predictions of current-drive efficiency, kinetic theory
must be used. The interaction of the waves and the electron distribution function

must be examined, taking into account two-dimensional effects.

Following the analysis of Fisch and Boozer,!'2! the current-drive efficiency J /Py
may be calculated using an “impulse response” method, where J is the driven

current density and Py is the power dissipated per unit volume.

19



Consider the displacement in velocity space of a small number of electrons § f

from velocity v; to vo. The energy required for this displacement is

AE = (E, — E,)é§, (25)

where E; = ;m.v? and E; = im.v3. Recall from the previous section that the
collisional drag on an electron is dependent on its velocity. Assigning a velocity

decay rate v;(v) to each velocity v; gives the following transient current:
J(t) = —ebf [v2e™" = vjpe™], (26)

where the || subscript indicates the component of v; parallel to the confining mag-
netic field. The first term on the right results from the new electron at velocity v,
and the second term results from the missing electron at v;. These currents decay

at different rates v; and v, which depend only on v; and v,.[1?

The average of J(t) over a time At that is large compared to 1/v; and 1/v; is
defined as J:

1A esf (vjn v
= — tydt = — (AL _ ZI2
At J, J() At ( 121 vy > ’ (27)

where J can be interpreted as the current generated in a time At by an amount of
energy AE. Substituting from Equation 25 for §f and identifying AE/At as P,
yields the following:

_J_ _ e V)1 /1 — v)2/Ve . (28)
P, E, - E,

Taking the limit as vy — vy yields(!?

J o —e8-Vy(yy/v)
P, §-V,E

(29)

20



where § is the unit vector (in velocity space) in the direction of Av, V, is the

gradient operator in velocity space, and the subscripts have been dropped.

This equation shows that the current-drive efficiency depends on the velocity
of the electrons absorbing the power, and on the direction in velocity space in which
these electrons are accelerated. This can be seen by taking the limit v; — v, of

Equation 27:(13]

J = —e—il-vv (%) (30)

where Av = vy — v; and v = |v|. Differentiating,

_ Av ‘i v
J = ey ( +V2V,,V). (31)

v

The first term represents the contribution to the current via direct parallel momen-
tum transfer from the rf to the electrons and is proportional to the z-component
of Av. The second term, present even if no parallel momentum is imparted to the
electrons, is due to the velocity dependence of the collision frequency. If electrons
traveling in one toroidal direction are preferentially heated, even if this heating is
purely perpendicular, they will become less collisional, resulting in an asymmetric

resistivity and a net toroidal current.

Now Av is related to the characteristics of the rf wave that produces it. Energy
and momentum are absorbed by the electron when it is in “resonance” with the
wave, that is, when the Doppler-shifted wave frequency (as seen by the electron
streaming parallel to the confining magnetic field) is an integer multiple of the

cyclotron frequency:

w— kv = nwe (32)

21



where n = 0,+1,42,.... The parallel velocity at which an electron will strongly

absorb energy from the wave is then

v” = —. (33)

For waves in the lower-hybrid range of frequencies. (LHRF), such as those radiated by
the present antenna, w < w,, and resonance occurs for n = 0, yielding v = w/k; =
Vphase- Because we want electrons with a particular sign of vy to be preferentially
heated, this shows that in the LHRF, we must launch rf waves with a phase velocity

in a particular parallel direction.

The basic idea of current drive through parallel momentum transfer can best
be understood by considering the original paper on the subject by Fisch.[®) The
one-dimensional treatment presented there shows how the first term in Equation 31
contributes to the current-drive efficiency of a broad spectrum of waves interacting

with a distribution of electrons. N

In the parallel direction, the rf diffuses electrons outward in velocity space,
competing with the collisional relaxation of the plasma, which attempts to restore
itself to a Maxwellian. The effect of the rf is encapsulated into a quasilinear diffu-
sion coefficient, Dgr, which enters the one-dimensional Fokker-Planck equation as

follows:

(34)

where %f is the Fokker-Planck collision operator, which includes Coulomb scat-

c
tering in both the parallel and perpendicular directions. Integrating Equation 34

22



over the perpendicular direction, assuming f is Maxwellian in this direction, yields

the following equation for high velocity electrons:

0f  0D(w) of 0 1 8f f
6r = 0w ow  Bw \wPbw | w? | (35)
where w = v /v, T = wt, vy = vwd, Vv = w;}e 1nA/27mev|3I, and D(w) =

DqL/vovf,.
With strong rf, D(w) is very large for w; < w < ws and zero otherwise, and

the steady-state solution to Equation 35 is approximately flat for w; < w < wo and

roughly Maxwellian outside this region (see Figure 6).

The height of the plateau is found by evaluating the bulk Maxwellian at w = w;:

~ f(w,) = . (36)

The current carried by the resonant electrons with w; < w < w, is given by

J=/ neewvs f(wy) dw

wy

2
e” %1 (w2 — w?
= M€Vt .

Jr \ 2

In the steady-state, the power absorbed by the resonant electrons from the rf is
equal to the power absorbed by the bulk from the resonant electrons via Coulomb

collisions. This dissipated power is given by the following:

P; = / nemeviy vsw? f(w:) dw (38)

wa
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Figure 6: Distribution function for electrons in the presence of strong rf.
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Figure 7: Plot of relativistic current-drive efficiency (from reference [14]).
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)

where v, = u’(vfh/vﬁ)@ + Z;) in the limit vy /v, > 1, which is a good approxi-
mation for the high velocity resonant electrons,'®] and Z; is the charge state of the

background ions. Evaluating the above integral yields

2
—wj

VT

Py = nemevi /' (2+ Z;) In(wg/wy). (39)

The total driven current over the total input power is given by

I )
P ~ 2nR(P)

(40)
where ( ) indicates an average over the plasma cross-section, and toroidal symmetry
is assumed. The current-drive figure of merit 7j is obtained by combining Equations

37, 39 and 40, giving

_ 71(10*m~2)I(kA)R(m)
B P(kW)

2 2
~0.0054T(keV)( 5 ) (2 + Z:) In(wa/w1)’

Note that 7 is proportional to velocity squared, as given in the simple picture of

section 1.3.

Expressed in terms of the N of the rf wave spectrum, the figure of merit is

1.4 1/]\7”22 - 1/N1|21

7o 42
n 24+ 7Z; 21n(N||1/N||2) ( )

where N2 < Nj < Ny;. This shows that waves with high parallel phase velocity

(low N}) drive current more efficiently.
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Recall that an asymmetric resistivity is produced by the perpendicular-velocity-
space structure of the interaction of the rf with the plasma. This makes current drive
by cyclotron damping possible. However, this effect is not important for current

drive by lower-hybrid waves, which diffuse particles only in the v-direction.

An additional effect neglected in Equation 35 is the two-dimensional structure
of the collision operator. When this structure is retained, the calculated current-
drive efficiency is improved by a factor of two.['2] This is because when electrons are
pitch-angle scattered out of the resonance region by the bulk, resulting in a loss of
parallel momentum, they gain (on the average) perpendicular energy. This decreases
their collisionality relative to what one would expect if the increase in perpendicular
energy were ignored. Because these electrons are on the average traveling in the
same direction as before they were scattered, the calculated current-drive efficiency

is higher than one would expect taking into account only the parallel dynamics.

A fully relativistic calculation of the current-drive efficiency of low-N| lower-
hybrid waves is given by Karney and Fisch.['4] They find that two relativistic effects
set an upper limit on the efficiency. First, the relativistic electrons slow down
faster because they are heavier. Second, the current carried by the electrons is
proportional to their velocity, which approaches a constant (equal to the speed of
light) as momentum is imparted to them and they become heavier. Each of these
effects reduces the efficiency by a factor of v, so combined they reduce 7 by a factor
of v2 ~ p?, where p is momentum, cancelling the nonrelativistic v> dependence and
forcing 7 to approach a constant at high velocities. This dependence is shown in

Figure 7.[14]

1.5 The History of Lower-Hybrid Current Drive Experimentation

Soon after Fisch’s paper!®] was published, slow-wave current-drive results were

reported on the JFT-2 tokamak in Japan!*®! and the Versator-II tokamak at MIT.[16]
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The slow wave was used in these experiments because it is easy to launch, and
because it has a higher Landau damping rate, making it more effective in driving
current in the relatively small, cold, tenuous plasmas of these tokamaks. The current
was sustained mostly by the Ohmic Heating (OH) transformer and current drive
of ~ 15 kA was inferred by comparing the currents and loop voltages of plasma
shots with and without rf. On Versator, the increased current was not due to a
reduction in plasma resistivity caused by the rf, because the electron temperature (as
measured by Thomson scattering) went down during the rf pulse, thereby increasing

the resistance.[!®]

Also, the current-drive efficiency went abruptly to zero above a
certain critical density, called the “density limit.” This was unexpected because
Fisch’s theory predicts the efficiency to scale as 7;!. On the Versator 800 MHz
experiment, this density limit was about 6 x 10*2cm™2, for which the lower-hybrid
frequency wp g /27 is about 400 MHz.

Current was “flattopped” for the first time on the PLT tokamak at Princeton,!!7]
where a fully rf-driven current of 165 kA was maintained for 3.5 s with the loop
voltage near zero. The OH transformer primary current was clamped after plasma
start-up, and the subsequent L/R decay of the plasma current was fully arrested
by the rf, so that a steady-state current was maintained (see Figure 8). A flattop-
ping current-drive efficiency 7} = nIR/P,s ~ 0.1 was attained, in reasonably good

agreement with Fisch’s theory.®] A density limit was observed on this experiment

of 8 x 10'2cm ™3, for which wyy /27 =~ 600 MHz.

Current was first driven at high densities (~ 10'*cm™3) on the Alcator tokamak
at MIT. Up to 200 kA was maintained by 1.1 MW of 4.6 GHz slow waves launched
by a 4 x 4 phased array of waveguides. Efficiency was measured over a wide density
range and found to agree well with the Fisch3] theory; 7 ~ 0.12 was attained with
Bo = 10 T and 7j =~ 0.08 for By = 8 T.[8] Since these results were obtained, current
has been driven by slow waves on other tokamaks throughout the world.

Mayberry, et. al. ,['¥] showed that the density limit is a function of the source

frequency by driving current on Versator-II with a 2.45 GHz source at densities
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above 1 x 103cm™2 with the same toroidal magnetic field as for the 800 MHz
experiments. A flattopping current-drive efficiency 7 = 0.0072 was attained. This
efficiency is considerably lower than that of the PLT and Alcator experiments. This
could be due to poorer confinement of the fast current-carrying electrons, poorer
accessibility of low-N|| waves, or the larger “spectral gap.” The first two are caused
by the lower toroidal magnetic field on Versator, and the third by the lower electron

temperature.

Little experimental data has been obtained on fast-wave current-drive. Exper-
iments have been performed on PLT at 800 MHz,2%! JIPPT-IIU at 40 MHz(?1] and
800MHz, 22 JFT2-M at 200 MHz,[?3] and ACT-I at 18 MHz.?4 In the 800 MHz
experiments, both fast and slow waves could propagate in the plasma. Antenna
coupling characteristics indicated that the fast wave was being launched, but the
cmrenﬁ-drive efficiency and “density limit” were identical to those of the slow wave.
Although some authors(®?? claim to have driven current with the fast wave, it is
probable that in both the 800 MHz experiments, fast waves were lauched, but much
of the i)ower in the waves was subsequently mode-converted to the slow wave via

a toroidal N-shift, and the slow wave (which interacts with electrons much more

strongly) was driving most of the current.

1.6 Motivation for Fast-Wave Current-Drive

The primary motivation for studying the fast-wave is that it is more capable
than the slow wave of penetrating to the core of a hot, dense, reactor-grade plasma
and driving current efficiently there. This is because low N waves, which drive

current most efficiently, are only accessible to the plasma center in the fast mode.
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This can be seen in the following way.[?®! Recall from section 1.2 the accessibility

condition for waves in the LHRF:

R N PO Y O (43)
I wo w? w? ’

where wg = /wcewe; is the mean gyrofrequency and w is the source frequency.

Waves can propagate anywhere in the plasma where this inequality is satisfied.
Figure 9a is a plot of {Njm;,| as a function of wy;/we for various values of w/wy,
where Njj,,;, is obtained by making the above inequality an equality. Propagation
can occur above a given curve for the corresponding w/wp, as shown in Figure 9b.

I refer to these curves as “frequency curves.”

Note that the quantity under the radical in Equation 43 is negative below the
slope = 1 line on the graph. This line corresponds to the lower-hybrid resonance
layer, which the slow wave cannot penetrate. Therefore, only the fast wave has a
solution below this line, and for a given frequency, the slow wave has no solution
anywhere to the right of the intersection of the corresponding frequency curve and
this line. This is illustrated in Figure 9b. Note that frequency curves with w/wg > 1
never approach the lower-hybrid layer at any density; it does not exist in this case.

At high density these curves approach asymptotes with slope 1 + /1 — wi Jw?.

Now examine the following problem: for a tokamak plasma with a given mag-
netic field and density on axis, what is the lowest N wave that can propagate

everywhere in the plasma, and hence can reach the center from the edge?

Assuming the magnetic field gradient is less than the gradient of the square root
of the density, monotonic motion from the plasma edge to its center corresponds to
monotonic motion to the right on the plot. Fixing the plasma density and magnetic
field on axis fixes a vertical line that represents the plasma center on the graph. This

is shown on Figure 9a as the heavy dashed line. The edge of the plasma corresponds
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Figure 9b: Plot showing regions of propagation for the fast and slow waves.
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to the vertical axis on the far left of the graph, the region between these two lines
corresponds to the plasma, and the region to the right of the dashed line is now

irrelevant and should be ignored.

Because propagation can only occur in the region above a given curve and we
want the minimum N that can propagate everywhere in the plasma, it is best to
lower the frequency as much as possible to reduce w/wyg, shifting to lower curves
on the diagram. If the slow wave is launched in a plasma corresponding to the
vertical line in the figure, the lowest acceptable is curve A, because for lower curves
the lower-hybrid resonance layer prevents the wave from penetrating to the right

of the point of intersection of the curve and.the resonance line. Having chosen the

slow
[[min

best frequency curve, we note the lowest Ny, labeled N , that will propagate

everywhere in the plasma. Maximizing Equation 43 with respect to w,;/wo gives
-1 . -

Njmin = V1 —w?/w? = for the peak of each curve. Setting w = wry, in this

equation gives N IT:::‘; =1+ wf,ea / wfea, where the subscript a denotes quantities on

axis.[?6] This is the condition for slow-wave accessibility all the way to the lower-

hybrid resonance layer.

Because the fast wave can, in theory, propagate through the lower-hybrid reso-
nance, it can propagate to the right of the intersection of the chosen frequency curve
and the resonance line. This implies an arbitrarily low frequency may be chosen in
principle. Taking the frequency curve B as an example, we can launch a fast wave
with |N| = N}{;::L = 1, and because there are no accessibility restrictions on [Ny |
below the resonance line, it will propagate to the plasma center. A similar slow
wave, however, would be stopped by the lower-hybrid resonance near the plasma
edge at point a.

A secondary reason for prefering the fast wave for reactors is as follows.[?”]
Because the fast wave has a small electric-field component parallel to the confining
magnetic field By, its Landau-damping rate is much smaller than that of the slow

wave. In the small, relatively cold and tenuous plasmas of most present-day toka-

maks, full absorption would require many passes through the plasma, with possibly
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deleterious effects on the N|-spectrum due to reflections and toroidicity. However,
this would not be the case in a reactor. The damping rate is proportional to e s/ vin
where v, = w/k); this implies that v, /v, > 2.3 (approximately)?”] to avoid strong
Landau damping on the bulk. Therefore in a hot, dense, reactor-grade plasma,
where v, /vy, is substantially smaller for a wave with a given parallel phase velocity,
the damping rate is much higher. This affects both the slow and fast waves, so
in reactors slow waves will be completely damped near the plasma edge, and fast
waves will be absorbed in the hot core on the first or second pass. Slow waves,
therefore, will probably not drive large toroidal currents in reactors, but may be

useful for edge current-profile control and shaping.

It is important to consider the effect on E, and on the Landau damping rate
of lowering w. The power absorbed via Landau damping is proportional to |E, |2.
This will determine the number of passes required for complete absorption of the

wave by the current-carrying electrons. It can be estimated as follows.

The total power flux density S; is given by

(44)

where P,,; is the power launched by the antenna, and A,,; is the antenna area.

For the fast wave with w? < wfn. ,128]

25,w8 N2 6
L\ RS (45)
piwge

|E.|* =~

€gCAW

where ¢4 = Bo/ ,'/ponm,- is the Alfvén speed. For Ny = 0, the fast-wave dispersion
relation is(29]

2

N2 sz

Nt N2+ K,, 4
z sz—Kz:z z+ (6)
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02 2 ~ 2 -
where K, ~ —wpi/w and Ky = ws, /wwee. This yields

kzz%_

CWeg

The Landau damping rate is given by!?®]

2 \?2 ' .
km-zkz( d )Nf\/v_rcae"( o« WP (48)

WpiWo

where wg = ,/wecewe;. So we see that the magnitude of E,; and the Landau damping
rate decrease sharply as the source frequency is lowered much below the ion plasma

frequency.

For w > wp;, the dispersion relation becomes

2
W
ke = 2 . (49)
che\/Nf -1- w;zze/wZe + “);zn'/“')2

Here, the dependence on w is weak. The electric field is given by(28]

E.P~ 22—, 5
B (50)
which is roughly proportional to w. The Landau damping rate isl28]
w 2 2
kp; =k, (—ﬂL) Vm3e ¢ ~ constant. (51)
wee Nz

We see that E, and the Landau damping rate are weakly dependent on the source

frequency for w > wy;. So for the fast wave, single-pass absorption via electron
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Landau damping will not occur if the source frequency is too far below wy; ~wry.
In this case, however, transit-time magnetic pumping (TTMP) may strongly damp

the waves.

It is important to understand that if the fast wave suffers from the same exper-
imentally observed “density limit” that the slow wave does, the above arguments
for fast-wave current-drive will be irrelevant. This is because, for a gi\;en density
and magnetic field (say, those of the vertical line on Figure 9a), as the frequency is
lowered, the density limit is encountered well before the lower-hybrid layer appears
in the plasma. In other words, those regions of the plot that can be accessed by the
fast wave but not the slow wave may be regions where no current can be driven by
either wave due to the density limit. If the fast wave cannot break the density limit
(for a fixed source frequency), it is no better than the siow wave for current drive

in tokamaks.

There is a theoretical basis for expecting the fast wave to have a higher density
limit than the slow wave. The cause of the density limit is not known; it is not
predicted by linear wave propagation apd absorption theory. However, a likely
candidate is the parametric decay instability.?”) In theory, higher powers or higher
electron densities are necessary for the parametric decay instability to be excited
by the fast wave than by the slow wave.[?!] Thus the density limit should be higher
for fast-wave current-drive than for slow-wave current-drive if it is caused by the

parametric decay instability.
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2 THE SLOTTED-WAVEGUIDE

2.1 Motivation

The principal reason for experimenting with the slotted-waveguide is to find
out if it couples to the fast-wave and, if so, how well it drives current. Others
have performed FWCD experiments using the waveguide grill and the loop array,

as shown in Figures 10 and 11.120 [22]

The slotted-waveguide is shown in Figures 12 and 13. It has several advantages
over the grill and loop array. First, the antenna area can be much greater than the
port area. This is because the open-ended grill comes straight into the port and
terminates at the plasma, but the slotted waveguide comes into the port, bends
ninety degrees, and travels toroidally around the plasma edge for a distance many
times the port width, radiating from its entire length. This creates an N} spectrum
with much narrower peaks than those of the grill, enabling more wave power to fit
into the “window” in Nj-space between the cutoff and accessibility limits. Also,
the longer source should interact with the plasma electrons in a more spatially
distributed way, decreasing the local rf power density in the plasma and lessening
the possibility of deleterious nonlinear effects. Second, a slotted waveguide can
produce an acceptable Nj-spectrum without dielectric. This lowers the cost of the
antenna enormously and eliminates the plasma impurities that may be generated

by plasma/dielectric interaction.
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Figure 10: Waveguide grill, as used by Pinsker, et. al. [20)].
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Figure 11: Loop coupler (from reference [22)).
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2.2 Design Theory for Radiating into Free-Space

Il
.

2.2.1 Single-SlotE’i{onductance

-
&

To determine the free-space conductance of a slot in the broad face of rectan-
gular waveguide that is parallel to the guide axis, we first assume a field distribution
in the slot, then use orthogonality to compute the amplitudes of the normal modes
excited in the guide by this source, and finally write a power balance equation to de-
termine the relative amplitudes of the radiated and reflected powers, given a known

incident power inside the waveguide.!3%

Consider a cylindrical waveguide of arbitrary cross-section as shown in Figure
14. The fields in such a guideitan be written in terms of TE,,, and TM,,,, modes,
where TE (transverse electric)rmodes contain no E; and TM (transverse magnetic)

modes contain no H,. The fields of these modes are

E:nn = Ef)mn eXp(:Fjﬁng) (52)

0., = jH5,, exp(FiBmnz) (54)
for the TE,,,, modes and

E.., = Ef,,exp(FjBmnz) (55)
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Figure 14: Cylindrical waveguide of arbitrary cross-section with arbitrary slot.

Probes

Figure 15: Rectangular waveguide with probe-fed slots.
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Efnn = JESmnemP(:FJﬁmnz) (57)

for the TM,,, modes, where 8,,, is the guide propagation constant of the mode
with mode numbers m and n, fields varying as exp(jwt — jk - r) are assumed, and
quantities with a O-subscript have unit amplitude, are pure real, and depend only
on m, n, z, and y. The waveguide modes are orthogonal over the cross-section of

the waveguide, that is,

A(EOmn X HOpq) . zdS = { zsmn ifm= P and n = q (58)

0 otherwise

where Sy, is the Poynting energy flux of the mnth mode with unit amplitude.[32]

Placing a self-excited slot from z; to 2z in the wall of the infinite waveguide

will excite waves in the guide that travel away from the slot. The wave fields are

E; = Z AmnEf . nexp(—38mnz) z> 2z (59)
mn

E; = Z BrnEf. . exp(j8mnz) z2< z1 (60)

H; = Z AmnH:)mnea}p(—j:anz) z> 2z (61)

H; = Z anHanemp(jﬂmnz) z< 2z (62)
mmn

where the coefficients A, and B,,, are the amplitudes of the mnth mode traveling

in the positive-z and negative-z directions, respectively. To obtain the coefficients,
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an additional relation is needed. Assuming E,, H, and E4, H; are two fields that

satisfy Maxwell’s Equations in free space gives
V.[E; xHy] = V.[E; x Hy]. (63)
Using the divergence theorem yields
/S(ngHT—ETng)-dAzo (64)

where the integration is over a closed surface 5.2

We apply this equation to evaluate A4,,,, choosing a surface S that includes
the plane sections at z3 and z4 and the walls of the guide between these sections
(see Figure 14). We call the fields excited in the slot E;, H, as given by Equations
59-62, and let E4, H; be a mode with unit amplitude and indices m and n prop-
agating to the left in the waveguide. Integrating over the plane at z; and using
the orthogonality relation (Equation 64) gives zero because the fields g and { are
waves traveling in the same direction. Integrating at z; gives —4A4,,,S5m,,. For a
normal waveguide mode, the tangential component of E must be zero at the metal
wall. Therefore the second term of the integrand vanishes for the integration over

the wall and we obtain

44 S = — / (E, x H;) - dA (65)
slot

- f GETHZ,, + E2H7,,) exp(jBmnz)dA (66)
slot
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where the superscript 7 indicates quantities in the direction Z x fi where i is the
normal to the guide surface. Following a similar procedure with E;, H; a normal

mode of indices mn traveling to the right yields

4B inSmn = / (—FE] Hz + EZHG,,) exp(—jBmnz)dA. (67)

slot

These relations can be written in terms of the surface current K,,., that would exist

in the region of the slot if there were no slot. The above equations then become

44 S = / GE KL — BEK2,.) exp(jBmnz)dA (68)
slot

4B, S = f GEI KD, + E2KZ,) exp(—jfmnz)dA (69)
slot

where K, and K], depend only on m, n, , and y.

Proceeding to the explicit evaluation of the slot conductance; we are interested
in resonant slots (perimeter = A) in rectangular waveguide that are long and narrow,
with the long axes parallel to the guide axis (see Figure 15). The guide propagates
only the dominant TE;p-mode. For this case we would expect that Ap,, = Bmn
because the slot is symmetric in z. In the slot, E; = 0 so the second terms in the

integral vanish. Also, K

mn is constant and E7 is an even function along the slot,

so that only the real parts of the phase factors contribute to the integrals, resulting

in Amn = Bmn. Thus the slot is a shunt element in the transmission-line model of

the waveguide. The following assumptions are made:[32] [33]

1. 2log;,(length of slot/width of slot) > 1.

2. The guide walls are perfectly conducting and infinitely thin.
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3. The field in the slot is in the y-direction and sinusoidal in the z-direction.

4. The radiated field is zero behind the slotted face. This is equivalent to extending

this face into an infinite, perfectly-conducting plane.

Assumption 3,’in good agreement with experimental conditions, gives the fol-

lowing:

E7 = Egcos(kz) (70)

E: =0 (71)

where E, is the field in the center of the slot. The other quantities in Equations 68

and 69 are the following:

r _ 30 T . (71
K, = Ylo;@—ma sm( - ) (72)
o ab

510 - }100‘1 (73)

2 2 T\ 2
#o = 12— (7) ()

and

AlO = BlO ' (75)

where Yloo is the characteristic admittance of the TE;g-mode at z = 0, a and b

are the dimensions of the waveguide, z, is the distance from the slot axis to the
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centerline of the slotted face of the guide, and Eyq is the field across the center of

the guide. Substituting these into Equations 68 and 69 gives

) 2 ([ k\?. /nzm; B1oA
Am = Blo = _JwEOE(E(;> sin (T) COS( 2 > (76)

where w is the slot width.

The reflection coefficient I'(z) in a transmission line is related to the normalized

admittance y(z) by

e = 1520 (")
W(z) = 1r (78)

For a resonant slot, I'(z = 0) must be real because the slot admittance is real and
therefore the normalized admittance looking to the right at z = 0, y(0) = 1 + g is
real, where g = G/ Y7} is the conductance of the slot normalized to the characteristic

admittance of the TE;g-mode. Thus

g = (79)

Note that I" = A9, because the incident wave—from the left—has unit amplitude

and A;q is the magnitude of the wave reflected to the left by the slot.

To find I', we set the Poynting flux through the closed surface shown in Figure
14 equal to zero. This includes the power from the incident TE;o-mode from the
left, the power scattered by the slot in both directions in the guide, and the radiated

power. We find the radiated power by using Babinet’s Principle®¥ to determine the
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radiation resistance of a resonant slot. The radiation resistance of a center-driven,

resonant slot in an infinite, perfectly conducting sheet is

1 ko
4X7360

(80)

7‘:

The radiation resistance of the resonant waveguide-slot is twice this, because it

radiates to one side only. Thus the radiated power is

V02 _ 2 €0
SR, 73V, o (81)

D

where Vy = Eqw is the voltage across the center of the slot. The incident power from
the left in the guide is S1o and the reflected power is ['2(0)S10 = A%,S10. Because
I'(0) is real the phase of the wave scattered to the right by the slot is not shifted,
and the total amplitude of the right-traveling wave is 1 + Bjp. The transmitted

power is
510(1 + Blo)z = 510(1 + Alo)z (82)

The energy-balance equation is

S10 = S104%; + Swo(1+ 410 + 73"52% (83)
0

so that, using A;o =T and Vy = Eyw,

i

L

— 84
Ho 25104, (5

i
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Using Equations 70-76 to describe A9 = Egp in terms of the characteristic admit-

tance of the TE;o-mode and substituting the resulting I' into Equation 79 yields[®?!

_ 4B0ad; L WA\ . 4Tz
9= b A (2,\)51“ ( a ) (85)

Figures 16 and 17 show data obtained by Dodds, et. al. on the admittance of

longitudinal slots in rectangular waveguide immersed in free-space.!3®!

2.2.2 Arrays

Consider radiation from a single-row array of slots in rectangular waveguide
as shown in Figure 18. The array is excited by the TE;g-mode propagating in the
guide. Each slot is excited in its own TE;o-mode and picks a single average phase
at which to radiate. We are primarily interested in the Fourier spectrum of the
array, so that we may calculate the near-field. However, calculating the far-field
allows us to develop a neat graphical method for predicting the near-field spectrum
(therefore designing the antenna), and it provides a comparison with measurements

of the antenna’s far-field.

The far-field of an array of radiating elements is the product of the element
factor and the array factor. The element factor is the radiation pattern from one
slot and the array factor is the pattern that would be obtained from the array if
the slots were isotropic radiators. Similarly, the transform of the field in the slots
(the source field) is the product of the transform of the field of one slot and the
transform of an array of N impulse functions located at the slot centers, that is, the

source field is the one-slot field convolved with a train of N impulses. The simplest
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Figure 16: Resistance of longitudinal slot versus its distance from the center.
The data fit the relation G = Z,/R = 1.73sin?(nz; /a) (see
Equation 85). (From reference [35].)
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Figure 18: Rectangular waveguide with single row of off-center slots.

Figure 19: Interference maxima. Constructive interference occurs for
¥ + kdcos § = m2m, where k = w,/eopio and m = 0,+1,+2,....
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way to find the maxima of the array factor is to determine the condition for far-field

constructive interference. For the array shown in Figure 18,
¥ = —4d (86)

where 7 is the phase angle between fields of adjacent slots, d is the slot spacing
and 3 is the propagation constant in the guide. For the probe-fed array shown in

Figure 15,

b = m—pd (87)

So from Figure 19,
Y + kdcos = m2wr, m=0,+1,%2,.... (88)
Defining Ny = cky/w = (ck/w)cos §, we get
Y+ N”% = m2m. (89)

For the array of Figure 18,

2mme
4= N (50)

and for the probe-fed array of Figure 15,

_ (2m — 1)me

Nyw —cB (1)
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where c is the speed of light, w is the wave frequency, k is the wave number, and ||
indicates a component parallel to the array axis. Equations 90 and 91 are used to

plot d versus Ny for various m in Figures 20 and 21.

Note that for any fixed slot-spacing d, there is a countably infinite number of
N|’s that satisfy the constructive interference condition. The medium determines
which can be identified with a propagating wave. For a single row of slots that are

not probe-fed,

so there is always a radiation peak at k; = (3 (corresponding to m = 0), independent

of d.

To illustrate the design procedure, suppose we wish to design a probe-fed an-
tenna that radiates as much power as possible near |Ny| = 1.4 and is made from
WR-340 waveguide (1.7" x 3.4" inside dimensions). The operating frequency is
2.45 GHz. Using Figure 22, we draw vertical lines at Ny = £1.4, then draw hor-
izontal lines through the intersections of the vertical lines and the lowest-order
curves—here m = 0 and m = 1. The best solution is at point 4, which gives the
smallest slot spacing, because this solution forces the next solution, m = 1 at point
C, to be as far away from N = 0 as possible. We see this by traveling horizon-
tally from points A and B. Many more maxima will be produced in the range
—5 < Nj < 5 with a slot spacing of 8.8 cm (point B) than with a slot spacing of 2.9
cm (point A). Because the full spectrum of the source field is the product of the
“array factor” and the spectrum from an individual slot—shown in Figure 23—the
contribution of a particular solution of Equation 91 is greatly reduced if it is far to
the left or right in Figure 22. The two-dimensional spectrum'’is shown in Figure 24
for a slot spacing of 2.9 cm, slot length of 2.7 cm, and slot width of 1 cm. Note
the principal maximum at Nj; = —1.4 and the smaller but unavoidable maximum

at N = +2.8 (point C in Figure 22).
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Figures 25 and 26 show the interference plot, element factor, and spectrum
for the antenna used in the experiments discussed in this thesis. A much-improved
(36] [37)

design incorporating probe-fed slots is shown in Figure 27.

2.3 Spectrum and Coupling

The full coupling calculation for the slotted-waveguide is beyond the scope of
this thesis, But an approach will be outlined for future work and approximations

justifying the design method of section 2.2.2 will be explained.

A real antenna is not infinite, and hence it produces a Fourier spectrum, or
superposition of plane waves. This spectrum is the Fourier transform of the space-
dependent fields at the source; it must contain as much power as possible in spectral

components accessible to the plasma core.

The plasma near the antenna acts like a filter, modifying the spectrum before it
is transmitted to the bulk of the plasma. This transmitted spectrum determines the
accessibility of the power to the plasma core and the current-drive efficiency. The
filtering effect of the coupling region can be encapsulated into a plasma admittance
Y (ky, k,)1®8 where k, and k, are the poloidal and toroidal wave numbers (Fourier
transformed coordinates), respectively. The coupling has been rigorously calculated
for the waveguide grill,’®® but not for the slotted waveguide. The calculation for
the slotted-waveguide is more complicated because all the modes in the slots are

evanescent and the fields in the guide behind the slot are unknown.
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To solve the coupling problem for the slotted-waveguide, the slots are treated
as waveguides, with a length equal to the wall-thickness of the main waveguide
and transverse dimensions equal to the dimensions of the slot. At the operating
frequency (for a resonant slot), all modes in the “slot-waveguide” are evanescent.
The following approximations are made. The main waveguide propagates only the
TE;o-mode. The plasma density is as shown in Figure 28, i. e. , there is a vacuum
region just outside the antenna, followed by a plasma region with some arbitrary
initial density and density gradient. The vacuum region is for analytical convenience
and can be infinitesimally thin, but the plasma does not enter the slots. Inside
the waveguide, the slots do not couple to each other, i. e. , the evanescent waves
reflected into the guide by one slot do not reach another. The dogbone-shaped
slots (so shaped to minimize their length while maintaining the resonant condition
perimeter = A) used on the Versator-II slotted-waveguide fast-wave coupler are
modelled as rectangular. Only TE.¢-modes are excited in the slots. Slab geometry
is used, as shown in Figure 29, and the guide is straight. The face of the antenna
is flush with an infinite conducting sheet, and the plasma does not vary in the y-

or z-directions.

The coupling calculation yields the total reflection coefficient and the power
spectrum transmitted into the plasma, given certain plasma parameters. The out-
line of the calculation is as follows. First, a superposition of evanescent TE,o-modes
is assumed for each slot. Then, Equations 66 and 67 are used to obtain the fields
of the propagating TE;o-modes produced in the guide traveling away from each
slot. Each of these is proportional to a summation involving the amplitudes of the
evanescent modes in the slot. A transmission-line analogy is then made, treating
the slots as shunt elements. The power dissipated in the transmission-line element
representing each slot is then equated to the Poynting flux leaving the slot. Keeping
only the lowest-order evanescent mode in each slot, this yields a set of P equations

for the 2P unknown mode amplitudes (forward and reflected). Next, the formalism
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Figure 28: Density versus distance fron the antenna for coupling calculation.
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Figure 29: Coordinate system for the coupling problem, using
slab geometry. 64



introduced by Brambillal®®] is used to obtain an additional set of P equations relat-
ing the amplitudes of the forward- and backward-decaying evanescent modes in the
slots. Combining these two sets gives one set of equations for all the modes in the
slots in terms of Y'(k,, k,) and the slot dimensions. This system can be numerically
inverted to yield the amplitudes of the slot-modes, the total reflection coefficient of

the antenna, and the power spectrum transmitted into the plasma.

Equations 66 and 67 give the amplitude of the nmth propagating mode in a

waveguide produced by a known field in a slot.[32]
4AnmSnm = /l t(_JEgH:zm - E;Hzm)ejﬁnmsz (93)
4BnmSpm = /l t(—ngH;’;m + E;Hf’,m)e"jﬁ'""sz (94)

where A, is the amplitude of the right-traveling wave, and B,,,, is the amplitude

- of the left-traveling wave.

Assuming the fields in the pth slot are superpositions of forward- and backward-

decaying evanescent TE,o-modes,

E, =¥ Z sinnko(z — 2p) (q"pne_%z + ane%z) (95)

n==1

where the length of the slot is A/2, X is the free-space wavelength, ®,,, and R,, are
the amplitudes of the nth forward- and backward-decaying modes in the pth slot,
zp is the z-coordinate of the edge of the pth slot, and ~, is the decay constant of
the nth mode.

Narrow slots that are long in the axial direction along the waveguide contain

fields polarized only in the y-direction; Resonant slots are A\/2 long. Because only
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the TE;o-mode propagates in the waveguide, only A9 and B,y are needed. The
second terms of the integrands are zero because E7 is zero in the slot. The other

quantities in Equations 66 and 67 are the following:

abfB1o
510 = 2 (99
z —J Ty
H, = hoa sin — (97)

and EY is obtained by setting z = —t in Equation 95:

[o o]

Eg = Z sinnko(z - Zp) (Qpne‘ynt + ane"‘Ynt). (98)

n=1

Here Sy¢ is the integrated Poynting flux for the TE;¢-mode with unit amplitude in
the waveguide, a and b are the guide dimensions, B;o is the propagation constant
in the guide of the TE;o-mode, and HZ, is the z-component of the magnetic field
of the TE;o-mode. Substituting into Equations 66 and 67 and integrating gives the

following;:

—wm ., Y
.410 = SIn —
P™ T 25a2bB1 a

X Z(‘I’pne%t + Rpne™ ™) [

n=1

einT B2 _ ] gmimntifiorz _ 17 (99)
j2mn/A+ B —j2mm/A— jBio ]

glo __—wT_ .
n - .
P 27a2b610 a

X Z(‘I)pne%1t + Rpne™ ™) [

n=1

ej'n.rr—j,BmA/Z -1 e—jwn—jﬁm)\/2 . 1J

j2mn/A — 3B —j2mn/A — jBio
(100)
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To make the pfoblem more tractible, we now assume only the first evanescent
mode exists in the slots, so the field is sinusoidal across the length of the slot. The
n subscript is dropped. The coefficient R, is not zero, however. Because the field
is an even function along the slot, the imaginary parts of Equations 66 and 67
vanish, making A}° and B,° pure real. This allows us to model the slots as shunt
conductances in a transmission line,!3?] as shown in Figure 30. The load is at z = 0,
and the reflection coefficient I'(z) is defined at any point along the transmission-
line as V. /V_, where V, and V_ are the amplitudes of the forward and reflected
voltage waves at that point. The model is valid provided that only the TE;p-mode
propagates in the guide and the slots do not internally couple, that is, the evanescent
modes produced by one do not reach the next. The voltage is defined as the integral
of the electric field across the center of the guide for the TE;o-mode. The following
relations will be used. These relate the admittance at a point on a transmission-line

to the admittance at any other point on the line, and the reflection coefficient at a

point to the admittance at that point, respectively:

Yy + jY¥o tan ki

Y(-1) = 101

(=) Yo + 7Y tankl (101)
Yo—- Y1

T = =™t 102

L= YT, (102)

Here Y, is the characteristic admittance of the line, and I';, is the reflection coeffi-

cient with everything to the right treated as a load.

Refering to Figure 30, we obtain an expression for the admittance looking to

the right from just left of the first slot. It is }"1. = G; + Y] where

o Y> + Yo tan kl
L Y+ jYatankl

(103)

67



Y! Yp

Figure 30: Transmission-line model of the antenna for the coupling
problem.
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Figure 31: The contour dictated by causality for inverse transforming

the wave fields in the complex k-plane.
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Note that Y3 is a function of G2,G3,G4,...,Gp.

From Equation 102, ¥7 = Y5(1 — I'1)/(1 + T'1). We now relate I'; to Al° by
writing expressions for the reflection coeflicients I'y, '}, looking to the right from

just left and just right of G;. this gives A}° = bE,(T; — I'})/(1 +T}). So we have
A°(®1,R1) = A(E,, Gy, - .., Gp) (104)
where E; is given. Similarly for the pth slot,
A;O(QP,RP) = A[Ey(Gy,...,Gp),Gy,...,Gp) (105)
Solving each equation for G, gives
Gp = Gp(®p, Ry, G, ..,Gp—1,Gpt1,...,GpP) ' (106)

Treating the ®,’s and R,’s as parameters, this gives P equations for the P unknown

Gp’s. So we can solve for them, yielding
Gp=Gpl(@h...,@p,Rl,...,Rp). (107)

Now we equate the power dissipated in the transmission-line element repre-

senting the pth slot to the integrated Ponting flux leaving the slot:
1 5 1 -
-(bEp)*G, = =R (ExH) -%dA = f,(%5,R;) (108)
2 2 pth slot

where E, = E,(Gy,...,Gp).
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Substituting Equation 107 into Equation 108 gives

b2
EFP(Ql,...,q)p,Rl,...,RP) :fp(Qp,Rp) (109)

where F, = E2G,.

This gives P equations for the 2P unknown amplitudes ¢, and R,. An addi-

tional set is now obtained using the Brambilla formalism.[38]

The fields in the slots are the following:

P
E't = § Z e 0,(y,z) (Bpe™7™® + Rpe?M%) sinko(z — zp) (110)
p=1 i
P . . 1
- Holt = Z e??*0,(y, z) [5& (®pe77M" + Rpe!"®) —— cosko(z — 2,)
=1 LI (111)
+ % (®pe™IM® — Rpe?™?) N gin ko(z — 2p) |,
070

!

where 79 = /po/€o is the impedance of free space, ©, =1 for 2, < z < z, + @ and
Yp <y < yp + b, and O, = 0 otherwise.

The fields in the vacuum region (z > 0) can be written as Fourier integrals.

They are the following:

BY = [ lolhy, ka)em%e" 1 plly b)) b ber g dh, (112)
-0

HY = = [k, [o(ky, ko)em 5% — p(ky, ks)eib=?] e 7kvv=ik=dk dk,. (113)
WHO J —o0
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To satisfy causality at large positive and negative y and z, we must perform the
above integrals along the contours in k- and k.-space shown in Figure 31. Branch
cuts must be introduced as shown along the horizontal axes, and the integration
path must be above the axis in the left half-plane and below the axis in the right

half-plane.3®]

The plasma admittance is defined by!38!
plky,k2) = =Y (ky, k;)o(ky, k). (114)

We now match the vacuum and slot electric-field spectra at £ = 0. The spectrum

of the slot electric-field is defined as

E;lot(ky,kz) — / / E;IOt(y,Z)ejkyy+jk’zdy dz (115)

which gives

ot e~ i . , eiky¥p _ giky(yp+h)
si0t J —Imz JY1T
Bt =) e (de + Rpe!™®)
p=1

ok,
(116)
|:ej(k0+k1)(zp+a) — ej(k0+kz)zp ej(kz_ko)(2p+a) — ej(kZ‘kO)zp:I
X ; - ;
J(k0+kz) J(kz “kO)

Writing the last two factors in Equation 116 as F,(ky, k) for compactness, we

get, upon matching the electric field spectra at z = 0,

o(ky,k:) (1 =Y (ky, k) = ) €% (5 +Ry) Fylky, k:)- (117)

R

9
il
—
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The magnetic fields must also be matched, but due to surface currents in the wall of
the waveguide, the tangential magnetic fields are only equal at the slots. Therefore,
the field outside the slots is inverse transformed and matched to H,(y,z) in the

slots, yielding

1 [ N
—jkyy—Jk.z
- f mk,a(ky,kz)(l—i-Y(ky,kZ))e dk, dk,
P (118)
= Y e0,0,2) (1 ) sinkalz - 58, + Ry).
=1 koTlo

We now use the orthogonality of the waveguide fields to get an equation for
the unknown coefficients ®, and R,. Multiplying both sides of Equation 118 by
e~7%4@,(y, z) sin ko(z — z,) and integrating both sides over y and z gives the follow-

ing:

e~Ji®a f2ate Yq+b
Fars / / sinko(z — 24)
2 Yq

q

aby;
k0770

/ /k,a(ky,kz)(l + Y(ky, k,))e Fv¥=ike2 gk dk, dydz = (@4 + Ry)-

(119)
Substituting this into Equation 117, we obtain

zg+a yq+b
' 2e 7% )
®, + Ry = abs / / sinko(z — 24)
Yq

(s < BN <] N
1+ Y(ky, ks)
k. % (Q, VFp(ky k) | ——=-2= ) dk, dk, dyd=.
[ [ X s mnth (i) s ae

p=1

(120)
This set of P equations along with Equations 109 can be solved numerically

for the ®,’s and R,’s. If care is not taken when numerically solving this problem,
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difficulties may arise because the slot fields vary little in the z-direction (because
t € 1/71). Note from Equation 117 that if Y(ky,k,) = 0 (radiation into free
space) the shape of the radiated spectrum o(k,,k,) is just given by the Fourier
transform of the slot fields, corroborating the results of section 2.2.2 and yielding
a simple design technique. However, the magnitude of o(ky, k;)—which gives the
total power radiated—must be found by solving the above problem to determine

the coeflicients ¢, and R,.
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3 EXPERIMENTAL APPARATUS

3.1 Apparatus for Versator-II Experiment

The Versator-1I tokamak is described well in previous theses.[*®! (41] The ap-
paratus used for the slotted-waveguide fast-wave coupler experiment on Versator-II
consists of the antenna system and the 2.45 GHz rf system, including the power sup-
ply, capacitor banks, klystrons, waveguide components, and high- and low-power
circuitry for fault detection and control. The rf system is well-described by May-

berry in his doctoral thesis.[1%]

Diagrams of the high- and low-power circuitry are
shown in Figures 32 and 33. The antenna system is shown schematically in Figure
13. For the slotted-waveguide to move radially in the Versator tokamak, several

new pieces of hardwave had to be designed and built.

The antenna was constructed from 0.080" 304 stainless steel sheet stock ma-
chined and welded into the curvey piece of waveguide shown. Eight dogbone-shaped
slots were cut into the front face before assembling the four walls. The end-flanges,
machined from 304 stainless steel, were welded on last and the inner surfaces of all
welds were inspected for defects to ensure no points existed where the electric field
could concentrate and cause breakdown. The antenna is only 1.4 cm high (short
dimension), so that when it was pulled back against the wall of the vacuum vessel,

its front surface was at least 0.5 cm from the plasma edge (behind the limiter).

Because the antenna is long toroidally, it occupied two large ports on Versator
and required a special system enabling it to move radially under vacuum while
clearing the toroidal-field coils and other hardware. This system includes two bel-
lows with port extenders attached to each and angled inward by 22.5° to allow the

bellows to work together, as shown in Figure 13.

Two tapers were brazed from 0.080" copper sheet stock and fitted with brass
end-flanges. The tapers transferred power from the WR-340 standard guide of the
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directional couplers, matched loads, and all other standard waveguide components

to the specially-sized waveguide of the antenna.

The vacuum break was made by two mica windows placed in machined recesses
in large stainless steel vacuum flanges covering the bellows openings. Each window
was sealed with O-rings and sandwiched between the recess in the stainless-steel
flange and a protruding section of the small brass end-flange of the taper, which

was bolted to the large flange.

Stainless-steel waveguide sections were constructed to connect the antenna to
the large flanges. This was neéessary because a single waveguide piece, including
the antenna and long enough to pass through the port extenders and bellows, could

not fit into the tokamak.

The rf power passed from the klystrons through a directional coupler, which
measured the forward and reflected powers. Then it passed through the tapers to
the vacuum break at the large flange, traveled through a hole cut in the flange (which
acted as a waveguide) and through a stainless steel waveguide section (which passed
through the bellows and port extender) to the antenna. The antenna radiated some
of the power from its slots, some of the'power was reflected, and the rest traveled
forward through the second stainless steel waveguide section to the second window

and out to the output taper, directional coupler, and matched load.

3.2 Test-Bench Apparatus

The test-bench apparatus is shown in Figure 34. Measurements were made in
air of the single-slot conductance and the far-field radiation pattern and polariza-

tion. A tunable 30 mW Alfred oscillator was the rf source, and for the far-field
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measurements, a traveling-wave-tube amplifier boosted the source power to about
3 W. A 3 GHz low-pass filter was placed on the output of this amplifier to elim-
inate higher harmonics. The output frequency was tuned to 2.4500 GHz using a
resonant-cavity frequency meter. Power was fed via type-n coaxial line to a type-
n/WR-340 waveguide transition, then through a taper from WR-340 to the narrow
antenna. Power not radiated from the antenna or reflected passed out the other end
of the antenna, through a taper, and into a matched load. The matched load was
waveguide for the far-field measurements and a waveguide/type-n transition with a

50 1 termination for the slot conductance measurements.

For the slot conductance measurements, a calibrated bi-directional coupler was
placed in the line between the source and the antenna so that the source, reflected,
and transmitted powers could be measured with all the slots but one covered (as

shown in Figure 35).

The far-field radiation pattern was measured using a 20 dB horn mounted on
a rolling tea-cart, as shown in Figure 34. The antenna was carefully aligned on a
table, with the radiating face overhanging to prevent the table from interfering with
the measurement. The position and orientation of the antenna was fixed relative to
a coordinate system defined by the 12.00” by 12.00" floor tiles of the room. This
coordinate system was accurate to 1%. A pointer was centrally fixed to the tea-cart
to locate the center of the horn on the floor grid to within 1—16" . A nail was embedded
in the edge of the table so that its head was directly below the center of the antenna
by about 10 cm, and a string was tied from the nailhead to the pointer on the cart,
and then to the center of the rear of the cart. By positioning and orientating the
cart so that the string was taut and the string sections between the nail and the
pointer and the pointer and the rear of the cart were aligned, a circular arc of data
points could be swept out with the horn pointed directly at the antenna center.
Power received by the horn was measured by a calibrated Hewlett-Packard digital
power-meter with a thermal head, and pieces of tape were marked on the floor to

record the pointer location for each measurement.

78



The follcwing pages are missing f£rom the
original )

7 - ¥0
K



4 EXPERIMENTAL RESULTS

4.1 Current-Drive Results

Current was driven with the antenna spectrum both forward and reversed, that
is, with the plasma current traveling in the plus and minus N-directions (see Figure
36). Data sets for typical forward and reverse shots are shown in Figures 37 and 38.
When the rf turned on, the plasma current increased over the ohmic value of the
previous shot, and the loop voltage was partially supressed. Later in the rf pulse, the
density rose by up to 200%, and the hard X-ray and loop voltage signals showed
bursts, indicative of the anomalous Doppler instability.*?) The density remained
constant or fell during ohmic shots. This is probably because the increased current

produced by the rf improved confinement by increasing the poloidal magnetic field.

The driven current was calculated assuming Igriven = (AI/At)Tr/p. The
figures of merit 5 = nJR/P,; for the forward and reverse spectra were 0.007 and
0.0065, comparable to the flattopping figure of merit of 0.0072 obtained by the
Versator-II slow-wave grill.'® This is encouraging considering the relatively poor
spectrum of the slotted waveguide used. Current-drive efficiency peaked sharply at
densities of 5~7x10'2 cm™3. Below this density, less current was driven, with no

3

current-drive observed at densities below 2 x 10'2cm™2. This is probably due to

poor coupling at low density, and strongly indicates the antenna was coupling to

3

the fast wave. The slow-wave cutoff is at a much lower density of 7.5 x 10%cm ™3,

but the fast-wave cutoff density of approximately 3 x 10'?2cm™3 would explain the
observed density threshold for current drive if the antenna were launching the fast
wave. If a large fraction of the power launched by the antenna were in the slow
wave, more current would be driven at n, = 2 x 10'2cm™3 than at 5 x 10*%cm™3,

but this was not the case.
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No current drive was observed at densities above about 8 x 10*2cm™3. This
may be due to a lack of source power or to a decrease in tail density. Several of the
highest-power shots at 8 x 102cm ™2 drove no noticeable current, while current was

driven by similar rf power levels at 6 x 10'2cm™3.

Hard X-rays were observed by the large collimated detector placed under the
tokamak (see Figure 39).These X-rays increased in intensity through the duration
of the rf pulse and abruptly disappeared when the rf shut off, indicating that fast

electrons are very poorly confined in Versator.

The current-drive efficiencies were approximately equal regardless of whether
the antenna spectrum was forward or reverse. At first, this was puzzling because
the antenna spectrum is thought to be asymmetrical. However, this result can be

explained as follows.

Curvature of the antenna, toroidal coupling effects, and other approximations
made in obtaining the antenna spectrum could cause the spectral peak at N = 0.7
to be significantly broader than expected, thus containing much power in the range
Ny > 1.0. The antenna would then radiate significant power in both positive and
negative spectral components with |Nj| > 1. In this case it is possible that current
could be driven equally well with a forward or reverse spectrum because the waves
traveling in the direction of the electron tail (pre-formed by the ohmic transformer)
would Landau damp on fast, current-carrrying electrons, driving current, and waves
traveling in the opposite direction, having no preformed tail to damp on, would have

little effect. This is shown schematically in Figure 40.

4.2 Coupling Results

The radiating efficiency of the antenna was measured as a function of radial

position and plasma density, for the forward and reverse spectra. The radiating
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efficiency is defined as the power radiated out the slots divided by the total forward
power coming from the klystrons. It is not a true measure of coupling efficiency,
because much power may be radiated from the antenna that is not coupled to the
fast wave in the plasma. This power may be coupled to surface waves or bounce
between the fast-wave cutoff layer and the antenna or vacuum-chamber wall until
it is collisionally damped at the plasma edge or is scattered into the slow-wave

polarization and coupled to the plasma.

The interpretation of the coupling results is complicated because the calculated
spectrum has two-thirds of its power in a large peak at Nj = 0.7, and one-thirdin a
peak at Ny = —2.0. Spectral components with |N};| < 1 can propagate in free-space,
but not in plasma, and components with |N}| > 1 propagate in plasma, but not in
free-space. Therefore, when the antenna is placed at the edge of the plasma, it is
difficult to assess what region of the spectrum is being radiated, or what percentage
of the radiated power has Ny = 0.7 and what percentage has N = —2.0. As the
antenna is moved farther away from the piasma., the peak at N = 0.7 should begin
to radiate, possibly bouncing between the fast-wave cutoff layer and the antenna
and “leaking” out toroidally or poloidally. Concurrently, the peak at Ny = —2.0
should become more strongly evanescent and the amount of power near this spectral
component tunnelling to the fast-wave cutoff layer should be very small. On the
other hand, as the antenna is moved up to the plasma, past the limiter, the spectral
components near N = 0.7 should be sharply reflected back into the waveguide, and

the power at Ny = —2.0 should tunnel most effectively to the fast-wave cutoff.

Because only the spectral components with {Ny| > 1 can couple to the fast
wave, the radiated power does not truly measure the coupling efficiency of the
antenna. In fact, the radiating efficiency of the antenna in free-space, say, five feet
from the plasma, when no power is coupled to the fast wave, should be twice that

when the fast wave cutoff is at the antenna, and all the radiated power is coupled.

Without a direct measurement of the amplitude of the various spectral com-

ponents in the plasma right in front of the antenna, it is impossible to know the
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coupling efficiency of the components with | N}| > 1 as a function of antenna radial
position (ARP). However, some information can be obtained from the radiating

efficiency.

The radiating efficiencies are shown in Figure 41a and 41b as a function of the
ARP for a density of 8 x 10'2cm™3. The directional couplers were calibrated more

carefully for the forward spectrum measurements.

The radiating efficiency increased slightly as the antenna was moved farther
outside the limiter, and it was relatively constant for ARPs inside the limiter. This
is consistent with the picture described above. Once the antenna is moved inside the
limiter, it becomes the limiter itself, and the edge plasma characteristics ‘probably
change little relative to the antenna as it is moved in and out. However, as the
antenna is moved outside the limiter, the power peak at N = 0.7 radiates more
and the peak at N = —2.0 radiates less. Because the peak at Ny = 0.7 carries
twice the power of the peak at N = —2.0, the net radiating efficiency goes up.
A similar, but much weaker, dependence of the radiating efficiency on ARP was

observed at a lower density of 2 x 10*2cm™3.

Figure 42 is a plot of radiating efficiency versus density for a forward spectrum.
The radiating efficiency increased moderately with plasma density when the antenna
was inside the limiter. This indicates the antenna was launching the fast wave. If
the slow wave were the dominant mode launched, the radiating efficiency would be

independent of density for densities at the antenna above 10'*cm™2 or so.

The density at the antenna was measured to be well above this threshold,
as shown in Figure 43. For a shot with a line-averaged central-chord density of
1x10*3cm™3, the approximate line averaged density near the edge was 2x10*2cm™3.
The actual density 1 cm from the plasma was probably higher, because at the edge,
the interferometer averages over a greater proportion of vacuum than at the central
position.

Coupling versus density was not measured for ARPs outside the limiter radius

nor for the reversed spectrum.
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Figure 41b: Radiating efficiency versus ARP for reverse spectrum.
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4.3 Test-Bench Results

The single slot conductance, far-field radiation pattern, and far-field polariza-
tion were measured in air. The slot conductance was measured by covering all but
one of the slots with copper tape, feeding power into one end of the antenna, and
measuring the source, reflected, and transmitted powers. The theoretical normal-
ized slot conductance g is 2.18, as given by Equation 85. To compute the measured

conductance, g must be related to the incident and radiated powers.

The radiated power is given by
1 2 1 2 12
Proa = —2-GV = EngoEg,b (121)

where G is the slot conductance, V is the guide “voltage” at the slot, defined as
Eg b, Y1 is the characteristic admittance of the TE;o-mode in the guide, and E,,

is the field of the TE;p-mode in the center of the guide at the slot.

The relevant fields for the TE;¢-mode are

E = yEy,sin T2 -ibe (122)
a
H, = YioEo,sin =16 (123)
a

where Yo = H,/E, = 3/wpo. The incident power is given by

. |
Pie = / E,H? dS = = ¥;0E2 . (124)
2 Jwe 1 g
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Due to reflection from the slot, Eq, and Ey, are not identical. They are related

by the following:

1-T,—g
E,s =(14T)Ee, = —Fg 2

where Iy is the reflection coefficient associated with the portion of the guide down-

stream from the slot.

Solving for Eo, in Equation 124, plugging into Equations 121 and 125 and

solving for g gives

g= ; ~1-T, %\/(w +2fT — 4)2 - 4f2 - 82T, - 4§77 (126)

where f = aPrad/2bP;n.. Assuming I'y = 0 and plugging in the values measured
for P;,. and P,.q yields f = 0.17 and g = 19.32 or 0.21 as possible solutions. The
first solution is an order of magnitude higher than the design value of g ~ 2 and the
second is an order of magnitude too low. The first solution should be discarded as
unphysical. In design, it was intended that each slot have a conductance of about
0.5, but due to a computational error, each was placed such that its conductance
was 2.18. For this placement, the theory used to predict the slot conductance is
probably invalid. Also, the conductance measurement was very crude, with roughly
one-third of the source power unaccounted for. This was ten times the radiated
power. Given these problems, it is not surprising that the measured and predicted

values for the slot conductance do not agree.

Agreement with theory was better for the far-field measurements. The radiated
power as a function of Ny (or sin#) is shown in Figure 44. The lobe at N =~ 0.7

should be compared with that at Ny = 0.7 in Figure 26. Some of the secondary
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maxima may correspond to the ripples shown in Figure 26, or they may be caused

by multiple reflections from the walls of the room.

The x- and ®-marks on Figure 44 show relative power in the vertical and
horizontal components of the electric field. These were measured by rotating the
receiving horn 90°. The waveguide between the horn and the power meter was
sufficiently long to prevent any but the dominant TE;o-mode from contributing
to the power reading. This measurement shows that at the main lobe (where the
bulk of the power is radiated), the ratio Pyert/Phor = |Ey|?/|E.|? = 12. This is
encouraging because the antenna was designed to launch waves with only vertical

polarization.

4.4 Performance of Components

The antenna, bellows system, and klystrons performed well. The vacuum win-

dows, capacitor banks, and control system performed poorly.

Apparently, the antenna did not arc throughout the experiment. It withstood
considerable mechanical stress at times and was not damaged whatsoever by the
plasma, even though it was the limiter for most of the shots. The port extenders
worked well and the bellows, although somewhat tedious to adjust, withstood sev-
eral severe compressions and expansions without leaking. The klystrons performed
reliably throughout the experiment.

The mica vacuum windows repeatedly failed (see Figure 45). Apparently the
rf caused severe arcing on the window surface, which led to disintegration of the
mica. This occurred even to carefully cleaned windows. The damage may have

been avoided by eliminating the slight jog in the waveguide at the large vacuum
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Figure 45: Mica vacuum window destroyed by rf.
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flange, but this is unlikely. The small reflection that may have been produced by
this jog probably would not have been enough to cause the persistent and rapid
destruction of the mica windows. On the average, one window was destroyed for
every thirty to fifty plasma shots with high energy rf. This caused extensive delays
because a vacuum break was needed each time a window failed. The problem could
best be solved by using a window material with better microwave properties, such

as cerarmic.

The second major problem experienced was persistent tripping of the capacitor
bank crowbar-circuit by the termination of the plasma discharge. Presumably this
was due to ground loops. During current-drive operation, this happened every
other shot at times. Recharging the capacitor bank usually required a few minutes,
precluding data-taking for the subsequent shot. The problem could be solved by
carefully checking the entiré rf system for ground loops and completely isolating it

electrically from the tokamak and its controls.

Lastly, the failure of one of the two capacitor banks, requiring its disconnection,
limited the power-pulselength product of the klystron output to about 250 kW-msec

before noticeable power droop occurred.
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5 CONCLUSIONS AND FUTURE WORK

The slotted-waveguide antenna used on Versator-II launched the fast wave, as
indicated by the coupling results and the absence of current drive at low densities.
Current was driven by the antenna, and the efficiency was similar to that of the
slow wave, although as little as one-third of the power launched from the antenna
may have been coupled to the plasma. It was not possible to test the “density
limit,” because no abrupt density limit was observed previously with the slow-wave
launcher at 2.45 GHz. In these previous experiments!!®) and in the present fast-wave
experiment, no noticeable current was driven at higher densities probably due to
insufficient source power. It may be that, as probably happened on the 800 MHz
experiments on PLT and JIPT-IIU, the slotted-waveguide launched the fast wave,
but much power was mode-converted to the slow wave via a toroidal N-shift, and
the slow wave, which has a much higher Landau damping rate, drove most of the
current.

The slotted-waveguide can be greatly improved by using probe-fed slots,[38] [37]

as shown in Figure 15. The depth of each probe determines the conductance of the
slot, and the location (above or below the slot) determines the polarization (up or
down) of the radiated fields. Thus a phase shift of 7 radians can be introduced
between adjacent slots in addition to the phase shift caused by their separation.
This greatly improves the spectrum, as shown in Figure 27. Note the absence
of significant power in spectral components With‘tN“i < 1. This eliminates the
ambiguity in coupling and current-drive efficiency caused by the spectral peak at
Nj = 0.7. The fraction of power in desireable spectral components (near Njj = -2.0)
is double that of the present antenna, theoretically doubling the efficiency. It is
unclear whether twice the power would be radiated or the ratio of power coupled to

the plasma over power radiated would double. This depends on whether or not the
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spectral components near N = 0.7 from the present antenna were reflected back

into the guide.

If future work goes as planned, a slotted-waveguide fast-wave coupler with
probe-fed slots will be designed, constructed, and used on Versator. The probes
will be tuned to maximize the radiated power, and ceramic vacuum windows will be
used in an attempt to eliminate window disintegration. The control system will be
checked extensively for ground-loops to eliminate high voltage trips during plasma
discharge termination. The feasibility of detecting the fast wave in the plasma by
microwave scattering will be determined, and the conjecture of mode-conversion to
the slow wave will be tested by attempting to scatter off the slow wave. Finally, the
coupling theory outlined in section 2.3 will be implemented in a computer code with
a full electromagnetic form for the plasma admittance matrix ?, and ray-tracing

and dispersion codes will be written.
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