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ABSTRACT

A numerical study of the current distribution in Cable-In-Conduit Conductors
(CICC's) experiencing linearly ramping transport currents and transverse
magnetic fields was conducted for both infinitely long, periodic cables and finite
length cables terminated in low resistance joints. The goal of the study was to
gain insight into the phenomenon known as Ramp Rate Limitation, an as yet
unexplained correspondence between maximum attainable current and the ramp
time taken to reach that current in CICC superconducting magnets. A discrete
geometric model of a 27 strand multiply twisted CICC was developed to
effectively represent the flux linkages, mutual inductances, and resistive contact
points between the strands of an experimentally tested cable.

The results of the numerical study showed that for fully periodic cables, the
current imbalances due to ramping magnetic fields and ramping transport
currents are negligible in the range of experimentally explored operating
conditions. For finite length, joint terminated cables, however, significant
imbalances can exist. Unfortunately, quantitative results are limited by a lack of
knowledge of the transverse resistance between strands in the joints.
Nonetheless, general results are presented showing the dependency of the
imbalance on cable length, ramp time, and joint resistance for both ramping
transverse magnet fields and ramping transport currents.

At the conclusion of the study, it is suggested that calculated current imbalances
in a finite length cable could cause certain strands to prematurely "quench"--
become non-superconducting--thus leading to an instability for the entire cable.
This numerically predicted "current imbalance instability" is compared to the
experimentally observed Ramp Rate Limitation for the 27 strand CICC sample.
Using the unknown quantity of the transverse joint resistance as the single fitting
parameter, the results of the hypothesis reasonably match several major trends in
the data. It is concluded that the results are encouraging but require further
refinement and a direct measurement of the transverse joint resistance.
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Title: Acting Head of the Fusion Technology and Engineering Division
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Chapter 1

Introduction

1.1 Overview

Next generation fusion devices such as ITER and TPX* are relying on

superconducting magnets consisting of Cable-In-Conduit Conductors (CICC) to

provide the "magnetic bottle" needed for plasma confinement. A CICC

superconductor is composed of multiple strands of conductor, each of which is

composed of numerous superconducting filaments embedded in a non-

superconducting matrix, typically made of copper. The strands are twisted

together and compacted within a structural conduit which provides a passage for

a liquid helium coolant. A cross-section of a typical CICC is diagrammed in

Figure 1.1.

Recently, lower than expected limiting currents have been encountered in

CICC superconducting magnets when the current is ramped at a constant rate. It

has been suggested that this "Ramp Rate Limitation" may be due to an uneven

distribution of current amongst the cabled strands during transient conditions. It

is the purpose of this thesis to investigate this hypothesis and determine the

importance of current distribution to the overall performance of cable-in-conduit

conductors under transient conditions.

The remainder of this chapter will be a review of a few basic properties of

superconductors along with an introduction to stability analysis. The important

aspects of CICC superconductors will also be outlined and then a brief history of

* ITER is the International Thermonuclear Experimental Reactor, a joint project of the American,
Russian, Japanese and European fusion programs, and TPX is the Tokamak Physics Experiment
being planned by the U.S. fusion community.
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Figure 1.1 An example of a Cable-in-Conduit Conductor (CICC) shown in cross-
section. Typically, the strands are twisted into triplets which are further twisted
into bundles which are then twisted into sub-cables and so on until the entire cable
is formed. Each strand consists of numerous superconducting filaments (not
shown in this figure). (Hoenig [1980])

the Ramp Rate Limitation phenomenon will be given, along with some of the

possible explanations of the phenomenon.

The second chapter will focus on the patterns of current distribution in

CICC magnets using a type of cable in which the strands are multiply-twisted.

The chapter begins with a brief discussion of the features of two experimental

magnets before developing a discrete numerical model of the simpler of the two.

Although the model is specific to one specific cable configuration, a similar

model could be applied to other cable geometries. Using the model, patterns of

current distribution are studied for a number of scenarios. Each scenario is

distinguished by three characteristics: length scale, time scale, and forcing

function. Here, forcing function refers to either a linearly-ramping current or a

linearly-ramping magnetic field. Different methods of solution are required for

each scenario and each will be presented. More detailed results can be found for
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cables considered to be of a periodic nature and infinite in length, but it is shown

that current imbalances amongst strands is much greater for finite-length cables

terminated in "idealized" joints.

The third chapter will use the results of Chapter Two to form a new

stability analysis of the Ramp Rate Limitation. Traditional stability analyses

assume a uniform current distribution and focus on the temperature of the cable

as the stability criterion. The new analysis will relate the calculated current

imbalances to the critical current of a single strand to form a new criterion based

on current distribution. Although this analysis makes many simplifications, its

predictions reasonably match experimental data.

1.2 Background

This section reviews the relevant features of cable-in-conduit conductors

(CICC) and introduces the concept of Ramp Rate Limitation. Some basic

properties of superconducting materials themselves are first discussed because

they are the basis of any stability analysis.

1.2.1 Basic Properties of Superconducting Materials

Superconducting materials exhibit their unique properties when operated

within certain limits. Traditionally, these limits are defined as the critical

temperature, Tc; the critical current density, Jc; and the critical magnetic field, Bc.

These three quantities are interdependent and form a three dimensional "critical

surface" in a phase space with coordinates of temperature, magnetic field, and

current density. The critical surface defines the boundary between the

superconducting state (below the surface) and the normal state (above the

surface). The critical surface can be considered a material property of the

15



superconductor although it is affected by manufacturing techniques. The critical

surface for a typical Nb-Ti alloy is shown in Figure 1.2 as an example.

Any superconducting device must be designed so that the superconductor

remains "comfortably" beneath its critical surface in phase space. Any

disturbance in temperature, field, or current density which moves the operating

point above the critical surface will cause the superconductor to go normal. This

process is commonly called "Quenching." Thus, the stability of the device

against quenching is directly related to how close the nominal operating point is

to the critical surface.

61

8~-

-~16

Figure 1.2 The critical surface plot for a commercially available Nb-Ti alloy. At
points below the surface, the alloy is superconducting, above the surface, it is
normal. Source: reprinted with permission from Wilson, Su perconducting Magnets,
Copyright 0 1983 by Oxford University Press.

16



The properties of a material in the superconducting state are very different

from its properties in the normal state. For stability analysis, the most important

difference is the sudden change in the electrical resistivity. Surprisingly, most

materials which possess a zero-resistivity superconducting state have relatively

high resistivities in the normal state. At cryogenic temperatures, the normal state

resistivity of practical superconductors is 10-100 pa-cm while, for comparison,

the resistivity of copper is less than 0.1 pQ-cm (Orlando [1991]). For this reason,

and since superconductors are usually operated at very high current densities

(often greater than 109 A/m 2 (Wilson [1983])), any local transition to the normal

state will be associated with tremendous joule heating. Such local joule heating

would quickly and irrevocably drive the surrounding superconductor above the

critical temperature and into the normal state.

To reduce this "catastrophic" effect, superconducting strands of wire are

formed as a composite material: superconductor plus stabilizer. In the event of a

local normal spot in the superconductor, the current can flow around the high

resistivity region by traveling through the stabilizer (typically made of copper).

The joule heating associated with a normal zone is thus greatly reduced. In a

good design, a coolant (typically liquid helium) will be able to absorb the heat

generated and cool the strand back down to the operating temperature, where it

will again be superconducting. This is known as "Quench Recovery."

A stability analysis of a superconducting system determines the size of

disturbance which will cause a "Quench" and whether it will lead to a "Quench

Recovery" or continue to quench the entire conductor. Traditional stability

analyses usually study the stability of a conductor with respect to disturbances in

temperature. The current density and magnetic field are assumed to be uniform

and constant. Computer Codes such as HESTAB (Bottura, Minervini [19871)

iteratively determine the minimum disturbance energy which would cause the

17



wire to joule heat to a point where the temperature remains above the critical

temperature despite convective cooling provided by the liquid helium.

The applicability of such a stability analysis to the problem of ramp rate

limitation will be discussed at the end of this chapter.

1.2.2 Cable-in-Conduit Conductors

Cable-in-Conduit Conductors (CICC) were developed at MIT in the mid-

1970's as the initial step in developing large superconducting magnets for fusion

reactors and magneto-hydrodynamic (MHD) generators (Hoenig [1980]). In the

CICC design, multiple strands of superconducting wire are cabled together and

enclosed in a conduit which provides structural support as well as a leak-tight

passage for helium coolant. The principal advantage of this geometry is that the

surface area to volume ratio is much higher than that of a "monolithic" design.

The increased surface contact with the helium coolant provides improved

stability with respect to perturbations in temperature. This and other advantages

of CICC's for large scale applications are discussed in Hoenig (1980).

The multiple strands of a CICC introduce new concerns for magnet

applications. Unless completely insulated, the strands are in electrical contact

with their neighbors and there are paths for currents to flow from strand to

strand. If the strands are not twisted, induced loop voltages will be proportional

to the field rate of change and to the dimensions of the cable (Faraday's Law).

Since cables can be very long, significant induced voltages can occur even for

small-diameter cables in slowly changing fields. These voltages will drive eddy

currents which travel along the length of one superconducting strand and return

down the length of a neighboring strand. The only resistance encountered is at

the contact points where the current traverses strands. If this resistance is low,

notable eddy currents can exist and the resulting joule heating will significantly

18



contribute to the AC losses in the cable. This loss must be compensated by

additional cooling to maintain the conductor below the critical temperature

(Wilson [1983]).

AC loss is a particular concern for AC magnets, but is also of interest for

DC magnets which must be brought from zero magnetic field to their operating

magnetic field in a reasonable amount of time. Fortunately, twisting the strands

together effectively reduces the magnetic coupling between strands, putting a

handle on AC loss. Twisted strands in a changing external magnetic field

experience an electric field which changes direction every half twist pitch length.

The maximum induced voltages will thus be proportional to the twist pitch

length rather than the length of the cable (Wilson [1983]).

Another way to reduce the coupling between strands is to decrease the

conductivity between them. The optimum choice of electrical conductivity

between the strands balances the requirement of low AC loss (low conductivity)

and adequate stability (high conductivity--to ease current transfer around local

normal zones) (Wilson [19831). For magnets that are designed to be ramped or

cycled in time, AC loss is a primary concern and highly resistive oxide coatings

are often used. Completely insulating the strands from each other is an option,

but experience has shown that the performance of such magnets can be

"surprisingly low" (Turck [1992]).

Although a simple twisting of all the strands, as diagrammed in Figure 1.3,

reduces eddy currents due to transverse magnetic fields, it does not help to

reduce self-field effects. The self-field is the magnetic field of a wire generated by

the transport current flowing through it. The self-field effect in multi-strand

cables is similar to the "skin-effect" in homogeneous conductors--a diffusion

process in which any change in current distribution begins at the surface and

diffuses inward at a rate inversely proportional to resistivity (Haus, Melcher
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Figure 1.3 A "simply twisted" cable. Strands on the outside remain on the outside
over the length of the cable. Strands near the center stay near the center. (Hoenig,
et al., [19751)

[1989]). By analogy, any change in the current distribution in a cable will first be

felt by strands on the outside before diffusing inward at a rate inversely

proportional to the contact resistance. The high contact resistance preferable for

reducing AC losses would therefore unfortunately limit the rate at which current

diffuses from outside strands inward in time-varying fields. The resulting

current imbalance would reduce the overall performance of the cable.

A "fully transposed" cable, however, is one which eliminates the self-field

effect by ensuring that no net self-field flux exists between the strands (Wilson

[1983]). This is equivalent to saying that the self-inductance of every strand is

the same and that the mutual-inductances between strands exactly balance. This

can be achieved by a cabling pattern in which the strands traverse the cable

cross-section in such a way that each spends an equal amount of time at each

position in the cable space--i.e., the strands spiral radially inward then outward

along the length of the cable.
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One such cabling pattern which achieves a fully transposed geometry is a

derivative of the Litz wires often used for radio frequency work (Wilson [19831).

It begins by twisting a small number of wires into a "rope" with a tight twist

pitch. Then several small ropes are twisted together with a somewhat looser

twist pitch into a bundle. The process continues, twisting bundles into larger

cables with looser twist pitches. An example of a cable made of five ropes of four

strands each is shown in Figure 1.4. The Cable-in-Conduit Conductors discussed

later in this thesis are similarly comprised of multiply-twisted strands. It should

be mentioned that a cable of this nature is only fully transposed if its final length

is an integer multiple of the transposition length, equal to the lowest common

multiple of the twist pitch lengths of each stage of the cable. If this criterion is

not met, the self-field effects are dependent on the difference between the final

length and the closest integer multiple of the transposition length. To minimize

this quantity, the twist pitch length of each stage can be made an

Figure 1.4 A "fully transposed" cable in the form of a multiply twisted "rope." Source:
reprinted with permission from Wilson, Superconducting Magnets, Copyright @ 1983 by Oxford
University Press.
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integer multiple of the previous stage twist pitch so that the transposition length

is as small as possible.

1.2.3 Ramp Rate Limitation

To demonstrate the ability of CICC magnets to operate at the conditions

required for a fusion device, the United States Demonstration Poloidal Coil (US-

DPC) was designed and built by MIT and industrial partners. Tested in Japan in

late 1990, the magnet performed well in DC tests but exhibited an unexpected

ramp rate limitation when ramped at high rate to high currents and fields. Figure

1.5 shows the measured limit for linear current ramping as a plot of maximum

attainable current versus the ramp time taken to reach that current. It is evident

from the figure that the design current of -30 kA could only be reached at slow

ramp rates (i.e., longer ramp times) despite the fact it was designed to ramp to

full current in approximately one second (Painter, et al. [1992]). Although there

has been much conjecture about the cause of the limitation (see, for example,

Takayasu, et al. (1992), Bruzzone (1992), Bromberg (1993), MIT Plasma Fusion

Center (1991)), a consensus of opinion has not been reached.

To further study the problem experimentally, small scale experiments

were conducted by the MIT Plasma Fusion Center using the facilities of the

Francis Bitter National Magnet Lab. These tests used 27 strand cables made of

the same wire of which the 225 strand US-DPC was built. Again, a well-defined

ramp rate limit was discovered (Takayasu, et al. [19921). The results of the

simulation of the US-DPC test are shown in Figure 1.6, where solid circles signify

points at which the cable quenched and open circles signify currents which were

achieved without quench. The Ramp Rate Limitation is again apparent.

Although faster ramp rates are known to increase the AC-losses associated with

superconductors in changing fields and currents, these losses are
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not large enough to explain the degree of degradation encountered at shorter

ramp times (Painter, et al. [1992]).

Similar experiments (Vysotsky [1993]) have shown that the Ramp Rate

Limitation is due to an instability and not an integrated loss of any kind. This

was shown by starting the magnet at an initial bias current and then ramping to

the quench current. The quench current was found to be dependent only on the

ramp rate, not the initial current. For this reason, it seemed appropriate to study

Ramp Rate Limitation using a stability analysis of the CICC.

As mentioned above, traditional stability analyses usually study the

stability of a conductor to disturbances in temperature. From these studies, it can

be determined if the cooling (heat transfer to helium) is enough to bring the

conductor back down to its operating temperature after any foreseeable

perturbation in temperature. Such perturbations would be caused by energy

deposited in the strands from such causes as AC losses, nuclear heating, or

frictional heating associated with wire motion. For this reason the measure of

stability of a cable is often given as a "stability margin"--the volumetric energy

perturbation which would marginally lead to a non-recovering quench, typically

measured in mJ/cc of wire (Bottura, et al. [1991]).

Stability codes which determine the stability margin of CICC conductors

are now heavily used design tools for steady-state magnet applications. They are

even accurate enough to predict the complicated dual-stability regimes

encountered in certain CICC designs (Bottura, Minervini [1991]). In studies of

the US-DPC coil and the sub-sized 27 strand cable, however, the stability margin

was found to be on the order of 100 mJ/cc for operating scenarios at which

premature quench was experienced (Steeves, Minervini [19911). This amount of

energy is much larger than any foreseen energy deposition in either system
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(Painter, et al. [1992]). For this reason, the source of the Ramp Rate Limitation is

still a mystery.

The standard stability analyses preferred to date may fail to predict a

Ramp Rate Limitation because they were not originally designed to model

transient current and field conditions. In ramping magnetic and electric fields,

the assumptions of uniform field and current distribution inherent in traditional

analyses may break down. If significant eddy currents or self-field imbalances

exist in the cable, some strands may carry higher than expected currents and thus

have a lower than predicted "local" stability margin. In some cases, the cable

may only be as stable as the most unstable strand. It is this possibility which will

be investigated in this thesis.

A similar effect has already been explored for single-strand

superconductors. To correctly predict the performance of single strands in

ramping electric and magnetic fields, it is first necessary to use continuum

electrodynamics to determine the current and field distribution in the strand. A

stability theory which includes these effects and the verifying experiments are

presented in Mints, Rakhmanov (1988).

As in the single strand case, to investigate stability of cables in ramping

fields it is necessary to determine the current distribution amongst the strands.

Chapter Two of this thesis thus studies current distribution in multiply-twisted

cables before a "new stability analysis" based on those results is presented in

Chapter Three.
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Chapter 2

Current Distribution in Linearly Ramped Cable-in-Conduit

Superconducting Magnets

2.1 Overview

Having explained in Chapter One why knowing the current distribution

may be important in determining stability limits, Chapter Two now looks at

finding the distributions for the cases of linearly-ramping external magnetic

fields and linearly-ramping transport currents. After determining what current

imbalances may occur, the stability implications are investigated using simplified

stability modeling in Chapter Three.

Many authors have studied current distribution in cables and have

determined that the effects can be appreciable (for example, Knoopers, et al.

(1985), Amemiya, et al. (1992) and Torii, et al. (1993)). Unfortunately, all previous

reports have used simplifying assumptions which limit the applicability of their

results for the problem of CICC's. Specifically, the effects of the complicated,

twisted nature of the cabled strands and the effects of transverse conductance

between the strands have not yet been treated appropriately. This chapter will

include these effects in numerical models which give a more accurate description

of current distribution in multiply-twisted cable-in-conduit conductors.

2.1.1 The Experimental Magnets

The US-DPC magnet is in many ways typical of CICC magnets. The

magnet is formed as a pancake wound solenoid in which the magnetic field

produced in the bore is linearly related to the current. Correspondingly, the rate

of change of the field is proportional to the rate of change of the current. The
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magnetic field experienced by the conductor, however, is not uniform over the

cable length and this field distribution would have to be included in any study of

induced currents. The details of the magnet design and field distribution can be

found in reference (Painter, et al. [1992]).

The operating conditions of the US-DPC experiment were simulated in the

small-scale 27 strand experiment by simultaneously ramping a transport current

through the cable and a background field provided by a 12 T Bitter magnet

(Takayasu, et al. [1992]). Unlike the field produced by the US-DPC, the

background field at the test sample is uniform over the length of the conductor.

The relation between the background field B and transport current I was fixed in

such a way that the current of each strand of the 27 strand cable was equal to that

of the US-DPC coil (225 strands) at a given magnetic field. The experimental

setup is shown schematically in Figure 2.1.

27 strand cable:
total length = 0.84 m
coil length = 0.3 m

LU

Background Magnet:
Central Bore = 10 cm

):

Figure 2.1 Schematic of the 27 strand US-DPC simulation experiment. A single loop
coil formed from the CICC was placed in the bore of a 12 T Bitter magnet. The
ratio of background field to transport current was kept constant as they were both
linearly ramped in time.
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2.1.2 Causes of Uneven Current Distribution

A non-uniform current distribution amongst the cabled strands of a CICC

conductor can be caused by several factors. In general, unless each strand

provides an identical current path in terms of its resistive and inductive

properties, imbalances will exist.

Uneven Joint Resistances

The superconducting cable has to be connected to the power supply bus

bar in a specially designed joint. These joints are designed to minimize total

crossover resistance and thus small differences in the resistance of individual

strands to the bus bar can be relatively large. Although this is a valid concern, a

poorly manufactured joint would affect the DC performance of a magnet as well

as the ramping performance. Since the DC performance of the magnets studied

in ramp rate experiments showed no degradation, (Painter, et al. [1992]) the

resistive imbalances are not considered to be a contributing factor to Ramp Rate

Limitation and are not explicitly discussed in this thesis.*

Self-Field Effects

As mentioned above, the "self-field" effect is similar to the "skin effect."

CICC conductors use almost fully transposed cabling patterns which can

potentially eliminate self-field effects but, unless the cable is perfectly periodic

and its length is exactly equal to an integer multiple of the transposition length,

self-field effects will not be completely canceled. Also, the presence of trans-

conductance along the length of the cable allows the current to "tend outward"

locally even if each strand uniformly weaves in out of the center of the cable.

These local effects are transient in nature, though, and the overall current

* Recently published results show a frequency dependency for the "current sharing length"-the
length scale over which current imbalances due to any uneven joint resistances re-equilibrate
(Kawabata, et. al. [19941).
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distribution will be related to whole length effects at sufficiently long times for

linearly-ramping currents. This process is discussed further below.

External-Field Effects

In a magnet comprised of CICC, the external-field is defined as the field

due to currents in strands other than those being studied. In the case of the

small-scale experiment, this is the background magnetic field. As mentioned in

Chapter One, even though the strands are twisted, flux changes through the tiny

linkages (minimized by tight twist pitches) cause current loops to flow along

short lengths of strands and through the transverse conductive path where the

strands come into contact. Additionally, if the cable length is not a multiple of

the final twist pitch length (or if the twist pitches themselves vary over the cable

length from their nominal values), flux linkages will not cancel and a changing

magnetic field will drive net circulating currents along the length of the strands

through the low resistance joints. This net eddy current can be much larger than

the local eddy currents encountered in a periodic cable.

2.2 Approach to Studying Current Distribution

The 27 strand cable used in the small-scale US-DPC simulation

experiments will be used throughout this chapter as the basis for current

distribution modeling because of its manageable size and the available

experimental database from which to draw comparisons. The 27 strand sample

is typical of other cables, however, and thus the techniques developed can be

applied to other cable geometries.
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2.2.1 Properties of the 27 Strand Experimental Cable

The cable consists of 27 strands of a Nb3Sn superconducting composite

with a strand diameter of 0.78 mm. The strands are plated with chrome-oxide to

decrease the trans-conductance and then they are multiply-twisted into a cable of

3 bundles of 3 sub-bundles of 3 strands each. Details of the twisting will be

discussed below. The cable is contained in an Incoloy 908 conduit with a 5.5 mm

inner diameter and a 6.7 mm outer diameter. The cable is 0.84 m long and was

formed into a single-turn coil of 95 mm diameter; thus 30 cm of the cable

experiences a transverse external-field (Takayasu, et al. [1992]). The geometry is

shown in Figure 2.1.

A measure of the transverse conductance between the cabled strands was

obtained by Takayasu (1992). The tests were performed on a cable constructed

similar to the one above except one of the 27 strands was separated at the

terminations and connected to a separate power supply. Using four-point

voltage taps (Wilson [1983]), the net conductance between the single strand and

the 26 others could be found as a function of background field and transport

current. The results were given as a contact conductance per unit length, G,

defined as:

G = - (mho/m) (2.1)
R

where R = the measured resistance for a 1 m cable. The measured trans-

conductance was found to be fit well by the expression (Takayasu [1992]):

G = 214.7B*I + 2099.0 (mho/m), (2.2)

where B is the background field in Tesla and I is the transport current in kA. The

dependence on the product B*I represents the increased conductance due to

contractile Lorentz' forces in the cable.

It should be mentioned that other experimenters have attempted to

measure contact resistance between chrome-plated strands similar to the ones
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used here but have obtained results which are greater than the correlation in Eq.

(2.2) by up to a factor of 1,000 (Egorov, et al. [1992], Turck [1992]). These other

experiments, however, used only 2 or three strands instead of a full cable and

thus the nature of the contacts between strands may have been quite different.

While this discrepancy has not yet been entirely explained, the measurements

made on the 27 strand sample will be used exclusively since it is to that cable to

which we will primarily compare calculated results.

2.2.2 Model Assumptions

The presence of transverse conductance makes the problem of current

distribution in multi-strand cables difficult to study analytically and thus

numerical techniques will be used instead. The numerical model will make

several assumptions:

1. The cable will be assumed to be straight with its longitudinal axis

pointing in the z-direction. This assumption will be generally valid

for single coil magnets with a coil radius >> cable radius.

2. The external-field will be assumed to be uniform over the length of

the cable.

3. Unless otherwise noted, the twist pitches of each cable stage exactly

equal their nominal value.

4. The "randomizing" effects of cable compaction on geometry will be

neglected, although we do use special Maps which give the "most

compact" cable geometries consistent with the nominal twist

pitches of the cable.

While assumptions 1 and 2 limit the application of the model to single loop coils

in uniform magnetic fields, (as is the case being studied here, with the coil radius

of 4.8 cm much greater than the cable radius of 0.28 cm), these assumptions could

be relaxed at the price of increasing the detail of the geometric modeling.
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2.2.3 Discretized Cable Geometry

Having made the above assumptions, it is possible to generate a geometric

model of the cable being studied. As described in section 2.2.1, a typical cable is

composed of successive twisted stages, with the twist pitch of each stage an

integer multiple of the previous one. In the 27 strand sample, (as in the full US-

DPC cable) each twist pitch length is double the previous one. We will use the

terms triplet, bundle, and cable to refer to the first, second, and last stages of the

3x3x3 strand cable. The nominal twist pitches of the triplets, bundles, and cable

are 51 mm, 102 mm, and 203 mm, respectively (Painter, et al. [1992]).

When current distribution within a strand needs to be calculated, a

"continuum electrodynamical model" is usually used (Carr [1983]). For a cable

however, the distinct strands and the intermittent contacts make the problem a

discrete one by nature. Kirchoff's laws (integral forms of Maxwell's Equations)

are good for describing discrete systems and will be the tools used here. It is

therefore necessary to discretize the cable geometry.

An appropriate geometric model will approximate the paths of the strands

to determine: the contact points between the strands, the "local" and "total"

external flux linkages, and the mutual-inductances. Although we cannot exactly

match the true geometry, such a model will still allow for a meaningful analysis

of the cable. The hardest aspect of the cable to model is the nature of the

intermittent contacts between the strands. The following model was chosen over

simpler models because it was thought to more realistically approximate the

inter-strand contacts.

After "trial and error," the final twist pitch length of the cable (equal to the

transposition length for the 27 strand cable) was axially discretized into 48

longitudinal segments. The choice of 48 segments was made because it allowed

for a representation of the cable which preserves the correct twist pitch rotations
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between segments. The length of each segment is 4.2 mm, the transposition

length (203 mm) divided by 48.

The configuration of strands at the midpoint of each of the 48 segments is

determined by the various twist pitch lengths in the cable. The full cable will

complete one poloidal rotation (3600) over one final twist pitch length, equivalent

to 48 segments. Thus, the cable has a 7.5* poloidal twist per segment. The twist

pitch length of the second-stage bundle is half that of the cable and, thus, the

bundle would nominally twist 150 per segment. However, the bundle is twisted

even further when it is incorporated into the cable, so the two twists must be

added to give an actual bundle twist of 22.50 per segment. Similarly, the

nominal triplet twist would be 300 per segment, but it is then twisted into a

bundle and then finally into a cable so we must add the three nominal twist

pitches to give an actual triplet twist of 52.50 per segment.

The Maps:

Figure 2.2 shows a set of strand configurations at the midpoint of each of

the first eight segments of the cable model. These maps, labeled Map A through

Map H, represent the most compact configurations possible which maintain the

prescribed twist pitches for the 27 strand cable with. Moving down the length of

the cable, the strand in the position labeled "1" in Map A moves to position "1"

in Map B, and so on until Map H (the eighth segment). The other strands move

similarly.

Figure 2.3 shows how the nominal twist pitches are included in the model

geometry. The twisting of a stage is defined by the angular rotation of a triangle

connecting the centers of the sub-elements of that stage. For example, strands

1,2, and 3 comprising the first triplet form a triangle which has a 52.50 twist per

segment, as prescribed above. Similarly, for the bundle composed of strands 1-9,

the centers of the three triplets--(1,2,3), (4,5,6), and (7,8,9)--form a triangle which
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Figure 2.2 The first 8 strand configurations of the 48 segment period of the 27 strand cable

model. See text (Section 2.2.3) for explanation.
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MAP A

52.5*

MAP B

\ ..- - -""7.5*

22.5*

Figure 2.3 Between each segment of the cable, the strands rotate according to their
prescribed twist pitches. Each triplet (heavy, solid triangle) rotates 52.5*. Each
bundle (heavy, dotted triangles) rotates 22.50, and the cable (lighter, dashed
triangle) rotates 7.50*. See text (Section 2.2.3) for explanation.
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makes a 22.50 twist per segment. Last, the triangle defined by the centers of the

three bundles make a rotation of 7.5* per segment. Thus, the configurations

presented in the Maps preserve the correct multiple twisting nature of the 27

strand cable.

All 48 segments which make up one period of the cable can be represented

at their midpoint by Maps A-H from Figure 2.2. The configurations of the cable

in the next eight segments of the cable are equivalent to the first eight with a 600

counter-clockwise rotation added to the orientation of the Maps A-H. Thus, from

a segment whose configuration is indicated by Map H, the axial midpoint of the

next cable segment is again in the configuration of Map A, but with a 600

counter-clockwise rotation. Furthermore, the strand labeled "1" in the eighth

segment (Map H) now moves to the position labeled "4" in the ninth segment

(Map A, with 600 counter-clockwise twist). Similar "translations" for each of the

strands continuing from Map H to Map A are given in the figure and in Table 1.

Continuing from segment 9 (Map A), the strand in this example proceeds to the

position labeled "4" in each of the subsequent maps up through segment 16,

(Map H), when it must again be "translated" before proceeding again to Map A

(appropriately twisted another 600 in the counter-clockwise direction). The path

of any strand can thus be followed from segment to segment for any length of

cable

Note that after traversing 24 segments, a strand will end up in the same map, in

the same position from which it started only the Map will have rotated 1800 from

its original orientation. This "odd-symmetry" property will be used in solving

for the current distribution in the cable in some cases. After 48 segments, the

cable returns to the same orientation from which it begins, completing one

period.
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A B C A B C A B C

1 4 7 10 13 16 19 22 25
2 5 8 11 14 17 20 23 26
3 6 9 12 15 18 21 24 27
4 7 1 13 16 10 22 25 19
5 8 2 14 17 11 23 26 20
6 9 3 15 18 12 24 27 21
7 1 4 16 10 13 25 19 22
8 2 5 17 11 14 26 20 23
9 3 6 18 12 15 27 21 24

Table 1. A strand which is in Map H (Figure 2.2) i n the position shown in Column A next
proceeds to Map A at the position designated in Column B. The next time it reaches Map H, it
continues on to Map A in the position shown in Column C. Continuing onward, the next time

the strand passes Map H, it returns to Map A in its original position, again shown in Column A.
See text for further details.

A Comparison between "Pure Twisting" and "Discretized" Models:

The above model is somewhat complicated but gives a better

representation of the contacts between strands than would a simpler model

based purely on the twist pitches. Since the geometry of the simpler model is

easier to visualize, however, it is presented as a clarifying comparison to the

more intricate model used here.

The more basic model starts with the strand configuration shown in

Figure 2.4. Proceeding from this initial set-up down the length of the cable, the

triplets, the bundles, and the cable all rotate continuously about their respective

centers according to their individual twist pitches. In cylindrical coordinates, the

position of each strand in the cross-section can be considered a sum of three

vectors:

(r(.), 0(.)) =(rl,0, (.-)) +(r2,02 (0))+ (rs,3(,) (2.3)

where the position (r(z), 0(s)) is a function of the axial position and is referenced

to an origin at the center of the cable. The vectors (r,0, (,)), s=1,2 or 3, are

referenced to the origins shown in Figure 2.4. While each r, is constant, the

angles change continuously according to the equation:
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6,(2) = e,()+ z d9 (2.4)
dz

where, for each stage s, d is the rate of twist pitch and ,(o) is the angular
dz

coordinate at z=O.

In Figure 2.5, the resulting path for the strand labeled "1" in Figure 2.4 is

compared to the path for the strand labeled "1" in Figure 2.2. The paths are

shown in the plane perpendicular to the cable axis for one period of cable length

2 3

4 7

5 8 9

10 r(z),e(zr r3
r2

11 121
- 62

13 16

14 15 17 18

r 1

Figure 2.4 The geometry of a simplified representation of the 27 strand cable is
shown. The position of each strand in polar coordinates at each axial position z is
(r(z),O(z)) and is a summation of the three rotating vectors which define the
individual twist pitches of each stage of the cable, as shown.
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Figure 2.5 A comparison of the trajectory of strand I for two different geometric
models of a 27 strand CICC: a) the discrete model used in calculations, b) a
simpler, continuous model.
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and the similarities are apparent. Although neither of these paths is the true path

of a strand in a real-world cable, this comparison shows that the geometric model

developed above preserves the intricate geometry of a multiply-twisted cable

while allowing for more realistic modeling of inter-strand contacts.

2.2.4 Circuit Description from Maps

With the geometry now discretized, the CICC can be described as a "Mesh

Current Network." The midpoint of each strand (labeled "1" through "27" in

Maps A-H) is considered a "node" and for a cable 48 segments long (one period),

there are 27*48 = 1,296 nodes. Two nodes within the same Map are connected

through a contact resistance if they are shown to touch in that Map. Also, two

nodes with the same label ("1" - "27") in adjacent Maps are connected through an

inductive element. (Between Map H and Map A we have to consider the "label

translation" required, as shown in Table 1) Each loop which would be formed

between contiguous contacts between the same two strands is called a "mesh."

Thus, a complicated resistive/inductive network of meshes is formed. A

simplified schematic for a partial three strand mesh network is shown in Figure

2.6 to assist in the following description of the different circuit elements.

Parallel and Transverse Currents:

To keep track of all of the currents in the mesh network, it is necessary to

number them as well as numbering the nodes. Each node is distinguished by

subscripts defining its location: nodei,n resides at the n-th segment of strand i.

The currents which travel along the strands are similarly defined by their

location: Ii,n is the current from nodei,n to nodei,n+1. The contact currents flowing

transversely between strands are defined using three subscripts and, to easily

distinguish them from the parallel currents, a lower-case character is used: i ij,n is
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I 1, 11,n+1 -- -- o- 1,n+2 ---- -
Stramd 1: +

1,2, n -,,+ 2,,2,12nn+3_a
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Strand 3: - . i =3
1,3,n 1 3+ ,3,n+2 i ,3,n+

3,n A1,3,1 13,n +1 1 ,n

(Strand 1:
repeated)

n n+l n+2 n+3

Figure 2.6 A section of the "Mesh Network Circuit" formed by three twisted
strands with intermittent contacts. (The first strand is repeated at the bottom of
the figure to facilitate the drawing.) The parallel and transverse currents (I 's and
i's, respectively) are shown as they are defined in the text. The flux linkage areas
(A's) are shown as if the strands were co-planar--the effects of twisting are difficult
to show, but must be included in the solution. The resistors all have a value of R1
and the inductors all have self-inductance L1. The mutual inductances (not shown)
must be calculated from the geometry.

the contact current flowing from strand j to strand i at node n. By convention,

the ordinal value of i will always be less than j to avoid directional ambiguity.

Inductive Elements:

The current branch connecting nodes of the same strand represents an

ideally superconducting path. In reality, the resistive voltage drop across the

length of superconductor is very small but not identically zero in non-zero

electric and magnetic fields (Niessen [19931). A superconducting current-voltage

relation could be used to accurately model the resistive voltage drop but this

level of detail has not been included in this model. Of course the model breaks

down entirely for regimes in which the strands would be in the normal state.

With the zero resistance approximation, each segment of strand is

modeled as an idealized inductor. The strands themselves are considered to
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have a round cross-section and within a strand the current density is assumed to

be uniform. For the purposes of calculating inductances, the strand segments

are considered to be parallel to the longitudinal axis of the cable. The self- and

mutual-inductances of each strand segment can thus be calculated using

inductance formulas from Grover (1946) which are given in Appendix A. The self-

inductance of a single strand segment is found to be: LI = 2.0 nano-Henry.

Computationally, it suffices to calculate mutuals only between strands

with an axial separation of about five segment lengths or less. Although the

mutual-inductances themselves do not vanish beyond the 5 segment limit, the

differences in inductances do vanish, which is the important factor. The results

presented later used a limit of seven segments to be conservative. In this thesis,

the mutual-inductance between a segment of strand i at axial position n and a

segment of strand j at axial position m is referred to as Mi,nj,m. If i = j and m = n,

then Mi,n,j,m is the self-inductance of the strand segment, L1.

Resistive Elements:

Where two strands come into contact, a finite contact resistance occurs.

Although there are many "types" of contact (contact between strands within a

triplet, between triplets, between bundles) and they are not necessarily uniform,

each point of contact in the strand will be modeled by a simple resistor, R1, in the

nominal case. Results will also be presented, however, for cases where the

resistance will depend on the "type" of contact between strands.

Although the actual value of R1 will not be needed to solve the model if

the results are non-dimensionalized, R1 will be needed to obtain quantitative

results. The trans-conductance measurements discussed above (Section 2.2.1)

only measured the effective resistance between one strand and the rest of the

cable over a given length, but an approximation of the local value R1 can be

deduced from this result. The experimental measurement (conducted in DC

43



conditions) calculates the transverse resistance from current and voltage

readings. The current from the power supply travels into the single isolated

strand, across the numerous contact points to the 26 other strands within the

cable, and then returns to the power supply. Since the 26 strands are shorted

together in the joint to the power supply bus bar, the circuit can be diagrammed

as in Figure 2.7. The effective conductance, G, is thus simply the power supply

current divided by the measured voltage and is equal to Nc/RC where Ncis the

number of contact points and Rc is the resistance across each contact.

Single Strand

- + V -

Number of
Resistors = ti-

S26 Strands

"4 wire" Voltage Tap

Figure 2.7 A schematic of the transverse resistance measurement used to establish
the value of RI used in numerical analyses. See text for details.
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Although the actual value of Nc is not known, the number of contacts

which would occur in the model is known. For 1 m of model length (236

segment lengths), the average strand contacts the other 26 strands approximately

850 times. A relation for R1, the contact resistance in the model, which is

consistent with the measured result is therefore: (850/RI) = G. Referring back to

Eq. (2.2), this gives a value of:

850 1
R G =.5+0.2=B1 I (ohms). (2.5)

G 2.5 +0.25B -I

where B is the background magnetic field in T, and I is the overall cable current

in kA. This is the value of R1 which will be used throughout the analysis. In

most cases, an order of magnitude estimate will be sufficient to describe the

general behavior of the cable and R1 will therefore frequently be given as a

constant, R1 = 0.1 Q (valid in the usual range of interest, B - 7 T, I - 4 kA).

Flux Linkages:

The current loop formed by successive contacts points between a

pair of strands is defined as a mesh. As shown in Figure 2.6, the current travels

"up" one contact point, along one strand, "down" the next contact point, and

back along the other strand to close the loop. These meshes can be determined

from the geometry of the cable as approximated by the Mapped configurations.

Any change in external flux which penetrates these meshes will cause an induced

voltage around the mesh equal to rate of change of the field times the area of the

mesh normal to the field direction. This voltage will be identified as Vig in the

circuit equations below where i and j represent the two strands involved and I

is an index which refers to the leftmost of the two contact points involved. Vij, =

dB
A A where the vector nature of the changing magnetic field is explicit

and the orientation of the mesh area, As,, is defined by its unit normal vector,

h,,. In Figure 2.6, all of the areas are shown with a unit normal vector out of the
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page for ease of presentation, but in the model the wires are twisted and normal

vectors rotate accordingly. Over one period of length (48 segments) the sum of

the individual flux linkages due to the uniform external magnetic field equals

zero due tot the rotational symmetry of the geometry:

A B .Ai~jig = 0 (2.6)
all i,j,l

Governing Equations:

With the circuit elements and currents in the model well defined, it is

possible to solve for the currents using Kirchoff's Current Law (KCL) and

Kirchoff's Voltage Law (KVL). The resulting system of equations will depend on

the boundary conditions and the time scales for which we wish to solve the

model. In general, the number of variables will be quite large. In some limiting

conditions, though, the equations can be greatly simplified. The different

scenarios and their solution methods are described in the next section.

2.3 Current Distribution in CICC for Several Scenarios

The task of solving for the current distribution in a cable is best handled

by dividing the problem into manageable pieces. The "divisions" considered in

this thesis, outlined below, are distinguished by differences in forcing function

(self- or external magnetic fields), length scale, and time scale. Because we have

only employed linear circuit elements, the law of superposition is valid, and the

current distributions due to separate effects can be added. For instance, it is

possible to add current imbalances due to self-field effects to the current

distribution due to external-field effects to obtain an overall current distribution.
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Self-Field Cases:

The effects of a linearly-ramping transport current on the overall

distribution of current can be studied for two distinct length scales. First, for a

periodic, infinitely long cable, the current distribution can be calculated for the

entire time domain of the ramping event*. The distribution tends to uniformity

as time advances. Second, for a cable of finite length with its ends terminated in

specially designed joints, a separate analysis is needed. Although transients

similar to those found in the periodic case also exist for finite non-periodic cables,

the dominant current imbalances are not time-dependent. Thus, the approximate

current distribution need be calculated only as a function of length. The effects

of irregularities in the twist pitch can also be studied qualitatively.

External-Field Cases:

The effects of a linearly-ramping external-field are also different for

infinitely long cables and those of finite length. In infinitely long, periodic cables,

the current distribution can be calculated as a function of time. The solution for

times much larger than a characteristic time constant can be found directly using

much simpler means. In joint terminated cables of finite length, the current

distribution can be found as a function of time in the limit that the joint resistance

is much lower than the transverse resistance, as is the case for the cables being

studied. The solution for this last case is also dependent on the length of the

cable.

2.3.1 Current Distribution in Infinitely Long, Periodic CICC

Because the greatest mathematical differences arise between cases which

are periodic and those which are finite, solutions for all of the periodic cases will

* Using the same calculations, the effects of other than linearly ramped driving functions could
be studied for both the self field and external field analyses, but are not done so here.
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be presented before moving on to the finite scenarios. The infinite periodic case

can be solved in more detail since we can take advantage of axial and rotational

symmetries to reduce the number of unknowns. As in any periodic problem, the

solutions found in the fundamental period are exactly repeated in the next

fundamental period. This condition translates the infinite domain into a finite

domain equal to one period in length with "periodic boundary conditions." The

number of parallel currents in one 48 segment period is equal to the number of

nodes, giving 48 * 27 = 1,296 unknowns. A careful count of all the contact

currents in one period of length adds another 2,304 unknowns (6 * 42 from each

of Map A, C, E, and G, 6 *51 from Maps B and F, and 6 * 57 from Maps D and H)

to give a grand total of 3,600 unknowns. Fortunately, certain symmetries can be

invoked which reduce the number of unknowns and thus the number of

equations which must be solved.

2.3.1.1 Self-Field, Time-Dependent Solution:

The self-field effect is a time-dependent process which exists in a fully

transposed cable due to the existence of a finite trans-conductance between the

cabled strands. In these examples, the cabled strands begin at zero current when,

at time t = 0, a linear ramping of the overall transport current, I0, begins. The

overall current ramp rate is i,. At time t = 0+, the transport current distribution

is governed entirely by the inductive couplings between the individual strand

segments. Strand segments which are more loosely coupled (typically segments

near the outside of the configuration) will carry more current than tightly

coupled segments. The current in one segment of a strand can be dramatically

different than the current in an adjacent segment of the same strand since the

contact points between strands can be considered "shorted" for purposes of

calculating this initial response to the step change in i,. As time t progresses, the

resistive effects become important and currents will diffuse at a rate inversely
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proportional to the transverse resistance. Currents reach a uniform distribution

on a time scale determined by a characteristic LR time-constant of the system, t.

Mathematical Model:

In order to solve for all of the parallel and transverse currents as a function

of time, the complete resistive/inductive mesh network must be used. Since all

of the currents are coupled, the full set of KCL and KVL equations must be

solved simultaneously. Kirchoff's Current Law states that the sum of the

currents entering a node is equal to the sum of the currents leaving the node.

Kirchoff's Voltage Law states that the sum of inductive and resistive voltage

drops around a closed mesh must equal the loop voltage generated by the time

rate of change of the external magnetic flux through the mesh.* These two laws

can be stated mathematically as follows:

Ij = 0,
Ia (2.7)
xv = -<DI

where index h indicates all of the currents connected to a certain node and index

i indicates every resistive or inductive element along a certain mesh.

For the periodic case, Kirchoff's Current Law is used at each of the nodes,

nodei,n, and relates all of the transverse and parallel currents entering or leaving

that node. Kirchoff's Voltage Law is used for each of the "meshes" and relates

the inductive voltage drops along the parallel current segments to the resistive

voltage drops across the contact points where transverse current flows. The sum

of these voltage drops will equal zero since there is no external-field penetrating

the mesh. The full set of these equations for the 27 strand cable become:

27 
i-I

j=i+1 j=1

* Capacitance effects are not considered.
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K N ; Mi
4), 1  

- i,, - M - + R1(ii,, i 0
KVL: n=n m=n-7 k=1 I f 0 (2.9)

;i = I... 27 ; j= i+ 1... 27 ;1=1 ... nci~

where the transverse currents iij,n, the parallel currents Ii,n , and the mutual-

inductances Mi,nj,m appear as they are defined above. The indices i and j refer

to the strand number; indices n, k, and m refer to segment numbers; and n,,j.

refers to l-th contact point between strands i and j. The number of contact

points between each strand pair, i and j , is nc,j, which ranges between 0 and 48.

The location of these contact points is determined from the mapped geometric

strand configurations. Some further points to notice are that the subscripts on

the transverse current in the first summation of Equations (2.8) reflect the

convention that the first subscript is always less than the second to avoid

directional ambiguity, and the factor of 7 in the second level summation of

Equations (2.9) represents the spatial limit at which mutual coupling becomes

unimportant, as explained above.

To account for the ramping transport current, the following boundary

condition is imposed:
27

= ,(2.10)
z=1

This single equation replaces one of the KCL Equations (2.8) in the governing

system of equations.

Periodic Boundary conditions are invoked by setting IiN+n = Ii,n and

iij,N+n = ii,,n where N = 48 = the period length. Thus the number of Equations

(2.8) equals the total number of unknown parallel currents (1,294) and the

number of Equations (2.9) equals the number of unknown transverse currents

(2,304). While this system of equations is thus well-defined, the problem can be

reduced to a smaller system without losing any information.
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The fundamental period of the self-field problem is 24 segments instead of

the true spatial period of 48 segments. This is so because the self-field fluxes are

determined by the relative positions of the strands and not the overall cable

orientation. As was noted when introducing the geometric model of the cable

(section 2.2.3), after 24 segments the strands return to the same relative

orientation, even though the entire cable cross-section has been rotated 1800.

Thus, the number of unknowns is first reduced by a factor of two.

By the same argument, the three-fold rotational symmetry apparent in the

strand configurations mapped in Figure 2.2 reduces the number of unknowns by

another factor of three. This symmetry can be seen by following, for example,

strands 1, 14, and 27 as they progress through the strand configurations. In each

Map, A-H, they lie at the vertices of an equilateral triangle centered at the

midpoint of a "triangularly symmetric" cross-section. The three strands (each in

different bundles) are therefore "equivalent" and it is only necessary to keep one

of them as an unknown. The currents in strands 10-27 can thus be equated to

their rotationally symmetric counter-part amongst strands 1-9.

Another symmetry present in the cable, is also most easily shown by

example. Strand 7 in Map A at first seems unrelated to strand 1. According to

Table 1, however, the strand in the position labeled "7" in Map H next goes to the

position labeled "1" in Map A. In this way the path of strand 7 is actually the

same as the path of strand 1, but shifted by eight segments. Similarly, the path of

strand 4 is also the same as the path of strand 1, but is shifted by 16 segments.

Strands 5 and 8 are likewise related to strand 2 as are strands 6 and 9 to strand 3.

Thus, the number of unknowns is reduced by another factor of three and the total

number of unknowns has been reduced by a factor of 18, leaving 200 currents for

which to solve. The correspondence between strands eliminated due to

symmetry and the remaining "primary" strands (1, 2, and 3) is shown in Table 2.
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A B C A B C A B C

1 1 0 10 3 16 19 2 8
2 2 0 11 1 16 20 3 8
3 3 0 12 2 16 21 1 8
4 1 8 13 3 0 22 2 16
5 2 8 14 1 0 23 3 16
6 3 8 15 2 0 24 1 16
7 1 16 16 3 8 5 2 0

8 2 16 17 1 8 26 3 0
9 3 16 18 2 8 27 1 0

Table 2. For the self-field case, the redundant strand in column A is equivalent to the
"Primary" strand in column B but shifted by the number of segments shown in column

C. See text for a complete explanation.

The reduction of the number of unknowns from 3600 to 200 will make the

use of traditional matrix equation solution techniques much easier. For a non-

periodic strand in which symmetric reductions were not possible, more

advanced techniques would be necessary. Even if the problem could be solved

directly for the original number of unknowns, the 18 fold reduction lowers the

CPU memory and time requirements by a factor of approximately 324 (= 182) for

the full problem (Press, et al. [1989]).

Equations (2.8), (2.9), and (2.10) represent a coupled system of first order

differential equations which will have to be solved numerically. In this thesis, a

simple finite difference technique is used employing a forward Euler scheme.

Although this scheme is rarely recommended for most applications since it is

often unstable and inaccurate (Strang [1986]), it is appropriate for this problem

because of the inherent stability of the system (as was discovered rather than

calculated). The forward Euler scheme replaces the time derivative of a function

by a simple finite difference. For a time-step size, At, the relation is:

y, = (yt+i -yt)/At (2.11)

where subscript t represents the current time step. The stability and accuracy of

the technique will be demonstrated later.
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Forward Euler finite differencing linearizes the first order differential

Equations (2.9) and, together with Equations (2.8), a simple matrix equation is

formed: A -x = b. The equations can thus be solved using traditional linear

algebra techniques to give the transverse and parallel currents at each time step.

A FORTRAN program written to perform this task relies on the packaged

routines LFCRG and LFIRG provided by IMSL (1987). The LFCRG routine needs

to be called only once to calculate the LU decomposition of the coefficient matrix

(Press, et al., [1989]) which is then used by LFIRG at each time step to calculate

the unknown current vector. The "iterative refinement" techniques employed by

LFIRG are necessary because the equations are "algorithmically singular"--a

condition where very small changes in the coefficient matrix, A, cause large

changes in the solution vector, x (IMSL [1987]). Even on a CRAY computer* the

iterative process consumes a lot of CPU time, on the order of 1 minute per time

step. At this point, the factor of 182 reduction in computation time achieved

through symmetry arguments can be greatly appreciated. It is also fortunate that

the time step size, At, is practically unconstrained so that an accurate solution at

any time could be calculated in a minimum of time steps. This will be

demonstrated later.

Results:

To maintain generality, dimensionless variables will be used, where

possible. The results are shown in Figure 2.8 for several dimensionless times as

separate graphs of normalized current vs. axial position for the three

independent "primary" strands. The domain of axial positions covers the 24

segments of the fundamental period of the self-field problem; the segment length

is 4.2 mm. The currents are normalized by i, t/27, the amount of current which

would be carried in each strand if the distribution were uniform, where t is the

* The Cray C-90 at the National Energy Research Super Computer (NERSC) facility was used.
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Figure 2.8 Normalized current vs.
normalized axial position at
several dimensionless times for a
periodic 27 strand cable
experiencing a linearly ramping
transport current. The imbalances
are caused by the self-field effect.
The current distributions for
strands 1, 2, and 3 are shown. The
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2. For the experimental
parameters, time t = t' (sec).
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time. For each graph the true time is equal to the dimensionless time, t', divided

by a multiple of the contact resistance: t = t'/(10 * Ri), where t is in seconds and

R1 in Q. For a nominal measured value of contact resistance, R1 = 0.1 (, time t =

t' (sec).

It should be remembered that the currents in each of the 24 strands not

shown in the figure can be directly related to the currents in one of the strands

shown using Table 2. The solutions for any strand is either "coincident" with one

of the traces given, or "phase shifted" in position by either 8 or 16 segments. If it

were possible to clearly show traces of each strand in one figure, it would be

more -obvious that the average of all the strand currents at each position equals 1.

The transverse currents are also found in the solution of the problem.

While these currents would be important in calculating the AC loss of the cable,

they do not affect the stability of the cable as it has been defined above. Since

these models are being developed primarily to look at stability (for now, at least),

the transverse currents will not be presented at this time. However, it should be

noted that this model does provide a means for studying inter-strand AC losses* .

For times less than t' - 10-6, significant current imbalances can be seen to

exist in the cable. During this period, the currents are diffusing between the

strands through the transconductive contact points as they relax from the initial

distribution generated by the step change in current derivative. Although the

imbalances are severe--each strand even exhibits "counter-currents" at some

positions--the actual magnitudes of the currents are small since the total current

in the cable has only just begun to increase from zero, I = t * I. For instance, for

R1 = 0.1 Q, and a typical current ramp rate of 1 kA/s, typical of values in the

experiment, the total current in the cable is approximately 10 mA when the

currents stabilize to a uniform value at time t - 10 is. Since the current carrying

* Losses for different transport current wave forms and frequencies could also be studied.
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capacity of each of the strands is on the order 100 A, the self-field effect cannot be

considered a source of instability in a fully periodic cable for ramp times much

greater than the characteristic LR time constant, estimated from the results to be

- 100 nano-seconds for the 27 strand cable.

For the periodic case, the equilibrium current distribution is uniform. The

ability to achieve this solution numerically even for large time steps is a

confirmation of the accuracy and stability of the finite differencing scheme

employed. A more convincing demonstration of the accuracy and stability is

given for the external-field case.

2.3.1.2 External-Field, Time-Dependent Solution:

In the external-field case, a uniform background field is ramped from

zero at a constant rate, b, beginning at time t=0. Initially, there is no net

transport current and no circulating currents in the cable. At the start of the

ramp, a step change in loop voltage is induced around the meshes defined by the

model cable geometry above. At time t=0+, the inductive elements in the mesh

network determine the initial current distributions in each strand. As time

progresses, the mesh currents evolve into their steady-state values as determined

by the resistive elements of the mesh. Unlike the self-field case, the currents will

not be uniform in the steady-state. It bears repeating that the calculated

distributions for this zero transport current case could be superimposed on the

self-field distribution caused by a ramping transport current.

The full transient solution will be presented first and then a simplified

solution method which is accurate for times sufficiently greater than the

characteristic time constant of the problem will be presented. Not only is the

simplified version a more useful tool for analyzing larger and more complex

cables, it also validates the stability and accuracy of the transient solution.
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Mathematical Model:

As in the self-field case Kirchoff's Current Law will be employed at each

of the nodes and Kirchoff's Voltage Law will be applied to each of the meshes.

However, the ramping external-field contributes an additional parameter to the

problem, the induced loop voltage, Vi;jj , as it was defined above. With this

exception the governing equations are the same as above but are repeated here:

77 
i-I

KCL: Ij -In I+ i1  - Ii2 , =0 ; i =I...27 ; n=1...48 (2.12)
j i+1 j=1

#+ l n+7 27

KVLm Mjflm i.] + RI(ijjj - i = Vi,7,, (2.13)

; i = 1... 27 ; j= i+1... 27 ;1l=1 ... nci~

The periodic boundary conditions are also the same as mentioned above and

there are again 3600 unknowns and an equal number of equations.

To account for the lack of transport current, the following boundary

condition is imposed:
27

Iil = 0 (2.14)
i=1

This single equation replaces one of the KCL Equations (2.12) in the governing

system of equations.

The symmetry of the cable is again exploited to reduce the number of

variables to a reasonable quantity. The first reduction takes advantage of the fact

that the strand configuration at one point of the cable is repeated a half period

length away with the overall orientation rotated by 1800. Because the external-

field points in a constant direction, the flux linkages at the two locations will be

equal and opposite. This being the only difference, it follows that the parallel

and transverse currents at one location will also be equal and opposite to those

found a half period length away. Stated formally:
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IiN/2 +n = -Ii,n and iijN2 +n = -iijn (2.15)

where N = 48 = the period length. These relations reduce the number of

unknowns by a factor of two.

A further reduction is possible by noting the equivalency of certain

strands. There are not as many equivalencies as were found in the self-field case

because the presence of the external-field destroys the rotational symmetry of the

problem. Nonetheless, the repetitive nature of the strand configurations over the

length of the period does provide a three-fold reduction. This can be seen by

following the strand that begins at the first segment in position 21 of Map A.

Using the steps defined above to follow the path of this strand, at the 17th

segment the strand is found to be in position 27 of Map A. At this point it is

critical to remember that Map A must be rotated counter-clockwise by 1200 to

obtain the correct orientation of the cable with respect to the field at segment 17.

In doing so, it is seen that strand position 27 at segment 17 is equivalent to

position 1 at segment 1. Thus, strand 21 is equivalent to strand 1, only shifted by

16 segments. Similarly the currents in strands 10-27 can be equated to

corresponding currents in strands 1-9, achieving the desired three-fold reduction.

Table 3 shows the strand equivalencies for the external-field case.

There are 600 remaining unknowns for which to solve. The same

numerical techniques employed above are again applicable. "Iterative

refinement" was required and the solution consumed approximately 1 minute of

CPU time per time step on the Cray.

Results:

To keep the results general, dimensionless variables are used where

possible. The results are shown for several dimensionless times as separate

graphs of normalized current vs. axial position for three of the nine independent

strands, including the
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A B[C AIBIC_ A IB[C
1 1 0 10 3 16 19 2 32
2 2 0 11 1 16 20 3 32
3 3 0 12 2 16 21 1 32
4 4 0 13 6 16 22 5 32
5 5 0 14 4 16 23 6 32
6 6 0 15 5 16 24 4 32
7 7 0 16 9 16 25 8 32
8 8 0 17 7 16 26 9 32
9 9 0 18 8 16 27 7 32

Table 3. For the external-field case, the redundant strand in column A is equivalent to the
"Primary" strand in column B but shifted by the number of segments shown in column

C. See text for a complete explanation.

strand with the maximum induced current, in Figure 2.9.. The asymptotic results

for all nine independent strands are shown in Figure 2.10 for the sake of

completeness. Currents in strands not shown can be related to the strands

shown using Table 23 The currents are normalized by the quantity B /(10,000 R1),

the rate of change of the field divided by a multiple of the nominal contact

resistance. The true time in seconds is proportional to the dimensionless time

divided by the contact resistance in ohms: t = t' / (10*R1) (sec). For R1=0.1 LI,

the nominal contact resistance, t = t'.

The maximum imbalances occur in the steady-state distribution and thus

any stability implications would be greatest at the end of a ramping event when

the transport current would be highest and the magnetically induced imbalances

could bring certain strands closest to their limiting currents in certain locations.

However, the maximum induced current encountered is an overcurrent on the

order of 4* h /(10,000 * R1) amps. For a typical ramp of 1 T/s and the nominally

measured value of R1 = 0.1 Q, this maximum current is approximately 4 mA.

Compared to the normal operating current of a strand which is on the order of

100 A, the induced currents do not seem significant in terms of stability analysis.
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Again, the transverse currents are not presented but would form the basis for a

future study of inter-strand AC loss due to transverse external-field changes.

This is a potentially more useful study for the case of periodic cables, but is not

covered in this thesis.

The results show that the induced currents reach their steady-state

distribution on the dimensionless time scale of t' - 10,000. A dimensionless

characteristic time constant of the problem is on the order of c' ~ 1,000. For the

nominal value of contact resistance measured in the cable, this translates into a

time constant t - 10 pts. The steady-state distribution is achieved almost

immediately. For this reason, a simplified solution technique which directly

calculates the steady-state distribution has been developed.

2.3.1.3 External-Field, Steady-State Solution:

A method of solution which directly finds the steady-state current

distribution in a CICC experiencing a linearly-ramping external magnetic field

offers one main advantage: a savings in computational expense. As was

mentioned above, using the transient analysis presented above to estimate the

steady-state response requires appreciable CPU time for the 27 strand sample

analyzed here. Using the same procedure for cables with more strands and/or

less symmetry could be prohibitively expensive in terms of CPU time and

memory requirements. Since the steady-state is reached very quickly for cables

with high inter-strand resistances, a method which directly finds the steady-state

solution can be a more useful tool than the full transient analysis. The direct

steady-state solution can also be used to verify the stability and accuracy of the

numerical techniques employed in the transient analysis.

Mathematical Model:

In the steady-state limit, the current distribution has stabilized and thus

there are no inductive effects caused by changing currents. The model of the
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All currents flow through a resistance, R1

Figure 2.11 The transverse currents between strands 1 and 2 can be solved
indepently from other currents in the cable. The necessary KVL equations are
indicated by "loops" in the figure. Periodic boundary conditions are used to give

an equal number of equations as unknowns.

problem in this limit would be the same as that shown in Figure 2.6, with the

inductors replaced by non-inductive, superconducting paths. Although

Kirchoff's Current and Voltage Laws are again used to solve the resulting mesh

network, the KCL equations are no longer coupled to the KVL equations. This is

true because only the transverse currents experience any voltage drop and thus

the parallel currents drop out of the KVL equations.

Furthermore, the KVL equations themselves can be broken into subsets

which can be solved indepently. The transverse currents flowing between two

strands along the length of the cable are independent of the transverse currents

flowing between any other strands. This concept is illustrated in Figure 2.11,

which schematically shows the transverse currents which flow between strands

one and two at the contact points found from the model of the 27 strand cable

presented above. Each current loop which exists between the points of contact is

again called a mesh and Kirchoff's Voltage Law can be applied to each:
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KVL: Rl(i,2 - i, 2 1+1) = V12 ,1  ; 1=1 .. .48 (2.16)

where the transverse currents and the induced loop voltage, V1 ,, are defined in

the same manner as above. Using periodic boundary conditions, 4.,49 = i,, and

thus there are an equal number of equations as unknown transverse currents.

The transverse currents between any two strands can thus be found from

Equations (2.16) and are independent of the other currents in the problem.

Equations (2.16), however, form a singular or degenerate set of equations--

the determinant of the associated coefficient matrix equals 0. In order to solve

the set of equations, it is necessary to replace one of the equations with an

appropriate constraint on the variables. In this case, the constraint arises from

the geometry of the problem. Since the orientation of the cable with respect to

the field rotates 1800 every half period, as explained above, the symmetry

conditions stated in Eq. (2.15) again apply and can be re-written as:

y ,= 0 (2.17)
all I

I=0 (2.18)
all it

Equation (2.17) provides the necessary constraint for Equations (2.16) and allows

a direct solution for the transverse currents between strands one and two using

standard linear algebra techniques. The same procedure is then used to find the

transverse currents between the other strand pairs.

After solving for all of the transverse currents, Kirchoff's Current Law is

used to solve for the parallel currents. The KCL equations also do not need to be

solved all at once. The parallel currents in strand one, for example, can be

determined from the subset:
i-1 27

KCL: I., - Ii, + E ki,n - iik.= 0 ; n =1.. .48 (2.19)
k=1 k=i+1

where subscript i equals 1. Remembering the convention that transverse

current, ij,,, is defined to flow from strand j to strand i where i <j , the first
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summation represents transverse currents leaving nodei,n and the second

summation represents transverse currents entering nodei,n. The periodic

boundary conditions give '1,49 = I and since all of the transverse currents in the

summations are known, the number of unknown parallel currents is equal to the

number of equations. The parallel currents along strand one can thus be found

from Equations (2.19) and are independent of the parallel currents in the other

strands.

Equations (2.19) are again singular, however, and a constraint on the

variables must be employed. When the symmetry condition expressed in Eq.

(2.18> is used to replace one of the equations from the set of Eq.'s (2.19), the

problem is well defined and the parallel currents along each segment of strand

one can be solved. The same technique is then used to solve for the currents

along the other strands.

For the periodic problem, it is thus possible to directly solve for the

steady-state current distribution due to a linearly-ramping external-field with a

minimum of computational difficulty. The matrix equations, A x = b, implied

by the properly constrained sets of Equations (2.16) and (2.19) are similar to each

other since both have a coefficient matrix of the type:
a -b

b -c
A= c -d (2.20).

d -e
11 1 11_

For such a coefficient matrix, the solution vector x can be found in 2N steps

rather than the usual N2 steps needed for general matrix equations of order N

(Press, et al. [1989]). The entire solution for the steady-state current distribution

is thus quite speedy since the problem is broken into a series of smaller matrix
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equations, each of a form which can be solved efficiently. For the 27 strand

sample, the solution is achieved in fractions of a CPU-second on the Cray.

Results:

The calculated results for the steady-state current distribution in the cable

are shown in Figure 2.12 for the nine strands presented in Figure 2.10, to which

the results should be compared. The currents are again normalized by the same

scaling factor h /(10,000 R1) and they generally corroborate the previous results

which represent the asymptotic limit of the transient analysis. A more direct

comparison is given in Figure 2.13 where the current profiles for strands one and

nine are given both as they were calculated using the direct steady-state solution

and as they were calculated using the transient solution above with a final time

of 100 s reached in two time steps. The ability of the transient solver to

asymptotically match the expected results with only small discrepancies, as seen

in the figure, empirically verifies the stability and accuracy of the transient

solution technique.

The study of self- and external-field effects on infinite periodic conductors

have so far considered each of the contact points in the cable to exhibit the same

resistance, R1. At this point, the contact resistance will be differentiated by the

type of contact between strands, allowing for three distinct possibilities: the

contact resistance between two strands within the same triplet will be called Rt;

the contact resistance between two strands in different triplets but the same

bundle will be called Rb; and finally, the contact resistance between two strands

in different bundles will be called Rc.* The relative values of Rt, Rb, and Rc are

unknown but for the purposes of a simplified analysis the following relationship

is used:

* The effects of a stochastically varying transverse resistance have been studied for a two strand
model in Niessen, van Damme (1993).
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Figure 2.12 Normalized current vs. normalized axial position in the steady state
limit for a periodic 27 strand cable experiencing a linearly ramping external
magnetic field. The current distributions for strands 1 through 9 are shown. The
distributions for other strands can be related to 1 through 9 using Table 3.
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Figure 2.13 Comparison of the direct steady state solution and the asymptotically
approached limits of the transient analysis for a ramping external field.
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R, = 2f Rb = 2/R (2.21)

where the power index,f, is an arbitrarily defined "doubling factor." For a

doubling factor of zero, Rt = Rb= Rc; for a doubling factor less than zero, Rt > Rb>

Rc; and for a doubling factor greater than zero, Rt < Rb< Rc. In any case, the

effective conductance between one strand and the 26 other strands in the cable is

set equal to the experimentally measured value (Equation (2.2)). Using an

equation similar to Eq. (2.5) and the number of each type of contact as found

from the geometric model, consistent values for Rt, Rb, and Rc can be found.

The effects of approximating the strand resistances in this way are shown

in Figure 2.14 . The results are given as the maximum induced steady-state

parallel current anywhere in the cable normalized by b, vs. the doubling factor,

f. The single point at which the doubling factor equals zero corresponds to the

25- _ -

i20 -----

S15--
E

1 0 ......... .................... .. ..... ... .............. ...

0)
C,

0

-8 -6 -4 -2 0 2 4 6
DOUBLING FACTOR

Figure 2.14 Maximum induced current in the cable vs. "doubling factor" for ramping
external fields. See text for explanation.
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uniform contact resistance case considered previously. The figure suggests

higher induced currents would result for negative doubling factors, when the

ordering of the different contact resistances is Rt > Rb> Rc. This result is

consistent with the fact that the largest flux linkages occur between strands in

different bundles of the cable and their contributions to the induced currents are

inversely proportional to Rc.

The value of Rc, the contact resistance between strands in different

bundles, could be smaller than the other contact resistances in the cable due to

factors arising from cable compaction. Strands in different bundles are not as

nearly parallel as other strand pairs when they come into contact and the

concentration of stresses at the resultingly reduced contact area may reduce

contact resistivity. However, the range of variation allowed for in Figure 2.14 is

actually quite large (the scale is logarithmic, base 2) and yet the maximum

induced currents only increase by a factor of approximately 6 at the very

extremes of the domain. Since the induced currents in the baseline case are so

small (- 4 mA), it can be concluded that variations in contact resistance would

not significantly affect the stability of the cable.

2.3.2 Current Distribution in Finite Length, Joint Terminated CICC

Having solved for the self- and external-field effects in an infinitely long

periodic cable, the effects of terminating a cable at a finite length in a low

resistance "joint" will now be studied. As will be seen, the results will differ

dramatically from those previously calculated for two reasons which can loosely

be termed "length effects" and "joint effects."
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Length effects:

If the cable length is not an integer multiple of the final twist pitch length

(or half this length in the case of self-field studies) we will see effects of two

"imbalances." An inductive imbalance will be caused because the strands are no

longer fully transposed and thus the mutual-inductances are not equivalent for

each strand in the cable (i.e., some strands are more tightly coupled to the other

26 strands than others). Also, the flux linkages through each mesh will no longer

balance or cancel when summed over the length of the cable. A net flux linkage

will exist which can be much larger than the individual mesh flux linkages.

At longer lengths, the effect of inductive imbalances is reduced since the

relative differences between the mutual couplings of each strand are reduced.

This will be demonstrated below. Thus, for long cables, non-periodicity is not

too problematic from an inductive viewpoint. The net flux linkage, on the other

hand, is not dependent on the total cable length but only on the amount by which

the length differs from an integral multiple of the transposition length. Thus

long cables see the same magnitude imbalances as short ones in terms of net flux

linkage.

Joint Effects:

Once we talk about finite-length cables, we need to know something about

how they are terminated. For magnet applications, the cable is always

terminated in a low resistance joint to either the power supply lead or a second

magnet hooked up in series. The subject of low resistance joints is a lengthy one

but will not be discussed in any detail in this thesis. For background material,

see Herbelot (1990) and references therein. For the purposes of this study, a joint

will be idealized to be a section of cable in which of all of the strands are

interconnected by resistors with the value Rj. It is difficult to obtain an estimate

of this idealized "transverse joint resistance" since all known joint measurements
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only give a value of the resistance across the joint, between the cable and the

power supply lead, for instance.

Nonetheless, for the cables discussed here, it is safe to assume that the

transverse resistance between the strands in the joint must be much less than the

transverse resistance in the cable proper. This assumption is valid because the

joints in question are specially designed to minimize contact resistance--the

strands are stripped of the chrome-oxide layer and heat treated under pressure in

the hopes they sinter together (Takayasu [1994]). The chrome-oxide on the

strands within in the cable, on the other hand, gives them a relatively high

contact resistance, as has been discussed above.

For the time being, the value of Rj will not be given and further results will

retain Rj as a scaling factor. The only assumption made will be that Rj << R1. In

the next chapter, a quantitative value for Rj will be inferred from experimental

results based on a hypothesis which attempts to explain Ramp Rate Limitation.

Time scales:

Cables terminated in low resistance joints possess two distinct

characteristic time constants. The first can be termed a "local time constant" and

is similar to the time constants encountered in the periodic problem. The local

time constant is governed by inductance differences on the scale of a single

segment of cable and the contact resistance, R1. This time constant is very small

for the cables being considered here. The "overall time constant" is related to the

inductance differences for the whole cable and the joint resistance, Rj. Since the

overall inductance differences are much greater than the local inductance

differences and Rj is much smaller than R1, the overall time constant is much

greater than the local time constant.
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2.3.2.1 Self-Field, Steady-State Solution:

In the initial stages of a transient, t = 0+, the current imbalances due to a

ramping transport current are governed by local effects and are very similar to

those of the periodic case. Almost instantaneously, however, at times greater

than the local time constant, the generally increasing currents are governed by

the overall mutual-inductances of the cabled strands, which may no longer be

equal. Since the non-periodic case does not possess most of the symmetries used

above to reduce the potential number of unknowns, it is not feasible to solve this

problem for the entire time domain using the above techniques. However, since

the time derivative of the currents quickly become dominated solely by whole

length inductances and the strands can effectively be considered insulated on

that same time scale, the current imbalance reaches a steady-state solution almost

immediately. It is possible to solve for a steady-state distribution directly to find

the correct solution for all but the very initial transients. The problem reduces to

the simple circuit shown in Figure 2.15. Because the self- and mutual-inductances

no longer balance (except in special cases), the cable will not relax to a uniform

distribution.

Mathematical Model:

The key to the problem is an accurate calculation of the self- and mutual-

inductances between each strand. The model cable geometry described above is

again used for this purpose with the cable length equal to an integer number of

segments. For the finite length of cable, the coupling between each of the strand

segments can again be calculated to give the complete set of mutual-inductances,

Mi,n,j,m , as described above. The overall mutual-inductance between the full

lengths of strands i and j is thus:

M = I (2.22)
n m
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I PI 12 0 a 0 12
M1,2 M2,2 * * . M2,27
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M 1,3 M1 2,3 ... M3 ,27
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L~M1,27 M2,27- . .- M27,27

Figure 2.15 The self-field effect for linear ramping transport current in a finite length
CICC can be approximated using a model composed of mutually coupled
inductors joined in parallel.

where indices m and n cover the segment positions for the entire cable length.

To give an idea of the scale of the calculated inductances for the length of cable

used in the 27 strand experiments, the self-inductance of a strand was found to

be approximately 1 p.H.

The problem is thus reduced to the matrix equation:

M.i= i .{1} (2.23)

Where matrix M is comprised of elements Mij and the vector i contains the time

derivatives of the current in each strand, ii. i. is again the ramp rate of the

overall current and (1) represents the unit vector. Since we are neglecting the

effects of initial transients, the current in strand i is merely: Ii = ti; , assuming the
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strands start with zero current and t is time. Thus, for a ramping transport

current, imbalances in the steady-state current derivatives are equivalent to the

imbalances in the currents. After calculating the coefficients, solving the

resulting equations is straightforward since the matrix is only 27 x 27 in size. The

small size of the matrix allows for speedy solutions for cables of various lengths.

Results:

The steady-state current imbalances due to the self-field effect for a finite

length of the 27 strand cable are shown in Figure 2.16 as a function of length. The

currents are again normalized to the average current per strand and the length is

given in units of a single segment length (4.2 mm). As is evident from the figure,

for cables of more than a several twist pitches in length, (one twist pitch = 48

segments) the current distribution due to self-field effect becomes nearly

negligible. The rapid decay occurs because the inductances balance at every half

multiple of the twist pitch length and thus it is only any "extra bit" of length

2

1.5

.1

as 0.5
E
0

z 0

-0.5

- 1
0 50 100 150 200 250

Normalized Length

Figure 2.16 Current Imbalances vs. Normalized length of cable for linearly ramping

transport currents. See text for details.
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beyond these points which contributes to the imbalance. At longer lengths, this

imbalance is small compared to the overall inductance of the cable. For short

cables, however, the effects can be pronounced and can adversely affect the

current distribution in the cable.

If the pitch lengths are not exactly equal to their nominal values, there

may not be any lengths of cable which would exhibit a true inductive balance.

However, the overall magnitudes of the imbalances are not significantly greater

than those calculated for the nominal case if the twist pitches are at least close to

their nominal values. Although the geometric model used here breaks down for

other than nominal twist pitches, the simpler model mentioned at the end of

Section 2.2.3 can be used to approximate the inductances of the strands. (This

model, based solely on twist pitches, was not used previously primarily because

it does not model the inter-strand contacts as well as the model above.) Using

Inductance formulas from Grover (1946) (see Appendix A), the self-inductance of

each strand is found from Eq. (A.1) as if it were a straight wire and the mutual-

inductances are calculated from Eq. (A.2) as if the strands were straight and

parallel. The separation distance is calculated from the simply twisting

geometric model as the average distance between the strands over the given

length. To establish a baseline, the current imbalance as a function of length for

the nominal cable twist pitches using these approximations is shown in Figure

2.17. The current imbalance for a case where the twist pitches of the triplet,

bundle, and cable are offset by 20, 10, and 5 percent, respectively, is shown for

the same lengths in Figure 2.18. In both figures, the currents are normalized to

the average current per strand and the length is given as multiples of the nominal

final twist pitch length, equal to 20.3 cm. The figures show that the magnitude of

imbalance due to self-field effect is relatively insensitive to small deviations from

the nominal twist pitch lengths in the cable.
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Figure 2.17 Current Imbalances vs. multiple of final twist pitch length for linearly
ramping transport currents using a simplified geometric model. The twist pitches
of each stage of cable are equal to their nominal values. The results should be
compared to Figure 2.18.
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Figure 2.18 Current Imbalances vs. multiple of final twist pitch length for linearly

ramping transport currents using a simplified geometric model. The twist pitches
are 2-% longer than the nominal value for the triplets, 10% longer for the bundles,
and 5% longer for the final stage The results should be compared to Figure 2.17.
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2.3.2.2 External-Field, Time-Dependent Solution:

In an external-field, if a cable is not an integer multiple of twist pitch

lengths, there is a net flux enclosed between the cabled strands even though they

are twisted. While the length of the twist pitch puts a limit on the amount of net

flux possible, the resultant current imbalances due to the external-field effect can

still be significant. As the field changes, the change in net flux drives currents

along entire lengths of strand in loops which connect through the joints. Since

the joint resistance is very low and the net flux can be appreciable, these currents

will be much larger than the currents found in the infinitely long periodic cable.

In the initial stages of ramping field, at times much less than the local time

constant, the problem is similar to the periodic case described above. Local

inductances dominate and the response develops on the time scale of the local

time constant. At times on the order of the local time constant, though, the "local

eddy currents" are dominated by the contact resistance and begin to saturate to

values proportional to h /R1. It would be difficult to solve for the time

development of these initial transient responses numerically since we do not

have any of the many "reductions" which allowed for the solution in the periodic

case. However, the local eddy currents are small relative to the net eddy currents

and thus can be neglected for the purposes of studying stability in cables of non-

periodic lengths.

At times slightly greater than the local time constant, the local eddy

currents have stabilized, but the net eddy currents through the joints are still in

the initial phases of their transient development. Since the eddy currents

through the joint are governed by the whole length inductances, Mij, and the

"transverse joint resistance", Rj, their time development is much slower than that

of the local eddy currents, as has been explained above. For purposes of

calculating the net eddy currents, the small amplitude local eddy currents can be
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neglected and the current in each strand can be considered to be zero at time

t = 0.
Mathematical Model:

The problem is greatly simplified by eliminating the local eddy currents.

Each strand is considered to be a single branch with flux linkages and inductive

couplings to each of the other strands. In the idealized joints at either end, each

strand is also connected to each of the other strands by a resistance, Rj. The

problem is shown schematically in Figure 2.19 for a simplified case using only

four strands. Since the two joints are considered to be identical, only the

transverse currents in one need to be kept as independent variables. The number

of connections between the 27 strands is 27*(27-1)/2 = 351 giving, together with

the 27 unknown strand currents, a total of 378 unknowns.

I2

S4-

All Resistors have resistance Rj

Figure 2.19 Idealized model of a four strand cable terminated in low resistance joints.
Each strand is connected to the others at each joint through a resistance, Rj. The
strands are inductively coupled over their lengths but can otherwise be considered
insulated. See text for further details.
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Kirchoff's Current Law is used at the 27 nodes in the idealized joint and

Kirchoff's Voltage Law is applied around each of the 351 possible loops between

strands running the length of the cable. The equations are thus:

KCL: I + Ii - i 0 ; i=I...27 (2.24)
j=i+I j=1

27

KVL: 2R i, + [Mki- Mkj ]=Vgi ; i=1...26 ; j=i+l...27 (2.25)

where the indices i and j refer to strand numbers; ii, refers to the transverse

current through the joint resistance between strands i and j; Ii is the current

through strand i; Mi, is the whole length mutual-inductance between strand i

and j; and V1, is the induced loop voltage due to the net flux trapped between

strands i and j. Mik and V1, are calculated using the strand configurations from

Figure 2.2 for any length of cable equal to an integer multiple of the segment

length. There is a factor of 2 in the resistance term of Eq. (2.25) to account for the

joint resistance at both ends of the cable.

As before, the forward Euler finite difference scheme is used to transform

the set of first order differential equations to a set of linear equations. Matrix

techniques using iterative refinement are used to solve for the time development

of the strand currents due to the net external flux changes for given lengths of

cable. The procedure is similar to the transient analyses performed earlier for the

periodic cases.

Results:

The problem is length dependent so it is difficult to show general results,

however several trends can be noted. First, for cables which are finite in length

but equal to an integer multiple of the transposition length, there are no net flux

linkages and thus no net eddy currents. For cables of other lengths, the steady-
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state values of the net eddy currents are proportional to the difference between

the actual length and the closest integer multiple of the period length. Thus, a

cable of length equal to p+1 /2 period lengths, where p is an integer, will

experience the largest possible steady-state eddy currents in a ramping field. The

characteristic time constant for the transient development is monotonically

dependent on length. Longer cables have higher inductances (but the same joint

resistances) and thus longer overall time constants than shorter cables.

Quantitative results of the numerical model are shown in Figure 2.20 for

the maximum strand currents found in 4 cables of different lengths: 24, 72, 120,

and 1224 segment lengths (approximately 10, 30, 50 and 515 cm, respectively).

These specific lengths were chosen because they represent "local maxima,"

equaling an integer + 1/2 multiple of the final twist pitch. As expected, the

steady-state values of the maximum eddy current is equal for the four cases, but

the time constants increase with length. Because the value of the idealized joint

resistance has not been assigned, the currents in the figure are normalized. The

actual currents in amps would be: Iact = I' * h /(1,000*Rj), where I' is the

dimensionless current in the figure. Similarly, the time is normalized such that

the actual time in seconds is tact = t' / (100,000*Rj), where t' is the dimensionless

time in the figure.

The fall-off in the amplitude of the steady-state net eddy currents as the

cable length approaches an integer period multiple is shown in Figure 2.21.

Again, only the current in one strand is shown, but the magnitude of all the other

currents falls within this envelope. The same normalizations apply. Any integer

multiple of 48 (the normalized period length) can be added to the abscissae

without changing the results. Ideally, a cable would be designed to have a total

length equal to a period length to totally eliminate the net flux and thus net eddy

currents, but this would only work in the uniform field limit. In general, it
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Figure 2.20 Dimensionless current vs. dimensionless time for the strand experiencing
the maximum induced current due to a linearly ramping external magnetic field for
cables of four dimensionless lengths: 24, 72, 120, and 1224 segment lengths. Each
current approaches the same asymptotic value, but the time constant of each curve
is length dependent.
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Figure 2.21 The maximum induced current in the cable is length dependent. At
lengths approaching an integer multiple of the period length (48 segment lengths),
the induced currents are minimal. At integer-plus-half multiples of the period
length, the induced currents are maximized.

81

0

0

................ .........t.................A...-+

....... .......... ....... .... ...... ...........-...

L = 24

-L = 72

-D L = 120 -

Dimensionless length, L, increases

time T 9.8e 6 / R (sec)
-~- uren - Bdt I I RT (A -)

Iongth . L 4.22 mm

.dG *Ti'w* maxmium currentss12)id * 4-- .

and especially chooses L - (p + 1/2) *48) -

M........................ ......................... ...................... ...................
.................. ...........

. . ..................... ...... ------------ .. ......... .... ......................... .................

. . .................................................... ....................................... .......... ..... ........................ - -

. ................... ..... ............................ ........................................................ .......................

..................................................... ............................ .......................... ....... ...................

4-

- -. ....... .... ....



would be nearly impossible to design a cable with no net flux linkage, but it is

possible to limit the maximum possible net flux by keeping the twist pitches as

tight as possible.

The steady-state currents in all of the strands for a cable equal to p+1/2

twist pitch lengths are shown as a histogram in Figure 2.22. Again the currents

are normalized by b /(1,000*Rj). Without assigning a value to Rj, however, it is

impossible to compare the magnitude of the apparent imbalances with any

benchmark as was possible in the periodic case. An experimental measurement

which allows a direct approximation of Rj would in this sense be very beneficial,

but will have to wait for future work. In the next chapter, however, a value of Rj

1.5

1

0.5

0

-0.5

- 1

-1.5

-2
0 5 10 15 20 25

Strand Number

30

Figure 2.22 Histogram of the steady state currents induced by a linearly ramping
magnetic field for each strand in the 27 strand sample for a cable length equal to an

integer-plus-half multiple of the period length.
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will be inferred from existing experimental results but only after making several

arguable assumptions.

2.4 Summary

In this chapter, the current distributions due to self- and external-field

effects have been calculated for a 27 strand sample in both the infinite, periodic

regime and the finite, joint terminated regime. The methods developed are

equally applicable to other cable designs when the geometry can be idealized in a

similar fashion as was used here. The results for the infinite periodic case could

be given in absolute units since direct measurements of the transverse resistance

between strands exist. For the joint terminated cases, the final results were

normalized by the transverse resistance in the joint, a value which is as yet to be

measured. Although each case presumed a starting point of zero field and zero

current, solutions for differing initial conditions could be found in similar

fashion.

Infinite, Periodic Cases:

In the infinite periodic case, the current distribution was found to be

minor when compared with the operating currents typical of the ramp rate

experiments examined. For the self-field scenario, the currents were found to

equilibrate to a uniform distribution on time scales on the order of micro-

seconds. Since typical ramp times are on the order of seconds, the self-field effect

for fully transposed infinitely long periodic cables is seen to be negligible.

Current imbalances for the external-field scenario also equilibrated very quickly,

but not to a uniform distribution. The largest induced current for a 1 T/s ramp,

however, was only approximately 0.4 mA. In any event, the imbalances

encountered in the infinite, periodic case would not be large enough to affect the

stability of the cable. The detail of the model does allow for estimates of AC
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losses due to self-and external-field effects, though, which would be an

interesting subject for a future investigation with the difficult part of the analysis

already complete.

Finite, Joint Terminated Cases:

For cables of finite length, important current imbalances due to ramping

currents and fields can exist. These imbalances do not affect the AC losses of the

cable, per se, because the transverse currents involved cause joule heating only in

the joints.* On the other hand, the induced currents may be large enough to

affect the overall stability of the coil by increasing the total current in some

strands above their critical current. Without knowing a value for the idealized

transverse resistance in the joint, though, it is difficult to make quantitative

predictions. Qualitatively, however, cables of short length will in general exhibit

more current imbalances than longer cables since the self-field effects are

potentially greater and the characteristic time constant for external-field effects

will be shorter. This latter condition implies that any net eddy currents will be

closer to their maximum saturated values at the end of a ramping event.

Despite the level of uncertainty in calculating current imbalances for

finite-length cables, the next chapter will further examine their possible stability

implications in hopes of explaining the Ramp Rate Limitation.

* Joint losses are generally considered to be a separate topic.
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Chapter 3

Ramp Rate Stability in CICC Magnets

3.1 Overview

The Ramp Rate Limitation exhibited by the US-DPC and the smaller scale

simulation tests cannot be explained using the traditional stability analyses

discussed in Chapter One. This chapter investigates the possibility that the non-

uniform current distributions caused by the ramping field and transport current

may be related to the observed limitation. Rather than decisively proving a

correlation however, the conclusion is that the proposed instability mechanism is

a viable one. In this light, the investigation presented in this chapter is not meant

to comprise a full stability analysis but is instead intended to provide the

background and motivation for more detailed study.

3.2 Simplified Stability Model Based on Current Distribution for CICC

Traditional stability models assume uniform magnetic field and current

density distributions and study the effects of temperature perturbations. The

stability model introduced here will assume uniform temperature and field

distributions and will study the effect of current density "perturbations." A

"stability event" will be defined in the model as a point where the total current in

a strand, applied plus induced, reaches the strands limiting current value, as

determined experimentally. At this point, the strand would begin joule heating

and would most likely transfer current to neighboring strands. The cable's

response to a stability event is thus a complicated one and answering whether or
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not a stability event would lead to quench is beyond the scope of this thesis.*

Nonetheless, for the purposes of discussion, the modeled stability events will be

compared with the observed Ramp Rate Limitation in the 27 strand experiment

in the hopes of explaining general trends found in the data. The results of this

experiment were presented in Figure 1.6. Since the cable is of finite length and is

terminated in joints with resistances much lower than the contact resistance

between the strands, the approximate solutions developed above for that

scenario are applicable.

The model for determining a stability event can be given in terms of the

total current in a single strand:

Itotal = Iapp/N + Iself + Iext = Icritical/N (3.1)

where N is the number of strands in the cable (27, here); Iapp is the total transport

current, Iself is the amount of current imbalance in one strand due to self-field

effects and Iext is the current imbalance due to external-field effects. Icritical is

defined as the maximum amount of current which could be carried by the cable

assuming uniform current distribution. Since the temperature is considered to be

constant, Icritical is only a function of the field in this model. In the experiment,

the background magnetic field was fixed to be proportional to the applied

current in order to simulate the operation of th full US-DPC magnet. The

resulting "load-line" was:

B = 1.58 Iapp (T) (3.2)

where B is in T and Iapp is in kA.

In the experiment, the maximum achievable current approaches an

asymptote at longer ramp times which gives an experimental value for Icritical at

full magnetic field (~ 8 T). Icritical at full field can be approximated from Figure

* Recent unpublished results from experiments on the 27 strand sample may indicate several
"stability events" can take place in a single ramp without leading to quench but there is also
evidence that a stability event does precipitate any eventual quench (Vysotsky, et. al. [1994]).
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1.6 to be -5 kA. The critical current at other magnetic fields of interest needs to

be related to this value of Icritical at maximum field. For the range of

experimentally determined quench currents at the various ramp rates, the

associated magnetic fields (as determined by the load-line) are in the range of 6 -

8 T. Over this range of interest, the critical current density of the superconductor

used in the strand, Nb3Sn, decreases in an approximately linear fashion with the

value at 8 T being approximately 70% of the value at 6 T (Bottura [1989]). Using

this same ratio for the composite conductor, Icritical at 6 T can be approximated to

be 7 kA and the linear relation valid over the range of 6 - 8 T is roughly: Icritical =

13 - B, where B is in T and Icritical is in kA. Using the prescribed loadline, Eq.

(3.2), this translates into a critical current for a single strand:

Icritical/N = (13 - 1.58 Iapp)/ 2 7  (kA) (3.3).

Where Iapp is given in kA.

The self-field imbalance for the 27 strand cable can be estimated from the

analysis of Chapter Two. The overall length of the sample is 0.84 meters,

equivalent to 200 segment lengths using the geometric model above. The current

imbalance due to self-field effects for a cable of this length is shown as a

histogram in Figure 3.1. The strand carrying the maximum current due to self-

field imbalance has approximately 1.08 times the average current, thus Iself, the

amount of imbalance, has a maximum of 0.08 Iapp/N. For the purposes of this

rough analysis however, this unbalance will be considered a secondary effect

since Iself << Iapp/N and we will use:

Iself = 0 (3.4).

The background field imbalance is dependent on the ramp rate. Of the

total length of 200 segments, only the 72 segments (30 cm) which comprise the

"single loop coil" experience a transverse external-field. Thus the length for

calculating whole strand inductances is different from the length used for
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Figure 3.1 Histogram of the current imbalance due to a linearly ramping transport
current for each strand in the 27 strand sample for a cable length equal to the
length of the actual experimental cable, 0.84 m (200 segment lengths). Strands with
a normalized current equal to unity are carrying 1/27th of the transport current.

calculating net external flux linkages. The result for the one strand which

experiences the maximum induced current for such a cable is presented in Figure

3.2 as current vs. time. As in chapter two, the units are dimensionless. The curve

is seen to have the form:

I'ext = C' (1 - exp(-t'/t')) (3.5)

where I'ext is the dimensionless current, C' is the dimensionless saturation value

(C' ~ 1.5 for the "worst" strand case shown here), t' is the dimensionless time,

and r' is the dimensionless time constant. Using a curve-fit of the numerical

results, r' = 2.0 and the resulting line is shown in the figure. Accounting for the

scaling factors used, the actual current in kA would be Iext = 'ext *b /(106 Rj).

The actual time, t, and time constant, r, in seconds would be the dimensionless

values multiplied by 10-5 /Rj.
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Figure 3.2 The maximum induced current in the 27 strand sample due to a linearly
ramping external magnetic field vs. time. Both current and time are dimensionless.
The total sample length is 0.84 m (200 segment lengths) with 0.30 m (72 segment
lengths) experiencing a transverse magnetic field. The dimensionless time constant
of the exponential time-development is found to be tau = 2.0, giving the dashed-
line curve-fit shown.

Using Eq. (3.2) to relate the field change to the overall current ramp rate,

I, = Iapp/tramp, we get the relation for Iext at any time, t:

I =1. 58.10C' 'app (l-exp(-0 5 R t/2.0))

tramp R

(kA) (3.6)

where t and tramp are in seconds, Iapp is in kA and Rj is in Q.. An estimate of the

total current in the "worst" strand, with C' = 1.5, using equations (3.1), (3.4), and

(3.6) is thus:

Itotal= Iapp /27 + 2.4-10-6 app (1-exp(-10 5 RjtI2.0)) (kA)
tramp

(3.7)

A "stability event" will occur when this value is equal to the strands critical

current. If a single stability event were to lead to a quench of the whole cable, the
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Ramp Rate Limitation would be found when the strand current just equals its

critical current at time t = tramp. From Eq.'s (3.3) and (3.7), this occurs for

currents:

Iquench =13 2.58+ 6.5-10 rp (kA) (3.8)
trampRj

The only unknown parameter is Rj, in Q. The ramp time is given in seconds. The

factor of 2.0 x 10-5 /Rj in the exponent is the natural time constant of this

particular cable, as it was found above. Iquench vs. tramp is plotted against the

experimental data in Figure 3.3 using a value of Rj = 2 x 10-5 K, found by curve-

fitting Equation (3.8) to the quenched points (solid circles) in the experimental

data. The trend predicted by Equation (3.8) is seen to match the experimental

results nicely and the fitting parameter needed to match the data seems

reasonable; it is at least consistent with the original assumption that Rj << R1.

Until Rj can be measured independently, though, the most specific

conclusion which can be reached is that the occurrence of "stability events" due

to current imbalances in the cable is a plausible but not proven explanation for

Ramp Rate Limitation. Further work is needed to confirm or refute this theory.

One factor in favor of the theory, however, can be now be mentioned. In

separate experiments (Takayasu, et al. [1992]) on the 27 strand cable where the

transport current was held constant while the background field was

independently ramped, a ramp rate limitation very similar to the one found for

simultaneous ramping of current and field was found. When the current was

ramped and field held constant, however, only a much weaker ramp rate

limitation was discovered. These different results are consistent with the

predictions made here: the current unbalances and resulting stability events were
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Figure 3.3 Measured data from Ramp-Rate Limitation tests on a 27 strand CICC.
Solid circles (9) represent points at which the cable quenched during a linear ramp
to the quench current in time, tramp. Open circles () represent currents which
were reached without quench for ramp time, tramp. (Takayasu, et al., [19921)

strongly dependent on external-field effects while the self-field effects caused by

ramping transport current were considered to be of only secondary importance.

It is also interesting to note that the model predicts a finite quench current

for vanishingly small ramp times. This result is consistent with the results of the

full-size US-DPC test shown in Figure 1.5 and the general finding that the Ramp

Rate Limitation does not occur for currents below a certain "transition current"

(Takayasu, et al. [1992]). This transition current for the Ramp Rate Limitation has

previously been associated, however, with the limiting current separating the

"ill-" and "well-cooled" regimes defined from traditional CICC stability analyses
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discussed above (Bottura, et al. [1991]). The transition current identified from this

new analysis, based on Eq.'s (3.1), (3.6), and (3.8) in the limit t = tramp -4 0 , is:
TR?.

Itrans = '8+ . (kA) (3.9)
""2.58 +27-1.58-10-6C'

which takes into account the linearization of critical current, the loadline, and the

number of strands. The parameters which are model dependent, t, Rj, and C',

are left as variables but in fact the factor of Rj cancels out since r is inversely

proportional to Rj. Equation (3.9) thus says the transition current is dependent

on the whole length inductive imbalances in the cable (proportional to r) and the

net external flux linkage in the cable (proportional to C'). The result is

independent of cooling regime. A comparison of measured transition currents

with Eq. (3.9) and with the traditionally defined transition current might be a

way to investigate the true nature of Ramp Rate Limitation, at least for very fast

ramp rates.

3.3 Summary

A correlation between Ramp Rate Limitation and current distribution in a

cable has been demonstrated for the 27 strand US-DPC simulation ramp rate

experiment. The validity of the correlation is limited by the uncertainty of the

transverse joint resistance, Rj, as modeled in Chapter Two. A better joint model

accompanied with accurate joint resistance estimates would be needed to

confirm the usefulness of the model for predicting Ramp Rate Limitation. Also,

the concepts of "stability event" for a single strand and the resulting heat

generation would have to be developed further before it can be directly related to

a full quench phenomenon in the cable. An improved model which merges the

current-based stability analysis introduced here with traditional energy-based
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stability analysis might be needed to give a complete description of Ramp Rate

Limitation.

Nonetheless the agreement of the simplified stability limit, Eq. (3.8), with

experimental results is apparent and matches several measured trends: foremost,

the calculated curve matches the data for the proper choice of scaling parameter;

second, the model correctly predicts the strong dependence on b and only a

weaker dependence on i; and third, the model predicts a finite transition current

below which no ramp rate limit occurs. Thus, although the model is basic, the

results are encouraging and invite a more detailed analysis.
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Chapter 4

Conclusions

The effects of linearly-ramping transport currents and external magnetic

fields on the current distribution in Cable-in-Conduit Conductors (CICC) has

been studied for certain scenarios. A numerical model of the 27 strand cable

used to simulate the US-DPC coil was used for all calculations, although the

methods used can be equally applied to other multiply-twisted cables. The

results of the calculations were compared to experimental measurements of the

Ramp Rate Limitation phenomenon.

For cables which can be considered infinitely long and periodic in nature,

the current unbalances due to self- and external-field effects were found to be

negligible. Because such a cable is fully transposed, the transient imbalances due

to the self-field effect vanish on the time scale of micro-seconds for the

approximate values of transverse resistance found from measurements. Thus,

even though the initial imbalances are significant, the stability of the cable is not

affected since the total current in the cable is no more than a few milli-Amps

during this transient response. Imbalances due to external-field effects do not

vanish in time, but instead reach a steady-state in a time scale again on the order

of micro-seconds. The maximum steady-state current imbalance is estimated to

be on the order of milli-Amps for the ramping external-fields encountered

experimentally. Compared to operating currents on the order of 100's of Amps,

this imbalance is again seen to be inconsequential with respect to the stability of

the cable.

The detailed modeling presented for the infinitely long, periodic cable

failed to discover any conditions which might affect the stability of the cable.

95



However, the model does provide a tool for studying the AC losses associated

with the inter-strand coupling for time-varying transport currents and magnetic

fields. This second application of the model is potentially more useful than the

current distribution study for which it was intended, but is not investigated in

this thesis.

For finite cable lengths which were terminated in low resistive joints,

certain simplifying assumptions were needed to solve for the current distribution

in linearly-ramping magnet fields and transport currents. Resultingly, only the

dominant currents due to "whole-length" effects were found while the relatively

small -currents due to "local effects" similar to those in the periodic case were

ignored. It was necessary to use a simplified model of the inter-strand contacts

within the joint and the calculated results could only be found to within a factor

of Rj, the characteristic resistance between strands in the joint.

Self-field effects for finite cables can be significant since the cable is no

longer fully transposed, in general. However, the current imbalances due to the

self-field effect were seen to diminish with increasing length, and thus are of

primary concern only for shorter cables. The effects of joint resistance were not

included in the analysis of this case and thus the presented results are only valid

for the initial transient response, but the general trend of decreasing imbalances

for increasing lengths is still valid.

The external-field effect is not related to overall length but instead to

differences between the cable length and the transposition length. The net flux

linkage between entire lengths of strands--connected through the joints-- is

maximized for cable lengths equal to integer-plus-half multiples of the

transposition length. Since the joint resistances can be very small, the eddy

currents driven by changes in the net linked flux can be large. Quantitative

results cannot be directly presented since the joint resistance, Rj, is an unknown
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parameter. In general though, the maximum induced eddy current is related to

the length of the cable (as explained above) and is proportional to the rate of

change of the magnetic field and inversely proportional to the joint resistance.

The maximum current is approached asymptotically on a time scale which is

proportional to the total length of the cable and inversely proportional to the

joint resistance.

The experimental results found for the 27 strand US-DPC simulation tests

were studied using the newly developed models for current distribution due to

self- and external-field effects in finite-length cables. By assuming that the

encountered Ramp Rate Limitation was due to current imbalances in the cable, a

new stability model was introduced which defined the quench current in terms

of the maximum current carried by the most "overloaded" strand. The resulting

relation (Eq. 3.8) matches the measured data when the characteristic joint

resistance is chosen to be: Rj = 2 x 10-5 Q, The comparison was shown in Figure

3.3.. (N.B. the value Rj should not be compared to any "joint resistance"

published in the literature since it is defined in a much different manner.)

While the oversimplified mathematical model of the joints and the lack of

a measured value for the parameter Rj eliminate the possibility of making

authoritative conclusions at this time, the simplified model seems to exhibit the

same trends as do the measured data: the calculated values reasonably agree

with experimental values; the predicted asymptotic behavior at longer ramp

times as well as the finite limiting current at very fast ramp times are both

consistent with measurements and current conjecture; and finally, both the

model and experiments show a strong dependence on the rate of change of the

external magnetic field with only a weak dependence on the rate of transport

current ramping.

97



The general agreement of the simplified stability analysis presented here,

based solely on current distribution in the cable, with the experimentally

measured Ramp Rate Limitation is encouraging. The effects of current

distribution due to ramping magnetic fields should be considered in future

stability analyses. A more detailed model which includes thermal effects as well

as electrodynamical effects may finally offer a complete explanation of Ramp

Rate Limitation.
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Appendix A

Inductance Formulas

The following formulas were taken from Grover (1946):

Self-Inductance of a Round Straight Conductor:

L = 0.002l In 3(pH) (A.1)
Ip 4

where I is the length of the conductor in cm. andp is the radius of the conductor
in cm. The self-inductance, L, is in micro-Henries.

Mutual-Inductance of Two Round, Parallel, Overlapping Conductors of Equal Length:

M = 0. 002 In I+ + - + +] (pH) (A.2)

where both conductors are of length 1, in cm. and d is the distance of separation

between the longitudinal axes, in cm. The mutual-inductance, M, is in micro-

Henries.

Mutual-Inductance of Two Round, Parallel, Non-Overlapping Conductors of Equal Length:

M (M21+ + M)- 2M,, (A.3)

where both conductors are of length 1, in cm. and 3 is the axial component of the
distance between the nearest endpoints. M, represents the mutual-inductance of

two parallel overlapping inductors of equal length, x, (Equation A.3) with the

distance of separation d of the given problem.

Mutual-Inductance of Two Round, Parallel, Non-Overlapping Conductors with a Common
Endpoint:

M= -[M 2 , -2M,) (A.4)
2

where both conductors are of length 1, in cm. and M. represents the mutual-

inductance of two parallel overlapping inductors of equal length, x, (Equation

A.3) with the distance of separation d of the given problem.
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