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ABSTRACT

A design procedure is developed for slotted-waveguide antennas with
probe-fed slots. Radiation into a gyrotropic, plane-stratified medium is con-
sidered, nonzero waveguide wall thickness is assumed, and noncosinusoidal
slot fields and arbitrary slot length up to about one free-space wavelength
are allowed. External mutual coupling is taken into account by match-
ing the tangential fields at the antenna surface. The particular case of
longitudinal slots in the broad face of rectangular guide is analyzed. The
motivation for this work is the design of such radiators for plasma heating
and current-drive on thermonuclear fusion experiments, but some of the
analysis is applicable to the probeless slotted waveguide used for avionics
and communications.
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INTRODUCTION

The coupling of electromagnetic waves from open-ended waveguides and slots

into plasma was analyzed by several authors in the 1960's and early 1970's in order

to treat the effects of the ionosphere on reentry-vehicle antennas.[1J [2] f3] [4] However,

these authors generally treated only one radiating element, used very crude plasma

models, and allowed for at most one higher-order mode in the radiating aperture. In

1976, Brambilla analyzed the case of a "grill" of open-ended waveguides radiating

in the lower-hybrid range of frequencies into a dense, magnetized plasma.[A] He took

full account of mutual coupling, and allowed an arbitrary number of higher-order

waveguide modes. Brambilla was the first to show that the interaction of a radiating

waveguide structure with a plasma is best analyzed in two stages: The interaction

of a spectrum of waves with the body of a plasma should be studied using whatever

physics is necessary for the problem of interest (e. g., wave propagation, Landau

damping on electrons, nonlinear wave decay or absorption, ion heating), and the

production of such near-field spectra should be studied by encapsulating the plasma

characteristics into a reflection coefficient T(k) when analyzing the coupling of waves

from the antenna to the plasma, where k is the wavenumber. His analysis has since

been refined['] [71 ["1 and computer codes are available.['] The slotted-waveguide

radiator, a considerably more complicated device, was first analyzed by Stevenson,[]

and his work has subsequently been highly refined by a number of researchers,

particularly Elliot.["] [11] [12] [13] [14] [15] [16] Such antennas radiate when the slots

are placed in such a position as to interrupt the wall currents of the dominant

traveling mode in the guide, hence replacing them with displacement currents across

the slots and yielding a source field for radiation. It was discovered very early17

that an alternative is to place the slots where they do not interrupt the dominant-

mode currents, and instead feed the current across the slot by placing a probe

nearby (see Figure 1), but such antennas have received relatively little attention.

It has recently been discovered that the slotted-waveguide antenna can be used for
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current-drive in magnetically confined plasmas for nuclear fusion research.llS [19]

This paper describes a procedure for designing a slotted-waveguide radiator with

probe-fed slots that can be used for such an application.

Existing procedures for designing slotted-waveguide radiators are not adequate

to describe radiation into a dense magnetized plasma. For such media, the near-

field spectrum, not the far-field pattern, is the function of merit, and waves with

1k.1 > w/c are desired, where k_. is the wave vector in the direction of the guide

axis and the DC plasma magnetic field, as shown in Figure 2. Such waves, which

do not propagate in free space, are best produced using probe-fed slots with alter-

nating probe placement, as shown in Figure 1. The probeless slotted waveguide

with alternating slot placement is unacceptable because its largest radiation lobes

have Ik > w/c but Jk, < w/c. Several configurations may be useful, including

longitudinal and transverse slots in rectangular guide as well as slots in coaxial

transmission line. Here, the case of longitudinal probe-fed slots in the broad wall of

a single rectangular guide is analyzed; the analysis can easily be extended to more

than one guide or applied to the other guide types.

The goal of the present analysis is to find the required self-reflectances, r, of

the slots, given the expected plasma characteristics and the desired fields at the

face of the antenna. It is assumed from study of existing data (e.g., 20 ) that a

sufficiently broad band of self-reflectances can be produced by varying the probe

depth, diameter, and y-position. The coordinates and slot-parameters used are

shown in Figure 2. Slab geometry is used, and the guide is straight. The face of

the antenna is flush with an infinite conducting sheet (e. g., the plasma vacuum

chamber), and the plasma parameters do not vary in the y or z directions. The

plasma is immersed in a DC magnetic field, which is in the z-direction, and the

main waveguide propagates only the TE 10-mode. The plasma density is as shown

in Figure 3, i. e., there is a vacuum region just outside the antenna, followed by a

plasma region with some arbitrary initial density and density gradient. The vacuum

region can be infinitesimally thin, but the plasma does not enter the slots. Inside
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the waveguide, the slots do not couple to each other, i. e., the evanescent modes

reflected into the guide by one slot do not reach another. The slots are rectangular,

longitudinal, centered on the broad face of the guide, and are long, narrow, and

fed by a centered probe such that only TE',0 -modes are excited, where the prime

indicates a slot-mode.

The outline of the calculation is as follows. First, a superposition of TE'O-

modes is assumed to exist in each slot. The slots are treated as waveguides, with

length equal to the wall thickness of the main waveguide and transverse dimensions

equal to the dimensions of the slot. These modes are evanescent for slot lengths less

than half a free-space wavelength (21 < A/2), which is the case of greatest interest.

This mode-superposition approach is less useful for 21 > A, but can be used for

A/2 < 21 < A by keeping track of the sign of k2 for each slot mode. The fields

outside the antenna are written as a superposition of plane waves in the narrow

vacuum region, and the plasma response is encapsulated into a reflection coefficient

at x = 0 and a radiation condition at large x. The fields are then matched at

x = 0, yielding NP complex equations for the 2NP slot-modes, where P is the

number of slots, and N is the number of slots modes considered, i. e., the infinite

sum of slot modes is truncated at n = N. Successive orders of the problem are

then analyzed. Starting with the zeroth-order problem, we assume only TE'0 -

modes exist in the slots, so N = 1. The desired self-reflectances of the slots are

then found. Higher-order modes are then successively allowed, and the problem

is solved up to third order, with one ad-hoc assumption required. Higher-order

solutions require an increasing number of similar ad-hoc assumptions. In terms of

the antenna/plasma coupling, experience has shown that very good convergence

can be achieved with a third- or fourth-order treatment.[5] However, considering

the approximations required regarding the plasma characteristics, geometry, and

probe coupling, and the neglect of internal mutual coupling, a third-order solution

is probably more than adequate.
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EXTERNAL COUPLING

First the external coupling is calculated; a superposition of evanescent modes

is assumed to exist in the slots, and these fields are matched to the external near

fields at the antenna surface, in a manner similar to that of Brambilla.[5]

The fields in the slots are the following:

P 00

Es** = E O,(y, Z) 1 (4,pe~4" + Rne-(1) sin 2
p=1 n=1

Halot = 9,y z) c (,e + Rnr") { cos nr(z - z,)

p=o n=1

(Z- z,)
+ i ((Ine~'- - Rpne-') y7n sin PI

where 4,p and Rp are the complex amplitudes of the nth forward- and backward-

decaying evanescent modes in the pth slot, -f = 4(nr/21)2 - (w/c)2 is the decay

constant of the nth mode, 2 is the slot length, w is the slot width, z, and yp are the

z- and y-coordinates of the left and top, respectively, of the pth slot, and E, = 1

for z, < z < z, + 2 and y, < y < yp + w, and e, = 0 otherwise.

The tangential fields in the vacuum region (x > 0) can be written as Fourier

integrals. They are the following:

E = (k(kz)e-jkz + p(k,, k.)eik. ezklf-lIjks dk, dk (3)

H = j k. [a(1 k,,k)e-ik-2 - p(k.,, k)eik=u ] e-ji vy-jkzdkydk. (4)
WIAO f-00
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To satisfy causality at large positive and negative y and z, the above integrals must

be performed along the contours in the complex k,- and k.-planes shown in Figure

4. Branch cuts must be introduced as shown along the horizontal axes, and the

integration path must be above the axis in the left half-plane and below the axis in

the right half-plane. 5] [8]

The plasma reflection coefficient is defined by

p(ky,k.) = -T(k,,k.)a(k,,k,). (5)

Fairly sophisticated expressions for T(k.,, k.) are available;[5] [7] [8] it will not be

discussed further here. The y-components of the vacuum and slot electric-field

spectra are now matched at x = 0. The spectrum of the slot electric-field is defined

as

E' **(k,, k.) = E L*(y, z)e ky+kzdy dz (6)

which gives

ot P o + )eikvy, - k,(y,+)

p=1 n=1 47rk, (

ejn~r+jk.(zp+2t) - jk.zp -e-jnr+jk.(z+2t) - e jk.z1

j(n+k.) j(-n+kz)

Writing the last two factors in Equation 7 as F, (k,, kz) for compactness yields,

upon matching the electric field spectra at x = 0,

P 00
a(k,, kr) (1 - T(k,, k,)) = E E (4pn + Rpn) Fn(ky, k). (8)

p= 1 n=1
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The magnetic fields must also be matched, but due to surface currents on the outside

of the waveguide, these fields are only equal at the slots. Therefore, the field outside

the slots is inverse transformed and matched to H, (y, z) in the slots, yielding

1 t: Ok2 a(k,k)(1 + T(k,,k.))e-kv-ik-zdkdk,

P f0 (9)
= 9,(y, z) , - sin nir(z - z,)

p=1 n=1 \3/O V

The orthogonality of the slot fields is now used to get a set of equations for

the unknown coefficients 4,p and R.. Multiplying both sides of Equation 9 by

eq(y, z)sin 2'",~"O and integrating both sides over y and z gives the following:

1 q+2t , +w 00z - ,

'- j j + sin m7r(Z zq) k' a(k, k')

} c *(10)

(1 + T(ky, k,)) e-1s**v-jzdk, dk, dy dz = £Im(4 - Rjn).

Substituting from Equation 8, switching index names, truncating the sum over slot

modes at n = N, and defining Vn 4,n + Rn and I,, '(Dn - Rn yields a set

of NP complex external coupling equations relating the Vn's and the Ip's:

P N

In= Y E ,nqmVm. (11)
q=1 m=1

where

00 00

Ynqn =W V(WIC)2 - k2 _ kgz
-00 -00 (12)

1 + T(k, k.) )Fqm(k,, kz)F,*,(ky, kz)( 1 -T(kk)) dk, dk2,
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the Ypnq,,'s are the mutual admittances, and the I,,'s and V,.'s are the slot mode

"currents" and "voltages", respectively.

Note from Equation 8 that if T(k,, k.) = 0 (radiation into free space) the shape

of the radiated spectrum a(k,, k.) is just given by the Fourier transform of the fields

at x = 0.

Probe Coupling

The complex coefficients of the TE 10 -modes scattered into the guide by each

probe-fed slot are now related to the slot-modes via the probe. Any reactive be-

havior of the probe-fed slot is assumed to result from a phase difference between

the incident waveguide mode and the probe current, rather than between the probe

current and the scattered modes. This is because reactive fields near the probe

will interfere with the relationship between the incident mode field and the probe

current, but will not affect the coupling of the probe to TE10-modes traveling away

from it. It is now assumed that when the pth probe is excited, a fraction C, of its

current appears as displacement current across the pth slot. This fraction e, can be

determined by bench measurements, and it should be of similar magnitude as the

analogous quantity for the probeless slotted waveguide. Ignoring fringing fields, the

probe current is then given by

jW fz+2 00 nr(z - zp)
LP = pj] ( -Ye~" + Rpne' ) sin V dx dz

00 .2; (13)
E nw(A [ , (eYTn - 1) + Rpn(i - e-Ynr)]

n odd

where ,P is the current of the pth probe and r is the waveguide wall-thickness. The

amplitudes of the scattered TE 10-modes may then be found by equating the power
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exerted on these modes by the probe with the poynting flux traveling away from

the probe in the guide:

P =E -J* dV= (Eo x H*0 ) - dA. (14)

Assuming a probe current of J, = ifcLo(x)6(y - 4, - w/2)6(z - z, - i) gives

P= -sPBio* sin(r4,/a), where 1 = 1 for -s - r < < -r and fl = 0 otherwise,

and s, is the probe length. Other models for J(x) along the probe can equally

well be used, but the probe diameter must be small enough that it scatters waves

symmetrically. Thus

B = Cio= 2s ow.o sin (15)
10 10 kgab sna(15

Substituting for t, gives

00

BPo = CP10 =0 Kp[, (e-y-- - 1) + R,, (I - -7)](16)
n= I

nodd

where

_ 4jsp 2 Aoi (17)vnynirk9 abe, asin-

Inclusion of the slot fringing fields would increase the magnitude of K, .

ZEROTH-ORDER SOLUTION

The zeroth-order problem is now analyzed, in which it is assumed that only

TE'O-modes exist in the slots, hence N = 1. The complex slot modes can be
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determined from the P complex external coupling equations 11 and the pattern re-

quirements on the amplitudes and phases of the slot voltages. Typical requirements

are that at z = 0 the amplitudes are equal and the phase of the voltage of the pth

slot is (p - 1)(7r - kgd), where d is the slot spacing (uniform). Dropping the n = 1

subscript, we get the following set of 4P real equations in 4P unknowns:

P'

Re [I,] = Re EY,,V, (18)
gq=1 .

Im [I] = Im 1 YqVq (19)
,g=1 I

V= known constant (or otherwise specified) (20)

ZV = (p - 1)(7r - kgd) (or otherwise specified) (21)

The matrix elements Yq can be determined (this involves numerical integra-

tions), and this set of equations can then easily be solved for the complex slot

currents I,, which will depend on the plasma parameters (and the vacuum-gap

thickness xo, as shown in Figure 3) and will determine the power radiated from

each slot. These coefficients will now be related to the TE1o-modes traveling in the

guide and the required self-impedance properties of each slot.

The situation for the pth slot in an array is shown in Figure 5. The guide

mode complex coefficients A,, B,, C,, D, are defined at each respective probe (slot

center), and the following relations apply:

Bp = Aprp+ Dp(1+ F)+ Bp,ezt = B' + DP (22)
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Cp = Ap(1+ r,) + Dp + Cp,e, = C' + A, (23)

Ap= C,-e-ikkd .(24)

D, = Bp+1eik"d. (25)

The coefficients A,, B,, C,, and D, are for the total waves traveling toward and

away from the pth slot as shown in Figure 5; p, the reflectance of the pth slot,

is the ratio B/A for the isolated slot with a waveguide mode A incident from the

left only; the ext subscript refers to guide waves caused by external coupling from

other slots; and the primed modes are those scattered from the slot. Because the

probe-fed slot is a symmetric scatterer, C,,,,i = Bp,,,t and C' = B', as will be

used henceforth.

Equations 23 and 24 give A, = (B' + Ap_1)e-jsd, and Equations 22 and 25

give D, = (B'+ 1 + D,+i)eik'd. These have the solutions

A= r1) B e-d(1~) + A p > 1 (26)
r=1

and

P

D,-1 = e - kgd(P-P+2) E B'ei ked(P-r+1) + Dpei kdl p > 1 (27)

We are free to specify either A 1 or Dp; we set Dp = 0, equivalent to specifying

a matched load in the guide beyond the antenna. The magnitude of A1 is then

determined from power balance over the entire antenna:

1! 2 - B1 |2 - Cp| 2 = o pad (28)
P=1
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Where P,'d is the known power leaving the pth slot. The phase of A1 can be

set arbitrarily, and this determines the phase of I'i. We choose _A1 = B'. For

infinitely thin waveguide walls, the desired V,'s give the phases of the B 's to be

ZB' = (p - 1)(7r + kgd) - ir/2, and from Equation 26 we see that this implies that

the A,'s are in phase with the B''s. For nonzero waveguide wall thickness, this is

nearly true.

A power-balance equation is now derived for each slot. The power leaving the

pth slot is given by

~rz,+2A ypi,+w/2

P '' = ReI E x H* -xdydz. (29)

Writing the known slot-mode coefficients as -D= ei' and R= reJP gives

P;Gd = ---- f145r, sin(Vp - pp). (30)
W110

Balancing power at the pth slot gives

| A12 +|Dp\2 - B,| 2 - ICP| 2 = 3 ±zprad (31)
abk, P

using Equations 22 and 23, this reduces to

B'*D+ B' D* + B'* Ap+ B' A* - 21B'| 2  0pra (32)

The B''s can now be determined by iteration as follows. Defining B.' b' ejo,,

from Equation 16 the R''s can be determined, and from Equation 32,

b' = W/LOPadbp' 2wiop (33)
b abk, (Dpe-in' + D;ei05 + Ape- ab + Apea'k + A*ei ) . (33)
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Initial guesses are now made for the Y4's, and Equations 26 and 27 are solved for the

A,'s and D,'s. These are plugged into Equation 33 and the new b's are computed.

This process is iterated until sufficient accuracy is attained. The A,'s, B,'s, and

D,'s can then be determined from Equations 26, 27 and 22. Some information

about the physical probe characteristics can also now be obtained from Equation

17.

The unknown r',s can now be found by considering the following two situa-

tions, in order to isolate the B,,'s. In situation X, perfect absorbers are placed

on both sides of the pth slot, and the other slots are replaced by equivalent mag-

netic current sources skin-tight against the old slot positions such that they produce

slot voltages exactly the same as in the original array. For this case, the external

coupling equation is

P

Ipx-YVx=Z YpqVq (34)
q=1

where the right-hand side is known, and the primed sum means the q = p term is

excluded. In situation Y, again only the pth slot exists, and it is excited internally

by equivalent sources such that A, and D, are the same as for the original array.

The external coupling equation for this situation is

IpY - Y,Vy = 0 (35)

In addition, we know that 4,,x + ,py = 4 , and Rpx + Rpy = R,, where I, and

R, are known. Combining Equations 34 and 35 then gives

'P

4pY = qpq 'q+q(36)
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t(D(1 - Ypp) - Rp(1 + Ypp) - E'q 1 Ypq(4q +Rq)
Rpy = 1 P =(37)

Equations 16 and 22 are then applied to the Y situation, yielding the desired self-

reflectances of the probe-fed slots in the full array:

r = B(38)
Ap + D,

This completes the solution, assuming only TE'0 modes exist in the slots.

FIRST-ORDER SOLUTION

It will generally be true that the magnitudes of the n = 1 modes will be

substantially greater than those of the n = 2 modes, which will be greater than

those of the n = 3 modes, etc. However, a simple perturbative solution for the

higher-order modes, that is, assuming the introduction of the (n + 1)th modes does

not affect the nth modes, yields Vn+l = 0 to all orders, which does not introduce

any corrections to the radiated spectrum, hence it is useless.

However, a first-order solution can be obtained by recognizing that since the

n = 2 modes cannot couple current to the probes, they must have zero poynting flux

in the slots. For the design specification, instead of dictating the n = 1 complex

slot voltages as before, we now dictate the probe current amplitudes and phases

as those found during the zeroth-order analysis, thus fixing the total displacement

current across the slot and the power radiated. This gives the following system of

8P real equations, which can be solved for the new n = 1 and n = 2 modes:

P 2

Ipn = E YpnqmVqm (39)
q=1 m=1
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P = L (40)
r

Im [V1,*1] = Im [V,1I*1] ert (41)
order

Im [V 21;2 ] = 0 (42)

SECOND-ORDER SOLUTION

To solve the second-order problem, the ad-hoc assumption is made that the

introduction of the n = 3 modes does not affect the ratio 'I, 1 /R, 1 of the n = 1

modes obtained from the first-order analysis, although the magnitudes and phases of

1p and Rp, are allowed to change together so as to compensate for the contributions

to the probe current and radiated power from the newly introduced n = 3 modes.

The following set of 12P real equations is solved for the 6P unknown slot modes:

P a

IPn = E( YnqnVq= (43)
q=1 m=1

L, = b, zeth (44)
order

P;1ad + P'ad = Prad (45)

Im [VP2Ip2] = 0 (46)

V-1 + ,_ 1 ( i s 47)
V,1 - I,1 V1 - I 1 orCe
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THIRD-ORDER SOLUTION

For the third-order solution, the additional assumption is made that the intro-

duction of the n = 4 modes does not affect the ratio 4$ 2 /R, 2 of the n = 2 modes

obtained from the second-order analysis, although the magnitudes and phases of

'p2 and RP2 are allowed to change together. Part of this is redundant with Equa-

tion 46, which says that 4, 2 and R 2 are in phase or one of them is zero. Dropping

the n = 2 power balance (Equation 46) as redundant gives the following 16P real

equations for the 8P complex slot modes with N = 4:

P 4

I,= E E YqinVqfn (48)
q=1 m=1

P= 11 eoh(49)

p,ad + P;a'd = Po'ad (S)

Im [Vp4.* 4] = 0 (51)

V1 + I,1 V1+I1(2=~+~ _p ~+ IP1 frt(52)

p1 - I Vp- - Ip ord

V;2 + Ip2 =V2 + Ip 2  (53)
VP2 - 2 -V'2 - Ip2 orde

This process can be carried on ad infinitum. However, considering the ap-

proximations involved regarding the plasma (e. g., plane stratified and not entering

the slots), the probe coupling, and the neglect of internal mutual coupling, the

third-order analysis is probably more than adequate.
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CONCLUSIONS

A design procedure has been presented for a slotted-waveguide antenna with

probe-fed slots radiating into a gyrotropic, plane-stratified medium. Given the de-

sired slot-voltages or probe currents, the required self-reflectances of the probe-fed

slots (as measured in isolation, radiating into free space) are found. It is hoped

that others will extend this work. In particular, a rigorous theoretical and/or ex-

perimental analysis of the impedance properties of an isolated probe-fed slot and

the fraction e of probe current that appears as displacement current across the slot

as a function of probe placement and dimensions is essential before such anten-

nas can be produced. Internal mutual coupling should be taken into account, and

the probe-to-slot coupling model should be checked experimentally and improved if

needed.
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