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Abstract

A new simple, self consistent theoretical model is presented that describes

the phenomena of quench propagation in Cable-In-Conduit superconducting mag-

nets. The model (Quencher) circumvents many of the difficulties associated with

obtaining numerical solutions in more general existing models. Specifically, a fac-

tor of 30-50 is gained in CPU time over the general, explicit time dependent codes

used to study typical quench events. The corresponding numerical implementa-

tion of the new model is described and the numerical results are shown to agree

very well with those of the more general models, as well as with experimental

data.

Further, well justified approximations lead to the MacQuench model that

is shown to be very accurate and considerably more efficient than the Quencher

model. The MacQuench code is suitable for performing quench studies on a

personal computer, requiring only several minutes of CPU time. In order to

perform parametric studies on new conductor designs it is required to utilize a

model such as MacQuench because of the high computational efficiency of this

model.

Finally, a set of analytic solutions for the problem of quench propagation

in Cable-In-Conduit Conductors (CICC) is presented. These analytic solutions

represent the first such results that remain valid for the long time scales of inter-

est during a quench process. The assumptions and the resulting simplifications

that lead to the analytic solutions are discussed, and the regimes of validity of

the various approximations are specified. The predictions of the analytic results
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are shown to be in very good agreement with numerical as well as experimental

results. Important analytic scaling relations are verified by such comparisons, and

the consequences of some of these scalings on currently designed superconducting

magnets are discussed.
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Chapter 1. Introduction

Superconducting magnets have many applications in large government and

industrial projects. They are particularly useful in situations where high mag-

netic fields are required but economic or technological considerations limit the

total steady state electrical power available. Such projects include the toroidal

and poloidal field coils for magnetic fusion experiments, the detector magnets for

high energy particle accelerators, and the coils for magnetically levitated pub-

lic transportation (MAGLEV). Because of the high construction costs involved,

magnet protection in the event of faults or abnormal conditions is one of the

crucial design elements. One of the more serious abnormal conditions is that of

quenching, a situation wherein a local section of the magnet, because of some

local heat perturbation, returns to its normal state. If the perturbation is large

enough, neighboring sections of the magnet are subsequently quenched because of

heat convection by the coolant. If the quench is not detected quickly enough, the

normal zone propagates along the entire length of the coil, quenching the entire

magnet. Late detection of quench may cause irreversible damage to the magnet.

Cable-In-Conduit Conductors (CICC) consist of a superconducting cable sur-

rounded by supercritical helium [1,2]. The helium is used to cool the superconduc-

tor during steady state operation. The system of helium and cable is surrounded

by a conduit usually made of stainless steel (Incoloy and Titanium have also been

used). Figure 1.1 shows a schematic diagram of the cross section of a CICC;'

typically the conduit has an overall diameter of the order of a few centimeters,

while the conductor has a length of a few hundred meters. The Cable-In-Conduit

is wrapped with insulating material and then wound in the form of a pancake

or in layers and the superconducting magnet usually contains a number of such

pancakes or layers.

1 A different CICC configuration, where a central hole is placed in the conduit
(Dual-Channel CICC) is used in certain superconducting magnets. This impor-
tant configuration is discussed in Chapter 5.
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Figure 1.1: Schematic of the cross-sectional area of a CICC.

The superconducting cable consists of a large number of strands (10-1500)

that enhance the heat transfer between the cable and the helium. These strands

are made of a superconducting alloy embedded in a copper matrix. The alloy

remains in its superconducting state when its temperature T lies below a critical

value Tr. Above Tc,, the alloy has a very high electrical resistivity. The copper

matrix is used to carry the current in the event that the temperature in a section

of the cable is raised above Tcr. In such a situation the current flows preferentially

through the copper matrix which acts as a parallel resistor to the high resistivity,

"quenched" section of the superconducting alloy. This allows for a large reduction

of ohmic dissipation that would otherwise be present in the superconducting alloy.

Even so, because of the high current flowing in the cable, it often takes only a few

seconds for the quenched section of the cable to rise from its cryogenic temperature
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T ~ 5K and helium operating pressure p - 5 atm to values of T ; 250K and

p - 25 atm. Past this point, irreversible damage to the magnet can occur (e.g.

thermal stresses become larger than the shear strength of the insulating material).

In designing the magnet it is of utmost importance to assure the safety of the

magnet in the event of quench. The safety requirements consist of maintaining

the temperatures below the melting point of any of the magnet components,

and keeping the turn to turn and layer to layer voltages within the winding to

acceptable levels to prevent arcing. In the event of a quench in the magnet, the

voltage drop across the magnet (due to the resistive zone) can be monitored.

When a certain critical voltage (Vr) is observed across the magnet the current is

dumped through an external parallel resistor. This resistor is chosen such that it

provides the required discharge time constant.

The purpose of this thesis is to first present a new compact model that

describes the process of quench in Cable-In-Conduit Superconducting Magnets,

and a corresponding, efficient, numerical implementation. Secondly, this model is

further simplified by means of several additional approximations valid for many

superconducting magnets. This leads to a faster numerical procedure and an

analytic solution. These analytic solutions represent the first such results that

remain valid for the long time scales of interest during a quench process. Impor-

tant analytic scalings are verified by direct comparisons with numerical as well as

experimental data.

1.1 Existing Work

The process of quench propagation in CICC magnets has been known and

qualitatively understood for many years [1,2,3]. Several excellent, sophisticated

numerical codes have been developed to model quench events with sufficient accu-

racy for engineering design purposes [4,5j. These codes are fairly general in their

engineering and physics content. Consequently, they have the advantage of being

able to investigate not only quench propagation, but also other phenomena such
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as stability. However, because of their generality (primarily to evaluate stability,

a short time scale sequence of events) they often require large CPU time/run for

quench simulation (typically several hours of CRAY time for a 3 second quench

simulation), a disadvantage from the engineering design point of view. In fact this

has been the primary motivation for the present work, and has led to a number

of advances in the modelling of quench propagation.

In the past, a significant amount of the analytic work on the problem of

quench propagation in CICC has been carried out by Dresner [3]. In fact, the

quench propagation mechanism due to convection of helium, first considered by

Dresner, is one of the central assumptions of the analytic work of this thesis.

Other assumptions made here, however, differ greatly. Dresner's analysis makes

use of an elegant similarity solution and is thus applicable to long coils. The

specific assumptions introduced in his calculations result in a theory that is valid

for relatively short times and low conductor temperatures (T e5 25 K). As essen-

tially the only existing analytic results treating the problem of quench in CICC

magnets, Dresner's theory is used widely in the superconducting magnet commu-

nity, although often in regimes where it is inapplicable [6] (i.e. the theoretical

assumptions are not satisfied). In our analytic work we make use of some of

the ideas of Dresner, but introduce an alternate set of approximations that make

our solution valid over much longer periods of time (up to and including a full

current dump) and higher temperatures (T ,< 300 K). Our analytic solutions are

least accurate for very short times. The present theory is thus complementary to

Dresner's theory. The main differences in modelling between the two theories of

quench propagation are summarized in the main body of the thesis.
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1.2 Present Work

This thesis is organized in seven chapters. In Chapter 2 a new simple,

self consistent theoretical model is presented that describes the phenomena of

quench propagation in Cable-In-Conduit superconducting magnets. The model

circumvents many of the difficulties associated with obtaining numerical solu-

tions in more general existing models. Specifically, a factor of 30-50 is gained in

CPU time over the general, explicit time dependent codes used to study typical

quench events. The corresponding numerical implementation of the new model

(Quencher) is described in Chapter 3 where the numerical results are shown to

agree very well with those of the more general models, as well as with experimental

data.

In Chapter 4, the Quencher model presented in Chapter 3 is further simpli-

fied by considering a set of justified approximations. These simplifications first

result in a faster quench model (MacQuench) that is suitable for studying quench

on a personal computer (as opposed to powerful work-stations and CRAY super-

computers required by other codes). Secondly, a set of analytic solutions for the

Quencher model is presented. The assumptions and the resulting simplifications

that lead to the analytic solutions are discussed, and the regimes of validity of

the various approximations are specified. The predictions of the analytic results

are shown to be in very good agreement with numerical as well as experimental

results. Important analytic scaling relations are verified by such comparisons, and

the consequences of some of this scaling on currently designed superconducting

magnets are discussed.

In Chapter 5, we present a theoretical model describing quench propagation

in Cable-In-Conduit conductors with an additional central flow channel. The cen-

tral channel is used to enhance the flow capabilities in the conduit during steady

state operation as well as during quench events. Such a system is the proposed

design for certain conductors in the International Thermonuclear Experimental

Reactor (ITER). Here, the additional channel may be formed by a metal spring
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or a porous tube located at the center of the conduit. We describe the separate

thermal evolution in both the cable bundle and the central channel; in particular,

the mass, momentum and heat transfer due to flow between the cable bundle

and the central channel are included in the model. Several simplifications are

introduced which greatly reduce the complexity of the model without sacrificing

accuracy. The resulting reduced model is solved both numerically and approxi-

mately analytically.

In Chapter 6 we apply the tools developed in this thesis to study the quench

behavior of certain conductors in their design phase. The numerical (Quencher

and MacQuench) and analytic results are used and further compared in these

studies. Important conclusions are drawn in regard to the quench behavior of the

various conductors analyzed in this chapter. Finally, in Chapter 7 we summa-

rize the important aspects of the thesis and discuss future directions for further

research in the area of thermal-hydraulics in a CICC.
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Derivation of the Model

In this chapter we describe the quench model that forms the basis of the

thesis. In order to derive this model we start with the three dimensional mass,

momentum and energy conservation equations for the helium together with energy

conservation relations for the conductor and the conduit wall (section 2.1). We

first derive the general one dimensional model in section 2.2 and from this point

we make certain approximations that are shown to be valid for the class of quench

problems under consideration. This leads to the quench model presented in section

2.3 which is used in the remainder of the thesis.

2.1 General 3-D Model

The most general model that describes the thermal hydraulic behavior of the

CICC consists of the three dimensional mass, momentum and energy conservation

equations for the helium, together with the energy conservation equation of the

conductor and that of the conduit wall. The detailed derivation of these equations

from a macroscopic stand point is found in references [1,2], and the derivation of

the helium equations based on kinetic models can be found in [3,4,5]. Below, we

present the governing three dimensional equations for each of the CICC compo-

nents.

The Conductor

The energy equation for the composite copper and superconductor material

in each strand is given by

pcC( V -r,,(Tc)VT, + Q,(Tc, x, t) (2.1)
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where the subscript c stands for the conductor, p denotes the density, T is the

temperature, C is the specific heat, n is the thermal conductivity, and S is the

heat source in the conductor strands. The heat source Q, represents the Joule

heating that takes place in the copper, in regions where the conductor has become

normal. This heat source is discussed in detail in section 2.3. Note that the

subscript j is used to state that Eq. (2.1) is the governing equation of the t'h

strand (1 < J < N, where N is the total number of strands). The V operator

is defined as V = (&/Dx)e. + (a/ay)ey + (&/&z)e., where we take the x and y

directions to represent the cross-section of the CICC, and the z-axis to represent

the axial length along the channel.

The conductor specific heat pcCc and thermal conductivity Kc comprise the

copper and the superconductor contributions. These quantities are given by

pcCC A= 1 [AcupcCc+ AcpcCc] (2.1a)

A A
KC = ACU C + ASC8 (2.1b)

where the subscripts cu and sc are used to denote the copper and the superconduc-

tor, respectively. Also A represents the cross-sectional area, and A, = Ac + Asc.

The conductor properties are further discussed in Section 2.3, where we also dis-

cuss the properties of other material.

The Helium

The governing equations for the helium are the mass, momentum and energy

conservation equations, together with the equation of state. These equations

describe the turbulent (or laminar) flow of the helium in the conduit. In order to

appropriately deal with the turbulent structure of the various quantities we use
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the "Reynolds averaged" mass, momentum and energy equations [1,2,3]. These

equations are given by

±+V-(phvh)=0 (2.2)

Ph + Vh -.V Vh = -VPh V - r, (2.3)

Ph Uh + +V [PhVh (Uh + 2 =

- V -qh - V - (PhVh) - V [Th -V] (2.4)

Ph = Ph(Ph, Uh) (2.5)

where Uh is the internal energy of the helium.

Equations (2.2-2.4) evolve the fluid variables Ph, Vh, and Uh forward in time

(the subscript h is used to denote the helium). Note that for turbulent flow in the

conduit, all quantities correspond to "time averaged", or "Reynolds averaged"

variables [1,2,6-8]. (It is important to note that the averaging procedure for a

compressible gas is defined differently than for an incompressible fluid [7,8].) The

quantities rh and qg include contributions from the Reynolds stress tensor (these

quantities include the contribution of turbulent eddies which greatly influence

both the stress and the heat distribution in the transverse (x,y) plane). The terms

on the left-hand side of Eq. (2.3) describe the helium inertia, while the terms on

the right-hand side represent the pressure gradient force and the friction force. In

Eq. (2.4) the terms on the left-hand side represent convection of heat. The first

term on the right-hand side involves the heat transfer due to turbulent convection

in the cross-section as well as the heat conduction in the z-direction. The last two

19



terms are due to viscous dissipation, and the work done by pressure and viscous

forces. Equation (2.5) is the equation of state for the helium.

The Conduit Wall

The energy equation of the conduit wall is similar to Eq. (2.1) and is given

by

P=V n(T )VT (2.6)

where we use the subscript w to denote the conduit wall. The quantities here are

the obvious analogs to those in the conductor. Here, for simplicity of presentation,

we ignore any heat sources that may be present in the conduit wall.

Before proceeding to obtain the relevant one dimensional equations (in the z-

direction) we must specify the boundary conditions in the (x,y) plane. We delay

discussing the initial condition and the boundary conditions in the z-direction

until section 2.3. The boundary conditions in the (x,y) plane are as follows;

Conductor/Helium Interface

The heat flux boundary condition at the conductor/helium interface is taken

to be the "Newton law of cooling" [1]. This boundary condition states that the

heat flux leaving the surface of a single strand is proportional to hc(Tc - Th).

Here, h, is the heat transfer coefficient, which for most cases, except laminar flow

with a simple geometry, is determined experimentally. Thus we have

n - qc Is = -n -qh(2.7a)
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-n - KcTc = h, TC -- < T, > (2.7b)

where the S, denotes the conductor surface, and n denotes the unit normal vec-

tor to Sc. Equation (2.7a) states that the jump in the heat flux is zero across

the helium/conductor interface. The heat flux qc is defined as q, = -cVTc

(note that the helium heat flux qh is not defined in a similar manner since this

flux includes the turbulent contribution in the (x,y)-direction). Also, note that

the helium temperature in the last term of Eq. (2.7b) is not evaluated at the

conductor/helium interface. This temperature (by definition) is taken to be the

"bulk" temperature of the helium [1,8]. Equation (2.7b) is more of a definition

for the heat transfer coefficient (h,) than a "law". The quantity h, is measured

experimentally and in general is a function of the average helium velocity in the

z-direction as well as the helium temperature and density.

Each vector component of the helium velocity at the conductor/helium inter-

face is zero. The perpendicular velocity is zero since no fluid crosses the interface,

and the parallel velocity is taken to be zero in accord with the "no-slip" boundary

condition. Thus we have

V Is = 0 (2.8)

Equations (2.7) and (2.8) are the required boundary conditions at the conduc-

tor/helium interface.

Conduit Wall/Helium Interface

The heat flux boundary condition at the wall/helium interface is similar to

Eq. (2.7) and is given by

n -q s, n - qh (2.9a)
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-n -wVT, = h- T <Th>) (2.9b)

where S,, denotes the inner-wall surface, and n is the unit normal vector to S,.

Note that the heat transfer coefficient h, used in Eq. (2.9) is in general different

than h, used in Eq. (2.7). This is due to the different helium flow pattern within

the conductor strands compared to the flow near the conduit wall. (The functional

dependence of h, is discussed in section 2.3).

The boundary condition for the helium velocity on the wall/helium interface

is also similar to Eq. (2.8) and is given by

v s" = 0 (2.10)

Conduit Wall/Insulator Interface

The outer side of the conduit wall is taken to be well insulated such that

n, qw = ---n - wVTW s = 0 (2.11)

where Si denotes the outer wall surface. This equation states that zero heat leaves

the most outer radial-boundary of the CICC.

2.2 General 1-D Model

In this section, we derive the one dimensional equations (in the z-direction)

that describe the thermal hydraulic behavior of a CICC. The use of 1-D equations

in place of Eqs. (2.1-2.6) is the natural course to take when considering the large

length to diameter ratio of the conduit. In the procedure that follows we use

a multiple scale asymptotic expansion to derive the desired 1-D model. (For a

simple illustrative example of the multiple scale expansion see appendix A.) We
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define the expansion parameter e = d/L, where L is the length of the conduit, and

d represents the typical scale length in the (x,y) plane. Generally, for a CICC,

L - 100 m and d ~ 10-2 m, which results in e ~ 10~4.

The Conductor

Following the procedure described in Appendix A, we expand the conductor

temperature T, as follows;

Tc(x, y, z, t) = TeO(z, t) + Tc2(x, y, z, t) + (2.12)

where Tc2/Tco - E2 (here - E indicates of the order of E, or O(E) [9]). Similarly,

we expand the gradient operator as follows;

+ -z e, (2.13)

where (&/,9z)/Vjj - E. Using these expansions in Eq. (2.1) and keeping only

the leading order terms (order E0) we find

pcCCo = co + Qco + V1 -KcoVTc2  (2.14)

Here Cco Cc(Tco), and similarly for any other function of temperature f(T),

we have fo = f(To).

In a similar procedure as discussed in Appendix A, we integrate Eq. (2.14)

over the cross-section of the j1 h conductor strand. The result is given by

pCCO cO z + QCO + J VI - KoVITc2 dA (2.15)

where A denotes the cross-sectional area. This equation can be rewritten as
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Pc Cco - so + Qco+ j [n - ieoVLTc2 ] dS (2.16)
O't az __Tz A, sc 1

where we have used Gausses theorem to manipulate the last term on the right-

hand side of this relation. Equation (2.16) is the "solvability condition" (or the

integrability condition) for T,2 . The last term on the right-hand side of this

equation represents the heat loss from the radial boundary of a given strand.

Using Eq. (2.7b) we write this term as follows;

In - coVLT 2] dS - [ hco(Teo- <Th >) dS

= -[hco(Teo- < Th >) Pc,] (2.17)

where [Pc] is the perimeter of the jth conductor strand. We now write Eq. (2.16)

as follows

PC 611eO = (9 8CT, +Qc hCoPc

[PCCO = - c &CO +h+jA (< Th > TCo) (2.18)

This is the one-dimensional heat conduction equation for the jth conductor strand.

The Helium

We follow a similar procedure as above to obtain the 1-D conservation equa-

tions for the helium. The appropriate expansion for the various quantities of

interest are given by

Uh = Uho(z,t) + Uh2 (Xy,zt) +-- (2.19a)

Th = To(z,t) + Th2 (Xy,z,t) + - (2.19b)
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Ph = PhO(Z, t) + ph2(, y, z, t) + (2.19c)

Ph = PhO(Z, t) + Ph2(X, y, Z, t) + - (2.19d)

Vh = VhO(X,y,Z,t) e, +v11(x,y,z,t) + - - - (2.19e)

where for any quantity f we have f,, /fo ~ e". Note that < Th >= Tho. Using this

expansion in Eq. (2.2) and keeping terms of order 0, we find

9phO 0 (.0
+ ( phovho) + PhOVI -V11 = 0 (2.20)

as the leading order mass conservation equation.

To eliminate the last term on the left-hand side of Eq. (2.20), we integrate

this equation over the helium cross-sectional area. The result is given by

PhO + a (Pho 7 VhO dA) + Pho [n -v11 ] dS = 0 (2.21)

The last term on the left-hand side of this equation is zero by virtue of Eqs. (2.8)

and (2.10). Therefore we find

0 pho 49
& + (phoFh3) = 0 (2.22)

as the 1-D mass conservation equation for the helium. The area-averaged velocity

(in the z-direction) is defined as

Ah h f v~,- dA (2.23)
Ah JAh

Before proceeding to the momentum conservation relation we must discuss

the stress tensor Th. This tensor is approximated by various different schemes [6].

In the discussions that follow we assume that

Th = -ITVV (2.24)
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where the quantity PT is the eddy-viscosity which in general is much larger than

the molecular viscosity ph. We assume PT ~ e2 . It should be noted that this

choice of representation for rh is solely for ease of notation. In principle for any

given stress tensor we can consider a separate asymptotic expansion for rh. This

leads to exactly the same results as presented below, with a much more tedious

notation.

In view of the above discussion, the leading order momentum equation in the

z-direction is given by

PhO + Vho ± v+ 1 .v V hL = 0 + bVL ' T±Vh (2.25)

The term Vi - (PTNVJVho), may appear to be a term of order 1/c2. However, for

the class of problems under consideration, due to the small size of pT ~ E2 , this

term is balanced by the zeroth order equation.

Next, we integrate Eq. (2.25) over the helium cross-sectional area to obtain

a a -- 8PhO
(phUi0%) + 5-(Phov20o) = - o + Iss[n -PTVLVhOI dS (2.26)

The last term in this equation represents the friction force between the helium

and the solid surfaces. This force is generally determined experimentally since

the solution of the turbulent flow in the (x,y) plane is not known. In this regard

it is customary to define the friction factor f as follows

fphOI56jK =+- JLT [n -VVhO] dS
2d h -;4 s.+s,

= - [j n -rn], dS (2.27)
Ah sc.+S.

(Note the analogy between this definition and the definition of the heat transfer

coefficient given by Eq. (2.7).) The experimental measurements of the friction
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force are presented in the form of curves of the dimensionless parameter f versus

the Reynolds number R (here R = podh u-/Ph, where Ph is the physical viscosity

of the helium and dh is the hydraulic diameter). The hydraulic diameter is given

by four times the helium area, divided by the total wetted surface in the conduit;

dh = 4Ah /(Pc + P,) where P, is the perimeter of all of the conductor strands

and P, is the wetted-perimeter of the wall. The functional dependence of f is

discussed in section 2.3.

Using Eqs. (2.26) and (2.27), we obtain

& -.- 8 - Pho _ f phoiihih (228)
5phoi o)+ O(phovo) = z 2dh

Note that in this equation an additional unknown vhO is introduced. In order to

continue without requiring additional equations for determining v 0 , we make the

following approximation

2 T2 (2.29)

This approximation is generally satisfied for turbulent velocity profiles in a con-

duit, and to a lesser extent for a laminar velocity profile [2]. (Errors of up to

10 % may be introduced with this approximation, although for quench this whole

term is unimportant.) Using Eq. (2.29), we have

a__ _h_ &PhO fpho IVhO (0ho
PhO + PhoVhO -z Oz 2dh (2.30)

This is the desired 1-D momentum conservation equation for the helium.

Before proceeding to the energy conservation relation we briefly discuss the

heat flux qg appearing in Eq. (2.4). We write qh in the following form

qh = qo ez + qJ. (2.31)

Note that the fluid turbulence takes place predominantly in the (x,y) plane and

thus the quantity qo is given by
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&ThO
qo(z, t) = - ha (2.32)

where Kho is the physical thermal conductivity of the helium. In the perpendicular

direction we assume the following form for qI;

q_ = -rTVITh = -KTVLTh2 (2.33)

where rT is the eddy-thermal conductivity. This relation is analogous to Eq. (2.24).

Again, using other forms for KT does not effect the final 1-D helium energy equa-

tion obtained below.

The helium energy equation to leading order is now given by

Pho Uho + 1 + p [ohovho Uho + Ivo)

[ / 1 2 &ThO
+V1 -Phov± (Uho + Vh O) = -- 9Ko ± + . KTV±Tc2

- (phovho) -- - (phOv11) --- V - [Th -Vh] (2.34)

We integrate this equation over the helium cross-sectional area to obtain

Pho + ho UhO + 1 iO

+ [n - CTV±Th2] dS - -(phoihO ) (2.35)
Ah sc+s '9Z

where we have used Eqs. (2.8) and (2.10) to equate certain boundary terms to

zero. Note that in obtaining this equation we have also assumed

VhO 3 hO (2.36)

based on a similar argument that leads to Eq. (2.29). Furthermore, the left-hand

side of Eq. (2.35) has been rearranged by using the mass relation.
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It is more convenient to consider a different form of the energy conservation

relation involving the helium temperature Th, instead of Uh. To proceed, we

multiply Eq. (2.30) by Uh- and subtract the resulting equation from Eq. (2.35).

The result is given by

( &\ OThO 1
h0 ho + h [nJ - TV TC2] dS

-PPho 
+=h0 &h A [Uh02

(9z + 2dh

Next, we use the thermodynamic relation Uho = Uho(pho, Tho), in order to ma-

nipulate the left hand side of Eq. (2.35) as follows;

(2.37)

__hO _a__hO aPhO + ___ O ThO

PhO ) T. at (a Th0 Pho

aUhO aUhO PhO + Uho ) OThO

S 1PhO ) TO 9Z fTfh0 P az

Multiplying Eq. (2.39) by -i5h and adding the result to Eq. (2.38), we find

(2.38)

(2.39)

UhO _ h (Uho
+ hO 'z ( phI , 7

___ho &ThO __T
Pho Oz +ChO a +VhO )

In deriving this equation we have used Eq. (2.22), together with the definition of

the specific heat at constant volume, given by

Cho = (ThO )
NTh 0 Pui

Next we use the thermodynamic identity given by [1,7]

(2.41)

(Uho
aPhO) T,,,

1 *

= 2 [-Pho + ThO phCO]
PhO
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where

Co - h (phO,ThO) (2.43)
PhO 4Th.

Using Eqs. (2.40) and (2.42) we obtain the following form of the energy conser-

vation equation;

(Tho 19.T40O 0po 2 - 9 ThO
PhOChO + Vhh + PhOThOCPOz =-- _ hO ( T

+ [n - rTV LT2] dS
J c+SW

+ fPhO0- 2  (2.44)
2dh

The final step is to consider a similar simplification as was used in Eq. (2.17).

Such a simplification, together with the boundary conditions given by Eqs. (2.9)

and (2.11) results in

Tho + Th 0 VhO
Ph0ChO + 40Oz ) + PhOCfOThO a

1t N
+ E Pho(Tco - Tho)], + Phwo(Two - Tho)

& Tho 0 PhO ho2
+ ZTo fo + 2dh (2.45)

This is the desired 1-D energy conservation equation for the helium. Note that this

equation is coupled to the N conductor strand equations plus the energy equation

of the conduit wall. Below, after discussing the conduit wall, we present a compact

(usable) form of this equation by performing the sum that appears on the right

hand side. Also note that for a typical flow of helium in the conduit, the thermal

conduction is much less than the heat convection. Specifically, comparing the
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conduction term to the convective term, we have (Kho)Ta/ phoChofTO ~ NhO/

phoChov-hoL, where L is the characteristic length scale in the z-direction. For a

typical flow in a CICC we have, KhO ~ 0.1 W/m-K, pho ~ 100 kg/m 3 , ChO - 1000

W/kg-K, -U-h ~ 1 m/sec, and L ~ 10 m, which results in rcho/phoCouih6L ~ 10-'!

Thus, it is well justified to neglect the conduction term in Eq. (2.45).

The Conduit Wall

The conduit wall is treated in exactly the same manner as the conductor.

Using a similar expansion for T, as given by Eq. (2.12), retaining the leading

order terms in Eq. (2.6), and integrating over the conduit wall area, we have

8wO_ 0 DTwo 1 f
PwCwo =aKwO + J [n - rIw 0V±Tv2 ] dS (2.46)

By using Eqs. (2.9) and (2.46), we find

&Tw ( &Two hwo0P
PuCWO = nKO + (To - Two) (2.47)

This is the desired 1-D heat equation for the conduit wall.

Before proceeding to the quench model, we summarize a more convenient

form of Eqs. (2.18,22,30,45,47), where we perform the summation that appears

on the right hand side of Eq. (2.45).
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Summary of the Conductor Equation

The zeroth-order equations for all the conductor strands are mathematically

identical. This is evident from Eq. (2.18) after replacing < Th > by T o. Thus

we may add all the strand equations to arrive at a single equation for the whole

conductor. This equation is given by

OTI a 02T heP,
PCc(T) -& = 5Kc( T c) - + Q(T, x,t) + A (Th - Tc) (2.48)

where P, and A, are the total perimeter and the total cross-sectional area, re-

spectively, of the conductor. For convenience we have dropped the 0 subscript.

Equation (2.48) is a heat diffusion equation for the total assembly of conduc-

tor strands, each strand assumed indistinguishable from all others. The quantity

Q, is the heat source existing in the conductor strands. This source is due to the

joule heating that occurs in conductor regions where the temperature is above

the critical temperature T c,; that is, in regions where the conductor is normal.

The source is given by

Qc(Tc, x, t) = 7c J2 H(Tc) (2.49)

where J(t) = I(t)/Ac. is the current density in the copper, I(t) is the prescribed

current in the conductor, A,, is the fractional area of A, occupied by copper,

7C (Tc, B) is the resistivity of copper (a strong function of the temperature), B(x, t)

is the magnetic field in the cable, and H is a Heaviside-like transition function from

the normal to superconducting regions. H(Tc) is illustrated in Fig. 2.1. Note that

in this figure the critical temperature is a function of the B-filed; T., = Tc,(B).

Similarly, T,, = T, (I, B). (More information about these quantities may be

found in reference [1] of Chapter 1.)
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Summary of the Helium Equations

The 1-D mass, momentum and energy conservation equations for the helium

are given by

Ph+ (PV)=0 (2.50)

9Vh Vh OPh fph IVh Vh
Ph +Ph - 2dh (2.51)

h OTh &Vh _hcPc

PhCh ( h Vh +PhCVhTh - Ah (Tc-Th)

hwP _ (TT)+ f pvh v (2.52)
Ah 2dh

where for convenience, we have drop the 0 subscript and the over-bars. Again,

the friction factor f(ph, Th, Vh) models the turbulent friction between the solid

components and the helium, and its functional dependence is assumed known

from experimental measurements. The quantity dh is the hydraulic diameter

given by 4Ah /(P. - Pc).

In Eq. (2.52) the terms on the left-hand side represent convection and com-

pressibility, respectively. The quantity Ch(ph, Th) is the specific heat of helium

at constant volume, and C(ph, Th) is defined as C# (l/ph)aph(ph, Th)/&Th

-Ph &S(ph, Th )/&ph where 5 is the entropy. The first two terms on the right-hand

side involve the heat transfer coefficients h, (ph, Th, Vh) and h, (ph, Th , Vh), and ac-

count for the heat exchange between the helium and the solid components. These

coefficients model the turbulent heat transfer taking place in the helium, and

their values are assumed known from experimental correlations. The last term

on the right-hand side of Eq. (2.52) represents the viscous (frictional) heating of

the helium. The thermal conduction in the helium has been neglected because its

value is small compared to the convective terms.
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Summary of the Conduit Wall Equation

The one dimensional energy conservation equation for the conduit wall is

given by

9T, a &T . h vP (2.53)
p C-(T-) = & (T.)-jT + A T Tw)(2.53)

where for convenience we have dropped the 0 subscript. Note that the thermal

properties C. and n, are functions of T.

Equations (2.48-53) describe the basic core of superconducting magnet ther-

mofluid models. Even though they are "only" one dimensional plus time, they are

difficult to solve numerically for quench events, almost always requiring at least

several hours of CRAY CPU time for such simulations. There are fundamental

reasons for these difficulties as discussed below.

Consider the typical parameters characterizing a quench event in a large su-

perconducting magnet. The time scale of interest is ~ 1 see to a few minutes,

during which the quench region expands in length, starting from a few centimeters

and reaching tens of meters in conductors of total length 100-1000 m. During

this time the temperature of the system behind the quench front rises from cryo-

genic values of ~ 5 K to near room temperature. Over this large temperature

range several of the thermal properties of the system (Cc, C., 7) increase by two

to three orders of magnitude. This is the first of the computational difficulties.

Next, note that the dominant mechanism for propagating the quench front

in a CICC is convection of helium. The joule heated normal conductor heats the

adjacent helium which is then convected away from the quench zone. The leading

edge of the hot gas then heats conductor material still in its superconducting

state ahead of the quench zone. This heat causes the conductor to go normal thus

increasing the size of the quench zone. Essentially, the high temperature helium
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gas expands like a bubble against the cold helium ahead of the quench front,
thereby propagating the quench as it comes in contact with the cold conductor.

Typically, the quench front may be several centimeters wide out of total conductor

length of 100-1000 m. This narrow moving boundary layer is the second of the

computational difficulties.

The third computational problem is a consequence of the fact that typical

quench velocities are of the order 1-10 m/sec, which are much slower than the

speed of sound c in the helium: Vh/c ~ 0.01. Thus, explicit time advance algo-

rithms require a very large number of integration time steps (~ 104), because of

the Courant condition, significantly increasing the CPU time required.

The final difficulty is a result of the high heat transfer between the conductor

and the helium arising from the large wetted-perimeter of the combined conductor

strands. The net effect is that the thermal coupling terms ~ hc(T, - Th)/dh in

Eqs. (2.48) and (2.52) are characterized by h/dh -+ o, Tc - Th --+ 0, the classic

situation of a mathematically stiff set of equations.

To summarize, the one dimensional core model presented here will be shown

to accurately describe a variety of phenomena in superconducting magnets in-

cluding the important problem of quench propagation. However, numerical sim-

ulations using the full model are costly in terms of CPU time because of four

problems,

1. Large variations in the physical properties.

2. A very narrow moving boundary layer.

3. Highly subsonic flow velocities.

4. High heat transfer between the various CICC components.
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2.3 The Quench Model

The numerical difficulties just described can be greatly alleviated by focussing

attention solely on the phenomena of quench. As a result, additional analytic

approximations can be made which exploit the subsonic flow velocity and high

heat transfer characteristic of quench in long CICC. Furthermore, a sophisticated

numerical solver discussed in chapter 3 substantially reduces the difficulties asso-

ciated with the moving boundary layer. This solver also has no great difficulty

treating the large variation in the material properties.

In this section we describe the analytic approximations used to simplify the

general model and show that the errors involved are indeed small for engineering

purposes. The numerical issues are discussed in the following chapter.

High Heat Transfer Approximation

During the quench process in a CICC the heat transfer between the conductor

and the helium is very high. This is due to the large wetted-perimeter of the

conductor (P, ; 1 m) in contact with the helium, as well as the high value

of the heat transfer coefficient h, a 1000 W/m 2 -K. For example, consider an

assembly of conductor strands with A, ; 10' m2 , pcCc ; 106 W/m 3 - K, and a

characteristic quench time scale -r - 5 sec. Next, balance the time derivative term

on the left-hand side of Eq. (2.48) with the heat transfer term on the right-hand

side. We find (Th -Tc)/Tc ; AcpcC 0 /h0 PT 0.02. The high heat transfer forces

the temperature difference between the conductor and the helium to be small. We

exploit this fact by annihilating the heat transfer terms in Eqs. (2.48) and (2.52)

(by adding appropriate linear combinations of the two equations) and then setting

T, P T = T. This results in a single energy equation for T, the temperature

of the conductor and the helium. We have thus eliminated mathematically stiff

terms from the system.
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A related problem associated with mathematical stiffness concerns the con-

duit wall. Its thermal conductivity is generally small. Typically, nw/nc ~ 10-3

1, which justifies neglecting the conduction term in this equation. Doing so elim-

inates another mathematically stiff term from the system.

Note that in general the heat transfer between the helium and the conduit is

not as good as for the helium and the conductor since P, < Pc. The implication

is that the conduit temperature can lag behind the helium temperature by a finite

amount. Hence, it is not a good approximation to set T, z Th as was done for the

conductor. It is for this reason that the quench model maintains two temperatures

T and T,.

The Subsonic Flow Approximation

The helium flow characteristics in the CICC are dominated by the friction

between the cable strands and the helium. The friction force is quite high due to

the small hydraulic diameter of the channel (typically dh 10-3 m), and in the

momentum equation it is balanced primarily by the pressure gradient force. In

other words, the helium inertia pdv/dt is small compared to either of the terms

on the right-hand side of Eq. (2.51). As an example consider a helium density of

100 kg/M 3 , v - 5 m/sec, r ~ 5 see, L e 100 m and a pressure drop of Ap - 10

atm. Comparing terms we have pvL/Ap -r 10-2. On this basis, the helium

inertia is neglected in the momentum equation. In terms of wave propagation,

the large friction and corresponding subsonic flow velocities cause sound waves to

be highly damped in these channels.

In order to place these arguments on a more firm ground we consider a

mathematical justification of neglecting the helium inertia. For simplicity we

consider the adiabatic flow of helium in the conduit (the non-adiabatic case leads

to the same conclusions). The mass and momentum conservation relations are

given by Eqs. (2.50) and (2.51), repeated here for convenience;
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&Ph 0
+ (pho) = 0(2.54)

5jh +o (Ph Vh h =h 0

PVh + Phh p v - h (2.55)
5i &z 2dh

For an adiabatic flow, this system is mathematically closed by noting that the

entropy §h = S0 = const. We consider normalizing Eqs. (2.54-55) by using the

following definitions # ph/po, V Vh/vO, P Ph/po, i z/L, and i tvo/L.

Here, po, po and vo are taken to be the characteristic density, pressure and flow

velocity of the helium in the conduit. The typical scale length in the axial direction

is represented by L. Note that for a given quantity f, the normalization is such

that f ~ 1. By using these definitions, Eqs. (2.54) and (2.55) can be rewritten as

/2  o + - + - =0 (2.56)

/86 -86\ po/po /L+v p v P/( 8) z ( (2.57)

where we have eliminated the helium density in terms of the pressure through the

thermodynamic relation Ph = Ph (So, Ph). The quantity c is the speed of sound in

the helium defined as

c ap Ao 1/2 (2.58)
aph$

From Eqs. (2.56) and (2.57), we now easily obtain the condition that allows

the neglect of the helium inertia. This condition is given by

fL > 1 (2.59)
dh V02

During a quench in a typical CICC, po 5 x 10 5 N/M 2 , po 100 kg/M 3 , and vo

5 m/sec, which results in po/povg - 200. It is important to note that the flow of
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helium in the conduit is highly compressible since the quantity po/poc2 , appearing

in Eq. (2.56) is of order unity. For a flow to be considered incompressible we must

have po/poc2 < 1. Thus neglecting helium inertia does not imply an infinite

sound velocity in the helium. Even so, sound propagation in the form of waves

is no longer admitted when we neglect the inertia term. For a compressible gas,

Eq. (2.59) corresponds to having a low Mach number flow in the conduit.

A somewhat subtle question arises in regard to observing the flow variables

such as vh at some distance x = L away from the zone of "action" x = 0. The

speed of sound time delay (L/c) is not present in the solution when inertia is

neglected (typically c ~ 200 m/sec). Thus, for a certain period (until the sound

wave reaches x = L) the solution for, say Vh, is unphysical for this case. This issue

is discussed in detail in Appendix B, where we show that for low Mach numbers,

and for t > L/c the solution obtained by neglecting the inertia is an excellent

approximation to Vh.

Neglect of the helium inertia allows us to eliminate the shortest time scale

from the problem (i.e., sound wave propagation time scale). Thus, the quench

event can be followed on the helium velocity time scale, which is approximately

two orders of magnitude slower.
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The Quench Model

In view of the above simplifications, the final quench model reduces to

p+ (p)=0 (2.60)

Op fpv1V1 (2.61)
1z 2d.

02'T - T 07 v 0 &
pC1 f + PlaVOT + popT -a = , 6T + Q(T, z, t)

+ h T. - T) + kAC} fp V2 (2.62)

p =p(p, T) (2.63)

0T. hP.
P.C. aT. ~A. (T -- Tw) (2.64)

where Ch = (Ah/A,)Ch,3 = (Ah/Ac)Cp, C = Ch + (p,/p)Cc, r, = K. and

Q(T, z, t) is given by Eq. (2.49). For convenience, the subscript h has been sup-

pressed from Ph, Th, and Vh. We also use h in place of h, since this is the only

heat transfer coefficient that appears in the model. Equations (2.60-64) represent

the desired, simplified, quench model, hereafter referred to as "Quencher."
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Boundary and Initial Conditions

As stated, the primary goal of Quencher is to simulate quench events in

superconducting magnets. To accomplish this an appropriate set of initial and

boundary-conditions must be provided. The conditions chosen generate a quench

by a three-step procedure. First, the system is initialized with profiles representing

"standard steady state operation;" the entire magnet is superconducting and no

external sources are present. Second, a high power pulse, localized in space and

time, is applied to raise the corresponding local temperature above the critical

temperature. Third, after the source is removed, the local quench just initiated is

allowed to propagate along the coil. It is the detailed behavior of this propagation

that is our primary interest.

The actual specification of the initial and boundary-conditions is somewhat

complicated, since Quencher describes the behavior of a composite material (i.e.

conductor plus helium). Thus standard conditions for a single material may be

inappropriate. Even so, it is clear from the basic mathematical structure of the

model that three initial-conditions and four boundary conditions are required; the

helium/conductor equations have a double set of parabolic characteristics while

the wall equation is a simple initial value problem.

Consider first the initial conditions which correspond to "steady state opera-

tion." The simplest case corresponds to the situation where the helium is purely

static. For such operation the initial conditions are given by

p(z,0) =po = const.

(2.65a)

T(z, 0) = T,(z, 0) = To = const.

where po and To are input parameters. As expected, the Quencher model then

implies that p = p(po, TO) = const and v = 0 for steady state operation. A more
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general case allows forced flow of the helium in the conduit. In this case the

helium pressure at both ends of the conduit are specified, and for most situa-

tions of interest, the coils are sufficiently long so that the pressure, density, and

temperature gradients are weak. The steady state equations can then be solved

numerically by simply setting the time derivative terms to zero (in Chapter 3 we

present the numerical scheme used to solve these equations). This steady state

solution is then used as an initial-condition for the quench problem. In chapter 3

(see section 3.1) we discuss the forced flow initial conditions in detail.

Assume now that appropriate initial conditions have been specified. The

next step is to add an external high power, short duration, spatially localized

heat source Q = Qzt to. the energy equation in order to raise the conductor

temperature above T.. In Quencher, Qxt has the form

Qezt (Z, t) = Qo exp[-3(z - zo) 2 /L'] 0 < t < ti. (2.66)

Equation (2.66) describes a Gaussian pulse, centered at z = zo of width LqVF.

The total power input is approximately equivalent to that of a rectangular pulse

of amplitude Qo and width Lq. For large coils, typically Qo ~ 108 w/m 3. The

source length Lq - 0.1 - 20 m out of a total length of 200 - 1000 m indicating

a strong spatial localization. The pulse duration t, ~ 10-3 sec, which is much

shorter than the characteristic quench time - 1 - 10 sec. For t > ti the external

source is eliminated, and the local quench just initiated is allowed to evolve over

the long quench time scale. This is the regime of primary interest.

In order to evolve the system from its initial state over both the initiation

phase 0 < t < t1 , and the quench phase ti < t 6 10 sec, appropriate boundary

conditions must be supplied. The boundary conditions are slightly subtle for

two reasons. First, conditions must be provided that allow for both inlet and

outlet flows, including a smooth transition from one to the other (e.g. when a

quench induced pressure pulse forces helium out of the inlet channel). Second, the

presence of the thermal conductivity requires an additional boundary condition
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since the order of the system has been raised by one. This condition, however,

on physical grounds seems an extra one, with no natural way for its specification.

These difficulties are resolved as follows.

To begin, we specify the pressure at both ends of the channel. These are

standard conditions, valid for both inlet and outlet flows. For an inlet situations

(e.g. forced flow) we also specify the inlet temperature. Consider now the effect

of thermal conductivity. During a quench two narrow oppositely moving fronts

propagate away in each direction from the heating source. Each front is actually a

boundary layer whose width is determined by the thermal conductivity. If thermal

conductivity is not included, discontinuities appear in the solution, making it more

difficult to solve numerically.

Even so, either behind or ahead of the front, the thermal conductivity has

a negligible effect. To see this, note that the ratio of thermal conduction to

convection is given by (IT')'/(phi hvT') - r/Ph OvL. Behind the quench front

. - 1000 W/m-K, Ph ~ 10 kg/m', C h - 3000 J/kg-K, v ~ 1 m/sec and L ~ 10

m indicating that K/ph(hvL ~ 3 x 10-3. Similarly, ahead of the quench front

K ~ 1000 W/m-K , Ph - 100 kg/m 3 ,h - 3000 J/kg-K, v ~ 5 m/sec and L ~ 100

m giving K/ ph hvL - 7 x 10-.

We see that what is required at an outlet is a boundary condition that al-

lows the thermal conductivity to play its role in the quench front, but does not

introduce an undue artificial influence at either end. This goal is achieved by the

nonstandard condition of setting (KT')' = 0 at an outlet of the channel, which

is clearly consistent with the idea that thermal conduction is unimportant ahead

of the front. Other boundary conditions involving T or KT' directly, introduce

spurious boundary layers at the outlet. The condition (KT')' = 0 allows both T

and KT' to float freely, thereby assuming their natural (physical) values. In Ap-

pendix C we consider a simple "model-problem" to illustrate how this boundary

condition differs from, and is more accurate than some of the other boundary

conditions (i.e. T' = 0). Note also that the smallness of K makes the equations
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mathematically stiff. However, the global nature of the collocation procedure

discussed in the next chapter has no difficulty whatsoever with this problem.

In summary, the boundary conditions used to initiate and evolve the quench,

with either static or forced flow, are given by

p(x = 0) = pi (2.67a)

p(x = L) = po (2.67b)

& &T
T(x = 0)= T (inlet) ; ( -- ) (outlet) (2.67c)

0

& &T
T(x = L) = T, (inlet) ; (r, Oz) (outlet) (2.67d)(9z az

L

where depending on whether x = 0 and x = L are an inlet or and outlet, the

appropriate "inlet" or "outlet" conditions are used in Eqs. (2.67c) and (2.67d),

respectively. The initial and boundary-conditions used in the Quencher model

are further discussed in Chapter 3, where the numerical implementation of these

conditions are also presented. This completes the mathematical specification of

the boundary conditions.

Material Properties

In order to obtain a numerical solution to the Quencher model, it is necessary

to evaluate the material properties that appear as coefficients in the equations.

This is more or less straightforward with the exception of the heat transfer coef-

ficient as shown below.

To begin, note that the properties of helium including p, Op/Op, Op/OT, -h,

Ph, Ch and C,, which are all functions of p and T, are available as library routines.
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Similarly, the basic properties of the cable and conduit wall c,, mc, Cc, C", which

are functions of T, are also readily available in library form. The properties of

the cable actually model the composite copper-superconductor strands; that is

pcC = 1[AcupeuCcu + Aac pcCsc]

Ac,

c ~ Ac Icu (2.68)
A C

and Ac = Acu + A,c. In addition, the critical temperature of the superconductor

TC, = Tc,(B, I) is known experimentally. The properties thus far discussed are

accurate to within ±10%.

The next quantity of interest is the Darcy friction factor f. Experimental

observations [11,12] indicate that in the regime of interest f can be approximated

by

0.184
f _ k 0. 2  (2.69)

where R = pvdh/Ph is the Reynolds number and Ph (p, T) is the helium viscosity.

The quantity kf is a constant whose value depends upon the roughness of the

solid surface in contact with the helium. For typical CICC channels kf ; 3. It is

believed to be accurate to within +20%. In Fig. 2.2 we show how the measured

values of f for a CICC compare with the friction factor in a circular pipe (i.e. the

usual Moody chart). This figure is taken directly from reference [12].

Before proceeding, some important issues must be discussed in regard to

Eq. (2.69). In the literature, there are a large number of different correlations for

f [8]. Anyone of these correlations can easily be substituted in place of Eq. (2.69)

and the numerical procedure discussed in chapter 3 will have no difficulty with

this replacement. We have chosen Eq. (2.69) because of its simplicity, considering
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that many other, only slightly more accurate correlations require the solution of

transcendental equations. More importantly, all the parameters of interest during

a quench event are insensitive to the particular representation of f. This fact will

be clearly demonstrated in chapter 5, where it is evident from the analytic results

that quench propagation is indeed a very weak function of f. It is important

to note that Eq. (2.69) is most appropriate for turbulent flow of helium in the

conduit. This is the case in the region outside of the quench zone where typical

Reynolds numbers are of the order of 5 x 10'. In the center of the quench region

the helium flow is much closer to the laminar regime. However, in this region the

helium density is rapidly depleted and therefore the friction force is nearly zero.

Thus, use of Eq. (2.69) in the quench region does not introduce any substantial

error since the friction force itself is negligible.

The final quantity of interest is the heat transfer coefficient h defined in terms

of the Nusselt number N as follows

h = N (2.70)
dh

Here, Kh (p, T) is the thermal conductivity of helium. For typical flow velocities

v ~ 1 - 10 m/sec, the Reynolds number is sufficiently high (i.e. R > 10') along

most of the coil that the turbulent Nusselt number Nt would appear to be the

appropriate choice for Eq. (2.70). The value of Nt most often used in CICC design

is a modified form of the Dittus-Boelter coefficient given by [8,12,13]

Nt = 0.026 R 0 8 p0*4 (T)O 716 (2.71)
T.

where P = hCpCh is the Prandtl number. Equation (2.71) is valid if R >104.

Just as in the case of the friction factor, there are a large number of correla-

tions for the Nusselt number [8]. In regard to Eq. (2.71) it is important to note

the following: (1) this representation of Nt is used to describe the heat transfer

between the helium and the conduit wall. For this purpose, the equation is rea-
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sonably accurate.1 (2) Equation (2.71) is particularly valid in the region outside

of the quench zone where the helium flow is highly turbulent. In this region,

however, there are no external heat sources (of substantial magnitude) present

in the system. Thus, for a wide range of values of the heat transfer coefficient,

the helium and the conduit wall temperatures are approximately the same since

they were set equal initially. That is, the particular representation of the Nusselt

number in this region does not greatly effect the accuracy of quench propagation

properties.

Somewhat surprisingly, Eq. (2.71) is often not valid behind the quench front

where the rapid depletion of helium can lower the density by as much as two

orders of magnitude. At these low densities the Reynolds number is typically

R - 500 - 3000; that is, in the important region where joule heating takes place,

the flow is essentially laminar, characterized by a Nusselt number [1,8]

Ne = 4. (2.72)

This equation represents the heat transfer between the wall and the helium for

laminar flow in a conduit, or in concentric cylinders [8]. Unlike Nt, the quantity

N greatly influences some of the important parameters during a quench event.

Specifically, the maximum temperatures during a quench are substantially ef-

fected by Nf. The value of this parameter, chosen in Eq. (2.72) is believed to be

reasonably accurate in the quench region [8]. Other major quench codes [14,15]

choose the value of Nt = 8. This difference is not yet fully agreed upon in the

quench community.

' The heat transfer between the conductor and the helium is not very accu-
rately modeled with this equation, since the geometry for the helium flow among
the strands is quite different than the flow near the wall. The Quencher model
has eliminated this difficulty as discussed earlier in this chapter: that is when
Pchc/Ac is sufficiently large, the temperatures are nearly equal and independent
of the specific value of h,. In the general models, where the conductor temper-
ature is different than that of the helium, other correlations should be used for
h,. To the authors knowledge this has not been done in the two major computer
codes [14,15] that have been developed to study general CICC behavior.
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In the so-called transition region between 2 x 103 , R e104 there is a sparsity

of data and the detailed behavior of the Nusselt number is not well known. The

Quencher code uses a hybrid model for N to substitute into Eq. (2.70). It has

the form

1/2+ N/ 2 ( R2Re Re)v2
N = (NtNt)1/ 2 N + Nt RR/R ) (2.73)

Nt12 + N1/2( 2R e)|

where Re = 2 x 103 and Rt = 104 are the transition Reynolds numbers. The

quantity v is an arbitrary parameter that sets the steepness of the transition

from laminar to turbulent flow. A plot of N vs. R for various values of v is

shown in Fig. 2.3. Note that as R -+ 0, then N -+ N1. Similarly as R -+ oo, then

N -- Nt. These are the appropriate limits. In practice most of the quantities of

interest are insensitive to the value of v. In Quencher the value of v is chosen to

be v = 4.

This completes the discussion of the material properties.
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Figure 2.2: Dependence of the friction factor f on the Reynold's number R. Note

that the Fanning friction factor, by definition is given by f f/4. (This figure is

taken directly from reference [12].)
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Numerical Solution

In this chapter we first describe the numerical procedure to solve the Quencher

model (section 3.1). Next, in section 3.2 we make extensive comparisons between

the numerical solution of the Quencher model and other existing general computer

codes, and finally in section 3.3 we compare the Quencher results with experimen-

tal data. For reference we summarize the Quencher equations [Eqs. (2.60-64)]

below;

ap + &
+j (pV) = 0 (3.1)

_p fpvlvj
- (3.2)ax 2dh

- &TOT v C9 8
pC + p hV- + p6pT -= "T-- + S(T,x,t)

hP. sfpvv+ (T. - T) + fPIV2  (3.3)
A, A, 2dh

p = p(p,T) (3.4)

T hP
pC. = (T - Tw) (3.5)

where all the variables have been defined in Chapter 2 and are also summarized

in Table 3.1. For convenience, we have replaced the variable z by x and also S is

used in place of Q to represent the heating source. The source term S in general

consists of the external heat source given by Eq. (2.66) as well as the Joule heating

term given by Eq. (2.49).
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t time
x axial length along the channel

p helium density
v helium velocity

p helium pressure
T helium/conductor temperature

Ch specific heat of helium at constant volume

C p (1 /p)(9p/fT)
C. (1/T)(ap/&p)
Ah helium cross-sectional area
dh hydraulic diameter for helium flow

PCU density of copper
Cc specific heat of copper
KCU thermal conductivity of copper
r7CU electrical resistivity of copper

AcU copper cross-sectional area

P8c density of superconductor
Cc specific heat of superconductor

ABC superconductor cross-sectional area

Pw density of conduit wall
T. conduit wall temperature
CW specific heat of conduit wall
A,, conduit wall cross-sectional area

PW wall perimeter in contact with helium

Ac Acu + ABC

K ( Acu/Ac )neu
r7C ( Ac / Ac)r7cu

6h ( Ah /A,) Ch

Cp (Ah/Ac)Cp
pc CC ( Acu pcuCcu + Asc pscCsc)1Ac

pC O + PcCe P

f friction factor [see Eq. (2.69)]
h heat transfer coefficient [see Eqs. (2.70-73)]
S ricJ 2 H + Se.t [see Eqs. (2.49) and (2.66)]

Table 3.1: Parameters used in Eqs. (3.1-5).



3.1 Numerical Procedure

In choosing the appropriate numerical procedure to solve the Quencher model

it is important to first consider the mathematical nature of the equations. Be-

low, we show that the Quencher model consists of a set of parabolic differential

equations.

Nature of the Equations

Quencher is a set of nonlinear, coupled one dimensional plus time partial

differential equations. Before proceeding with the analysis, we mention that it

is not difficult to observe the parabolic nature of the Quencher model by simply

expanding Eq. (3.4) in terms of the density and temperature, through the equation

of state. Next, solving the resulting equation for v in terms of T and p, and

then substituting v(p, T) in the mass and energy equations we find two equations

(neglecting the conduit wall) for the two unknowns p and T. These equations

both involve the time derivatives (&/&t) of p and T as well as the second order

spatial derivative 82 /8x2 of these variables. This is a classic characteristic of a

parabolic system.

We now take a different, more systematic approach in order to investigate

the nature of the Quencher model. This is done by using a linearization process.

That is, we consider the following expansion for the various variables;

T = To + T1(x,t) +- (3.6a)

p = po + p(x, t)+-. (3.6b)

P = Po +P1(xt) +- (3.6c)

V = VO + V1(Xt) + -(3.6d)
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For simplicity, and without loss of generality we assume that no conduit wall

is present in the system. Note that in general the zeroth order quantities are

functions of x and t.

Using the above expansion in the Quencher model, and considering the case

9Q1 >(3.7a)
at

__1 OQo
> a(3.7b)ax ax

for any quantity Q, we find

p+ PO +0 0 (3.8)axP~ V ax

'OPI f 1V
ax -dh (piv + 2povovi) (3.9)

aT1  aT1 av1  a 2 T1 (
PoCo- + poChovo + poCpoTo- 9X (3.10)

p j i + 1 (3.11)

Note that f = fo = f(Ro).

Considering an infinite domain in x, we write the general solution for any

quantity Q, as follows;

Q,(x, t) = Q, exp(ikx - iwt) (3.12)

where 1 is a constant. Using this form for the solution of Eqs. (3.8-11) we find,

as a solvability condition, the following dispersion relation;

(ak2 - I) -- I = -I ic (3.13)
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where a, b, and c are defined as follows

a = (3.14a)
PoCto

b = fV0 (3.14b)
dh(po/&po) (3.

C= 0 (1po/To)To (3.14c)
C&0 (Opo/&Po)Po

We now assume that the wave length k is a given real quantity. Thus, we proceed

to solve Eq. (3.13) for the frequency w. We find that both roots of the quadratic

Eq. (3.13) are complex numbers;

w . 1+ab+c 4ab 1/2(
- = - b 1+- ~ 1 ( b+ (3.15)k2=' 2b (1 + ab +C) ) I

These equations conclude that the Quencher model consists of a double set

of parabolic characteristics. Having determined the nature of the Quencher equa-

tions we now proceed to outline the numerical procedure that is used to obtain

the solution of these equations.

Numerical Procedure

After testing several possible numerical methods, we selected the procedure

described below because of its speed and robustness. In essence, the method

utilizes a fully implicit time advance algorithm which transforms the model into

a set of ordinary differential equations at each time step. These ODE's are then

solved by a global collocation procedure [1,2,3].

The time advance is accomplished by a standard, second order accurate al-

gorithm as follows. Assume all quantities are known at times t and t - At. To
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evaluate the time derivative of any quantity Q at the new time t + At, we ap-

proximate

(() L2 Q [3Q(t +At,x) - 4Q(t,x)+ Q(t - At,x)] (3.16a)

This equation may also be generalized to the case in which the time step At is

not a constant. In this case for given values of Q at times t - At, and t, we find

the time derivative of Q at time t + At 2 as follows;

8Q 1L L2 Q - [aQ(t + At 2 , x) - bQ(t, x) + Q(t - At,, x)] (3.16b)

where a, b and c are given by

a (At + At 2 )2  (3.16c)
(At 2 )2

b =(At1 + At 2 )2  (3.16d)
(At 2)2

Ati
C = (At1 + At 2 ) (3.16e)

At2

Equation (3.16b) may easily be derived by simple application of Taylor's theorem.

Note that for At, = At 2 , Eq. (3.16b) reduces to Eq. (3.16a).

This is substituted into the quench model. All the variables and coefficients

in the non-time derivative terms are evaluated at t +At; that is, the time advance

is purely implicit. After defining a new variable q = -r(T)&T/&x, we can rewrite

the quench model as a set of first order ordinary differential equations of the form

du
= F(x, u) (3.17)
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where the vector u is given by

U T(3.18)

and F is given as

F= I f lvv pCf'6q (3.19)F1= T 2d,

1
F 2 = -- (L 2 p + vFI) (3.20)

P

F3 - q (3.21)

F4 =S(T) - SW -pL 2T+ Chpvq -g8pTF 2 + A fPVIV2
K A, 2dh

All terms have been previously defined except C, and S,. The quantity Ca is

defined as Ca = (1/T)Op(p, T)/&p. The term S, represents the coupling of the

conductor/helium with the conduit wall. It is found by explicitly solving Eq. (3.5)

using the time advance algorithm described above, evaluating the material prop-

erties at the previous time step. Thus,

T(t + At) + e[4Tw(t) - Tw(t - At)] (3.23)
T(t + At) = 1 + 3(

where e = (A./hP.)(p.C./2At) is evaluated at t (this is an implicit/explicit

method for the wall). The coupling term then becomes

hP~
S,,(t + At) h, g (T - T,,)

hPw 3T(t + At) - 4Tw(t) + Tw(t - At) (3.24)
A, 1 + 3E(t) (
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Note, as hP./Aw -+ oo, then E -+ 0 and T, -+ T implying that

Sw __ (A,/Ac)pwCL 2 T.

As expected, in this limit S, just adds a wall contribution to the combined heat

capacity Ot.

Equation (3.17) represents the basic set of equations to be solved at each time

step. Before discussing the procedure used in Quencher observe that this equa-

tion constitutes a fourth order boundary-value problem. Thus, four boundary

conditions are required to obtain the solution. Furthermore, Eq. (3.17) is also a

mathematically stiff system of ODE's. This stiffness is due to the thermal conduc-

tivity term as well as the 1/At terms appearing in Eqs. (3.19-22). Thus, explicit

shooting methods are inappropriate as a solution procedure. Implicit shooting

schemes do appear to be appropriate, but we have not found standard packages

for this purpose. Most existing ODE solvers that utilize shooting methods use an

explicit scheme.

In view of the above discussion we choose "global schemes" instead of shoot-

ing methods [2,4]. A finite difference global solver is available in both the NAG

and IMSL libraries. Both of these solvers are based on the numerical procedure

outlined in reference [4]. We have found this procedure to be inefficient, however,

because of its inability to remesh the problem at every time step. This solver does

introduce additional mesh points into the problem in order to obtain the specified

accuracy of the solution. However, the solver does not remove the additional mesh

points from regions where a large number of mesh points are no longer needed.

This poses a very serious difficulty, since as time increases the number of added

points become prohibitively large. Furthermore, this solver has not proven to be

numerically robust, often having convergence problems from one time step to the

next.

The numerical solver in Quencher makes use of a sophisticated collocation

procedure developed by U. Ascher et al. [1-3]. This procedure also falls in the
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category of "global schemes". We do not attempt to describe the details of the

numeric of this package since this is done in reference [1-3]. It is important to

note that this package has the distinct advantage of rapidly and automatically

remeshing the problem at every time step in accordance with the motion of the

quench front. As an example, a typical mesh might contain 150-200 points with

the narrowest spacing corresponding to 1 cm out of a total simulation length of

1000 m. The mesh redistribution is vital to achieve both a high computational

efficiency and an accurate solution to the problem. To demonstrate the value of

remeshing consider the temperature and density profiles at time t = 10 seconds

during a quench in a typical CICC. In Fig. 3.1a-b we show the temperature and

the helium density profiles, respectively, as obtained by Quencher. In these figures

we have plotted the actual mesh points used in the calculation at this particular

time step. Note the distribution of mesh points along the length of the conductor.

The boundary layer at the location of the quench front can be observed in these

figures. In addition to the remeshing capability the collocation procedure has

proven remarkably robust, converging over a wide class of applications using a

wide range of time steps.

Boundary and Initial Conditions

In this section we discuss the numerical implementation of the initial and

boundary conditions used in Quencher. As discussed in Chapter 2, the most

general, and important case to be considered is one in which before the initiation

of quench the inlet and the outlet pressure as well as the inlet temperature of the

helium are specified. Thus at t = 0 there exists a flow field in the conduit with a

corresponding temperature, pressure, velocity and density distributions. In order

to obtain these distributions we use the following boundary conditions

63



p(x = 0) = Pi3

p(x = L) = po (3.25b)

T(x= 0) = Ti (3.25c)

a(n- ) =0 (3.25d)
L

where pi, p, and Ti are specified constants. Let us further describe the boundary

condition given by Eq. (3.25d). In order to implement this condition we set

F4 (uj, u 2 , u 3 , u 4 ) =0 (3.26)
x=L

where F 4 is given by Eq. (3.22).

At this stage we run the code for a few time steps (~ 10) until steady state

is achieved. That is, no changes (in time) occur in any of the parameters. The

time scale to reach such a steady state is of the order of L/vi, where vi is the inlet

helium velocity and L is the length of the channel. For a typical background flow

in a CICC a good priori estimate for vi is given by v? ~ (2db/fP2)(P - po)/L,

where pi = p(pi, T ) is a known quantity and f may be approximated by a constant

(f ~ 0.08). This is the procedure used to initialize Quencher.

Once steady state is reached we may proceed to simulate the quench event.

The steady state solution just obtained now serves as the initial condition (t = 0)

to the Quencher model. From this point the boundary conditions are given by

p(x = 0) = p (3.27a)

p(x = L) = pa (3.27b)

T = T (vi > 0) ; ( -) (vi < 0) (3.27c)
9z C0z

0
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a(O T) =0 (3.27d)
L

where again Eq. (3.27c) (for vi < 0) and Eq. (3.27d) are enforced by setting

F4 = 0 at x = 0 and L, respectively. In Eq. (3.27c) the inflow condition vi > 0 is

used as long as the inlet velocity vi is positive and the outflow condition vi < 0

is used otherwise (here we take the usual case in which pi > p,). Note that the

value of vi at any given time step depends on the helium velocity profile at that

time step. Thus vi is a function of time which the code solves for. The value of

vi is monitored during the time evolution of the system in order to determine the

time at which flow reversal occurs.

In order to demonstrate these points consider a non-quench scenario in which

a low amplitude heat source Set is substituted in place of S in Eq. (3.3). The

conductor considered here is a 260 m sample of a conductor similar to the one

discussed in section 3.4. We use the following form of Sez,;

,.t = So exp [-6(1 - 2x/L)2 ] (3.28)

where we choose So = 2./ACU W/m 3

In Fig. 3.2a we plot the temperature profile at various time steps during a

12 sec evolution of the system. Note the temperature profile at time t = 0. The

outlet temperature at t = 0 is greater than T due to the frictional heating of the

helium in the conduit. Also observe that the outlet temperature is increasing as

time increases since the high temperature helium from the heated region in the

conduit starts to leave the system at x = L. The inlet temperature, however,

remains at T = T, until flow reversal occurs at the inlet of the channel. After

this point the temperature at x = 0 also starts to increase by the same reasoning

as for the temperature at x = L. In Fig. 3.2b we plot the density profile at

various times steps. Again, note the profile at t = 0. In Fig. 3.2c we show the

velocity profile at various time steps. In this figure the phenomena of flow reversal

is clearly demonstrated. In such an event the pressure at a location inside the
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conduit exceeds the inlet pressure which reverses the flow of helium toward the

inlet-section of the channel. Figure 3.2d shows the helium pressure profile for

this case. In Fig. 3.2e we plot the quantity q given by q = -(rT')'. Note how

at both ends of the conduit (x = 0, L) this quantity varies as a function of time.

From Figs. 3.2a and 3.2e, in accord with the discussions presented in section 2.3,

observe that both the heat flux and the temperature (for an outflow) are allowed

to float.

The mass flux rh = Ah PV is shown in Fig. 3.2f where we observe that at t = 0

(the initial profile) this quantity is a constant. Finally in Fig. 3.3 we plot the inlet

velocity as a function of time in order to further demonstrate the phenomena of

flow reversal. Observe that at t ; 1.8 seconds the value of vi goes to zero (i.e.

the flow at the inlet reverses). Thus for t < 1.8 seconds we use the boundary

condition T = T at x = 0, and for times greater than 1.8 seconds we use the

(,T')' = 0 condition at x = 0.

Numerical Convergence

In order to show the dependence of some of the parameters on the integration

time step At we consider a 4 second quench in a conductor very similar to the TF

coil of the ITER machine. (The exact parameters describing this conductor are

given in section 3.2, table 2.) In Fig. 3.4a we show how the maximum temperature

evolves for various values of At. Here, the time steps used are given by; At =

0.1,0.04,0.02,0.01,0.005,0.002,0.001 seconds. In Fig. 3.4b-4d we show how the

time evolution of the maximum helium pressure, the length of the normal region,

and the voltage, respectively, depend on At. Finally in Fig. 3.5 we plot the value

of the maximum helium pressure and the length of the normal region (both at

t = 4 sec) versus At. These figures clearly demonstrate the dependence of these

parameters on the time step At. Typically At < 0.1 sec for good convergence in

cases where the conductor current is held fixed. Larger time steps may be used
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during typical current-dump cases in which the conductor current is exponentially

decreasing (At ~ 0.5 sec after the current dump).

The collocation scheme used in Quencher obtains the solution of Eq. (3.17)

such that the relative error for each component of u [see Eq. (3.18)] remains less

than a specified tolerance toli. This is done by remeshing at every time step. We

have found that the various parameters of interest during the quench are only

weakly dependent (<1 %) on toli in the range toli ~ 10-6 - 10- (using a single

precision algorithm).

3.2 Comparison With Computational Data

In this section we compare the results of the Quencher model with those of

other general purpose CICC computer codes. In particular, we compare Quencher

results with those of the more general code Saruman [5] for three different con-

ductor configurations. We also show that Quencher is sufficiently fast in terms of

CPU time to simulate realistically long quench events. During the completion of

this thesis, we learned that L. Bottura was finishing development of an implicit

version [6] of his general explicit magnet design code. This new code should sig-

nificantly reduce the CPU time and in the near future we plan to compare it in

detail with the code developed here.

ITER Conductor

To begin, consider a conductor very similar to the proposed design for the

Toroidal Field Coil of the International Thermonuclear Experimental Reactor

(ITER). This conductor is of length 530 m, with d4 = 1.6 x 10-3 m, Ah =

4.5 x 10-4 M 2 , A.= 3.9 x 10-4 m 2 , A,_ = 2.6 x 10~4 m 2 , A, = 2.6 x 10-4 m 2,

P, = 0.13 m, and I = 4.3 x 10' A. In this example, the current is kept constant

for a period of 2 sec, after which it decays exponentially with a time constant of
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20 sec. The conductor is in a uniform magnetic field of 13 T, and for simplicity of

comparison with Saruman the heat transfer coefficient is taken to be a constant;

h = 500 W/m 2 - K. Before the initiation of quench, the helium in the channel

is stagnant at a temperature of 5 K and a pressure of 5 atm. In Table 3.2 we

summarize the parameters that characterize this conductor.

Conductor Length (m) 530
Copper Area (mm 2) 390
Nb 3Sn Area (mm 2 ) 260
Helium Area (mm2) 450

Wall Area (mm2 ) 260
Hydraulic Diameter (mm) 1.6

Wall Inner Perimeter (mm) 130
Initial Current (kA) 43

Detection Time (sec) 2
Dump Time (sec) 20

Inlet Pressure (atm) 5
Outlet Pressure (atm) 5

Inlet Temp. (K) 5
Copper RRR 100

Table 3.2: Characteristic Parameters of the ITER Coil.

Quench is initiated by depositing 1 x 105 W/m, at the center of the channel,

over a 2 m length for a period of 0.01 sec. Thus, in Eq. (2.49) after replacing Q
and z by S and x respectively, we have So = 105 /A,. W/m 3, Xo = 530/2 m, and

Lq = 2 m. Also ti in this equation is given by ti = 0.01 sec. The temperature and

density profiles as functions of x, at t = 10 sec from Quencher were presented in

Figs. 3.1a and 3.1b, respectively. The temperature in the quench zone is increasing

due to the joule heating. This tends to increase the pressure, giving rise to a flow

of helium, thereby depleting the density in this region. In these figures we have

plotted the actual mesh points used in the calculation at this particular time step.

The computer code Saruman which is of the class of general codes discussed

in chapter 2, is used to compare with Quencher. Saruman is a finite element

code that solves the fluid equations described in chapter 2 (see section 2.1) using
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an explicit time advance algorithm [5]. We carry out the same 2 second quench

simulation of the ITER coil as computed by Quencher. In Saruman we use a total

of 800 elements with 600 placed within a 30 m length at the center of the channel

for maximum resolution. The length of each element within the quench region is

thus 5 cm; note that within the boundary layer the spacing between grid points

used in Quencher is between 3 to 5 cm. Figures 3.6a-c show the comparison

of the maximum conductor temperature, maximum wall temperature, and the

maximum helium pressure, respectively, as functions of time. Since the problem

is symmetric these maxima occur at the center of the channel. The length of

the normal zone, Xq(t) and the quench-voltage as functions of time are shown in

Figs. 3.6d and 3.6e, respectively. The quench voltage is an important quantity of

interest which is given by

I(t) rV(t) 7-] (T) dx (3.29)

where 77,u(T) is the electrical resistivity of copper, and T(x, t) is the temperature

distribution in the conductor.

The differences observed in Figs. 3.6a-e are indeed small and are believed

to be due to the slightly different initial conditions used in the two models. In

Saruman the external heat pulse used to initiate the quench is directly deposited in

the conductor. In Quencher, this external heat is deposited in both the conductor

and helium. Thus the amplitude of the external heat required to initiate the

quench is slightly different in the two models. This difference gives rise to the

constant offsets observed in Figs. 3.6a-e.

The velocity of helium at either end of the channel is presented in Fig. 3.6f.

In Quencher the speed of sound time delay is not present; thus, helium expulsion

from the channel occurs earlier than is physically possible (see Appendix B).

This early expulsion of helium, however, does not reduce the accuracy of the

solution of the problem within the quench region as evidenced by Fig. 3.6a-e,

and in accordance with the discussions presented in Appendix B. In order to
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obtain the physical value of the helium velocity at the end of the channel, the

results of Quencher are valid only after a time t = L/2co, where L is the length

of the channel and co is the speed of sound in the helium (co is evaluated at

the background (t = 0) pressure and temperature). For t < L/2co the expulsion

velocity is zero. For the particular case under consideration L = 530 m and

co : 200 m/sec, giving L/2co P 1.3 sec (see Fig. 3.6f).

The CPU time used by Saruman during the 2 second quench simulation

presented in Fig. 3.6a-f, is approximately 10 hours on a CRAY-2 Supercomputer.

Quencher requires approximately 50 minutes of CPU time on a VAX Station

4000/90. This saving in computing cost is essential in order to perform studies

of quench for realistically long periods of time. In Fig. 3.7 we show the normal

length as a function of time during a 50 second quench in the ITER conductor as

computed by Quencher. The results represent the extension, from 2 to 50 seconds,

of the quench event discussed above. After the current starts to decay, which is

at t = 2 sec in this case, larger time steps can be used without losing accuracy in

the solution. The CPU time used in the 50 second simulation is approximately 6

hours on the VAX 4000/90.

TPX Conductor

For the second comparison between Quencher and Saruman we consider the

TF coil of the TPX machine. The parameters that characterize this conductor are

summarized in Table 3.3. Note that the conductor current (and the B-field) is not

a constant. The current is kept constant at I = I until the detection time T det = 1

sec, after which I decays exponentially in time; I = Io exp[-(t - Tre,)/rTdmp].

For the TPX coil Irump = 4 sec. The conductor current as a function of time

is shown in Fig. 3.8a, and in Fig. 3.8b we show the B-field profile, at various

time steps during the current dump (note that B(x, t) = Bo(x) for t < 7det and

B(x, t) = Bo(x) exp[-(t - -dei)/rdump] for t > ret). We consider a 10 sec quench
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in this conductor with two different initial quench zones, each of length 1 m, that

are approximately 10 m apart. For this analysis we use (in both Quencher and

Saruman) the heat transfer coefficient and the friction factor given by Eqs. (2.69)

and (2.73), respectively. The value of v in Eq. (2.73) is v = 4, and similarly we

choose kf = 3 in Eq. (2.69). (Note the complexity of this quench simulation.)

Conductor Length (m) 168.08
Copper Area (mm2) 157.8
Nb3 Sn Area (mm 2) 76.97

Helium Area (mm2 ) 127.0
Wall Area (mm2 ) 192.0

Hydraulic Diameter (mm) 0.529
Wall Inner Perimeter (mm) 75.92

Initial Current (kA) 33.48
Detection Time (sec) 1

Dump Time (sec) 4
Inlet Pressure (atm) 9

Outlet Pressure (atm) 5
Inlet Temp. (K) 6.3

Copper RRR 75

Table 3.3: Characteristic Parameters of the TPX Coil.

In Fig. 3.9a and 3.9b we compare the conductor temperature profiles as

obtained by Quencher and Saruman, respectively. Observe the close agreement

in these profiles. In Fig. 3.10a and 3.10b we present the pressure profile, and

the maximum pressure evolution in time, as obtained by Quencher. Note that

the maximum pressure starts to decrease after an initial rise to 22 atm. This

pressure rise is sufficient to cause a flow reversal at x = 0. In Fig. 3.11 we

plot the inlet velocity which demonstrate the flow reversal event. This decreases

is due to the conductor current-dump. Finally, in Table 3.4 we compare the

important parameters of interest at the end of the quench evolution (t = 10 sec) as

obtained by the two codes. Considering the complexity of the quench simulation,

noting that the material property packages used in Saruman and Quencher are

not identical, and finally noting that the quench initiation procedure is not the
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same in the two codes (as was discussed above), the agreement is quite good.

Quencher Saruman

Maximum Conductor Temp. 149.5 K 145.1 K
Maximum Wall Temp. 115.4 K 107.5 K

Maximum Helium Press. 22.1 atm 20.5 atm
Length of Normal Zone 32.4 m 27.0 m

Resistive Voltage 5.4 Volts 4.4 Volts

Table 3.4: Comparison of Quencher and Saruman for the TPX Coil.

Other Comparisons

In several other cases where we have made detailed comparisons between

Quencher and Saruman, the agreement has been equally good. We have found

Quencher to be 30-50 times faster than Saruman in terms of the CPU time re-

quired to study quench events. One somewhat more difficult comparison occurs

when the area of the conduit wall A, becomes very small. In this regime a much

larger number of elements in Saruman is required to achieve convergence. This

causes Saruman to require prohibitively large CPU time. Even so, the results

of Saruman appear to be converging to those of Quencher in the limit of small

A,. As an example consider a conductor nearly identical to the ITER coil sum-

marized in Table 3.2. Here, we consider the case where A, = 1 x 10-6 M 2 . For

this case we have plotted the normal length and the maximum pressure evolution,

respectively, in Figs. 3.12a and 3.12b during a 2 sec quench. In these figures we

show how the results obtained by Saruman depend on the number of elements (or

the length of the elements) within a specified region at the center of the conduc-

tor. In Fig. 3.12c compare the maximum conductor temperature as obtained by

Quencher and Saruman. These figures illustrate how as the number of elements

is increased in Saruman, the results of this code come closer to those predicted
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by Quencher. In Fig. 3.13a-b we further demonstrate this issue by plotting the

length of the normal zone and the maximum pressure (both at t = 1 sec) versus

the inverse of the length of the smallest element used in Saruman.

3.3 Comparison With Experimental Data

In order to compare the results of Quencher with experimental data we con-

sider the clean and unambiguous measurements carried out by T. Ando et al. [8].
The CICC used in this experiment has a length 26 m, A,. = 1.02 x 10- M 2 ,

A., = 3.4 x10- 6 M 2 , A. = 2.5 x 10- 5 M 2 , Ah = 1.4 x 10- 5 M 2 , dh = 6.9 x 10- 4 m,

and P,, = 0.019 m. The conductor is in a uniform magnetic field of 7 T. Before

initiation of quench, the helium is stagnant at a temperature of 4.5 K and a pres-

sure of 10 atm. The ends of the channel are connected to pressure relief valves

which maintain the helium pressure at 10 atm. In Table 3.5 we summarize all the

parameters that characterize this conductor, and in Fig. 3.14 we show a picture

of the cross-section of the conductor.

The results of this experiment are presented in the form of a plot of the

normal length as a function of time, for various values of the conductor current.

Such a measurement was done by placing 50 voltage taps along the length of

the conductor. Both in the experiment and Quencher the quench is initiated by

depositing the external heat at the center of the conductor, over a 40 mm length

for a period of 0.1 msec. In Quencher the amount of heat deposited to initiate

the quench is 2.7 x 106 W/m (this corresponds to a total energy deposition of 2.7

J/cm.) This value is not explicitly given in the paper by Ando et al. [8). It has

been chosen to match the first data point for the case I = 2 kA and is then held

fixed for all other values of I.
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Table 3.5: Characteristic Parameters of the Coil Used by Ando et al. [8].

Figure 3.14: Cross-sectional view of the conductor used in the experiment of Ando

et al. [8]. (This figure is taken directly from Reference [8].)
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Conductor Length (m) 26
Copper Area (mm 2) 10.2

NbTi Area (mm 2) 3.4
Helium Area (mm2) 14

Wall Area (mm 2) 25
Hydraulic Diameter (mm) 0.69

Wall Inner Perimeter (mm) 18.8
Initial Current (kA) 1.5-2.0

Detection Time (sec) 00
Inlet Pressure (atm) 10

Outlet Pressure (atm) 10
Inlet Temp. (K) 4.5

Copper RRR 100



Before proceeding with a direct comparison between the Quencher and the

experimental results, consider some of the various profiles during the quench for

the case where I = 1.5 kA. In Fig. 3.15a we show the temperature profile for

various time steps and during a 7 second quench simulation. Observe the large

temperature rise and the expansion of the quench region at the end of the 7

seconds. This figure clearly demonstrates that this experiment covers a very

large range in both the temperature rise and also in the evolution of the quench

region. In Fig. 3.15b we show the conduit wall temperature profile at the various

time steps during the quench evolution. Note that the wall and the conductor

temperatures are approximately different by 70 K at the end of the simulation. In

Fig. 3.15c we plot the pressure profile and finally in Figs. 3.15d and 3.15e we show

the helium density and the Reynold's number, respectively. From Fig. 3.15c we

observe that the pressure rise during the quench event is reasonably small which

is due to the rapid depletion of the helium density shown in Fig. 3.15d. We have

plotted the Reynold's number in Fig. 3.15e in order to emphasize the large range

of Reynold's numbers encountered in this quench event. In the quench region the

Reynold's numbers are below 2000 while in the outer region, numbers as high

as 40000 are observed. Thus, both the laminar and the turbulent regimes of the

heat transfer coefficient discussed in chapter 2 (see also Fig. 2.3) are encountered

in this experiment. Typical helium expulsion velocities are approximately 1-2

m/sec.

Finally, the comparison of Quencher results with the experimental data is

presented in Fig. 3.16. The minimum and maximum values of the current used

in the experiment are 1.5 and 2 kA, respectively. Note the large variation of the

normal length with current at any given time; the dependence of normal length

on current is in fact nearly exponential. Here, the heat transfer coefficient and

the friction factor used in Quencher are given by the models presented in section

2.3. We have found the Quencher results presented in Fig. 3.16 to be nearly

independent ( < 1 %) of the value of v used in Eq. (2.73), for 2 < v < 8. Also,

the dependence is very weak ( 15 %) on the value of kf used in Eq. (2.69), for
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1 < kf < 5. The agreement of the computational data and the experiment is very

good and well within the uncertainties of the material properties of the various

components.
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Figure 3.1a: The temperature profile during quench.
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Helium Density vs. x
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Figure 3.1b: The helium density profile during quench.
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Temperature vs. x
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Figure 3.2a: Conductor temperature profile, at various time steps, in a CICC

with an external heat source given by Eq. (3.28).
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Helihum Density vs. x
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Figure 3.2b: Helium density profile, at various time steps, in a CICC with an

external heat source given by Eq. (3.28).
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Helium Velocity vs. x
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Figure 3.2c: Helium velocity profile, at various time steps, in a CICC with an

external heat source given by Eq. (3.28).
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Figure 3.2d: Helium Pressure profile, at various time steps, in a CICC with an

external heat source given by Eq. (3.28).
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Heat Flux vs. x
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Figure 3.2e: Heat flux profile, at various time steps, in a CICC with an external

heat source given by Eq. (3.28).
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Figure 3.2f: Helium mass flux profile, at various time steps, in a CICC with an

external heat source given by Eq. (3.28).

84

II I .. . . . . . I

- I I I I I I I . . I I , I I

I I



Inlet Velocity vs.
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Figure 3.3: Helium inlet velocity in a CICC with an external heat source given

by Eq. (3.28).

85

I I I

I iii I Ii i i I I I I . --1 0



Conductor Temperature vs. Time
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Figure 3.4a: The maximum conductor temperature versus time for various values

of At.
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Maximum Helium Pressure vs. Time
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Figure 3.4b: The maximum helium pressure versus time for various values of At.
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Figure 3.4c: The length of the normal region versus time for various values of At.
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Quench Voltage vs. Time
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Figure 3.4d: The quench voltage versus time for various values of At.
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Figure 3.6a: Comparison of the maximum conductor temperature as calculated

by Quencher and Saruman.
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Figure 3.6b: Comparison of the maximum wall temperature as calculated by

Quencher and Saruman.
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Figure 3.6c: Comparison of the maximum helium pressure, as calculated by

Quencher and Saruman.
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Figure 3.6d: Comparison of the normal length as calculated by Quencher and

Saruman.
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Figure 3.6e: Comparison of the quench-voltage as calculated by Quencher and

Saruman.
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Figure 3.6f: Comparison of the helium expulsion velocity as calculate, oy Quencher

and Saruman.
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Figure 3.7: Normal length propagation during a 50 sec quench in the ITER

conductor.
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Figure 3.9: (a) Conductor temperature profile during a quench in the TPX coil

as obtained by Quencher, and (b) the conductor temperature profile obtained by

Saruman.
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Figure 3.10: (a) The helium pressure profile during a quench in the TPX coil,

and (b) the maximum helium pressure versus time during the quench. Both (a)

and (b) are obtained by Quencher.
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Figure 3.11: The inlet helium velocity versus time, as obtained by Quencher.
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Helium Pressure Vs. time
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Figure 3.12a: Comparison of the maximum helium pressure as, obtained by

Quencher and Saruman for a case where A, becomes small. The various curves

from Saruman correspond to different sized elements.
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Figure 3.12b: Comparison of the normal length as obtained by Quencher and

Saruman for a case where A, becomes small. The various curves from Saruman

correspond to different sized elements.
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Figure 3.12c: Comparison of the maximum conductor temperature as obtained by

Quencher and Saruman for a case where A, becomes small. The various curves

from Saruman correspond to different sized elements.
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Figure 3.13a: The length of the normal region after 1 sec, as obtained by Saru-

man, versus 1/dx where dx is the length of the smallest element used in the
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Figure 3.13b: The maximum helium pressure after 1 sec, as obtained by Saru-

man, versus 1 /dx where dx is the length of the smallest element used in the

computation.
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Figure 3.15a: Conductor temperature profile obtained by Quencher during a 7

see quench in the conductor used by Ando et al. [8]. Here I = 1.5 kA.
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Figure 3.15b: Conduit wall temperature profile obtained by Quencher during a 7

sec quench in the conductor used by Ando et al. [8]. Here I = 1.5 kA.
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Helium Pressure vs. x
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Figure 3.15c: Helium pressure profile obtained by Quencher during a 7 sec quench

in the conductor used by Ando et al. [8]. Here I = 1.5 kA.
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Helium Density vs. x
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Figure 3.15d: Helium density profile obtained by Quencher during a 7 see quench

in the conductor used by Ando et al. [8]. Here I= 1.5 kA.
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Reynolds Number vs. x
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Figure 3.15e: The Reynold's number profile obtained by Quencher during a 7 sec

quench in the conductor used by Ando et al. [8]. Here I = 1.5 kA.
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Analytic Solution

In this chapter we present a set of analytic solutions for the problem of quench

propagation in Cable In Conduit Conductors (CICC). The starting point is the

Quencher model discussed in chapters 2 and 3. By introducing a series of justified

approximations we first arrive at a simplified quench model (MacQuench) that is

suited for "system studies" because of its high computational speed. Next, after

further simplifications, an analytically tractable model describing three different

practical regimes of operation is presented. These regimes are denoted by: 1) the

"short coil," in which the end-boundaries of the conduit affect the propagation

of the quench, 2) the "long coil," in which these end-effects are negligible, and 3)

the "small pressure rise regime," in which the helium pressure rise in the quench

region remains small. Analytic solutions are derived which distinguish each of

these regimes as well as elucidating the basic underlying physics. Furthermore, we

verify the validity of the analytic results, in each regime by extensive comparisons

with numerical (Quencher and MacQuench) and experimental data.

The MacQuench model simultaneously describes all three regimes and re-

quires only minutes of CPU time per simulation on a Macintosh PC compared

to minutes on a CRAY supercomputer for Quencher. The model has much of

the flexibility of Quencher (e.g. time dependent current density, time dependent

B-field, etc.) and as is shown in the paper, is nearly as accurate, usually to

within 5 %. Still, it does require computation and as such is not as convenient or

insightful as the analytic theory. Typically, the quantitative accuracy of the ana-

lytic theory is - 15 % or better. The scaling accuracy of the analytic theory with

respect to the physical parameters is excellent in all cases thus far investigated.

The analytic solutions for each of the three regimes are quite distinct. In

the short coil, for instance, we find that the quench propagation velocity depends

on the length of the conductor L. This dependence is very important when

attempting to extrapolate experimental results from short test coil samples to long

coils where the quench propagation properties are independent of L. Substantial
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differences are also observed in the dependence of the quench velocity (V) on the

current density J. For example, in both the long and the short coil, V,~ J, while

in the low pressure rise regime Vq ~ J 2 . One common feature of all three regimes

is the inherent dependence of V on the initial length of the quench region Lq.

In the past, a significant amount of the analytic work on the problem of

quench propagation in CICC has been carried out by Dresner [1]. In fact, the

quench propagation mechanism due to convection of helium, first considered by

Dresner, is one of the central assumptions of this paper. Other assumptions made

here, however, differ greatly. Dresner's analysis makes use of an elegant similarity

solution and is thus applicable to long coils. The specific assumptions introduced

in his calculations result in a theory that is valid for relatively short times and

low conductor temperatures (T ,"5 25 K). As essentially the only existing analytic

results treating the problem of quench in CICC magnets, Dresner's theory is

used widely in the superconducting magnet community, although often in regimes

where it is inapplicable (i.e. the theoretical assumptions are not satisfied).

In the present work we make use of some of the ideas of Dresner, but introduce

an alternate set of approximations that make our solution valid over much longer

periods of time (up to and including a full current dump) and higher temperatures

(T "5 300 K). Our analytic solutions are least accurate for very short times. The

present theory is thus complementary to Dresner's theory.

The main differences in modelling between the two theories of quench prop-

agation are as follows:

a. The contribution of the conductor heat capacity in the quench region is main-

tained in the formulation presented here. We show this to be the dominant

effect in the quench region for long times and high temperatures. For short

times the helium heat capacity is dominant and it is this assumption that is

made in Dresner's analysis.

b. The dependence of the thermal properties of the conductor are taken into

account in the derivation presented here. We believe this is an important

115



ingredient in obtaining quantitative agreements with numerical and experi-

mental results for long times. For short times this is not as critical and thus

the material properties are assumed to be constant in Dresner's formulation.

c. As mentioned above, we present analytic solutions in three different regimes

of operation. This is important because for long times qualitatively different

types of quench behavior are possible. Dresner's work focuses on the long

coil regime since for short times all coils are long coils; that is, there is insuf-

ficient time for the end-effects to play a role. The distinction of the various

regimes is of central importance in properly interpreting, and extrapolating

any experimental results on quench propagation in test coils to large CICC

magnets. A detailed comparison of the present results with those of Dresner

is made in the discussion of the long coil.

It is worth emphasizing at this point that the MacQuench model and the

analytic results apply only to the problem of "classical" quench propagation in

CICC, the problem of primary importance to the future large magnets being

designed in the magnetic fusion program. The interesting regime of Thermal

Hydraulic Quenchback, wherein the temperature ahead of the quench front rises

above its critical value, causing a greatly enhanced propagation speed, is not

treated here, but is under current investigation. In Appendix D we discuss the

process of THQB and we show how the analytic theory developed in this chapter

can be used to predict the onset of this process.

The remainder of the chapter is organized in three sections. In section 4.1 we

consider the approximations that lead to a simpler quench model (MacQuench)

that is well suited for performing numerical studies on a personal computer. The

analytic solution is derived in section 4.2, and finally in section 4.3 we present

comparisons of the analytic results with numerical and experimental data.
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4.1 The MacQuench Model

The basic insight that allows reduction of the Quencher model is that for the

practical cases of interest, quench is propagated by a narrow moving front whose

behavior is similar to that of a contact discontinuity. Thus, it is possible to solve

the equations separately behind and ahead of the quench front, and then close

the model by appropriate matching conditions across the discontinuity. Before

proceeding with this analysis, it is helpful to begin with a short discussion of the

somewhat subtle initial conditions used in MacQuench.

Initial Conditions

To understand the MacQuench initial conditions, consider first a deliberate,

externally excited quench initiation as might be used to test an actual CICC. A

magnet of length L operating in its desired superconducting state, is cooled by

stagnant supercritical helium to a temperature To, pressure po, and density po.

A large external heat source (S- >t> c77J2 ) is applied over a short length of

conductor Lq(Lq < L) for a short period of time tq(tq ~ 0.001 sec). The heat

pulse rapidly heats the local temperature above the critical temperature Tr.

When Sext is removed, the magnet hot spot is cooled by convection, but heated

by ?7.J 2 since this section of magnet is in its normal state. Since t7 cuJ 2  Sext,

the hot spot temperature first decreases due to convection. However, if the initial

source Se,, was sufficiently large, the joule heating can begin to reheat the hot

spot before T falls below Tcr. When this occurs, a quench is initiated. The state

of the magnet at this point serves as the initial conditions for the MacQuench

simulation.

The difficulty in specifying initial conditions lies in the fact that the state of

magnet at quench initiation depends upon the details of the initial heating pulse

SeXt; its magnitude, time duration, spatial length, and spatial profile. A general
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approach that avoids these difficulties is as follows. First, assume that Sext is

experimentally adjusted to the minimum value required to initiate the quench.

Under this assumption the initial value for T in MacQuench is given by

T(x,0) = (T - To) H(Lq/2 -IxI)+ To (4.1)

where Tq ~ Tcr and H is the Heaviside step function.

Note that the initial hot spot temperature distribution is chosen to be sym-

metric and uniform in space. This choice is primarily for simplicity. Tests with

other profiles show only a weak sensitivity as long as the total energy input and

average profile width are held constant. The quantity Lq in Eq. (4.1) can usually

be set to the length over which the external source is applied. In some experi-

ments, this region can expand slightly because of convection during the short time

before quench initiation. If experimental data is available, the measured value of

Lq should be used in Eq. (4.1).

A second initial condition is required for the density. In MacQuench it is

assumed that

p(x, 0) = po. (4.2)

Equation (4.2) is justified when the external source is applied over such a short

period of time, that a negligible amount of density is depleted in the quench region

by convection. This corresponds to an external source duration that is much

shorter than the characteristic time scale L,/v. With a typical flow of v - 10

m/sec and L ~ 1 m, we find L,/v - 0.1 sec. Typically the quench is initiated

by sources applied over a period of - 0.001 - 0.01 sec; thus the aforementioned

condition is generally well satisfied in most quench initiation events. From the

equation of state we next find the initial helium pressure in the quench region is

given by
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Pq = p(Po, T) (4.3)

Observe that in general Pg > PG.

Equations (4.1) and (4.2) specify the initial conditions for the helium/conductor

in MacQuench. For experimental applications one sets T. = T,, and assumes that

L. is obtained by direct measurement. For design applications, one sets Tq = Ter

and L. = Lqmin where Lqmin represents the minimum length in which a quench

event can initiate in a CICC. (For typical thermal disturbances that occur during

the operation of a magnet the minimum value of the initial quench region may

be as small as a fraction of a twist-pitch; that is, Lqmin - 1 cm.) As shown

later, these choices correspond to the "worst" case where "worst" is defined as

producing the smallest quench detection signal for a given allowable temperature

rise in the conductor.

A final initial condition is required for T. In MacQuench it is assumed that

T,(x, 0) = T(x,0). (4.4)

The heat transfer during the initiation of quench is quite high and this fact coupled

with the low specific heat of the conduit wall at low temperatures, causes the

equilibration of the two temperatures (helium/conductor and conduit wall) at

quench initiation.

Note that the MacQuench initial conditions display discontinuities in the

values of T and p, at the locations x = ±L,/ 2 . These discontinuities, however,

are quickly resolved and pose no numerical problems since the system of Eqs. (3.1-

3.5) is purely diffusive for the density, temperature, and pressure variables.
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Quench Region

Having established the initial conditions, we now consider the behavior of the

quench region (i.e. the region behind the quench front). A plot of the tempera-

ture, pressure, velocity, and density profiles is shown in Fig. 4.1a-d, respectively.

These curves, obtained from a Quencher simulation, correspond to typical pro-

files in a CICC after the quench has been well established. The location of the

quench front is denoted by Xq(t). Within the quench region, lXi < Xq, the joule

heating causes the temperature of the system to increase (Fig. 4.1a). This in turn

increases the helium pressure, (Fig. 4.1b) inducing a flow of helium in the channel

(Fig. 4.1c). The high temperature helium in the quench region expands against

the cold helium ahead of the front, thereby propagating the quench. As shown in

Fig. 4.1d, the expansion causes a depletion of helium density in the quench region,

resulting in a compression ahead of the front. The quench front separating the

two regions behaves like a moving "contact discontinuity" across which the tem-

perature and density are discontinuous, while the pressure and velocity remain

continuous. (The exact nature of the boundary layer, at X = Xq is considered in

the discussion of the matching conditions.)

In order to obtain a simple relation for the temperature of the helium/conductor

we assume that the CICC is in a uniform magnetic field B. Therefore the joule

heating source S in Eq. (3.3) is independent of x, and is given by S(T, t) =7rcj2,

where 77 ~ (Ac/A)r/c.(T), J(t) = I(t)/Ac, and 1(t) is the prescribed current

in the conductor. Next, note that once the quench is established, the density in

the quench region quickly decreases from its initial value po, while simultaneously

the heat capacity of the copper increases in parallel with T. This combination

of events, in association with typical values of the quench variables, implies that

in the quench region convection, compression, and heat conduction are negligible

compared to the time derivative term; that is, the behavior is dominated by the

large heat capacity of the conductor. Equation (3.3) then assumes a form similar

to Eq. (3.5). The equations for T and T thus satisfy
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-ThP
pC, ~S(T,t) + (T.-T) (4.5)

aT~ hP~
p=C = (T - Tw). (4.6)

Note that in the quench region the reduced density, and corresponding reduced

Reynold's number, cause the heat transfer coefficient h to assume its laminar

value; that is h - h(T) = 4dh/Kh where Kh(T) is the thermal conduction of

helium. Under this approximation, Eqs. (4.5) and (4.6) become ordinary dif-

ferential equations, implying that with our spatially uniform initial conditions

T(x, t) -+ T(t) and Tw(x, t) -+ Tw,(t). The appropriate initial conditions are thus

T(O) = T.(0) = Tq.

Consider next the density and velocity in the quench region. The low values of

density reduce the friction force (proportional to fpvI vI/2d,) resulting in a weak

pressure gradient. The approximately flat pressure, combined with the spatially

homogeneous temperature just discussed, imply that the density profile is also

spatially homogeneous; p(x, t) ; p(t). This approximation, when substituted

into the mass equation [Eq. (3.1)], leads to a solution for v(x, t) of the form

v(x, t) = -(p/p)x. Furthermore, since the velocity of the quench front ±, is

carried by the flow of helium it follows by definition that ±q = v(Xq, t). These

simple relations can be easily manipulated, leading to expressions for p and v in

terms of X,(t):

x dXq
V(x, t) = d (4.7)

Xq

p(t) 2 Xq (4.8)

where we have used the initial conditions Xq(O) = Lq/2 and p(O) = po.

The final quantity of interest in the quench region is the pressure. Once the

quench is established, the high temperatures (T Z 30K) and low densities (p $50
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kg/m) imply that the helium equation of state is closely approximated by the

ideal gas law. Thus, the pressure is given by

p(t) = RpT = PORLq T(t) (4.9)
2 Xq(t)

Equations (4.5-4.9) describe the behavior of T(t), T,(t), p(t), and p(t) in

terms of X. (t), a quantity whose dependence is ultimately determined by solving

a simplified model ahead of the quench and then matching across the front.

Outer Region

The region ahead of the quench front (I x > X.) is denoted as the outer region

and is characterized by zero joule heating (S = 0). Thus the only heat source

in this region is due to viscous dissipation (fpv3 /2d). This heating mechanism

plays an important role in the initiation of "Thermal Hydraulic Quench-Back"

(THQB). Here, viscous heating, together with the heating due to the compression

of the helium may raise the temperature in the outer region above T = Tc,. When

this occurs, Joule heating develops almost instantaneously over large segments of

the conductor in the outer region. Hence, a rapid increase of the normal zone

is observed. The THQB process has been observed in recent experiments, and

is a subject of current research. As mentioned in the introduction, the main

underlying assumptions of the present paper deliberately exclude the process of

THQB (see appendix D). Furthermore, in our studies the viscous dissipation in

the outer region only slightly effects the quench propagation in the "classical"

(non-THQB) regime, the most common quench regime in a CICC. Thus in the

following analysis we neglect the viscous dissipation term in the outer region.

In view of the above discussion, consider first the temperature. In the outer

region the value of the heat transfer coefficient h is very large (h ~ 5000 W/m-

K) due to substantial helium flow velocities (~ 5 m/sec) and the high density of
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helium (p - 150 kg/n 3 ). The large heat transfer between the helium and the con-

duit wall results in temperature equilibration (T, ~ T). By appropriately adding

Eqs. (3.3) and (3.5), such that the heat transfer term, h(T - T.) is cancelled,

and setting Te, = T, we obtain a single energy equation in the outer region. The

result is identical to Eq. (3.3), except the total specific heat, 6t now includes the

contribution of the conduit wall: pot -+ pcCc + (Ah /A )pCh + (A./ Ac )p.C..

Even so, the high density and low temperature of the helium causes the helium

contribution to dominate the specific heat so that pCO ~ (Ah/Ac)pCh. Also, as

seen in Fig. 4.1a-d, the spatial gradients are weak, implying that the heat conduc-

tion term is negligible. Combining these results leads to the following equation

for the temperature in the outer region

OT 07T Ov
+ v n + (CP/Ch)T-- = 0. (4.10)

An alternate form of Eq. (4.10), obtained from the conservation of mass and the

definitions of C# and Ch, is given by dS/dt = 0 where § is the entropy. Thus,

S(p, T) = S(po, T o) = const. in the outer region.

The density can be related to the temperature by eliminating v/Ox from

Eq. (4.10) by means of the conservation of mass. The result is

dT = TC6(T, p) (4.11)
dp P Ch( T ,p)

Equation (4.11) can easily be solved numerically by assuming T = To when p = po

and we shall hereafter assume that T = T(p) is a known function.

The next step is to obtain a relationship between v and p. Consider p =

p(p, 5) with S = 5o = const. The momentum equation then yields the following

expression for v

(2dh\ 1/2 c2 8p 1/2

o _ (4.12)
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where c2 (p, So) = (ap/ap),0 is the square of the sound speed. Note that in

this equation we assume the friction factor f is a constant. This assumption

is well justified because of the weak dependence of f on the Reynold's number

(f oc 1/RO. 2 ). The final results are not strongly dependent on f, and using a

constant value of f ~ 0.06 - 0.08 is a good approximation for the friction factor

in the outer region.

At this point the velocity and temperature are expressed in terms of the

helium density p in the outer region. The final relation that determines p is

obtained by substituting v, given by Eq. (4.12), into the mass equation. The

resulting equation is given by

p (2,)1/2 ( (C2P 1/ 2 = 0- + -f - =ax (4.13)

which is a nonlinear diffusion equation requiring one initial and two boundary

conditions. The initial condition is p(x, 0) = po, where po is the initial density of

the stagnant helium. The boundary condition at x = L/2 is given by p(L/2, t) =

po and is consistent with the constant pressure boundary condition discussed

in Chapter 3. The second boundary condition is specified at the quench front

Xq(t), and follows from the matching conditions discussed shortly. Note that

the treatment of the outer region is reduced to solving a single parabolic partial

differential equation.

Matching Conditions

In order to mathematically close the MacQuench model two additional con-

ditions are required; one for the remaining boundary condition on Eq. (4.13) and

one to determine the location of the quench front X,(t). These are obtained by
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noting that the quench front behaves like a contact discontinuity satisfying cer-

tain jump conditions. We start by moving to the quench front reference frame

and then integrating the mass equation across the front. The result is

dXq _ Tpvlp (4.14)
dt Tp

where [Q] denotes Q(X+, t) -Q(X;-, t). In order to avoid the formation of a shock

in the conduit we require [i] = 0. Equation (4.14) then automatically becomes

consistent with Eq. (4.7). Since the velocity is continuous across x = Xq, equating

Eqs. (4.12) and (4.14), leads to the first matching condition;

dXq 2dh 1/2 (4.15)
dt f} px 7

x~ q

This equation relates the location of the quench front to the density profile in

the outer region (specifically X. is determined by the value of p and 9p/&x at

x - X+). Note also that Eq. (4.14) allows an arbitrary jump in p across the

front.

The second matching condition is obtained by integrating the momentum

equation across the moving quench front yielding

[ 0p=O. (4.16)

This relation states that helium pressure is continuous across x Xq. A more

convenient form of Eq. (4.16) can be written as

PORLq T p(p, O) . (4.17)
2 Xq+

Equations (4.15) and (4.17) determine the location of the quench front and the

remaining boundary condition on p, respectively

Observe that the MacQuench model is now closed. However, we have yet

to use the jump condition information from the energy equation. An analysis of
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the energy equation shows that integrating across the front does not impose any

constraints on the temperature jump, but instead determines the width of the

layer. Specifically, below it is shown that in the layer

T(x,t) ~ T(X+, t) + [T(X-, t) - T(X+, t)]e- (Xq)/A (4.18)

where A(t) ~ (To)/XqpcCc(To). For typical experimental values A ,5 0.20 m,

a value similar to those observed in Quencher simulations. Note that in the en-

tire MacQuench model, the conductor thermal conductivity only plays a role in

the quench front layer, determining its width. As in many fluid dynamic bound-

ary layer problems, this implies that most of physically observable quantities of

interest are independent of n. This too is born out in Quencher simulations.

Boundary Layer at x = Xq

By considering the mass and momentum equations in the region x X, we

have determined the two conditions required to mathematically close the system

of equations describing the quench and the outer regions. We now show that

analyzing the energy equation in this region will not result in an over determined

system and the information gained from analyzing the energy equation is only in

regard to the structure of the boundary layer at the location of the quench front.

Equation (3.3) does not allow the existence of an exact contact discontinuity at

X = X,, because the quantity C includes the contribution of both the helium

and the conductor. In the case where 6t = Ch, and neglecting (rT')', integration

of Eq. (3.3) across x = Xq would result in a relation of the form

[Xq - V(x = Xq,t)] TJ = 0

which is satisfied for Xq = V(x = Xq) and the quantity J[T]J is thus arbitrary and

undetermined from this relation. To analyze Eq. (3.3) in the region x ~ Xq(t)
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we define a new coordinate given by; z = x - Xq(t). In this coordinate system

the quench zone is in the region z < 0 and the outer zone is in the region z > 0.

Furthermore, we denote the temperature in the boundary layer by TB. In the

vicinity z ; 0 the dominant terms in the energy equation are the conduction

and the convection terms, since these terms involve the spatial derivative of the

temperature. Keeping the leading order terms in Eq. (3.3), near z ; 0, we have

&2 TB OTB
A + a 0 (4.19)

49Z2 5z

where A = (i-/XkpcCc) is a function of the temperature. (For determining the

qualitative behavior of the solution in this region the temperature dependence of

A is first neglected.)

The appropriate boundary conditions for Eq. (4.19) are such that the temper-

ature remains continues in extending from the quench region to the outer region.

Thus at z = 0 we choose TB(z = 0, t) = T(t), where T(t) is the temperature in

the quench region. For z > A the value of TB must match the temperature in

the outer region which is well approximated by that of the background To. Thus

the boundary layer solution for TB is given by

TB(x,t) ; To + [T(t) - To] e- '1  (4.20)

with the width of the boundary layer determined by the value of A.

The quantity A is given by A = (K/XqpcCc), where in deriving Eq. (4.20)

K and Cc_ were assumed to be constants. Assuming K to be a constant is a

good approximation since the value of the thermal conductivity is not strongly

dependent on the temperature. The quantity C, is however a strong function

of the temperature and to understand the structure of the boundary layer with

this temperature dependence we assume the following form for the specific heat

of the conductor; C, = Cco(TB/To)n. Here To and Cco are the temperature and

the value of the specific heat, respectively, at the background temperature. It
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is possible to obtain the analytic solution of Eq. (4.19) using this form for the

specific heat, with n =1,2 or 3. The width of the boundary layer for any of

these cases is given by A = (s/XqpcCco). This indicates that the width of the

boundary layer is determined by the value of C, evaluated at the background

temperature To. Using a value of pcCc(T = To) - 103 J/m 3-K, r, - 1000 W/m-

K, and dXq/dt - 5 m/s results in A ~ 20 cm. This is very similar to what is

observed in the numerical solution of Eqs. (3.1-3.5).

The MacQuench Model

To summarize, the final simplified MacQuench model reduces to a set of

equations determining T(t), T. (t) in the quench region, p(x, t) in the outer region,

and the front location X,(t). These have the form

SdT hP
pC = r7c J2 (t) + (T. - T)

dT hP.
P.C. = - (T - Tw)

dt A.,

= -(2d )/ 2 '9 (_,2)p 1 2

& T 1- O
4d! (2dh )1/2 (_C2ap ) 1/2

dit f a px a+ g

The corresponding initial and boundary conditions are given by

T(0) = Tw(0) = T

p(x,0) = p(L/2,t) = po

P[P(Xq,, 
poRLq T(t)

X,) 2 Xq (t)

Xq(O) = Lq/ 2

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)
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In the quench region it is assumed that Cc(T), ric(T), h(T), and C.(T.) are known

property functions. Similarly, in the outer region So = S(po, To), c2(p, So), and

p(p, So) are assumed to be known properties of supercritical helium.

Numerical Solution

The numerical solution of the MacQuench model consists of solving the

ODE's given by Eqs. (4.21), (4.22), (4.24), and the diffusion equation (4.23).

The ODE's are standard. The diffusion equation is solved by approximating the

partial time derivative &/9t, in Eq. (4.23) by a second order accurate finite dif-

ference scheme, and solving the resulting boundary value problem by standard

techniques. The treatment of Eq. (4.23) is similar to the Quencher model, dis-

cussed in chapter 3. This numerical procedure requires only few minutes of CPU

time on a Macintosh PC. In section 4.3 we present detailed comparisons of the

MacQuench model with the solution of Eqs. (3.1-3.5).

We now proceed to present the steps that lead to the numerical solution of

the MacQuench model. In the discussions that follow we use the finite difference

approximation of 0/&t discussed in chapter 3. For reference we rewrite this scheme

below;

( ,z: L2 Q = [aQ(t + At 2 , x) - bQ(t, x) + Q(t - Ati, x)] (4.29)

where a, b and c are given by

(Ati + At 2 )2
a = - 1(43)

(At2) 2

b =(At, + At 2 )2  (4.30b)
(At 2 )2

c =--, (At 1 + At 2 ) (4.30c)
At 2
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Note that the quantities a and b are dimensionless while c has units of time.

Again, we assume that all quantities are known at times t and t - At, and we

proceed to obtain the solution at time t + At 2 . For convenience we use a slightly

different notation than what is used in Eq. (4.29). We represent any quantity Q
at time step t - At, by Q'- 1 , and similarly for Q(t) and Q(t + At2 ) we use Q"

and Qn+, respectively. With this notation Eq. (4.29) may be rewritten as

(L 2Q)n+= [aQn+l - bQ" + Qn-1] (4.31)
C

Consider first Eqs. (4.21) and (4.22). By using the finite difference approxi-

mation to the time derivative terms we have

p nC(L2T)n+l 2]" + Ac'h (T±n+l - T n+l) (4.32)

C, )n+1 =hnAw (Tn+1 - Tn+'1 ) (4.33)

Note that we have evaluated most of the terms explicitly (at time step n) with the

exception of the temperature variables in the h(T - T,) terms. This is done to

avoid numerical difficulties in the case when these terms become mathematically

stiff. In evaluating these terms implicitly we may take large time steps without

any numerical instabilities. In evaluating some terms at time step n and others

at n + 1 we are thus using an explicit/implicit scheme to solve Eqs. (4.21) and

(4.22).

Equations (4.34) and (4.35) represent two linear equations for the two un-

knowns Tn+l and Tw+. The solution of this system may be written as

n+1ac 1+e"/c
± (1 + ac" /c)(1 + aEn/c))

(i J 2 ) A -+ $(bT" - T- 1) + (bT - T.) (4.34)
Pwhn c 1+ael/c
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T +C+1 Tn+1 + ' (bT." - T.(-1)
T" T ae",/c C

where E, and E, both have units of time and are defined as

c Pth

~ Ph

(4.36)

(4.37)

Equations (4.34) and (4.35) represent the explicit solution for T and T, at time

t + At2 -

Next we consider the diffusion equation for the density. Here, it is more

convenient to make a coordinate transformation from (t, x) to (t, ), where is

defined as

S=X - Xq (t)_
L/2-Xq(t)

The time and spatial derivatives now become

ax L/2 - Xq

a X q

atL/ 2  Xg

Equation (4.23) may now be written as

2- ( 1/ 2

(4.38)

(4.39a)

(4.39b)a+t

B (t)

where A and B are defined as

A(t) = q
L/2-X

B(t) = 1 )3 / 2

~(L/2 - Xq)/

(4.40)

(4.41)

(4.42)
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The corresponding initial and boundary conditions [Eqs.(4.26) and (4.27)] are

given by

p(,t= 0) = pO (4.43)

p(= 1,t) = po (4.44)

- poRLq T(t)
2 Xq(t) (4.45)

In the (t, ) coordinate system, Eq. (4.24) becomes

dXq 2dh 1/2 C2 , 1/2
--- -- B(t)1/ (4.46)

Before proceeding to present the numerical approximation to Eq. (4.40) we define

a new variable u given by

u = -pc (4.47)

Using the finite difference approximation in place of the time derivative in

Eq. (4.40) we have

(L 2p)n++A ( -1) pn+1

(2d4 ) 1/2 B" a [-(C2p)n+1 aPn+1 1/2 (4.48)
f a Ng Ig

Again, note that we have used an explicit/implicit scheme in evaluating the vari-

ous non-time derivative terms. By evaluating A and B at the previous time step

we avoid a great deal of difficulty in coupling Eqs. (4.23) and (4.24), while avoid-

ing any numerical complications. By using Eq. (4.47) we now write Eq. (4.48) as

a system of two ordinary differential equations for the variables p'+' and un+1 ;
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-pn+1 2 ] (4.49)

Un+1 1 - (L2p)n+ - A"(- 1) (4.50)

where the boundary conditions are given by

p n+1 = Po ; =0 (4.51)

SpoRLq T ln+1
2 X;n+1l ; *=1 (4.52)

The ODE's given by Eqs. (4.49) and (4.50) represents a boundary-value problem

that may be solved by various different standard techniques. We use the same

collocation solver as was used for the Quencher model. Note that all of the

quantities in Eqs. (4.49) and (4.50) are either known through T"+' which is

given by Eq. (4.34) or they can be written in terms of p"+' and u'+ 1 . The only

exception is X'+1 needed in Eq. (4.52). In order to obtain this quantity we write

the finite difference approximation to Eq. (4.46) in the following form;

(L2Xq)'+ 1 = (B")1/3 (4.53)

where all the terms on the right hand side are evaluated at time step n. This

purely explicit scheme is simple and does not introduce any numerical stability

criteria in the system while greatly simplifying the coupling of Eqs. (4.40) and

(4.46). We now solve Eq. (4.53) for Xn+1 to obtain

Xn+1 = [bX, -X,- +c (B13 - (4.54)

This is the explicit solution for Xq at time t + At 2 . In Eqs. (4.50) and (4.54) the

quantities An and B" are easily evaluated as follows;
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A = (4.55)
(L/2- X,)/ 2

1 2da 1/2

L/2 - X" f pn

This concludes the description of the numerical scheme used to solve Mac-

Quench. The MacQuench computer code thus involves the evaluation of the alge-

braic relations given by Eqs. (4.34), (4.35) and (4.54) together with the solution

of the system of two ODE's [Eqs. (4.49) and (4.50)] at every time step. Therefore,

it is not surprising that this code is considerably more efficient in terms of CPU

time than the Quencher code.

4.2 Analytic Solution

This section presents a derivation of an approximate analytic solution to

the MacQuench model. By making several additional plausible assumptions, it

is possible to obtain solutions in both the quench and outer regions in terms

of X,(t). Matching across the quench front then leads to a single ODE for the

quantity X,(t). In its initial form this equation is still too complicated to solve

analytically. However, by considering several special limits we obtain explicit

analytical solutions as well as the boundaries in parameter space that define each

regime.

The specific goals of the analysis are to calculate T(t) in the quench region

and Xq(t). All other quantities of interest can be easily obtained by simple

subsidiary relations. Throughout the following analysis, unlike the MacQuench

model, we assume that the current density J is constant in time.
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Quench Region

Equations (4.21) and (4.22) for T(t) and T,(t) determine the temperature

in the quench region. Recall that helium depletion has led to the approximation

pO = pcCc + pC, - pcCc in Eq. (4.21). Thus, these two equations are a set of

closed, coupled ODE's for the unknowns T and T,. In most situations of interest,

the heat transfer coefficient is reasonably high so that the temperature difference

is not very large: (T- T,)/T < 1. Exploiting this fact we introduce new variables

T = 1 (T + T.) (4.57)
2

1
AT= -(T - T.) (4.58)

2

and for mathematical simplicity assume AT < T. Equations (4.21) and (4.22)

are added to cancel the heat transfer terms;

dT d
( Ac pCc + A~pw) yj-= AcJ2- ( Ac pCc - Am p.C.) ~(AT ) (4.59)

Neglecting the AT terms leads to a single equation for the average temperature

dT --
T -a(T)J2 T(0) = Tq (4.60)

where

ckT) =ACU77CU(T)

a(T) = A C ApCT) _) (4.61)
AcpcCe(T ) + Am p.C.MT

For CICC magnets, the temperature dependence of a(T) can be approximated

by

a(T) ~~ ao(1 + T2/T 2)1/2. (4.62)
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The quantity a is constant out to T, after which it increases linearly with T. The

parameters ao and T, are functions of the conduit material (e.g. stainless steel,

aluminum) and the area ratio AW/Ac. Typically ao ~ 5 x 10-16 m 4-K/A 2-_sec,

T, - 100K. A simple, practical, and reasonably accurate method to determine

ao is to set ao = amin, where a 7 e is the minimum value of a(T). Figure 4.2

demonstrates the accuracy of this approximation for the proposed ITER toroidal

magnet characterized by AW/AC = 0.39, Ac/AC = 0.61, and assuning a stainless

steel wall (here ao = 7 x 10-16 m 4-K/A 2 -sec and T,7 = 100 K). Note that this

approximation breaks down at lower temperatures (I< 20 K) where the specific

heat of the solid components is small. However, the approximation given by

Eq. (4.62) does not result in large errors in predicting the temperature for two

reasons; first, the actual value of a in the low temperature regime includes the

contribution of the helium specific heat in the denominator of Eq. (4.61). This

contribution tends to lower the value of a in this regime. In Fig. 4.2 we also

plot a including the specific heat of helium as obtained from Quencher during

a typical quench simulation. Note that as the temperature increases the helium

contribution to a diminishes. Secondly, in this regime, the temperature increases

very rapidly since a is large. Thus in a very short period of time Eq. (4.62)

becomes a good approximation to a.

For reference, we plot the quantity ao as a function of A,/AC in Fig. 4.3. Note

that in this figure we have used ACU/AC = 2/3 and Ac/AC = 1/3. These are the

typical values encountered in CICC magnets. Also observe that the quantity ao

is a function of the magnetic field B. This dependence results from the variation

of r7,, with B. For a given value of ao, the only quantity that is still required to

compute the temperature is T,,. For most applications T,, may be approximated

by T, ::: 100.

Using Eq. (4.62) in Eq. (4.60) and assuming J to be constant (no current

dump) yields an ODE that can be easily integrated. The result is
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= T,= sinh (t +t,, ~ T + aJ 2 t (4.63)

where t,, satisfies sinh(aoJ2t,,/T,) = Tq/T,. For large CICC magnets, typically

C, ~ 0.5 sec. The approximate form is valid for T ~< T,,, which is the usual

situation of interest.

From Eq. (4.22) one can easily obtain the following relation for AT(t);

dT d 2hP~
-T - -(AT) = 2 AT (4.64)
dT dt A pC.

By using Eq. (4.59) we obtain an ordinary differential equation for AT;

d (AT) AT+ ApC 2 (4.65)
dt 'rW 2hPwr,

where

hPw + (4.66)
7"W Ac pcCe A~pwC.

and all coefficients are evaluated at T = T(t). The general solution of Eq. (4.65)

is given by

AT = e-g() j AwpwCw j2 eg(t dt1  (4.67)
JO 2hP,,,r,

where

g~t = 1 dti (4.68)
g ) O 'r.(t 1)

Equation (4.67) is slightly complicated and in general requires numerical

integration. A simplification of this equation may be obtained by noting that the

dependence of the quantity r, on T, and thus on time, is not very strong. We

may therefore approximate g(t) as follows
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g(t) - t/r (

Furthermore, neglecting the time dependence of the quantity in square brackets

in Eq. (4.67), we obtain the following simplified relation for AT;

AT(t) ; AwpwCw a(T)J 2  i _ e- (4.70)
2hP,

Again, all coefficients are evaluated at T = T(t).

The final quantity of interest is the helium pressure. In the quench region the

temperature rises and the helium density is quickly depleted. As a consequence,

the helium equation of state can be accurately approximated by that of an ideal

gas. Thus, shortly after the quench has been initiated p ~ Rp(T + AT). With p

given by Eq. (4.8), the pressure can be expressed as

RpoLq T +AT(
p(t) = ) (4.71)

Equations (4.63), (4.70) and (4.71) provide analytic expressions for the quench

variables in terms of the unknown function Xq(t).

Outer Region

The expansion of the high temperature helium behind the quench causes

a compression of the helium in the outer region. Because of the large volume

of the outer region, and the supercritical state of the helium in this region the

compression causes only a slight increase in the density and temperature above

their background values. Consequently, p and T can be accurately approximated

by

p(x, t) p0 + p1(x, t) (4.72)
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T(x, t) ; To + T(x, t)

where pi < po and T, < To. Substituting this expansion in Eq. (4.11) leads to a

simple relationship for T in terms of pi given by

T1 (X, 0) = Toh C(PO, TO) Ipi (X, 0) (4.74)

Similarly, the pressure in the outer region can be expressed in terms of p1 by

expanding the equation of state

p(x, t) ~ po + c'p1(x, t). (4.75)

where c2 = c2(po,.§o).

The next step is to solve for pi from the simplified form of Eq. (4.23), which

can be written as

Sa ) 1/2.(4.76)

Here,

VO = (2dh poc0/) . (4.77)

With little loss of accuracy, f can be assumed constant at f ~ 0.07. Note that

even though pi/po < 1, the equation for p, remains nonlinear.

Equation (4.76) does not have a simple analytical solution. However, an

approximate solution can be obtained by transforming to similarity coordinates

as follows: r t, = (x - Lq/2)/t 2/s. The time and spatial derivatives become

a - (4.78a)

S 2/3 (478b)
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Equation (4.76) is now written as

S  -- 2 = -v ( )1/2

For the moment assume api/ar = 0. Then Eq. (4.79) has a pure similarity

solution given by

p _ 9V02 (4.80)
a (K+ 2)2

where K is an integration constant.

If the boundary conditions could be satisfied with K = const, then Eq. (4.80)

would be the exact solution to the problem. This is not the case. However, in

the analysis that follows it is shown that Eq. (4.80) is an approximate solution to

the problem in the sense that the K required to satisfy the boundary conditions

is a slowly varying function of time: K = K(r). Under this assumption, the

outer region solution is given by Eqs. (4.74), (4.75) and (4.80) with K(r) an as

yet undetermined function.

Matching Conditions

The system of equations is closed by applying the matching conditions. Con-

sider first the pressure balance jump condition given by Eq. (4.27). The quench

region pressure at x = X- has been calculated in Eq. (4.71). The outer region

pressure at any x follows from integrating Eq. (4.75), assuming pi(L/2, t) = 0, and

then substituting into Eq. (4.75). Setting x = X+ and balancing the pressures

leads to

poRLq T +AT) = pO + 9v0cot2  L/2 dx (4.81)

2 Xq 0Jxq [(x - Lq/ 2) 2 + X2 ]
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where XD (t) = t 213 K1/ 2 represents the location of the leading edge of the diffusion

front. In general XD >> Xq. This is the first of the expressions relating the two

unknowns Xq(t) and XD(t).

The second relation follows from the velocity jump condition described by

Eq. (4.24). A simple calculation, again making use of Eq. (4.80) yields

dXq _ 3v02 t
dt Po (Xq - Lq/ 2 )2 + X(

Equations (4.81) and (4.82) represent a closed model for the unknowns Xq(t) and

XD(t). In its present form the model is still too difficult to solve analytically.

However, there are several special limits in which explicit analytic solutions can

be obtained. These are the "short coil", the "long coil", and the "low pressure

rise regime", which are discussed next.

Short Coil

To decide whether a given coil is "short" or "long" one must compare two

different time scales. First there is the nonlinear diffusion time tD, determined

from the solution of Eq. (4.76). For t < tD (or equivalently XD < L/2) end

effects are unimportant. Conversely for t > tD. The second time scale is defined

as the characteristic time required for the temperature in the conductor to rise to

some maximum allowable value Tm. This time is easily estimated from Eq. (4.63)

and is defined by m = Tm/aoJ 2 . When the time scale of interest exceeds the

diffusion time (t, > tD) the magnet behaves like a short coil. In the discussion

that follows, analytic solutions are presented for the short coil regime as well as

an explicit criterion for the critical coil length defining the region of validity.

The analysis begins by recognizing that the short coil limit corresponds to

the assumption (L/2)2 <X2(tm) in Eq. (4.81), thus allowing us to neglect the

(x - Lq/2) 2 term in the integrand. We further assume that X. < L/2 (i.e. the
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quench front at t = tm is still some distance away from the end of the coil) and

use the approximate form for T :::: T + OLJ 2 t, valid for Tm < T. Also, in both

the short and long coil limits we find X, is weakly dependent on the helium

temperature T, and thus AT. This, together with the relation AT < T, justifies

neglecting AT in Eq. (4.81) (this assumption is not used in the low pressure

rise regime, since there Xq is linearly dependent on AT). Similarly, once the

quench is initiated, the pressure behind the quench front usually greatly exceeds

the initial pressure ahead of the front, thereby allowing us to neglect the po term

in Eq. (4.81) (when this is not the case we have the low pressure rise regime which

is discussed separately). These approximations yield the following expression for

XD(t) as a function of Xq(t)

2 - poRLq aoJ2 t(4.83)
X ~ 9v2cL Xg p (

The expression given by Eq. (4.83) is to be substituted into Eq. (4.82). The

resulting equation can be simplified by assuming X2 < X2 in the denominator,

an assumption that is well satisfied for the short coil (except for t very close to

zero) since X2 < (L/2)2 < X2(tm). The end result is a single equation for Xq(t)

given by

dXq, (2dhRL) 1/2 (aOJ2t 1/2  (4.84)
dT ~ fL \Xq ) '

The solution, valid once the quench is well initiated, (X, > Lq/ 2 ) has the from

Xq = [(Lq/2)312 + (V, t)3/2 (4.85)

V = 2dhR oJ2 (4.86)
Vq- fL (.6

The coefficient V is the asymptotic quench velocity and is an important quantity

of experimental interest.
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Equation (4.86) shows that in a short coil, the quench front propagates with

a constant velocity. Observe that V is a function of the product LJ 2 . Small

Lq and/or J lead to a slow quench velocity V. Since T in the quench region

is independent of Lq, a very localized quench initiation (i.e. small L.) leads

to a small V1 for a given temperature rise, thereby increasing the difficulty of

detection. Note that V is a weak function of L: V oc L 113 . Since end effects

are important in a short coil it is not surprising that V = V1(L).

Knowing Xq, we can substitute back into the expression for K. The result

is K(t) ; (3v0/poV)t-1/ 3  t-1/ 3 which is relatively slowly varying. The value

of K(tm) can next be inserted into the inequality criterion defining the regime

of validity for the short coil [(L/2)2 < X2(tm)]. We conclude that a CICC is a

short coil if

L2 24dhCot. (4.87)
f V

The density in the outer region is obtained from Eq. (4.80), which for the

short coil may be written as

~ - 2 (4.88)
-5 K2

This equation may easily be integrated to obtain p1 ; -(9v02/K) + C where C is

a constant that is evaluated by using the boundary condition p1(x = L/2, t) = 0.

Once pi is known, the velocity v is obtained from a linear form of Eq. (4.12);

[2dc2 1/2 )p1 1/2

v(x, t) = (4.89)

We find that p1 and v are given by

pi(xt) ( 2dcX (4.90)

v(x,t) = V (4.91)
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Thus, the short coil limit corresponds to the steady state solution of Eq. (4.76).

Observe that the density decreases linearly with x while the velocity is a constant.

This is the expected behavior in situations where the time scale of interest is

sufficiently long to allow the profiles to come into a quasi-static equilibrium with

respect to the diffusive processes. Interestingly, once the quench is well established

the propagation properties are independent of Tc,. This situation persists until

the onset of THQB (see Appendix D).

Long Coil

Most of the large CICC magnets currently being designed can be character-

ized as "long coils." In terms of the basic analytical model given by Eqs. (4.81)

and (4.82) a long coil is defined by the two criteria (L/2)2 > X2 (t.) and

X2 < X2(tm). Physically this corresponds to Xq < XD < L/2: the location of

the diffusion edge (XD) at the time of interest (ti) is well short of reaching the

end of the coil (L/2) but is far ahead of the quench front (Xq). Under this defi-

nition the limits of integration in Eq. (4.81) transform from (Xq, L/2) to (0, oo).

Note that replacing Xq by 0 is consistent with the long coil assumption except

for t very close to zero.

If we again assume T ,< T,,, Eq. (4.81) can be easily integrated yielding an

expression for XD in terms of Xq

2 2 poRLq (aoJ 2 t (4.92)
X 9r v cd Xq

Equation (4.92) is substituted into Eq. (4.82), where, as for the short coil, we

assume X2 < X2. The resulting equation for X. has the form

dX2_2/3 2 2 1/ eo J2t 2/ 11/3
dXq 3(2\32(2 (2dhR2L. (4.93)
dt 9,r fco X1 t
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This equation can be easily solved yielding

Xq = [(L,/2)5/3 + (V t)/ (4.94)

where the asymptotic quench velocity ±, is related to V by V = (5/ 4 )Xq and

Vq(t) = 0.766 /5 (Lo/J ) 2/5 . (4.95)

Observe that V has a similar qualitative behavior with Lq J 2 as for the short

coil. However, V. decreases slowly with time: V cc t-1/ 5 . In comparing short

and long coils we see that some of the scaling is quite different. In particular,

there is, as expected, no dependence on L in the long coil.

Consider next the evaluation of K(t). Substituting back into Eq. (4.82)

yields K(t) ; (3v2/poi)t-1/S, K cX t-2/ 15 . The slow K approximation is very

plausible. The criteria defining the regime of the long coil (L/2)2 > X2(tm) and

X2 < X2(tm) can now be expressed as

L 2 > > 4V 2 t 2  (4.96)
f V q n

Equation (4.96) is well satisfied for many large CICC magnets.

The final quantities of interest are the profiles for p1 and v in the outer region.

These are easily extracted from the analysis and using Eq. (4.80) together with

the boundary condition pi(x = L, t) = 0. The integration of Eq. (4.80) results in

P =~j (1 + C2 /K) 2  -97)

This integral may easily be evaluated to obtain

p,(X, t) = 9v2 c 1 C K1k (4.98)
2K 3 / 2 cot K 1/2 K + C2
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This equation is slightly complicated. We may write pi in a simpler form by first

noting that the quantity in parenthesis may be written as

f(y) = cot- 1 (y) 1+ y2  (4.99)

where y /V'k. In the two limiting cases y -+ 0 and y -+ oc, f is given by

f(y) ;y+ 0 (4.100a)

2
f(y) 3 y -+oo (4.100b)

These two limiting cases may be combined to obtain the following uniform ap-

proximation to f(y);

1 7r/2
f(y) 1 2 = (4.101)

2/r + 3y3/2) (I + 3ry3/4)

In Fig. 4.4 we show the accuracy of this approximation by comparing Eqs. (4.99)

and (4.101). We may now write pi in the following simplified form

p, - 3v2 2 (4.102)

It34 + A3/ 2 (x - L 9 /2)3/2]

where A2(t) = po(4Vq,/5)/3v2 and A2 (t) = (37r/4) 1/3 A1 . The velocity in the outer

region is obtained by using Eq. (4.89) together with K(t) obtained for the long

coil;

v(x t) = (4/5)V t (4.103)
' t + A2(X- Lq/2)2

Note that we do not differentiate Eq. (4.101) in obtaining the velocity, instead

we use the more accurate form of ap1 /x given by Eq. (4.80). As expected, in

a long coil both the velocity and density profiles decay for large x and spread in
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width as time progresses. An important quantity of interest during a quench in

long coils is the helium expulsion velocity from the conduit. In accord with the

long coil limit we find, from Eq. (4.103), that the expulsion velocity is given by

24dc~2
v(x = L/2,t) p 2 2 t. (4.104)

Just as in the short coil, once the quench is well established the propagation

properties are independent of Ter. This situation persists until the onset of THQB

(see Appendix D).

Comparison with Dresner's Results

At this point we can make a direct comparison between the long coil solu-

tion presented above, and the analytic solution given by Dresner. To begin, we

summarize Dresner's results for T(t), p(t) and V(t) [1];

TDPt) 0= i q 4 1/3 (0 j2)5/3 t7/ 3  (4.105)

pD(t) = 0.21 70 J2 t (4.106)

5. (44_ 1/3
VqD Xq 0.42 fpc 0

2 )2 3 t"/3  (4.107)

where we use the subscript D to denote Dresner's results. All variables have

been defined previously except jo. This quantity represents the resistivity of

the copper which is assumed to be constant. It makes little sense to attempt

a quantitative comparison between these equations and the long coil solution

presented in this paper, since the two sets of results are inherently based on very

different assumptions. This fact is evident in the large qualitative differences in

the scaling of T, p, and V1 with t between the two sets of solutions.
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Specifically, consider the following. In Eq. (4.105) the contribution of the

conduit wall has not been included. Thus, this equation should be compared

with Eq. (4.63), with AT = 0 which results in T = T. Next, Eq. (4.106) describes

the maximum helium pressure in the quench region. For the assumptions used

in Dresner's derivation, this equation is to be compared with Eq. (4.71) in the

following form

p(t) = 0.653 fCOP) (RL aoJ2)3 /s t1/ 5  (4.108).
(2dh )

Finally, Eq. (4.107) should be compared with Eq. (4.95). Again, the qualitative

differences are apparent. The only parameter that is the same in both theories

is the helium expulsion velocity. The expulsion velocity obtained by Dresner is

the same as Eq. (4.104). This is a consequence of assuming an infinite conductor

length and thus discarding all information from the quench region, when consider-

ing x = L/2. In Table 4.1 we have summarized the important scaling differences

between the long-coil solution and Dresner's results.

Table 4.1: Comparison of various

solution.

scaling between the long coil and Dresner's
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Tmax OC t 7 / 3  Taz oc t

Pmaz OC t Pma C t1/
V oC) t1/3 Vo -1/5Vq Vq OC

Ta OC j1013 Tma OC

Pmax OC j2 Pmaz OC j6/5

VqOC j 4 /3  Vqxj415

Tmax Oc L- 1  Tmax oc L

Pmax o LO Pma oc L '5

Vq ocL V oc L '



"Small Ap" Regime

The last regime of interest corresponds to the case in which the pressure rise

Ap in the quench region remains small. This regime corresponds to the limit of

a "weak" quench. When the current density is low, the frictional force small, or

the quench initiation length short, the helium coolant easily removes the quench

generated heat, leaving the pressure in the quench region only slightly higher than

the background value. The experiment of Ando et al. [2] discussed in Chapter 3

lies in the small Ap regime.

When Ap is small the quench pressure can be expressed as p = po + pi(t),

with p1/po < 1. Using this relation on the right-hand side of Eq. (4.81) allows

us (to leading order in pi/po) to neglect the integral contribution. Thus, X. Z

RpoLq(T + AT)/2po. In order to match the initial condition we add a small first

order constant, yielding

Xq ~ RpoLq(T + AT - Tq)/ 2 po + Lq/2. (4.109)

For the case where AT < T, and T 1< T,, we find V, = Xq RpoLqao J2 /2po.

Note the strong dependence of the quench velocity on J. This dependence is much

stronger than in the short and long coils. For T > T,7, Xq increases exponentially

with J 2 . Also, Eq. (4.109) is valid for the entire temperature range (20-300 K),

while in deriving Eqs. (4.85) and (4.94) we assumed T ,< T,7. Interestingly, the

propagation of quench in the "small Ap" regime is independent of the thermal

hydraulics of the helium in the conduit.

Next, we proceed to obtain the first order pressure rise p1 (t). From the first

order part of Eq. (4.81) we find

L/2

p1(t) = 9v,2ct J - / X (4.110)0 JX Kx -Lq/ 2 )2 + X2 ]2
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where for both the long and the short coils, from Eq. (4.82) we have

3vo t (4.111)
XD,- 0 .(41)

Pa q

In order to evaluate the integral in Eq. (4.110) we consider the two limits given

by Eqs. (4.87) and (4.96), respectively. For the short coil we find

p1(t) = 4dh q . (4.112)

Similarly for the long coil we obtain

Pi(t) = 1.36 (f) 1/2 PC tl/2V3/ 2  (4.113)

where V(t) = Xq is obtained from Eq. (4.109). Just as in the long and short coil

limits, we may obtain the solution for pi(x, t) and v(x, t) in the outer region from

Eqs. (4.80) and (4.89).

Having determined pi in the quench region we may now state the explicit

relation that distinguishes the small Ap regime. This relation is given by

pi/Po < 1 (4.114)

during the time scale of interest.

As was the case in both short and long coils, once the quench is well estab-

lished the propagation properties are independent of Tc,. This situation persists

until the onset of THQB (see Appendix D).
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Summary of Analytic Results

To summarize, we have characterized three different regimes of operation

during a quench in a CICC. In Fig. 4.5 we present the criteria that distinguish

each of these regimes. All the relevant parameters are summarized in the figure

caption. We suggest that to properly interpret any experimental results on quench

propagation, it is vital to clearly distinguish the regime of operation of the magnet

(e.g. distinction between long and short coils is specially important in trying to

extrapolate experimental test coil results to long coils).

In Fig. 4.6 we summarize a simple form of the analytic results for each regime.

These analytic solutions represent the first such results that remain valid for

the long time scales of interest during a quench process. In the next section,

important analytic scaling are verified by direct comparisons with numerical as

well as experimental data.

4.3 Discussion

In the discussions that follow, we provide detailed comparisons of the Quencher,

MacQuench and Analytic models, as well as comparisons with experimental data.
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Long Coil

Conductor Length (m) 530
Copper Area (mm 2) 390
Nb3 Sn Area (mm2 ) 250

Helium Area (mm2 ) 450
Wall Area (mm 2) 250

Hydraulic Diameter (mm) 0.5
Wall Inner Perimeter (mm) 130

Initial Current (kA) 43
Detection Time (sec) 00

Dump Time (sec) no dump
Inlet Pressure (atm) 5

Outlet Pressure (atm) 5
Inlet Temp. (K) 5

Copper RRR 100

Table 4.2: Characteristic parameters of the "ITER like" conductor.

We consider a conductor of length 530 m, similar to the TF coil of ITER. The

parameters describing this conductor are Ah = 4.5 x 10-4 M2 , A,. = 3.9 x 104

m2, A,c = 2.5 x 104 M 2 , A, = 2.5 x 10-4 m 2 , P" = 0.13 m, and dh = 5 x 104

m. The transport current is I = 43 kA and the conductor is assumed to be in

a constant magnetic field of 13 T. Before the initiation of quench, the stagnant

helium in the channel is at a temperature of 5 K, and a pressure of 5 atm. In Table

4.2 we summarize the characteristic parameters of this conductor. Two quench

scenarios are investigated. In scenario (1) Lq = 3 m while in scenario (2) Lq = 8

m. The studies have three goals: first, to compare the accuracy of the different

models in the long coil regime, second to determine quantitatively the effect of

quench initiation length Lq on quench propagation, and third to ascertain the

accuracy of the analytic scaling relations with I.

In Fig. 4.7a-d we compare the cable temperature T = T + AT, the normal

length 2 X,, the quench helium pressure p, and the helium expulsion velocity

v(x = L/2, t), respectively, as obtained by the various models during a 6 second
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quench. The analytic results are given by Eqs. (4.63), (4.70), (4.71), (4.94-95),

and (4.104) with ao = 7 x 10-" m4-K/A 2 -sec (for an approximate value of ao

see Fig. 4.3 with AID/AC - 0.4 and B = 13 T), J = 1.1 x 108 A/m 2 , T7 = 100 K,

Tq = 10 K, R = 2080 J/kg-K, po = 130 kg/M 3 , co = 215 m/sec, and f = 0.07.

In Fig. 4.7a, only case (1) is presented, since less than - 6 % difference in T

between the two scenarios was found. The dependence of the normal length

and the helium pressure on L. is evident in Figs. 4.7b and 4.7c, where we observe

good agreement between the various models. Finally, in Fig. 4.7d we compare the

helium expulsion velocity as obtained by Quencher, MacQuench and Eq. (4.104).

Only the case Lq = 3 m is presented since less than ~ 1 % difference was observed

between the two scenarios. Note that the six second quench simulation observed

in these figures took approximately 4 hours of CPU time on a Vax 4000/90 with

Quencher, while less than 2 minutes of CPU time was used by MacQuench on

the same machine (this is equivalent to less than 10 minutes of CPU time on a

Macintosh Centris 650).

Consider now the dependence of the average temperature T, and the normal

length on the transport current I. In Fig. 4.8 we plot (T - Tq) and 2 X, each

evaluated at t = 4 sec versus the square of the transport current 2. We have nor-

malized these quantities such that A = (T - T)/(T - T), and B = (Xq)/(Xq)r,

where the subscript r denotes the value of the relevant quantities at the reference

I = Ir = 30 kA. In this figure we compare A and B as obtained by Quencher,

MacQuench and the analytic results. From Eqs. (4.63), (4.94) and (4.95), in the

regime T T, (which is the case for all the points in Fig. 4.8) we have A 0C V

and B oc I4/5, which is clearly observed in Fig. 4.8.
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Short Coil

One of the most distinct differences between the long and the short coil is the

dependence of the quench velocity on the coil length L. In the short coil regime

Xq oc L-/ 3 , while the long coil solution of Xq is independent of L [see Eqs. (4.94)

and (4.95)]. This dependence is important in designing and interpreting results

from experiments carried out on shorter, less expensive test coil samples. Care

must be exercised to guarantee that the test coil does not inadvertently operate in

the short coil regime, while the actual coil of interest lies in the long coil regime.

Such a difference could lead to erroneous extrapolations, particularly with respect

to Xq. One of the main goals of the short coil studies is to quantify this issue.

We consider a 4 sec quench scenario in a 50 m long sample of the ITER

conductor just described. The initial quench length is assumed to be L. = 3 m.

First, note that using the relevant parameters discussed above in Eq. (4.86) we

find V1 = 2.47 m/sec. Using this value, together with tm = 4 see in Eq. (4.87) we

find the criteria for the short coil to be L2 /1.3 x 104 < 1. For L = 50 in, we find

L 2 /1.3 x 104 = 0.19 which satisfies the short coil criteria. It is important to note

that for the long coil case where L = 530 m, we find L2 /1.3 x 104 = 22 which

clearly satisfies the long coil criteria.

In Fig. 4.9a-b we compare the normal length and the maximum helium pres-

sure, respectively, as obtained by the various models. The temperature depen-

dence is not presented, since again less than 5% difference is observed between

this case and Fig. 4.7a. The various models are in good agreement. In order to

verify the dependence of Xq on L, in Fig. 4.10 we show the dependence of the

normal length (at t = 4 sec) as L is varied. The y-axis is Xq/(Xq),, where (Xq),

is the normal length at t = 4 see, in the case where L = L, = 50 m. From

Eqs. (4.85) and (4.86), we expect X. oc 1/L'/ 3 in the short coil regime. This

is clearly observed in Fig. 4.10, and as L is increased we start to enter the long

coil regime, where from Eqs. (4.94) and (4.95) Xq becomes independent of L.

The transition between the long and the short coil regimes is clearly observed in
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Fig. 4.10, and is well predicted by the analytic theory.

Small Ap Regime

This regime is very different from both the long and the short coil regimes

just described which each assumed p(tm)/po > 1. In the long and short coil

solutions Xq displayed the same qualitative behavior, with the exception of the

dependence on L. For small Ap, however, Xq is a much stronger function of Lq

and J, while not dependent for example on the friction term f/dh nor the coil

length L.

In order to test the validity of the analytic solution in this region, we consider

the experimental results of Ando et al. [2] together with the numerical results

obtained by Quencher (see Figs. 3.15 and 3.16). These experiments fall in the

"small Ap" regime as will be shown below when the pressure in the quench region

is calculated. The conductor temperature for various transport currents is shown

in Fig. 4.11a, where we compare the analytic results of Eqs. (4.63) and (4.70)

with those of Quencher. For this conductor ao = 3.9 x 10-'1 m4-K/A-sec (for

an approximate value of ao see Fig. 4.3 with A,/Ac ;::: 1.8 and B = 7 T), and

T, = 60 K. The quench is initiated such that at t = 0+, the value of Lq = 0.35

m and T. = 35 K. (Note that there is a growth of the normal region beyond the

initial length (Lq(t = 0-) = 0.04 m) where the external heat is deposited since the

value of the heat source is relatively large.) Observe that the theoretical models

are in good agreement. We have plotted only the analytic and the Quencher

results in order to more clearly point out the accuracy of the analytic solution.

Similarly good agreement is obtained with the MacQuench model. There are no

published direct experimental measurements of T to add to the comparison. In

Fig. 4.11b, however, we compare the published experimental measurements [2]

of 2 Xq with the analytic predictions given by Eq. (4.109) with po = 148 kg/m 3

and po = 10 atm. Good agreement between the analytic and the experimental
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results is observed, quite comparable to the comparisons with Quencher discussed

in Chapter 3.

We next calculate the helium pressure in the quench region for the case

I = 2 kA (J = 1.96 x 10' A/m 2 ). From Eq. (4.109), we find Vq : RpoLqT/2po

RpoLqa(T)J 2 /2po. At t = tm = 4 sec, we find T is approximately 130 K.

Using this value in Eq. (4.62) we find a(tm) = 9.3 x 10-6 m4 -K/A 2 -sec. Thus,

V(tm) = 1.9 m/sec. Using this value together with f = 0.07, L = 26 m and

dh = 6.9 x 10- m in Eq. (4.112), we find pi(tm) ; 3.7 atm. This value agrees

very well with the pressure rise of 3.3 atm observed from the Quencher results for

this case. Also note that since pi (tin )/po ,6 1 this coil is in the small Ap regime.
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Figure 4.1a: Calculated conductor temperature profile during a quench in CICC.
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Figure 4.1b: Calculated helium pressure profile during a quench in CICC.
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Figure 4.1d: Calculated helium density profile during a quench in CICC.
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Alpha vs. Temperature
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Figure 4.2: The parameter a as given by the following: (A) Eq. (4.61), (B)

Eq. (4.62) and (C) including the helium specific heat contribution in Eq. (4.61).
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Comparison of Eqs. (4.99) and (4.101)

Figure 4.4: Comparison of Eqs.(4.99) and (4.101).
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Short Coil

24dh Ctm

fV

Rpo LqaoJ 2 >1
2po V,

V = (2dhR LqaoJ2) 1/3

Long Coil

L2 > 24dhCOtm

fV(tm)

Rpo L9 aoJ2 >1
2po Vq(tm)

V(t) = 0.766 (j) j )

Small dp Regime

pI(tm)/po < 1

Vq ~ RpoLqaoJ 2 /2pO

24dh ctm
fV

P -(t ) =pod" V 2

L 2 > 24dh c2t"'

fV

p1(t) = 1.36 pc t q/2yq/2

Figure 4.5: Description of various regimes during a quench in CICC. Here, L

is the length of the conductor, d is the hydraulic diameter, co is the speed of

sound in the background (po,po) state, f is the friction factor assumed constant

(f ~ 0.07), R = 2080 J/kg-K, Lq is the length of the initial normal zone, J =

const. is the current density in the copper, ao is given in Fig. 4.3, and tm is the

time scale of interest during quench; tm ~ rdet where Tdet is the quench detection

time.
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Short Coil

Tma(t)~ aJt ± Tq

V(t) I 3(RLqaoa

Xq(t) Vq t + Lq/2

a(t ; RpoLq 
_

pmit 2 Xq

ve(t) = Vq ; t > L/2co

Long Coil

... (t) CeoJ 2 t + Tq

V(t) x 0.766 7-

Xq(t) v t + Lq,

RpoLq
pmax(t)~ 2

Vex(t) = 24dhc t

( RLqaoJ2)
2 /5  1

/2

t > L/2co

Small dp Regime

T-ma(t) Z aoJ 2 t + T

pmax(t) -po

V,(t) 1P: L, aOJ 2

2po

X, (t) ;zz V t + L, /2

L 2 < 24dh 0
fV

vex=Vq ; t > L/2co

24dhCOtm

L2 2
fy,

ve(t) = 24dhc t
fL2

Figure 4.6: Analytic solution for quench in CICC in various regimes. For defini-

tion of the various parameters see the caption of Figure 5. Here, T is the average

temperature; T = (T + T.)/2, T. is the initial temperature in the quench region

(for most cases T, ~ Tr where Tc, is the critical temperature of the superconduc-

tor), iTmax and Pmax are the maximum average temperature and helium pressure,

respectively. The quantity vez is the expulsion velocity of helium. Note that

Ve= 0 for t < L/2co in all regimes.
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Conductor Temperature vs. Time
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Figure 4.7a: Comparison of the maxdmum conductor temperature in a long coil

as obtained by the various models.
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Figure 4.7b: Comparison of the length of the quench region in a long coil as

obtained by the various models.
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Maximum Helium Pressure vs. Time
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Figure 4.7c: Comparison of the maximum helium pressure in a long coil as ob-

tained by the various models.
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Helium Expulsion Velo
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Figure 4.7d: Comparison of the helium expulsion velocity in a long coil as obtained

by the various models.

170

.30

Cn2

C\

. . I I I I I I . I I I

Quencher

-- MacQuench

----Analytic

-- -
- -

.25

.20

.15

10

.05

0 .
) 1

5 ~ ~ - --

city vs. Time

I



5.5

0 Quencher

4.5 -E MacQuench 2

Analytic A

3.5

(I / I )4/
2.5

1.5 B

0.5 ' ' '

0.5 1.5 2.5 3.5 4.5 5.5

(I I Ir2

Figure 4.8: Comparison of (T Tq) and 2 Xq versus I2 as obtained by the various

models.
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Length of Normal Region vs. Time
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Figure 4.9a: Comparison of the length of the normal region in a short coil as

obtained by the various models.
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Figure 4.9b: Comparison of the maximum helium pressure in a short coil as

obtained by the various models.
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the conduit, as obtained by the various models.
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Conductor Temperature vs. Time
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Figure 4.11a: Comparison of the conductor temperature in a small- Ap regime, as

obtained by Quencher and the analytic results.
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and Experimental Results
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Figure 4.11b: Comparison of the length of the normal region as obtained by

experiments of Ando et al. [2] and the analytic results.

176

0

0

0

30

25

20

15,

10,

5

0

e I=2. OkA
16, I=1 .8kA

I I=1 .5kA

- -i I -

0 8



Chapter 5

Dual-Channel CICC
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Dual-Channel CICC

This Chapter presents a theoretical model describing quench propagation in

Cable-In-Conduit Conductors (CICC) with an additional central flow channel.

The central channel is used to enhance the flow capabilities in the conduit during

steady state operation as well as during quench events. Such a system is the

proposed design for certain conductors in the International Thermonuclear Ex-

perimental Reactor (ITER). Here, the additional channel is formed by a metal

spring located at the center of the conduit. We describe the separate thermal evo-

lution in both the cable bundle and the central channel; in particular, the mass,

momentum and heat transfer due to flow between the cable bundle and the central

channel are included in the model. Several simplifications are introduced which

greatly reduce the complexity of the model without sacrificing accuracy. The re-

sulting reduced model is solved both numerically and approximately analytically

for ITER parameters.

A schematic diagram of the CICC with an additional central channel is shown

in Fig. 5.1. In practice the cable and primary coolant (region 1 helium) are

separated from the central hole (region 2 helium) by a stiff but loosely wound

spring. Because of the larger hydraulic diameter of the central hole, it should be

possible to pump supercritical helium along the length of the cable with greater

ease during standard operation. Thus, a given cooling requirement should be

attainable with a lower pumping power. This would clearly be a desirable feature.

The purpose of the present Chapter is to examine the effect of the central

hole on the problem of quench propagation. We present a numerical model and

a corresponding analytic theory based on the QUENCHER model presented in

Chapters 2 and 3. Similar studies are simultaneously being carried out by Bottura

using the SARUMAN code [1,2]. Both the present work and Bottura's work

appear to make the same engineering approximations to describe the interaction

between the region 1 and 2 helium flows.

A qualitative description of the results presented here is as follows. First,
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during quench the maximum temperature of the quenched conductor is essentially

unaffected by the central hole. This is a consequence of the fact that the heat-

ing rate depends primarily on the resistivity of the copper matrix and the heat

capacities of the copper and wall. It only very weakly depends on the thermal

hydraulic behavior of the helium (see Chapter 4).

Second, the average propagation velocity of the quench front increases be-

cause of the central hole: if Xq (t) is the location of the quench front, then V = ±q

increases. The reason is that the helium directly heated by the quenched con-

ductor easily passes through the spacing between adjacent spring turns. Once in

region 2, the hot helium flows ahead much faster because of the large hydraulic

diameter, thereby increasing the quench speed.

Third, the maximum pressure is slightly lower for the CICC with the central

hole. This is a consequence of having a lower frictional resistance for the flow of

helium. The qualitative features described above are quantified numerically and

analytically in the main body of this chapter.

5.1 Basic Model

The most general model that may be used to describe the helium flow and

heat transfer in a dual-channel CICC, is a set of three dimensional equations for

each component. These equations are the same as that described in Chapter 2

with an additional set of equations for the helium in the central channel. The

resulting model is unnecessarily complicated and just as in Chapter 2 we may

simplify the 3-D equations to a one dimensional model. The procedure is the

same as that presented in Chapter 2.

To begin, we denote helium in the cable space as "helium 1" and "helium 2"

consists of the helium in the central channel. Since the cable and the conduit wall

are only in direct contact with helium 1, their treatment is identical to Eqs. (2.1)

and (2.6). Thus, the 1-D equations for the conductor and the wall are given by;
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Wall:

p"'C. f.= a . -h. P. (T. - TO) (5.1)

Conductor:
OTc 1 OTe hcPcpe = -- A-(T-T 1 )+Sc (5.2)Prcc & Ox -& A, T T l

where the quantities h, and h, are functions of pi, T1 and v1.

The helium 1 equations are obtained from Eqs. (2.21), (2.26) and (2.34), by

noting that certain boundary terms are no longer zero. Thus, we have

Helium 1:

+ (pivi) = a P 1  (5.3)

I dv_ _ pi _ fipilvivi 5.4)
d - Ox 2d1

p +v ) (U1 + 1 - 9(P1 V)

+ h.P( hcPc (T TI+P P(A1+q1) (5.5)
A1  A, 

Pi = pi(pi, T) (5.6)

Similarly, for helium 2 we find

Helium 2:

+ (p2v2) = -a P 2  (5.7)

dV2 =_P2 f 2P2V2 (5.8)
P2 d Ox 2d 2

P2 + (U 2 + V) = a (p2v2) - (aA2 + q2) (5.9)

P2 = P2(p2, T2) (5.10)

where the cross-coupling terms are defined as follows;
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17 1 = fI5[n -v-ii dS (5.11)

r2 P k [n. V- 2 ] dS (5.12)

A, = -(U + 'V2 + In(5.13)

A2 = U2 + ' + P 2 (5.14)

[n - KTiVIThi] dS (5.15)
P., s.

1
q2 = [n * r2VITh2] dS (5.16)

Note that a in these equations is defined as a = g/(s + g) (see Fig. 5.1 for

definitions of g and s). This term arises from the fact that only a fraction of

the space along the spring is available for helium flow in the transverse direction.

Also, note that there are no coupling terms in the momentum equations. This

is a consequence of neglecting the cross-friction between helium 1 and helium 2

at the spring interface. This is a valid approximation since this friction is small

compared to the friction between helium in each of these regions and the spring

itself.

The left hand side of Eqs. (5.5) and (5.9) may be manipulated, as was done in

obtaining Eq. (2.44), in order to write these equations in terms of the temperature.

In terms of the temperature variable, the general 1-D equations for the various

components are given by;

Wall:
aT, a aT, hWP (P T

P.C. = & A T (5.17)
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Conductor:
OTr a &Tc, hc P,

PCCC = -h (Tc - T1) + Sc (5.18)

Helium 1:

P+ (pvi) = a P 1 (5.19)
_X A1

dv1  -p1  fipilvilvi (5.20)
Pldy Ox - 2d,

PCh1 T P1Ch1V1- + plCOITj 1 fip1 v1 |jv
Ox + Ox 2d1

+ h "(Tm -T1)+ c Tc-T1)+ (aA,+qi) (5.21)A, A

p1 ==pi(pi, T) (5.22)

Helium 2:

+ a(P2V2 = --a P 2  (5.23)

dv2  Op2 f 2 p 2 jV 2 jV2  (5.24)
2 = x K 2d2

2OT OT2CT 2 _ f 2p 2 2V 2 | "v (aA2 + q2 )(.
P2Ch2+AC-2 2 22 d 2(aA 2 (5.25)

at~yP~2 0 P ax x 2d2  A 2

P2 = p2( p2, T2 ) (5.26)

The cross-coupling terms T, A, and q represent the mass flux, the energy flux

due to perpendicular convection, and the heat flux due to turbulent convection,

respectively. These quantities are not known in general and additional relations

must be specified in order to determine them. In the next section we present

the cross-coupling approximations that eliminate these terms and hence avoid

introducing any additional equations.
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5.2 Cross-Coupling Simplifications

A simpler model is obtained by introducing the cross-coupling simplifications

described here. The basic assumption is that there is good communication be-

tween regions 1 and 2, in terms of mass and energy transfer. Practically, this

implies that the gap between alternate turns of the spring is large: g Z s (see

Fig. 5.1). In this situation there is strong mixing of the helium in regions 1 and

2 leading to rapid equilibration of the pressures, densities, and temperatures.

The velocities, however, can be quite different, because of the large difference in

hydraulic diameters.

The consequences are as follows. From general conservation relations, we

require Fi = F 2 = F, and q, = q2 = q; that is, there is no build-up of particles

or energy in the thin layer separating regions 1 and 2. Because of rapid mixing,

P1 = P2 p, TI = T2 T, and p1 = p2 = p (note that this assumption

results in A1 = A2  A). These approximations can be exploited by eliminating

the cross coupling terms from the mass and energy equations. This is done by

appropriately adding Eqs. (5.19) and (5.23) such that the term aPF is cancelled.

Similarly adding Eqs. (5.21) and (5.25) such that the term P,(aA+q) is cancelled

results in the simplified energy relation. The new model is now given by;

Wall:
8T. _ &Tw hWPT

P.C. - Kx (T -T 1 ) (5.27)
Ot ax , x A,,

Conductor:
fTe a &T~c hcPc

pcC = - TC (T - TO + Sc (5.28)

Helium 1/Helium 2:

Ah - + - p(Aiv1 + A 2 v2 ) = 0 (5.29)
t ax

dvp = p -fiplvulv (5.30)
dt ax 2d1

dV2  _ P _ f2pjv2|V2 (5.31)
dt ax 2d 2
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AhpChat + pC(A1V1 + A2 v2 )x + pC#T- (Avi + A2v 2 ) =

Aflipi|vivi +A 2 f2Pjv2|v2 + h.P.(T. - T) + hePe(T -- T) (5.32)
2d 1  2d 2

p = p(p, T) (5.33)

where Ah A1 + A2 .

Equations (5.27-33) are very similar to the general model discussed in Chap-

ter 2 (see section 2.2). In fact, these equations reduce to Eqs. (2.48-53) for

A 2 -+ 0. Only one additional equation to the general model has to be solved.

This model is solved by L. Bottura using a modified version of the Saruman com-

puter code [1,2]. In the next section we proceed with the quench simplifications

in order to further reduce Eqs. (5.27-33). This procedure is exactly the same as

that presented in section 2.3 of Chapter 2, where the general model describing

quench in a simple CICC was reduced to the Quencher model.

5.3 Quench Simplifications

By making the same quench simplifications as was done in obtaining the

Quencher model we may further reduce Eqs. (5.27-33). To begin, we define the

"area-averaged" velocity v as follows;

Alvi + A2V2 (5.34)
A1 + A 2

Next by neglecting the inertia in both Eqs. (5.30) and (5.31) we find

f1 pV2 _ f 2 pV(

2d1  2d2

This is a general relation between v, and v 2 which may be used for any given

friction factor correlation. For the correlation given by Eq. (2.69) we note that
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fi = ki 0.184 (5.36)

f2 = k2 0.184 (537)

where k1 and k2 are in general not the same since the roughness in regions 1 and

2 are quite different. The Reynold's numbers are given by R 1 = dlpvl/ph and

R 2 = d2pv2/ph. We now solve Eqs. (5.34) and (5.35) for the two unknowns V1

and v2 in terms of v. We find

V 1 = v (5.38)
1 + (A 2 /A1)YN

12 = (1 + A2 /A 1 ) N v (5.39)
1 + (A 2 /Al)7N

where

k)1/ 1.8 (d)1.
2 /1. 8

7YN - (5.40)
k2 d1

These equations relate the velocity in each of the regions to the average velocity

in the conduit. In general -YN > 1-

Next, by properly adding Eqs. (5.28) and (5.32) to cancel the heat trans-

fer terms, and using the definition for the average velocity, we find the reduced

equations given by;

Wall:
9T _ h.P.

pC = - (T. - T) (5.41)
at A

Conductor/Helium:

p+ p = 0 (5.42)

Op _ f 1piv1 |vi (5.43)
1x 2d1
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plaT +T PdhV i T v (Ah\ fipIvI|v1
CoA 2d 1

h.P. a fT
+ AC (T.-T)+ K,-±+Sc (5.44)

p =p(p,T) (5.45)

1= r 1± i ] (5.46)
1 + (A2/A1 )YN

where 7YN is given by Eq. (5.40). All other terms have been defined in Table 3.1.

The quantity h, is given by a relation similar to Eq. (2.73) where the velocity

used to calculate the Reynold's number is v1; that is, h, = hw(p, T, v1 ).

Observe that the system of Eqs. (5.41-46) is nearly identical to the Quencher

model with an additional equation for vj. Since this additional equation is al-

gebraic, the numerical procedure used in solving this system is the same as that

described in Chapter 3. Only a slight modification due to Eq. (5.46) is intro-

duced. Note the degree of simplification that results from neglecting the inertia.

Other than the advantages discussed in section 2.3, without this simplification,

the differential Eq. (5.31) must be solved instead of the algebraic Eq. (5.46).

Analytic Solution

The system of Eqs. (5.41-46) is very similar to the Quencher model, and in

this regard we now proceed to show how the analytic theory developed in Chapter

4 is extended to this model. First, observe that in Chapter 4 the frictional heating

was neglected from the energy equation. Doing the same in Eq. (5.44) eliminates

v, in this equation. The only remaining vi is in the momentum equation. Before

proceeding to eliminate vi from Eq. (5.43) note that quantities fi and f2 are

assumed constant in the analytic theory. Recall that fi - 0.06 - 0.08 and f2 may

be approximated by f2 x 0.03 - 0.04. Thus, from Eqs. (5.34) and (5.35) we find
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1 +(A2/A1)=1 + (A2/Ai)yA V (547)

V2 = (1 +A2/A1) YA~ V (5.48)
1 + (A2/A1)-yA

where

I ,/2 /d2\1/2
lA (di /(5.49)

with fl/f2 = 2.

Having determined v, we may now eliminate this quantity in term of v in

Eq. (5.43). We define the equivalent hydraulic diameter such that

f1pV f1pv 2  (5.50)

2d1  
2deq

which is satisfied for

V2
deq M di (5.51)

1

By using Eq. (5.47) we find that de is given by

dq 1 + (A2/A1 )7A 2 d (5.52)
1 + (A2/A1)

By using this definition and noting that fi in Eq. (5.43) is the same as f in

Eq. (3.2), observe that we have recovered the momentum equation used in the

Quencher model with dh replaced by deq. That is, the governing equations are

now given by

Wall:

P.C. = P - w (T, - T) (5.53)
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Conductor/Helium:

9p a
+ - pv = 0 (5.54)

ax

_9 - f plvlv (5.55)
'x 2 de,

OT OT Dv _hwP, 0 B
PC( + PC + pOxT (T. - T) + 9---- -O + SC (5.56)& ax ax A, 5x_ ax

p = p(p,T) (5.57)

Recall that these equations are the starting point for the derivation of the Mac-

Quench and eventually the analytic model. From this point we may use all of the

analytic results developed in Chapter 4 simply by replacing dh by de, everywhere

except when evaluating h,. The quantity h, in the analytic theory is now given

by h, = 4nh/d1.

5.4 Discussion and Results

In this section we demonstrate how the addition of a central hole effects

various parameters during a quench. Consider the ITER conductor discussed in

Chapter 4. For reference we summarize the parameters that characterize this

conductor in Table 5.1. Note that we consider two different hydraulic diameters:

"Dual" is used to denote the case with a central hole, and "Single" denotes the

case where no central hole is present. Recall from Table 4.1 that for this conductor

di = 0.5 mm. Considering the case A 2 /A 1 ; 0.15, d 2 ~ 5 mm, and fl/f2 ~ 2,

we find deq 2d 1 = 1 mm. Thus, for the following analysis we consider the two

cases: (1) Dual-Channel (Dual) with a hydraulic diameter of 1 mm, and (2) the

Single-Channel (Single) with a hydraulic diameter of 0.5 mm.
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Conductor Length (m) 530
Copper Area (nnm2 ) 390
Nb 3Sn Area (mm2 ) 250
Helium Area (nnm2) 450

Wall Area (mm2 ) 250
Wall Inner Perimeter (mm) 130

Initial Current (kA) 43
Detection Time (sec) o
Inlet Pressure (atm) 5

Outlet Pressure (atm) 5
Inlet Temp. (K) 5

Copper RRR 100

Hydraulic Diameter (mm) Dual 1
Single 0.5

Table 5.1: Characteristic Parameters of the ITER Coil.

Recall the long coil solution presented in chapter 4. The maximum tem-

perature was found to be independent of the hydraulic diameter [see Eqs. (4.63)

and (4.70)]. The asymptotic formulae for Xq and the maximum pressure are also

given by

Xq V t = 0. 76 6  2 15 R2L5 t) (5.58)

RpoL) aJ2t =0.653 zt ' 1/' (RLqaoJ2 )3/ 5 t1/5  (5.59)
2 X 2d/

These equations state that Xq oc d1/ 5 and p oc d- 5 . Thus, we expect the length

of the normal region to be larger in the Dual case than that of the Single case.

Observe the weak dependence of these variables with dh.

In Figs. 5.2a-c we present numerical results from the MacQuench computer

code, comparing the Dual and Single-Channel cases. Here the initial length of the

normal region is chosen to be Lq = 10 M. It is evident in Fig. 5.2a, in accordance

with the analytic theory, that the maximum temperature is very weakly depen-

dent on the hydraulic diameter. The Dual case has a slightly higher maximum
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temperature since the helium depletion, as discussed below, occurs more rapidly

for this case than that of the Single-Channel. More rapid helium depletion gives

rise to a lower total specific heat in the system as time increases. From Fig. 5.2b

observe that at the end of 6 sec the length of the quench region (2Xq)d.al for the

Dual case is larger than that of the single channel (2Xq),ing. While the opposite

trend is observed for the maximum pressure in Fig. 5.2c. Specifically, at t = 6 sec

we find

(2Xq)dua,,l _55.0

(2 Xq)sing = 48.3 = 1.14 (5.60a)

(2Xu)l _ 4.

a = 4 0.881 (5.60b)
Paing 48.7

Let us now compare these results with the analytic predictions of Eqs. (5.58) and

(5.59). From these equations, we find

(2Xq)dual -(dh) dual (5/5h

(2 Xq)sing (dh) s = 1.15 (5.61a)

Pdual (dh)dual -1/5

Ps in g (dh)sin9  = 0.871 (5.61b)

The agreement between Eqs. (5.60) and (5.61) is similar to the comparisons pre-

sented in Chapter 4.

In conclusion, our results have shown that a central hole in a CICC aids

quench detection without increasing the potential for damage due to high tem-

perature. Using the fact that the quench detection voltage V is proportional to

Xq, we find that a central hole increases the ease of detection since the hydraulic

diameter is increased and X. oc d'/5. Also, the maximum quench pressures are

decreased due to the addition of the central channel since p oc d~/5. These

results are clearly observed in Figs. 5.2a-c.
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Figure 5.1: Schematic of the cross section of a Dual-Channel CICC.
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Figure 5.2a: Maximum temperature during quench in the ITER conductor. Here,

"Dual" is used to denote the conductor with an additional central hole, and

"Single" is the case where no central hole is present.

193

10

9

8

7

6

4

3

1

F-

vs . Time

I I



Length of Normal Region vs. Time
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Figure 5.2b: Length of normal region during quench in the ITER conductor.

Here, "Dual" is used to denote the conductor with an additional central hole, and

"Single" is the case where no central hole is present.
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Maximum Pressure vs. Time
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Figure 5.2c: Maximum helium pressure during quench in the ITER conductor.

Here, "Dual" is used to denote the conductor with an additional central hole, and

"Single" is the case where no central hole is present.
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Chapter 6. Applications

In this chapter we present some applications of the various tools developed

in this thesis in order to study the quench behavior of certain conductors in their

design phase.1 Specifically, in Section 6.1 we present a study of the TF coil of

the TPX machine and show how the heat transfer coefficient in the quench region

effects the various parameters during a quench. In Section 6.2 we analyze the TF

coil of the ITER machine, and show that this coil behaves in the "small pressure

rise regime" for low values of the initial normal length Lq. For larger values of Lq

this coil behaves as a long coil. In Sections 6.3 and 6.4 we consider two different

prototype model coils that are primarily designed to test the behavior of the ITER

coil. In these sections we discuss the regime of operation of these coils (short coil,

long coil, etc.) and discuss the relevance of experimental measurements during a

quench in these conductors,, to the ITER coil.

Before proceeding with specific cases we point out a possible difficulty that

exists in numerical studies of quench in CICC. This is an artificial Quench-Back

behavior that is only a consequence of a lack of numerical convergence. That is, a

"Numerical Quench-Back" occurs in certain non-converged solutions. Below, by

way of a specific example we show the large discrepancies between a converged

and a non-converged quench study.

We consider two quench studies performed by Quencher. Case (1) is a nu-

merically converged study with an integration time step of At = 0.005 sec, and in

case (2) we increase the time step by a factor of 20; At = 0.1 sec. The conductor

under consideration is the Sultan conductor (see Section 6.3 and Table 6.7). In

both studies we consider an initial normal length of Lq = 2 m, and a uniform

B-field of 13 T. By way of four plots we show the large discrepancy between the

two different numerical studies. In Figs. 6.1a and 6.1b we plot the conductor

1 We wish to acknowledge E. A. Chaniotakis, J. McCarrick, and P. Wang
for their help in performing many of the computer simulations presented in this
chapter.
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temperature profile (in x) for various times during the quench evolution. First,

note the difference in the quench propagation velocity between the two cases. In

the non-converged case (Fig. 6.1b) the quench propagates approximately 4 times

faster than the converged case (Fig. 6.1a). Secondly, note how the boundary

layer at the location of the quench front, as clearly observed in Fig. 6.1a, has

disappeared in Fig. 6.1b.

In Fig. 6.2a we compare the time evolution of the maximum helium pres-

sure between the two cases. Here, both the amplitude and the profiles are quite

different in the two cases. In the non-converged case the helium pressure is ap-

proximately 4 times larger than the converged case. The final figure, Fig. 6.2b

shows the time evolution of the normal length for the two cases. Again, both the

amplitude and the slope of the two curves are quite different. Figures 6.1 and

6.2 clearly demonstrate the difference between a numerically converged quench

simulation with a non-converged case.

Next we use the analytic theory of Chapter 4 to further study the quench

behavior of the Sultan conductor. Specifically, we show that the analytic solution

very closely approximates the converged solution presented in Fig. 6.2. To begin,

note that the Sultan conductor falls in the short coil regime. Using the parameters

given in Table 6.7 and Eq. (5.52) we first find

deq = 1+ (A2A1)YA 2 di = 1.74 x 10~3 m (6.1)
1 +(A2/Ai) .

where -yA 2d 2/di. Similarly, from Eq. (4.86), using f = 0.07, Lq = 2 m,

R = 2080 J/kg-K, L = 100 m, J = 1.33 x 108 A/M 2 , ao 5.5 x 10-16 (see

Fig. 4.3 with A,/AC 1 and B = 13 T), and noting that dft de, we find

(2dhR N

V fL L'ao J2 1 2.7 m/sec. (6.2)

Using this value for V together with co ; 200 m/sec and tm = 6 sec, we find

198



L 2fpq
e L qm 0.2 < 1 (6.3a)

24de,qctm

Rpo Lq ej 2  1.9 > 1 (6.3b)
2 po V

and hence, from Fig. 4.5 the short coil criterion are satisfied. From the short coil

solution [Eq. (4.85)] we have

2 Xq - 2 V t. (6.4)

The linear time dependence of the normal length is clearly observed in Fig. 6.2b.

Note that at t = 6 sec, from Eq. (6.4) we find

2 Xq(t = 6 sec) - 2 x 2.7 x 6 = 32.4 m. (6.5)

The value of 2Xq at t = 6 see, observed in Fig. 6.2b is approximately 33 meters.

Next, we approximate the maximum pressure given by Eq. (4.71) as follows;

RpoLq T RpoL, o12 (6.6)
2 Xq 2 V

where po a 130 kg/m 3 . Using this relation together with the parameters just

discussed we find the helium pressure in the quench region is a constant with

a value of p - 9.7 atm. The helium pressure observed in Fig. 6.2a is nearly

a constant with a value of approximately 8 to 10 atmospheres. (The pressure

decrease observed in Fig. 6.2a is predicted by the more general form of the analytic

solution; see Fig. 4.9a)

From this type of comparisons and the curves presented in Figs. 6.1 and

6.2 we observe the importance of performing convergence studies, at least on an

occasional basis. We now proceed to present certain converged quench studies of

various conductors.
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6.1 TPX Conductor

In this section we analyze the TF coil of the TPX machine. Specifically, we

show the dependence of the various parameters on the heat transfer coefficient in

the quench region. This coil was discussed in Chapter 3 (see section 3.2). There,

we used Quencher to study the behavior of a complex quench scenario. Here, we

use the MacQuench computer code to study a simpler quench event where the

B-field is uniform with a value of 8.6 T (note that this is a simplification of the

actual B-field in the TPX coil, as discussed in Chapter 3) and L. = 2 m. For

reference, we summarize the characteristic parameters of the TPX coil in Table

6.1

Table 6.1: Characteristic Parameter of the TPX Coil.

The purpose of this study is to show how the maximum temperature in

certain conductors, such as the TPX conductor depend on the value of the heat

transfer coefficient. Recall that in Quencher we used a hybrid formula in order

to approximate the heat transfer coefficient in both the laminar and turbulent

regimes. In Chapter 4, we showed that the heat transfer coefficient in the outer

region is generally given by the turbulent correlation. Due to the conditions in
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Conductor Length (m) 168.08
Copper Area (mm 2 ) 157.8
Nb 3 Sn Area (nun2 ) 76.97
Helium Area (mm 2) 127.0

Wall Area (mm2) 192.0
Hydraulic Diameter (mm) 0.529

Wall Inner Perimeter (mm) 75.92
Initial Current (kA) 33.48

Detection Time (sec) 1
Dump Time (sec) 4

Inlet Pressure (atm) 7
Outlet Pressure (atm) 7

Inlet Temp. (K) 6.3
Copper RRR 75



the outer region, however, this quantity does not effect the important quench

parameters (see the discussions on the outer region in Chapter 4). Next, we

showed how the depletion of the helium density in the quench region results in

a laminar flow of helium in this region. The value of the Nusselt number used

in this region was Nt = 4. This value is used in both the laminar regime of the

hybrid formula in Quencher, as well as in MacQuench and the analytic theory.

Certain investigators [1,2] use a value of 8 for Nt. As mentioned in Chapter 2,

we do not understand the justification for this, and in fact from the references

discussed in Chapter 2 we have concluded that N, = 4 appears to be the most

accurate value in the quench region. We now consider two studies. In case (1) we

use N1 = 4 and in case (2) .we consider N, = 8.

In Fig. 6.3a and 6.3b we compare the maximum conductor and wall tem-

peratures for the two cases, respectively. Observe that the maximum conductor

temperature is approximately 20 K larger when N1 = 4. This is a result of less

heat transfer to the conduit wall. The helium pressure in the quench region and

the normal length propagation are much less effected by the value of Nt. In Table

6.2 we summarize the important quench parameters for the two cases. Note that

less than ~ 6 % difference is observed in the helium pressure and 5 % difference

is observed in the normal length.

Table 6.2: Quench Characteristics of the TPX coil.

In conclusion, for conductors that have a large conduit wall (A,/A, ~ 1)

the effect of Ne is largest on the maximum temperatures during the quench.

Furthermore, until more research is done on a more accurate value for Nt we
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N1 =4 Nt = 8

Tma (K), conductor 158 139
Tmax (K), wall 122 125

p(t = 10 sec) (atm) 17 16
2Xq(t = 10 sec) (m) 42 40



believe the relation Nj = 4 should be used. This represents the most accurate

relation obtained from the literature as of the time of this writing.

6.2 ITER Conductor

In this section we analyze the TF coil of the ITER machine. Specifically,

we show (using both numerical and analytic results) that for small values of the

initial quench region L, ,5 0.45 mi this conductor falls in the small pressure rise

regime. For larger Lq this conductor behaves as a long coil. It is important to

consider this behavior when conducting experiments to study the quench behavior

of the ITER conductor. That is, both the small pressure rise and long coil regimes

should be accessible during experiments on any ITER test coils.

Two quench protection simulations of the ITER TF coil are presented in this

section. A 50 second quench initiated at the center of the conductor with two

different values of L. are considered. In case (1) we use Lq = 0.2 m and in case

(2) we use L. = 20 m. The complete list of the parameters that characterize this

coil are presented in Table 6.3.

Conductor Length (in)
Copper Area (nnm 2 )
Nb 3Sn Area (mm 2 )

Helium Area, Cable (mm 2 )
Helium Area, Spring (mm 2 )

Wall Area (mm2 )
Hydraulic Diameter, Cable (mm)

Hydraulic Diameter, Spring (mm)
Wall Inner Perimeter (mm)

Initial Current (kA)
Detection Time (sec)

Dump Time (sec)
Inlet Pressure (atm)

Outlet Pressure (atm)
Inlet Temp. (K)

Copper RRR

720
407.8
271.0

A1 = 382.3
A 2 = 78.5

128.8
di = 0.675

d2 = 10
123

46
1.0

20.0
6
4

5.5
100

Table 6.3: Characteristic Parameters of the ITER Coil.
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In Fig. 6.4a and 6.4b we compare the conductor temperature profile between

the two cases, obtained by Quencher. Note the difference in the propagation

speed between the two scenarios. This clearly demonstrates the dependence of

the quench evolution on Lq. Also, observe the structure of the temperature profile

in Fig. 6.4b as the quench propagates along the conductor. Such a profile is due

to the spatial dependence of the B-field that gives rise to a spatially varying Joule

Heating in the conductor. In Fig. 6.5a and 6.5b we compare the helium pressure

profile between the two cases. In the case L. = 0.2 m, the pressure rise during

the quench is approximately given by Ap ~ 2 atm. Due to the small pressure

rise, this quench scenario falls in the low pressure rise regime; Ap/po < 1. Here,

po is taken as the average background pressure; po ~~ 5 atm. Observe that for

Lq = 20 m the pressure rise is approximately 50 atm. In this case we start in

the long coil regime and eventually fall in the short coil regime as the quench

propagates along the conductor.

In Fig. 6.6a and 6.6b we compare the evolution of the maximum conductor

and wall temperatures, between the two cases. In the case Lq = 0.2 m the helium

density depletes more rapidly and thus the specific heat of the helium (pCh) has

less of a contribution to the total specific heat. For this case, therefore, we ob-

serve higher maximum temperatures. The difference in the maximum conductor

temperatures between the two scenarios is ~ 14 %. Recall that in the analytic

theory we neglect the contribution of the helium to the total specific heat and

therefore can not quantitatively predict this difference. Also observe that in both

cases the maximum conductor temperature is above 150 K, the current value of

the maximum allowable temperature.

In summary, we present the important parameters during the quench evo-

lution for the two cases in Table 6.4. Note that the maximum pressure often

occurs at very early times due to the quench initiation. In such a case the ana-

lytic theory predicts Pm ~ p(po, Tq) where T is the initial quench temperature

at t = 0+. For other cases when the maximum pressure occurs later during the

quench evolution, we use the asymptotic analytic solution [Eq. (5.59)] to obtain
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the pressure.

Table 6.4: Quench Characteristics of the ITER coil.

Before proceeding with the analysis of two other conductors that are pri-

marily designed to test the ITER coil we use the analytic theory of Chapter 4

to further analyze this conductor. First, using the parameters in Table 6.3 and

Eq. (6.1) we find deq = 2.1 x 10-3 M. Second, consider a 5 second quench evo-

lution (tin = 5 sec) for a no-dump scenario. Using f = 0.07, R = 2080 J/kg-K,

J = 1.13 x 108 A/M 2 , ao = 8.5 x 10-16 (see Fig. 4.3 with A,/Ac ; 0.2 and

B = 13 T), co ; 200 m/sec, po : 130 kg/M 3 and po = 5 atm, from Eq. (4.113)

we find

Pi/po = 1.36 f POCO t 1/ 2V 3 / 2 ; 3.2 L /2 (6.7)
2dh; PO q

where we have used V given by V - RpoLqao J 2 /2po. For pi/po to be less than

one, we must therefore have Lq " 0.45 m. That is, for an initial normal length of

less than 0.45 m, the ITER conductor behaves in the small pressure rise regime

(during the first 5 seconds of a quench in a no-dump situation). For Lq 0.45 m,

from Fig. 4.5 it is easily shown that this conductor lies in the long coil regime.

Consider L. = 1 m; from Eq. (4.95) we find

Vq(t = t,) = 0.766 (2) (2/5 , p 2.1 rm/sec (6.8)
f CO ttn

Using this value, we find L 2 Vq f /(24deqctm) = 7.6, and RpoLqao J2/(2poV) =

1.4. From Fig. 4.5, we thus satisfy the long coil criterion. Similarly, for any
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L_ = 0.2 m Lq = 20 m

Tmaz (K), conductor 189 166
Tmaz (K), wall 188 165

Pmaz (atm) 7 47
2 Xq (M) 35 266



Lq > 1 m, using the same procedure we find that the ITER conductor behaves as

a long coil. (The region 0.45 5 Lq .6 1 m represents the transition from a small

pressure rise to a long coil regime.) Observe that for Lq Z 1 m, this conductor

behaves as a long coil. This fact must be considered when attempting to design

any experiments in order to model this coil. Many of the scalings obtained from

experiments on short coils are not appropriate for the ITER conductor.

6.3 ITER Model Coil

In this section we analyze the ITER Model coil (using both numerical and

analytic results) in order to show that for small values of Lq .0.2 m this conductor

falls in the small pressure rise regime. For larger L. this conductor behaves as a

long coil. By properly adjusting the experimental values of Lq in this conductor,

it is thus possible to model the quench behavior of the actual ITER conductor.

That is, both small pressure rise and long coil regimes may be studied in this

experiment by varying Lq in the ranges Lq < 0.2 m and Lq >> 0.2 m.

The characteristic parameters of the ITER model coil are presented in Table

6.5. This coil will be constructed for testing features of the ITER coil discussed in

the previous section. We use the MacQuench computer code to study the quench

behavior of this conductor. Two cases are presented; (1) Lq = 2.5 m, and (2)

Lq = 10 m. In both cases the magnetic field is uniform with a value B = 9 T.
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Conductor Length (m)
Copper Area (mm 2 )
Nb 3Sn Area (mm 2)

Helium Area, Cable (mm2 )
Helium Area, Spring (mm2 )

Wall Area (mm2 )
Hydraulic Diameter, Cable (mm)

Hydraulic Diameter, Spring (mm)
Wall Inner Perimeter (mm)

Initial Current (kA)
Detection Time (sec)

Dump Time (sec)
Inlet Pressure (atm)

Outlet Pressure (atm)
Inlet Temp. (K)

Copper RRR

750
408.1
148.4

A 1 = 342.9
A2 = 78.6

121
di = 0.588

d2 = 10
117.8

80
1.0
4.0

5
5

4.5
100

Table 6.5: Characteristic Parameters of the ITER Model Coil.

In Fig 6.7 we present the time evolution of the maximum conductor tem-

perature for the two cases. A difference of ~ 10 % is observed between the two

scenarios. This difference is due to the more rapid depletion of the helium for the

case L. = 2.5 m (see also the discussion in section 6.2 in regard to Fig. 6.6). In

Fig. 6.8 we present the time evolution of the conductor and the wall temperatures

for the case Lq = 2.5 m. The length of the normal region and the maximum pres-

sure for the two cases are presented in Figs. 6.9a and 6.9b, respectively. Observe

the decrease in the helium pressure for both cases as time increases. This results

from the decrease in the current due to the dump. In Table 6.6 we summarize

the important parameters during the quench for both cases.

L_ = 2.5 m Lq = 10 m

Tmax (K), conductor 147 133
Pmax (atm) 27 60

2 X, (m) 80 140

Table 6.6: Quench Characteristics of the ITER Model Coil.

In order to analytically study this conductor, note that the model coil is a

206



long coil during the time scale of interest which we consider to be tm 5 sec.

This is easily observed by first obtaining deq = 2.1 x 10' m. Using f = 0.07,

R = 2080 J/kg-K, J = 1.96 x 108 A/M 2 , ao a 7.5 x 10-16 (see Fig. 4.3 with

A,/Ac ; 0.2 and B = 9 T), co ; 200 m/sec, po ~ 130 kg/m 3 and po = 5 atm,

and considering L, = 2.5 m in Eq. (4.95) we find

Vq(t = tin) 0.766 (d (RLqaOj 2 c 2/5 1 , 4.5 m/sec (6.9)

Using this value, we find L 2 Vf/(24dqcgtm) ~ 18, and RpoLq oJ 2 /(2poV) =

4.3. From Fig. 4.5, we thus satisfy the long coil criterion. Similarly, for L. = 10

m we can show that this coil behaves as a long coil.

The maximum pressures occur very early during the quench evolution (t 3 2

sec) and we expect the analytic formula to apply during this time period (the

current-dump during this period is not significant). From Fig. 6.9a we have

p(Lq = 10) = 60
p(L 25) - = 2.22 (6.10)p( L, = 2.5) t227

From Eq. (5.59) and the discussions presented in section 5.4, recall that the an-

alytic theory predicts the maximum asymptotic pressure to be proportional to

L, 5 . Thus, we have

p(Lq = 10) _ 10 3/5 230 (6.11)
p(Lq = 2.5) t= 2.5= (22

This is a very good agreement between MacQuench and the analytic theory.

Since Fig. 6.9b constitutes a current-dump scenario, the value of 2 X, at the

end of the simulation (t = 30 sec) given by the analytic theory may not directly

apply to this case. For the sake of brevity, however, we use the analytic scaling

to compare with the MacQuench simulation presented here. First, from Table 6.6

we have
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2Xq(Lq = 10) = 140 1.75 (6.12)
2Xq(Lq = 2.5) t3 80

From Eq. (5.58), on the other hand, the analytic theory predicts 2 Xq to be pro-

portional to L2/ 5 . Thus, from this equation we have

2Xq(Lq = 10) 10)2/5=1.74 (6.13)
2Xq(Lq = 2.5) 2.5

Interestingly, the analytic scaling continues to hold even though the current dump

is well established. Observe that we have shown this coil to behave as a long coil

only for a no-dump situation and for t = 5 sec. While, in Eq. (6.13) we use the

long coil analytic solution for a much longer period and for a current-dump case.

It is not trivial to analytically show whether at t = 30 see and a decreasing J this

coil behaves as a long coil. Here, by merely resorting to the outer region profiles

obtained from MacQuench we conclude that the diffusion in this region does not

fully take place during this scenario and hence the long coil solution continues to

hold.

Using the same type of analysis as was done for the ITER conductor we may

show that for Lq . 0.2 m, the model coil falls in the small pressure rise regime.

For larger Lq this coils behaves as a long coil during the first 5 seconds of a quench

event with no current-dump. This coil is thus a good test case for the thermal

hydraulic behaviour of the actual ITER coil as long as the experimental value of

Lq is varied to cover both the small pressure rise and the long coil regimes.

6.4 Sultan Conductor

In this section we analyze the Sultan coil (using both numerical and analytic

results) in order to show that for small values of L q ̂ "0.75 m this conductor falls

in the small pressure rise regime. For larger Lq this conductor behaves as a short

coil. This suggests that the small pressure rise regime may be investigated by
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using small values of Lq. However, the long coil regime is not experimentally

accessible in this conductor.

The Sultan quench experiment is a means for testing certain features of the

ITER coil. The parameters that characterize this coil are summarized in Table

6.7. The magnetic field is taken to be uniform at 13 Tesla.

Conductor Length (m)
Copper Area (mm2 )
Nb 3 Sn Area (mm2 )

Helium Area, Cable (nun2 )
Helium Area, Spring (mm2)

Wall Area (mm 2)

Hydraulic Diameter, Cable (mm)
Hydraulic Diameter, Spring (mm)

Wall Inner Perimeter (mm)
Initial Current (kA)

Detection Time (sec)
Dump Time (sec)

Inlet Pressure (atm)
Outlet Pressure (atm)

Inlet Temp. (K)
Copper RRR

100
60.3
40.2

A 1 = 55
A 2 = 19.6

103
di = 0.44

d2 = 5
50
8

00
no dump

5
5

4.5
100

Table 6.7: Characteristic Parameters of the Sultan Experiment.

We have analyzed a quench scenario for this coil at the beginning of this

chapter where we also showed that for L, = 2 m this conductor behaves as a

short coil. Here we present a quench case where the Sultan experiment falls in

the small pressure rise regime. From the analytic theory, we find [Eq. (4.112)]

pi/po = (VpL 2 ;zt; 1.8 L (6.14)
\4dh PO

where we have used Vq - RpoLqcoJ 2/2po. In order to have pi/po < 1 we must

therefore have Lq - 0.75 m. That is, for Lq r 0.75 m, this coil behaves in the small

pressure rise regime. Using a similar analysis as was presented at the beginning

of this chapter, we also note that for Lq 1 m, this conductor falls in the short

209



coil regime. (Again, the region 0.75 Z L,, 1 m represents the transition region

from a small pressure rise to a short coil regime.) Thus, for a given quench event

this conductor never behaves like a long coil. This fact must be considered when

attempting to analyze the data from this experiment and trying to extrapolate

this data to the ITER conductor.

We now present a quench study from Quencher, with L. = 0.25 m. In

Fig. 6.10a and 6.10b we present the conductor temperature profile and the time

evolution of the maximum temperatures, respectively. Observe the difference

between this case and Fig. 6.1a. In Fig. 6.11a and 6.11b we present the time

evolution of the maximum pressure and 2 X,, respectively. From Fig. 6.11a, in

accord with the analytic predictions, this quench process lies in the small pressure

rise regime; p ~ pa during the quench evolution. In Table 6.8 we summarize the

behavior of the Sultan conductor during a quench for the two cases characterized

by Lq = 0.25 m and Lq = 2 m.

Lq=0.25 m Lq= 2 m

Tma (K), conductor 113 110

Tma (K), wall 68 70
Pma (atm) 12 20

p(t = 6 sec) (atm) 5.4 8.4
2X,(t=6 sec) (m) 11 33

Table 6.8: Quench Characteristics of the Sultan Coil.

210



Chapter 6 References

[1] Bottura, L., Zienkiewicz, 0. C., Quench Analysis of Large Superconducting

Magnets Parts I and IL Cryogenics, Vol. 32, No. 7, 1992.

[2] Wong, R. L., Program CICC Flow and Heat Transfer in Cable-In-Conduit

Conductors - Equations & Verification, Lawrence Livermore National Labo-

ratory Internal Report, UCID 21733, May 1989.

211



C
0
U

---

V-
U

Sultan Coil. Lq=2.0m. Smal I dI
Tcond vs. Position

Tc(imax) -109.6 at t- 6.0. x- 49.9
Tctmin) - 4.5 at t- 6.0, x- 31.7

110.

100. A-

90. a-
60. E-

F-
70. -G-'

60.

40. IJ! I-

30. 'EO D -"

20.

10. I

S 20. 40. 60. 80. 100.

x (m)

T
T

110.

100.

90.

60.

70.

60.

50.

4:0.

30.
20.

10.

0 70

0.03
1.03
2.03
3.05
q.03
5.03
6. Os

:(mex) -107.9 at t- 6.0. x- 50.2
c(min) - 4.1 at t- 3.8. x- 0.0

R- 0.03
B- 1.05
0- 2.03
0- 3.0s
E- 4.03
F- S.Os
G- 6.0s

20. 40. 60. 80. 100.

x (M)

Figure 6.1: Conductor temperature profile during a quench in the Sultan con-

ductor, at various time steps. (a) is a converged numerical study and (b) is a

non-converged case.
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Figure 6.2: (a) Comparison of the maximum helium pressure between a converged

and a non-converged numerical study of quench in the Sultan conductor. (b)

Comparison of the normal length between the converged and the non-converged

numerical studies.
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Figure 6.3a: Maximum conductor temperature for the two cases characterized by

Ne = 4 and Nt = 8.
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Figure 6.3b: Maximum wall temperature for the two cases characterized by Ne = 4

and Ne = 8.

215

N=4

- N 8

Maximum Vs . Time



ITER TF HF Coil, Lq = 20cm
Tcond vs. Position

Tc(max) -189.1 at t- 50.0, x- 300.3
Tc(min) - 5.2 at t- 3.2. x- 720.0
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Figure 6.4: Conductor temperature profile at various time steps during a quench

in the ITER coil. (a) Lq = 0.2 m and (b) Lq = 20 m.
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ITER TF HF Coil, Lq 20cm
Pressure vs. Position

PHmax) - 0.7 at t- 0.0, x- 380.0

CL0-

0

D7!
in

.7.5

.70

. 65

.60

.55

.50

.'15

200. 400.

x (m)

R -
B-
G -0-
E-
F-
G-

600. 800.

ITER TF HF Coil. Lq = 20m
Pressure vs. Position

Pimax) - 4.7 at t- 6.2. x- 381.0

5.

IL

C-

DU

01

3.

2.

0
200. 400.

x (m)

600.

E-
F-

8-

800.

Figure 6.5: Helium pressure profile at various time steps during a quench in the

ITER coil. (a) L. = 0.2 m and (b) Lq = 20 m.
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ITER TF HF Coil, Lq = 20cm

Temperatures vs. Time

Tctmax) -169.1 at t- 50.0, x- 380.3
Tw(max) -817.5 at t- 50.0. x- 380.3
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Figure 6.6: Time evolution of the maximum conductor and wall temperatures in

the ITER coil. (a) L. = 0.2 m and (b) Lq = 20 m.
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Figure 6.7: Time evolution of the maximum conductor temperature in the ITER

model coil for the two cases characterized by Lq = 2.5 and 10 m. Note that here

IQZ stands for Lq.

219

(M]P@-0 OE @(@o @0O

- IQZ=2.5 m_

10Z = 10 M

- -I

- / -



_ C

IOZ=2.5 m

- -- I

10 15

Time

20 25 30 35

(sec)

Figure 6.8: Time evolution of the maximum conductor and wall temperatures in

the ITER model coil for the case Lq= 2.5 m.
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Figure 6.9a: Time evolution of the maximum helium pressure in the ITER model

coil for the two cases characterized by Lq = 2.5 and 10 m. Note that here IQZ

stands for Lq.

221

70

60

50

40

30

20

10

CO

C,,
C,,

0

E

0
0 5



160

1

1

40

20

100

80

60

40

20

0
0 5 10 15 20

Time (sec)

25 30 35

Figure 6.9b: Time evolution of the normal length in the ITER model coil for the

two cases characterized by Lq = 2.5 and 10 m. Note that here IQZ stands for Lq.
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Sultan Coil. INZ=0.25m

Tcond vs. Position

Tclmax) -112.6 at t- 6.0. x- 50.0
Tc(min) - 4.2 at t- 6.0. x- qq.5
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Figure 6.10: (a) Conductor temperature profile at various time steps during a

quench in the Sultan coil. (b) Time evolution of the maximum conductor and

wall temperatures during a quench event in this coil. In both (a) and (b), we

have Lq = 0.25 m.
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Sultan Coil, INZ=0.25m
2Xq vs. Time

X(rMax) - 10.6 at t- b.0

11.

10.

9.

8.

7.

6.

3.

2.

1.

0 0

1.2

1.1

1.0

.9

.8

.7

Sultan Coil. INZ=0.25m
Pressure vs. Time

P(max) - 1.2 at t- 0.0. x- 60.0

1. 2. 3.

time (s)

q. G. 6.

Figure 6.11: (a) Time evolution of the maximum helium pressure during a quench

in the Sultan coil. (b) Time evolution of the normal length during a quench in

this coil. In both (a) and (b), we have L, = 0.25 m.
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Chapter 7. Conclusions

The problem of quench propagation is of great importance for safety con-

siderations in the design of superconducting magnets. By concentrating on the

specific problem of quench, it has been possible to derive a simplified model (for

both a CICC and a dual-channel CICC) that is accurate, but avoids most of

the numerical difficulties found in more general models. An efficient numerical

implementation of the simplified quench model (Quencher) has been presented

and shown to be computationally cost efficient. In order to study the behavior

of quench for longer periods of time it is desirable to utilize a model such as

Quencher because of the prohibitive amount of CPU time required to solve the

general models. The results of Quencher have been shown to agree well with those

of more general models as well as experimental data.

Further, well justified approximations have resulted in the MacQuench model

(for both a CICC and a dual-channel CICC) that is shown to be very accurate

and considerably more efficient than the Quencher model. The MacQuench code

is suitable for performing quench studies on a personal computer, requiring only

several minutes of CPU time. In order to perform parametric studies on new

conductor designs it is required to utilize a model such as MacQuench because of

the high computational efficiency of this model.

Finally, a set of analytic solutions for the problem of quench propagation

in CICC (and a dual-channel CICC) has been presented. These analytic solu-

tions represent the first such results that remain valid for the long time scales

of interest during a quench process. Important analytic scalings are verified by

direct comparisons with numerical as well as experimental data. The analysis pre-

sented in this thesis distinguishes three different regimes of operation for quench

events. Each of these regimes is shown to have very distinct quench propagation

characteristics. We suggest that to properly interpret any experimental results on

quench propagation, it is vital to clearly distinguish the regime of operation of the

experiment (e.g. distinction between long and short coils is specially important
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in trying to extrapolate experimental test coil results to long coils).

7.1 Future Directions

In this section we point out some future research areas that we believe are

important in the area of thermal-hydraulics in a CICC.

1. More comparisons of theory with experimental data. There are a number of

experiments being designed to study the quench behavior of a CICC. These

experiments provide a great opportunity for further verification of the theory

presented in this thesis.

2. Correlations for the heat transfer coefficient in the quench region. Recall

that the heat transfer coefficient in the quench region greatly effects certain

parameters during a quench in a CICC. The value of this coefficient was

obtained by using a Nusselt number of 4. This value corresponds to a steady-

state flow of helium in a conduit. However, the quench process is by no means

a steady-state scenario. More research is required to either further justify the

value of the Nusselt number used or to obtain a more accurate correlation

for this quantity during a quench process in a CICC.

3. Analysis of the nature of the boundary layer at the quench front. This

boundary layer was only briefly discussed in this thesis. More knowledge

about the mathematical structure of this boundary layer may greatly enhance

the numerical techniques used to solve the Quencher model. Thus, more

efficient numerical codes can result from such studies.

4. Extensive investigation of THQB. The process of Thermal Hydraulic Quench-

Back was only briefly discussed in this thesis. The theoretical predictions

presented here must be compared to numerical and experimental results.

Furthermore, the process of THQB after its initiation remains to be under-

stood.
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5. Other relations than the constant pressure conditions used at the boundaries

of the conduit need to be investigated. Often times the pressure at an inlet or

an outlet may increase due to the finite size of the reservoir that is connected

to the conduit.

Each of these areas presents a challenging new aspect of fluid dynamics and

heat transfer in Cable-In-Conduit superconducting magnets and perhaps other

systems that fall in the same fluid flow-regime.
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Appendix A. Simple Application of Multiple Scale Expansion

In this appendix we illustrate the use of the multiple scale expansion by

applying the idea to a simple problem. The problem considered here is that

of heat conduction in a solid slab that is surrounded by a fluid with constant

temperature Tb [1,2]. Figure A.1 depicts the system under consideration. We are

interested in the case d/L < 1, and for this case we derive the 1-D heat equation,

in the z-direction that determines the temperature distribution in the slab. A

conventional method that is used to derive this 1-D equation [1,2] is to assume

that the temperature distribution T in the slab is only a function of z and t.

Heat balance on a section of length dz of the slab is then used to arrive at the

1-D equation. In doing this heat balance, the amount of heat leaving the control

volume at the surface of the fin (y = d and y = -d) is taken to be proportional

to h(T - Tb). Here h is the heat transfer coefficient that is used to describe the

heat transfer to the fluid surrounding the slab. This procedure leads to the same

1-D equation as that derived in this appendix. The inadequacy of this procedure,

however, lies in the fact that for a temperature distribution of the form T(z, t), the

heat loss from the surface which is given by qy = -o&T/Oy (evaluated at y = d),

is zero since T = T(z, t) is not a function of y. While, in performing the heat

balance on the control volume it was assumed that q, at y = d is proportional to

h(T - Tb). Here, we show how this fallacy is resolved.

Since the domain extends from -cc < x < o<, the heat equation for the slab

is given by

0T 82T a 2T
PC + (A.1)

where pC and K are the total specific heat and the thermal conductivity of the

slab, respectively, and S is the prescribed heat source in the slab. For simplicity

we assure that pC, K and S are constants. The initial and boundary conditions

considered here are given by
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T(y, z, t) __= T (A.1a)

T(y, z, t) = T(y, z, t) = T (A.lb)

azL

S=0 (A.1c)
ay y=O

o -h(T -T) (A.id)
(y 1y=d

Again, for simplicity we assume that h and T are constants. Equation (A.1c) is

the symmetry condition applied at y = 0, while Eq. (A.1d) is used to describe

the heat loss to the surrounding fluid. We wish to consider Eq. (A.1) in the limit

d/L < 1.

It proves useful to write Eq. (A.1) in a dimensionless form. In order to

do this we define the following dimensionless parameters; i = z/L, Q y/d,

F t/pCL2 , and S = L 2 S/. In terms of these definitions, Eq. (A.1) becomes

OT _
2 T 1 &2 T

, 9j2+ f2 ap2 +S (A.2)

together with the following normalized initial and boundary conditions

T(_, _, ) T6 (A.2a)

t==1
T(9, i, t) -= T(Q, i, t) =Tb (A.2b)

- = 0 (A.2c)

= -,8(T - T ) (A.2d)

where e d/L and 3 hd/r. It is important to note that for the class of

problems under consideration the normalized variables i, and i are of order one.
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The quantity P(T - Tb), however, is assumed to be of order e2 in order for a

1-D description in the z-direction to remain valid. For P(T - T) - 1, it is more

natural to scale the source term as a 1/E 2 term and to consider a 1-D equation in

the y-direction. The temperature is not normalized purposely, since in principle

we wish to consider the case where T > T (note that for this case P must be

accordingly small such that (T - T) ~ e2 ). From Eq. (A.2) we observe that the

heat flux in the y-direction is multiplied by a large term (1/e 2 ). In order for this

equation to be balanced, the y-component of the heat flux must remain small (of

order e2 ).

The natural way to exploit the small parameter e that characterizes the

problem is to expand the temperature T(y, z, t) in the following perturbation

series

T(O, i, t) = To(g, it) + T2(9, -, t) + --- (A.3)

where T2 /To ~ e2 . Using this expansion in Eq. (A.2) and collecting terms of the

order of 1/c 2 results in

a2To
2= 0 (A.4)

This equation is easily integrated to obtain

TO = C1(, t) 9 + C2 (i, t) (A.5)

where C1 and C2 are as of yet unknown functions of 2 and i. Next we consider

the leading order terms in Eqs. (A.2a-d) which leads to the initial and boundary

conditions for To;

To(Q,2,t2{) =Tb (A.6a)
Tt= o

To (Q, i, t) Ii = To (0, i, t) =Tb ( A.6b)
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=0 (A.6c)

=TO (A.6d)
aq I#=1=0

Note that Eq. (A.6d) is a consequence of assuming fl(T - Tb) E2 . Using either

Eq. (A.6c) or (A.6d) results in C1 = 0. The zeroth order temperature is thus

independent of 9;

To = To(2, ) (A.7)

The equation that determines the 9-dependence of T2 is obtained by retaining

terms of order e' in Eq. (A.2);

8 0  O $+ 1 <92 T2 (A.8)
49j -,9j + +2 &02

The initial and boundary conditions for T2, in view of Eqs. (A.6a-d), are given by

T2 i, t) = 0 (A.8a)

T2(9 i, t) 10= T2 (Q, i, t) 1=1= 0 (A.8b)

=0 (A.8c)

6T2
= -O(T - T) (A.8d)

The analysis of the leading order equation in the perturbation expansion

reveals that To is of the form given by Eq. (A.7). The actual dependence of To on

2 and i must be determined from Eq. (A.8). This is done by integrating Eq. (A.8)

with respect to 9 over the domain 0 < 9 1. The result is given by

8T0  92 T0  1 (9T2
= +§+2 -- (A.10)
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Using this relation together with Eq. (A.8d) we obtain the 1-D equation that

determines the zeroth order temperature To(z, t) in the slab;

6T 0 _ 
2 T 0 1

+ (TO - T) (A.11)

or in the original variables

aT0 a2 To±h
PC- = 2 +S- h (TO - T) (A.11)

The initial and boundary conditions for To(z, t) are now given by

To(z, t) I = Tb (A.11a)

To (Z, t) LO= To (z, t) IzL= Tb (A.11b)

Equation (A.11) is the desired 1-D heat equation for the slab. In order for this

equation to be an adequate representation of the physical temperature distribu-

tion in the fin, the following two conditions must be satisfied; 1) c < 1 and 2)

#(To - T) e2 . It is interesting to note that condition 1 assures that the problem

is nearly one dimensional in nature. However, condition 2 determines that, it is

the z-direction that we care about.

We may now proceed to obtain T2 by twice integrating Eq. (A.8) with respect

to y, and using Eq. (A.11) to obtain

T2 (y, z, t) = -#(To - Tb) = [To(z, t) - Tb] (A.12)
2 2, xd,

where we have used the boundary and initial conditions, Eqs. (A.8a-d) to elim-

inate two integration constants in this process. This is the formal solution for

T2(y, z, t).This solution has a parabolic profile in the y-direction. Note that in

order to obtain T2, the function To(z, t) must exist, and for this reason Eq. (A.11)

is termed the "solvability" condition for T2 . Knowing T 2 it is possible to calculate

the heat flux as a function of y.
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Consequences of Neglecting Helium Inertia

In this appendix we consider the consequence of neglecting the inertia in

the momentum conservation relation for the helium. Specifically, we discuss the

effect of neglecting this term at some distance (x = L) away from the quench

region(x = 0). The main aim of this analysis is to show that when the Mach

number of the helium in the conduit remains small, the only consequence of

neglecting inertia is that a time delay L/c (where c is the speed of sound in the

helium) in observing the "action" is absent in the solution. However, the effect

of this time delay is negligible for t > L/c.

To begin, consider a conduit of length L with a hydraulic diameter dh. We

analyse a model-problem in which at time t = 0 the helium in the conduit is

stagnant with a temperature To and density po, and where at t = 0+ the helium

velocity at x = 0 is set to v = vo = constant. The effect of setting the velocity

equal to vo at one end of the conduit is to initiate the flow of helium, such that

as t -+ oo the helium velocity will be non-zero everywhere in the channel. We

consider the problem to be adiabatic (constant entropy) which corresponds to

the case where no external heat sources are present and the viscous dissipation

in the energy conservation relation is neglected. Furthermore, we consider the

case where vo is small compared to the sound speed c (this is always the case

for quench problems). Thus we do not expect large variations in any of the

physical quantities. This justifies expanding the helium density and velocity in

the following form

p = po + pi(x, t)+ (B.la)

V = vi(x,t) + -- (B.1b)

where p1/po < 1 and similarly v1 is a first order quantity.

In terms of the above expansion, the leading order mass and momentum

conservation relations are given by
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+ PO 0 (B.2)
Ot x

aV1 28 P1
Po = -Co - PuV1 (B.3)

where co is the speed of sound in the background (To, po) conditions. We have

eliminated the helium pressure in terms of the helium density by using the con-

stant entropy condition. Note that for simplicity we have also used a different

form of the friction force. We assume that the friction force is given by pvv,

where v is a constant (this assumption is necessary in order to obtain exact an-

alytic solutions to the problem). This is similar to what would be obtained in a

highly laminar flow of helium in the conduit where f oc 1/v. Such a laminar flow

is unrealistic however, since very low velocities of supercritical helium give rise to

turbulence (the helium viscosity is very small [1]). Therefore it is more accurate

to estimate v as follows;

V ~ fvo (B.4)
2dh

where f is the friction factor assumed to be a constant given by f = 0.07, and vo is

the helium velocity at x = 0. Equations (B.2) and (B.3) represent two equations

for the unknowns p, and v1 .

By simple manipulation of Eqs. (B.2) and (B.3) we may eliminate pi to

obtain a single equation for v1 . This equation is given by

a 2V 1  & 1  2 a2VI (B.5)

The appropriate initial and boundary-conditions for vi are given by

vi(x,t = 0) = 0 (B.6a)

(xt = 0) =0 (B.6b)
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vi(x = 0,t) = vo

v1(x --+ oo, t) = 0 (B.6d)

where for simplicity in Eq. (B.6d) we consider a semi-infinite domain. In order

to study the system at some distance L down stream, we simply evaluate the

solution at x = L. Observe that we are led to seek the solution of a linear partial

differential equation. The quantity p, may be obtained from Eq. (B.2) once vi

is determined. Even though a series of simplifications have been introduced in

arriving at Eq. (B.5), nevertheless, this equation contains all the physics of the

helium flow in regions away from the quench zone including inertial effects. In

the remainder of this appendix we solve this equation analytically and show how

the solution differs from what would be obtained if helium inertia (the first term

on the left-hand side of Eq. (B.5)) were to be neglected.

We next consider a normalization of Eq. (B.5). We define r = vot/L,

2 = x/L, and v = vi/vo (note that for convenience we have redefined v as the

normalized velocity variable). In terms of these definitions we rewrite Eq. (B.5)

as follows

M2 + F = (B.7)

where M = vo/co is the Mach number and F = voLv/c. represents the friction

force. The initial and boundary-conditions in the normalized variables are given

by

V(7, -r = 0) = T(7,- = 0) = 0 (B.8a)

v(,q= 0, r) = 1 (B.8b)

v -> oor) =0 (B.8c)
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Equation (B.7) can be solved by Laplace transform methods. After some standard

manipulation of Laplace transforms [2] we find

V(r/, r) =1-g(r?, ) d ] H(,r - Mr?) (B.9)

where H is the Heaviside step function (H(x) = 0 for x < 0 and H = 1 for x > 1).

The function g is given by

070= Fr1 I, [c-1 (r 2 _ M 2 77
2 )1/ 2] (B.10)

2M (T 2 - M2/2)1/2

where e = 2M 2/F. The function I, is the Modified Bessel function of order one.

Before proceeding to further analyze Eq. (B.7) we consider the solution of

Eqs. (B.2) and (B.3) in the case where helium inertia is neglected. This corre-

sponds to setting the first term on the left-hand side of Eq. (B.7) to zero. The

normalized helium velocity in this case is again easily obtained by Laplace trans-

form methods, and is given by

Vf = 1 e 2 d (B.11)

We use the subscript f to denote the solution of Eq. (B.7) for the case where

inertia is set to zero.

We now make direct comparisons between v and Vf, as given by Eqs. (B.9)

and (B.11), respectively. We assume that L = 100 m and dh = 10-3 m. These

values are typical of a CICC. The quantity vo is generally of the order of 1 m/sec,

and co ~ 200 m/sec. Using these values, we find F ~ 0.1. Thus we consider

the case F = 0.1 and 7 = 1 (or x = L) to compare Eqs. (B.9) and (B.11) for

various values of M. In Fig. B.1a-c we plot v(r/ = 1,-r) and vf (7 = 1,r) versus r

(or time) for M = 0.2, 0.1 and 0.05, respectively. Note that during most quench

events in a CICC we generally have M ~ 0.01, and the case M = 0.2 which

corresponds to a helium velocity of 40 m/sec is almost never observed. These

figures clearly demonstrate that for r > M (t > L/co) the solution vf closely

241



approximates v. For r < M (t < L/co) we observe that vf is finite which is

physically impossible since the sound wave has not yet reached the end of the

channel. Thus we use the solution Vf with an understanding that for t < L/co

the actual flow velocity is zero. Note also that the total mass (m) leaving the

conduit is very well approximated (for t > L/co) by the solution Vf, despite the

difference observed in the period 0 < t < L/co. The quantity m is proportional

to the area under the curve of v versus r, and as observed in Fig. B.1 this area is

approximately the same (for t > L/co) as calculated by either v or vf.

In order to further demonstrate the accuracy of vf , we consider some analytic

manipulation of Eq. (B.9). For the case rq = 1, r > M, and noting that e < 1 we

may approximate Eq. (B.9) as follows

V ~ +Vf j h( ) d (B.12)

where the function h is given by

h( ) = e- (3 2 + 12 4 +8 W) (B.13)

In deriving Eq. (B.12) we have used the asymptotic expansion of Ii(z) for large

z [2], together with the appropriate Taylor expansion of some of the other terms.

It is clear from this equation that vf and v differ (for t > L/co) by terms of the

order of M 2 /VP;

V =Vf + 0 ) (B.14)

For M 2 < VP friction dominates inertia. Furthermore, Eq. (B.12) states that as

time increases Vf becomes increasingly more accurate in approximating v. This

is most evident in Fig. B.1a.
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Appendix C

Discussion of the Boundary
Conditions Used in Quencher
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Appendix C. Discussion of the BC's Used in Quencher

In this appendix we illustrate how using different boundary conditions ef-

fects the solution of a differential equation similar to the energy equation in the

Quencher model [see Eq. (2.62)]. Specifically, we attempt to show the advantage

of using the outlet boundary condition given by Eq. (2.67d) as opposed to setting

rKT' = 0 at this boundary. We consider a model problem that is easy to solve and

also resembles the energy equation for the helium/conductor given by Eq. (2.62).

To begin, consider a steady state situation with the following model-equation

= a + f(X) (C.1)

where the domain is x = (0,1). The term on the left-hand side of this equation

resembles the convective term in Eq. (2.62), while the first term on the right-hand

side is equivalent to the conduction term. All heat sources are represented by the

function f(x). Just as in Eq. (2.62) we consider the case E < 1.

We assume that one physical boundary condition is given at x = 0. For

Eq. (C.1), this boundary condition is assumed to be y(x = 0) = 1. This bound-

ary condition is equivalent to the pressure boundary condition specified for the

Quencher model. In Eq. (2.62) the conduction term is important only in a small

region (the quench front). Even so, we must keep this term in the equation at all

times and over the entire domain of the problem. Doing such, however, requires

specifying an additional boundary condition. The process of introducing an addi-

tional boundary condition may not be physical for certain problems. Specifically,

consider the outflow of helium from the conduit. The helium leaving the conduit,

in general is at a higher temperature than the initial background temperature

of the system (this is mainly due to compressional and/or frictional heating of

the helium in the outer region). Thus, we certainly do not attempt to specify

the temperature at the outlet of the conduit, since this would be unphysical. We

must resort to other conditions.

246



One such alternative is to specify the boundary condition KT'(x = L) = 0,

based on the argument that the amount of heat leaving the system by conduction

at the boundary is negligible. Note, however that by using this boundary condi-

tion we set T'(x = L) = 0. In doing such, we also set the convective heat removal

to zero. That is, no heat will leave the system at x = L by either convection or

conduction. The arguments leading to iT'(x = L) P 0 are based on the fact that

r, is negligibly small at the outlet of the channel and not that T'(L) = 0. Thus,

setting T'(L) = 0 does indeed make the outlet flux zero, but it also erroneously

makes the convection losses zero as well.

To illustrate the consequence of using various boundary conditions we con-

sider two problems, both described by Eq. (C.1) together with the boundary

condition y(x = 0) = 1. The second boundary condition for case (1) is assumed

to be y'(x = 1) = 0 and in case (2) we use the condition y"(x = 1) = 0. Denoting

case (1) by y1 and similarly using y2 for case (2), we have

y1(x = 0) = 1 (C.2a)

dy (x = 1) =0 (C.2b)

y2 (x = 0) = 1 (C.3a)

dx 2 (x = 1) =0 (C.3)

where both y1 and Y2 are to also satisfy Eq. (C.1). Thus, yi resembles the

temperature profile in the outer region with the boundary condition KT'(x =

L) = 0, while Y2 is equivalent to the temperature profile in the outer region with

(cT')'(x = L) = 0.
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Recall that in the outer region the thermal conduction is unimportant and

should be neglected although in practice it is maintained for numerical purposes.

Denote the solution of Eq. (C.1) for the case e = 0, by yf. We compare y1 and

Y2 with yf in order to show the effect of the two boundary conditions given by

Eqs. (C.2b) and (C.3b), respectively.

For simplicity, consider the case f(x) = 2x. The solutions yi and y2 for this

case are easily obtained, and are given by

= 1 + X+ 2fx + 2ee-1/f - 2,( - 2 1- 2 2~~1/ (C.4)

Y2 = 1 + x2 + 2Ex - -1/-2 (C.5)

Next, consider the solution of Eq. (C.1) with the conduction term set to zero.

The resulting equation is given by

y

= f(x) (C.6)

where we use the subscript f to denote the case with E = 0. The boundary

condition for yf is given by

yf (X =0) = 1 (C.7)

The solution of Eq. (C.6) is given by

y = 1 + X2  (C.8)

We may now make direct comparisons between yf, yi and Y2 in order to show

the consequence of using the various boundary conditions. From Eqs. (C.4), (C.5)

and (C.6) we find

y1 = Yf + 0(e) (C.9)
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Y2 = Yf + O(E) (C.10)

Thus, to within order of E, the solutions yi and Y2 agree with yf. That is,

regardless of the boundary conditions [see Eqs.(C.2b) and (C.3b)] the solution of

Eq. (C.1) approximates the solution of the Eq. (C.6), to within order E.

Next, we compare the gradients of y1 and Y2 with that of yf. Again, from

Eqs. (C.5) and (C.6) we find

dy- 2x - 2a-4/e + 2e - 2ee -4/f (C.11)
dx

dY2 = 2x + 2e - 2,e(x)I (C.12)
dx

Observe that y' and y' are of different orders. Specifically, note that

=y dyf +0O(1) (C.13)
dx dx

=Y2 - + O(E) (C.14)
dx dx

Thus, using the y"(x = 1) = 0 condition has resulted in a solution Y2 that

approximates yf and it's gradient to within order of e. However, this is not the

case with yi. The quantity y' forms a boundary layer near the outlet (x=1)

where it deviates from y' by terms of order unity. In Figs. C.1a and C.1b we

plot y1, Y2, yf and the gradient of these quantities, respectively. The value of e

used to generate these plots is E = 0.01. From Fig. C.1a it is clearly observed

that both y1 and y2 are good approximation to yi. As observed in Fig. C.1b, on

the other hand, the quantity y' agrees well with y' while y' deviates from the

other two curves near x = 1. This deviation is a consequence of the boundary

condition used to obtain yi. It is also worth noting that higher order boundary

conditions such as y.'(1) = 0 still result in an error of order E in evaluation of

y'(1), a consequence of the fact that we are solving a second order ODE.
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In conclusion, we have shown that the outlet boundary condition of (KcT')' =

0 used in Quencher is the most physical condition that may be used. Other

conditions such as setting the temperature or the T' = 0 result in unphysical

boundary layers at the outlet of the conduit.
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Thermal Hydraulic Quench-Back in CICC

In this appendix we discuss the process of Thermal Hydraulic Quench-Back

(THQB) in Cable-In-Conduit Conductors. This process was first discovered by

C. A. Luongo et al. [1] while performing numerical studies of quench in CICC,
and has been a subject of active research since then [2,3]. During the THQB

process viscous heating, together with the heating due to the compression of the

helium may raise the temperature in the outer region above T = T,. When

this occurs, Joule heating develops almost instantaneously over large segments of

the conductor in the outer region. Hence, a rapid increase of the normal zone

is observed. Here, we consider Long coils, Short coils, and the small Ap-regime

separately and show that THQB is initiated in each of these regimes by a different

mechanism. In long coils the compressional heating in the outer region is mainly

responsible for the initiation of THQB, while in short coils the frictional heating is

the only mechanism by which this process is initiated. Explicit analytic relations

are presented for the onset time of the THQB event. These analytic relations are

simple extensions of the theory presented in Chapter 4. We emphasize that the

theory of THQB after its initiation is not considered here.

Long Coil

In order to demonstrate the process of THQB in a long coil, consider a CICC

of length 200 m. In Fig. D.1a we plot the conductor temperature profile at various

time steps during the quench process. Here, after a short period of time THQB is

initiated. Note how the boundary layer at the location of the "classical quench"

front remains behind, while the actual quench front propagates ahead at a very

high rate (~ 50 m/sec). The outer region is rapidly quenching. In Figs. D.1b, D.1c

and D.1d we plot the helium pressure, velocity and density profiles, respectively,

during this quench event. As quench initiates in the outer region, where p ; po,

a very large pressure increase is observed. Since, the pressure in the outer region
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is now larger than the quench pressure, a back-flow of helium into the quench

region occurs (see Fig. D.1c). The separation of the quench front from x = Xq is

further demonstrated in Fig. D.1d. (Note that we now use X. as the location of

the boundary layer that forms the basis of the analytic theory of Chapter 4; this

no longer corresponds to the location of the quench front.) From Fig. D.1d, also

observe that the density in the quench region starts to increase due to the back-

flow of the helium into this region. Comparison of Figs. 4.1a-d and Figs. D.la-d

demonstrate the effect of THQB.

In Figs. D.2a and D.2b we plot the time evolution of the normal length and

the maximum helium pressure in the quench region, respectively. Observe, from

Fig. D.2a, that at a certain time tc, the process of THQB occurs. From this

point a rapid growth of the normal zone is observed. In this figure we also plot

the analytic theory of Chapter 4 [see Eq. (4.94)]. The THQB case follows the

analytic theory until tc,, after which a large deviation from the analytic theory

is observed. In Fig. D.2b we demonstrate how the pressure in the quench region

increases very rapidly after t = t,,. This increase is due to the back-flow of

the helium into the quench region. Recall that the quench pressure is given by

p = RpT, where in both classical and THQB cases, T ~ a 0J 2 t. In the classical

regime, however, the density decreases due to the increase of Xq; X, oc t 4/ 5 [see

Eqs. (4.94) and (4.95)]. The density in this regime behaves as p oc t- 4 /5 . Thus, we

find that p oc t115 during a classical quench. However, this is not the case in the

THQB event where the density starts to slowly increase. In this case the pressure

behaves as p oc t, nearly following the temperature evolution in this region.

An important characteristic of the THQB event is that the onset time for

the initiation of this process is very difficult to obtain numerically. In fact, we

have found that the onset time (t,,) becomes longer as the integration time step

(At) in Quencher is decreased. In many cases, we have not been able to obtain

a numerically converged value of tr. In such cases the numerical solution of the

Quencher model appears to be converging both before and after t,,, but the value

of tc, itself is difficult to obtain. In Fig. D.3a we present the normal length propa-
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gation during a quench that is followed by THQB. Here, we show how decreasing

At effects the value of t,, while the propagation speed for example appears to

have converged (e.g. the slope of Xq versus t curve). In Fig. D.3b we plot t,,

versus 1/At. Note the slow convergence of t,, as At -+ 0. In the discussions

presented below we derive an analytic relation for t,,. From this relation we

show the sensitivity of this variable on the various parameters during the quench.

We believe that the large variation with certain parameters is responsible for the

numerical difficulties involved in obtaining t,,.

Another characteristic of THQB is the following; this process is very similar

in nature to what is observed during a quench in a numerically non-converged

scenario (see for example Figs. 6.1, 6.2 and also Figs. 3.4a-d). That is, it is

difficult to distinguish THQB from a "Numerical Quench-Back" (NQB) event. In

both cases a rapid propagation together with large quench pressures are observed.

It is not clear whether NQB results from inaccurate low values of tc, or whether

this is an entirely different process than a THQB. Further research is required to

resolve the two points just discussed. Also the theory of THQB after its initiation

is not yet known (i.e. the quench propagation speed after t = tr).

In the analytic solution presented in Chapter 4 we neglected the frictional

heating in the outer region. This was done for both long and short coils. In long

coils it easily shown that this term is indeed small compared to the compressional

heating that occurs in the outer region. Denoting the frictional heating term by

Qvi,c and using Qcomp to denote the compressional heating, we have

QV= -- fpov1V2  ap (D.1)
2dh aX

m oCioTo (D.2)

where Cfo = C6 (po, To). Recall that in the outer region T = To + T, and similarly

p = po + pi. The ratio Qv.sc/Qcomp is given by
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Qis_ V(_p/_x (D.3)
QCOm, CfopoTo(8v/&x)

Noting that p - RpT and Cpo - R, we find

____ ~ v(9p1/&x) _ P1 (DA)
QcoMp po(8v/8x) Po

Thus, the frictional heating is small compared to the compressional heating, since

Pi/po < 1 (see Chapter 4).

Observe that in treating the outer region [see Eq. (4.10)] we assumed the right

hand side of the energy equation is zero. That is, no heat sources are present in

this region. This assumption is valid as long as the temperature in the outer

region remains below the current sharing temperature Tc,. Once the temperature

is above T = Te,, quench is initiated in the outer region and the assumptions of

Chapter 4 are no longer valid. From the long coil solution, it is easy to obtain the

time dependence of the temperature rise T in the outer region. The perturbed

density is given by [see Eq. (4.102)]

AWt
p- 3t2 [t3/4 + A/2(X- L )/23 2 (D5)

where A2(t) = po(4V9/5)/3v2, A2(t) = (37r/4)1/3A 1, z'o = N/2dhpoc2/f, and V is

given by Eq. (4.95). Using this equation together with Eq. (4.74), we find

i~~o~p\3 t2

T1(x,t) = TOCI] 3 2  2 2 (D.6)
POChO (3/4 + A32(X - Lq/2)3/2

where Cho = Ch(po, To).

Consider the temperature rise just ahead of the quench front, at x =X+;

T v =2 1 0.9 73 O po'2V t1/2  (D.7)
TO [pOChO t3/2 [oChO. VO
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Note that in accord with the long coil criteria, we have neglected the second term

in the denominator of Eq. (D.5) when considering x = X,. Using Eq. (4.95) to

obtain V, we find

T1(x = Xq) ~ 0.653 CO (RLq oj2) 3/ t (D8)TO Ca 2dhe C"

This is a relation for the maximum temperature rise in the outer region during

the quench propagation prior to the onset of THQB. The process of THQB is

initiated when Ti(x = Xq) = (Tc, - To). This occurs at time tc, given by

tcr= 8.4 (2dj 0 ) [ J (ChO T -T(D.9)
f RLaoJ2 C 0  TO

Observe the strong dependence of t, on the temperature margin (Tc, - To),

and other quantities. As expected, the value of icr decreases rapidly with reducing

the temperature margin in the outer region. Also, note that tcr decreases with

larger Lq, increased Joule Heating (aoJ 2), or larger friction (smaller dh/f). As

discussed above, the strong dependence on these parameters is believed to be

responsible for the numerical difficulties involved in obtaining an accurate value

of tcr. It is very likely that slight numerical errors in the outer region result in an

inaccurate value of tcr, and hence give rise to "Numerical Quench-Back" (NQB).

Short Coil

We found that compressional heating is the dominant mechanism responsible

for the initiation of THQB in long coils. In short coils there is no compression

of helium occurring in the outer region. From the analytic theory of Chapter 4,

we find that T in the outer region is time independent. (Recall that p1 in the

outer region is given by the time independent Eq. (4.90), and hence T given by

Eq. (4.74) has a similar behavior in space and time.) In obtaining T the frictional

heating (fpjVoV 2 /2dh) was neglected. In long coils, we found that compressional
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heating is much larger than this term. In short coils, however, we must consider

this term when attempting to analyze THQB. Below, we obtain tr for short coils

by including the frictional heating and by using the analytic relations presented

in Chapter 4. We have not numerically analyzed the process of THQB in short

coils nearly as extensively as in the long coil case.

In order to obtain an estimate of the temperature rise in the outer region,

consider using the analytic theory of Chapter 4 together with the energy equation

in the outer region. Recall that in the outer region the dominant contribution to

the total specific heat is due to the helium. Also note that in the short coil regime

the helium velocity in the outer region is given by v = V.. The quench velocity

V is given by Eq. (4.86). Keeping the dominant terms in the energy equation for

the outer region, we find

PoCho fPV3 (D.10)

where we use T to denote the outer region temperature. From Eq. (4.86), we have

V= (2L LqaoJ2 (D.11)

Solving Eq. (D.10), we find the temperature in the outer region is given by

RLq
T -To ; R a0 J 2 t (D.12)

ChoL

The onset of THQB occurs at time tr given by

tc 1ChoL T.C, -- TO (.3Teo) (D.13)
RL9 aoJ2

Observe that tr is independent of the friction term f /dh. This is consequence of

a cancelation that is a result of two competing effects; (1) the frictional heating is

directly proportional to the term f/dh, and larger friction tends to increase this

term. (2) On the other hand, larger f/dh will cause reduced helium velocities in
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the outer region, and hence a lower value of V' results in the frictional heating

term. Also note that, just as in Eq. (D.9), we find that ter decreases with larger

Lq, increased Joule heating (ao J 2), and reduced temperature margin in the outer

region.

Small Ap Regime

In this section we consider the process of THQB during a quench in the

small pressure rise regime. We only consider the case L2 < 24dhC'om /fV. In

this case the energy equation in the outer region is identical to Eq. (D.10). Only

the quantity V is now given by [see Fig. 4.5]

V _ LaoJ2 (D.14)
2po

Using this relation in Eq. (D.10), we find

T -To ;:f [ho 3 (Lqao J2)3 t (D.15)
2dh [Ch I

The onset time of THQB is thus given by

tc e [Ch ] (L O (D.16)
f R~p30 (LqaoJ2)3

Observe that this relation does depend on the friction in the outer region (tcr

decreases with higher friction; smaller dh /f). Again, we observe a decrease in tc,

with larger Lq, increased Joule heating (ao J 2), and reduced temperature margin

in the outer region.

An important scaling that is observed in Eq. (D.16), is the dependence of

ter on the ratio po/po. This dependence suggests that by reducing the operating

pressure, while maintaining the same temperature, it is possible to decrease tcr

and hence observe THQB at an earlier time. Note that decreasing po also results

in a decrease of po. However, for supercritical helium the ratio po/po, at constant
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temperature, decreases with reducing pressure. Thus, at To = 5 K and po =

10 atm for example, we find po/po ; 7000 m2/sec 2 , while at the same temperature

and po = 5 atm we find po/po ; 4000 m2 /sec 2 . This reduction in po/po results in a

value of tr that is approximately 5 timed smaller. Recent experiments by T. Ando

[4] suggest that the process of THQB has been observed by reducing the operating

pressure in the experimental setup that was discussed in both Chapters 3 and 4.

Recall that the coil used in this experiment satisfies L 2 < 24dheCt,,/fV, and due

to the small value of L., this conductor also satisfies the criterion for the small

pressure rise regime (see Chapter 4, section 4.3).
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Figure D1c: Helium velocity distribution during THQB.
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Figure Did: Helium density distribution during THQB.
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