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ABSTRACT

In this thesis the fundamental concepts of moderately coupled plasmas, for which
2 Z" lnAbs 10, are, for the first time, presented. This investigation is motivated
because neither the conventional Fokker-Planck approximation [fo'r weakly cou-
pled plasmas (InAb' 10)] nor the theory of dielectric response~with correlations
for strongly coupled plasmas (lnAb$~E 1) has satisfactorily addressed this regime.
Specifically, herein the standard Fokker-Planck operator for Coulomb collisions
has been modified to include hitherto neglected terms that are directly associated
with large-angle scattering. From this consideration, a Rosenbluth-like vector po-
tential is derived. This procedure allows us to effectively treat plasmas for which
lnAb .Z 2, i.e. moderately coupled plasmas. In addition we have calculated a
reduced electron-ion collision operator that, for the first time, manifests 1/nA6
corrections. Precise calculations of some relaxation rates and crude calculations
of electron transport coefficients have been made. In most cases they differ from
Braginskii's and Trubnikov's results by terms of order 1/1nAb. However, in the

limit of large InA ( 10), these results reduce to the standard (Braginskii) form.
As one of major applications of the modified Fokker-Planck equation, we have
calculated the stopping powers and pR of charged fusion products (Qs, 3 H, 3He)
and hot electrons interacting with plasmas relevant to inertial confinement fusion.
The effects of scattering, which limited all previous calculations to upper limits
only, have been properly treated. In addition, the important effects of ion stop-
ping, electron quantum properties, and collective plasma oscillations have been
treated within a unified framework. Futhermore, issues of heavy ion stopping in
a hohlraum plasma, which too have i 10, and are therefore moderately coupled,
are also presented.

In the second major topic of this thesis, we present the advances made in the
area of laboratory x-ray sources. First, and most importantly, through the use
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a Cockcroft-Walton linear accelerator, a charged particle induced x-ray emission
(PIXE) source has been developed. Intense line x radiation (including K -, L -, Ml-,
and N-lines) with wavelengths from 0.5 A to 111 A have been successfully pro-
duced. The crucial feature of this source is that the background continuum is
orders of magnitude lower than that from a conventional electron-beam x-ray
source. Second, a new high intensity electron-beam x-ray generator has also been
developed, and it has been used with advantage in the soft x-ray region (E 3
keV). In particular, this generator has successfully calibrated novel new X-UV
semiconductor diodes in both DC and AC modes. Finally, we have made di-
rect comparisons of both sources (PIXE and electron-beam x-ray sources) to a
commercially available radioactive a fluorescent x-ray source. The electron beam
and a fluorescent sources are found to both have significantly higher continuum
background than the PIXE source.

Thesis Supervisor: Richard D. Petrasso
Title: Principal Research Scientist, Plasma Fusion Center

Thesis Reader: Ian H. Hutchinson
Title: Professor, Department of Nuclear Engineering
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Chapter 1

Thesis Organization

In this thesis we present the first conceptual and theoretical studies of moderately

coupled plasmas. In particular, the Fokker-Planck equation is modified in order

to analytically compute relaxation rates and transport coefficients. Of special

importance is our determination of charged particle stopping powers and ranges

in inertial confinement fusion (ICF) plasmas. In more detail, Chapter 2 reviews

the traditional classification of weakly and strongly coupled plasmas and associ-

ated theories. In addition the motivation and justification for moderately coupled

plasmas is therein presented. In Chapter 3 we discuss the modifications in the

Fokker-Planck equation in order to treat moderately coupled plasmas. Chapter 4

contains simple illustrations of this equation. In Chapter 5 the issues of charged

particle stopping and range in inertial confinement fusion plasmas are discussed

within a comprehensive framework. Therein we include not only the modifications

arising from the new Fokker-Planck equation but other essential concepts (such

as electron quantum degeneracy, ion stopping, and collective plasma oscillations).

And finally, in Chapter 6 a similar approach is applied to studying heavy ion stop-

ping in inertial confinement hohlraum plasmas, which too is a moderately coupled

plasma.
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The second part of this thesis comprises an experimental study of novel labora-

tory x-ray sources that we have developed. We begin Chapter 7 with a brief review

of x-ray generation and detection techniques. In Chapter 8, a newly-developed

proton-induced x-ray emission (PIXE) source is described and characteristic op-

erating parameters and experimental results are presented. Chapter 9 contains

details of the design, construction, and applications of a new electron-beam x-ray

generator. In Chapter 10 an experimental comparison among the two aforemen-

tioned x-ray source, and a radioactive x-ray source is made. Therein we show

that the crucial feature of the PIXE source is that its continuum background is

greatly reduced compared to either the electron-beam or a-induced radioactive

x-ray sources. In Chapter 11 we conclude by summarizing the main results of this

thesis and by recommending issues for future work.
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Chapter 2

Introduction to Moderately

Coupled Plasmas

In this chapter we present some fundamental concepts of the plasmas that per-

tain to this thesis. Emphasis will be placed on reviewing the different categories

of plasmas in terms of their important physical characteristics. Furthermore, we

introduce, to the best of our knowledge for the first time, the concepts and math-

ematical framework of moderately coupled plasmas. Such plasmas form a pivotal

bridge between weakly coupled and strongly coupled plasmas.

2.1 Motivation

As it is well known, when the Coulomb logarithm (1nAb) - 10, a plasma is classified

as a weakly coupled and, as a consequence, the test-field particle interactions are

well approximated by binary interactions[1-10]. In the other extreme when InAb ~-

1, the plasma is strongly coupled and the interactions are modeled as many-body

and collective in nature[10-14]. However, there is a large class of plasmas for

which Coulomb logarithm is of order unity or greater (1nAb ~ 2 - 10), and for

which the coupling parameter is r _ 10- - 10-4. Such plasmas, which form a
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bridge between weakly coupled and strongly coupled plasmas, we term moderately

coupled[15, 16). It is worthwhile to point out that of the 99% plasma mass in the

visible Universe, almost all is a moderately coupled, high-density plasma. This

follows from the fact, as we will discuss latter, that most stars in the Universe are

Sun-like, and the Sun is a moderately coupled plasma from core to photosphere.

2.2 Plasma Parameters and Classifications

Among several useful plasma parameters, two of the most fundamental are plasma

density - - defined as the number of charged particles (electrons or ions) in unit vol-

ume, and plasma temperature - - defined as the average kinetic energy of particles

in thermal equilibrium. Using these two parameters, several important concepts

relevant to the classification of weakly, moderately, and strongly coupled plasmas

are discussed.

A. Plasma Coupling Parameter (r) and the Coulomb Logarithm (InAb).

The plasma coupling parameter is usually defined as the ratio of the inter-particle

potential to the particle kinetic energy. For example, for classical plasmas[17, 31],

e2n1/3
F = k . (2.1)

kT

[Note: Instead of using the inter-particle spacing (n-1/3), the Wigner-Seitz radius

associated with the particle, a, = (3/4rn)1/3, is also often used[11, 60].] In con-

trast, for quantum degenerate plasmas{17], the Fermi energy EF [=h 2(37r2)2//2m]

must replace the classical kinetic energy (kT). With the values of P at two oppo-

site extremes (<< 1, and ~ 1), plasmas have been historically defined as either

weakly coupled or strongly coupled, respectively[10].
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Another equivalent approach that is also widely used is the Coulomb logarithm,

which originates as a consequence of the ad hoc cutoff procedure to eliminate the

divergence in the cross section of Coulomb interaction(18, 19]. In plasma physics

it is usually defined as

1nAb= ln(22AD) - 14) (2.2)

where AD is the Debye length and p.in is a characteristic impact parameter for

closest collision in the binary interaction. The range of the Coulomb logarithm

also delineates the various plasma regimes. One way to think about the Coulomb

logarithm is, in the contex of weakly coupled plasmas, that it is a measure of the

relative importance of small-angle collisions to the large-angle scattering. Thus

for 1nAbZ' 10, small-angle collisions totally dominate. Furthermore, F has other

often-used relations,

1 v
r ~(2.3)

nAD3 W,

where 1/(nA3 ) is the inverse of the plasma parameter, and v/w, is the ratio of

the collision frequency to the plasma frequency.

B. The Degeneracy Parameter (0).

The degeneracy of a plasmas is defined as the ratio of the particle kinetic energy

to the Fermi energy[72],

(2.4)
EF

This parameter determines the importance of quantum mechanical effects in plas-

mas. When e < 1 (0 > 1), quantum (classical) effects are dominant.
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Table 2.1:

Plasmas
Weakly Coupled

Moderately Coupled

Strongly Coupled

Classification of plasmas

I' InAb Examples

<<< 1 > 10 magnetic confinement fusion plasmas
(tokamak, mirror, pinches, etc.),
solar corona, magnetosphere, . . . .

)-4 - 10-1 2 - 10 inertial confinement fusion plasmas,
solar interior, x-ray laser plasmas,
short-pulse laser plasmas,
electrons in white dwarf . . . .

,1-1 ~ 1 nonneutral plasmas,
ions in white dwarf
electrons in liquid helium,
Fe crust in neutron star,
wigner crystal, conducting metals . .

In terms of above parameters, a nominal phase diagram for different cate-

gories of plasmas is shown in Fig.(2-1), in which the plasma density, Loglo (n,)

[Logio (d.), where d. is inter-particle spacing], is plotted vs the plasma tem-

perature, Loglo (T.). The line that denoted EF = kT. separates the quantum

degenerate plasmas (region II) from the nondegenerate plasmas (region I). Fur-

thermore, in classical region (region I), strongly and moderately coupled plasmas

are separated by the straight line of e2nI/3 = kT.. Similarly, in quantum degener-

ate region (region II), strongly and moderately coupled plasmas are separated by

the straight line of e2n./3 = EF. With these delineation, consequently, one finds

the domain of the moderately coupled plasmas in the transition region, i.e. below

the lines of EF = UE and e2n/3 = kT, for classical plasmas, and above the lines

of EF = k, and e,/3 = Ep for quantum degenerate plasmas. Table 2.1 gives

some examples for these three regimes of plasmas.

It is worthwhile to point out that the condition InAb,- 1 is only a necessary,
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Figure 2-1: The nominal phase diagram of the plasmas density, Loglo (n.)
[Logio (d.)], versus the temperature, Logio (T,). The line that denoted EF = kT.
separates the quantum degenerate plasmas (region II) from the nondegenerate
plasmas (region I). Furthermore, in classical region (region I), strongly and mod-
erately coupled plasmas are separated by the straight line of e2,n/3 = kT.. Simi-
larly, in quantum degenerate region (region II), strongly and moderately coupled
plasmas are separated by the straight line of e2,n/3 = EF. With these delin-
eation, consequently, one finds the domain of the moderately coupled plasmas in
the transition regions, i.e. below the lines of EF = kT, and e2n./3 = kT, for
classical plasmas, and above the lines of EF = kT, and e2n./3 = EF for quantum
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not sufficient for strongly coupled plasma. For example, some strongly magne-

tized non-neutral plasmas have InAb< 1 but are still weakly coupled. The reason

is that in this case the Debye length is replaced by the gyro-radius of the particles

(r,, when r, < AD) in calculating the Coulomb logarithm[20, 21].

A useful example of these plasma regimes is a star in different periods of its life.

Take for instance the Sun whose Coulomb logarithm profile is illustrated in Fig.(2-

2). While the solar corona consists of weakly coupled plasmas (typically, T, ~ 2

million degree and n, ~ 106 -108 cm- 3 ), the solar interior is a moderately coupled

plasma (T, - 0.001-1.3 keV and n, ~ 1016 - 1026 cm-3 )[22]. Furthermore, when

a Sun-like star burns off all its fuel and reaches the end of its life, it becomes a

white dwarf and its ions are strongly coupled (Tj ~ 10 keV and n1i1030cm-3)[10].

2.3 Weakly Coupled Plasmas

Weakly coupled plasmas are well defined and most familar, with examples like

magnetically confined fusion plasmas (tokamak, pinches, mirrors . . ), the solar

corona, the magnetosphere, lightning . . . Their typical low plasma density and

relatively high temperature make the coupling parameters much less than unity

(F <<< 1) and Coulomb logarithms are 10 or greater[10). For example, space

plasmas (r ~ 10-13 and lnAb - 30), tokamak plasmas ( ~ 10'- and InAb ~

20), and the solar corona (r ~ 10-9 and InA6 ~ 20) are typical weakly-coupled

plasmas[16].

Weakly coupled plasmas are equivalently characterized by the following scale-

length ordering:
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of plasmas, moderately coupled and weakly coupled, are then evident within the
solar interior and in the solar corona, respectively.
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Table 2.2:

Scale-length ordering for weakly coupled

p1 (cm) n-1/3 (cm)

plasmas

AD(cm) Ago. (cm)
Solar corona ~ 10-9 ~ 10-4 ~ 10-1 ~ 101

n.,~ 10 10/cm- 3 , T, , 0.1 keV
Tokamak plasma ~ 10-11 10-1 ~ 10-2 - 106

n, ~ 1014/cm- 3, Te - 10 keV

P1 < n-1/3 < AD < A900 , (2.5)

where p± is the impact parameter for 90* scattering, n-1/3 is the inter-particle

spacing, AD is the Debye length, and A90. is the mean-free-path for 90* deflection.

It is readily shown that this ordering is only valid when lnAb > 10. Table 2.2 lists

the typical examples.

In addition, because of the long-range nature of Coulomb interactions, a test

particle suffers overwhelmingly small-angle collisions in weakly coupled plasmas.

This point can be verified through the following estimate. For example, for an

electron with energy of 1 keV colliding with an ion in a plasma (nj ~ 1015 cM- 3 ),

the Coulomb logarithm is approximately 15, and the collision time is about 5 x 10-

sec. Thus the 90' deflection time is estimated to be about 2.5 x 10' sec. Also

the time for a single collision of an electron with a plasma ion can be roughly

estimated in terms of the transit time of an electron through a Debye sphere

of radius AD (about 5 x 10' cm under the present conditions), which is about

2.5 x 10-13 sec. Thus surprisingly, for an electron to be deflected by 90', it takes

of order 1 million collisions, as depicted in Fig.(2-3). Treating this as a random

walk process,
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92 -~ N(Ag) 2 , (2.6)

where 9 is the total deflected angle, N is the number of collisions, and AO is a

characteristic angle of deflection for a single "step" (i.e. collision). Taking 9 ~ 900

and N ~ 108, one finds that, on average, each collision causes a deflection of only

~ 0.10. As a consequence, this implies that the motion of the particles is a diffu-

sive process in configuration space (as well as velocity space).

Within the theoretical framework of the kinetic theory, weakly coupled plasmas

are well addressed by the Fokker-Planck equation[3, 4, 6, 7, 8, 9].

f .)f 1 82
(ft < AVi >t/f) + 1 (ft < AviAv, >t/f) , (2.7)

where the superscript and subscript t (f) represents the test (field) particle. The

motion of the test particle is described as follows: in velocity space, the test par-

ticle undergoes numerous small deflections (small-angle binary interactions and

therefore this represents a pure diffusive process). Because there is no memory or

correlation before and after a collision, the process is Markovian. The grazing en-

counters, involving small fractional momentum and even smaller energy exchanges

between the test and field particles, dominate the evolution of the particle distri-

bution functions in velocity space. Furthermore, it is generally true that quantum

degenerate effects are usually unimportant in weakly coupled plasmas because of

the relatively low plasma density and high temperature. As a consequence the de

Broglie matter wavelengths of the plasma particles are usually much smaller than

the inter-particle spacing.
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Figure 2-3: A schematic of 90* scattering for particles in a weakly coupled plasma.
As shown, because the collisions are grazing ones (with only small fractional mo-
mentum and even less energy exchanges between the test and field particles), it
takes of order 1 million collisions in order to obtain 90* deflection.
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2.4 Strongly Coupled Plasmas

As pointed out in section 2.2, strongly coupled plasmas are often exemplified by

solid and liquid metals, nonneutral one-component plasmas, etc. for which the

common nature is that their coupling parameters, F, are of order or greater than

unity and their Coulomb logarithms are equal to or less than 1. Considerations

important to strongly coupled plasmas are:

" the inter-particle potential (Ep) is of the same order or even larger than

the particle thermal kinetic energy (EK). The interactions among the field

particles must therefore be taken into account, and thus the Thomas-Fermi

model should be used in calculating the particle energy (E = Ep + EK);

" the collision frequency is of the same order or even larger than plasma fre-

quency, and thus the plasma is very collisional;

" the particle motion in phase space is no longer a diffusive process and the

model of binary interaction fails. The test particle actually suffers many

body collective response;

" the interacting process is no longer a Markovian process but strongly Coulomb

correlated, and thus the inter-particle correlation function must enter the

framework of the kinetic theory;

" quantum mechanical effects may often be significant in strongly coupled

plasmas, especially for those with fairly high densities and relatively low

temperatures, such as solid and liquid metals (n,, 1022 and T. ~ 1 eV).

It is obvious that the scale-length ordering (Eq.(2.5)] - - p-. < n-1/3 < AD <

- - fails for the regime of strongly coupled plasmas. The Boltzmann equation with

the traditional perturbative expansion techniques is also inadequate. The inter-

particle correlation function plays a crucial role in kinetic theory[l11. For example,

28



in one approach the concept of inter-particle correlation is built into the dielectric

response function.

2.5 Moderately Coupled Plasmas

In addition to the traditional two extremes, i.e. weakly and strongly coupled plas-

mas, there is a large class of plasmas for which the coupling parameter is of order

10-1 - 104 and the Coulomb logarithm is of order unity (1nA 6 ~ 2 - 10). It is

this category of plasmas that forms the bridge between the traditional two limits.

This category of plasmas is exemplified by the solar interior, inertial confinement

fusion plasmas, short-pulse laser produced plasmas, x-ray laser plasmas[15], etc.

and consists of more than about 75% of the visible matters of the Universe. We

would like to define this category of plasmas as moderately coupled plasmas. The

location of moderately coupled plasmas in a phase diagram is shown in Fig.(2-1).

They are basically positioned in the belted region below the lines of EF = kT and

e2,/3 = kT for classical plasmas, and above the lines EF = kTe and e2n /3 = EF

for quantum degenerated plasmas. Table 2.3 lists some parameters of interests for

moderately coupled plasmas.

However, either of the present theories, i.e. for weakly coupled or strongly

coupled plasmas, is not completely satisfactory to address this category of plasmas.

This point can be verified in the following discussions.

* The conventional Fokker-Planck equation is only justified to be used to treat

weakly coupled plasmas. This is because the terms that are of order 1/nA

in the Taylor-expansion of the operator in the Boltzmann equation have been

truncated and therefore the effects of large-angle scattering are ignored. Di-

rectly applying the Fokker-Planck equation in treating moderately coupled

plasmas is unjustified and results in unknown errors.
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" The effects of large-angle scattering play a significant role in moderately

coupled plasmas, which is usually addressed by Boltzmann-like collision op-

erator. However, small-angle collisions, i.e. diffusion process in velocity

space, still play an important or even a dominant role for Coulomb inter-

actions in moderately coupled plasmas. Thus the Boltzmann-like collision

operator may not be appropriate to describe the behavior of moderately

coupled plasmas [see Fig.(2-4)].

" In contrast to the cases of weakly coupled plasmas, quantum degenerate

effects may be significant at certain level and for certain cases in moderately

coupled plasmas. This point can be seen from Table 2.3 where the values

of the degenerate parameter 9 is of order 1 - 10. However, the degenerate

effects are not as remarkable as in strongly coupled plasmas. In other words,

moderately coupled plasmas are often times only weakly and partially de-

generate, and the level of degeneracy could evolve with the variation of the

plasma density and temperature.

" The assumption that the Coulomb collisions are statistically independent of

each other can also be justified for moderately coupled plasmas by comparing

the interaction time (~ 1/w,, where w, is the plasma frequency.) and the

collision time. For example, for laser-fusion plasmas which have typical solid-

like electron density ~ 10 2 3/cm 3 and electron temperature ~ 102 eV, since

the collision time is always slightly larger than the interaction time, the test

and field particles are still uncorrelated between the individual collisions. In

another words, collision effects are significant but not overwhelming because

the number of particles inside the Debye sphere is of order (and some times

larger than) unity. This is consistent with the typical coupling parameters

of moderately coupled plasmas since F ~ 1/nA3. The moderately coupled

plasmas therefore fall into the regime between collisionless and collisional

plasmas. In fact, as we know, only when nA' is very large the collision
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Table 2.3:

Typical velocity ratios in moderately coupled plasmas

n,(cm-3) T,(keV) F 1nA, 0 v(cm/s)* v/vl v/vF
Solar core ~ 5 x 1025 1 1.3 ~ 10-2 ~ 3 ~ 3 ~ 10' -0.01 -0.01
ICF ~ 1026 10 ~ 10-3 - 6 ~13 ~ log ~ 0.1 ~-0.5
Laser plasma ~ 1023 -0.1 ~ 10-2 -- 3 ~ 13 ~6 x 10 8  ~ 1 ~'2
(short pulse)

* The test particle velocity: V = VD of the < 1 keV deuteron, the first step
1H +1 H reaction product in the solar core; v = v, of 3.5 MeV a's in ICF; and
v = v. of 0.1 keV electron in the short-pulse laser produced plasmas.

effects can be neglected, this, of course, is the case for the weakly coupled

plasmas. Therefore, the inter-particle correlation effects are weak and may

be negligible for many cases in moderately coupled plasmas. For example,

in a series of papers by Ichimaru et al.[12, 13], the correlation effects have

been estimated to be only a few percent in calculating the charged particle

stopping power in moderately coupled plasmas[12, 13], as shown in Fig.(2-5).

Based on these arguments, the perturbative expansion technique is shown to

be still valid to treat the moderately coupled plasmas. However, it is clear that

a new collision operator, which makes a compromise between the Boltzmann-like

collision operator and conventional Fokker-Planck equation (i.e. including effects

of both small-angle collisions and large-angle scattering), should be more appro-

priate for modeling and treating these moderately coupled plasmas. Consequently,

this new operator desires the important properties: (1) it should be simple, and

readily to be solved analytically; (2) it should involve more physics contents and

phenomena; (3) it should reduce to the Boltzmann-like operator collision at one

extreme, and to the Fokker-Planck equation at the another.

Because the collision operator in the Boltzmann equation can be written in
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two parts[23]:

Fokker-Planck equation

Of 9 1 a2
( )co=. --- (ft < avi >t/f) + - (ft < AViAva >t/f)
8r1 2 avi,9v

+ (2.8)
non-dominant Boltzmann-like collision operator

where the Fokker-Planck terms are dominant, and the Boltzmann-like collision

operator, which summarized from all the higher order terms is of an order 1 / In Ab

smaller comparing to the formers, thus is non-dominant. A practical approach is to

extend the traditional Fokker-Planck equation to include the effects of large-angle

scattering, or in other words, to supplement large-angle scattering to the Fokker-

Planck equation. Consequently, we would anticipate that a proper operator for

moderately coupled plasmas should consist the above dominant Fokker-Planck

terms (effects of small-angle collision, or diffusive process in velocity space) and

some of terms in the non-dominant Boltzmann-like collision operator (effects of

large-angle scattering).

2.6 Summary

In conclusion, in this chapter we have tried to classify plasmas into three basic

categories: weakly, moderately and strongly coupled plasmas. Our classifications

are not only based on the fundamental coupling parameter and the Coulomb

logarithm, but also on the feasibility and validity of the associated kinetic theories.

Specifically, we have found that the concepts of a moderately coupled plasma

is necessary because neither the conventional Fokker-Planck approximation [for

weakly coupled plasmas (InAb~ 10)] nor the theory of dielectric function with
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correlations for strongly coupled plasmas (InA$- 1) has satisfactorily addressed

this regime of plasmas. A new collision operator, a compromise between the

Fokker-Planck equation and the Boltzmann-like collision operator, is suggested

as appropriate for moderately plasmas. These issues are addressed in subsequent

chapters.
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Chapter 3

A Fokker-Planck Equation for

Moderately Coupled Plasmas

In this chapter, the standard Fokker-Planck equation will be generalized to treat

large-angle as well as small-angle binary collisions for moderately coupled plasmas

[2 - Coulomb logarithm (inAb) < 10]. Using this modified collision operator, a

new vector potential that has a direct and practical connection to the Rosenbluth

potentials is obtained. Some useful properties will be discussed.

3.1 Introduction

The Fokker-Planck equation, which was originally derived to treat the Brown-

ian motion of molecules[25, 26], has been widely used to evaluate the collision

term of the Boltzmann equation for describing small-angle binary collisions of

the inverse-square type of force. In stellar dynamics[27], Chandrasekhar first

discussed this theory for stochastic effects of gravity. The applications of this

equation to classical plasma physics were first treated by Landau[1], Spitzer[2], as

well as Cohen, Spitzer, and Routly[28], and an elegant mathematical treatment

was completed by Rosenbluth, MacDonald, and Judd[3]. Their treatments, as
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well as those of other workers[4, 5, 29], are based on the assumption that the

Coulomb logarithm (InAb), which is a measure of the importance of small-angle

binary collisions relative to large-angle scattering, is of order 10 or greater. Terms

smaller by the factor of the Coulomb logarithm are neglected, i.e. large-angle

scattering is ignored. The conventional Fokker-Planck equation, applicable to

weakly coupled plasmas (InAb . 10), is therefore only accurate to within an or-

der of the Coulomb logarithm[4, 5, 29, 54, 55]. However, there is a large class of

plasmas for which the approximation is invalid[13]: strongly coupled plasmas at

one extreme (inAb ' 1)[12, 30, 31, 32, 33], and moderately coupled ones in the

intermediate regime (2 - InA6  10)[34, 35, 36, 37, 38, 39]. It is to the moder-

ately coupled plasmas, as exemplified by short-pulse laser plasmas[40, 41, 42, 43],

inertial confinement fusion plasmas[56], x-ray laser plasmas(44, 45] and the solar

core[46], to which our modifications of the Fokker-Planck equation are directed.

As discussed in detail elsewhere[15], our modifications consist in retaining the

third-order term and parts of the second-order term[23, 47], both of which are

usually discarded[3, 4, 5, 6, 7, 29] in the Taylor expansion of the collision opera-

tor. (Fourth, fifth, sixth, and higher order terms in the expansion will be ignored

since they are smaller than the third term at least by factors of 8, 80, 960

respectively). After presenting some basic properties of the collision operator, we

will use it, in next chapter, to calculate a reduced electron-ion collision operator,

relaxation rates and first-order transport coefficients.

3.2 A Modified Fokker-Planck Equation

The Boltzmann equation for the rate-of-change of the test particle (sub or super-

script t) distribution is
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aft +V -ft + ft oft
vr a - v ~ r ) (3.1)

(Oft/-'r),ou is the collision operator and represents the time-rate-of-change of

ft due to collisions with the field particles (sub or superscript f). Its Taylor

expansion[3, 4, 6] is written as

aft(a) U =
0 1 02

< zAvj >t/f) + 2 (ft < Av vj >'/I)

1 Oa
-- ,v(ft < AViAVjAVk >,I)6 avji~vj9vk

(3.2)

where the vi, v3 , and vk represent the components of the test-particle velocity in

Cartesian coordinates. In our calculation (details in Appendix A), we follow the

conventions of Rosenbluth et al.[3] and Trubnikov[4]:

< Avi >1/1 = -L*/'(Yn') " H(v)

< AviAVj >,/f = -2Lt/(r2-G(v) + [3- G(v) - 6i 1H(v) (3.3)

< vis AVA >t/f = 4LV 1 ( ,, ) 19 k(v)

where Lt1 = (41retef /mt) 2lnAb, where inAb = ln(AD/p), AD is the Debye length

of the field particles; pi = etef/mu 2 is the impact parameter for 900 scattering,

with m, the reduced mass, et (ef) the test (field) charges, u = v- v'I the relative

velocity; mt (m) is the test (field) particle mass. In addition,

H(v) =- dv'
4-7r lul

(3.4)
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G(v) = Julff (v')dv', (3.5)

and

4(v) = J ululf(v')dv'. (3.6)
327r

H and G, which appear in Eq.(3.3), are potentials defined by Rosenbluth et al.[3,

4). 41 is a new vector potential that derives from retaining the third term in

Eq.(3.2). In Eq.(3.3), the factors multiplied by 1/1nA are a direct consequence

of our third-order expansion. In contrast to < Avi >'/ and < AvjAv >',f

which represent the effects of small-angle collisions[3, 4), < Avav3 >t/f and

< AviAviAvk >'/f mainly represent the effects of large-angle scattering.

3.3 Discussion

In contradistinction to the conventional Fokker-Planck equation, the third-order

moment and corrections of the second-order moment have been both included in

our modified Fokker-Planck equation; each is of an order of Coulomb logarithm

smaller than the first two order moments (the comparison, of course, is carried

out in terms of dimensionless units because of the different dimensionality of the

different order moments[4]) and this reflects the fact that for inverse-square type

Coulomb force, there is no divergence for the third- and higher-order moments.

In addition, this modified collision operator satisfies the desired property that

it is a compromise between Boltzmann-like and Fokker-Planck collision operator

by extending it to the two opposite extremes: first, for the case of InA6 <10 (the

effects of large-angle scattering dominant, dilute plasmas), by picking up all the
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rest of higher order terms in Taylor expansion, we actually go back to Boltzmann-

like collision operator; second, for the case of lnAIZ_10 (the effects of small-angle

collision dominant, weakly coupled plasmas) the above modified equation auto-

matically return to the standard Fokker-Planck equation just by neglecting all the

terms of a factor 1/lnAb.

Some of the useful properties of this new modified Fokker-Planck equation are

listed. Properly making use of these properties for some practical cases would

largely simplify the calculations.

3.3.1 Properties of the New Vector Potential 4

The new vector potential I has the following useful properties:

2V2V, . 4(V) = ff(v); (3.7)

V2 V2,4'(v) = 0; (3.8)

where V2 is the Laplacian operator and V, is the first derivative, both of them are

in velocity space (indicated by the subscript v). The relations to the Rosenbluth

potentials are also presented, which will be very useful in subsequent calculations,

V= VV . H(V) V 2

= H(v). (3.9)
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3.3.2 Relations of the First Three Moments

Making use of the relations of the potentials [Eq.(3.9)] one can also find the

relations between these first three moments (details in Appendix B),

< Avi > t! - InAb _M + m ) < tViAV >'If (3.10)
2lnAb - 2 mf 8j

< Avi >I = - nAb (mt + mf ) 2  2 < AViAVAVk >t/f (3.11)
4 M & &v,&U

3.3.3 Fokker-Planck Equation in terms of Test-Particle

Flux

The modified Fokker-Planck equation can be written in terms of the flux of the

test particles produced by the collisions in velocity space,

4 
8

( )cO = av; Ji (3.12)

where the test-particle flux is written as

= 8 82 (.3
Ji = aift + b,, ft + ci t9 ft (3.13)

with

Ci = < Av >'If - <vAV 3 >'I + < AViAVAVk >tf

2i 1  v 3~ >'f 31 1 < Avi~jA, >,If (3.14)

[ij = < AViAVjAVk >I
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3.3.4 Landau Form of Fokker-Planck Equation

Although the form of the Fokker-Planck equation most widely used essentially

follows the convention of Rosenbluth, McDonald, and Judd, there is an equivalent

but different form of the collision operator which was derived in the 1930's by

Landau[1]. The form of the equation is therefore called the Landau form of the

Fokker-Planck equation or the Landau equation. The equivalence of these two dif-

ferent forms is readily demonstrated by directly transforming the Fokker-Planck

equation to the Landau equation. Similarly, for the modified Fokker-Planck equa-

tion, there is a corresponding Landau form which includes the same physical

contents. The demonstration of equivalence is readily carried out by using the

following relations,

f H(v) = - fU dv'

'92 G(v) = -f U ffdv; (3.15)

&,(V) = - Ukffdv' ,

where

UiU (3.16)

=ij UiU;U (3.17)
U U U U3

Substituting the above relations into the modified Fokker-Planck equation and

after several steps of manipulations, the Landau form of Fokker-Planck equation is

correspondly modified and can be expressed in terms of the the Landau-form-flux,
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aft
(-)cL =

Lt/f a ft a ff ffj aft ,
{ 1 (t U L( - T)dv

8,r Ovi' mf v mt v3
3 a 8ft

+2T A(t 5 j + )j Uijffdv'

+ (ft- - + -- ) -- f dv'

± i 2  mf T.;J'I

61nAb Ov,6vkart + mf f

where the first term is the conventional Landau-form operator, and the other

terms all come from the modifications.

3.4 Summary

In summary, we have modified the standard Fokker-Planck operator for Coulomb

collisions by including terms that are directly associated with large-angle scatter-

ing. This procedure allows us to effectively treat plasmas for which inAb Z 2, i.e.

for moderately coupled plasmas. These modifications, in most cases, differ from

Braginskii's and Trubnikov's results by terms of order 1/InAb. However, in the

limit of large lnAb (Z 10), these results reduce to the standard (Braginskii) form.
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Chapter 4

Applications of the Modified

Fokker-Planck Equation

For the purpose of illustrating the effects of the modifications made in chapter

3, we show in this chapter some applications. Our examples will concentrate on

addressing two important issues in moderately coupled plasmas: first, the plasma

relaxation rate; and second, the electron transport.

4.1 Introduction

When test and field particles in a plasma are not in thermal equilibrium with each

other (the field particles themselves are assumed to be in thermal equilibrium), the

effects of collisions (which results in both momentum and energy transfers) will

tend to make their distribution functions relax toward thermal equilibrium. The

relaxation rate therefore reflects the speed of these changes and transfers. The

relaxation phenomenon of test particles due to the collisions with field particles,

according to Spitzer[2], basically involves issues such as slowing down, energy ex-

change, removal of angular anisotropy, and energy loss because of the "dynamical

friction", etc., and these are all fundamental concepts in plasma physics. Par-
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ticularly in this chapter, three kinds of relaxation rates will be addressed: the

momentum transfer rate, energy loss rate, and the 90* deflection collision rate.

To obtain these relaxation rates, we basically calculate the collision rate of change

of various distribution function moments.

The transport phenomena occuring in plasmas are generally due to the pres-

ence of spatial gradients, for example, the gradients of the density, electric or

magnetic fields, and temperature. These spatial local transport processes that

will be discussed in this chapter are still classical.

Conventional calculations utilize the Fokker-Planck equation[4, 5, 39]. How-

ever, we have found this treatment inadequate for moderately coupled plasmas

since their Coulomb logarithm (lnAb) is of order unity (typically, InAb :- 2 - 10).

Because terms smaller by a factor of 1/lnAb are truncated in the Taylor expansion,

the application of the conventional Fokker-Planck equation can only be justified

for weakly coupled plasmas, i.e. plasmas for which lnAb ~ 10[15, 16). There are,

however, two issues which are usually left unaddressed. First, since inAb - 10,

there is no justification in using the standard formulas. Second, there has been,

until now, no 1nAb correction to these formulas. Specifically, these formulas are

only justified when used in the "Spitzer regime" which is based upon the following

length ordering:

p± < n- 1/3 <AD< 9  (4.1)

However, when InAb < 10, this ordering fails[161. For these reasons, a proper

treatment of these two issues is necessary in moderately coupled plasmas, for

which 2 i InA6 I 10.
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4.2 Relaxation Rates

In general, plasma relaxation rate is defined as

dP
dt = v , (4.2)

where F is an arbitrary physical quantity which can represent the test particle's

momentum, energy, or energy flow, etc. (i.e, F can be v, v2 , v 2v, etc.). And v is

the relaxation rate of the quantity F. In calculations, if the distribution function

of the test particle (fe) is known, the physical quantity is usually averaged over

the velocity space, i.e.

F = - F(v')ftdv' . (4.3)
nt

By differentiating this equation over time, the rate of change of this quantity is

then determined through the following equation

-d - F(v')(t)dv' , (4.4)
dt nt at

(Oft/8t) is the collision operator where we use the modified Fokker-Planck equa-

tion. In our calculations, the test particle distribution function is assumed to be

a delta-function,

ft = nt5(v' - v) . (4.5)

The physical meaning for this distribution function is that a monoenergetic test

particle beam is assumed. For the field particles, we assume a spherically sym-

metric equilibrium distribution, i.e. a Maxwellian distribution function
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flf!

ff(v) = ()2e "t . (4.6)
( 2,rf T/mf )3/

With these assumptions, a physical picture of a plane flux of test particles in-

teracting with an equilibrium background plasma is formed. Through the modified

Fokker-Planck equation, the relaxation rates for momentum transfer, energy loss,

and 900 deflection are equivalently related to the rates of change of the moments

< Avi >, < Avi Av >, < AViAvjAvk >, and this suffices for a reasonable statis-

tical description of the behavior of the test particle. Based those assumptions and

definitions the plasma relaxation rates are readily calculated. For example, the

calculation of the momentum transfer rate (slowing down in the original direction

of the test particle trajectory) is

dt

< Avi >; (4.7)

and the energy loss rate is

d-
- -v Edt

1
= mL(- < AViAvv > +v, < Avi >), (4.8)

2

where < AvjLvi > is the trace of the diffusion tensor. Substituting the rates of

change of the of moments defined in chapter 3 and performing some manipulations,

the relevant relaxation rates are readily calculated and the results are shown in

the Table 4.1.
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Table 4.1:
The modified (conventional) relaxation rates

Relaxation Conventional lnA6 ~- 10 Modified
Rates Restriction*

Slowing Down (1 + M)PV. Nod unchanged from Conventional

90' Deflection 2(a + A' - ')v. Yes 2[1 + + - )v**

(V )*,t
Energy Loss 2(* A - y')v. Yes 2[ p - p' + -(p + p')]v0

(vt/)),!

This condition applies to the Conventional results only.
* = Vvre ejn / -- the "basic relaxation rate."

** v2~ [< (Av,)2> /V 2] - [< (AV±)2AV> /V31

= 2 fo e-1 v/ d/ vl7 - the Maxwell integral, and y' is its first derivative.
Their behaviors are shown in Fig.(4-1).
d As best we can tell, this was not known since it is stated[29] that 1nAb~ 10.

We find that even with the inclusion of all higher terms, the slowing down

rate is unmodified from the conventional form. As best we can tell, this seems

not to have been previously recognized since other workers indicated InA6 need

be 10 or greater for its application[4, 29]. In contrast to this, the energy loss

rate and 90* deflection rate both manifests 1/1nA6 corrections. To the best of our

knowledge, this is the first time these corrections have been calculated. Because

all the corrections come from the effects of large-angle scattering, the practical

significance then depends on the mass ratio of test to field particle, which could

be large, intermediate, and small due to m./mi (, 10-3), m,/m, or mi/mi (~ 1),

and mi/m. (~ 103), respectively. These corrections are important, for example,

for the energy loss rate, it is, in part, utilized in estimating the energy loss for 3.5

MeV a's, 1.01 MeV Triton, 0.82 MeV 3He, and fast electrons in inertial confine-

ment fusion plasmas[49].
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Figure 4-1: The Maxwell integral and its first derivative as a function of parameter
xt!=v2/V2j).
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4.3 Electron Transport Coefficients

In our calculations, the Boltzmann equation is written as

af, f af.,
+v + -- C-, (4.9)at &x av

where a = eE/m,, and the collision operator

C. = Ce-i(fe, fA) + C,.(, fL) . (4.10)

Taking the high-Z approximation in our calculation (Lorentz-gas model), the

electron-electron collision operator can be neglected. [The contribution from C__

to the electron conductivities is multiplying a factor of 1/(1+3.3/Z), for large Z,

this contribution can neglected[39].] To calculate C,_j,, we use the Landau form

of the corresponding modified Fokker-Planck equation,

(a! = -f_ - {mU( -)d'
8t -8,r aoi m 'Mo av" M. YVo

+23 U. a + )f Uijfi'odv'

+1 a af 8J'
(f.+ e) -fldV

InAb avv 8 U
1 a2  M(

+ ( " Uijkffj.dy'} (4.11)
6InAb OVI 9 Vk m, + m,

In the approximation where m,/mj. ~ 0, i.e. the ions are assumed to be

immovable and exhibit a delta function distribution

f;. = nj,,6(v') . (4.12)

Substituting this distribution function into the Eq.(4.11) and performing some

manipulations, one obtains the reduced electron-ion collision operator, which man-

ifest 1/InAb corrections,
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S5 0

C,_i.(f, fiA.) = A -- (1 - 5)V, ,
vi '6 -nA, avj

1 4 v S.g & V,,,u Q2
+ ( + + )f . (4.13)

lnAb 3v3  v (vj 6 a?%&vk

Where A = L'/I"/87r 27rnZ 2e 4lnAb/m2, Vg is the conventional diffusion ten-

sor in velocity space,

82
V = v -,] u1(v')dv'

aviavj

v 268j -vivi
3 ' V3

'
- V3 (4.14)

and the new terms, including the third-rank tensor

a2
Vijk - , J u uIS(v')dv'

= 8j + V.7 + V -ViV 3 V. (4.15)
V V V V

The terms in Eq.(4.13) with coefficient 1/InAb, are a consequence of this new ex-

pansion and are also mainly associated with large-angle scattering. In calculating

the electron thermal or electrical conductivity, one finds that the complexity of

the operator actually prohibits an analytical solution. In other words, one would

not expect to obtain a linear relation between the heat flux and temperature, or

between the current and electric field, as implied by the conductivities. For ex-

ample, in the calculations of the electron conductivity, we assume a plasma with

a fixed, neutralizing background of ions, and a uniform electron density. In order

to carry thermal flux, the electron distribution function is warped in the direction
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Figure 4-2: The electron and ion distribution functions for modeling the electron
conductivity.
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Figure 4-3: Electron distribution used in the calculation of the electron thermal
conductivity.
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of the heat flow, as shown in Fig.(4-2).

This warped electron distribution function can be expanded as a first-order

Legendre polynomial in spherical coordinates,

f. = fo + ficos , (4.16)

where 9 is the angle between v and the direction of the heat (also electric field).

Fig.(4-3) shows this electron distribution.

Substituting f. into the above Boltzmann equation with the reduced electron-

ion collision operator and keeping only the first-order terms to the linearized

equation (i.e. only keep terms which are proportional to cosO), the e-i collision

operator is then given by

1 f 1
C.1_j(fi) = -2A(1 + (4.17)

The steady-state solution to the Boltzmann equation with this reduced electron-

ion collision operator is then determined to be

V4  afo eE afo
f, = "( ).(4.18)

2(1 + -- )A z8 m, v

The electron heat flux is

Q = v cos2Ofi dv . (4.19)

After performing the integration, the heat flux can be written as

= T~
Q = - . ,(4.20)

az
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Table 4.2:
The modified (conventional) transport coefficients

Transport Conventional InAb 10 Modified
Coefficients Restriction'

Electron Electric a " Yes
3wzn.ve wy.(I /I.bL.

Conductivity(al) **

Electron Therm. 16 ""AT. Yes 16V.kT.,
3m,(1+1/InAb)v.

Conductivity( 11)**
Light Collision 4Afo Yes tl A(1 + 9 )Afo

Damping rate(v)t
a This condition applies to the Conventional results only.
** v = 4v/'2Z24n lnA/3 /m~. (kT,)3/2 - the "basic electron-ion collision
rate", and v2 = kT,/m, is assumed[5).

where

16v/2~fnekTe
K = 6 .27 .kT (4.21)

3m,(1+1/6lnAb)v(

A similar procedure can be carried out in order to calculate the electron elec-

trical conductivity. The calculated results, with comparisons to results obtained

without the modification, are presented in Table 4.2.

Another example is to calculate laser wave damping rate in plasmas, which

arises because the fact that in laser-plasma interaction physics the issue that

the target obtaining the highest absorption rate of incident laser energy can be

understood by considering the balance of the energy dissipated, the damping of

the laser-light wave into plasmas. Electron-ion collision provides a simple model

of this damping[39]. To calculate the collisional damping of a laser light wave,

which is defined as vE 2/87r and v is the damping rate, we can use the first-order

approximation equation based on the assumptions discussed above
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&fi eE8fo 9 + 1 f1if_ - m iv = -2A(1 + I)-- . (4.22)
19t M. 6V 61nAb V3

Since E = Ee-iwt, the equation is readily solved for f,

ieEo afo i2A(1+ ()23f, - ,'V [W + V3 .b)(4.23)

Thus, the damping rate can be readily figured out from the following averaged

absorption of energy

< J, E > = Re[-- Of 1 cos 2 Gdv] . (4.24)

After some manipulations, the laser wave damping rate is determined as

= 8r (I + 1 )Ajo, (4.25)
w 2 3 6lnAb

where Jo = - fo dvg(v)(8f o/Ov), g(v) = {1 + [2A/v 3 W]2 1-1 ~ 1 due to V.i/w <

1[391, and w is frequency of the laser light wave.

In these calculations, 1/6lnAb corrections are, for the first time, evident. The

fact that these corrections are much smaller than the InAb corrections of the

energy loss and deflection rate, is, we conjecture, due to the linearization of the

Boltzmann equation and retention of only the first order correction in the electron

distribution function. Here for the objective of illustration, we only calculate the

"classical" electron energy transport as an example. Although still not completely

correct, one sees that it has been modified in the correct direction. Therefore, in

any future work, it will be important to include higher-order terms of the elec-

tron distribution function as well as retaining the non-linearities of the Boltzmann
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equation. Such transport coefficients could be then applied to a variety of plas-

mas, such as short-pulse laser plasmas, x-ray laser plasmas, inertial confinement

fusion plasmas, and the solar core.

4.4 Electron-Ion Mean-Free Path for Short-Pulse

Laser Plasmas

The understanding of the electron transport in short-pulse laser plasmas (inAb

2-5), for example, the electron thermal and electric conductivities[39], is of funda-

mental importance. In these studies, 90. (electron-ion 90' scattering mean-free-

path) is usually compared to the temperature (LT), density (L,), and electric field

(LE) gradient scale lengths. The argument is usually made that if i 9o. ~ L., the

classical treatment of Spitzer and Hiirm[50] fails[15, 16, 39, 42, 51, 52]. Conven-

tional calculations utilize the Fokker-Planck equation. However, we have found

this treatment cannot be justified for moderately coupled plasmas.

To address these issues we have modified the Fokker-Planck equation by re-

taining the third-order term and parts of the second-order term, both of which

are usually discarded in the Taylor expansion of the collision operator. This leads

to a new electron-ion 90* scattering mean-free-path that manifests 1/1nA6 correc-

tions. Originally defined by Spitzer[2], the 90 deflection rate (Vf') is a quantity

that characterizes the perpendicular deflection of a test particle from its original

direction of motion, as a consequence of collisions with field particles:

t/f < (Av±) 2 >
VD V2 . (4.26)

where < (Av±) 2 > is the second-order moment for the change of the velocity in
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the perpendicular direction. This definition assumes that the deflection is pure

diffusive, or a small-angle interaction, process. In order to include the effects of

large-angle scattering, we redefine this rate as

-/f < (Av±) 2 > < (AVw) 2_V >
V 2 V3 (4.27)

In addition to the new third-order moment, the second-order moment is also

corrected to include the effects of large-angle scattering. These moments are[15,

16],

< AvjAvj >'/I =
82

-2L 1 a G(v)

Lt/1f 82

lnA [3 V;_VI G(v) - H(v);

1>t/I 4Lt/1 mr 82
<LavavgAvk */ ( ) 4v

InA mt + m; Ov;&v )

(4.29)

Substituting Eqs.(4.28) and (4.29) into Eq.(4.27), and assuming a Maxwellian

field particle distribution, the 90' deflection rate is

vtZ' 2 [1+ I (mf -m )b 21nAb Mf + M, 2xt/f

(4.30)

This result differs from the standard formula (Spitzer and Trubnikov) by the

1/1nAb corrections. In the approximation of m./mj ~ 0 (then p ~ 1 and u' ~ 0),

an electron-ion 90' scattering mean-free-path (A 0 .) is obtained:
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(1 + 1/2lnAb)27rZ 2e4nelnAb . (4.31)

A decrease by a factor (1 + 1/2lnA6 ) is found over the standard calcula-

tion[15,18]. With the 1/InAb correction, this modified result has been justified

for its application to short-pulse laser plasmas.

4.5 Comparison of Collision Frequencies to Fu-

sion Reaction Rates

It is interesting to make a simple comparison of collision frequencies to fusion re-

action rates. We consider three different cases: the solar core, inertial confinement

fusion, and magnetic confinement fusion. Using our classifications, the first two

are moderately coupled plasmas and the last one is a weakly coupled plasma. Two

aspects of interests are: (1) by comparing collision frequencies to fusion reaction

rates, one can obtain a clear quantitative picture of how many collisions would

lead to a fusion reaction; (2) since the solar core and ICF plasmas are both moder-

ately coupled plasmas, the modified 90' deflection rate must be used to calculate

the collision frequencies. Assuming a Maxwellian field particle distribution, the

90' deflection rate is given,

vb ~ 2[1 + (m, -t 2xt 2)+o . (4.32)

As discussed before, this formula is also justified for InAb ~ 2-10; however, when

InAb~ 10, it reduces turns to the standard Trubnikov's formula. Consequently,

we actually use this formula to treat both weakly and moderately coupled plasmas.
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For controlled nuclear fusion, both inertially and magnetically confined, we

primarily consider the deuteron-triton reaction,

D+T -+ 4He+ n + 17.6 MeV. (4.33)

The reaction rate is then determined as follows,

vj = nT < aV > . (4.34)

For the solar core, the most likely nuclear fusion reactions are described by

the so-called proton-proton cycle because of the availability, that is two hydrogen

nuclei that combine to form helium in the following series of steps[22],

1H +1 H -+ e2 D+e++v+1.44 MeV

2D +1 H 3He + -y + 5.49 MeV (4.35)

S3He +3 He -> 4 He + 1 H +1 H + 12.85 MeV.

Because the first step is the slowest, it therefore determines the rate at which

the whole chain reaction proceeds. In our calculations, it is this step that we chose

for comparison, the fusion rate is given by,

1
vf = H<c> . (4.36)

The calculated results are listed in Table 4.3. It is surprising to find that, in

order to obtain a fusion reaction, it requires 1031 collisions in the solar core, but

only about 104 collisions for other cases. Table 4.3 gives the ratios of collision fre-

quencies to fusion rates for solar core, magnetic and inertial confinement fusions.
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Solar Core
Magnetic Fusion
Inertial Fusion

Table 4.3:

Ratios of collision to fusion rates
R = uc/vf -c. (sec.) -rf (sec.)

r x 101 ~2 x 10-1 5  6.4 x 10 16

~1.4 x 10 4  ~6.3 x 10- z9.1 x 101
~4.6 x 10 3 ~ 2 x 10- 1 4 9.1 x 10-"

A (cm)
~ 1.0 x 1-7

6.1 x 10'
~ 2.0 x 10-6

This table also reveals how difficult it

fusion on earth.

is for human to achieve controlled nuclear

4.6 Summary

In summary, by using the modified Fokker-Planck operator, we, for the first time,

could effectively treat plasmas for which InAb Z' 2, i.e. moderately coupled plasmas

with justification. Precise calculations of certain relaxation rates, and approxi-

mate calculations of electron transport coefficients, have been made, and, in most

cases, the results differ from Braginskii's and Trubnikov's results by terms of order

1/lnAb. However, in the limit of large InAb (~ 10), these results reduce to the

standard (Braginskii) form. In addition, we have calculated a reduced electron-ion

collision operator that, for the first time, manifests 1/lnAb corrections.
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Chapter 5

Charged Particle Stopping

Powers in Inertial Confinement

Fusion Pellet Plasmas

In this chapter, the effects of large-angle scattering, important for plasmas for

which the Coulomb logarithm is of order 1, have been properly treated in calcu-

lating the range (R) and the fuel-areal density (pR) of inertial confinement fusion

(ICF) plasmas. This new calculation, which also includes the important effects

of plasma ion stopping, collective plasma oscillations, and quantum effects, leads

to an accurate estimate, not just an upper limit, of pR. For example, 3.5 MeV

a's from D-T fusion reactions are found to directly deposit ~ 47% of their energy

into a plasma of 20 keV deuterons and tritons. Consequently the a range (R)

and pR are reduced by about 60% from the case of pure electron stopping. In

addition, the Fermi degenerate pressures are discussed for ICF pellet plasmas, and

compared to the cases of the solar core and the white dwarf.
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5.1 Introduction

The stopping of charged particles (a's, 3 H, 3He, hot electrons . . .) in com-

pressed pellet plasmas is a fundamental problem with close parallels to early work

of Rutherford and Bohr who studied a stopping in solid materials[58]. In the

context of inertially confined fusion plasmas (ICF), it involves the deposition of

energy from charged particles, especially the a's, in the fuel material during the

initial cold and compressed state and then during the evolution to full ignition

and burn[53, 54, 55, 56, 59, 64, 65]. The tremendous range of pellet plasma con-

ditions [n, i1017 cm-' and 0.1 I- T. (Ti) i- 40 keV] is directly reflected in the

range of the Coulomb logarithm - - 1 < InAb< 12 - - a parameter fundamental

to many plasma properties[1, 3, 4, 5, 28], including charged particle stopping. In

particular, Fraley et al.[66] and later Mehlhorn[57] noted that when ion stopping

is significant for a's, large-angle scattering is also likely to be important. Fraley

et al. did calculate ion stopping, but because they were unable to estimate the

effect of the large-angle scattering within the framework of the Fokker-Planck ap-

proximation, and because they neglected collective plasma effects, they concluded

that their estimate of range (R) and fuel areal-density (pR) was in fact only an

upper limit. Mehlhorn attempted to treat large-angle scattering, but discarded

his results in favor of the standard small-angle formulation when the large-angle

results proved inconsistent. In addition, Fraley et al. and many others have ap-

plied stopping power formulas to lnAZ 2 plasmas in spite of the fact that these

formulas were derived under the assumption that lnA6b 10. Therefore there was

no rigorous justification in such applications. Furthermore, quantum mechanical

corrections that are important during the initial portion of the evolution of the

pellet are also added in this chapter. Specifically, it is found that the shifting of

the effective quantum mechanical electron velocities strongly affects interactions

between 3.5 MeV a's and the plasma electrons by dramatically enhancing the bi-

nary interactions over the collective effects. These changes of the early dynamics
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could greatly affect the evolution of the pellet. However, their contributions have

not hitherto been discussed.

5.2 Modeling the Stopping Power in ICF Pellet

As discussed in previous chapters that the ICF pellets are typical moderately

coupled plasmas, which evolve with the plasma temperature from initial cold and

compressed state (near complete Fermi degeneracy, T. 1 keV) to ignition (T,

5-10 keV) and finally to the full burn state (T. - 10-40 keV). The tremendous

dynamical ranges of the plasma temperature and density require that the issue

of charged particle stopping should be treated dynamically within a comprehen-

sive framework, which includes the different physics aspects: quantum mechani-

cal effects; binary interactions (small-angle collisions and large-angle scattering);

plasma collective effects; and plasma ion stopping. These relevant physical models

are presented subsequently.

5.2.1 Quantum Mechanical Effects

Because of the high electron density in the pellet plasma (n.102scm-), the effect

of electron degeneracy has to be considered in the earlier evolution. The condition

for determining the degeneracy is[72]

h -> / . (5.1)
(27rmekT)1/2 a

The physical explanation for this is that if the de Broglie wavelength of an elec-

tron is greater than or comparable to the inter-electron spacing, then quantum

mechanical effects become important. Usually this effect appears in a system of
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low temperature and high density, such as in metals and astrophysics. In magnetic

confinement fusion, however, the electron density in tokamak plasma, for example,

is too low (n, ~ 10 4 cm-3 ) and the temperature far too high for degeneracy to be

important. Applying this condition to ions, one finds also that even in the ICF

pellet core, ion degeneracy is also negligible.

Thus let us consider electron degeneracy in the ICF pellet fuel. Suppose a D-T

pellet is isentropically compressed and has a compression factor 7 ~ 4 (where the

compression factor is defined as 7=n/nliquid), which corresponds to the electron

density n, ~ 5 x 1026 cm-3 [53), we have

1.24 x 10-9 > 1.26 x 10~ , (5.2)
IT(keV)

for ICF pellet fuel, where the electron temperature varies from ~ 0.1 keV to 10

keV. The electron degeneracy determined by this formula is a function of the

plasma electron temperature, and changes from being a strong degeneracy to

finally being negligible. The degenerate electrons in the pellet fuel can be simply

modeled as a Fermi free electron gas which obeys Fermi-Dirac statistics, fF(E),

1
fF(E) = e(EEp)/kT. + 1 (5.3)

where EF [=h'(ner 2)2/3/2m,] is the Fermi energy. The characteristic feature of

this distribution is quite different from that of the Maxwellian distribution of a

non-degenerate plasma. However, as the plasma temperature in the pellet fuel

increases due to energy deposition of the fusion products, the distribution returns

to Maxwellian.

Consequently, one finds a remarkable property in the pellet plasma due to this

electron degenerate - - - the shifting of effective electron velocity. According to
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Fermi-Dirac statistics, electrons (Fermions) near the Fermi energy are excited by

the effects of finite temperature from inside the Fermi sphere up to the Fermi

energy plus a few kT,. This can be seen from the following discussion. By con-

sidering the density of the quantum state [D(E) = 47rV(2m,) 3 /2h-3E1/2 ] and

Fermi statistics, one can determine the total number of electrons, N, and the total

energy, E,,,, through

N 47j4 1 (2mE) 3 /2 dE + 1' (5.4)N o =hxV 2 e(E-Ep)/kcT, + 54

and

E E 2m) E/2dE
E±0 , = J 4xV( 42 ) (-3)/21. - 55fm h2 e(E-EF,)kTe

The effective energy per electron is given: for the case of weak degeneracy

(kT,/EF

Et, 3 1 4 EF )/ 2  1 4 2 EF 3E,!f f kTe[l + -( (
N 2 25/23V/r IT 35/2 3v/E kT,

and for the case of strong degeneracy (kT/EF «1),

3 r2 kT. t 4 kT,
5 12 EF 80 EF

Consequently a universal effective energy can be calculated by combining the

cases of weak degeneracy [Eej1 (weak) from the Eq.(5.6)], and strong degeneracy

[E~1f(strong) from the Eq.(5.7)], i.e.

q f f k + 1 f(5.8)
Eei -\ E,211(weak ) E2, 1( strong )
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Fig.(5-1) gives a plot of the effective energy of a degenerate electron over the

electron temperature for a typical ICF pellet plasma (n. = 5 x 102 6 cm-3 ). Be-

cause of the contribution from the quantum degenerate effects, it is shown that the

electron effective energy is larger than the corresponding electron temperature, as

predicted from Eq.(5.6). In particular, when plasma is strongly degenerate, the

effective energy is almost completely independent of the electron temperature [ex-

pected from Eq.(5.7)]. Physically, it is interpreted that due to the effect of finite

temperature, a fraction of the electrons has filled up higher energy levels (greater

than the corresponding Fermi energy). This phenomenon significantly raises the

effective velocity of electrons, which is defined as veif = 2E.if/m,. (On the

other hand, the electron thermal velocity is defined as vth, = /2T,/m,.) Fig.(5-2)

shows a comparison of the electron effective and thermal velocities. Consequently,

it is the electron effective energy (effective velocity), not the electron temperature

(thermal velocity), that should be used in the calculations for a degenerate sys-

tem. However, as shown in Figs.(5-1) and (5-2) that with the increase of the

plasma temperature, the effective energy (velocity) reduces to the thermal energy

(velocity).

5.2.2 Binary Interactions

Binary interactions between test particle and field particle occur when the im-

pact parameter is smaller than the Debye length of the plasma. This interaction

results in the test particle losing its kinetic energy and depositing it to the field

particles. Making use of the previous discussed energy loss relaxation rate, the

general stopping power of a test particle for binary interaction is derived as

dEt l/ (Zte) 2 W 2 G(x'/f) InAt/,
dx V-
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Figure 5-1: The effective quantum energy of a degenerate electron is plotted as
a function of the plasma electron temperature in D-T pellet plasmas. Because
of the Fermi-Dirac distribution, the average energy per degenerate electron is

dramatically increased compared to the corresponding electron thermal energy.

The Fermi temperature (TF) is indicated by the arrow. One sees that the effect

of electron degeneracy makes the Ejff independent of the temperature below the

Fermi temperature. When T.Z 1 keV, quantum degeneracy is negligible. Then

the average energy of the electrons is equal to their thermal energy.
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Figure 5-2: A comparison of v,ef = 2Ef f /m. and vth = 2Te/m. (V, for 3.5

MeV fusion a particles is shown for reference). The Fermi temperature (TF) is

indicated by the arrow. One sees that the effect of electron degeneracy makes

the E611 independent of the temperature below the Fermi temperature. The

divergence between vei and vth, for T_ < 1 keV illustrates the importance of

electron quantum degeneracy effects in the calculation of the a stopping power.
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where Zte is the test charge, Vt (vf) is the test (field) particle velocity with

Xt/ = V, me (m) is test (field) particle mass, and Wpf = (41rnfej/mf )1/2

is the field plasma frequency. The Coulomb logarithm, lnAb, and the temperature

coupling parameter, G(xt/I), are carefully addressed as follows:

A. The Coulomb logarithm

The Coulomb logarithm is usually defined as

lnA' t = ln( ) , (5.10)
Pmin

where, for the nondegenerate regime AD is the Debye length and p.in is the closest

impact parameter for binary interaction. In the context of ICF, it is a measure of

the relative importance of "dominant" terms (small-angle binary collisions) to the

"non-dominant" terms (large-angle scattering, collective effects, etc.). For a dense

plasma like ICF pellet, quantum mechanical effects must enter the calculation of

Coulomb logarithm for electrons: (1) because of the effect of quantum degeneracy,

the effective energy (velocity) has to be used for low temperature regime; and (2)

the Heisenberg's uncertainty principle has to be used for high temperature regime.

Including both effects, a universal formula is obtain as

Pmin = p1 + (h/2m,.u)2 , (5.11)

where p, = etef/m,.u 2 is the classical impact parameter for 90* scattering, with

m, the reduced mass and u the relative velocity. Using this universal formula,

for example, Figs.(5-7a) shows the calculated Coulomb logarithms for fusion &s

interacting with the electrons (ne = 1 x 102s). Results for both binary interaction

(lnAb) and collective effects (lnAc) from both quantum and classical approaches

are compared. Quantum mechanical approach successively avoids the trouble of
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providing a meaningless negative Coulomb logarithm in the region of low elec-

tron temperature. Fig.(5-3) gives a comparison of calculated Coulomb logarithm

from our semi-quantum approach (solid line) with that from a random-phase-

approximation (RPA) approach [solid circles [59]]. Both of them are thought to

be reasonably equivalent.

B. The Effects of Small-Angle Collisions

Because of the nature of the long-range force of Coulomb interactions, the test

particles suffer primarily small-angle collisions. It turns out that the test particles

diffuse in velocity space. This diffusion process is well defined in terms of the

conventional Fokker-Planck equation and the temperature coupling parameter

G(xt/f) defined as

G(Xt/f) = P(xt/f) m d(x/) (5.12)
mt dxt!!(512

C. The Effects of Large-Angle Scattering

The effects of large-angle scattering must be included to treat ICF pellet plasmas

because their Coulomb logarithms are of order unity. This particular problem is

overcome by our recent generalization of the Fokker-Planck equation, which prop-

erly treats the effects of large-angle scattering as well as small-angle collisions[15,

49] and is justified for application to 1nAbZ 2 plasmas. In subsequent discussions

of charged particle stopping, we utilize one of the general results of that analysis:

G(xt/f) = p(x') - { dI/f nA X) + ]Ix/f]} . (5.13)

The contribution of large-angle scattering is solely manifested by 1/lnAb terms of
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Figure 5-3: Coulomb logarithm for a-electron binary interaction (solid line, cal-
culated from our semi-quantum approach.) in a D-T plasma (n = 1 x 10 26/cm 3 )
compares to the result from a random-phase-approximation (RPA) calculation
(solid dots[59]).
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Eq.(5.4). In particular, if 1inAb~ 10 and we ignore this correction, then Eq.(5.13)

reduces to Trubnikov's expression [Eq.(5.12)].

5.2.3 Collective Effects

When a test particle interacts with the plasma outside the Debye sphere, an elec-

tric field will be induced by the polarizing of the medium such that the plasma

acts as a continuous medium with collective oscillations[67, 68, 69). As a conse-

quence, this induced electric field acts back and slows down the test paricle. The

Lenard-Balescu equation, in principle, provides an adequate description of this

phenomenon[24]. For the sake of simplicity and comparison with binary interac-

tion, the stopping power due to field plasma oscillations is[68, 69, 70],

dE*/f 2 Ztee iw WAD WAD WAD= -- ( )2Re ( )Ko( )K 1 ( )dw , (5.14)
dx Ir Vt Jo E(w) V Vt Vt

where Ko(WAD/vt) and Kl(WAD/v) are the modified Bessel functions, and the

dielectric constant with damping cr is E(w) = 1 - wP1 /(W 2 + Zwo). Since the

significant frequencies in the integral turn out to be w - wpf, the calculation of

the Coulomb logarithm in the equation above can be readily performed to provide

(see Appendix C for details)

dEtlf .(Zte)22 nAtf(.5
- 2 WP2,I A* ,(. )dx V(

with
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In( L.123vI V )tl v'x I >> I

CnA*'1 ~ ' /WK1 )/ _tI ~ (5.16)

M e~ V11 -xT < I

Because of different features of the logarithmic, Bessel and exponential func-

tions, one finds that in the different regimes the stopping power has the distin-

guishing behaviors: 1nAc is significant, moderate, and negligible in the cases of

'lf > 1, ~ 1, and < 1, respectively. In other words, the contribution of collective

plasma oscillations is only important for the cases of xt!f >> 1.

5.2.4 Plasma Ion Stopping

Plasma ion stopping is usually negligible compared to plasma electron stopping

in plasmas of low temperature. This is because the charged particle velocities are

more comparable to the thermal velocity of the plasma electrons. However, as the

plasma temperature gets higher, contributions from plasma ion stopping become

important. The relative importance of plasma ions to electrons for test charged

particle stopping can be measured from their relative ratio[71):

dEtli dE*tl v
dx / d- v , (5.17)
dx dx ve3

where a critical velocity is introduced, and it is defined as,

3,Fi nZ m. InAt/ + InA + mi/mt)(IT)/2~~ b 3/ (5.18)V~i. 4 n, mi InAt/C m,
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The physical interpretation of this critical velocity is that, as shown in Fig.(5-

4), when v, < vc,., electron stopping is less important than ion stopping. Fig.(5-

5) plots ve, as a function of electron temperature. The quantum degeneracy is

evident in this figure when electron temperature is less than its Fermi temperature

(TF).

5.3 Comprehensive Calculations

Comprehensive calculations are made within a unified framework of binary inter-

actions (both small-angle collisions and large-angle scattering) for impact param-

eter smaller than the Debye length plus plasma collective oscillations for impact

parameter outside the Debye sphere. Based on the model described previously, a

generalized stopping formula is developed[49]

dEx 2 (Zte) 2 [(x9)nAf + O(x/)ln(L123./f)] (5.19)

In the above generalized equation, collective effects are represented by the

second term [InAt/] = ln(1.123vxt/)] where 9(xt/f) is a step function whose

value is identically 0 (1) for x'/l < 1 (>1). Degeneracy effects enter in both the

calculation of mnA and the parameter x'l/. When fusion products (3.5 MeV a

particles, for example) in the pellet fuel are generated, they are in the energy

regime xr/e < 1 promptly, which justifies that binary interaction is the dominant

mechanism for fusion products stopping. As the plasma electron temperature in-

creases, quantum degenerate effects decrease. Table 5.1 gives the typical energy

regimes in ICF pellet plasmas for 3.5 MeV a particles. For example, if vep, were

mistakenly used instead of veff for T. : 0.3 keV, the stopping power would be

undervalued by a factor ~ 3. Because of the non-linear evolution of pellet dy-

namics, such considerations could be important in the later evolution of the pellet.
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Figure 5-4: The physical explanation of the critical velocity is that when test
particle velocity (vt) > vit, electron stopping dominates. However, when vt <
v,;, ion stopping is more important.
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Figure 5-5: The critical velocity is plot as a function of the plasma electron
temperature in a D-T plasma (n. = 1 x 10 2 6/cm 3 ). The Fermi temperature (TF)

is indicated by the arrow. It is the effects of quantum degeneracy that make v,t
independent of the temperature within the regime below the Fermi temperature.
The v, for 3.5 MeV fusion a particle is shown for reference (dashed line).
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Table 5.1:
The energy regime for 3.5 MeV a particles in ICF pellet plasmas
T. (Ti) x"/e (v, = vtj.) x"/e (y. = vej)x
0.01 keV - 40 - 0.25 - 2.19 x104

0.05 keV - 10 - 0.25 - 7.30 x10 3

0.1 keV ~ 5 - 0.25 - 4.38 x10 3

0.5 keV ~ 1 - 0.25 - 3.13 x10 3

1.0 keV ~ 0.5 - 0.25 ~ 2.19 x103

5.0 keV - 0.07 - 0.07 - 4.38 X102

10.0 keV ~0.04 - 0.04 ~ 2.19 x 102

In order to illustrate the results of the generalized stopping power Eq.(5.19)],

we consider the following four cases: a's, 1H, 3He, and hot electrons each inter-

acting with field ions and field electrons.

5.3.1 3.5 MeV as Stopping in D-T Pellet Plasmas

Fig. (5-6) shows the schematic of an a particle is that born at the "hot spot" of

the pellet and stops in the fuel part of the pellet. One of the objectives in ICF re-

search is to stop all the a's in the D-T fuel in order to achieve high burn efficiency

and to sustain the fusion reaction. Fig.(5-7) shows the corresponding Coulomb

logarithms for a - electron (lnAa/*) and a - ion (lnA"/') interactions (3.5 MeV

a's in a D-T plasma of 10 2 /cm 3 ). Note that for all charged fusion products (a's,
3H, 3 He ...) interacting with field electrons, x*/f is usually much less than one,

indicating that collective contributions can be ignored (see InAc/e in Fig. (5-7)).

In contrast, for charged fusion products interacting with field ions, xt/f is usually

much larger than one, and therefore collective effects are significant [dashed line,

Fig. (5-7)].

In the case of a - electron interactions, Eqs.(5.13) and (5.19) nearly reduce
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Table 5.2:
Fraction of 3.5 MeV a stopping by D-T plasma ions
T, D-T ion stopping electron stopping
(keV) ( % of total) ( % of total)

1.0 6 94
5.0 ~19 ~81
10.0 ~32 ~68
20.0 ~47 ~-53
40.0 ~64 ~36

to Trubnikov's results[4] because the mass ratio of field-to-test particles, m,/m.,

is of order 10-4. However, when the field-to-test mass ratio (m,/mt) is of order

1 or 103 - - as it is for a's, 3 H and 3He interacting with field ions, or for test

electrons interacting with field ions - - Eqs.(5.13) and (5.19) must be used instead

of Trubnikov's.

In more detail, the relative fraction of ion stopping (RF) is calculated as

d E"lt d Eai d E"/*
RF(E.,T.) = "|dx dx dx

~ - .V3(5.20)

The total fraction of this D-T plasma ion stopping (TF) for a 3.5 MeV a particle

is calculated by integrating the relative fraction (RF) at a given plasma electron

temperature over the change in E.,

SRF(Ec,,T.)
TF = [a RE- T) I' onst.dE,. (5.21)

E0 = 3.5 MeV is the initial fusion a-particle energy. In more detail, Fig. (5-8)

plots the ion stopping fraction, Eq.(5.20), for relevant a energies (!_ 3.5 MeV)
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Figure 5-6: Schematic of &s stopping in an ICF pellet
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Figure 5-7: (a) Coulomb logarithms for a-electron binary interactions for 3.5-MeV
a's originating from D-T reactions (n,= 10 2 /cm 3 ). The quantum calculation

(solid line) is used in our text and subsequent figures. The classical (Spitzer)
calculation (long-dashed straight line) is given for reference. The effect of collective
plasma oscillations in this particular case is unimportant. Stopping power and
pR are calculated only for Te'h 1 keV. (For InA /* < 2, strongly-coupled effects
become an issue[15, 49, 73].). (b) The Coulomb logarithm for a-ion (deuteron

and triton) interactions (InA'/i) and ct-ion collective interactions (InA*'). In
contrast to the a-electron interaction [Fig. (a)], quantum effects are unimportant.
However, collective effects are significant since v.. > vi [vi, the background ion (D
or T) velocity]. 79
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and plasma temperatures. Table 5.2 shows the relative importances of ion and

electron stopping for a's that thermalize from 3.5 MeV (n.=10 26 /cm 3 , T, ~ Ti).

Note that ion stopping becomes significant for T. - T- 5 keV. The range of a's

is calculated as

R EdE j -'dE. (5.22)
Sdx

Fig. (5-9) shows the corresponding pR for a's (calculated from the 3.5 MeV birth

energy to background thermal temperature). For example, at 20 keV inclusion

of ion stopping (binary plus collective) reduces the pR of pure electron stopping

by about 60%. Also for the a's, Fig. (5-10) shows the density dependence of

pR. Effects of electron degeneracy can be clearly seen for density Z 10 2 1/cm3 and

temperature ~ 5 keV. (In the degenerate regime, our calculations are only semi-

quantitative.) In the non-degenerate regime of Fig.(5-10), the results of Fraley

et al., which ignored (large-angle) scattering and collective effects, are about 20%

larger. (They did not treat the degenerate regime.)

5.3.2 1.01 MeV 3H and 0.82 MeV 3He Stopping in D

Plasmas

The development of novel pR diagnostics are currently based upon the 1.01 MeV

1H and 0.82 MeV 'He[64, 74] that result from primary D-D fusion. As these 3 H

(3He) ions interact with background deuterons, secondary nuclear fusion reactions

[D-T (D- 3He)] occur and secondary fusion products [14.1 MeV neutrons (14.7 MeV

protons)] are generated. Because the neutron (proton) energy spectrum depends

on the energy distribution of 3H ('He), it is by detecting these secondary neu-

trons (protons) that the information of charged particle stopping power and the

fuel-areal density, pR, is extracted. Because of the relevance of this diagnostic
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Figure 5-8: The relative fraction of a - field ion (D-T) stopping as a function of

the a kinetic energy (E,) and the plasma temperature (T. T). For E.&- 1.5
MeV and T.' 15 keV, ion stopping is dominant. A 3.5 MeV a in a 40 keV plasma
deposits its energy along the dotted trajectory. It initially deposits ~ 35% of its
energy to ions, but, by the end of its range, Z 95% is going into the ions. By
integrating over the trajectory, the total ion stopping is ~ 64% (see Table 5.2).
This effect significantly reduces the a range (R) and pR by about 73% (see Fig.

(5-9)).
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Figure 5-9: pR for 3.5 MeV a interacting in a 10 21/cm3 D-T plasma. The dashed
line represents pure electron stopping (scattering is negligible). The solid line
results from the cumulative effects of electron binary interactions, ion binary in-
teractions (small-angle plus scattering), and ion collective oscillations.
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Figure 5-10: pR curves for 3.5 MeV a interacting with D-T plasmas of various
densities. Quantum degeneracy is important for nZ 10 7/cm 3 and T<S 5 keV.
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to present experiments, an accurate calculation of pR is highly desirable. Upon

the previous discussions, we apply the generalized stopping formula with com-

prehensive considerations to treat this issue. The ion contribution for 1.01 MeV

triton stopping in a deuteron plasma is plotted as, in Fig.(5-11), a function of

the plasma temperature (T, - T) and the triton kinetic energy. As expected,

this contribution is more significant than the case of 3.5 MeV a stopping in D-T

plasma. The calculated pR with and without the effect of ion stopping are shown

in Fig.(5-12). As is evident, even for fairly low plasma temperatures the effects of

ion stopping are extremely important.

5.3.3 Preheating by Suprathermal Electrons

To achieve ignition and high burn efficiency in ICF, the pellet is compressed to a

density of ~IO0 of the solid material. These compressions are performed isentrop-

ically, and the fuel part of the pellet is not heated before ignition so that ablation

only occurs at the surface of the pellet. Consequently, the pellet can be com-

pressed to pressures near Fermi degeneracy. However, this ideal condition could

be severely perturbed because of the existence of suprathermal electrons, which

are produced at the ablation surface due to a number of mechanisms. Because

these suprathermal electrons, located at the tail of the electron distribution, are

very energetic (T, ~ 1 - 100 keV), they can penetrate the fuel and stream in the

core of the pellet, far ahead of the ablation front, to preheat the D-T fuel. This

phenomenon can largely reduce the pellet compression and ignition, especially for

the direct drive scheme of ICF[75]. Consequently, the issues of the stopping power

and range for those hot electrons are very important. Our calculation for this spe-

cific case is presented. Fig.(5-13) shows the schematic of the preheat problem.

In contrast to charged fusion products interacting with background electrons

and ions, for which the scattering is small either because m,/m. ~ 10-4 or
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Figure 5-11: The relative fraction of 1.01 MeV triton - field ion (D) stopping as a
function of the triton kinetic energy (ET) and the plasma temperature (T, ~ T).
It can be seen that the ion contribution is more significant than the case of 3.5
MeV a stopping in D-T plasma.

85



I.0 - I

a)

0.8 --

E '~ H -U

C- 'H e+i

0.2 -0.0

0 2 4 S 8 O

T. (keV)

0.2

b)

E 3He e

'He e+

0.H
- 2 4 10

To (keV)

Figure 5-12: (a) pR for 1.01 MeV 3H interacting in a 6 x10 2 4 /cm 3 D plasma. The
dashed line represents pure electron stopping (electron scattering is negligible).
The solid line results from the cumulative effects of electron binary interactions,
ion binary interactions (small-angle plus scattering), and ion collective oscillations.
(b) pR for 0.82 MeV 3 He interacting in a 6 x10 24/cm 3 D plasma. The dashed line
represents pure electron stopping (electron scattering is negligible). The solid
line results from the cumulative effects of electron binary interactions, ion binary
interactions (small-angle plus scattering), and ion collective oscillations.
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Figure 5-13: Schematic of preheating in ICF (direct drive scheme).
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InA" - 10, scattering must be included in treating hot electrons interacting

with cold electrons and ions. Such a situation arises just in the case of consider-

ing these hot corona electrons interacting with the cold core inside the pellet.

The dashed line in Fig.(5-14) shows pR due only to small-angle binary colli-

sions, which is the conventional calculation. The solid line includes as well large-

angle scattering off electrons and ions plus the collective effects of the background

electrons. As can be seen, these contributions are important.

5.4 The Fermi Degeneracy Pressure

As discussed before, the free electrons in a dense pellet plasma form a degenerate

electron gas. The non-relativistic, degenerate equation of state can be derived

from

PV = kTc 4 hrV( )3/2E1/2n(e{E-EF)I * + 1]dE. (5.23)

For the case of partial degeneracy (i.e. when kT,/EF-1), the total electron

pressure can be expressed as

P ~ nkTl1 +± - ( . (5.24)
27/2 (2rmekT,)3/2 T .. . .

In the case of complete degeneracy (kT/EF « 1), the total electron pressure

can be expressed as

2 Ei. ,.2 k2T 2
P - F + -r 2 +2. ......

5 V 6 EFV

(37r2)2/3 h s/3 + (27r )M (7_ 2/3k2 T,2n/3 + ...... (5.25)
5m 27r h 3 3
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Figure 5-14: pR for hot corona electrons interacting with a cold (core) D plasma

(n, ~ 1023/cm3 and T. ~ 50 eV). The dashed curve shows the effects of pure
small-angle binary collisions. The solid line results from the cumulative effects

of electron small-angle collisions and large-angle scattering, electron collective

oscillations, and large-angle ion scattering.
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White Dwarf
Solar Core
ICF Pellet Fuel

n
(cm

~_ 1

~ 3.75
5 x 1

Table 5.3:
The electron pressure

- T. Total Pressure
-3) (keV) (atm.)
)30 -8.6 ~2.3 x 1017

x 1026 ~_ 1.3 ~7.90 x 1010
026 0.1 ~ 6.7 x 1011

0.5 ~ 7.0 x 10"
1.0 ~ 9.5 x 1011
5.0 ~ 4.1 x 1012

10.0 ~ 8.0 x 1012

20.0 ~-1.6 X 1013

Fermi Degeneracy
Contribution (%)

'99.9
< 2

2 90
~56
~31

~ 3
<11

<0.5

Note the strong dependence on the electron density in the first term of Eq.(5.25).

This turns out to be the formula that has always been used to calculate the pres-

sure of White Dwarf (almost completely degenerate; n. ~ 103 0 cm-3 , Te ~ 8.6

keV).

Table 5.3 lists the calculated electron pressure for a few interesting cases using

the above formulas. Note the relationship of the percentage contributions from

Fermi degeneracy to the pressure as a function of electron density and tempera-

ture.

5.5 Summary

In summary, we have calculated the stopping powers and pR of charged fusion

products and hot electrons interacting with plasmas relevant to inertial confine-

ment fusion. For the first time the effects of scattering, which limited previous

calculations to upper limits[57, 66), have been properly treated. In addition,

the important effects of ion stopping, electron quantum properties, and collective
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plasma oscillations have also been included. We have seen that quantum effects

are very important for the earlier dynamics of the pellet evolution, especially in

the shifting of the effective degenerate electron velocity which greatly enhances the

charged particle stopping powers and shortens the ranges. Ion stopping is found

to be important for all charged fusion products. For hot electrons interacting with

cold dense plasmas, the contributions of scattering and collective oscillations are

significant.
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Chapter 6

Heavy Ion Stopping Power in

ICF Hohlraum Plasmas

Heavy ion stopping power is conceptually studied for hohlraum plasmas in inertial

confinement fusion (ICF). We have found that classical kinetic theory can describe

the ion energy loss in these high-electron-density plasmas if we include principal

interaction mechanisms (i.e. both "dominant" and "non-dominant" contributions

as discussed by Chandrasekhar[27]), and these contributions can be effectively

included in the Coulomb logarithm of the stopping power. Also the restriction

in the current theory for stopping power - - that the Coulomb logarithm must

be comparable or greater than of order 10 - - is shown to be unduly restrictive.

Furthermore the energy deposition of heavy ions is a sensitive function of the

plasma electron temperature, even for high projectile energy, because the number

density of free electrons in the hohlraum depends dynamically on the plasma

temperature. This point is usually ignored because previous discussions are based

on a constant free-electron-density model of plasma.
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6.1 Introduction

In inertial confinement fusion (ICF) research, to achieve successful ignition and

burn, the fuel pellet needs to be compressed and to implode spherically. The

deviation that can be tolerated from the spherical symmetry is no larger than

1 -2%[56, 76, 77, 78]. This stringent requirement, in fact, is extremely difficult to

be achieved in pellet driven directly by heavy ions. Indirect drive heavy ion ICF,

on the other hand, can easily satisfy this requirement because instead of directly

illuminating the pellet, it makes use of uniform hohlraum thermal radiation to

drive the pellet. Since the Stefan's law of black-body radiation is,

(6.1)

where P is the radiation power per unit area. For example, at the tempera-

ture T, : 300 eV, the thermal radiation flux is estimated to be u2T4 - 101"

W/cm 2, which has been determined to be sufficient for driving pellet implosion.

In the past few years, heavy ion indirect drive inertial confinement fusion has

been the most attractive scheme[56, 76]. Fig.(6-1) shows the schematic of heavy

ion-hohlraum interactions. Consequently, the issue of heavy ion energy deposition

in the hohlraum becomes an important issue, which basically relates to matters

like stopping power, plasma heating efficiency, driver and target design etc. There

are three media that heavy ions interact with - - solid, gas, and plasma - - as the

target experiences a series of phase transitions during the course of energy depo-

sition, i.e. solid -4 gas -+ partially ionized plasma.

Since it first appeared in the 1910's[58], the stopping power of charged particles

in cold materials (solid and gas) has been extensively studied both theoretically

and experimentally. Although there are four basic interactions between charged

particles and matter, (i.e. the collisions, both inelastic and elastic, of particle with

93



Heavy -on b

I

p.

Hohraum
,am Radiation

Mainl -uel

7.

Hot SQot

Absorber /Radiator High

Figure 6-1: The Schematic of heavy-ion hohlraum interaction diagram.
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atomic electrons and nuclei), the primary mechanisms of particle energy loss are

the excitation and ionization of the atomic electrons. The Bethe theory, with some

corrections such as relativistic effects, polarization, atomic shell effects,[57, 79]

has been widely used for treating high-energy ion stopping. For low energy ions,

the Lindhard-Scharff-Schiott model[80] provides a good descriptions. Additionly,

Ziegler[81], Northecliffe and Schilling[82] have compiled extensive estimates of

stopping power in various cold materials by interpolation and extrapolation from

empirical data.

For a partially ionized plasma, both bound and free electrons as well as ions

participate in the interactions with the charged particles. Their contributions can

be calculated separately,

dE dE dE dE
- = (-)f..e + (-)bmnd + (-)ion (6.2)dx dx dx dx

In the hohlraum plasmas, the contribution from the plasma ions is usually neg-

ligible because of the relative low plasma temperature. The heavy ion (i.e. the

charged particle projectile) velocities are more comparable to the average thermal

velocities of the free electrons at the typical hohlraum plasma temperature, and

therefore most of the energy goes to the electrons.

In this chapter we will concentrate on discussing heavy ion stopping by free

electrons. Some aspects of this issue, though often with simplifying assumptions,

have been addressed through different approaches: 1) classical kinetic theory - by

Nardi et al.[61], Mehlhorn[57], Brueckner et al.[83], and Karashima et al.[84] etc.;

2) quantum mechanical theory - by Dar et al.[85], Skupsky[59], Arista et al.[60],

Maynard et al.[62], and Deutsch et al.[63] etc. This issue is quite subtle, however,

due to a few unique features of the hohlraum plasma.
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Table 6.1:
Typical parameters in ICF hohlraum plasmas

ICF hohlraum plasmas
Electron temperature (T.) - 1 - 1000 eV
Electron density (n.) ~ 1022 - 1024 cm-3

Inter-electron distance (d.) _ ~ 10-11 10-7 cm
Electron de Broglie length (A) 10-10 - 10-8 cm
Debye length (AD) - 10' - 10-s cm
Coupling parameter (I') ~ 10-2 _ 10-1
Plasma parameter (n,A )- 1 - 100
Coulomb logarithm (lnAb)t -- 6

t where the Coulomb logarithm refers to the binary interaction contributions only.

" hohlraum plasmas are typically solid-like plasmas with free electron den-

sities similar to that of a highly conductive metals. However, because of

the relative high temperature (~ 100 eV), hohlraum plasmas are typically

moderately coupled plasmas and have Coulomb logarithm < 10.

" the evolution of hohlraum plasma parameters with respective to the varia-

tion of the plasma temperature requires a dynamic treatment. This point

is ignored in previous treatments, i.e. a constant electron density has been

assumed.

" most importantly, only a few related experiments have been carried out so

far[86, 87, 88, 89], and the lack of experimental data makes precise theoret-

ical prediction and simulation even more important.

6.2 Physical Modeling of ICF Hohlraum Plasma

In Table 6.1, some typical parameters of a practical high Z [in our calculations,

gold (Z=79) is assumed] hohlraum plasma in heavy ion ICF are listed. Although

they have solid-like densities, hohlraum plasmas are not identical to the free elec-
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tron plasmas in metals because the electron temperature in hohlraum plasmas are

usually much higher. The treatment is therefore not identical to that of Fermi's

free electron gas model in metals. A phase diagram of the plasma condition based

on the above criteria is shown in chapter 2 [Fig.(2-1)], which, together with the

parameters in Table 6.1 can help us clarify the appropriate theory to describe

hohlraum plasmas. The domain indicates that a hohlraum plasma is mostly in

the regime of classical moderate coupled plasmas. Therefore, the classical gas

approximation (Boltzmann statistics) based on kinetic theory, in principle, is ap-

propriate to illustrate the physics of energy deposition in hohlraum plasmas.

In classical theory, there are basically two approaches: the dielectric response

function theory; and the theory of binary interaction together with a simplified

treatment of collective effects as a supplements. Physically, the former approach

(dielectric response) depicts the plasma as a continuous medium. This medium re-

sponds to incident heavy ions by reacting through a medium-polarization-induced

electric field. Brueckner et al.[83], as well as many others, have used this ap-

proach to treat plasmas that are partially ionized, which is similar to hohlraum

plasmas. This approach provides a good description of plasmas with sufficiently

low temperature such that the condition vi > v is always valid and the dielectric

function, which is a function of the wave vector (k) and frequency (w = kv,), can

be approximately treated as independent of k, i.e. e(k,w) ~ e(W)[83, 84].

In contrast, the latter approach (binary + collective), however, gives a more

transparent description of the stopping power and its evolution in a practical

hohlraum plasma with a clear physical picture in each temperature regime, al-

though some phenomenological constraints are involved. In this approach, the

dominant mechanism by which charged particles interact with plasma electrons

depends on the impact parameter, p. The physical picture is clearly defined by
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dividing the impact parameter into 4 ranges in terms of the several characteristic

lengths (p± - the impact parameter for 90' scattering, d. - the mean interelectron

spacing, and AD - Debye length),

(1) 0 <p < a few pi - - - large angle binary interaction;

(2) a few p-L < p <de - - - small angle binary interaction;

(6.3)

(3) d, < p < AD - - - many body interaction (multiple, unscreened);

(4) AD < p < oo - - - collective plasma oscillations.

Because the mean inter-electron spacing in hohlraum plasmas is of the same

order or close to the Debye length, and the plasma parameter (number of elec-

trons inside the Debye sphere) is not too big, we could actually neglect many body

interactions.

We will address this heavy ion stopping based on binary interactions supple-

mented by collective effects. However, because hohlraum plasmas are typically

moderately coupled plasmas and have Coulomb logarithm less than 10, the con-

ventional classical kinetic theory (Fokker-Planck equation) is unjustified for treat-

ing these plasmas. Considering the unique features of hohlraum plasmas and the

clarified physics, we will use the modified Fokker-Planck equation. The contribu-

tions from the so-called dominant term (small-angle binary interaction) and from

all the nondominant terms, which are smaller than the dominant term by of order

the Coulomb logarithm, will be included.
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6.3 Heavy Ion Stopping in Hohlraum Plasmas

Suppose test particles having a distribution function f, and density n, are incident

to the plasma in the hohlraum where the field particles have a distribution function

fj and density nf. We also assume the condition that nt < nf so that the

interactions between the test particles can be neglected. Now we can apply the

established model with the derived stopping power formulas to the hohlraum

plasma. In the hohlraum, heavy ions stopping by plasma ions is always negligible.

The heavy ion stopping power by free electrons for binary interactions is

dEl/ < (Zf fe)2  G(xl/e) inAb ; (6.4)

and for collective oscillations is

d E/c _ ( Zeee) 2
( -> fe InA. . (6.5)

dxa %D -1%V

Where x'/* = v?/v2. The stopping power behaves differently for different

values of xl/*. Specifically, it is a measure of the importance of the contributions

from binary and collective effects. Also these values correspond to the different

charged particle energy regimes.

xi/> 1 "fast" regime

xi/e ~ 1 "intermediate" regime (6.6)

xi/ < 1 "slow" regime

Therefore, the stopping power is an indirect function of the energy regime in

terms of the temperature coupling parameter [G(xh/c)] and Coulomb logarithm.
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Table 6.2:
The energy regime (xi/e) in ICF hohlraum plasma

T xi/e

1 MeV/amu 10 MeV/amu 100 MeV/amu
1 eV 5.45 x 102 5.45 X 103 5.45 x 104
10 eV 54.5 5.45 x 102 5.45 x 103
100 eV 5.45 54.5 5.45 x 102
1000 eV 5.45 x 10~1 5.45 54.5

Table 6.2 gives the typical energy regimes ICF hohlraum conditions.

The typical values of the xa/* vary from much greater than 1 to of order 1

(only for the case of I MeV/amu and T,=1000 eV), which corresponds to energy

regimes that evolve from "fast" to "intermediate". We would discuss these signif-

icances in the following subsection.

6.3.1 Temperature Coupling Parameter G(xi/)

Because of the mass ratio m,/mi ~ 10-3, the second, third, and fourth terms in

the coupling parameter G(xi/e) are totally negligible. Physically, it means that

the effects of large-angle scattering are not important. Therefore,

M, dxil* 1~ dxi/)

~ (X/ (6.7)

Furthermore, since xi/e > 1,
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G(x"/) e 1 (6.8)

Due to this mass-ratio effect the contribution from the binary interactions and col-

lective components can be effectively combined into a single Coulomb logarithm.

It is generally true that for projectile-electron interaction[4, 29], the coupling pa-

rameter is 2 1 and the stopping power formula from the conventional kinetic the-

ory is valid even though the Coulomb logarithm is less than 10 and any possible

corrections is negligible (of course, this is not true for e-i, e-e, and i-i interac-

tions). The widely-used restriction that the conventional stopping power is only

valid for lnAb~10 is therefore unduly restrictive for this specific case. Fig.(6-2)

shows behaviors of this temperature coupling parameter, G(xi/*), in ICF hohlraum

plasmas.
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Figure 6-2: The behavior of the temperature coupling parameter, G(xz/e), in apractical heavy ion (23 sU) ICF hohraum plasma (Au) While th parameterstay constant [G(xi/e) ~1] within the "fast" regime, it significanly ree
the "intermediate" regime. The physical interpretation is that in the "intermedi-ate" regime, incident ions interact strongly with the plasma electrons due to ionprojectile velocity being closer to the plasma electron thermal velocity.

By combining the stopping powers from contributions of binary interaction
and collective effects, specifically for the case of heavy ion hohlraum plasma in-
teractions, we obtain a unified formula

dEi/e dEle dE'le
dx dx x4 +( dx a D

- f e) . ( 6 . 9 )

Both binary interactions and collective effects are included into the Coulomb log-
arithm, which is defined in the next subsection. Within the "fast" regime, their
relative contributions to the stopping power are distinguished by the magnitudes
of the Coulomb logarithms.
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6.3.2 Coulomb Logarithms

The variation of the Coulomb logarithm reflects the physics picture of the charged

particle energy loss and the relative contributions from the two mechanisms - -

binary interactions and collective effects. Within the "fast" regime the Coulomb

logarithm is therefore the sum of the contributions from both binary interactions

and excitation of collective plasma oscillations,

InA ~ inAb + InAc . (6.10)

Figs.(6-3) and (6-4) show calculated values of InAb and InAc for different ion

energies. One finds that in the "fast" regime, the contributions from both binary

interactions and collective effects are significant; in the "intermediate" regime,

however, the significance of collective effects largely reduced. Figs.(6-6) and (6-5)

show the behaviors of the "total" Coulomb logarithm (binary + collective) as a

function of the projectile kinetic energy for different plasma electron temperatures,

and a function of the plasma electron temperature for different ion kinetic energies,

respectively in a practical hohlraum plasma. Note that in the "fast" regime, the

stopping is independent of the plasma electron temperature which can be seen by

adding the two Coulomb logarithms together (assuming n, is a constant).

inAb + 1nAc 2 in- + n(1.123-V )

WPJ

In( )e(6.11)

where'-' is a number of order 1.
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Figure 6-3: Contribution to the Coulomb logarithms from binary interactions (i.e.
lnAb) as a function of the plasma electron temperature for ion energy of 1, 10, 100
MeV/amu. In our calculations, we assumed 23SU projectile ions and a Au plasma.
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Figure 6-4: Contribution to the Coulomb logarithm from collective plasma oscil-

lations (i.e. InAc) as a function of the plasma electron temperature in a practical

hohlraum plasma (T 1 keV). One finds that: for the case of Ei (projectile ion

energy) =100 MeV/amu, the system always stays within the "fast" regime; for
the cases of Ej=1 MeV/amu and 10 MeV/amu, the system varies from "fast" to

"intermediate" regimes as T, increases.
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Figure 6-5: The behavior of the "total" Coulomb logarithms as a function of the
hohlraum plasma electron temperature for three different projectile ion energies.
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Figure 6-6: The behavior of'the "total" Coulomb logarithm as a function of the projectile
ion energy for different hohlraum plasma electron temperatures. The curves 1, 11, III,
and IV corresponding to the cases where the plasma electron temperature T = 1, 10,
100, and 1000 eV, respectively. One finds that the Coulomb logarithm is insensitive to
any finite temperature effect.
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6.3.3 Effective Charge State of Heavy Ions

As appeared in the stopping power formula, the effective charge state of the pro-

jectile ion plays an important role in the stopping power (oc Zff). Similar to

the cases of stopping in solid and gas, when a projectile ion passes through a

plasma the charge state of the ion fluctuates frequently because of the variation

in the competition between the loss and capture of electrons. It is more difficult

for a projectile ion to capture a free electron than a bound one because of the

existence of an excess binding energy in the former case. Nardi et al..[93] theo-

retically addressed this issue in detail by considering all possible ionization and

recombination processes. An effective equilibrium charge state of the projectile

ion is dynamically determined by solving a set of coupled equations. However,

some semi-empirical scaling formulas are also available for this issue. In Fig.(6-

7), the effective charge state is plotted as a function of the projectile energy for
2 3

1U ion in gold target based on three scaling laws. Curve I is from Th. Peter's

formula[94], which assumes that the target is a fully ionized plasma. Curve III

follows Brown's and Moak's formula[95], which is for a cold solid target. Curve

II, is a compromise between a fully ionized plasma and cold solid targets (i.e for

a partially ionized plasma) and is based on Nikolaev's and Dmitriev's formula[96)

Zeij = Z[1 + ( ZVO) )] (6.12)
Vi

where vo = 3.6 x 108 cm/sec and k, = 0.6. Since the hohlraum plasmas are typ-

ically partially ionized, we chose this scaling formula to determine the effective

equilibrium charge state in our calculations. From Fig.(6-7) it is found that the

differences for these three curves are - t10% when Ei :: 10 MeV/amu, but are

negligible when Ej ~ 100 MeV/amu or higher.
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Figure 6-7: Variations of equilibrium effective charge states of a projectile ion

(uranium Z=92) passing though into a target (gold, Z=79) as a function of the
ion energy. Curves I, II, and III are calculated based on the scaling formulas from

Th. Peter[94], Nikolaev and Dmitriev[96], Brown and Moak[95], respectively.
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6.3.4 Finite Temperature Effects of the Stopping Power

Hitherto most of the workers assumed that the electron density is constant during

the period of energy deposition and the effect of plasma temperature evolution

is only included in the Coulomb logarithm. Because of the insensitivity of the

Coulomb logarithm, this temperature effect only appears at relatively low pro-

jectile energies and becomes totally negligible at higher projectile energies in the

stopping power of the heavy ions in ICF[63]. This assumption is incorrect and

should not be applied in calculating the stopping power in a practical hohlraum

plasma because the free electron density in the hohlraum is a function of the

plasma electron temperature, which can be determined in terms of the Saha equa-

tion. Consequently, in addition to the weak temperature effects in the Coulomb

logarithm and in the temperature coupling factor G(xi/e), one finds the following

direct relation between the stopping power and the plasma electron temperature

which is more sensitive,

dx cc o, Oc n, c T,/2&U/T (6.13)
dx

where U is the ionization energy of the atom.

6.4 Comparison with Dielectric Response Ap-

proach

In the dielectric response approach, following Lindhard[97], the stopping power

formula evaluated based on the physical phenomenon that a charged particle mov-

ing through a plasma polarizes the medium around trajectory, thus introducing

a local induced electric field. It is this induced field that reacts with the charged

particle and causes slowing down and energy loss. In other words, the dielectric
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response approach describes the linear response of the electrons in a plasma. The

stopping power is then defined[59]

dE -v - Ei . (6.14)
dx vt

This induced electric field is related to the dielectric response function of the

plasma through a Fourier transform, and therefore the stopping power is given

by[11, 12]

dE Zte 2  k-v _

-dk Im (6.15)
dx 27 2vt k2 e(k, k - v) '

where f(k, k -v) is the longitudinal dielectric response function which depends

on both frequency and wave number. It is usually convenient to introduce a

dimensionless quantity called the stopping number, L, and the above formula can

be written as

dE 4rZ2Zje4

2nf L
dx mfV

(Z± e)2

= p/2 2 , (6.16)

where the stopping number is defined as

rnjvt dk k -v1  1
L = n - t A - IM . (6.17)

nf Zfe 2  (21r)3 k2  e(k, k - v)

Using the method of random-phase-approximation (RPA), which originates

from treating totally degenerate plasmas, the dielectric function for nondegenerate

classical case is determined to be

4e Z27I k. 9
e(k,k.v) = 1 +f dv 8V , (6.18)

mk2 09-k-v+iS
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where i6 is an infinitesimal quantity which indicates how to treat the pole of the

integral.

Considerable work have been carried out to calculate this integral the dielectric

function and the stopping number. Specifically, for heavy charged particle stop-

ping in hohlraum plasmas, since a/* > 1, the stopping number is asymptotically

estimated at some limits to generate

1.123mev 2
L = In( , ) , (6.19)

thus giving an expression for the stopping power equivalent to Eq.(6.9) that we

obtained from considering the binary interactions supplemented by collective ef-

fects. It is also called the Bethe stopping number. Compared to the standard

Bethe formula for the cold target, the mean ionization potential (I) of the cold

target has been replaced by the excitation energy of the plasma wave (h&,). Typ-

ically, hw, is much smaller than I. [For example, for a Au plasma of density 0.193

g/cm 3 , one finds h , - 7.4 eV, however, for a cold Au target, I ~ 800 eV (here

the effective Z for the Au plasma has been assumed to be about 68.7, I = kZ

and k is the empirical constant of about 11.5 eV)].

Fig.(6-8) compares the stopping power of a proton beam in a gold plasma based

on both binary interaction plus collective effects and that calculated from the di-

electric response function approach. A plasma density of 0.193 g/cm3 , electron

temperature of T,=1 keV, and the average ionization degree Z=68.7 are assumed.

One finds that when the proton energy is relative large (i.e. v, > vth,), the two

approaches give essentially the same results.
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Figure 6-8: Comparison of proton stopping power (dE/dx) from dielectric response
approach to that from binary interaction plus collective effects. When proton
energy is relative large (i.e. v, > vth.), the two are essentially the same.
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6.5 Summary

As a result of the above discussion, we conclude that stopping power based on

classical binary interactions and excitations due to collective plasma oscillations

is adequate for heavy-ion ICF hohlraum plasmas. Most important, it is justified

that the restriction that requires the Coulomb logarithm to be much greater than

10 is not necessary for using the conventional stopping power formula to treat

heavy ion stopping in hohlraum plasmas and any correction is negligible. In

addition, the evolution of the stopping power must be considered as a function

of the plasma density. The finite temperature effect is significant for heavy-ion

stopping in a piratical hohlraum plasma even for very high energy ions. Finally, we

have compared the binary and dielectric response approaches for treating heavy

ion interacting with hohlraum plasmas and found that they are essentially the

same in this regime. However the binary interaction approach is much simpler

and physical transparent.

112



Chapter 7

Introduction to Laboratory

X-Ray Generation and Detection

7.1 Motivation

To perform x-ray diagnostics in plasma physics, various basic laboratory tech-

niques of x-ray generation and detection are essential. For characterizing x-ray

detectors and optics, and measuring x-ray filter transmissions, a high-intensity,

selectable-wavelength source is often desirable. A conventional electron-beam x-

ray source often emits significant thick-target bremsstrahlung because of the 1/m,

dependence in the differential radiative cross section. Such sources typically ex-

hibit characteristic lines superimposed on a continuum. One method of avoiding

this problem is to utilize filters, often of the same Z as the target, to selectively

reduce the continuum [99, 141]. Unfortunately, this technique will significantly

reduce the intensity of the desired line radiations. Futhermore, most commercially

available x-ray tubes only provide slightly harder x rays [~ 4 keV (Ti K line, for ex-

ample)], because the tube window (usually made by mica) doesn't let lower energy

x rays penetrate. This problem prevents the applications of these x-ray sources

from the fields of ultra soft x ray ( 'i 3 keV). To eliminate these problems, and
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for other reasons, we recently comparatively investigated the issues of x-ray gen-

eration and detection. Specifically, we have developed two charged-particle beam

x-ray sources, which, as will be presented in the subsequent charpters, contribute

to both further advancing the laboratory x-ray techniques and understandings.

In this chapter, we will briefly review the fundamental knowledges of x-ray gen-

eration and detection.

7.2 Physical Model of the X-Ray Generation

One of the major consequences resulting from a charged particle depositing its ki-

netic energy into a target is the emission of x rays. This phenomenon is observed

through the x-ray spectrum where characteristic x-ray lines are superimposed on

a background continuum. It is well known there are two kinds of x rays: discrete

line radiation and continuous bremsstrahlung.

Discrete line radiation results from the relaxation of orbital electrons. No

matter what ionization or excitation process causes a vacancy in the inner-shell

of an atom, it will be reoccupied within an order of magnitude of 10-1" seconds

by an outer-shell electron with the resulted emission of either Auger electrons or

characteristic x rays, or both[105, 125]. The bremsstrahlung comes from the accel-

eration or deceleration of charged particles because of the Coulomb interactions,

or in other words, from the deflection of the bombarding particle in the Coulomb

field of a nucleus (bremsstrahlung caused by target electron is negligible in the

non-relativistic regime).
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Projectile

(1)

X ray

Figure 7-1: Schematic of discrete x-ray generation process. (1) An inner shell
vacancy is created by a projectile. (2) An x ray is emitted due to the relaxation
of outer shell electron.

7.2.1 Discrete Line Emission.

As indicated in Fig.(7-1), after an inner-shell electron of the atom in the target

is ejected by a charged particle, an outer-shell electron reoccupies the resulting

vacancy.

The energy of the characteristic x ray emitted is equal to the energy difference

between the inner and outer shells. In accordance with quantum mechanics, the

transition between different shells and subshells is characterized by the principal

quantum number, n, and the orbital angular quantum number, 1. Of the two

shells involved, for example, Fig.(7-2) denotes x rays of different n (K, L, M, N,

. . .) and, 1, (a, 3 ,y . . .). The energy distribution of some main K, L,and M

x rays are displayed in Fig.(7-3).

115



Consider a rough model (degenerate) in which only the principal quantum

numbers are involved in the transitions (i.e. shell-shell transitions). The x-ray

energy produced between n 2 and n, transition is calculated as[102],

AE,n, = RyZ 2  
-2 2 (7.1)

n2 ; 2

where Ry is the Rydberg constant in energy unit. It is shown that the x-ray

energy is approximately proportional to the square of the target atomic number,

Z 2. The typical x-ray spectra of K , L , and M x rays for some elements are given

in Fig.(7-4)

7.2.2 Continuous X-Ray Emission

As implied by the classical Larmor's formula, a charged projectile will emit elec-

tromagnetic radiation when its speed or direction changes due to Coulomb in-

teraction with the target electric field. This electromagnetic radiation is called

bremsstrahlung[70, 79]. Because the initial and the final states of the projectile

are free states, as shown in Fig.(7-5), the bremsstrahlung energy distribution is

continuous from zero right up to the projectile kinetic energy, i.e.

1 2(hv)m. = - MV2. (7.2)
2

In addition, since the acceleration of the projectile is overwhelmingly produced

by the target nucleus, the intensity of the bremsstrahlung is proportional to the

square of the target atomic number and inversely proportional to the square of

the mass of the projectile.
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Figure 7-3: The plot of x-ray energies for some of main K, L, and M x rays
as a function of the target atomic number Z[1031. One sees that the K x-ray
energies roughly proportional to the Z 2 . However, because of the effects of inner-
shell shielding, as shown in this diagram, energies of L, especially M x rays are
depicted far off from the Z 2 scaling.
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where a is the acceleration of the projectile, z (M) is the charge state (mass)

of the projectile. Therefore, the bremsstrahlung radiation produced by a heavy

charged particle (proton, a's . . .) is only of order a part in 1 million of that

produced by an electron at the same velocity. It is important to note that only

the classical case is considered here; however, when the condition aZ/O < 1 is

met (P = v2 /c 2 and a = 1/137 is the fine structure factor), quantum mechanical

theory of brernsstrahlung must be used. In addition, when the projectile is so

energetic that relativistic effects need to be taken into account, bremsstrahlung

produced by target electrons will become significant.
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Table 7.1:
Coefficients for K- and L-shell fluorescence yields[107]

K-line L-line
Bo (3.70 ± 0.52) x 10-2 0.17765
B 1  (3.112 ± 0.044) x 10-2 2.98937 x 10-3
B 2  (5.44 ± 0.11) x 10-' 8.91297 x 10-1
B 3  -(1.25 ± 0.07) x 10~ -2.67184 x 10-7

7.2.3 Fluorescence Yield

The probability of x-ray production in the de-excitation process is called the

fluorescence yield[106, 125] (specifically, for example, the K-shell fluorescence yield

refers to the probability of K-shell x-ray production). Another alternative for de-

excitation is the emission of Auger electrons whose energy is dissipated in lattice

oscillations. For K- and L-shell fluorescence yields, a rigorous solution is provided

by the Dirac-Hartree-Slater treatment of the bound electron wavefunction[125].

However, there exists a simple semi-empirical formula for the fluorescence yield,

w1 (0 < w1  1), as a function of the target atomic number Z[107],

3

( )/ = ZBiZi , (7.4)

where the coefficients, Bi, are given in Table 7.1.

7.3 Charged Particle Stopping Power in Solid

Material Targets

As discussed in the preceding section, x rays (both discrete and continuum) are

generated from Coulomb interactions between an incident charged particle and
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Figure 7-6: The fluorescence yields of K- and L-shell as a function of the target
atomic number, Z[125].

the atomic electrons (discrete) and primarily the nucleus (continuum). In general,

four fundamental interacting mechanisms are involved in the interaction between

the projectile and the target[79): (1) inelastic collisions with the atomic electrons;

(2) inelastic collisions with the nucleus; (3) elastic collisions with the atomic elec-

trons; and (4) elastic collisions with the nucleus. However, as a charged projectile

travels through a solid material, the dominant interaction will be with the atomic

electrons. This can be justified from the following arguments:

* The velocity of the projectile is more matched with the orbit velocities of

the atomic electrons. The atomic nuclei, on the other hand, are relatively

stationary.

Discrete line emissions result from inelastic collisions between the charged par-

ticle and the atomic electrons, and the continuous bremsstrahlung comes primarily

from inelastic collisions between the charged particle and atomic nuclei. Similar

to its interaction with plasmas, the charged particle interacts with solid mate-

rial with two basic consequences - - kinetic energy loss and angular deflection.
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The charged projectile finally stops after traveling a finite distance. The stopping

power and the range depend on the type and energy of the projectile charged

particle, and on the target material.

7.3.1 Heavy Particle Projectile Stopping

(1) Bethe Formula for High Energy Projectile.

For treating heavy particle stopping in solid material, the Bethe formula[79] pro-

vides a precise description for the cases of high energy projectile (i.e the ratio

of the projectile velocity to the orbital velocity of the atomic electron is much

greater than unity). It is also assumed in this model that the projectile has nearly

a straight trajectory. Specifically, the Bethe formula, with some corrections ac-

counting for relativistic effects, polarization, and atomic shell shielding, is given

as follows[79, 57]

dE 4,1-z2e4  2m v2  C- 6-E -7 2N 4IZ[ln( ) - In(1 - '32) _ '32 _ i - 6 (7.5)
dx mCv 2  I 2

where, I is the average ionization energy, E Ci/Z is the sum of the effects of

shell corrections, and 8 is the correction term for polarization effect, and the rel-

ativistic effect is reflected by the terms of the parameter 3 (=v/c). However, the

Bethe formula is not appropriate for treating the case of low energy projectile

interacting with a cold target, even if some further corrections are added. In fact,

it can be seen that if we ignore these corrections which are small, therefore, when

2mev 2 < I the Coulomb logarithm becomes zero or negative that the stopping

power formula turns out to be singular.

(2) Linhard-Scharff-Schiott (LSS) Model for Low Energy Projectile.
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The LSS model is based on the Thomas-Fermi quantum mechanical description

of electron clouds of projectile and target nucleus. In addition to the effects of

ionization and excitation, the effects of elastic Coulomb collisions between the

projectile and the target nucleus have also been taken into account (i.e. nuclear

stopping). The stopping power formula is given by[80, 571

dE = 0.0793Z2/ 3Z1/2(1 + A)3/2 (1 + A)zZe2 4rANa2  E (7.6)
dx (z2/3 + Z2/3)3/4A 2  1.6 x 10- 9Aa (1 + A) 2 x 104

where A = A2/A 1 , and A1 (A 2) is the atomic weight of the projectile (target

atom); N is the target number density; a = 0.4683(z2/3 + Z2/3)-1/2 x 108. This

model has been proven to provide an appropriate description of stopping power

in the low projectile energy regime[57].

(3) Ziegler's Empirical Formula.

Ziegler's stopping power formula is derived by making use of the methods of

interpolation and extrapolation, and is based on an extensive pool of experimental

data. It has the form[81]

dE = SLSH 602.22
X SL+SH AZ

where

SL = aEb + cEd; (7.8)

and

SH = ln( + hE). (7.9)
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The constants a, b, c, d, e, f, g, and h for various elements are all derived from

the empirical data; Az is the atomic weight of the target; and p is the target

density. Ziegler claimed[81, 125] that this formula is quite accurate for describing

the stopping power of projectile proton with energies between 25 keV and 10 MeV.

7.3.2 Electron Projectile Stopping

In contrast with the case of heavy charged particle stopping, an electron projectile

obviously, having the same mass as an target atomic electron, suffers tremendous

scattering with large angular deflection. As a result, its track becomes so con-

voluted that the penetration depth becomes significantly smaller than the actual

traveled path length. The energy lose of an electron per unit path length is then

written[108],

dE _ 4ire4 NZln(7/ 1Mc 2 + 1  1)2 + 1 - (2_2 + 2-y - 1)ln2]}
do m~v2  J +2 8

(7.10)

where -y = 1//_2.

7.4 Ionization of Inner-Shell Electrons due to

Heavy-Ion Projectile-Target Interaction.

Historically, three theoretical approaches based on the definitive projectile-target

interaction physics have been developed to model the inner-shell electron ioniza-

tion process. They are[125), chronologically, the plane-wave Born approximation,

(PWBA), the impulse model (also called Binary Encounter Approximation, BEA),

and the most advanced of all, the ECPSSR theory (the meaning of this acronym
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are discussed latter). Roughly, the PWBA and BEA are only high-energy ap-

proximations and are, therefore, only appropriate for treating the case where the

projectile energy is greater than the binding energies of the inner-shell target elec-

trons. The ECPSSR model, however, is more generalized and precise. In addition,

it is generally true that the corresponding classical forms of these models are also

justified in treating the cases when the de Broglie wavelength of the projectile is

smaller than the characteristic scale length, d = zZe 2/Mv 2.

7.4.1 Plane-Wave Born Approximation (PWBA).

The plane-wave Born approximation is a semi-classical model which employs per-

turbation theory in treating, for a Coulomb interaction, the transition from an

initial state (plane-wave projectile and bound atomic electron) to a final state

(plane-wave projectile and free electron). In this approximation, the distortion to

the projectile wave function, due to the atomic electron which is removed from

the ground state, may be neglected. Based on these physical arguments, the

differential cross section in the Born approximation in CM system is given by[109]

de,, = 87rZ2( e2 * Jg (r)eiq@rOn(r)dr12 (7.11)

where q = (p - p')/h is the change of the momentum of the projectile. The

electrons are represented by non-relativistic wave functions which are determined

through the Schr6dinger equation. For example, for the nth-shell (n=1, 2, 3,

means K-, L-, Al-, ... shell), the wave function, 0, is determined in

- [ - V,(r)]4, = Erb , (7.12)
2m r

where Vn(r) describes the reduction in the binding energy due to outer electrons,
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and Z,11 is the effective nuclear charge for the n-shell. After performing the

integration, the cross section is given by

oPWA(E) = 87rz2 f.a , (7.13)

where ao is the Bohr-radius of hydrogen, and with

r,= v) 2  (7.14)

and

f = dW Q F(Q)2 , (7.15)

where Q = (aoq/Z,) 2 , and F(Q) is the so-called "form factor" which is determined

by

F,,, = k,,(r)eiq.r 0(r)dr . (7.16)

7.4.2 Impulse Approximation Model [Binary Encounter

Approximation, (BEA)]

The impulse approximation model treats the interaction between the projectile

and the target atomic electron as a binary interaction by summing over the mo-

mentum exchanges in the calculation of the ionization cross section. In addition,

this model also includes the modifications to account for the nuclear repulsion of

the projectile. The only role played by the target atomic nucleus is in establishing

the initial momentum distribution of the struck electron. Since the classical and

quantum mechanical CM differential cross sections are essentially identical, the
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classical analysis is usually used to transform the differential cross section to the

laboratory system. Thus the final cross section is given by[110, 111]

or(v) = Nj (d[E) dAE f(v')dv', (7.17)

where a, is the cross section for the ionized electrons which have binding energy

Eb. After considering two effects, namely the modification of the impact parameter

due to the repulsion of the projectile, and the reduction of the projectile kinetic

energy because of its motion in the repulsive field, the cross section for the impulse

approximation is given by

1 1 2 z/Z \/1
a IEA(E) ~ (E')[- + 1 2 - )1/2] (7.18)1 2 2 ir EI/EO

where E'= E - 2zEb/Z.

7.4.3 ECPSSR Model

A more advanced model, the ECPSSR model, has been developed since the 1980's.

This approach has a series of modifications to the PWBA, which basically treats

angular deflection and velocity change due to the nuclear Coulomb field (C).

The electron orbit of the target atom is affected by the projectile as perturbed

stationary states (PSS). The model also includes relativistic effects (R) and energy

loss due to the collisions (E). All this physics have been included in the formalism

in terms of the modifications of the effective projectile energy and the effective

atomic electron binding energy[112, 113, 114]. Thus

'ECPSSR(E) = CEf.(z.)oWBA(E) (7.19)

where CE accounts the effects of the Coulomb deflection, perturbed stationary-

state effects, relativistic effects, and energy loss effects. f, is the straight-line
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Table 7.2:

Coefficients for universal ionization Og and 0L for a projectile proton

K-line L-line
bo 2.0471 3.6082
bi -0.65906 x 10-2 0.37123
b2 -0.47448 -0.36971
b3  0.9919 x 10-1 -0.78593 x 10-4
b4 0.46063 x 10-1 0.25063 x 10-2

b, 0.60853 x 10-2 0.12613 x 10-2

energy-loss function. The details of these parameters have been given in Ref.

[112].

7.4.4 Universal Ionization Cross Section

In addition to the theoretical approaches, in the latter part of the 1970's a uni-

versal ionization cross section formalism was also developed which is a compro-

mise between the existing experiment data and the non-relativistic BEA concept.

Specifically, for a projectile proton[124, 125],

1E
or(E) = Uj exp{ bz,4 ln(AU)]'} , (7.20)

where U, is the K- or L-shell ionization energy (for L-shell it has been averaged

over three subshells), E is the proton energy, A is the ratio of proton to electron

mass (i.e. A=1836.1514), and the b is determined by fitting this fifth-order polyno-

mial to the experimental data. This universal cross section is widely used because

of its simplicity and relative accuracy. Table 7.2 gives these coefficients[124].
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7.5 Principles of X-Ray Detection

In the detection of x rays, there are two basic issues of interest: first, the flux

of the measured x ray (the number of photons per unit area per unit time); and

second, the energy spectrum of the measured x ray. These two pieces of informa-

tion can be usually obtained by operating the x-ray detector in different modes,

i.e. the current mode and the pulse mode. In order to achieve these objectives, a

large variety of x-ray detectors have been developed and used in laboratory. These

detectors, according to their operating modes, are generally divided into two cat-

egories: the spectrometer (for pulse mode) and the diode (for current mode). The

former one (spectrometer) records each individual quantum of radiation which in-

teracts with the detector. The latter one (diode), on the other hand, measures the

average current over a myriad of interactions and through which the information

of x-ray flux can be obtained.

7.5.1 The Pulse Mode of Operation

The pulse mode of operation is a response of a detector to each individual pho-

ton. This photon generates charges within the detector active region that are

proportional to the photon energy. Therefore, the totality of all pulses reflects the

energy distribution of the x rays. Practically, one actually measures the so-called

differential pulse height distribution in which the differential number of events

(AN) within a small increment in pulse in height (AH) is recorded. These pulses

are first converted into corresponding voltage pulses by preamplifier, and then are

further amplified by the main amplifier. Finally, the amplified voltage pulses are

distributed and placed into the different channels in terms of their pulse heights

(this final step was done by the multichannel analyzer, MCA). The flow diagram

of pulse mode operation is displayed in Fig.(7-7). In addition, the response to
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Amp.

Figure 7-7: The schematic of pulse mode of operation for x-ray detector

monoenergetic radiation of a detector operated in pulse mode is a single peak of

near Gaussian shape, the experimentally measured spectral width basically reflects

noise broadening and statistics in the charge creation process in the detector.

7.5.2 The Current Mode of Operation

The current mode of operation gives an average current response of the detector to

the radiation, which can be illustrated by Fig.(7-9) and the following integrating,

I(t) - ()d , (7.21)
T -tr

where i(r) is a current response to an individual quantum of radiation and I(t)

is the average current output over the time period T. Because of this averaging
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Figure 7-8: A illustration of current mode operation for an x-ray detector. Where
each individual burst of current may have different amplitudes, the output, how-
ever, is the averaged 1(t).

process, the energy information of each quantum of radiation is lost and what is

measured is just the information of the flux.

Practically, it is straightforward to operate a detector in current mode. Basi-

cally there are two ways, in terms of a current and voltage measurement:

(1) Using a electrometer to measure the output current.

(2) Using a oscilloscope to measure the output voltage from a current-voltage

convertor.

It is generally true that the detector is not an ideal constant current source.
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Figure 7-9: The schematic of the measurement of the output current.
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Figure 7-10: The schematic of the measurement of the output voltage.
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Thus the dynamic range of the linear response of the detector to the radiation

flux depends on its output impedance (should be as small as possible).

7.6 X-Ray Spectrometers (Pulse Mode Detec-

tor)

7.6.1 Si(Li) Spectrometer

The lithium-drifted silicon detector [Si(Li)] is one of the most widely used x-ray

spectrometers. As shown in Fig.(7-11), through the use of lithium drifting, the

Si(Li) detector can be formed with a much greater active thickness, or depletion

depth (usually a few millimeter), compared to that of the common junction or

surface barrier semiconductor detector (usually a few hundred micrometers). This

issue is important in order to attenuate soft x rays [for example, the e-folding

distances for copper K-lines (8.05 keV for K, and 8.9 keV for K) are about 65

Am and 90 Am, respectively; and for molybdenum the e-folding lengths of K-lines

(17.5 keV for K, and 19.6 keV for Ke) are about 670 pm and 920 Am, respectively]

The empirical quantum efficiency for a Si(Li) detector with 3 mm thick crystal and

a 8 mil thick beryllium window is displayed in Fig.(7-12). This Si(Li) detector

is suitable for measuring x rays with energy between 1 keV and 40 keV. Also,

in spite of the thick active volume, the volume-related bulk leakage current of

the Si(Li) detector is very small because of its operating at the boiling point of

nitrogen (77 K). Therefore, the Si(Li) detector has very high rejection of thermal

noise. Furthermore, this Si(Li) detector has very good energy resolution, which is

usually defined as the full-width-at-half-maximum of a spectral peak divided by

the peak energy. For example, for our EG&G ORTEC Si(Li) spectrometer[116],

the full width at the half width of 55Fe MnK. x rays (5.9 keV) is about 160 eV,

which means the K, x rays of neighboring elements can be fully resolved by using
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this spectrometer.

7.6.2 Flow Proportional Counter

A flow proportional counter is a special type of gas detector with the following

characteristics, first, the counting gas continuously flows through the detector

with an adjustable flow rate and pressure; and second, the counter is always op-

erated in the proportional regime where the signal (current electron-ion pairs) is

amplified linearly due to gas multiplication. The configuration of our flow pro-

portional counter is displayed by Fig.(7-13). Basically, it consists of an anode (1

mil tungsten wire), a cathode (the detector body itself), a sideview replaceable

window, a high-voltage connector, and connector for gas flow[119].

The proportional counter is always operated in pulse mode. Thus, it is called

a quantum detector. When an individual quantum of radiation interacts with the

molecules (or atom) of the counting gas, charged pairs are created and will be

accelerated by the applied electric field(115],

e(r) = (7.22)
rln(b/a)

where a is the anode wire radius, b is the cathode inner radius, and V is applied

bias voltage. During the migration of these charges, many collisions with the neu-

tral gas will occur. If the electric field is large enough and the kinetic energies of

the migrating charges are greater than the threshold of the ionization potential

of the counting gas, secondary ionization process will continuously occur which

forms avalanches in the detector. This is illustrated in the Fig.(7-14),

We chose a flow proportional counter based on the following properties: first,

the pressure of the counting gas is ideally adjusted so that a sufficiently large
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Figure 7-11: The schematic of a Si(Li) spectrometer[117]
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Figure 7-12: The efficiency of the typical Si(Li) spectrometer[118)
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Figure 7-13: The schematic of the flow proportional counter
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Figure 7-14: The proportional region of the gas detector
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fraction the x rays are absorbed within the counter gas by the time they reach

the anode wire; second, the window is made sufficient transparent to the x rays

of interest.

7.7 X-Ray Diodes (Current Mode Detector)

7.7.1 Surface Barrier Diode (SBD)

A silicon surface barrier diode is a reverse-biased planar diode with metal coating

(usually Al and Au) on both sides of the wafer. The junction of an SBD is formed

by either the Al or Au coating evaporated on the silicon wafer. Usually the coated

thickness is - 100 - 1000 A. The reverse-bias voltage creates a depleted region in

the wafer. The depletion depth in a uniformly doped wafer is determined as[115]

d = 2e(V + VO) (7.23)
nAe

where e is the dielectric constant of the wafer material, nA is the doping density,

V is the applied bias voltage, and Vo is the intrinsic junction potential (barrier

height). X-ray photons striking the detector knock out bound electrons. The

created charge carriers (free electrons and the holes) are subsequently accelerated

by the reverse-biased voltage across the junction and are collected as the detector

current. SBDs have several merits including: compact dimension, insensitivity to

magnetic field, stable and simple to operate, etc. It has been demonstrated as a

good detector for x-ray flux monitoring, for magnetic fusion plasma imaging, and

for other physics experiments. Unlike the Si(Li) detector, the bulk leakage current

is not the important noise source for SBDs. Instead, leakage current created on

the surfaces of the junction is the primary source of thermal noise, which, as

a consequence, limits SBDs to be operation only in current mode. Of course,

SBDs are good spectrometers for charged particles, for example, for charged fusion
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Figure 7-15: The schematic of a surface barrier detector (SBD)

products. Consequently, SBDs are usually used for measuring x-ray flux, rather

than individual photons.

7.7.2 X-UV Photodiode

Silicon photodiodes with stable, high quantum efficiency in the soft x-ray and

ultraviolet wavelength regions have recently become available[120, 121]. These

detectors are referred to as X-UV photodiodes because of the spectral region over

which they are sensitive. In addition to their high efficiency and stability, X-UV

detectors have the added advantages of having a large dynamic range, low noise,

low cost, requiring little or no bias voltage, and having large sensitive areas. These

advantages make the X-UV detector quite attractive for measuring radiation emit-

ted from space and laboratory plasmas. Fig.(7-16) shows a schematic of a 1 cm 2

active area X-UV absolute diode, which was fabricated on a three inch diameter
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Figure 7-16: The schematic of an XUV detector

high resistivity (> 20000 Q-cm), 450 yrm thick p-type silicon wafer. Because there

is no recombination of photon-generated carriers in the doped n+ region and at

the Si-SiO 2 interface, the X-UV diode has a 100% internal quantum efficiency for

soft x rays with energy of up to 6 keV. This quantum efficiency decreases with

increasing x-ray energy above 6 keV because of the limited thickness of the silicon.
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Chapter 8

A Proton-Induced X-Ray

Emission (PIXE) Source

8.1 Introduction

Ion induced x rays were first observed by Chadwick in the 1910's[123], who used a

radioactive a-particle source. Since then, especially in the past three decades, the

fundamental characteristics of PIXE - - ionization cross sections, stopping power,

and fluorescence yields, etc. - - have been carefully studied [124, 125). X-ray

emission induced by heavy charged particles is a well established technique with

many applications. To the best of our knowledge, however, the applications have

concentrated on analyzing the elemental composition of materials. Thus, little

effort, if any, has been expended on exploiting the high intensities of PIXE as a

tool for characterizing x-ray instrumentation.

A high-intensity PIXE source has been developed for the purpose of character-

izing x-ray detectors and optics, and measuring filter transmission. With energetic

proton beams of up to 165 keV, intense x-ray line radiations (0.5A < A < 111 A)
have been generated from the K-, L-, M-, and N-shells of elements with 4 < Z
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< 92. The PIXE spectrum has orders-of-magnitude lower background continuum

than a conventional electron-beam or radioactive Q-fluorescence source[122). Sec-

tion 8.2 describes the experimental arrangement and technical details of our PIXE

source. In section 8.3, we show typical PIXE K-, L-, M-, and N-line spectra

as well as measured K-, L-, M-, and N-shell x-ray production efficiencies for

various elements.

8.2 Experimental Arrangement

The experimental arrangement is depicted in Fig.(8-1). Fluorescent x rays gen-

erated by energetic ions are detected by diagnostics in two "arms" offset by 116*

with respect to the forward direction of incident beam. In order to adjust the x-ray

flux and to expedite the identification of characteristic x rays, an aperture/filter

chamber is placed between the detector(s) and the PIXE source. Each chamber

has a 24-position aperture wheel and a 24-position filter wheel, both indepen-

dently rotatable through 3600.

8.2.1 The Cockcroft-Walton Linear Accelerator

The ion beam is provided by a Cockcroft-Walton linear accelerator which was

originally designed for neutron generation. Large sections of the accelerator have

been recently rebuilt [126]. Its principal components are: an RF (radio frequency)

ion source; a solenoid beam focusing lens, and an electrostatic ion extraction sys-

tem; an accelerating column; a beam collimation system; a water-cooled target(s);

and a Faraday cup. Fig.(8-2) depicts a detailed cross section of this generator. It

is found for PIXE experiments that the positively-biased collimator system plays

an important role in eliminating background continuum radiation. This is be-
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cause when protons are accelerated, a number of secondary electrons are created

inside the chamber which will produce secondary-electron bremsstrahlung x rays.

Similarly, the positively-biased target prevents secondary electrons emitting from

being emitted from the target. The uncertainty in the ion-beam energy is deter-

mined to be < 5%, and the ion current for conducting (non-conducting) targets

is known to within < 10% (15%). The accelerator can be operated with voltages

up to 165 kV and ion currents up to 300 pA. Although several charged species

- such as H+, D+, 3He+, and 4He+ - have been used as projectile ions, here we

concentrate only on x rays that are induced by H+.

8.2.2 The Targets

Target preparation is one of the central issues for PIXE experiments. The targets

are "thick" and are made using one of six methods: (1) direct machining of

materials such as Al, Cu, and Mo; (2) vacuum deposition of materials such as Cr

and Ti; (3) epoxy-bonding of pure metal foils such as Be, Zn, and Ta; (4) electric

discharge machining (EDM) for difficult-to-machine materials like W, and Ta; (5)

pressed powders on a metal substrate using a man-powered press or a locomotive

crusher (for Li, B, and Si); and (6) special vacuum depositions process done at

LLNL (for elements such as B, U, and Ti). The method chosen depends on such

factors as the mechanical, thermal, and electric properties of the specific material,

as well as the cost.

8.2.3 Diagnostics

Three energy-dispersive detectors (two Si(Li) spectrometers and a flow propor-

tional counter] have been used to characterize the PIXE source: (1) an ORTEC

Si(Li) spectrometer with an 8-Am beryllium window and energy resolution R ~

160 eV (for 5rFe), which can measure photons of energy between ~0.6 keV to -30

keV (the crystal is 2.71 mm thick and the efficiency for 30 keV x rays is about
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40%); (2) a Kevex Si(Li) spectrometer with a 25-yjm beryllium window; and (3) a

flow proportional counter with a thin window (for example, we have used a 0.5-gm

mylar film coated with ~ 100 A aluminum). Using this proportional counter, we

have measured very low-energy x rays (such as the Be K-line, E = 0.111 keV;

B K-line, E = 0.183 keV; and the C K-line, E 0.277 keV; see Fig.(8-3). A

leak valve and a manometer have been used to control and measure the flow gas

pressure, which is either atmospheric or sub-atmospheric. A microcomputer based

ADC (Analog-Digital-Convertor) and MCA (Multi-Channel-Analyzer) have been

utilized for data acquisition.

8.3 Experimental Results.

Characteristic x rays have been generated from the K-, L-, Al-, and N- shells

of elements with 4 < Z < 92, with wavelengths from 0.5 A to 111 A. Typical

PIXE spectra are shown in Figs.(8-3), (8-4), (8-5), and (8-6). Fig. (8-3) shows

the measured K-line PIXE spectra of Be (Z=4), B (Z=5), C (Z=6), and F (Z=9).

These spectra were obtained with a flow proportional counter. Fig. (8-4) shows

the Si(Li) PIXE spectra of K-lines from Al (Z=13), V (Z=23), Co (Z=27), and

Cu (Z=29). Fig. (8-5) shows the Si(Li) PIXE spectra of L-lines from Zn (Z=30),

Mo (Z=42), Ag (Z=47), and Sn (Z=50). Fig. (8-6) shows Si(Li) PIXE spectra of

M-lines from Ta (Z=73), W (Z=74), Pb (Z=82), and U (Z=92). From Fig.(8-6)

one can also see that the N-lines of Uranium are more intense than the M-lines.

(In fact the N-lines consist of wavelengths at 8.60 A, 8.76 A, 8.81 A, 10.09 A,

and 10.40 A.) From all these spectra, it is clear that the background continuum

is negligible compared to the lines.
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Figure 8-3: The PIXE spectra of, a) Beryllium, b) Boron, c) Carbon, and d)
Fluorine. The K lines are at 0.108 keV, 0.183 keV, 0.277 keV, and 0.68 keV,
respectively. The spectra are measured by a flow proportional counter with a 0.5-
/.m mylar window. The flow gas is either 99.05% He + 0.95% isobutane, or 90%
Ar + 10% methane (P10). The proton beam energy was 150 keV, for which the
maximum secondary-electron generated bremsstrahlung energy is 0.3 keV. [This
bremsstrahlung component is indicated by the arrow in d)]
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Figure 8-4: The PIXE spectra of, a) Aluminum (K. line at 1.485 keV), b) Vana-
dium (K, line at 4.95 keV), c) Cobalt (K, line at 6.95 keV and Kq line at 7.65
keV), and d) Copper (K line at 8.05 keV and K. line at 8.9 keV). The incident
beam consisted of protons accelerated to 150 keV. Two different Si(Li) detectors
were used for these measurements.
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Figure 8-5: The PIXE spectra of, a) Zinc [the L lines are around 1.01 keV and
the K lines are around 8.6 keV (see arrow)]; b) Molybdenum [the L lines are
around 2.29 keV and the K. line is at 17.5 keV (see arrow)]; c) Silver [the L
lines are around 2.98 keV and the K, line is at 22.16 keV (see arrow)]; d) Tin
(the L lines are around 3.44 keV and the K, line is at 25.27 keV). Two different
Si(Li) detectors were used for these measurements. For these spectra, protons
were accelerated to 150 keV.
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Figure 8-6: The PIXE spectra of, a) Tantalum [the M lines are around 1.71 keV
and the L lines are around 8.14 keV (see arrow)]; b) Tungsten [the M lines are
around 1.77 keV and the L lines are around 8.39 keV (see arrow)]; c) Lead [the
M lines are around 2.4 keV and the L lines are around 10.5 keV (see arrow)];
d) Uranium [the N lines are around 1.4 keV, the M, line is at - 2.5 keV and
AIC line is at - 3.16 keV, and the lines are around 13.6 keV (see arrow)]. Two
different Si(Li) detectors were used for these measurements. For these spectra,
protons were accelerated to 150 keV.
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8.4 Discussion

In general, the PIXE background continuum is mainly bremsstrahlung from sec-

ondary electrons [124, 125, 127, 128]; the endpoint energy is 4m.Ep/mp - 300 eV,

since the proton energy E, is 150 keV. Note in Fig.(8-3), especially in figure (d)

that this continuum is detectable, but at a very low level. Other possible mech-

anisms for background continuum include the projectile ion bremsstrahlung, and

-y-ray induced Compton electron bremsstrahlung. The probability of projectile

ion bremsstrahlung is usually determined by

JCoAZPZ2 ( a-)2d, (8.1)
E, E. A, A '

where Co is an empirical constant; Z, (Z), A, (A), are the atomic number and

atomic weight of the projectile (target), respectively; Q is the solid angle; E, is

the projectile kinetic energy and E, is the x-ray energy. As shown in all the previ-

ous spectra in the region for E. ;> 0.3 keV, this projectile ion bremsstrahlung are

totally negligible. For the case of bremsstrahlung induced by Compton scattered

electrons, we have found this too to be negligible. This is because our Cockcroft-

Walton linear accelerator can only provide protons with energy up to about 165

keV at which the probabilities of y ray being generated through nuclear reactions

are relative low (except for proton-boron interaction).

To a good approximation, the characteristic x-radiation pattern is isotropic.

Experimentally, therefore, one can measure the fraction of emitted photons per

unit ion charge striking the target. This yield is defined by

Y.p(E) = 47r 1.6 x 10- 1 3 N(E)
0 Tz(E)e(E)'
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Figure 8-7: The PIXE x-ray production efficiencies of uranium L-, M- , and
N-line radiation are plotted as a function of incident photon energy. The L lines
(solid triangle), M lines (open circle), and N lines (solid circle).

where N(E) is the experimentally measured number of photons (of energy E)

per micro-coulomb of ions, Tz(E) is the transmission of the windows and filters

associated with the x-ray detector, 11 is the solid angle subtended by the detector

(assuming a point source at the target, which is a good assumption for our guess-

ing), and e(E) is the intrinsic detector efficiency. The PIXE x-ray production

efficiencies of uranium L- , M- , and N-line x rays are plotted as a function of

incident proton energy, in Fig.(8-7).

Fig. (8-8) shows a log-log plot of the measured x-ray yields as a function of

the x-ray wavelength, and Fig. (8-9) shows a log-log plot of the measured x-ray

yields as a function of the target atomic number. These efficiencies, which roughly

agree with the results of other researchers [1301, generally increase with the x-ray

wavelength and the principal quantum number of the target, but decrease with
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Figure 8-10: The copper PIXE x-ray count rate is plotted as a function of incident
proton current. The flux is quite linear over a large dynamic range. For these
measurements, the accelerator was operated at 150 kV.

the target atomic number. In addition, the PIXE flux produced in our Cockcroft-
Walton linear accelerator is quite linear within a large dynamic range of incident

proton currents, as shown in Fig.(8-10).

8.5 Comparison of Experimental Measurements

and Theoretical Predictions.

In this section, we make a semi-quantitative comparison of the PIXE x-ray yields

from our experimental measurements with theoretical estimations. Theoretical

154

30.

C

0

U)

20

101
S

0

~ - - -0
0

50



calculations of the PIXE x-ray yields are complicated and strongly depend on

many different physical parameters. Typically, these include ion stopping pow-

ers [S(E)], ionization cross sections (az), x-ray fluorescence yields and radiative

widths; the fraction of specific transitions, transmissions of x rays in the target,

etc. Although the errors associated with these data bases have been improving,

some parameters are still not well established. For example, the ionization cross

section is only relatively accurate for certain materials, and from specific energy

regimes. Therefore, our comparison is only semi-quantitative and is just used as

a reference for our experiments. In addition, we will only present the K x-ray

yields here since this theory is most reliable.

Theoretically, the PIXE x-ray yields [Y(E)] are estimated from the following[125]

,(Z = N..LwzbzezCz * Orz(E)Tz(E)dE
1(Z) S(E) (83)

where Ne,, is the Avogadro's number, wZ is the x-ray fluorescence yield, bz is the

fraction of the specific transition, EZ is the detection efficiency, Cz is the concen-

tration of the element Z (target), Eo is the incident projectile energy, and Az is

the atomic number of the target.

In addition, the matrix stopping power[81, 125] [S(E)] is given by

S(E) SLSH 602.22 (8.4)
SL + SH Az

where

SL = aE+ cEd, (8.5)

and
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SH = In( + hE). (8.6)

The ionization cross section[124, 125] is defined as

1 E
Cz(E) = 'ep{ZbznfIn( } (8.7)

and the x-ray transmission in target [Tz(E)] is defined as

Tz(E) = ezp{--(-)z Co} dE (8.8)
p COSOT 0 E S(E)

where 1 is x-ray target mass absorption coefficients, p is target density, 6 T is

the take-off angle of the x rays from the target plane, aD is the angle for ion

beam off the target axis (for our case it is fixed to 0*). For simplicity, we used

a semi-empirical formula for the ionization cross section which fails in the high

x-ray energy regime[131], above 10 keV. This is illustrated in Fig. (8-11), where
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the experimental measurements roughly agree in the low x-ray energy regime, but

fail in the high x-ray energy regime.

8.6 Summary

A charged particle induced x-ray emission source (PIXE) has been developed for

the purpose of characterizing x-ray detectors and optics, and measuring filter

transmissions. It produces intense line x radiations from 0.5 A to 111 A. The

background bremsstrahlung continuum is orders of magnitude lower than that

from a conventional electron-beam x-ray source. For these reasons, we conclude

that PIXE has important features as a tool for characterizing x-ray instrumenta-

tion.
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Chapter 9

A High Intensity Electron-Beam

X-Ray Generator

9.1 Introduction

To prevent target contamination and to avoid electron-beam slowing down in air,

as well as some other secondary reasons, most commercially available x-ray tubes

are permanently sealed within high vacuum (~-10-8 Torr). Therefore, they can

only provide ~ 4 keV (Ti K line) x rays because the vacuum seal produced by

the tube window (typically mica) are opaque to low energy x rays. This problem

limits the applications of these x-ray generators in many fields, especially in those

requiring the absolute calibration of x-ray detectors and optics, or the relative

calibration of x-ray imaging arrays in the ultra-soft x ray regime (~ 0.1 - a few

keV). Because of this problem, an x-ray source which can generate uniform, intense

soft x rays is highly desirable. However, to construct this kind of x-ray generator,

several issues need to be addressed[141, 145].

1. The detector system must be placed inside the vacuum chamber.
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2. The generator must be operated in high vacuum in order to keep the target

clean. (Otherwise, the low energy electrons used for generating soft x rays

would be rapidly attenuated within the contaminant layer of the target

surface.)

3. Because of the very low fluorescence yields for low Z elements, the efficiency

of generating ultra soft x ray lines is very low. To compensate for this, it is

required that the source must be able to handle high power.

4. In order to obtain relatively uniform x rays in a large planar area, the

distance and the spacing between the target and the detector system must

be sufficient large.

9.2 Design and Construction of A High Inten-

sity Electron Beam X-Ray Source

9.2.1 Design Philosophy

(1) Electron gun

The design of the electron-gun is a complicated issue which involves considerable

physics such as electron emission, space-charge effects, etc. For our immediate

objective, however, we don't need that complexity. Our design requirement is that

the electron gun can generate high power and can provide an emission current up

to ~ 300 mA. This being the case, the Richardson-Dushman equation[132] is used

to estimate the emission current density,

J = Ao exp[-j-] T2 exp[- ] (A/cm2) (9

where A 0 is the Richardson constant, a is the extracting electric field correc-

tion, and 0 is work function of the filament material. The exponential term
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exp[-(a + O)/kT is actually the dominant factor because it varies much more

rapidly with temperature than the T.

(2) Target

The common disadvantage of the electron-beam x-ray source is that the produc-

tion efficiency of the characteristic line radiation is quite low (- 10-3)[79, 1351,

and most of the power generate heat and thereby increase the target temperature.

The target itself may melt if too much power has been applied. The cooling of

the target is therefore an important issue.

(3) Vacuum system

In order to obtain x-ray flux that is uniform on a detector plane, sufficient spacing

is required between the target and the detectors (if this is case we can assume

the x-ray source is nearly point like). This requires that the vacuum chamber be

sufficient large. In addition, there must be enough space in the vacuum chamber

to provide room for the filters and electronic equipment.

(4) Detector system

In order to detect ultra-soft x rays [ 1 keV, such as Al K-line (1.5 keV), C K-

line (0.28 keV), Be K-line (0.11 keV)], the detectors must be installed inside the

vacuum chamber to avoid attenuation by any window materials and air. However,

it is important that the detector system can be readily installed or manipulated

within the chamber[141, 145].

9.2.2 Construction

According to the aforementioned design requirements, an existing vacuum cham-

ber was selected. As depicted in Fig.(9-1), roughing pump II is used for pre-

liminary vacuum evacuation while the turbo-molecular pump, which has a large
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pumping rate (250 litres/min), is used for achieving high vacuum. A bare tungsten

wire (10 mil in diameter) is twisted into a coil to form the filament. The power

of the electron gun is either supplied by an isolated high-voltage transformer (for

the case of the filament operating with a negative high-voltage bias. ie. the tar-

get is grounded), or directly supplied by a DC power supply (for the case of the

target operating with a positive high-voltage bias). To obtain 300 mA of emission

current, about 50 Watts of power is needed.

We have found using the configuration of grounding the filament and biasing the

target positively eliminates spurious signals, that often plagued the alternative

configuration (i.e negative biasing the filament while grounding the target). How-

ever, the second configuration does have the advantage that the target can be

easily water cooled. Two DC high voltage power supplies were used alternatively

for providing high voltage power. Fig.(9-2) shows the output voltage from one of

them. It is found that when the DC voltage output is about 15 kV, the AC ripples

are about 1 kV (peak-peak). In order to eliminate such undesirable ripples, we

designed and built an RC power filter [the circuit is shown in Fig.(9-3) ] which

can provide satisfactory DC output. The distance between the filament and the

target is about one inch. This power supply can provide a maximum voltage of up

to 40 kV and a maximum emission current of up to 300 mA. An SBD is installed

inside the chamber to monitoring the x-ray signal. In addition, a variety of filters

are placed in front of the detectors to either check the attenuation or eliminate

the bremsstrahlung background. For our current interests, the available targets

are pure elements of C, Al, Ti, Cu, and Mo.
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Figure 9-1: The schematic of the high intensity electron-beam x-ray generator.
The distance between the target and the detector system (on the back of the
vacuum chamber) is > 1 m, and the detector chamber has a diameter :: 0.6 m.
Two pump systems, one for preliminary vacuum evacuation and the other for high
vacuum pumping, are located underneath the chamber.
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Figure 9-2: The high voltage output from a DC power supply shown in channel 2
measured by using a high-voltage probe. The AC ripples are about 1 kV (peak-
peak) when the total DC output is 15 kV.

9.3 X-Ray Generator Characteristics

Three different classes of x-ray detectors have been utilized to characterize this

x-ray generator: (1) two Si(Li) spectrometers; (2) a proportional gas-flow counter;

(3) and several surface barrier silicon diodes. The first two class of detectors are

operated in pulse mode, and the last one is operated in current mode.

9.3.1 Source X-Ray Spectra

The source x-ray spectra are shown in Figs.(9-4), (9-5), (9-6), (9-7), which were

all measured using a Kevex Si(Li) spectrometer. In Fig.(9-4), the unfiltered alu-

minum K lines with some bremsstrahlung continuum are shown in figure (a). [The

K. and K, lines cannot be separated due to the limit of energy resolution of this

Si(Li) detector.] In figure (b) the filtered aluminum spectrum is given. For this

measurement an aluminum filter of 2 4 mg/cm2 was used and it was found that

the pure aluminum K line x rays make up a 97% of the total x ray counts. Both
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spectra were taken by running the x-ray generator at 5 kV and emission current

1 mA.

In Fig.(9-5a), the unfiltered Cu spectrum is shown. Fig.(9-5b) shows the fil-

tered copper spectrum. For this measurement a copper filter of ~ 33 mg/cm 2

was used. for this configuration, - 94% of the total x ray counts are K emission.

Both Cu spectra were taken by running the x-ray generator at 15 kV and emission

current ~ 1 mA.

In Fig.(9-6), the unfiltered spectrum of molybdenum K lines superimposed

on a strong bremsstrahlung continuum is given in figure (a). Compared to the

unfiltered spectra of aluminum and copper, one finds that the bremsstrahlung

from the molybdenum target is much stronger because molybdenum has a higher

atomic number, Z=42 (for copper, Z=29; for aluminum, Z=13, and because the

bremsstrahlung production efficiency is proportional to the target atomic number

Z). In figure (b) the filtered molybdenum spectrum is given. For this measurement

a molybdenum filter of ~ 64 mg/cm 2 was used and it was found that molybdenum

K line x rays now make up ~ 70% of the total x ray counts. All spectra shown

in Fig.(9-6) and (9-7) were taken by running x-ray generator at 30 kV and emis-

sion current ~ 1 mA. Note that in Fig.(9-7), an unfiltered molybdenum spectrum

shows a very strong Mo L line around 2.5 keV. [Actually, it consists of several

lines such as L,, (2.293 keV), L., (2.289 keV), Lp, (2.395 keV), L' 2 (2.516 keV),

and L,'1 (2.624 keV), etc.]

9.3.2 Source X-Ray Flux

The linearity of the x-ray flux is checked using an SBD, and the results were

displayed in Fig.(9-8). The x-ray flux is linear at somewhat low levels and devi-
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Figure 9-4: (a). An unfiltered aluminum spectrum. (b) A filtered aluminum
spectrum. Both spectra were measured using a Kevex Si(Li) spectrometer.
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Figure 9-7: An unfiltered molybdenum spectrum shows a very strong Mo L line

around 2.5 keV. (Same as Fig.(9-6a), but on different scale.)

ation above - 20 mA are believed caused by the visible light leakages to which

the detectors are sensitive. (The higher the emission currents the brighter is the

filament.)

The uniformity of the x-ray flux is measured by an array of 4 SBDs aligned

vertically. As shown in Fig.(9-9), the x-ray flux is relative uniform on an area of

40 x 12 cm 2 . The maximum difference from center to the edge is about 40%. The

difference between the top and bottom detectors is probably due to the filament

holder obscuring certain detectors. The measurement was carried out in the con-

figuration of negatively biasing the filament (grounding the Cu target). The time

dependent fluctuating x-ray signal was also measured by placing a chopper in front
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of an SBD. As shown in Fig.(9-10), the chopper was operated at the frequency of

~ 660 Hz.

9.4 Calibration of X-Ray Detectors

As a first application[141], we used this self-built high intensity x-ray generator to

absolutely calibrate X-UV silicon diodes. X-UV diodes, as introduced in Chapter

7, can be used as radiation monitors in many fields, especially in fusion plasma

and astrophysics research, if their absolute response is known as a function of the

photon energy. For these detectors, the measurements of the absolute response in

the ultraviolet region (- 10 - 150 eV) have been previously done[120, 143, 144].

Our calibration will cover the region between 1.5 keV and 17.5 keV. The exper-

iments were performed by simultaneously measuring the signal outputs from the
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Figure 9-10: The ~ 660 Hz chopped SBD signal current provides a fluctuating
x-ray signal.
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X-UV diodes and an SBD. Both diodes were subject to the same conditions: faced

the same target and had the same brass collimator with an aperture 0.32 cm in

diameter. The SBD we used was a partially depleted SBD from EG&G ORTEC,

serial number 16-675B, whose absolute x-ray response from 0.3 keV to 17.5 keV

have been previously measured[100, 99]. In addition, the uniformity of the x-ray

flux striking on both diodes was also checked by rotating them about an axis

between the two detectors and repeating the measurements at rotation angles of

0', 90', 180', and 270*[141].

(1) The monoenergetic x rays.

To measure the absolute response of X-UV diodes as a function of the photon en-

ergy, we need monoenergetic line radiations. However, like all other electron-beam

x-ray sources, our generator also emits significant bremsstrahlung continuum.

For this reason, we again used so-called absorption edge filter technique (typical

filters we used for obtaining different quasi x ray lines are listed in Table 9.1).

In addition the test filters are used to check the effectiveness of the line filters.

Figs.(9-11), (9-12), (9-13), (9-14), and (9-15) display the filtered x-ray spectra of

K line radiation from aluminum (1.5 keV), titanium (4.5 keV), manganese (5.9

keV), copper (8.05 and 9.8 keV), and molybdenum (17.5 and 19.8 keV). These

spectra indicate that the characteristic x rays we used were satisfactorily clean for

the calibration measurements.

Table 9.1:
The list of the material and thickness of filters

Target material K,-1ine (keV) Test Filter Line Filter
Al 1.5 keV 17 m Al 17 um Al
Ti 4.5 keV 17 Lm Al 25 pm Ti
Cu 8.0 keV 86 pm Al 50 Am Cu
Mo 17.5 keV 86 pm Al 124 urm Mo
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Figure 9-11: A filtered spectrum of Al K line from an aluminum anode (8 kV, I
mA emission current). An EG&G ORTEC Si(Li) spectrometer was used for this
measurement.
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Figure 9-12: A filtered spectrum of Ti K line from a titanium anode (16 kV, 1
mA emission current). An EG&G ORTEC Si(Li) spectrometer was used for this
measurement.
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Figure 9-13: A filtered spectrum Mn K line from a manganese anode ("Fe). An
EG&G ORTEC Si(Li) spectrometer was used for this measurement.
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Figure 9-14: A filtered spectrum of Cu K line from a copper anode (20 kV, 1
mA emission current). An EG&G ORTEC Si(Li) spectrometer was used for this
measurement.
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Figure 9-15: A filtered spectrum Mo K line from a molybdenum anode (25 keV, 1
mA emission current). An EG&G ORTEC Si(Li) spectrometer was used for this
measurement.

(2) The measurements of DC response.

The measurements of DC response were performed when both diodes were op-

erated in current mode. The positive signal currents from both detectors were

simultaneously measured with two identical Keithley 617 digital electrometers.

The background dark current, due to leakage current and a slight amount of vis-

ible light response, were monitored and subtracted from the total signal current

to obtain the net x-ray signal current. Table 9.2 lists the ratio of measured DC

response of X - UV #1 to that of an SBD.

(3) The measurements of AC response.

In order to determine the effects of different bias voltages, we utilize AC x-ray
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Table 9.2:
The measured DC responses of X - UV #1 diode
X rays Energy Ix-UV /ISBD
Al (K) 1.5 keV ~ 1.06
Cu (K) 8.0 keV 0.83
Mo (K) 17.5 keV 0.63

measurements. This method is effective because the leakage current increases

dramatically when an external bias voltage is applied and the background current

usually drifts. Therefore it is difficult to establish a stable DC background current

(which is then subtracted from the total measured x-ray current). Utilizing the

AC response, however, eliminates this undesired DC background current. For this

reason, as well as many others, we built a preamplifier with a capacitor isolating

the biased detector from the current-to-voltage amplifier. As displayed in Fig.(9-

16), it is a 2 pF capacitor that filters the DC background current.

In order to generate an AC x-ray flux, we used a mechanical chopper placed

Immediately in front of the diodes. This chopper has a chopper-wheel with 8

rectangular apertures. The chopping speed can be adjusted outside the vacuum

chamber. The typical AC responses for different energy x rays of one of the X-UV

diodes are shown in Fig.(9-17)[141]. It is found that the signal-to-noise ratio for

molybdenum is worse than for the other targets. This is because at the maximum

source high voltage (25 kV) for rpolybdenum, the efficiency for K line generation

(17.5 keV) is low, relative to the other low Z targets [Fig.(9-17)].

(4) Summary the DC and AC Measurements

The DC and AC responses for three X-UV diodes and an SBD are summarized in

Fig.(9-18)[141] where the measured result for each diode is plotted as a function of

the photon energy. The solid lines are calculated responses for which silicon total
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Figure 9-16: The circuit of an AC-coupled preamplifier. The 10 Mi feedback

resistor provides a gain of 10 mV/nA, and the 50 pF capacitor filtered out noise

with frequency above 2 kHz.

thickness of 347 /.sm for the SBD and 375 am for the X-UV diodes are assumed.

It is found in these figures that the response of the X-UV diode decreases with

the photon energy faster than the calculations predicted.
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Figure 9-17: The typical measured AC response signals of an X-UV diode to
K-line x rays of aluminum, titanium, copper, and molybdenum[141].
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Figure 9-18: A summary of the DC and the AC responses as a function of photon
energy. The DC responses are displayed by squares with narrower error bars and
the AC responses are displayed by circles with wider error bars. The solid lines
are calculated responses by assuming that the sensitive thickness is 347 jzm for
the SBD and 375 pum for the X-UV diodes[141].
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Chapter 10

Comparative Study of the X-Ray

Sources

10.1 Introduction

For the purpose of absolutely calibrating x-ray detectors and optics and measur-

ing x-ray filter transmission, we comparatively investigated three kinds of x-ray

sources: (1) a conventional electron-beam x-ray source; (2) a radioactive a flu-

orescence x-ray source (X-Ray KIT); and (3) a newly developed proton-induced

x-ray emission (PIXE) source. Our studies are based on experimental and calcu-

lated results for both x-ray detection modes[145] (pulse and current). First, in

the pulse mode of operation, x-ray spectra from these three sources are measured

and compared with emphasis on line radiation and its relative intensity over the

background continuum. In addition, the conventional absorption filter technique

with the associated advantages and disadvantages will be discussed in this chap-

ter. Second, in the current mode of operation, the x-ray flux from these three

sources, from the point of view of absolutely calibrating silicon x-ray detectors,

are semi-quantitatively estimated and compared.
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Figure 10-1: Schematic diagram of 24
1Cm "X-Ray Kit" x-ray source.

10.2 X-Ray Sources

In addition to the electron-beam x-ray generator and the PIXE source described

in previous chapters, the most common conventional x-ray source used in the lab-

oratory with selectable wavelength is a spontaneous radioactively-decayed particle

fluorescence source. This kind of x-ray source makes use of the energetic a's from

radioactive isotope(s) (for example, 2 4 4Cm, 24 1Am, or 210Po) to bombard various

targets. Fig. (10-1) shows a commercially available, compact "X-Ray KIT"[146]

with a 2 4 4Cm radioactive source. The x rays are induced at the target by 5.9

MeV a's from the sealed 24 4Cm source of 1 mCi (half life T1 / 2 ~ 17 years). The

replaceable target series includes C, Al, Ti, Cu, and Mo, etc. In order to detect

very soft x rays, this X-Ray Kit source and the detector are all placed in vacuum.

The schematic of the experimental arrangement for soft x-ray measurement using

a flow proportional counter is depicted in Fig.(10-2).
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Figure 10-2: Schematic diagram of the X-Ray Kit experimental arrangement.
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10.3 Comparison of the X-Ray Spectra

In Fig.(10-3), a comparison of the x-ray spectra of molybdenum from the PIXE,

the X-Ray KIT, and the electron-beam source are made. For these measurements,

a Si(Li) spectrometer was used. As expected and shown earlier, the PIXE spec-

trum has a remarkably low background continuum; in fact, the small background

between K and L lines is actually caused only by Compton down-scattering from

higher energy K lines. This argument can be justified from the fact that, for

example, as shown in Fig.[10-3(a)], there are no counts of energy higher than

Mo K lines even though the accelerator was operated at 150 kV. Bremsstrahlung

from secondary electrons, which has an endpoint energy (head-on collision) of

4E,(m,/mp) (: 300 eV for our case, where the proton energy E, is 150 keV),

are detectable only at a very low level (as discussed before). On the other hand,

background continuum x-ray spectra from the electron-beam generator is orders

of magnitude higher. For the x-ray spectra from the X-Ray KIT, the background

continuum, on which the line radiation is superimposed, is also quite severe. Be-

sides bremsstrahlung caused by secondary electrons (up to 3 keV) for this case,

two other contributions are: (1) bremsstrahlung induced by Compton scattering

in the target by the y rays. These -y rays come from both a induced nuclear

reaction in the target and from y decay from the 24 4Cm source, which have of en-

ergies 0.043 MeV, 0.1 MeV, 0.15 MeV, 0.262 MeV, 0.59 MeV, and 0.82 MeV etc.

(2) Compton-down scattering of x rays and low energy -y rays directly from the

2"CM source. A spectrum of these radiations directly measured from the 2 4 4Cm

are shown in Fig.(10-4). The individual lines have been identified and labeled in

the figure, most of which are L and M lines from plutonium and uranium (the

radioactive daughter and granddaughter of 2 4 4Cm).
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Figure 10-3: Spectra of molybdenum x rays, (a) from PIXE, (b) from X-Ray KIT,
and (c) from an electron beam x-ray generator. A Kevex Si(Li) detector has been
used for these measurements.
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Figure 10-4: The x-ray and -y-ray spectrum of 24 4Cm a recorded by placing the

source directly in front of the Ortec Si(Li) detector. In order to avoid the 5.9

MeV a's directly hitting the detector, 1 mil plastic filter has been used. An "5Fe

(5.9 keV Mn K line) source is used as a reference. The x rays are resulted from

L and M lines of 2 40 Pu and 2 1 6U, the products of the first and second a-decays,
and of 2 4 4Cm fluoresced by a particles. The 9.71 keV x rays are x-ray fluoresced

Au La lines from the Au electrodes of the Si(Li) detector. The 42.82 keV -y rays

(see arrow) come from the tiny branch of a decay from 2 "Cm to 240 Pu. All these,

as shown before, contribute to the background continuum of the x-ray spectrum

of the a fluoresced target.
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10.4 Discussion

The PIXE x-ray spectra show the crucial feature of intense line radiation with

negligible background continuum. For the applications of absolutely calibrating

x-ray detectors and optics, and measuring x-ray filter transmission, this feature

offers a unique advantage in that one doesn't need any technique to eliminate the

continuum and not to shield out visible light. Practically, however, the application

of this particular PIXE source is limited to providing characteristic x rays below

a few keV (i.e. in ultra-soft x-ray regions) because of the low PIXE production

cross section at the proton beam energy available to us ('" 165 keV). However, the

maximum cross section for PIXE x-ray production occurs when the proton beam

energy is of order MeV. In contrast to the PIXE source, the electron-beam x-ray

source emits significant thick-target bremsstrahlung because of the 1/m, depen-

dence in the differential radiative cross section. Similarly, although it is fluoresced

by a particles, X-Ray KIT also emits severe background continuum. And even

worse, considerably wide background continuum region in the high energy regime

[see Fig.(10-5), the high energy regime beyound the aluminum K line] is very dif-

ficult to be eliminated using conventional filter technique without sacrificing the

desired line radiation.

Another issue for absolute calibration of x-ray detector is current-mode oper-

ation, which demands a significantly high signal to noise ratio. Because for SBDs

the noise level is of order 1-100 pA (thermal noise, dark current, electronic noise,

and other factors of the detectors, ) in a practical experiment, the signal level needs

to be of order nA - pA. Consequently, a large x-ray flux is required. Consider-

ing the factors such as the efficiency for generating line radiation (10-4 - 3),

the emission current (10 - 200 mA), the solid angle and the attenuations (due

to bremsstrahlung and visible light rejections) etc., our electron-beam source is

able to achieve a desirable x-ray flux for x-ray energy > 1 keV, but not for the
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Figure 10-5: Spectra of Aluminum x rays from X-Ray KIT.

ultra-soft x rays ( 1 keV). For our 2 "1Cm source, the a flux from the 24 4Cm is

too small [1 mCi activity ideally can only deliver ~ 107 a's per second to the

target (about 1 cm 2 in area)]. After taking into account factors like the efficiency

of a fluorescence, solid angle and the source holder blockage, etc., one can only

achieve a useful x-ray flux of c 10 3/sec-cm 2 at a distance of about 1 cm away.

This small flux eliminates our X-Ray KIT from being a source for calibrating de-

tectors operated in current mode. Also, the configuration of the 244Cm prevents

one from simultaneously monitoring the x-ray flux, so that this too makes it ex-

tremely difficult to make an absolute measurement. Consequently, if the x-ray

flux is sufficient, PIXE offers unique advantages over either electron-beam or a

fluorescence x-ray sources, specifically it can provide 1015 proton per second to

the target (300 piA proton emission current); no filter is needed to obtain pure

line radiation (this is a crucial point for ultra-soft x rays); the configuration (sym-

metric about two diagnostic arms) allows for easily making absolute calibration.
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10.5 Summary

We comparatively investigated three different x-ray sources from the point of view

of calibrating x-ray detectors and optics, and measuring x-ray filter transmission.

A proton induced x-ray emission (PIXE) source has been demonstrated to be

able to generate intense line radiation with extra low background continuum.

This unique feature makes it possible for the PIXE source to be developed into

an important tool for calibrating x-ray instruments, especially in the ultra-soft

x-ray region. An electron-beam x-ray source is good for generating x rays having

energy 1 keV, but is very difficult to be developed to provide spectrally clean

ultra-soft x rays. Our radioactive 24 4 Cm a fluorescence x-ray source is also found

to be emitting a severe background continuum. In addition, it cannot be used for

characterizing x-ray detectors operated in current mode.
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Chapter 11

Summary and Recommendation

for Future Work

11.1 Summary

In this thesis, two studies have been presented: first, the conceptual study of

the moderately coupled plasmas; and second, the experimental comparison of

laboratory x-ray techniques.

11.1.1 Conceptual Study of Moderately Coupled Plas-

mas

The fundamental concepts of moderately coupled plasmas, for which InAb : 2-10,

were presented in Chapter 2. This classification is based not only on the plasma

coupling parameter and the Coulomb logarithm, but also on the understanding

and validity of the associated kinetic theories. This new regime is desirable be-

cause neither the conventional Fokker-Planck approximation (for weakly coupled

plasmas) nor the approach of dielectric response with correlation function (for

strongly coupled plasmas) satisfactorily addressing issues in moderately coupled
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regime. A new collision operator, which is a compromise between the Fokker-

Planck equation and the Boltzmann-like collision operator, was found to have

advantages for treating moderately coupled plasmas. In addition, we have given

a variety of examples for moderately coupled plasmas.

In Chapter 3, the standard Fokker-Planck operator for Coulomb collisions was

modified by including terms that are directly associated with large-angle scatter-

ing. This procedure allows us to effectively treat plasmas for which InAb Z 2,

i.e. moderately coupled plasmas. In particular, a Rosenbluth-like vector poten-

tial was introduced into the modified Fokker-Planck equation. Its properties and

relations to other potentials have been discussed. Correspondingly, the Landau

form and other forms of this modified equations have also been presented. By

using this modified Fokker-Planck operator, moderately coupled plasmas can be

effectively treated with a proper justification. In particular, precise calculations

of some relaxation rates, and approximate calculations of electron transport co-

efficients, have been made (Chapter 4). In most cases, the results differ from

Braginskii's and Trubnikov's results by terms of order 1/InAb. However, in the

limit of large InA (~ 10), these results reduce to the standard (Braginskii) form

as expected. Some other interesting physical problems, such as the 900 electron

scattering mean-free path in short-pulse laser plasmas and the collision frequency

in the solar core, have also been discussed. In addition, we have calculated a re-

duced electron-ion collision operator that, for the first time, manifests the 1/nAb

corrections.

As one of major applications of the modified Fokker-Planck equation, we have

calculated the stopping powers and pR of charged fusion products (a, 3H, 'He,

. .) and hot electrons interacting with plasmas relevant to inertial confinement

fusion pellet. As discussed in Chapter 5, the effects of scattering, which limited
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previous calculations to upper limits, have been now properly treated. In this

comprehensive calculation, the important effects of ion stopping, electron quan-

tum properties, and collective plasma oscillations have also been included in a

unified framework. We have demonstrated that the quantum effects are very im-

portant for the earlier dynamics of pellet evolution, especially in the shifting of the

effective degenerate electron velocity which greatly enhances the charged particle

stopping powers and shortens the range. Ion stopping is found to be important

for all charged fusion products. For hot electrons interacting with cold dense plas-

mas, the contributions of scattering and collective oscillations are significant. An

example of heavy ion stopping in ICF hohlraum plasmas was discussed in Chap-

ter 6. It is found that the approach of classical binary interaction, supplemented

by collective effects is adequate. The conventional restriction that requires the

Coulomb logarithm Z 10 is unduly restrictive for this specific case. However, the

stopping power in hohlraum plasmas must be dynamically treated because of the

evolution of the plasma density. This finite temperature effect is significant for

heavy ion stopping in a practical hohlraum plasma even for very high energy ions.

In addition, we have compared the binary and dielectric response approaches for

treating heavy ion interacting with hohlraum plasmas, and found that they are

essentially the same in this regime. However the former approach is much simpler

and physically transparent.

11.1.2 Experimental Comparison Laboratory X-Ray Sources

In Chapter 7, the fundamental theories of x-ray generation, both the discrete line

radiation and background bremsstrahlung continuum, have been briefly reviewed.

Three models for inner-shell ionization cross section (the plane-wave Born approx-

imation, impulse approximation, and ECPSSR) have been discussed. In addition,

we also reviewed issues of charged particle stopping in solid materials. Finally
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two fundamental x-ray detection methodes, - - the pulse mode and current mode

- were briefly described. X-ray detectors that have been widely used in the lab-

oratory such as the Si(Li) spectrometer and flow gas proportional counter (both

for pulse mode), surface barrier diode and X-UV diode (for current mode), were

discussed.

Of greatest importance in the x-ray generation, we used a Cockcroft-Walton

linear accelerator, a charged particle induced x-ray emission (PIXE) source has

been developed for the purpose of characterizing x-ray detectors and optics, and

measuring x-ray filter transmission. Intense line x radiation (including K-, L -, M-,

and N-lines) from 0.5 A to ill A have been successfully produced. The back-

ground continuum is orders of magnitude lower than that from a conventional

electron-beam x-ray source. We have also measured the PIXE x-ray yields for

many elements. The yields roughly agree with the results from our theoreti-

cal estimate and with that from other researchers. This PIXE source has been

demonstrated to be very useful as a tool for characterizing x-ray instrumentation,

which have been described in detail in Chapter 8. In Chapter 9, we presented

the development of a new high intensity electron-beam x-ray generator, including

its detailed design, construction, characterization and application. Because the

detector and monitor systems are all installed and operated inside the vacuum

chamber, it is found that this new generator is very useful for calibrating x-ray

detectors in the soft x-ray region. In particular, we have used this generator suc-

cessfully to calibrate the new X-UV semiconductor diodes in both DC and AC

modes. Finally in chapter 10, we have made an experimental comparison of these

two newly developed x-ray sources with a commercially available oL fluorescence

x-ray source. In addition to characteristics of the target, 24Cm a fluorescence

x-ray source is found to emitting a non-negligible background continuum.
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11.2 Recommendation for Future Work

11.2.1 Stopping Power (dE/dx) and Fuel-Areal Radius

(pR)

For future work, three experiments related to the measurements of stopping power

and fuel-areal radius in ICF are of immediate interests.

A. Development of a Charged Particle Spectrometer for

pR Measurement

The energetic particles of primary interest are:

* 3 MeV D-D protons;

* 14.7 MeV protons from 3He-D (the 0.8 MeV 3He derives from D-D);

* 1 MeV tritons from D-D;

0 i 12.5 MeV deuterons from 14.1 MeV neutron knock-ons (D-T capsules);

* - 10.6 MeV tritons from 14.1 MeV neutron knock-ons;

* 3.5 MeV a's from D-T.

The four possible phases involved in this program are to: (1) investigate possi-

ble candidates for the spectrometer (e.g. magnetic spectrometers, surface barrier

detectors, etc.), and consider the signal-to-noise issues and the experimental fea-

sibility; (2) design of hardware, utilizing the Cockcroft-Walton charged particle

generator to test and validate design concepts; (3) construction, calibration, and

fielding a detector; (4) and data collection and analysis.
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B. A -y-ray Diagnostic for pR Measurement

The measurement of -y rays from an ICF pellet offers a unique pR diagnostic

because the kinematic broadening of the -y-ray energy is very small. The -y ray of

primary interest is from a capture,

a+ T -+ 7Li+ y, (11.1)

where the energy of the capture -y ray depends on a energy. In order to develop

this diagnostic in our laboratory, the first step is to investigate the candidates

for the -y-ray detector. This should be followed by the actual construction of the

selected detector and, finally, its characterization. We believe that our experience

on -y detection[147, 148] and our facilities, especially the Cockcroft-Walton accel-

erator, provide a unique opportunity for carrying out this project.

C. Measurement of Charged Particle Stopping in a Plasma

The measurement of charged particle stopping power in a plasma is of great impor-

tance to fusion plasma research. Many important theoretical predictions need to

be verified experimentally in a plasma, such as the model of the effective equilib-

rium charge states of the projectile ions, the enhancement of the stopping power

and shortening of the range of charged particle, etc. However, only a few ex-

periments have been carried out so far. Our group possesses many fundamental

attributes for performing this kind of experiment:

" the charged particle sources (Cockcroft-Walton accelerator and radioactive

ca sources);

" the plasma targets (self-built RF plasma and VTF tokamak plasma);
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* the diagnostics for various measurements (plasma parameters, energy spec-

trometer, mass spectrometer, time-of-flight energy analysis, etc.).

D. Experiment for Non-Neutral Plasma Physics

Using our facilities, it will be interesting to investigate other non-neutral

plasma physics related issues, such as pure electron plasma equipartition rates

and confinement, space charge effects, etc.

11.2.2 Laboratory X-Ray Techniques

In order to advance plasma x-ray imaging technology through the testing of various

detectors and the development of superior x-ray calibration techniques, several

complementary programs can be start.

" Diamond photoconductors detectors have > 10 greater resistance to neu-

tron damage than the conventional (silicon) diodes presently used in x-ray

arrays. Through the use of our x-ray calibration sources (PIXE, electron-

beam, and radioactive) and our neutron generator, we can undertake studies

of the temporal and spectral characteristics of these detectors before and af-

ter neutron irradiation.

* The pulsed x-ray source needs to be upgraded such that pIsec time scales

can be conveniently investigated. It is important to establish the frequency

response of our x-ray array detectors if we are to later use them for studying

rapid instabilities in plasma. In addition, we should also further modify the

existing DC electron beam x-ray generator into a pulsed device.
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* Work is needed to increase the x-ray emission levels of the PIXE source so

that it can be used to calibrate detectors in the current mode, with high

accuracy. The present PIXE x-ray emission levels, while adequate for fil-

ter and window calibration, are a factor 10 lower than needed for detector

calibration in the current mode. By increasing our proton beam current as

well as by redesigning our PIXE target chamber, a factor of 10 increase in

incident intensity (on the detector) can be achieved. With this accomplish-

ment, spectrally pure x-ray calibrations in the current mode would then be

possible.
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Appendix A

Calculations of the Modified

Change of Moments.

A.1 Coordinates

The coordinate system is artificially chosen such that the relative velocity, u, is

along the z axis as shown in Fig. (A-1). A test particle collides elastically with

a fixed collision center (the field particle). After the collision the test particle

velocity u' changes direction but its magnitude remains unchanged.

From this configuration and the kinematics of the collisions, the only non-zero

component of relative velocity is u.. Thus the components of the change of the

velocity are given by
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Trajectory
Plane

U9

U

AUU- U

-- P*14
AU--IAuISINk

z2

Figure A-1: The coordinate system used for calculation of the change of moments
in velocity space.

Iu , = u sinecos4,

Au, = u sinOsino4

Au. = -u(i - cOs9)

(A.1)

Since the scattering is due to the Coulomb interaction, one has tan(0/2) = pi/p,

and from which it follows
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A.2 Corrections to the Second-Order Change

of Moment

In the course of the conventional evaluation of the second-order moment, the

assumption that the Coulomb logarithm is greater than 10 has been made and all

terms of the order of 1/jinAb in the second-order moment have been neglected{f3,

4, 6] (i.e. the parallel parts of the second-order moment, which contribute largely

to the large-angle scattering.). But these terms need to be retained when we

deal with plasxnas in the transition regime (i.e. the moderately coupled plasmas

for which inAb ::: 2-10). The rate of the change of the second-order moment is

determined as follows,

< LiAU_. >J Wif 1 (v')dy'. (A.3)

We hereafter follow the convention of Rosenbluth3] and Trubnikov[4] as the

start point, the second-rank tensor is defined as

< Aj= ( ') Wuiff(V'dpd (A.4)

Wehreferflowte oveto o osnlth3 adTrbiov4 a h
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where ff is the distribution function of the field particles in velocity space and

mtf is the reduced mass of the test and field mass system. In this coordinate

system the second-rank tensor is a diagonal matrix, i.e.

WX,

Wij= 0

0

0

WyY

0

0

0

W.. I (A.5)

which can be determined by substituting Eq.(A.2) into Eq.(A.4) and performing

the integrations. Thus

Wij = -1 (47retef )2(1nA6 - 1 )j - 1 (47reeef 3 1 b+3
47ru mt 2 4nru mt 2 U2

(A.6)

With the relations,

8 1 u
SuI U'

and

a uI = ,i u

and the Rosenbluth potentials:

H(v) = - dv'
47r lul

(A.7)

(A.8)
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G(v) = -- fuff (v')dv', (A.10)

the rate of change of the moment is readily expressed as follows

< AviAv3 >,/f = JWiff(v')dv'

= -2( 47rete)2lnAb G(v) + (47retef)2[3 02 G(v) -Si_,H(v)]
Mt i8vij rmat Ov1Ov

(A.11)

where Sij is a component of the unit tensor. Note that the second and third terms

in this equation are usually dropped in the conventional Fokker-Planck equation.

A.3 The Third-Order Change of Moment

The third-order moment, which is also the order of Coulomb logarithm smaller

than the first two standard moments, has not been previously determined in an

explicit expression. The rate of change of the third-order moment is given by

< AV9Aog > - J Wik ff(v')dV' , (A.12)

and the third-rank tensor can be calculated by

Wijk = (m  )3 AUgAUJAUupdpd 0 (A.13)
'MtIf
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With this definition, the third-rank tensor is an axisymmetric matrix with some of

its elements being zero. After substituting Eq.(A.2) into Eq.(A.13) and performing

some algebraic manipulations, the third-rank tensor becomes

Wig = 1 mt (e 47reef 2u (5. + + Uk6- ). (A.14)
87r me me u u u U3

Since

a2 = I U +- + - U Uk

8 v18vj U U U U3
(A.15)

we obtain the rate of change of the third-order moment as

< AVi'AVj s >,If = -mf (47retef )2 82
87r me mt &vi vIj

ululf,(v')dv' .(A.16)

Analogous to the Rosenbluth potentials[3, 4], we define a vector potential:

(v) = - uuf I(v')d v'
327r

(A.17)

with the reduced mass mtf = mtmj/(mt + mf). the third order change of mo-

ment is then expressed as utilizing this potential, the calculation of the third-order

moment of the Fokker-Planck equation for some applications is substantially sim-

plified:

< AvisvjAVk >tf - 4( m' )( 4reef) 2 82 "(v)
me+mf me vi&j

(A.18)
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Appendix B

Derivations of Relations for the

First Three Moments of the

Fokker-Planck Equation.

In this appendix, the relations of the first three moments in the modified Fokker-

Planck equation are derived. As shown in Chapter 3, the first three moments are

given

< Avi > /f =- Lt/f(n,+nf ) " H(v)

=- ~2Lt~f 8 2,G(v) + "'[3 '2 G(v) -6Hv)

The relations between the Rosenbluth potentials (H and G) and the new vector

potential (<) are also given as,
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< AViAVjAVk, >'/f = 4Lt/1 (m ) &4V)

(B.1)



= V2G(v)

= H(v)-

B.1 Relation Between the First and Second Mo-

ments

By partial differentiating the second moment with one has

= -2L t1  a G(v)
aviavjaj

Lf __ 03 8
+T- (3 5 - G(v) - , H(v)].

82
O 8 G(v) =

V2G(v) = H(v),

and substituting the first moment, thus
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-9 < 8Av3 >t!f
V-

Since

(B.3)

and

(B.4)

9 - 8
aU vi ~ vi ,

(B.5)



< 3,Nv. >,/f

2lnAb - 2 m1  < >t/f

InAb mt -- mf

Therefore, one obtains

< Avi >t/f
= 2nAb m ) <m1 o A >//f

2InAb -2 M v

B.2 Relation Between the First and Third Mo-

ments

Similarly, by partial differentiating the third moment with 82 , one has
a8)avi

82
< dAVAVjA >*// =

&8 jVk 13V

Since

82 a
-c(v)

VlV 8Vkj Vk

4LV/f m 8 82 8
( ) (v) . (B .8)

1n Ab Mt + Im; v 0 v

= V2.V, (v) = H(v),

and substituting the first moment, thus

82
-V< viAV1o Vk >/ =

_L_ m1  a
InfAb me + m1 Hjv
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= - - -( m + 2 < AV, > ,/
lnAb me + ml

Therefore, one obtains

< Avj >,/I = -nb (me + m) 2 C2 < AVi:ZVjAVk >t/

4 Mf avj (Vk

206
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Appendix C

Derivation of InAc for Collective

Plasma Oscillations.

In the dielectric response function approach, the stopping power due to field

plasma oscillations is given by[68, 69, 70],

dE'/f 2 )(e )dW ,W
= _ _)R (ADKwA)K1(-A)w,

dx ?r vt ia e(w) Ve Vt Vt

where Ko(WAD/vt) and KI(wAD/ve) are the modified Bessel functions,

dielectric constant with damping constant a is e(w) = 1 - Uj/(w2+iwo).

Re[ ] = w2 Wa 0
f (w2 _ W2)2 + w22~w/

(C.1)

and the

Because

(C.2)

and since the significant frequencies in the integral turn out to be w - wp, one

has
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Zte 2 (wAD)K(WpAD )K 1(WpAD) 2 W2 ,2/"3_

7r Vt Vt Vt V_ f 2 _ 2

(C.3)

To perform this integral, let w/0 = y therefore

2(-e)2 (wpIAD)KO(wpf AD)K 1(pAD )w,21

?r Vt Vt Vt Vt fo

where the integral is evaluated through the identity

_ dy -
( y2)2 _Y 2

Thus, the stopping power formula is given by

dEt/1

dx

-2
2

Zte)2 2 ( Wp!AD )KO("p AD)KI (wp AD)
Vt Vt Vt Vt

2 _ dy,

y2) 2 - y2

(C.4)

(C.5)

(C.6)

With the relation that

(WpfD) 
-!L

Vt Vt

- 1

and the definition of the Coulomb logarithm for such collective effects as
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InAc = (p AD)K(Wp AD )Kj(Wp ID)
Vt Vt Vt

KO(I/ v 7xI)K 1 (1/ v 7 )
(C.8)

the stopping power due to the collective plasma oscillations has the simple form

of

(Zte) 2  2 InA,
- 2 W I . (C.9)

The Coulomb logarithm can further be reduced for extreme cases due to the

asymptotic properties of the modified Bessel functions.

(1) For V'/-7l < 1,

1
Ko(;7)f)T

7r\/~77
(C.10)

and

1
KI( ) 1

V/i
fr v 7 7 ;7-i

-::: e /T[\I2 8 I. (0.11)

Therefore, the Coulomb logarithm is given by
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InAc

fir -23--

- e I L +
3vx/t

8
(C .12)

(2) For >>1,

1
: -[In(2 )+0.5772 +. (C.13)

and

1
KI(7= )X/zlTI

(C.14)
2

Therefore the Coulomb logarithm is given by

InA, -Ko(1/V71I)Kj(1/Vx__tl)1nAc =

~ In(1.123v/;7T) (C.15)

In summary, the Coulomb logarithm for collective plasma oscillations is given
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ln(1.123v/ ) v-71 > I

InA, ~ K,(/ 7) Ko f(C/ 6

Tr/ <1
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