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Abstract

As tokamak plasmas become more robust with the development of increasingly
advanced operating regimes, the occurrence of plasma disruptions places a greater
demand on the tokamak structure. In particular, the flow of halo currents, large currents
which appear in tokamak vacuum vessels as a result of direct contact with bulk plasma,
has become a matter of increasing concern. Experimental measurements have confirmed
the existence of large, toroidally asymmetric currents which flow poloidally in the wall,
exerting strong localized forces on the wall as they interact with the toroidal magnetic
field. A new model has been developed to study this phenomenon, based on the use of
nested sheet currents to represent a disrupting plasma. This model contains the
minimum number of degrees of freedom which permit the flow of continuous, non-
axisymmetric poloidal and toroidal currents; furthermore, the model can be put into a

compact integral formulation which allows rapid numerical solution even in the
presence of complicated tokamak geometries. A fast code called TSPS-3D has been
written to solve the sheet current model; the code has been matched against
experimental data and used to examine basic scaling relationships of halo currents and
the resulting J x B loads with plasma parameters.
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Chapter 1. Introduction

The goal of the international fusion program is to generate energy by means of

controlled fusion reactions of light nuclei, using as an abundant fuel source two isotopes

of hydrogen, called deuterium (D) and tritium (T). The most efficient way to do this is to

create a plasma of D and T, where a plasma is a fully ionized gas with some unique

physical properties, so that it is generally considered a distinct state of matter [1],[2]. By

heating the plasma to very high temperatures one can "ignite" the fusion reactions. The

problem is that "very high temperatures" can be hundreds of millions of degrees, so that

it is not possible to confine the plasma with material walls. One technique which

attempts to solve this problem is to hold the plasma in place by interacting induced

electrical currents with external magnetic fields, taking advantage of the fact that a

high-temperature plasma is an extremely good electrical conductor. Not surprisingly,

this technique is called magnetic confinement fusion, or simply, magnetic fusion [3],[4].

Magnetic fusion presents an awkward design problem, since magnetic fields can only

exert forces perpendicular to the field direction; it is therefore necessary to build

configurations where the field wraps around on itself, forming a closed system. The

most successful of these designs so far is a configuration called a tokamak, where the

dominant magnetic field and the plasma it confines wrap around in the shape of a torus.

A schematic of the basic components of a tokamak is shown in figure (1.1).

Since its inception in the late 1950s, the magnetic fusion program has produced some

singularly contrasting good and bad news. The good news is that the amount of time

that a hot plasma can be confined has grown by six orders of magnitude, a very

impressive achievement. The bad news is that the earliest experiments could produce

plasmas which lasted only microseconds, which means that modern plasmas linger

only for a few seconds. In addition, the energy put into creating and confining the

plasma still exceeds the energy released in D-T fusion reactions.
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The fact that controlled fusion has resisted the concerted attack of forty years of

international effort shows that a fusion plasma can produce a wide array of befuddling

behavior. It is also an indication, therefore, that the difficulties encountered in operating

a tokamak experiment over several seconds are very different in nature from those

encountered at the level of microseconds. In particular, tokamak plasmas have gotten

robust enough that if they escape confinement, in a fast event called a disruption, they

can damage a tokamak which is not properly designed. Thus the engineering of

tokamaks is rapidly becoming an area as challenging as the physics of tokamaks, if not

more so. The focus of this thesis is on one of the dominant engineering concerns in the

design of modern experiments, the behavior of halo currents resulting from certain types

of disruptions.

1.1 "Slow" Disruptions and Non-Axisymmetric Halo Currents

The macroscopic interaction between the plasma and magnetic fields is studied in the

field of magnetohydrodynamics (MHD) [5]. MHD modeling is responsible for finding

equilibrium configurations where the plasma is confined. It is one of the basic principles

of MHD that if a plasma does not satisfy the MHD equilibrium conditions it can escape

confinement at speeds equal to the thermal velocity of the ions in the plasma, on the

order of 105 m/s. The "ideal MHD time" is defined to be the characteristic size of a
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tokamak plasma divided by this velocity; for plasmas which are a few tens of

centimeters across, the ideal MHD time is a few microseconds.

It is quite possible for a particular equilibrium to be unstable; that is, if some random

perturbation changes the configuration just slightly, equilibrium is lost very rapidly. If

the plasma is left to itself, the equilibrium will be destroyed on the ideal MHD time

scale in a "disruption". In such disruptions where there is complete loss of confinement,

the plasma loses its electrical current, thermal energy, pressure, and density, all on that

fast time scale. Finding passively stable equilibria that avoid such disruptions has been

one of the major accomplishments of the magnetic fusion program.

However, such "basic" disruptions are not the only kind. In order to achieve hotter and

cleaner plasmas whose currents can be sustained for longer periods of time, advanced

tokamaks employ novel methods of heating, fueling, and current drive, using physical

effects which are outside of MHD modeling. As such, they represent perturbations

which can radically change the character of an equilibrium without being as

catastrophic as a "basic" disruption. The plasma can suddenly lose all of its thermal

energy even though particle confinement remains relatively intact; the shape of its

current profile or temperature profile can change rapidly; the transport of impurity ions

can suddenly jump. Even though the dominant physical properties of the plasma state

may remain unaffected, the efficiency with which the plasma undergoes fusion

reactions, or its ability to do so at all, can be seriously degraded. While this type of

disruption is troubling from the standpoint of fusion science, it poses little physical

threat to the experiment.

Another type of disruption is especially troublesome. In an effort to improve the

efficiency of a tokamak, it is necessary to employ equilibria which require dynamic

feedback stabiliza lion. All advanced tokamaks create elongated plasmas which are

unstable to vertical displacements; sophisticated feedback systems are built into the

external field systems to maintain stability. There are disruptions where there is a

partial loss of feedback control, so that the plasma moves vertically and is gone in

milliseconds. (Since the cause is generally rooted in the electronics rather than the

plasma physics, this is sometimes distinguished as a "vertical displacement event," or

VDE, rather than a disruption.) While this is fast relative to the entire seconds-long shot,
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it is quite slow on the ideal MHD time scale; the plasma can be in a state of "quasi-

equilibrium" where some if not all confinement characteristics are relatively intact. It is

therefore possible for the plasma to impact the surrounding vacuum chamber while still

carrying a significant fraction of its electrical current. When this current interacts with

the metallic chamber and the magnetic fields, strong Lorentz forces can act on the

chamber, causing structural damage.

A well-studied interaction between the plasma current and chamber is the generation of

eddy currents, currents which attempt to preserve the original flux state in the chamber if

the plasma current changes, as required by Maxwell's equations. The case of a "current

dump" in a fixed-position plasma has often been examined; the resulting eddy currents

tend to be distributed over fairly large regions of the chamber and also include any

other nearby metallic structure. While the effects of these eddy currents on the machine

are not necessarily benign, they are understood and usually well accounted for in the

machine design. In a disruption where the plasma strikes the vacuum chamber,

however, the eddy currents can be much more localized and dangerous.

Experimental evidence acquired over the past decade from many different tokamaks

has brought to light the importance of another type of interaction, that of halo currents ,

which are usually defined to be poloidal currents which link both the vacuum vessel

and the plasma, wrapping around the bulk plasma which has not yet impacted the wall

(hence the "halo"). These currents flow through the wall only in the region overlapped

by the plasma, and since poloidal current interacts with the large toroidal magnetic

field, substantial localized forces can result. Many machines generally emerge from

inspections with a list of broken bolts, loose insulating tiles, and possibly even bent

plates, signifying the presence of strong local forces. The true scope of the problem was

brought to the attention of the fusion community in spectacular fashion by a vertical

disruption at the JET tokamak which lifted the multi-ton machine several millimeters

[6]. Since that time, measurements of poloidal halo currents and estimates of the

resulting forces have been undertaken at all major machines [71J8],[,9)1,[0]. In all cases,

the peak halo currents reach significant fractions of the toroidal plasma current.

The halo current problem became of even greater concern following a recent

experimental campaign on the Alcator C-MOD tokamak at MIT's Plasma Fusion Center.
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J. Sorci and R. Granetz installed several new diagnostics specifically intended to study

the poloidal and toroidal distribution of halo currents; extensive work revealed that the

halo currents in C-MOD are not distributed symmetrically in the toroidal direction [10].

There is often a strong n=1 component, with peak-to-average ratios of about 2; see

figures (1.2-3). This means the distribution of current over toroidal angle can be

concentrated locally; since it is the current density which determines Lorentz forces,

concentrated currents mean large forces. Present-day tokamaks are not designed with

significant toroidal asymmetries in mind, so this additional localization of the forces is

cause for worry.

1.2 Problem Statement

The appearance of large, non-axisymmetric poloidal halo currents has both an

immediate and long-term effect on the fusion program. The immediate effect is felt most

strongly at MIT's Alcator C-MOD experiment, which is a compact machine capable of

operating at high plasma currents (2, possibly even 3 MA) and high magnetic field (9T

on axis). The prospect of a potential 2MA of poloidal current interacting with inboard

toroidal fields of 13T, possibly localized due to asymmetries, causes some concern about

safe operation of the machine at full parameters [11],12],13][14][15]. Upgrades at

other machines tried various methods of accounting for halo-current effects, although

without addressing asymmetries [16],[17]. The long-term effect pertains to the designs

of new experiments such as International Thermonuclear Experimental Reactor (ITER)

[18], whose physical size corresponds to plasmas with large toroidal currents (21 MA)

and high inboard toroidal fields. The sheer cost of an ITER-sized experiment demands a

design which is robust enough to withstand all foreseeable loads.

There is a clear need for an accurate non-axisymmetric halo current model, including a

rapid computational tool capable of doing parametric studies over a wide range of

design parameters. Answers are desired for the following questions:

* Is the source of halo current correctly understood?

* Are there localized "toroidal halo currents" as well?

* What is the relationship between the magnitude of halo currents and

plasma parameters, as well as machine geometry?
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* How serious an effect is the non-axisymmetric nature of the problem?

* What are the forces on the vacuum chamber produced by the halo

currents?

* Is there a reasonable way to design the vacuum chamber so as to minimize

the consequences of halo currents?

* What are the effects of non-axisymmetric disruptions on eddy current

behavior?

1.3 Existing Work

The halo current problem is not new, but there are no comprehensive, practical methods

available to study it. Studies based on diagnostic data can have the most reliable

numbers for certain quantities, but no existing machine is instrumented well enough to

get localized measurements of boti poloidal and toroidal current in the wall, especially

with respect to the toroidal distribution [see prev. refs.].

The alternative is numerical modeling, but here, too, there are deficiencies.

Experimental conditions can be reconstructed, including poloidal halo current, using

codes such as EFIT [19]; however, the halo current contribution to the flux function is

often modeled in simple form, and the resolution of toroidal vessel currents is often low

[e.g. 9]. Usually there are a fair number of free parameters left to allow the matching of

data. Finally, EFIT is a fully axisymmetric code.

For completely self-contained simulations, by far and away the most comprehensive

code available in the fusion community is the Tokamak Simulation Code, TSC [20]. TSC

has been used to simulate disruption events including poloidal halo currents (e.g. [21],

[22]), but suffers from two drawbacks. Firstly, it is a fully axisymmetric code; secondly,

it is designed to self-consistently model a complete plasma-tokamak system, including a

very broad range of plasma physics. Complete non-linear flux-surface calculations are

done at each time step. As a result, it requires a significant amount of time to run such a

simulation, several hours on a Cray Y-MP C90. This does not lend itself to rapid

parametric design studies at the engineering level.
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Disruption codes intended to design vertical feedback and control systems have been

written for C-MOD [231,[24], and run quite fast since the plasma is represented simply

by a group of non-rigid toroidal filaments. However, filament models do not allow the

flow of poloidal currents, and these particular codes are also purely axisymmetric.

There are many three-dimensional electrodynamics codes which are employed in

tokamak design ( e.g. [25]), but the 3-D modeling is restricted to the solid structures; the

plasma is generally modeled quite simply, even as a single toroidal filament, and is

assumed to behave in a fully axisymmetric way. The asymmetries of interest are in the

resulting eddy currents (due to a current dump, for example), resulting from the

asymmetries in the structures due to varying conductivity in the segments, access ports,

and the like.

1.4 Goals of the Present Work: Global Modeling

The goal of this thesis is to introduce a novel method of modeling a plasma disruption

and the generation of non-axisymmetric halo currents by using a global approach. The

idea is to correctly capture the broad phenomena of interest, namely the distribution of

halo currents and the resulting forces, without expending effort on a host of details not

pertinent to the problem. No attempt will be made to study disruption physics,

meaning the cause for and onset of a particular disruption; the only concern is the

electrical interaction between the vacuum chamber and the plasma.

To strike a balance between the insufficiency of filament models and the extensive

computation required by flux surface models, we introduce a nested sheet current model

for the plasma. This yields the minimum number of degrees of freedom which enable

the flow of continuous poloidal currents; it also allows considerable analytic reduction

of the necessary equations to a compact integral form so that the only unknowns are the

currents themselves. There is no need to "discretize the universe" as required by

differential models with free-space boundary conditions. Since the experimental

evidence on C-MOD indicates that the disruption asymmetries are dominantly n=1, the

sheets themselves are constrained to remain symmetric about some axis (not necessarily

that of the chamber), but are allowed to rigidly shift, tilt, rotate, contract, etc.
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The wall is also treated as electrically thin so that it, too, can be incorporated into the

sheet current model. Since asymmetries due to access ports and other variations would

come in as significantly higher modes than n=1 (there are 10 ports, for example), the

wall shape is treated as axisymmetric. The fact that the halo currents are observed to

rotate rapidly rather than be associated with a particular toroidal location of the

tokamak would seem to justify this assumption. However, the current distributions in

the wall and the plasma sheets are allowed to be non-axisymmetric.

Plasma shapes and displacements can be parameterized directly from experimental data

to satisfy the quasi-equilibrium condition, avoiding the need for flux-surface

reconstruction at every time step of the simulation. The sole free parameter is the

conductivity of the plasma; a Spitzer model based on temperature measurements will

be used. All other details of plasma physics are assumed to not significantly affect the

halo current problem. The global quantities of interest are the currents, magnetic fields,

and associated forces; the elements of the system are the tokamak vacuum chamber, the

external field system, and a mobile, current-carrying medium which is allowed to strike

the wall; its motion is governed by satisfying quasi-equilibrium conditions prior to

impact.

The result of this model is a fast, highly customized code called the Three-Dimensional

Tokamak/Shell Plasma Simulator, or TSPS-3D. It was designed to be robust enough to

handle the complicated geometry of Alcator C-MOD (see figure 1.4), but general

enough to be quickly adapted to other machines, such as ITER.

A unique opportunity to benchmark the code is present in the form of the concurrent

experimental work of Sorci and Granetz on C-MOD. The results of comparisons

between TSPS-3D and data will be given, along with a number of numerical

investigations on the dependence of halo currents and forces on various plasma

parameters. Attention will be focused on the presence of toroidal halo current and

strong, poloidally localized toroidal eddy currents, which C-MOD has no

instrumentation to measure, and the role it plays in the loads on the vacuum chamber. It

is therefore important to note that in the context of this thesis, the term halo current has a

slightly broader definition than commonly used. It will refer to any current flowing in

the vacuum vessel as a result of direct contact with bulk plasma. This extension covers
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the flow of localized toroidal currents. Since these currents are localized, link both the

wall and the plasma except in completely (current and displacement) axisymmetric

cases, and have a significant contribution to the loads, it is felt that they must be treated

on equal footing with poloidal halo current.

1.5 Organization

This thesis is composed of six chapters, organized in a "from the ground up" fashion

with respect to deriving and subsequently solving the sheet-current model. A

breakdown of the chapters succeeding this introduction is as follows:

Chapter 2 begins by introducing the underlying equations of the sheet current model,

namely Maxwell's equations and the ideal MHD plasma model. The assumptions and

approximations which enable the reduction to the sheet-current model are stated and

justified, after which the specific manipulations are carried out to derive the sheet-

current equations. The chapter concludes with a simple illustration about why the use

of sheet currents and the resulting integral equations is more efficient than existing

differential models.

Since the behavior of halo currents is linked more closely to geometry rather than

simple circuit behavior, it is not easy to get a "feel" for the character of the sheet current

equations, because the geometry does not enter in a simple fashion. Therefore, Chapter

3 is devoted to a series of simple examples which attempt to provide pictorial

representations of basic halo current and disruption behavior. While none of the

examples are quantitatively useful since they lack most of the complexities found in

modern tokamaks, they do yield some qualitative understanding of experimentally

observed phenomena and serve to sharpen one's intuition about what halo currents can

and cannot do.

Chapter 4 deals with the methods used to solve the sheet-current equations numerically

for realistic applications. The "in principle" reduction to a linear algebra system masks a

number of complications, so a significant portion of this chapter is devoted to specific

problems which arise due to the complicated tokamak geometries and to inherent traits

of halo currents.
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Chapter 5 is the "showcase" for TSPS-3D, a code custom-designed to solve the full, non-

axisymmetric sheet-current equations. The code is benchmarked against the poloidal

halo current data taken on Alcator C-MOD, and used to investigate halo current

behavior as a function of various parameters. The focus is on the resulting forces in the

vacuum chamber, and the important role of toroidal current, both halo and eddy, in

driving the forces.

Chapter 6 summarizes the most important results and concludes with some suggestions

for the direction of future halo current and disruption modeling.

The sheet-current model is able to achieve its economy, even for non-axisymmetric

problems, because there is a great deal of analytic reduction from the general equations.

While such steps are vital to the model's success in terms of CPU time, the

manipulations are not new and their inclusion in the main work would greatly impair

its clarity. Therefore they are relegated to Appendix A, which will be of interest to

anyone pursuing related work or to anyone who appreciates the accomplishments of

classical mathematics.

One of the suggestions for future work is the proper treatment of the free-boundary

problem, which is handled in a rather crude fashion in TSPS-3D. Appendix B offers

some thoughts on what may be the best method for incorporating elegant solutions

without a major sacrifice in computation time.
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Chapter 2. Derivation of the Sheet Current Model

The complexity of a tokamak and the plasma it confines was briefly indicated in the

previous chapter. The effort that would be required to model such a system in full detail

will appear in the present chapter in the form of the number of steps and assumptions

that are required to derive the sheet current model from the general equations. The

importance of global modeling techniques in fusion will become clear when it is shown

how much information still remains in the sheet current model, in spite of the vast

amount that was discarded to get there!

The derivation is straightforward, but does require a lengthy, and at times tedious, path

to reach the end. We will begin with Maxwell's equations in general form, and a single-

fluid MHD description of the plasma. These will quickly be reduced to the magneto-

quasistatic (MQS) limit and a force-free plasma. Next, we switch to the integral form of

Maxwell's equations, which allows a very efficient implementation of the sheet current

model for a broad class of non-axisymmetric problems. Finally, a brief comparison will

be made of the resulting integral equations with the corresponding differential model.

Those steps of the derivation which are useful for reference but which do not really fit

the context are included in Appendix A, where noted. The MKS system of units is used

throughout, with the exception of temperature, as explained later in the text.

2.1 General Equations: Solid Structures

We begin by noting that the electrodynamic behavior of the solid materials in a tokamak

is fully classical with respect to the electric and magnetic fields; we then make the first

assumption, that the macroscopic charge and current densities are related to these fields

through known constitutive laws. We will further restrict ourselves to materials which

cannot be significaAtly magnetized; neither C-MOD nor ITER has an iron core.

Polarization effects will be excluded for clarity, although it should be noted that the

presence of polarizable materials will not affect the final model, as their behavior is

unimportant in the magneto-quasistatic limit. Thus we start with the following form of

Maxwell's Equations, including charge conservation:

23



p( r ,t)
(2.1) VxE(r,t) = ,t

(2.2) VX _E(r,t) 6B- 3(7,t)
a)t

(2.3) 0-B(rt)=0

(2.4) VxB(rt) = po J(r,t) + poEo t

(2.5) a J(rt)=0(25) at' + V

In these equations, t denotes time, 7 denotes spatial position, F the electric field, B the

magnetic field, p the free charge density, J the free current density, and the

permeability and permitivity of free space are given by po = 4n x 10-7 H/m and Eo =

8.854 x 10-12 F/m respectively. A standard reference on these equations and

electrodynamics in general is [1]; a good reference on analysis of continuum

electromechanical systems, including polarizable and magnetizable media, is [2].

This set of equations must be closed with a constitutive law relating J to the other

quantities. Given the presence of a wide variety of conducting materials in a tokamak,

and occurrences like metal bolts piercing insulating tiles, it would seem necessary to use

some complicated, anisotropic conduction model; however, complicated does not imply

accurate or useful, and the complete information (down to the physical condition of each

fastener) needed to construct such a model is not necessarily known. Thus we find it

more than adequate for our purposes to introduce a linear, isotropic Ohm's Law for a

stationary conductor

(2.6) J(r,t) = ,(r)E(r,t)

where the electrical conductivity a is a known material property. The possible presence

of superconducting coils in the external magnetic field system is treated in this model

by taking the limit a-+ - in Ohm's Law if it is desired to incorporate self-consistent coil

currents.
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Finally, for completeness we give the macroscopic Lorentz force density due to the

interaction between currents and magnetic fields [2],

F (r,t) = J(r,t)x B3(r,t)

The given set of equations is much too general for our needs. We can simplify them

greatly by introducing the relevant time and length scales and showing that we can

neglect several transient effects which happen much faster than the disruption

phenomena of interest.

The first set of scale lengths pertains to the observed characteristics of typical C-MOD

plasmas and disruptions. Referring to the schematic in figure (2.1) , we have

rp, the plasma minor radius, - 20 cm;

rw, the vacuum chamber minor radius, - 30 cm;

the disruption time scale td, the time it takes the plasma

and impact the wall, typically 1-5 ms.
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Figure 2.1. Schematic of Alcator C-MOD chamber and plasma dimensions

Inherent in Maxwell's equations in a conducting medium with length scale L, we have
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* TEM = L /c, the electromagnetic wave transit time, where c = 1/(pa0 S) / 2 is

the speed of light in a vacuum;

* TE aE/a, the charge relaxation time;

* TM pa oaL 2 , the magnetic diffusion time.

Using rp as a length scale, and the conductivity of stainless steel (a = 1.43 x 106 mho/m),

we find

TE - 6.2 x 10-18 s << TEM - 3.3 x 10-11 s << TM - 18ms

Introducing a normalized gradient operator i = LV and a normalized time F t/Td, we

can re-write equations (2.4) and (2.5) as

V XV XjTM 6B + TEM 2 a6B 2

(2.7) Vx-x= + 2
Td Cof Td2 (T2

(2.8) E (V.j) + Vj = 0
Td ()j

Therefore, to order TEM/Td we can neglect the displacement current contribution to

(2.7), and to order TE/Td we can assume charge relaxation takes place instantly, leaving

only the second term in (2.8). This de-coupling of free charge from the model means that

the divergence of f given by equation (2.1) does not enter into this ordering.

Note that the value used for TM is not unique, since the combination length scale L2 can

take quite a range of values in this problem. For diffusion of current in the wall, L -

1cm, we have TM - 0.2ms; for the toroidal inductive time scale given roughly by the

mixed length scales in parpRo, we find TM i Is. This particular limit where

TM,min < Td < TM,max

is called the "magneto-quasistatic" limit, and the final set of equations is given by

(2.9) Vj =0

(2.10) V rx = -B (Faraday's Law)

(2.11) V-B =0
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(2.12) V x B = p, (Ampere's Law)

(2.13) J=of

2.2 General Equations: The Plasma

In order to choose the proper model for the roughly 1020 electrically charged, fairly

energetic particles of various species which compose the plasma, let us identify some

additional plasma parameters.

* vp, the typical disruption velocity, - ~ 100 m/s;td

* n, the number density of particles per cubic meter, - 1020 m-3;

* p, the mass density, - 3.3 x 10- kg/m-3 for a deuterium plasma;

* kbT, the temperature of the plasma in the energy units electron-volts, eV;

1 eV is 1.6 x 10-19 joules, corresponding to 11,600 Kelvin. We take a typical

"hot plasma" value to be - 1 keV, a typical "cold plasma" value to be - 50

eV.

* P, the isotropic portion of the kinetic pressure, - nkbT - 800 Pa (cold) to

16 kPa (hot);

* IP, the toroidal plasma current, - 1 MA

We are concerned with the bulk motions of the plasma, with length scales of order rp,

and with the macroscopic current density, also resolved only to length scales rp. Over

these distances, we can consider the plasma to be electrically neutral and to form a

continuous medium, to be described by a single-fluid MHD (magnetohydrodynamic)

model which conserves mass and momentum. A rigorous derivation of this model from

kinetic equations and a proper justification of its realm of validity is an entire area of

study, a good reference for which is [3].

The MHD equations of mass and momentum conservation are

(2.14) a+ V-pv (r,t) = 0
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(2.15) p at + p(vTV)v = Jx B - VP

where v is the plasma velocity, p is the mass density, T the current density, I the

magnetic field, and P the isotropic portion of the pressure tensor. The equation of

conservation of energy will not be required, as the number of unknowns in the problem

will be reduced shortly.

The disruptions in C-MOD initiate with a thermal quench, where the plasma cools from

keV temperatures to -100eV in a hundred microseconds, with little change in electrical

quantities. Comparing the individual terms in the normal component of the momentum

equation, we see that

JJB4- J B - 2r 3 - 4.1 X 107

VP ~ nkbT - 8 x 103
rp

and the pressure gradient term may be neglected. However, even for disruptions which

do not have a thermal quench, we see this term may be ignored. A tokamak is a "low-D"

device, that is, the ratio of kinetic to magnetic pressure P = 2poP/BO2 is at best a few

percent. Repeating the above calculation for a hot (1 keV) plasma shows

1O01 P 255 > 1
27r2r 2nkbT 2

Thus the pressure and therefore an associated energy equation and equation of state can

be neglected for the purpose of studying halo currents.

The next step in simplifying the plasma model is to restrict our attention to "slow"

disruptions, where Td - ims and the plasma velocity is vp - 100m/s. We can compare

the inertial term in the momentum equation to the remaining terms and we see

TdPop 2  1
2ir 2rp3mdnvp
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By dropping inertia we greatly simplify the description of the plasma, since both the

velocity and density no longer appear, leaving

(2.16) J x B = 0

as our only equation. However, we can no longer use this model to study plasma

behavior on the ideal MHD time scale, tMtHD - 11s, where inertia plays a considerable

role in governing disruption behavior.

Equation (2.16) deserves some comment. In ideal MHD it represents the equation of

equilibrium for a pressureless plasma, and yet it appears here in the context of

disruptions! It must be emphasized that going from equation (2.15) to (2.16) does not

imply that the plasma velocity is zero, but only that inertia does not have a major effect

on the reaction of the plasma to applied forces. We will see that equations for the finite

plasma velocity vp will be recovered from (2.16) when we consider some simple

examples in Chapter 3. For the cases where (2.16) applies even though the plasma is not

in equilibrium, the description "force free" is often used, although it is equally

misleading.

To complete the description of the plasma, we need to couple the fields with the

current, and return once more to Maxwell's equations. Even a "cold" fusion plasma has

a good electrical conductivity (about 7x105 mho/m at 50ev), with a corresponding short

charge relaxation time tE ~ 1.3 x 10-17s << d and long magnetic diffusion time tM - 9ms

- td. Thus we may apply the same ordering as before to Maxwell's equations and arrive

at equations (2.9)-(2.12). As before, we also need a constitutive law relating J and E. In

the single-fluid MHD model, this information comes from the electron momentum

equation and shows that, to the extent that the plasma is not a perfect conductor, a

simple Ohm's law does not apply. The effect of resistivity is not isotropic with respect to

the magnetic field [4] and there are additional terms corresponding to the Hall effect

and diamagnetic drifts. However, these issues are related to including some kind of

transport model for the plasma, incorporating local gradient information on the

pressure and temperature. Such models are notorious for adding marginal accuracy at

29



the cost of considerable complexity. We will avoid this poor investment by using Ohm's

Law anyway, in the correct form for moving media

(2.17) j = p(E + v x B)

and by acknowledging that the plasma conductivity ap appears as a fitting parameter

with respect to existing data, or can be provided by some simple Spitzer-like model

(2.18) a, = 1.9 x 104 Zin(A) mho/mZ In (A)

where the temperature must be treated as a known quantity.

Note that in equation (2.17), the plasma velocity appears in a fashion consistent with the

ordering:

a-P (Y P 7tr 150

v xB -I vpB4 -500

As a final comment about our description of the plasma, note that by using Ohm's Law

to eliminate E from Maxwell's equations, we have specified both the divergence and

curl of j and B and therefore, by Helmholtz's theorem, determined them uniquely as

vector fields. Where, then, is the room to enforce equation (2.16)? This ties in to the

plasma velocity and the "free boundary" equilibrium problem, which will be addressed

at various points in later chapters.

2.3 The Sheet Current Model

The system of equations we have so far consists of (2.9)-(2.12) in the solid structures and

the plasma, and vacuum regions with J set to zero; (2.13) in solid structures; (2.16) and

(2.17) in the plasma. Across the interfaces of these various regions we have the

associated boundary conditions
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(2.19) A = 0

(2.20) [a.-9B =0

(2.2 1) [ x- . g = polR

where fi is a unit vector normal to the bounding surface. This system is three-

dimensional, non-linear, and coupled across multiple regions with moving boundaries.

It contains the right amount of physics for our applications, but is still quite complicated

to solve. In order to achieve our goal of a model which is suitable for design and

parametric studies, we need to narrow the scope of application, and very carefully tailor

the method of solution.

To define the scope of the sheet current model, we need to deal with three issues:

describing the geometry; identifying which tokamak components we are most

concerned with; and classifying the different types of toroidal asymmetries which enter

the problem. Unlike the previous section, we will not introduce a formal ordering to

further simplify the equations; we will simply identify what can be handled elegantly in

the model, and what cannot.

z Y

P

R, X

Figure 2.2. Various coordinate systems used in the model

First, let us consider the geometry of a tokamak plasma. Even in the presence of

significant asymmetries, the system is dominantly toroidal. The poloidal cross section of

the tokamak, however, can be quite complicated; consider the C-MOD design with its
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intricate divertor structure. The most convenient system to describe this is a cylindrical

system (R,$,Z), where the poloidal plane is mapped into the (R,Z) plane. (See figure 2.2).

To describe the plasma, it useful to have a local TNB (tangent/normal/binormal) frame,

relative to the surface of the plasma and centered at the origin of the poloidal plane in a

toroidal system. This system, as labeled in the figure, is given by coordinates (p,vO); in

place of the usual poloidal angle coordinate 0, we use an angle defined clockwise from

the inboard side of the plasma, v. This gives a right-handed system where the $

coordinate maps to the cylindrical system without any change in sign, and points in the

plasma can be mapped by transformations R = R(p,v), Z = Z(p,v). Finally, to handle

asymmetries, it will be necessary to resort to a Cartesian system for some intermediate

calculations; this is given by sharing the Z axis with the cylindrical system, and rotating

the X-Y plane so that the X axis lies along $=0.

Second, let us identify what parts of the tokamak structure concern us most. The closest

metallic structure to the plasma, and therefore the most strongly coupled, is the wall of

the vacuum chamber (including the contours into divertor chambers and limiters). This

is also the structure which suffers the heaviest electrodynamic loads, since it can be in

contact with bulk plasma and therefore carry halo current. While there is considerable

metallic structure outside the chamber, and by design the chamber does not serve as

electromagnetic shielding, we will assume that the dominant interaction is with the

wall, and limit our attention to that. The exception, of course, is the coil system which

generates the external magnetic fields. At the lowest level, we must know the coil

currents in order to model the j x B6 interaction of the plasma with the field, and of Ip
with the transformer. At a higher level, it is desirable to solve self-consistently for the

coil currents given an external voltage and a set of feedback laws, to model disruption

control as well as the structural loads on the coils themselves. We will not, however,

introduce this complication with respect to the toroidal field coils. The massive

inductance of the TF system and resulting slow response time (TL/R - 4s) means we

may treat the toroidal field as constant in time. Thus, our tokamak model will consist of

the vacuum chamber and the complete set of poloidal field and transformer coils,

immersed in a known toroidal field.

Finally, we come to non-axisymmetric effects. We note that our simplified model of a

tokamak is in fact largely axisymmetric about the Z-axis. We will not be concerned with
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very localized eddy currents in the external PF coils, but only with the zero-order

toroidal current. While vacuum chambers are not truly axisymmetric, the asymmetries

appear in high order; for example, Alcator C-MOD has ten-fold symmetry about its

access ports. Since we will be focusing on lower-order asymmetries, we will treat the

vacuum chamber as being perfectly symmetric, but capable of carrying non-

axisymmetric currents.

Tokamak plasmas are, by design, fully axisymmetric when in equilibrium. During a

disruption, two types of asymmetry can occur. The first is for the displacement of the

plasma to be symmetric with respect to the vacuum chamber, but the distribution of

currents in the plasma become asymmetric. The second type is asymmetric in both

displacement and current distribution. The first type does not add any special

complication to the model, and can be handled in full. The second type presents a

number of difficulties, as follows:

* The contact area between the wall and the plasma can occur in

unconnected, irregularly shaped patches which vary rapidly in time.

Finding these patches is a very complex task; to do so efficiently would be

a considerable piece of work by itself.

* The plasma can be rotating toroidally at frequencies up to several

kilohertz. When the plasma hits the wall at some local strikepoint, there is

no reason to believe that the force-free model holds for the region which

lies "ahead" (in toroidal angle) of area which has been scraped off by the

wall; as the plasma continues to rotate, this region rapidly becomes large.

* There is no efficient method for calculating the magnetic fields generated

by an irregularly shaped three-dimensional geometry.

Because of the first two points, we will not study disruptions of this type past the point

in time when the plasma strikes the wall. This still leaves plenty of useful information

relating to growth rates and loads due to non-axisymmetric eddy currents in the

vacuum chamber. Because of the third point, we will further restrict ourselves to

displacements which maintain an axis of symmetry with respect to the plasma ("n=1"

modes, in the nomenclature of MHD stability); this consists of all manner of rigid non-

axisymmetric displacements, such as shift, tilts, and rotations, as well as pure
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axisymmetric major and minor radial motion. Denoting the plasma system by S' and the

wall system by S, we note that transforming a field or position vector between the two

frames can be done with minor algebraic operations, detailed in Appendix A, provided

the displacement between the origins of the two Cartesian systems, (Ax, Ay, Az), is

known, as well as the rotation of the Cartesian S' with respect to S ($x, $yz, $xy)-

Toroidal rotation of the plasma is contained entirely in $xy (see figure 2.3).
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Figure 2.3. Constructing the plasma's locally axisymmetric frame

The restrictions outlined above mean that halo currents can only be studied in the

context of the first type of asymmetry. This would seem to be a significant restraint.

However, the measurements of the toroidal distribution of halo current show that the

"peaking factor", the ratio of peak to zero-order (symmetric) current in toroidal angle, is

generally not much higher than 3. This is an indication that the plasma displacement

cannot be too strongly non-axisymmetric, as partial contact with the chamber would
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result in a small symmetric component to the current (not zero, due to eddy currents),

driving the peaking factor very much higher than 3.

We have now established all the foundations necessary to derive the sheet current

model. Our goal is to show that the given tokamak/plasma model can be adequately

described by assuming all conductors come in the form of thin sheets, with all currents

necessarily constrained to the plane of the individual sheets. This model, which can be

justified fairly rigorously, strikes an elegant balance between filament models, which do

not allow the flow of continuous poloidal currents, and fully distributed conductors,

which have too many degrees of freedom to be solved rapidly.

d
x

y

b J

Figure 2.4. Local coordinate frame in a thin sheet

Consider a toroidally axisymmetric conducting sheet with poloidal thickness d and

radius of curvature b, carrying a current density J (see figure 2.4). We expand the

coordinate system into a local Cartesian system, and introduce the scale length d in the

ex direction and b in the 6 direction. We again normalize time to the disruption time

scale f = t/Td and introduce the magnetic diffusion time TM = poyd 2. Taking a to be

constant, we eliminate E from Maxwell's equations, take the curl of (2.10) and substitute

(2.9) and (2.11). The result is a diffusion equation for J, which in normalized form is

(2.22) -- d2+ 2 - CMj
(3~2 b2 ()y2 ~Td Ot

We assume that the sheet is thin both geometrically (d/b << 1) and electromagnetically

(TM/td << 1). The leading order behavior of this equation

35



=~j 0

suggest letting T (xyt) T(y,t) + j (xy,t) +... , where / J TM/Td. The boundary
01 01

condition (2.19) forces i.j to be zero, so that the leading-order current is purely

tangential to the sheet.

We define a "sheet current" as K =d. Note that this process (including $ dependence)

takes a set of three unknowns in three spatial variables and reduces it to two unknowns

in two spatial variables, a significant reduction.

For a 1 cm thick stainless-steel vacuum chamber with average minor radius b - 30cm,

we see d/b - 0.03 and TM/td - 0.1, so that the chamber may be modeled with fair

accuracy as a thin sheet.

To apply this model to the plasma, note that equation (2.16) implies the existence of

closed poloidal flux surfaces, labeled by their flux value V, such that

(2.23) J.Vx 0

Recall we consider only those cases where the plasma geometry is toroidally

axisymmetric in some coordinate system (not necessarily that of the vacuum chamber).

We can parameterize the shape of a flux surface in cylindrical coordinates using the

poloidal coordinate from the TNB frame: R = R(v), Z = Z(v), $= p. From these, we can

create the unit vectors describing the TNB frame:

(224) i = + d z , tangent

i1 dZ, dR ^
(2.25) = + z normal

(2.26) ^ S , binormal
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dR (d Z
(2.27) Q _ +d

and map the current to this local system:

(2.28) JV = V T , J ep = 0

where the last equation holds from (2.23). Thus, independent of the magnetic diffusion

time in the plasma, we can approximate the plasma by a number of sheet currents (say,

N of them), defined by

N -
Ki(v,$,t)

(2.29) T(p,v, v,~,S(p-pi), A rp(v=0)/N

where 8(p-pi) represents the Dirac delta function in the minor radial, locally normal

coordinate p. Quite accurate representations can be achieved with modest N, as we will

see.

Finally, to incorporate the external field coils, we note that all we are concerned with are

the axisymmetric toroidal currents flowing in the coils. Thus the coils will be

represented by Nc bundled filaments, from whose geometries and material properties

we can calculate resistances and inductances.

What we have achieved is elimination of the independent variable p by discretizing it

into a small number of sheet currents, and of the dependent variable Jp by taking

advantage of the physical system and using a flexible coordinate system. The last major

step in completing the model is to carefully choose the method of solution, so that it will

turn out that the set of sheet currents is the complete set of electromagnetic unknowns;

no further degrees of freedom will be necessary to describe the magnetic fields.

At this point it will be necessary to establish some notational conventions. Dependence

on spatial variables will be suppressed unless absolutely necessary; while several new

sub- and superscripts will be introduced and used with consistent meaning, in any

particular equation only those necessary for clarity will be shown. To distinguish the
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different domains, "w" will denote a wall quantity, "p" a plasma quantity, and "c" a

quantity in the external coil system. Components of vector quantities will be labeled by

subscripts from the particular coordinate system (R,$,Z), (p,v,$), or (x,y,z). To single out

a particular sheet current in the plasma, the subscript i (ranging from 1 to N) will be

used; no subscript will be used, however, to distinguish the associated local TNB

coordinates. The wall system S and plasma system S will be distinguished where

necessary. While these conventions may sound confusing, the result will be

considerably more clear than if all subscripts were listed in all cases.

The goal of the last step in this derivation is to use Green's functions to rewrite our

system of differential equations as a system of integral equations. The advantage of the

integral formulation is four-fold:

* The irregular geometry, which is difficult to discretize for differential

operators, is inherently easier to handle with integration.

* By taking advantage of the symmetries in the problem, some of the

integrals can be carried out analytically, saving considerable numerical

computation.

* The magnetic field is eliminated as a separate degree of freedom, which

also completely eliminates the vacuum regions from the computational

domain.

* All derivatives normal to the surfaces, which are not clearly defined, will

be eliminated.

We begin by using equation (2.11) to write B as the curl of another vector X, called the

vector potential:

(2.30) B = Vx A

The divergence of X can be chosen arbitrarily without changing B, so we choose for

convenience

(2.31) V -A= 0
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Using these two equations in (2.12) yields

(2.32) 2

Through the use of a Green's dyadic G, this equation can be solved in closed form, for A

in terms of T, for any geometry, based only on the assumption that all sources of

current (distributed, surface currents, and filaments) are included in J:

(2.33) A(r) = J =G(7,r ')-J(7') d7'

A complete derivation of this result, as well as expressions for G, is given Appendix A.

This result is extremely useful since it links all the different domains into a single

operator; the presence of delta functions with the sheet currents and with the filaments

representing external coils means the volume integral can be immediately reduced.

Including the contribution from the toroidal field B4 , we can calculate A at any time

from the expression

N Nc

(2.34) A(r) = r I ( + Xk )' dv' d$' + G- (7) Ic - RBO In R e^
:;A w i=1 pRP A Z

And from equation (2.30) we can write

N Nc

(2.35) B(r) = J - (R + KR )' dv' d$' + IGB(r) Ic+ B, k
w i=1 p i=1 tr)I Oe

where Gt = Vx GA and G. = Vx GA, the curl to be taken in the unprimed coordinates.

The transformation of the equations is almost complete. The remaining step is to

integrate (2.10) over a surface, which at this stage is arbitrary save that it must be

bounded by a contour that lies entirely on a current sheet:
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(2.36) f (x) -n dA = -f n dA

Stokes' theorem may be used to re-write the left hand side as a line integral around the

bounding contour:

(2.37) fE - di= - n dA

Since the contour does lie on a current sheet, we can substitute Ohm's law, keeping in

mind that the surface can be moving:

(2.38) f V x dT= t- . dA

Rearranging terms and using (2.11) to add the last term on the right hand side,

(2.39) -dI =- - n dA + v x - d -I nBv-dA
f JA at

we now apply the generalized Leibnitz rule to re-write the entire right hand side under

a total time derivative. This step is crucial and has several computational advantages

since the coordinate frame of the integration is always that of a particular sheet,

regardless of motion:

(2.40) J -iv d I =d f { dA

Using (2.30) and Stokes' theorem once more, we reach the desired form:

(2.41) - dl = -dt A-di
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Recognizing that the flux Nf linked by a given contour is f A.dl, we see that we have in

fact reached the traditional form of Faraday's Law where both sides of the equation are

evaluated in the same reference frame,

(2.42) E- dT = -

The sheet current equations are finally complete. On a given sheet with conductivity a

(aw or ap), thickness A (d, or Ai), and currentK (Kw or Kp), we have the system

(2.43) V - = 0

N 
Nc

(2.44) J - dl = - g (G + _ dv'od' + GA(r) Ic - RB In R ^z). a

Of the three components of (2.16) in the plasma, only two remain unique:

(2.45) KvB, - KoBv = 0

(2.46) BP = 0

For the coil currents, we define the i th coil current Ic,i = T Jh dAi, the self-inductance Li

= ,i , mutual d ) 1j dAi, and denote the resistance by

14,i and applied voltage by Vc,i. There are then i equations of the form

(2.47) IcilR ,i = Vci -L.i - M 1m CC, + p d
I dt i~j dt A (X, , -e dAi

where X, and p refer to the contributions to the total vector potential from the wall

and plasma sheets in (2.34).

Thus, the basic set of equations (assuming for the moment that the PF system is

specified) just (2.43-46), repeated here for easier visibility:
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(2.43) V -K = 0

c fr(r N Nc
(2.44) d I =dt GA (K + IK dvd' + A(r) I - RBO In R ez

(2.45) KvB - KOBy = 0

(2.46) B, = 0

Equations (2.43-4) determine the currents, and (2.45-46) determine the shape and

position of the sheets.

2.4 Initial Information, Given Parameters, and Calculated Results

The sheet current model consists of a set of coupled non-linear integro-differential

equations that requires initial conditions, and a significant body of information which

enters parametrically. From this one can use the model to calculate a considerable set of

results, which is gratifying to see given the extensive reduction of the equations from

their initial to final form. Given the wide range of parameters available as input, the

whole system captures a broad range of tokamak behavior, pertaining to the plasma

itself, the plasma's interactions with the chamber, the mechanical loads placed on

various structures, and the behavior of the PF system. This will all be incorporated into

TSPS-3D, the tokamak/shell plasma simulator, described in Chapter 4, but it is useful to

outline this information in the present section, in the context of the mathematical

requirements of the model.

Boundary conditions usually require significant attention in differential systems.

However, formulating the equations with infinite-space Green's functions means that

the jump conditions (2.20) and (2.21) appear automatically as properties of the integral

operator in (2.44); since all currents in this system come in closed loops, the condition

(2.19) associated with equation (2.43) is satisfied automatically.
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The first derivative in time requires that values of all currents be known at the initial

time when a given system is studied; typically this will be zero current in the wall and a

known current in the plasma and the external field coils.

The initial distribution of current in the plasma is not arbitrary, but, in combination

with the plasma shape, must begin in a valid equilibrium satisfying (2.45) and (2.46); a

brief consideration of techniques to find these equilibria is given in Appendix B.

Depending on whether the model is being used to study existing plasma shots or to do

design studies for new machines (or new scenarios in existing machines), some subset

of the following information is required:

* The total toroidal plasma current.

* The minor-radial profile of toroidal current.

* The desired number of sheets used to represent the plasma.

* The parameterized shape Rpi(v) and Zp,i(v) of the i th sheet.

* The total cross-sectional area of the plasma, or its minor radius at a fixed

value of the v coordinate.

* The complete set of information for the external fields, as described below.

The conductivity of the plasma must be known as a function of time. It is assumed to

have some toroidally symmetric value on each sheet and the wall. If some simple model

is to be used in place of a given constant, all information used in the model must be

specified as a function of time (such as temperature). From a numerical standpoint, it is

possible to couple the conductivity to some of the unknowns in the sheet current model,

but only if coupling is weak enough to "lag" the unknowns in time; however, it is not

expected that the sheet current model contains sufficient information to choose an

accurate model of this type.

The external field system must be described by the following information:

* The number of coils in the system.

* The centroid (R,, Zc) of each coil, its build (AR, AZ), and the desired

number of bundled filaments used to represent it.

* The initial current flowing in each coil.
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* The conductivity and applied voltage as a function of time for coils whose

currents are to be solved self-consistently; the current as a function of time

if the coils are to be "fully specified". With respect to numerical solution,

feedback models (linear or otherwise) between applied voltage and

current in the self-consistent coils can only be used if "lagged" values of

the current yield stable results.

The external toroidal field is assumed to be fully axisymmetric in the wall frame, i.e., no

ripple; thus, it has the form B0R0/R. The product BcR 0 = B must be specified. It can be

time-dependent, but generally need not be.

The parameterized shape of the wall Rw(v), Zw(v) must be known, along with a profile

of thickness dw(v) and conductivity aw(v). The shape of the wall can include any

number of closed loops; this is useful for incorporating divertor structures. If the shape

is not a closed loop, only axisymmetric toroidal currents can be examined in that piece;

such shapes are not supported in the numerical implementation of the model.

From the model one generates the following information, as a function of time:

* Spatial profiles of toroidal and poloidal currents in the wall and the

plasma, from equations (2.43) and (2.44). Integrating the toroidal current

profile yields the total toroidal current flowing on each sheet, as well as

the total plasma current.

* Self-consistent coil currents from (2.47), if desired.

* The position and shape of the sheets representing the plasma, from (2.45)

and (2.46).

* The magnetic fields at any point in space can be found from (2.35).

* Flux surfaces can be examined using the vector potential, from (2.34).

* Once the currents and fields are known, the body forces in the wall

(Kw x B)/d, can be calculated and used as inputs to standard structural

dynamics models, to calculate the resulting stresses and strains on the

vacuum chamber.
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2.5 Equivalence with Differential Form

The introduction of integral operators into the sheet current model may not seem

desirable, so in this section we will justify why the equations were deliberately put into

integral form. This will be done by showing the solution procedure for a simple integral

equation, identifying the proper form of the differential system to be used for

comparison, and then showing that even though in principle the order of operations to

solve the equations is the same, in practice the systems are very different. Since the

details of using Green's theorem are given in Appendix A and the given references, it

will be applied without further justification in this section.

Consider that in the vacuum regions between successive sheet currents, J = 0; thus,

according to (2.12) B is irrotational and can be written as the gradient of some potential

so that by using (2.11) we get Laplace's equation,

(2.48) V2 4 = 0

The sheet current model can be considered as a multi-region problem where (2.48)

holds in each region, and the current enters through the jump condition (2.21) across the

boundary for each region. The use of Green's functions from this starting point will

eventually lead to equations (2.43) and (2.44). For the comparison in this section, let us

look at a simpler case. Consider a two-dimensional region in the (X,Y) plane bounded

by a parameterized curve C, given by Xc=Xc(v), Y,=Y,(v) (see figure 2.5). In this region

(2.48) holds, and on the boundary we give the value of $ = $(v). It can be shown (see,

for example, [5]) that $(X,Y) can be calculated from the expression

(2.49) $ = aG(XY;v V(v) dv

where our new unknown IV(v) satisfies the one-dimensional integral equation

( ) G(v;v')(2.50) IV(v) = 20cJv) +2j bN (v') dv'
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In both of these expressions, the normal derivative of the Green's function G is fully

determined once the parameterization of X, and Yc is given. Let us consider how this

equation can be solved by the use of orthogonal functions. While there are many

numerical variants of this, some of which lower the operations count we will arrive at

here, they are not quite as transparent; since those techniques would apply in an

identical manner for the differential form, we can make a fair comparison without using

them.
Y

/IV!::C: 
X(V), Y(V)

X

Figure 2.5. Arbitrary curve parameterized in X-Y plane

Suppose we choose to represent V by some complete set of orthogonal functions Pn(v),

which are assumed to satisfy

(2.51) Pn(v)Pm(v) dv = hn Smn

where 8,, is the Kronecker delta. We restrict ourselves to N of them:

N

V(v) = _ vi Pi(v)

Substituting this into (2.50) and operating with JPm(v)dv reduces the problem to the

following linear algebra problem

Mij Ai = $i , where $ = 2f Pi(v)oc(v) dv

Mij= hn Sn - 2ff lPi(v)Pj(v') dv dv'

46



which consists of an NxN matrix, each matrix element being a double integral, plus N

more integrals over Oc. Once i4 is known, $ is calculated from (2.49), which is effectively

a double summation.

When comparing the integral system with the differential one, it is commonly assumed

that the way to proceed is to take the region enclosed by C and discretize 0 inside it

with roughly NxN degrees of freedom. One then applies (2.48) to the discretized form

and get a matrix equation whose source term is provided by the boundary conditions.

While innovative choices for the discretization can be made by the use of finite

elements, so that one can conform to the shape of an irregular boundary with extensive

but not excessive effort, one glaring problem becomes evident. NxN degrees of freedom

require an (NxN)x(NxN) matrix. The reduction of the problem to a one-dimensional

equation (2.60) is clearly more efficient.

However, there is a standard procedure for reducing (2.48) to a one-dimensional

problem without resorting to Green's functions, and a fair comparison between the

differential and integral forms must involve it. Just as it has been long known in

classical mathematics that a Laplace-type operator can be inverted with a Green's

function, it has been known that solutions can be written as sums of harmonic functions

related to the coordinate system, such as Fourier series. If the shape of the boundary

conforms naturally to the coordinates, then in fact this is the simplest method of

solution. In general, however, the boundary will be irregular.

In general the solution must be written as a double sum over pairs of functions in each

coordinate (e.g., ekx, e-kx and sin ny, cos ny ), which we will give general labels En(x),

Fn(x), Sm(y), Cn(y):

N M

(2.52) $ = 11 (A1,i jEi(x)S i(y) + A2, jEi(x)Cj(y) + A 3,i jFi(x)S i(y) +A4 ,1jFi(x)Cj(y))
i=1 j=1

where the four harmonic functions each satisfy relationships of the type (2.51), and

(2.52) identically satisfies (2.48) in X,Y coordinates (which need not be Cartesian). (Note

we are not addressing the assumed discrete nature of the separation constants.) One

then proceeds by setting
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N M

4c(v) = 1Z (A1 ,i Ei(v)S j(v) + A2,j jEi(v)Cj(v) + A3,j jFi(v)S j(v) +A 4,i jFi(v)C,(v))
i=1 j=1

and taking the inner product with each of the four families of functions in turn. If the

coordinates are separable, the right hand side integrals are known through the

orthogonality conditions, and pick out individual coefficients. The problem is then

completely solved by doing the 2N+2M - 4N integrals on the left hand side, and $ is

evaluated by the double sum (2.52). If the coordinates are not separable with respect to

the shape of the boundary, as is usually the case, all constants are coupled and a 4Nx4N

matrix of single integrals results.

Without further argument, the case has not been made. The integral form loads an NxN

matrix with double integrals; this means loading the matrix, NxNxNxN, actually

dominates the process of inverting it (order N 3)! However, there is an additional point

to consider. In practice, can the integral form and differential form both use the same

order N and get equivalent results? The answer is no. The integral form accounts for the

shape of the boundary in the integral over the Green's function in (2.49) and (2.50),

whereas the expansion functions need only conform to the smoothness of $. The

degrees of freedom to accommodate an irregular boundary in the differential case can

only come from (2.52), so that Ndiff must necessarily be greater than Nint. Letting Ndiff

equal CNint, the correct comparison is between inverting the differential matrix and

loading the integral one: 64C 3Nint3 versus Nimt 4. Even for N - 1000, if C>2 the integral

method is superior. In practice, even to represent the C-MOD vacuum chamber, N -

200, and given the irregular shape one would expect C>2.

Finally, there are numerical methods (such as collocation) where it is not at all clear that

the reduction of order takes place for both methods; this method would reduce the

double integrals to single integrals when loading the matrix for the integral equation.

Then the comparison would be unconditionally favorable, 64C3 versus 1.
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Chapter 3. Heuristic Models

The sheet current model derived in the previous chapter achieves its economy by

concentrating very specifically on the physics of interest. However, the complicated

geometry of a tokamak combined with the non-linear nature of the system (2.43)-(2.47)

means that closed-form solutions are not feasible. Nevertheless, it is desirable to have

some idea about the behavior that can produced by this system, especially in the area of

the dependence of halo currents on plasma parameters. Therefore, in this chapter we

will consider some extremely simplified models that have little quantitative utility for

predicting the behavior of real systems, but which provide some very useful qualitative

pictures that go a long way towards clarifying observed phenomena.

We will consider some simple scalings of poloidal halo current, an explicit example of

how to extract equations of motion from (2.45), and a simple examination of the

distribution of loads on the vacuum chamber. Some of these examples will be carried

out as further reductions of the sheet current model; others will be simplifications of

systems with a continuously distributed plasma current. The end goal is to provide a

heuristic means for visualizing the behavior of the plasma and the currents.

3.1 The Magnitude of Poloidal Halo Current

The dominant reason that poloidal halo currents became an issue of some concern is

that the magnitude of the current was measured to be a significant fraction of the

equilibrium plasma current, as high as one-half [1]. In the absence of other effects, the

dominant contribution to the T x I loading of the wall is then JyB,. Since the wall is of

fixed dimension, it is often easier to integrate Jv across the wall thickness and around

the toroidal direction and work in terms of a measurable quantity, I, where I is the

total poloidal current flowing in the chamber.

Consider a plasma undergoing an axisymmetric radial disruption, at a time when a

significant amount of plasma has already impacted the wall (see figure 3.1). In an

axisymmetric system, a simple integration of equation (2.9) yields

(3.1) R(v)Jy = constant
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along any tangential path, including those which link both the wall and the plasma.

Therefore, simple continuity arguments require that the total poloidal current flowing

through the plasma on the open flux surfaces (bounded by a and W1, in the figure)

must also be flowing through the wall, in the region where the wall and those surfaces

of the plasma overlap.

Figure 3.1. Open flux surfaces touching the wall

The natural follow-up to this is to assume that the poloidal halo current in the wall is

simply the accumulation of all the poloidal current in the plasma which has "peeled off"

from the open flux surfaces as they penetrate the wall. As a crude approximation to this,

one can ignore the effects of resistive decay and inductive interaction with the wall, and

simply examine the poloidal current profile in the equilibrium plasma.

The MHD formalism for axisymmetric plasma equilibria is given by the Grad-Shafranov

equation,

(3.2) A*W = pR2 _ P d2F
d - 0  dy

which can be quickly derived from Maxwell's equations and the steady-state form of

(2.15)

(3.3) TJ x = VP
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by defining IV = RA, and noting that the A*Nf operator corresponds to R(8 -V 2X). It

follows that the toroidal current density and poloidal magnetic field are given by

(3.4) Jo = -
R0R

(3.5) B = R X +B

dF
In (3.2), P is the pressure profile and is proportional to the poloidal current density

dVf

in flux coordinates, so that the total poloidal current flowing between two flux surfaces

\Va and 1b is

Vb YbdF
(3.) I| =2n dW = 27c ( F(Wb) - F(Wa))(3.6) 1 a fV1a dy

We can relate this to something a little more informative by noting that in the "force

free" case, the gradient of P is zero and the toroidal current density is given by

(3-7) F dF
(.)JO = p'OR dV

from (3.4). In an axisymmetric system it is simple to integrate (2.11) and combine it with

(2.12) integrated in a toroidal path with Stoke's theorem, leading to

F
(3.8) BF = pOR

so that (3.6) becomes

fVb VbO dW
(3.9) Iv W = 27r da B
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Another form of (3.9) which is more useful for comparison with experimental data can

be obtained by switching from flux to spatial coordinates. By dotting equation (3.5) with

e we find
V

(3.10) RBv = e^ V
P ~ 1 dp

which when substituted into (3.9) gives

Pb (PbRBvl PbT
(3.11) Iv = 2nfp Bv dp = 2 p dp

Pa Pa Pa q

where the limits of integration correspond to the minor radial coordinates pa, Pb where

the flux has the values Nfa, Vb, and use has been made of a local safetyfactor q, defined

by

(3.12) q = RB

Note that even though this safety factor does not require averaging any quantities over

the flux surface, it is not a function of the poloidal coordinate, v. This is a result of the

form of (3.6), the definition of p, and the fact that in an axisymmetric, force-free system

RJ , RB4 , RBy, and RJv are all constant in v (i.e., on a flux surface). However, the limits of

integration in (3.11) are implicitly dependent on v since the actual values of pa and Pb

will vary with v, even though Va and 'b do not. Thus if pa and Pb are held fixed as v is

varied, the integral itself becomes dependent on v. If a and Vb are held fixed, the

integral remains independent of v.

A wide variety of profiles can be used in either (3.9) or the second form of (3.11), but the

first form of (3.11) yields the clearest information about scalings, especially when

examined in the case of a large aspect ratio and circular flux surfaces. For a plasma of

major radius R0 , minor radius ap, and toroidal plasma current Ip, we can express the

toroidal current profile in some parameterized form such as
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I,______ pa
P) = (1 1 C -

27 ap2 21 a ap

which would yield a total poloidal plasma current, and therefore maximum poloidal

halo current, of

1 a+3 1 a+3
pROIp2 2~(a+2)2 I_ 2 -(a+2)2

(3.13) Iv,tot = 4n ap2BO 1 -L- 2 ^ 2 gedge 1 2
2 a+2 - 2 2 a+2

For values of cc between 1 (linear profile) and o (flat profile), the shaping factor ranges

from 2 to 1. Thus for tokamaks operating with qgege - 2, as is typical for stability

reasons, it is possible to generate halo currents with fully half the magnitude of the

toroidal plasma current; in fact, measurements during shots on Alcator C-MOD with

800kA plasmas have recorded up to 400kA of poloidal halo current. In spite of this

apparent agreement, however, it should be noted that too many details have been

dropped from this model for it to provide more than a rough envelope of values. It is

best to limit (3.13) to the correlations with bulk plasma parameters:

R2Ip IpIv,tot ~ ap2 BO q ge

While the intuition behind this "peel-off" model is straightforward, care must be taken

before trying to estimate the influence of other effects, since those effects tend to lead in

opposite directions. For example, C-MOD disruptions tend to pull the plasma towards

the inner divertor structure, meaning that the plasma must move "up" the toroidal field.

Flux conservation would then tend to decrease the poloidal current. However, the

plasma also shrinks in cross-sectional area, so that flux conservation would tend to

increase the poloidal current. Of course, the current cannot remain constant, since the

toroidal field is increasing and force-freeness (2.45) must be maintained; this last point

emphasizes that the poloidal behavior of the plasma cannot be considered

independently of the toroidal behavior. No simple model can correctly balance all these

effects. They do, however, lead to the question of how the force-free requirements

produce these plasma motions, and how the motions can couple to the current. In the
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next section we will consider some simple cases where the plasma displacement can be

studied.

3.2 Force-Free Equations of Motion

The system of equations (2.43)-(2.47) is overdetermined if the sheet currents are the only

unknowns. The electrodynamic equations (2.43), (2.44), and (2.47) are sufficient in that

case. Even though the inertial terms have been dropped from (2.45) and (2.46) it should

not be forgotten that these came from equations of motion, and the degrees of freedom

originally associated with them were the two components of the local sheet velocity,

vR(v) and vz(v), where the v in parentheses is the poloidal coordinate. These quantities

do not appear explicitly in (2.45) and (2.46), but implicitly through the integrals used to

calculate 1, which contain the parameterized shape of the plasma, R(v) and Z(v). An

advantage of the total-derivative form of (2.44) is that only R(v) and Z(v) appear in that

equation as well, and thus become the two new degrees of freedom in place of the

velocity. Note that R(v) and Z(v) incorporate both "shape" and "position" information.

The expressions for the Green's functions used to calculate I can be found in Appendix

A; clearly, R(v) and Z(v) enter in a highly nonlinear fashion. Numerical solutions to

(2.45) and (2.46) will generally involve reducing R(v) and Z(v) to some limited, discrete

set of parameters, and then solving the equations in a "best fit" sense with respect to

these parameters. In this section, we will consider a very simple, degenerate geometry

where each unknown function is represented by a single parameter, for both the

currents and the plasma shape and position. Even in this limit the result will not be

closed-form solutions, but a set of nonlinear ordinary differential equations (ODEs)

which can be quickly integrated by computer.

r 3a d

b d

Figure 3.2. Simple two-sheet plasma /chamber model
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Consider an axisymmetric, large aspect ratio plasma represented by a single sheet

current with a circular cross section (see figure 3.2). The sheet has a major radius R, and

minor radius a, and an electrical conductivity a. It is surrounded by another sheet with

minor radius b, thickness d, and conductivity aw, representing the wall. Since the

plasma is represented by a single sheet, and since a Spitzer-like conductivity is

independent of density (see 2.18), the "surface" conductivity of the plasma will be given

by the product aa. We will consider the plasma to be immersed in a toroidal magnetic

field and uniform vertical field, given by

B
(3.14) It = R e Bz iz

The product RK = K involving the poloidal current must be constant in v for both the

wall and plasma, by (2.43). Taking advantage of the symmetry, we can easily integrate

(2.12) to give the toroidal field on the sheet,

B = +R(- + 2Kw)

If we take the toroidal plasma current KO to be uniform in poloidal angle, then the

poloidal field on the surface of the sheet is approximated by By = 0.5pwKO, neglecting the

effects of toroidicity. In both expressions for the fields, the factor of one-half comes from

evaluating the field on the sheet itself as opposed to either side of it.

The circuit equations for K and K, are derived by taking a poloidal path of integration

in (2.44), around the plasma sheet and wall sheet, respectively. Letting R - Ro

everywhere, and evaluating the right hand side in its original form of f 'ft dA, we get:

2N d a2B K i
(3.15) 2K d X + pa2 + poa2

2bKw d (b2B K
(3.16) da- dt R+ pa + pob2l~,
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The toroidal circuit equation for K and K ,, comes from taking toroidal integration

paths in (2.44) and averaging the result poloidally around each sheet:

(3.17) A=- d 2-Bz + 2 A dv)

(3.18) RKb= - d BzRO2 + R A dvdcaW dt 2 2-n~dv

The evaluation of the last terms in (3.17-18) requires handling quantities which vary

rapidly near the sheet. In Appendix A it is found that the contribution to A from a

single sheet is

(3.19) A (RZ) = a K,' 1-)(k) -E(k)Jdv'

where K(k) and E(k) are the complete elliptic integrals of the first and second kinds, and

(3.0) = 4RR'
(3.20) k = (R + R') 2 + (Z - Z)2

Note that this k is not quite the standard quantity; it is equivalent to the quantity m in

Abramowitz and Steguin. Letting R(v) = R + a cos(v), Z(v) = a sin(v), Rw(v) = R + b

cos(v), Zw(v) = b sin(v), and using the following expansions for the elliptic functions,

valid for k - 1

-1-k 4 1-k

K(k)= 1+-In - -4-- +...

1-k 4 1-k
E2) ,_ -- 4 +...

we find after a short calculation that (3.17-18) become

(3.21) = _ (-z& + poaRK, (ln 8 ' - 2) + pobROK4,w (In 8R - 2)
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RoK6., d (BzRo 2  (8R, \8R 0
(3.22) = dt -B 2 + poaRoK, (n-y- -2) + pobR0 K,, Ilnr - 2))

For the two remaining degrees of freedom, R, and a, we must consider (2.45) and (2.46).

Averaging (2.45) around the plasma sheet and using previous expressions for B, and Bv

yields an expression for average minor radial force balance:

(3.23) (ROK) = +to + 2KKw

where the last two terms may be neglected since the perturbation of the vacuum

toroidal field in an ohmic tokamak is of order (a/R) 2 .

The geometry is too degenerate to enforce (2.46). There are not enough degrees of

freedom to satisfy it exactly, and it is satisfied trivially if averaged over the surface,

yielding no information. We will instead consider the linear combination of (2.45) and

(2.46) given by eR- (Kx B), and averaged around the plasma sheet. This corresponds to

major-radial force balance and requires the presence of the external vertical field. The

derivation of Shafranov's formula for the necessary field will not be repeated here; it can

be found in texts such as [2] and [3]. The result is

(3.24) Bz = 2 (ln- - 2

Examination of equations (3.21-22) shows a serious fault of this "thin filament" limit for

the toroidal circuits. It does not contain a distribution of poloidal information; that is,

neither the poloidal flux nor toroidal current are defined except at the location R. This

does not allow the chamber and the plasma to link different amounts of poloidal flux,

and more importantly does not allow the generation of image currents, which is the

dominant interaction mechanism between a real plasma and wall. In fact, in this limit

of a/RO << 1, we see that the toroidal circuit reduces to two filaments which occupy the

same location in space! We will resolve this by continuing to use the area linked by RO(t)

for the plasma equation, but fix the area used in the wall equation at Rw = R0(t=O). The
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problem of image currents cannot be handled even in a simple fashion without a

surprising amount of additional algebra, which defeats any illustrative value.

The case considered here differs from the plasma-wall interactions studied in standard

MHD stability problems in that there is no true equilibrium, since we are interested in

time scales where the resistive decay of the plasma currents is significant. Thus the

plasma displacement does not represent an "instability" in the traditional sense, and

even a perfectly conducting wall will not "stabilize" the plasma. Thus we can simplify

our system further by considering only two limits of equations (3.16) and (3.22): aw -+ 0,

which represents a case with no wall, and cyw -+ -, to see the maximum influence the

wall can exert. In the latter case, equations (3.16) and (3.22) can be integrated to obtain

b2t~~) 2N ̂ a2(t)f((t) T, a2(t)f<(t)
(3.25) RO 1t=O~ Ro(t) = ~ Ro(t)

(3.26) b(Lw - 2) K ,w(t) = a(L - 2) K - a(t)(L - 2) KO(t) -a(t)(L - 2) K (t)
t=O PO

where L = -n - 2) Lb n - 2 and we have assumed that the initial currents in

the wall are zero. By substituting (3.25-26) into (3.15) and (3.21) and noting that K and

KO appear in simple algebraic form in equations (3.23) and (3.24), the system can be

reduced to two first-order ODEs for the major and minor radii of the plasma:

R(3 d a2 2c 2R0
3  6a 2  8a 2T,

(3.27) c2c1R 0  _ 1F; + 3 b2 +~( )2 ~ t (L -) b 2b

c1R0
2  d 2 i _4(L - 2)(1-8) 82ROT

(3.28) 32( - t (L -3 Bza2(L - )

where

Ci = 4 , Bz2  L = In 8

pOY B
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The factor 5 has been introduced to more easily compare the case of a perfectly

conducting wall (8 = 1) and no wall (5 = 0). Note that without the degrees of freedom to

trap varying amounts of poloidal flux on the inboard and outboard sides of the plasma,

the toroidal wall-plasma coupling is "perfect" and the self-inductance term vanishes in

(3.28) when S = 1.

These equations can be manipulated to a form that lends itself to numerical integration

and further analytic analysis:

32'd&0  2cjR. FC2 R, 4 (1-6) SRTv 3 2 Ca

(3.29) -f = c2-(-) (+R )L -) R~ 1+8(L-)
~' d = 'de a2  + (1+ b2B'

da cIc2 R 4 5a2 (L- )3 a2  4(L-2) 25TO(L- )
(3.30) dt a2 det R 4 c2 + 2 (-2)(2 -3L) - (L- f)(1-S)L9- 6L+L RBz

where the determinant is given by the somewhat unwieldy expression

4(L-2) 2_T_(L- 5ROTv 2R04c2  a
det = 2 f (1-5) 9-6L+ L. RoBz 2) + +a2(L- )3 1+8(L- 3

2a(1-8) 2c2R, 4  a13
+ 3 (L- 2 )3+ a2 (l- b2(9 -3L)

3- 2 a2

Clearly, the simplicity of this system has been obscured by excessive algebra. However,

while equations (3.29-30) are exact manipulations of the initial model, they contain

terms that are not significant in the a/Ro ordering. Defining A = a and noting that the

equilibrium vertical field obeys the scaling A2Bz - B4 , some minor manipulations leave

the following leading-order equations:

da cl(L- )3
(3.31) - = 2adet
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dA Ac 1(L-3)3
(3.32) dt 2a 2 det

where the remaining terms in the determinant are

4 3
3 9-64(L-2) 4A.(L- ' )(L-2)det = (-)(- )3 + 9- L 3-2y3

L- A(L.-2)

AO and L0 are the values of A and L at t=O, respectively. Interestingly, the effects of the

wall on the poloidal circuit do not appear in this order. In addition, the (1-5) term in the

determinant indicates that the wall can have a very strong effect through the toroidal

circuit. The remaining term, which is all that keeps the determinant from vanishing

when the wall is present, is the consequence of the geometrical coupling to the external

field.
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Figure 3.3. Shell geometry over time, with and without a perfectly conducting chamber
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Figure 3.4. Shell currents over time, including simple exponential decay for a fixed geometry

Numerical solutions to these equations are presented in figures (3.3) and (3.4), using the
initial conditions a = 0.1m, R, = 1m, BO = 5T, and Bz = 0.23T, which corresponds to

initial currents of K = 200kA, Ip = 21raK = 800kA. The conductivity used is (- = 106

mho/m. Also plotted are the simple exponential decays of the currents that would be

seen if the motion of the plasma was not taken into account. To make the trends clear,

the simulations are run until A, which is supposed to be >>1 in this limit, decreases to 4.

Notice this corresponds to values of R which have "passed through" the chosen

dimensions of the vacuum chamber! The chamber dimensions, however, do not appear

in the leading-order equations.

The physical interpretation of the plasma's behavior is as follows. At any given instant

of time, resistive decay requires that the flux linked by the plasma decrease by a fixed

(differential) amount. For a plasma with a fixed geometry this occurs solely through a

proportional decrease in the current. For a plasma which must maintain equilibrium, in
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the case with no chamber, a decrease in current requires that the plasma contract in the

external field; but since this contraction increases the flux enclosed by the toroidal

circuit, the current must decrease faster than in the fixed-geometry case so that the net

flux decrease is the same as in the fixed-geometry case. If the chamber is present, the

physics is more subtle: the perfect coupling between wall and plasma means that the

flux appearing on the right-hand side of Faraday's law is that due to the initial flux

linked by the plasma, and the external flux; there is no contribution from the plasma

current. The purely geometrical changes required to satisfy flux conservation are

smaller and therefore slower than in the case with no chamber. The coupling to the

currents occurs only through the equilibrium relations.

Qualitatively, this model (including the wall) matches the experimentally observed data

on plasma disruptions. Even in disruptions linked to purely vertical instabilities, the

plasma shrinks and has an inward component to its displacement. The plasma current

typically dumps much faster than a pure L/R decay would allow. However, since the

effect of the wall is not realistically represented, we can draw no further conclusions

from the model; again, the halo current problem shows strong resistance to purely

analytic examination.

3.3 The Distribution of Forces on the Chamber

Now that we have developed at least a pictorial representation of how the plasma

moves towards the wall and subsequently has its current "peeled off", can we obtain

similar insight about the resulting forces on the chamber structure? The answer is yes,

provided that we are again willing to accept greatly reduced models which are meant to

provide only qualitative descriptions. Such models are quite useful, however, since they

cut through the difficulties associated with incorporating non-axisymmetric effects and

other difficult-to-picture processes that often lead to misinterpreting what is allowable

halo current behavior.

We begin with a point which, while not as useful as might be hoped, is nevertheless

often overlooked in estimations of the effects of halo currents: halo currents must be

force-free at the time when they first enter the chamber structure. This is independent of

any symmetry present (or not) in the problem. It is a simple consequence of the
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continuity of Maxwell's equations and the "initial condition" that the currents in the

plasma are force-free. Integrating Faraday's Law over an infinitesimal jump in time will

quickly show "if you do nothing, nothing happens"; so to show something clearer albeit

more ad-hoc, we will consider a situation where we let the system evolve over a finite

step in time, At. We will let this step be small enough that resistive effects are not

important, so that Faraday's Law states simply

(3.33) W(t) = W(t+At)

where the loop through which we are taking the flux is arbitrary. Over this finite step in

time, we will assume that a finite amount of plasma has been "peeled off" by the wall.

Writing out the fluxes in terms of integrals over the currents and geometry (see figure

3.5), we get

Vt) = f-TwJ,'(t) cSw,1' + fG'rv 2 '(t) C w,2' + f-Tp,1'(t) drp,1' + -Tp,2'(t) drp, 2'

f(t+At) = r-Tw,1 '(t+At) CFd,1 ' + r-Tw ,2'(t+At) Cdw, 2 ' + f-Tp,1'(t+At) dTrp, 1'
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By definition in the latter equation, Tp,2 = 0. We take At small enough that we can

expand the geometry in wall region 1 in terms of plasma region 2, and treat the plasma

motion by expanding the plasma geometry at t+At in terms of the geometry at time t.

For example, if we parameterize that region in coordinates defined from its center,
which we will call RI(t), then we may write something like

G di p, 2(t+At) =G dw,2 + At Vp G d ,2(t) +

where vp is the plasma velocity, so that equation (3.33) becomes

- ,'(t) d& ,'+NT 2t ~ + +' () dp ,1' + -T.p ,2'(t) dfrp,2'

-fT. ,1'(t+At) c ,,1' + G-Tw ,2 '(t+At) d ,2' + -Tp, 1'(t+At) dp ,'

+ A Tw,2'(t) Cp2' + O(At)

where the terms represented by O(At) contain all eddy-current effects. After much

cancellation of terms, the solution is simply AT,, 2 = Tp,2. A similar analysis on the

magnetic field shows that changes to B come in only as O(At). Since we required T, x 1

= 0 it follows that ATw, 1x i = 0 and we have not added a significant load to the wall in

spite of the finite change in current.

The reason that this statement is not completely useful is that "when the currents first

enter the chamber" connotes a certain time scale, since obviously once the currents are

in the vacuum vessel they are in no way constrained to remain force-free. It is often

conjectured that, since the cold plasma is a poor conductor relative to the metallic

chamber, the currents can "instantly" short to some new path which is not at all force-

free. However, no matter how poor a conductor the plasma is, such behavior would

violate flux-conservation around the new current path. No changes can occur in the

current path on any time scale shorter than the toroidal or poloidal L/R time for that

path; these times are typically longer than the time scale of the entire disruption itself.

We shall return to this point later. A more serious flaw in the force-free argument,

however, is in the fact that while the current cannot instantaneously change direction in
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the sense that poloidal remains poloidal and toroidal remains toroidal, the directions

themselves change in relative terms.

plasma
poloidal

Wall

Wall plasma Poloidal
Poloidal poloidal

Figure 3.6. Direction changes inherent in a "relative" coordinate system

Consider that as the plasma first touches the wall at a point of tangency (see figure 3.6),
the poloidal direction in the plasma and the poloidal direction in the small overlapped

segment of wall are the same direction in physical space. Now consider a later time

when half of a circular plasma has impinged on the wall. At the upper and lower

intersection points, the plasma "poloidal" and wall "poloidal" are at right angles to each

other! In the thin-sheet limit we have been using so far, this means the poloidal plasma

current does in fact instantly change direction with respect to the magnetic fields. It is

not possible for such a change to occur and yet remain completely force-free. However,

the current in the portion of the plasma not in contact with the wall must remain force-

free; the current entering the wall at the midpoint of the overlap region, where the flux

surface is always tangent, is force-free; the local poloidal field is changing rapidly as

toroidal current "piles up" in the wall. Is it possible that the two terms in KB - K^

still compete strongly with each other, even if they don't cancel?

Let us examine the behavior of a very simple system: a single circular current sheet

representing the plasma, and no vacuum chamber. We will deform the sheet in exactly

the same manner as if it had impacted the wall by cutting the circle with a moving

chord located at major radius Rw(t), while keeping the shell major radius fixed (see

figure 3.7). The currents will start initially force-free; as the sheet hits the wall, we will

evolve the currents by conserving total toroidal current and forcing the poloidal current

to remain force-free in the undeformed segment of the sheet. We will then calculate

numerically the fields and forces in the deformed segment.
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Figure 3.7. Schematic of single-sheet system used to estimate forces

The equations for the system are given by

(3.34) Oc(t) = cos-1 R -Rw(t)

(3.35) xc(t) = a sinOc(t)

(3.36) K4 dxc "waI"= K, a ce jplasma (cons. of toroidal current)

1 2n-0, RKOBz
(3.37) RKv = K = 2( - J B' dv (force-free in plasma)

(3.38) Bz = f GB,z# K4' a dv'

and there is also a constant (in time) toroidal field, B4 . We choose a = 0.15m, R, = 0.6m, a

uniformly distributed toroidal plasma current of 800kA, and B4 (Rp) 5.3T. The effective

plasma motion is at a velocity of 100m/s. The results of a simulation where the plasma

moves almost to the halfway point are in the following graphs.
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Figure 3.8. Toroidal current profile at end of simulation.
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Figure 3.9. Poloidal current over time.
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Figure 3.10. The component breakdown and total load profile in the wall, at various times.

The shape of the toroidal current profile does not change over time; it is "drawn" as the

contact point slides along the "wall", in the x-coordinate, forming the curve in figure

(3.8). Constraining the poloidal current to remain force-free in the undeformed plasma

segment does not have a highly significant effect on its magnitude, as seen in the plot of

poloidal current versus time in figure (3.9).

By far the most interesting results are the loads, shown in figure (3.10). The individual

contributions to the load and the total are profiled at various times; the curves extend

farther in X as time increases. Note the following observations:

0 The original tangency point (X = 0) remains basically force-free at all

times.
* The worst loading is towards the edges of the overlap region.
0 The contributions from the toroidal and poloidal currents have opposite

signs, so that the net is always between the two.
* The dominant contribution comes from the toroidal currents, not poloidal.
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* The loads at the edge regions decrease as the plasma continues to move

past these points; i.e., note how the total-load curves "unroll" from one

time to the next.

Many points could be made about what other significant effects are missing from this

simple picture. However, we shall see in Chapter 5 that a big contribution to the load

which is not present here is that from the toroidal eddy currents - which flow in the

opposite direction to the toroidal halo currents. This would seem to indicate that the

halo current loads could be offset or even dominated by eddy currents when taken into

account, and that the peak loads might actually occur before the plasma ever hits the

wall.

I , L ,R w R 
I , P

Figure 3.11. Arbitrarily shaped adjoining current loops

The last brief point to consider is whether the poloidal current is constrained to the

original path which closed through the plasma, or it is able to transfer to an adjoining

loop (such as a path beneath the divertor plates in C-MOD; see figure 2.1) on a fast time

scale. Consider two loops of current which share a common segment, so that there is

some shared resistance R, between them (see figure 3.11), and they have a mutual

inductance M. We are interested in the case when the resistance through one loop

(representing the cold plasma) is much greater than the other (representing the wall).

Letting the subscript w denote the wall, p the plasma, and letting the common segment

have a resistance Rc, the system is governed by:

dIw dI
(3.39) RIw - RII + Lwt - M =0
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dI dI_
(3.40) R I, - RI + Lp P - M 0

P dt -

For initial conditions we take I, = 0, Ip = Ip,. In the geometries of interest we assume

the ordering:
M Rc RW

L ~~L; R <<«L ~psL Rw ~ p
Using Laplace transforms to solve (3.39-40) in this limit quickly yields the solution

(3.41) I(t) = IP-M xp(~ R t) - exp(- L t)

The first thing to note is that, for early times, the rise of current in the wall loop is

limited by the plasma poloidal L/R time, which even in a cold plasma is at least on the

order of the disruption itself. The second and more interesting point is that the true
1control" on the magnitude of current flowing in the new path is the ratio of the mutual

to self inductance, M/L; even if the wall is a perfect conductor, the new loop will never

acquire more than this fraction of the poloidal plasma current. On Alcator C-MOD,
given the ratio of plasma-facing segments to "interior" segments for any possible

alternate loop, it is difficult to see this ratio exceeding one-third.

To summarize these heuristic results, we expect that:

* The peak axisymmetric halo current is determined simply by calculating

the poloidal current available in the plasma, scaling in a clear fashion with equilibrium

plasma quantities.

* The halo currents will enter the vacuum vessel in a nearly force-free

fashion.

* Even in the presence of a complicated geometry, the halo currents in the

vessel will remain force-free over significant periods of time. This opens the door for the

possibility of eddy currents dominating the forces.

We have reached the point of diminishing returns for simplified models. While there is

a multitude of topics that should be added (eddy currents, etc.), the algebra required to
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do so would quickly conceal all useful information. The next step is to consider how to

find numerical solutions to the complete model, which is the task for Chapter 4.
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Chapter 4. Numerical Methods of Solution

The heuristic pictures derived in Chapter 3 are useful for giving a basic understanding

of halo current and simple disruption behavior, but clearly have no practical

application beyond that. In this chapter we return to the full model derived in Chapter 2

and investigate the steps necessary to obtain numerical solutions for realistic tokamak

geometries and plasma parameters. The equations are repeated here for easy reference;

on a given sheet with conductivity a (ac or ap), thickness A (dw or Ai), and currentK

(K, or Kp,), the equations are

N Nc

(4.1) G(r) =fG. (K + )' dv' d$' + IG ( r) Ic - RBO ln R i
W =1p i=1 A Z

N Nc

(4.2) B( ) = f ( + )' dv' do' + 2G (r) Ic + Be-
Si=1 P =C8

(4.3) V-K = 0

N Nc

(4.4) J-F dl = - - (N + dv' d$' + XG(r) I, - RB in R iz di

(4.5) KvBO - KBy = 0

(4.6) BP = 0

where the last two equations apply only to the N plasma sheets. The circuit equations

(2.47) for the Nc coil currents will not be repeated here.

The first step in the process is to address the nonlinear nature of the system by use of a

penaltyfunction , such that by minimizing this function we satisfy the force-free

requirements imposed by equations (4.5-6). The next step is to perform some additional

analytic manipulation of the model, taking advantage of the restricted types of

asymmetry, so that Fourier analysis can be used for the toroidal dependence. The third

step is to introduce the simplest of possible time-discretizing methods so that the
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temporal discontinuities inherent in the problem do not cause difficulties. The last step

is to introduce a finite-element expansion of the poloidal dependence, leaving a system

of linear algebraic equations which are marched in time.

The complicated tokamak geometry and the contact between the wall and bulk plasma

introduce some severe bookkeeping difficulties, which in fact dominate the

development of a numerical code to solve the system. Some of the methods to handle

the worst problems are discussed in the final section of the chapter. The result is the

"Three-Dimensional Tokamak/Shell-Plasma Simulator" or TSPS-3D, a code which

enables the simulation of global tokamak behavior, including "slow" disruptions and

the generation of halo currents, over long time scales.

4.1 The Penalty Function

Recall that for a single sheet of the plasma, the four equations (4.3-6) are for the four

unknowns K ($,vt), K,($,v,t), R(v,t), and Z(v,t). While all the equations are coupled,

equations 4.3 and 4.4 can be considered linked specifically to Kp and K2, in the sense

that if the currents were treated as "given" information then Maxwell's equations could

no longer be enforced uniquely. Thus, equations 4.5 and 4.6 must be connected to R and

Z, and examination of the dependence of BI on these quantities through G. shows that

these equations are highly nonlinear. While there are methods to handle "exact"

numerical solutions of these equations, as detailed in Appendix B, it turns out that

applying these methods to the problem of interest - disruptions where the plasma hits

the wall - is beyond the scope of this thesis. Thus, more approximate techniques must be

introduced.

Consider a plasma sheet whose shape is given by a small set of parameters, such as

(4.7) R(v,t) = R,(t) - a(t) cos(v) + d(t) cos(2v)

(4.8) Z(v,t) = Zo(t) + b(t) sin(v)

where d and b can be related to the less numerically convenient but more commonly

accepted triangularity 8 and elongation K. This set of parameters can represent quite a
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variety of advanced tokamak profiles (see, for example, figure 4.1), and in fact has been
used previously in fast equilibrium codes [1]. It can be extended to include the twisting
of a plasma towards a single-null divertor by means of a rotation in the poloidal plane

given by an angle 0, and the additional parameters (Ag, Ay, Az) and ($x, $yz, Oxy) provide
simple non-axisymmetric shifts, tilts, and rotations, as mentioned in Chapter 2.

0.4-

0.2-

Z(m) 0-

0.2-

-0.4-+-
0.2 0.4 0.6

R(m)
0.8 1

Figure 4.1. Example parameterized plasma shape, with profiled K and S.

If the shape of the plasma sheets is known, we can define a "penalty function" which

tells us how well the given shapes satisfy equations (4.5) and (4.6):

1 N f 2 KyBO - KOBvji BP
(4.9) P(t)= - ZB Ri Q i dvid~i

2nN j=1 _(RQBvKO)N+(RQBOK,)i (RQBv) I

where the normalization has been chosen so that a "good" value of P is << 1. The

notation (X) denotes the average of X over the sheet.

It is of course possible to replace (4.5) and (4.6) by a numerical minimization of P(t) at

each time step in the code. However, even with just the five parameters Re,, Zo, a, d, and
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b, the process becomes extremely prohibitive in CPU time since the resulting five-

dimensional surface does not have a very flat shape over reasonable time steps and the

optimizing algorithm can easily wander forever among non-global minima. Since the

displacement and distortion of the plasma can be guessed at with fair accuracy based on

experimental data, the simplest technique is to specify the parameters as functions of

time and track P(t), repeating this for several runs until acceptably small profiles of P

are obtained.

While the penalty function technique sounds crude, this "by hand" optimization does

yield a net savings in CPU time, since in practice P(t) does not vary rapidly in time and

simple temporal parameterizations - usually linear - will suffice. Most importantly,

replacing equations (4.5) and (4.6) by this procedure has a profound effect on the

remaining system of equations: (4.3) and (4.4) are completely linear in the remaining

unknowns KO and K,! Certainly no method which replaces a nonlinear system with a

linear one should be dismissed without strong reason.

4.2 Fourier Analysis

Recall that we limited our scope of asymmetries to fully axisymmetric displacements

which are allowed to hit the wall, and rigid non-axisymmetric displacements which do

not hit the wall; in both cases, the currents can be non-axisymmetric. In this restricted

scope, the dependence of the currents on $ is expected to be smooth since there will be

no physical discontinuities in this direction (the case will be quite different in the

poloidal direction). We will therefore Fourier-analyze the $ dependence, and find that

even in the case of non-axisymmetric rigid displacements a good deal of numerical

effort can be avoided by analytically integrating over the kernel of our integral

equation.

As a warning to the reader, the complete consistent notation for this section would

quickly render the work illegible, so only the absolutely necessary subscripts and

variable dependence will be shown in any particular equation. Numerical computation

is easier with real sines and cosines as opposed to complex exponentials, even though

typesetting is more difficult; therefore to save space the proper signs, factors, and sub-

or superscripts for the two families of harmonics will be shown as in equation (4.10).
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We begin by expressing the currents on any given sheet (wall or plasma) in the first n

terms of a Fourier series in the toroidal direction. It is important to keep in mind that the

plasma and wall can have different coordinate frames, and that we are expanding the

toroidal dependence in theframe of the sheet.

m C cos(np)
(4.10) K(v,$t) = K,(v,t) + K(vt) sin(n$

n=1

Substituting this expression into equation (4.3) and doing the necessary overlap

integrals yields for the zeroth harmonic

d
(4.11) dv (RK-,,) = 0

and for the higher harmonics

d c s dR2 dZ2

(4.12) d (RKn) + nQK =0, Q= dv + dv

Equation (4.11) suggests that it would be convenient to define RK,= K, whose zeroth

harmonic is a function of time only. Equation (4.12) allows us to eliminate the higher

harmonics of toroidal current in terms of the poloidal current. Choosing a purely

poloidal integration path in equation (4.4) and integrating the result in 4 yields the

equation for the time dependence of K,:

(4.13) Ko(t) Q dv=~ d{{ 2 dv dO

where A, is in general coupled to the poloidal and toroidal currents flowing on all the

sheets, as given by (4.1). Choosing a purely toroidal integration path in equation (4.4)

yields a one-dimensional (plus time) integral equation for the zeroth-order toroidal

currents:

(4.14) RKOo(v,t) d d RAO
A4 dt 2 1
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To find the equations for the higher harmonics of K using (4.4) in its present form, it

would be necessary to establish a complete set of linearly independent integration
paths, and Fourier-analyze the resulting family of equations. However, after all the
work that was done to arrive at this set of integral equations, we will now proceed to
undo them! The method to the madness is to do so in such a way that only tangential

differential operators are introduced, so that we still do not need to include any of the

vacuum regions in the calculation, but neither will we include so many integrals.

Consider using an integration path in (4.4) that consists of a small closed loop lying in
the surface of a sheet, small enough that we may consider it to enclose a rectangular

Z

i

. -

Integration path

Q dv
R d

Sheet surface

N R

Figure 4.2. Integration path used in equation (4.4)

area QRA$Av (see figure 4.2). Temporarily returning to the electric field f as an

unknown for clarity, the left hand side of the equation would be given by

E , = d RE($',v)d$' +f QEv(+A$,v)'dy' + REO($',v+Av)d$'+ QEv(4,v')dv'

As the sides of the rectangle become smaller we can approximate the above expression

by the following, returning to R as the unknown:
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RK($,v) QK(4+A$,v) RKt($,v+Av) QK($,v)
FA aAR crA uAR

Letting A$ and Av shrink to differential size and using the definition of a derivative and

the fact that the geometrical quantities are not functions of $, we obtain

do dv 'Q RK

Note that all scale or Jacobian information is in R and Q; the differentials themselves are

not functions of time. Thus the integral on the right-hand side of (4.4) may be treated in

an identical manner and the differentials can be pulled from the time derivative and

will cancel those on the left hand side. After doing the Fourier integrals over the result

and substituting for KO from (4.12), we obtain a 1-D (plus time) integro-differential

equation for each harmonic of the non-axisymmetric poloidal current:

(41) _ R dK nQ s d d cos(n) d sin(n)
dv+ nQaA dv cAR n ~ t ~_ sin(n$) dv(RA) ± nQA os(n$)

By introducing differential operators, we are required to impose jump conditions across

any poloidal interfaces. These may be obtained by integrating once across (4.15) and

(4.12). Note that (4.16) refers to the total poloidal current flowing through an

intersection point, which may include a segment shared by several shells if the plasma

has impacted the wall. At a Y-branch it consists of just a single constraint; equation

(4.17) yields a distinct condition for each branch of the intersection. See figure (4.3) for

clarification.

(4.16) f< 0

[ R dkc
(4.17) [ CA dv =0

nQaA dv
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Condition 4.16, 1 Eq:

K K3  K2= K+ K

Condition 4.17, 2 Eqs:

K2  
C K; = C2 K

C2K = C3 K
Figure 4.3. Application of boundary conditions

The final step is to consider the Fourier-analyzed forms of (4.1-2). What makes the

integral form of the model tractable is that the integration over $' can be done

analytically once the series form of K is introduced. The algebraic details are less than

transparent and will be left for Appendix A; for our purposes here we can express the

contribution of a single sheet current to the various components of A as

s~ c C d Sc{ ~GRVOKO Z GR -e a~ dKa,
(4.18) AR = dv' +G,oko + G c, K nQ' dv'

C S{ EGzG os K c Gz dKe,
(4.19) AZ = dv' GzyO + Gz,n K nQ' dv'

(4.20) AO = dv' GOO,oKO,o + 2 G4, n+
f n

There is a corresponding set of equations for B. The use of the cylindrical components

of A rather than the TNB is meant to emphasize an important point. The above

expressions are valid only when the source coordinates and observation coordinates are

in the same frame of reference, which is the frame where the source has an

axisymmetric geometry. However, in general the observation point will not be in the

same frame as the source (e.g., evaluating the contribution from a plasma shell at a

point on the wall during a non-axisymmetric displacement). Thus the components of A

which appear in equations (4.13-15) are not those which appear above. Let us denote the
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closed-form results for the case where source and observation point are in the same

frame by AcE. Then at an arbitrary observation point, A is calculated from

(4.21) A( r )= MN .Acf,N(MN-1 r)
N

where MN is the proper transformation tensor from the Nth shell to the observation

frame; it is a function of the shift, tilt, and rotation between frames given by the

parameters (Ax, Ay, Az) and ($xz, y, $xy) introduced in Chapter 2. The exact form is

given in Appendix A. The tangential and toroidal components of A in the observation

frame can only be calculated after all three cylindrical components are found in the

source frame.

Why is this important? First, it introduces additional bookkeeping to the problem, to

insure that the right quantities are calculated in the right coordinate frames. Second and

more important, it prevents the analytic Fourier analysis represented by the remaining $

integrals in equations (4.13-15). Thus, there is considerable cross-coupling between the

different harmonics in the Fourier series and exactly where to truncate the series

becomes a delicate issue. For applications where there is a single geometrically

axisymmetric coordinate frame, it should be noted that the remaining $ integrals in the

equations become trivial and the system simplifies greatly.

We see that the Fourier-analyzed equations (4.13-15) accomplish more than a reduction

of the $ dependence to 2n+1 functions for each component of current; the zeroth-order

poloidal current is reduced to a scalar (but time-dependent) unknown, and the higher-

order toroidal current can be expressed purely in terms of the poloidal component. For

N sheets and n harmonics, the computational system consists of N functions of time and

N(2n+1) functions of time and poloidal angle. The next step in deriving the numerical

model is to discretize the time dependence.

4.3 Time Discretization

The standard methods of handling time dependence in computation involve

representing time derivatives by combinations of the unknown quantities evaluated at
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discrete instants of time, all but one in the "past" relative to the evolution of the

simulation. Some schemes are quite clever and involved, enabling the system of

equations to evolve over large and arbitrarily sized time increments by taking as much

advantage of the assumed smoothness of the system as possible.

For the problem of halo currents, however, we must commit an apparent cardinal sin by

completely ignoring all such techniques. In some cases this is because the necessary

overhead becomes too expensive given the presence of spatial integral operators; more

importantly, in all cases it is because of the assumed smoothness of the system in these

schemes. The sheet-current equations are not smooth; in fact, they suffer from finite

discontinuities in both time and space as the plasma impacts the wall. In addition, since

the plasma shape and trajectory is itself a function of time (and in principle unknown,

prior to the introduction of the penalty function), there is no robust method for invoking

a high-order technique at times when the system is smooth, then switching to a

specialized technique as the jumps occur. Consider the illustration in figure (4.9) of

section 4.5: the plasma strikes the wall in discrete steps as subsequent shells impact. The

region of overlap also grows in finite increments. Thus, at a fixed poloidal location on

the wall, the toroidal current can jump by quite large amounts from one instant of time

to the next. Thus we are restricted to the simplest of all possible schemes:

dx x(t'+At) - x(t')
(4.22) dt ~~ A

dt tot+t At

which will, unfortunately, require that the system be evolved over fairly small time

steps (10 ps at best) relative to the time scales of interest (say, 5ms). While a few

hundred time steps sounds modest, it must be recalled that each time step will still

require the solution of a fairly complicated set of spatial equations, so that each step

could take up to several minutes of CPU time on a workstation.

Given that the solutions do exhibit finite discontinuities in time, one may wonder how

the time derivative can be defined at all. However, this is really due to the choice of

writing this system as differential in time. Since it is first order, one could easily choose

to re-write the equation
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dx
(4.23) j = f(x,t), x(t=O) = x"

in the completely equivalent form

(4.24) x(t) = xO + f(x(t'),t') dt'
0

where the discontinuity is handled naturally under the integral sign. Applying a first-

order accurate numerical scheme to equation (4.24) yields the same set of difference

equations as obtained by using (4.22) in (4.23).

As an example of the explicit form of the resulting discretized equations, consider

equation (4.14):

(4.25) AtRK O,(v,t') + d$ d(4.2J) 'R+ -- RA = RA4cTA 21r a 21r t~'Ai

where t' is the current time-step in the simulation. Recalling that AO is itself an integral

over the currents, we can see now the form of the purely spatial system that remains: an

inhomogeneous Fredholm equation of the second kind, one-dimensional in the

coordinate v. We can also see the importance of using the total time derivative: at any

time step t, the source term needed on the right is exactly the second term on the left

from step t'-At, including all geometrical changes. This eliminates the need to re-

evaluate all the integrals in the source term, which is in general an extremely expensive

operation.

Labeling this "old flux" source term as S , we now have a set of N+N(2n+1) purely

spatial equations that are marched through discrete values of ti = i At, i = 1, 2, 3.... The

source term for i=1 is fully specified by the initial conditions. Thus, for each of the N

sheets,

AtQ AvQ
(4.26) KO(ti) cFAR dv + 2 n dv d$t = S0(ti. 1 )Ja JJ ti
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AtRKgo(v,ti) fd$
(4.27) A+ 2O RAo| = So(v,ti.1)

(TA ft27

(4.28) ~ I + s (RAO) ± nQAsnn S(vti1)(42)~ ncxdv n 7Z sin(no) dvcos(no)

where the vector potential terms couple all n harmonics of the current on all sheets, as

prescribed by equations (4.18-21).

4.4 Poloidal Finite-Element Analysis

The sheet current model has been reduced at this stage to a set of coupled linear one-

dimensional equations, which is historically a desirable outcome. However, the model

is not yet in a form which can be turned over to standard numerical packages, for two

principal reasons. First, there are few commercial integral equation solvers. Second (and

most significant), each equation has its own character. Equation (4.26) is purely a

difference equation in time, where the spatial dependence under the integral operators

is determined by geometry and the other equations; at each time step, it yields a

constant, the zeroth-order poloidal current on a sheet. Equation (4.27) is an

inhomogeneous Fredholm integral equation of the second kind; it requires no explicit

boundary conditions and allows finite spatial discontinuities. It yields a function of

poloidal angle, the zeroth-order toroidal current density on a sheet. Equation (4.28) has

both an integral operator and a differential operator of second order; it must satisfy two

explicit boundary conditions and the solutions, which are the higher-order poloidal

current densities as functions of poloidal angle, must be continuous with derivatives

that are either continuous or contain jumps fully specified by geometrical properties.

The result is that each equation must be handled with a slightly different numerical

scheme.

The primary issue is choosing an appropriate poloidal representation of the currents.

The zeroth-order toroidal current is inherently discontinuous as the plasma strikes the

wall; the higher-order current can exhibit slope discontinuities caused by sharp

transitions in the geometry of the vacuum chamber. Thus, spectral methods (Fourier
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analysis and orthogonal polynomials, for example) are not applicable. Instead we

choose the compact basis functions available with finite-element analysis [2].

f(v)

(b-a)/M
V

ba
Figure 4.4. Piecewise constant elements

We will see in the following section that a successful computer code will require

dynamic remeshing and careful division of the spatial problem into multiple regions,

such that the spatial profiles are allowed to "break" at intersections between the wall

and the plasma. Even with these capabilities, however, it turns out that even minimal

coupling between neighboring elements of toroidal currents will cause severe problems

near the discontinuities, mostly because the location of an intersection point can be

found with limited precision. We are therefore required to represent the zeroth-order

toroidal current by piecewise constant elements, so that in a computational domain

bounded by poloidal angles a and b, using M elements,

M

(4.29) K ,,(v) = ZKi Pi(v);
b-a

h = M

Pi(v) = 1, (i-1)h < v < i h;

P (v) = 0, v < (i-l)h or v > i h

The shape of these elements is shown in figure (4.4).
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Since the equation for the higher-order currents has a second-order differential

operator, clearly the piecewise constant elements will not suffice. As we will see shortly,

however, it is only necessary that the basis functions have a well-defined first

derivative. We will therefore use linear finite elements, which have the following form

for a domain broken into M+1 elements:

(4.30)

MM b-a
K< (v) = ( K i Li(v); h

v - (i-2)h
1 < i < M+1: Li(v) = h ' (i-2)h _ v < (i-1)h;

v -(i-1)h
Li(v) = 1 -- h (i-1)h v < i h;

Li(v) = 0, v < (i-2)h or v > i h
v - a

i=1: L1(v) = 1 - h , a < v < a+h;

L1(v) = 0, v > a+h
v - (b-h)

i=M+1: LM+1(v) = h , b-h v b;

LM+1(v) = 0, v < b

- ff(v)

A Single element

V

b
Figure 4.5 Linear finite elements

These elements are illustrated in figure (4.5). Once this functional dependence has been

established, it takes just a few more tedious but straightforward steps to turn the

equations into a linear algebra system. First, we may substitute the basis functions into
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equations (4.18-20), yielding the contribution to the vector potential from a single

computational domain on a single sheet (the need for multiple domains on a single

sheet will be addressed in the next section):

C C gR dLm(v')
(4.31) AR = K dv' GR,o + Knm dv G n Lm(v') + Gn dv'

(4.32) Az = Kcj dv' Gzy,o + Z.dKn m jdv GznLm(v') + n dmv' )
Of M n Gn dmv)

S~ d dm(V')

(4.33) AO = IK,m dv' G40,Lm-,(v') + nm dv' GVn Lm(v')+ n', d v')

If we introduce a vector of unknowns which is composed of all of the undetermined

constants in the currents,

- C -' C

U = (Ko 1 ,. . ., K0N, K0.1,1,. . ., K$,M,Nd, K0, ,1 .... - Kn,M+1,Ndl

where N is the number of sheets and Nd the total number of computational domains on

all sheets, then we can use a 3 X (N + MNd + 2n(M+1)Nd) matrix a to calculate A at any

point. The elements of a can be identified directly from equations (4.31-33). In general,

from (4.21),

(4.34) X(r) = MN(Nd) (acfN(Nd)(MN- 1 - r )-UN(Nd))
Nd

where N(Nd) refers to the sheet to which a particular domain Nd belongs; similarly,

UN(Nd) refers to the subset of U on a particular sheet. The reasons for letting a good deal

of notation remain understood rather than always using it explicitly should now be

quite clear; hereafter, the whole issue of different reference frames will be suppressed

and we will write simply
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(4.35) A,(v,o) = a y(v,O)-U, A4 (v,O) =a 0(v,$)-U

A completely analogous process leads to

(4.36) By(v,$) = b(v,$)-U, B(v,$) = b (v,)U, Bp(v,$) = b p(v,$)-U

The remaining step is to insert (4.35) into (4.26-28) and discretize the equations

themselves so that we have a set of N + MNd + 2n(M+1)Nd unique equations for that

same number of unknowns. Equation (4.26) requires no further work:

rA tQ - ay(v,$)Q
(4.37) Uj(ti) AtQ dv + U. r dv d$ = $O(ti.1)

(t cAR i2 n

yielding N equations for j = 1,...,N. Applying the method of collocation, where an

equation is enforced only at discrete points characteristic to the basis functions, to

equation (4.27) yields MNd equations for the discretized zeroth-order toroidal current.

The collocation points associated with Pi(v) are the midpoints of the elements, which in

the notation used previously are vi = a + (i -- )h..

AtRPi(vi,ti) - d$ - i=S(V~ii(4.38) UF + U d1 R a O(vj,O) = S(vjti)

where j cycles through the M elements in each computational domain, j =

N+1,.,N+MNd.

Since our basis functions Li(v) do not have a second derivative, we must treat (4.28)

with a slightly different method, the Galerkin method [2], which basically involves

"projecting" the unknown function onto the Li's by taking the inner product of equation

(4.28) with each of the Li's in turn. Integration by parts eliminates the second derivative.

For the first term on the left hand side of (4.28), we get in each domain
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Li(v)AtR cd b fdLi dLm AtR dv
nQ(AL M m dv a M jv dv nQaA

The second term and last term on the left side become

< AtnQ -~sin(no)

+ I A Rn Li Lm dv±U dodv Li(v)nQ a v(v,$) cos(no)

The first term under the integral sign of (4.28) is

Uf-Li(v) J sn Rg(v,)2 + ff I dodv cos(n Ra(v,)

and the source term is simply Li(v)Sc(v)dv.

In common applications of the Galerkin technique, the boundary terms can be

implemented explicitly and a given domain actually uses only the interior finite

elements, 2 ...M. As we will see in the next section, linking one domain to its neighbor is

not so simple in our application, so the full 1...M+1 elements are maintained. Instead of

using the inner products of (4.28) with L1 and LM+1, we add the boundary conditions

(4.16-17) to the system of equations. This actually simplifies the process slightly since

the boundary terms in the above expressions never appear, as the interior Li's are zero

at these points. For completeness, then, the final form of the equation is

(4.39) U{{f 7 ddv) dv R a (v,$)± Li(v)nQa (v,$) s n$ +

nfm Li Lmd+ dv = Li(v)S(v)dv

Letting the i's run through all Nd domains, M+1 elements, n harmonics, and sine-cosine

pairs completes the set of equations. Grouped together with (4.36-37) they now form a

closed linear-algebra system which can be written
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(4.40) A(ti)-U(ti) = S(ti-1)

and solved by standard numerical procedures at each step in time.

4.5 Bookkeeping Issues

The simple fact that the plasma does hit the wall after starting as a distinct object

introduces a host of complications when it comes to writing a code capable of handling

realistic disruptions. It is rather unfortunate that the majority of effort in writing such a

code goes to these "bookkeeping" issues rather than dealing with the inherent

mathematical or physical nature of the system. Among the difficulties are resolving

N
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1.1 1.3 1.6

Figure 4.6. Linear-segment, thin-shell model of Alcator C-MOD vessel, with simple divertor structure

complicated time-dependent geometries, the need for dynamic remeshing, the fact that

the number of uAknowns (physical, not computational!) varies with time, proper

implementation of boundary conditions, and above all the need to minimize how often

one has to evaluate the triple integrals in (4.39) (especially given that the integrand itself

must be calculated by an iterative procedure, as per Appendix A). While all but the last

problem are treated to some degree in existing specialized commercial algorithms, there

are no such common "black box" routines for integral and integro-differential equations.

This section will discuss how some of the more significant issues are handled in TSPS-
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3D, both as an illustration for someone pursuing related work and to give some

appreciation as to why arriving at equation (4.40) is at most half the battle.

Consider first the thin-shell model of the Alcator C-MOD vacuum chamber shown in

figure (4.6). One could describe it as a fairly compartmentalized structure, which

therefore requires a multitude of reasonably sharp corners. Even with some artificial

smoothing of the corners, it would require a very large number of Fourier harmonics to

represent the innermost surface as a function of a single poloidal angle; there would

then be the problem of working in the additional structures beneath the segments

representing the inner and outer divertor plates. We choose instead to represent the

chamber by a set of Nw11 distinct linear segments, each one parameterized in terms of a

normalized arc length (which we can still call v to minimize symbols) ranging from 0 to

1. Thus a segment starting at (R,,Z,) and ending at (Re,Ze) has the simple representation

dR
R(v) = R, + v (Ie - R)' dT -- (Re - Rs)

dZ
Z(v) = Z, + v (Z' - Z,), j- = (Z' - Z,)

The poloidal derivatives have well defined one-sided limits, which is all that is

necessary under the integrals. The values located exactly at a corner are not defined, but

do not need to be. Each segment is identified by a number j ranging from 1 to Nwaii, SO

the code can access the wall geometry at any time by evaluating user-supplied functions

Rj(v) and Zj(v).

An obvious advantage of using distinct segments is that it ensures that the piecewise

constant finite elements will "break" naturally at the corners, which are locations where

the zeroth-order toroidal current is free to become discontinuous.

The plasma geometry is parameterized as in section 4.1, so here the user supplies N

functions for R.(t), Z0 (t), a(t), K(t), and d(t) (which is a hybrid of the parameters

discussed, a compromise giving K to the physicists and d to the programmer). The

parameter is always the angular coordinate v, but the range cannot be fixed to 0 to 2n. It
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must be able to "float" modulo 2n so that, for example, both cases illustrated in figure

(4.7) can be treated as unbroken segments.

v=0

v=0

a = c/2

Figure 4.7. Coordinate offset to keep plasma a single segment

The need for dynamic remeshing is twofold. The first is simply to obtain sufficient

numerical convergence without unnecessary elements. Consider a plasma whose

equilibrium position is close to the inboard wall, as is common on C-MOD. As the

plasma disrupts, at its typical disruption velocity - 100m/s, a one-millimeter

displacement drives the eddy current profile shown to the right in figure (4.8). To the

right is a "close-up". A simple rectangular chamber was used for these pictures.
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Figure 4.8. Example of sharp eddy-current features, requiring dynamic remeshing.
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A much stronger reason for using remeshing is evident as the plasma strikes the wall.

Recall from Chapter 3 the concept of the peel-off model; that is, as the plasma dissipates

against the wall, the current which was flowing in that region of the plasma is

"absorbed" into the wall as a consequence of continuity and flux conservation. As one

moves poloidally along the wall, there is a sharp discontinuity in the wall's current

profile at the boundary between regions where the plasma is touching the wall and

where it is not. There are at least two such contact points per shell in this model (more

for complicated wall shapes), and each point moves with time; in order to accommodate

the discontinuities, each point must correspond to the boundary of a computational

domain. An illustration of this in figure (4.9). In addition, the interior regions may be

split into additional domains to resolve the profile, since the number of finite elements

per domain is fixed.

JA~LLL~L--I~ j I III I I*1
1

i111 -

0
P. -

I .1..

0 I 0
0.3 0.4 0.5

- Endpoints of three
intersected shells at
early time step

- Endpoints of four
intersected shells at
later time step

0.6 0.7 0.8 0.9
R (m)

1

Figure 4.9. As the plasma impacts the wall, regions overlapped by different numbers of shells,

associated with jumps in the current profile, are functions of time.

Finding the intersection points is one of many computational issues which are

conceptually trivial but in practice not so simple. The problem can be expressed quite

clearly: for each shell, an intersection point with the wall is found by solving
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Rwa(V') = Rpiasma(v); Zwaii(v') = Zpiasma(v)

for the unknowns v and v'. This is an exercise in nonlinear root-finding [3]. The

difficulty is that in any segment of the wall, there could be zero, one, or two roots; of

course, the only way to ascertain that the plasma has hit the wall is to try and solve the

above equations at every time step and see if proper solutions exist. Prior to plasma

impact there is no good way to define the initial guess most root-finding routines

require. In an effort to avoid having root-finding dominate each time step, the present

version of TSPS-3D limits the wall geometry to linear segments and the plasma to the

parameterization given in section 4.1; this way, the root-finding problem is reduced to

finding the roots of a fourth-order polynomial. Thus the algorithm always solves for

four roots, which can be done efficiently; these are then tested for being real and

properly bounded.
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Figure 4.10. Toroidal current profile characteristic of contact with discrete plasma shells

Finally, it is the nature of the halo current problem that the finite jumps in the toroidal

current will be superposed on the peaks of the eddy current features - but in the

opposite direction! Thus even for a simple rectangular vacuum chamber it is necessary

to handle profiles like those in figure (4.10). It takes some practice to see how the region

in contact with the plasma (expanded on the right) is composed of a large negative peak
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to which a series of three even larger positive steps of different widths have been added,

representing the toroidal halo current from three shells. When such features are

combined with the geometric effects of the true C-MOD vessel (the case for all results in

Chapter 5), where the intersection points can slide over sharp corners, the result is

considerably more complicated in appearance (and in the requisite numerical

bookkeeping).

Another issue, whose effects are not as drastic as the previous one, is the fact that the

number of physical unknowns associated with the model is a function of time. This does

not refer to the introduction or destruction of individual computational domains as

required by remeshing. It is again purely a consequence of having the plasma strike the

wall. Consider the logical evolution of the plasma shells that were depicted in figure

(4.9). At some later point in time, it is clear that the innermost shell will be completely

"absorbed" into the wall, followed by the next innermost, until the entire plasma has

vanished. A complete simulation will need to follow the evolution of the wall currents

into their eventual resistive decay, and thus need to accommodate "destroying" the

equations associated with a plasma sheet as it vanishes. There are no conceptual

difficulties involved in this, but clearly the heavy coupling among all shells through the

flux and fields requires that the programmer be very thorough in eliminating all the

contributions of an "absorbed" shell. This is complicated by the desire to avoid re-

calculating any quantity that need not be, as discussed below.

An additional time-dependence in the system of equations is slightly more subtle but

considerably more difficult to handle. Consider the schematic representation of a

plasma striking the lower divertor region of the C-MOD vacuum chamber, shown in

figure (4.11). Consider that associated with every zeroth-order poloidal current there is

a unique poloidal circuit: before the plasma hits the wall, there are N+NL, composed of

each sheet and an additional NL which is the number of geometrical loops in the

structure other than the innermost (e.g., two for the C-MOD chamber shown in figure

4.6). When the wall is not very smooth relative to the size of the plasma, however,

additional loops are created and destroyed as the plasma hits the wall. In figure (4.11)

we have a series starting with the two initial loops formed by the plasma and the wall; a

third is created as the plasma "plugs" the divertor well; this third loop splits into two as

the plasma hits the bottom of the well; then both of these additional loops vanish as the

97



plasma "spreads" to fill the divertor. As with the need to destroy equations as discussed

above, there is no conceptual difficulty in creating new loops and the associated

equations. However, in practice, the code must internally deduce all the quantities

associated with the intersection points and boundary conditions.

New loop appears New loop splits New loops vanish

Figure 4.11. Creation and destruction of poloidal circuits

The code does this by treating each poloidal segment separately, rather than by finding

all the different closed current paths. By integrating over only a segment instead of a

closed loop, one needs to introduce terms representing the integral along a potential.

The natural introduction of these "voltages" at each intersection provides the correct

number of degrees of freedom to enforce both Faraday's law for the segment and the

poloidal continuity boundary conditions.

The main bookkeeping issue is a question of sign. Referring again to figure (4.6), one

can see that a positive poloidal current closing through the innermost segments of the

wall and a positive poloidal current flowing through the small loop beneath the inner

divertor will be flowing in opposite directions through the divertor plate itself! A solid

convention must be maintained, especially to account for some of the more complicated

wall-plasma intersections in something like the Alcator C-MOD divertor structure.

The non-axisymmetric current and the boundary conditions (4.16-17) that it satisfies

introduces several similar issues. A compete explanation would require using too many

conventions particular to the choices made when writing TSPS-3D, but a brief list of

points can be given:
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* Every domain is linked to the next by (4.16) and at least one application of

(4.17). At intersection points, one must define which is the "main" path

and which is the "spur" which will require an additional application of

(4.17), as discussed in section 4.2

* The sign issue occurring with the zeroth-order current occurs here also.

One must determine whether the current is flowing into the spur or out of

it.

* As a purely numerical issue, one must make sure the correct sign is

applied to element 1 or M+1 in a domain; the "in" and "out" directions of

the spur are independent of its poloidal "top" and "bottom".

The last and most important bookkeeping issue relates to computation time. Because

equation (4.39) contains triple integrals (v', v, $), it is desirable to avoid any unnecessary

recalculation of these terms. When the total number of degrees of freedom has grown

large (-1800 or more for five shells and a single Fourier mode in the C-MOD vacuum

chamber), the requisite calculation of the 1200x1200 triple integrals, where the

integrands themselves require many calculations (especially for the high-order Green's

functions, which are calculated through recurrence relations) can consume an amount

of CPU time comparable to the subsequent matrix inversion. The major factor in

reducing this time is to note that most of the matrix does not change from time step to

time step; only those elements coupled to the plasma or to wall segments which have

been remeshed will change. Thus in TSPS-3D a table is maintained which notes which

segments that are "new" at any given time step. Only the matrix elements coupled to

those (one row and one column for each - out of over a thousand) are recalculated.

In addition, it was discussed in section (4.2) that the source term is directly related to

terms used in the matrix from the previous time step. Thus A is actually stored as two

parts, R + L, where LU is the source for the next time step. Only remeshed elements

(which have "moved" computationally but not physically) need to have their source

terms calculated independently. Splitting the matrix does require that the code use

considerable amounts of core memory, but the results are worth it. In addition, due to

the compact coupling of the finite elements, R (roughly a matrix of resistances) is fairly

sparse.

99



All of these bookkeeping issues have been resolved in a reasonably robust fashion in

TSPS-3D. In the next chapter we will finally examine results of TSPS-3D simulations for

realistic cases, and concentrate solely on the answers as opposed to how they were

obtained.
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Chapter 5. Numerical Results

Chipping away at the sheet current model with highly simplified and idealized

situations can yield only so much information, especially when one needs to weigh the
influences of competing effects which have comparable magnitudes. Eventually one

must turn to the computer to produce hard numbers. A fast, flexible computer code
called the Three-Dimensional Tokamak/Shell Plasma Simulator, or TSPS-3D, has been
written to solve the sheet current equations, using the techniques outlined in the

previous chapter. In this chapter we will examine some sample runs, looking at both

two and three dimensional effects.

An interesting and old problem will arise: how to present time-dependent, three-

dimensional data in a static, two-dimensional form? A variety of plot types will be used;

hopefully some subset will appeal to the individual reader and convey the desired

information. The best methods for presenting this type of data, using color and

interactive animations, are unfortunately not yet incorporated into a printed page!

The proper route for introducing a new computational model is to show that it agrees

with existing experimental data before using it as a predictive tool. However, the

complicated poloidal cross section of the Alcator vacuum chamber produces data that

can be somewhat difficult to interpret without practice; we will therefore break with

convention and first examine some alternative TSPS runs which are done with realistic

plasmas but a simple rectangular vacuum chamber. Once the reader is familiar with the

"feel" of TSPS output we will move on to code verification using Alcator data. We will

then return to the simpler vacuum chamber to do scaling runs by varying several

tokamak and plasma parameters; non-axisymmetric effects are not as easy to

parameterize and so will be considered separately. Finally, we will take a brief look at

the computational time required to produce these results.

5.1 The Reference TSPS-3D Run

To examine the behavior of halo currents versus various plasma and tokamak

parameters, it is necessary to establish a reference case. We will do this by considering a

rectangular vacuum vessel constructed of stainless steel, with a uniform thickness of
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one centimeter. The poloidal cross section of the chamber is 50cm wide (in R) and 60cm

high (in Z), centered at a major radius of 75cm. The "typical" plasma it contains is

circular and has a major radius of 70cm, shifted slightly inwards from the geometric

center of the chamber to bring its behavior closer to typical Alcator C-MOD plasmas,
which lean quite close to the inboard wall. The corresponding minor radius for the

reference case is 18cm. The toroidal field has a value of 5.3T at the plasma major radius.

The external poloidal field is dominantly vertical, and held constant in time for

simplicity. Since the plasma intersection points in this geometry will consist of a only a

single pair per shell, this case makes a nice starting point before moving on to Alcator
with its intricate divertor.

The displacement for this reference run is purely axisymmetric, so that we may later

compare the decidedly different character of currents generated by non-axisymmetric

displacements. Obviously, the only mechanism to introduce asymmetries into an

axisymmetric equilibrium is the displacement, so that the currents for this run will also

remain purely axisymmetric.

The direction of the displacement is purely vertical, downwards to conform to the

typical Alcator VDE although this geometry does not offer a divertor X-point to

establish a preferential direction. The plasma velocity is 85m/s. The simulation begins

after a presumed thermal quench, so that the bulk plasma temperature is 40eV,
corresponding to a Spitzer conductivity of about 0.45 Mmho/m. The simulation lasts for

5.8ms, ending a few hundred microseconds after the last of the plasma has dissipated

against the wall. The plasma is represented by five current sheets; snapshots showing

the plasma trajectory and chamber geometry are given in figure (5.1).
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Figure 5.1. Snapshots of the "reference" disruption.
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Figure 5.3. Evolution of the poloidal plasma current.

The evolution of the total plasma current as well as the current in each shell is shown in

figure (5.2). At very early times, the dominant change in the plasma current is resistive

decay. Before long, however, the current begins to grow due to the interaction with the

toroidal image currents driven in the chamber (which are substantial, as we will see

shortly). This growth peaks just before the plasma hits the chamber, whereupon the

current is "peeled off' by the wall; the subsequent drop in the plasma current is then

quite rapid, clearly having an average slope much steeper than the initial resistive

decay. The approach of each shell is marked by the five small peaks in the total current

profile, as each shell generates image currents just before peel-off begins; this is visible

in the plots of the current per shell. Similarly, there are five small valleys at the end of

the profile as finite pieces of shell disappear "into" the wall. Note that even though only

five shells were used, the overall profile shows relatively minor effects of the

discretization.

Figure (5.3) shows the corresponding evolution of the poloidal current. Note that even

though this example does not have an especially tight aspect ratio, the plasma is in fact

carrying a considerable amount of poloidal current.
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The dominant behavior is the resistive decay, as the poloidal L/R time is considerably

shorter than its toroidal counterpart. Note that the profile remains smooth even after the
plasma hits the wall, as the poloidal current still closes continuously through the

plasma. Only the curvature changes slightly, so that the current decay is slowed as

toroidal flux is compressed as the plasma hits the wall. Since the wall and the shells

have comparable surface conductivities in this example, and neither one is very high,
the total current curve does not show a striking example of flux compression. Only as

the shells are completely absorbed does the curve show any signs of the discrete nature
of the shell model.

Now suppose we had a movable, "smart" Rogowski coil in the chamber which would

always locate itself at the peak poloidal halo current in the chamber, as a function of

poloidal location. A plot of the total current measured by this coil as a function of time

is given in the figure below.

Integrated Poloidal Halo Current
s~,'l~

2.5 10

2.0 10s

-61.5 105

5

5.0 104

C"

0 1 2 3 4 5 6
t (ms)

Figure 5.4. Peak poloidal halo current.

We see that in spite of the rapid L/R decay time, a respectable amount of current flows

through the wall, nearly a third of the original toroidal plasma current. The discrete

jumps as each sheet contacts the wall are clearly visible, but the overall shape of the

107

........... ......... ................... ............... .... ..................... .................

..................... .... .......... ........................ ................ .......

. . ........................................ ... ......... .... . ..... .......................... ....... .................

................. ........ .... ..... .. ....... ....... .................... ................ ...................

. . ................................ .. ........................... .................... ............. ........ ... ........

............. ............. ............ ....................



profile is quite evident. A nice point demonstrated by this curve is that axisymmetric

halo current must decay at least as fast as it rises as complete sheets (or flux lines in a
real plasma) vanish into the wall.

The halo current picture is not complete at this point, however. Let us consider the

poloidal distribution of the poloidal current flowing in the chamber. We expect strong

poloidal localization to the region overlapped by the plasma. Figure (5.5) is a carpet plot
of the poloidal distribution of current as a function of time; each shifted curve

represents the distribution at an instant of time, increasing in both time and poloidal

location from left to right. (For readers not familiar with carpet plots, note that the x-axis

does not correspond to any particular independent variable, but a combination of

several. The intent is to show trends.) The bottom of the vacuum chamber is the

rightmost portion of each curve and is obviously the region which shows the peak

currents. Note that the near-vertical lines should not really be present, as the discrete

current sheets produce jumps in the current profile in the wall, but they do allow the
eye to take in the proper shape of the profile.

Evolution of Poloidal Current
Profile in the Chamber

E

6.0 10 4

5.0 10 4

4.0 10 4

3.0 10 4

2.0 10 4

1.0 104

0

Figure 5.5. Carpet plot of poloidal current distribution over time.
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Suppose we now examine the corresponding plot of the toroidal current density. Figure

(5.6) shows that there is considerable activity in the toroidal current distribution as well,

which will merit a closer look. Figure (5.7) shows that the load on the chamber is

dominated by this activity.

The series of figures (5.8) contains snapshots of the toroidal current distribution,

focusing on just the bottom of the chamber. The evolution is described as follows: as the

plasma approaches the wall, large image currents are driven in the chamber. The speed

of the disruption relative to the toroidal L/R time means that the magnitude of these

currents as well as the response of the plasma is not negligible; figure (5.2) shows a

number on the order of 100kA. However, what makes these image currents very

different from those seen in simulations of a fixed-position quench of plasma current is

that, since the plasma is nearly touching the wall, the wall currents are confined to a

narrow region whose width is comparable to the nearest portion of the bulk plasma.

Thus, while 100kA is a modest total current, the toroidal current density in the wall over

a region of centimeters is quite large. Eventually, of course, the plasma does hit the wall,

and in the overlap region a substantial bite is taken out of the current profile as the

image currents in the wall and the plasma partly cancel, and a piece of the "original"

plasma current flows in the wall. The subsequent shape of the profile in that region

depends on the relative conductivities of the wall and plasma, determining how well

the image currents cancel. In this case, after all the plasma sheets have vanished into the

wall, there is a substantial positive peak of toroidal current in the chamber, representing

the remnants of the toroidal plasma current. At intermediate times, the profile looks

quite complicated as multiple sheets contact the wall (on a numerical note, notice how

what appear to be sharp spikes in the carpet plot are well-resolved in the "zoomed"

graphs). As any given sheet continues to penetrate, eddy currents are driven by the

approaching "edges" while the segment most recently absorbed cancels them out! The

resulting shape (and here the carpet plot shows its usefulness) is very much like a

splash, where an object penetrates a surface so that it first dimples inwards and then

rebounds outwards.
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Figure 5.6. Carpet plot of toroidal current density.

As might be expected, since Lorentz forces are based on current densities and not total

currents, the load on the chamber is in fact dominated by the eddy currents in this case.

A carpet plot of the loads is shown in figure (5.7). Time-series plots of the poloidal

current density and the normal load due to Lorentz forces are shown in figures (5.9) and

(5.10). Finally, some plots of the relative contributions of poloidal and toroidal currents

to the load at various times are shown in figures (5.11). In (5.11), notice that after eddy

currents have largely canceled, the effects of the toroidal and poloidal halo currents

largely cancel in "pseudo force-free" fashion.
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Figure 5.8. Time series of the toroidal current density at the bottom of the chamber. The independent

variable on all plots is poloidal arc length (m).
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Figure 5.9. Time series of poloidal current density at the bottom of the chamber. The independent

variable on all plots is poloidal arc length (m).
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Figure 5.11. Relative contributions to the load on the chamber at various stages of the disruption.

5.2. Code Verification with the Alcator C-MOD Experiment

Now that we have examined a "clean" example of a TSPS run, we will put aside our

reference case and turn to verifying that the sheet current model is capable of matching

existing experimental data. The test case will be shot number 950112013 on Alcator C-

MOD; as mentioned in Chapter 1, the halo current measurements for this shot have

been published in the journal Nuclear Fusion [1].

This case differs from the reference case of the previous section in a number of ways.

The most obvious is that the shape of the vacuum vessel is considerably more

complicated. The thickness, and therefore the surface conductivity, is not uniform in

poloidal angle. The presence of the inner and outer divertor structure means that there

are multiple poloidal current paths. The plasma is strongly shaped and controlled by a

system of PF coils, whose currents will be specified from the C-MOD database for this

shot. The background toroidal field is held fixed in time, at an on-axis value of 5.3T. The

plasma displacement is taken from centroid measurements; the rate at which the plasma

shrinks in area is given by a linear fit to the data. The parameterized chamber geometry

is taken from the model used by R. Pillsbury in the SOLDESIGN electromagnetics code

[2].
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While there are measurements of the plasma temperature available, this information is

not used to determine a plasma conductivity for this shot. Instead, a single conductivity

(i.e., the same value for all plasma sheets) which is constant in time is used as the sole

fitting parameter in the model. This freedom is introduced to avoid having to discern a

temperature profile for the bulk plasma plus some type of transition model as parts of

the plasma strike the wall. Given the amount of information which is being replaced by

a single parameter, it is felt that this does not introduce undo latitude into the sheet

current model.

The only aspect of the disruption not determined by the data is the source of the

asymmetry, which in this shot produces a peaking factor of about two in the poloidal

halo current. This actually introduces an enormous range of freedom in the plasma

motion, which necessitates some method for picking a particular displacement. This

was resolved as follows. We first treat the shot as purely axisymmetric, based on the

observation that a peaking factor of two is actually quite modest compared to what

could be produced in a highly non-axisymmetric event (save for the effect of induced

poloidal currents, the peaking factor can theoretically become infinite). Once the plasma

conductivity has been adjusted to match the zero-order current measurements, we run

the simulation again with the maximum possible non-axisymmetric perturbation which

can be returned to an axisymmetric configuration before the plasma hits the chamber

(recall the model has this limitation, as discussed in Chapter 2). This consists of a tilt of

the plasma's Z-axis with respect to the chamber axis, which can reach a maximum of

about twenty degrees. Superimposed on this is a rotation of the plasma at a fixed rate of

2 kHz, which is the measured rotation rate of the halo currents in the wall. If the

argument about the magnitude of the actual asymmetric perturbation is correct, the

zero-order currents will not change significantly from the 2D run to the 3D one. (Note

that what is referred to here as the "maximum perturbation" is still quite small

compared to what could be achieved if the displacement was allowed to remain

asymmetric as the plasma hit the wall. A good deal of the effects of the twenty-degree

tilt will cancel as the tilt is "undone"; only the vertical motion of the plasma towards the

divertor, and resistive effects to a much smaller degree, break the symmetry)

It is not expected that this technique will match the amplitude of the measured

asymmetries in the currents; it is expected that the asymmetric behavior produced by
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the maximized tilt will agree qualitatively with the measurements but exceed them

quantitatively. One can then choose from a wide range of lesser perturbations to match

the amplitude more closely; this will not be done here, as there is no apparent reason to

favor one type of perturbation over another.

The simulation begins just after the plasma experiences a thermal quench, so that the

plasma current has jumped from a nominal 800kA to about 840kA. The run ends six and

a half milliseconds later in the shot, after most of the plasma current and measured halo

current has gone away and all of the bulk plasma has disappeared into the bottom of

the divertor. Time is offset by 0.8695 seconds from the actual shot, so that the beginning

of the simulation is t=0. Note that the plots of total plasma and halo current have been

negated for easier viewing; the plasma current and toroidal field are both actually

aligned in the negative p direction in this shot. The plots of current density have not

been negated.

The disruption trajectory, along with the geometry used to represent the C-MOD

chamber with divertor and PF system, is shown in the following plots.
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Figure 5.12. Disruption trajectory and geometry used to represent Alcator C-MOD shot 950112013.

The following is a plot of the measured and modeled plasma current, showing quite

good agreement given the use of a constant, uniform conductivity of 0.45 Mmho/m,

corresponding to a temperature of about 40eV using a Spitzer model (hence the use of

this value in the reference case). The figure following that is a plot of the p-integrated
poloidal halo current measured by a Rogowski coil located at the bottom of the divertor,
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and the peak poloidal halo current from the TSPS run. The use of the peak value rather

than the value at the location of the Rogowski in the model will be addressed shortly.
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Figure 5.13. Comparison of TSPS and measured plasma current.
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The use of the peak TSPS value shows a weakness of the sheet current model, which is

the fact that the sheet geometry remains "clean" even under circumstances where the

real plasma has undergone scrape-off against parts of the chamber. For example, the

t=4.55ms frame in figure (5.12) shows that the arcs of the outermost plasma shell are still

intact in the segments beneath the inner divertor module and in the divertor well,

which is clearly a highly unrealistic situation.

To clarify this point, consider figure (5.15), which compares the experimental data with

the TSPS value at the proper location of the full Rogowski coil, as well as at two

locations at the opposite edges of the divertor well. In the TSPS simulation, the plasma

does not actually strike the bottom of the divertor well until fairly late in the disruption,

hence the delay of the simulated Rogowski signal compared to the actual value. At the

edges of the divertor well, which are encompassed by the initial strike points of the

plasma, the signals match quite well. Since these positions are separated by a gap of

only four centimeters, the discrepancy does not lie in having an incorrect plasma

trajectory over the course of the run; instead, it is most likely that the real plasma

quickly spreads to fill the divertor after scraping against the divertor modules, which

the plasma sheets are not permitted to do.
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Figure 5.15. Measured poloidal halo current versus the TSPS Rogowski value.

128



The next step is to consider the non-axisymmetric effects. The three-dimensional

displacement is shown in the following frames; the viewpoint is at 0=7r/2 and slightly

elevated with respect to the x-y plane.. The grayscale values indicate toroidal current

density, running black to white from minimum to maximum. The chamber and plasma

are scaled separately.
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The zero-order plasma current and poloidal halo current do in fact show no discernible

difference from the axisymmetric values in figures (5.13-14). However, let us now

consider the equivalent measurements that would be made by partial Rogowski coils

which each cover one-tenth of the toroidal circumference of the vacuum vessel; these

are the corresponding values to the true partial Rogowski measurements for this shot,

such as are shown in figure (1.3) of Chapter 1. For a clear description of the diagnostics

used to obtain these measurements, the reader is referred to [1] and [3].

The next figure consists of two separate plots to more clearly show four signals, each

covering a tenth of the machine, centered at toroidal locations $=0, n /2, 7c, and 3n/2.

The signals show a clear oscillation at a frequency of 2 kHz; while it is true that the

plasma rotation is specified at this frequency, it is certainly reassuring to see it appear in

the fixed geometry of the wall, verifying the proper treatment of boundary conditions in

TSPS-3D.
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The signals reach their maximum amplitude at the same time the zero-order poloidal

halo current peaks. As expected, this amplitude is greater than that which was actually

measured in this shot, indicating that the non-axisymmetric nature of the actual

displacement was not as severe as the one used in the simulation.
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This result emphasizes a fundamental difference between a purely axisymmetric

disruption and a non-axisymmetric one. In the axisymmetric case, the only source of

poloidal current (or more precisely, rapidly changing toroidal flux) is the equilibrium

poloidal current in the plasma. Since this current is small relative to the other currents

which flow in the vessel, even when interacting with the large toroidal field, we have

seen that it is not a significant contributor to the loads. In the non-axisymmetric case,

the toroidal and poloidal directions in the frame of the chamber become coupled in the

frame of the plasma, so that the equilibrium toroidal plasma current (or again, poloidal

flux) becomes a source of poloidal current. The saving grace is that, even in the absence

of the force-free requirement, the spatial distribution of current is constrained to remain

divergence-free, satisfying the ordering

RKf ~' npK ;

for a given toroidal mode number n, where p is a poloidal scale length. Thus for a

dominantly n=1 asymmetry, the poloidal currents will be smaller than the toroidal

currents by a factor roughly the size of the inverse aspect ratio, a/R. Of course, in the

environment of a force-free plasma, one expects RB,, - aBo, so that the contributions to

the load will have equal magnitudes. However, unlike pure halo currents which must

close through the plasma, eddy currents are not constrained to have these equal-order

effects of opposite sign, and a non-axisymmetric disruption can drive large poloidal

eddy currents.

With this in mind, let us now examine the distribution of currents in the vessel, as well

as the resulting loads. Early in the disruption, when the plasma is still undergoing a tilt,

we get the distributions in the figures that follow; the first is a "map" of the arc length

coordinate used in the plots. For ease of viewing, the segments located behind the

divertor modules have been mapped to positions beyond the plasma-facing surface.
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The poloidal and toroidal currents satisfy the appropriate phase and scale relationships,

but since the plasma is not yet close enough to the vessel to significantly contribute
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to the poloidal field, the loads are at this stage dominated by the KBO component. By

the time the plasma strikes the wall, the picture has changed:
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At this stage, the "untilting" of the plasma has produced an interesting result: the

toroidal current is nearly symmetric, the zero-order image currents dominating the

higher order. The poloidal current is strongly asymmetric, but even though the plasma

has hit the wall, the amplitude has decreased from the earlier time; the load, still

dominated by the poloidal current, has decreased also. This is another indication that it

is eddy currents and not halo currents that pose the major threat to the wall.
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Normal Load, t = 5.2 ms
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In these pictures we have concentrated on the poloidal region of the lower divertor.

Now that the plasma is rapidly approaching the bottom of the divertor well, large zero-

order toroidal image currents have started to flow, and have become the dominant

contributor to the load on the vessel, so that unlike the reference case the zero-order

poloidal and toroidal currents peak at the same time. The part of the chamber which has

the large non-axisymmetric load with a negative peak at $=0 is the corner below the

inner divertor module; the plasma "jumps over" this region, so in the sheet current

model it has no direct contact with bulk plasma; it is not immediately clear why this has

the effect it does on the current flow and resulting load. A more striking example of this

behavior will be shown in section 5.4.

Even though the toroidal current is almost completely symmetric, the poloidal current

is still strongly non-axisymmetric. It still satisfies the divergence-free condition because

the poloidal distribution is nearly flat.

To observe how much the presence of large non-axisymmetric poloidal currents

changes the nature of the load on the chamber after the plasma has struck the wall,
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consider the following plot of the load at the same point in time in the purely

axisymmetric simulation:

Normal Load, t=5.2 ms, Axisymmetric
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The basic character is the same, except that the axisymmetric case does not experience

anything unusual in the region below the inner divertor. However, even though the

peak load is dominantly axisymmetric, the chamber obviously experiences highly non-

axisymmetric loads in the course of the disruption. This is a clear intersection of paths

between the electromagnetic side of the halo current problem and the structural

engineering side; further examination of this point will not be considered here. We will

instead move to an area within the specific scope of the sheet current model:

parametrics.

5.3. Parametric Runs

Having gained considerable confidence in the validity of the sheet current model, we

now return to the reference case. We will examine a series of runs where particular

plasma parameters are varied to see if there are clear scalings, and if these scalings

agree with the heuristic expectations from Chapter 3. Given that we have already seen

how much freedom a non-axisymmetric displacement gives the system, we will restrict
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our attention to axisymmetric cases, where there are plenty of clearly defined

parameters. Further investigation of non-axisymmetric effects will be left for the next

section.

The first variation is not a true parametric run, but literally a change of direction: the

same plasma as in the reference case undergoes a pure inward-radial displacement,

striking the wall at a location of maximum toroidal field. The trajectory is shown in

figure (5.16). Since the plasma has a shorter distance to travel before striking the wall,

the simulation is obviously over a shorter period of time.

Another consequence of the smaller gap between the plasma and wall is shown in

figure (5.17). As poloidal flux is compressed in the gap, the image currents in the

plasma are driven higher than in the downwards case. The poloidal halo current (figure

5.18) is also higher as less resistive decay of the poloidal current has taken place, both

due to the shorter time and the fact the plasma is now "climbing up" the toroidal field.

However, in spite of the larger poloidal current interacting with a higher toroidal field

value, the dominant load still comes from the toroidal eddy currents. Carpet plots of the

current distributions and the load (figures 19-21) show that the larger image currents

produce considerably higher localized forces.
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Figure 5.16. Trajectory of radial disruption.
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Figure 5.17. Evolution of the toroidal plasma current for the radial disruption.
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Figure 5.19. Carpet plot of the poloidal current density for the radial disruption.
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on the Chamber
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Figure 5.21. Carpet plot of the normal loads for the radial disruption.

We will now restrict our attention to the peak poloidal halo current, peak toroidal

current density, and peak normal load as we vary several plasma parameters. We begin

with the most obvious, the plasma current. The results are shown in figures (5.22-24).

The outcome is not surprising. The halo current increases in an almost perfect quadratic,

in accordance with the heuristic argument in Chapter 3; however, the precise

magnitude is not given correctly by any of the simple expressions derived there. The

magnitude of the peak toroidal current density (note the image currents in the wall are

negative) increases linearly and remains the dominant contribution to the load. The load

itself grows quadratically, as would be expected since the local poloidal field strength

will also be proportional to the toroidal current.
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Peak Normal Load vs. Plasma Current
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Figure 5.24.

In figures (5.25-27) we consider several runs where the major radius of the plasma (and

the chamber, accordingly) is varied. This has little effect on the toroidal current density,

and therefore the load on the chamber, since the purely vertical displacement is not

highly sensitive to the change in radius. The poloidal halo current does change,

however, as the equilibrium poloidal current in the plasma increases. The result is not

the purely linear one predicted in Chapter 3; a possible reason is the lack of toroidal

effects in that model.
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We now consider what happens if the disruption velocity is varied. It is expected that

this will have the strongest effect on the eddy currents, which were not considered in

Chapter 3. The results are shown in figures (5.28-30).
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The poloidal halo currents do increase with velocity, since less resistive decay takes

place before the plasma hits the wall, and there is a stronger compression of toroidal

flux. The higher velocities also drive larger eddy currents, which again drive the

dominant load; as the eddy currents vary by a factor of about three, the loads go as the

square, varying by about an order of magnitude. The exact functional relationships,

especially in the case of the loads, are not clear.

Even if there is no exact relation appearing from a run, it is at least useful to see a

monotonic relationship. However, the following results from varying the plasma minor

radius show that when competing effects are involved, no clear relationship may

emerge. While figure (5.31) shows a well-behaved relationship between the minor

radius and poloidal halo current, it is a completely different curve from the 1/a 2

heuristic prediction. The toroidal current and load data in figures (5.32-33) show no

obvious trend. The fact that the peak toroidal current density is positive for small radii is

due to the fact that the toroidal halo current "rebound" towards the end of the

disruption is actually greater than the negative image currents driven in the wall.
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The last parameter we will consider is the plasma conductivity. Note that the

dependence shown in these curves would appear even stronger if the corresponding

Spitzer temperature were used as the independent variable. The implications of these

runs are interesting, because the physics required to predict the plasma conductivity or

temperature is completely outside the sheet current model. However, even if such

predictions were available, they would be of no use for disruptions driven by, say, the

sudden failure of a power supply as opposed to the plasma physics of an advanced

operating scenario.

Figure (5.34) show the dependence of the poloidal halo current on the conductivity,

which looks purely linear. This is somewhat surprising since the disruption lasts long

enough for the resistive decay of the poloidal current in the plasma to show its

exponential character, and adjusting the conductivity is simply adjusting the ratio of the

disruption time to the poloidal L/R time. Since the toroidal L/R time is much longer,

the near-linear relationship in figure (5.35) is more acceptable. The anomalous point in

the load curve at 0.4 Mmho/m does not have an obvious explanation; that simulation

was subject to the same convergence criteria as all the other runs.
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5.4. Non-Axisymmetric Effects

In this section we will examine some consequences of a non-axisymmetric event in the

context of the simpler rectangular vacuum chamber, to make the intrinsic features

clearer than was possible with the Alcator case. Two cases will be considered: a tilt that

is allowed to progress up to the moment before contact with the vacuum vessel, and

one like the displacement used for the Alcator shot, where the plasma is returned to an
axisymmetric configuration just before impact.

In order to have slightly greater range for the tilt, the plasma is modified slightly from
the reference case. The minor radius is decreased to 15cm and the plasma is centered in

the chamber, at a major radius of 75cm.

We first consider the unrestricted tilt, whose trajectory is shown in the following frames.
As before, the viewpoint is at <=iT/2 and slightly elevated.

U
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if

The zero-order plasma current is not strongly affected by this motion and undergoes

only a slow resistive decay:
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The next set of plots is of the toroidal current density, which shows the strong cosine

response to the tilt; the sine components ($=n/2, 3iT/2) show only the effects of the

resistive decay of the plasma current.
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Toroidal Current Density in the
Chamber, at phi = Tr/2
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As required to maintain a divergence-free current, the poloidal current is ninety degrees

out of phase with the toroidal current. The magnitude is substantial compared to the

toroidal current.
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The loads reflect the interaction of the poloidal eddy currents with the toroidal field:
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We can compare the contributions of the two currents to the load, looking at just two

locations for simplicity; this confirms that the poloidal eddy currents are the most

significant. Note that the load varies by an order of magnitude in toroidal angle.
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We now consider the case where the tilt is brought back under control so that we can

allow the plasma to strike the wall:

163

0
-J

E

0z



4

The plasma current shows only minor differences from the reference case (given in

figure 5.2):
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The zero-order poloidal halo current is also unremarkable in appearance; the

differences from the reference case are easily attributed to the smaller plasma minor

radius:

Zero-Order Poloidal Halo Current
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Since this case does not have plasma rotation, the tilting and straightening motion of the

plasma is almost symmetrical. However, the non-axisymmetric nature is enough to

again show a phenomenon seen earlier in the C-MOD run. Consider first this snapshot

of the current and load distributions early in the disruption.

Since the plasma is still undergoing a tilt, the effects of the asymmetry are clear.

However, the rise of zero-order toroidal eddy currents quickly dominate, making the

disruption look very similar to the reference case during the time of the peak halo

currents. Late in the disruption, though, when the plasma has nearly vanished, we see

that non-axisymmetric poloidal currents have persisted long enough to contribute a

significant amount to the load (again raising the question about choosing the lesser of

two evils, a large axisymmetric force or a smaller non-axisymmetric one). However, this

is the case mostly at the location of the chamber not in contact with the plasma. In the

region still overlapped by a shell, the load is nearly symmetric. The symmetric region is

not simply a case of the zero-order current becoming dominant, because it does so in

only a localized region; the magnitudes of these symmetric and asymmetric loads is

about the same.
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As part of the same phenomenon, note how the poloidal current becomes considerably

more symmetric in the region where the plasma hits the wall. If it were the case that the

poloidal plasma current remains largely symmetric, and then dominates the wall

current as the plasma impacts the chamber, then one must provide a reason why the

wall should experience non-axisymmetric poloidal currents before impact while the

plasma does not. It seems more plausible to posit the existence of a mechanism which

rapidly damps non-axisymmetric currents that are forced to close between moving

boundaries; in any event, this is an appealing area for future investigation.
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Toroidal Current Density, t=4.77ms
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Normal Load, t=4.77ms
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5.5. Computation Time

The last point to consider about TSPS-3D is whether or not it actually achieves a

significant advantage in computation speed over other methods. It is hoped that the

number of runs required to produce these results is a clear indication that the execution

speed is not prohibitive, but of course firm numbers are more reassuring.

In the early stages of benchmarking the code, a simple test simulating an axisymmetric

current dump in a filament located in a sharp-cornered chamber was performed with

both TSPS-3D and the code ANSYS, which is a finite-element code that solves

differential models for a broad range of electrical and mechanical problems [4].

Adjusting for the different platforms used, the TSPS run was three hundred times faster

than the ANSYS run. The chief difference in this case was clearly the fact that the

vacuum region, which encompassed most of the domain in this test run, does not

appear explicitly in the integral equations of the sheet current model.
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The following times were required for the various runs in this chapter. All runs were

done on a DEC Alphastation 500 5/333 computer.

* The reference case took 30 minutes for 580 time steps, each representing

10s of simulation time.

0 The parametric runs took anywhere from 15 to 45 minutes depending on

the plasma size and disruption velocity, taking between 470 and 760 time steps.

0 The axisymmetric simulation of shot 950112013 in Alcator C-MOD took

one hour for 650 time steps.

0 The "runaway tilt" case of section 5.4 took one hour for 180 time steps.

* The "restrained tilt" case of section 5.4 took six hours for 530 time steps.

* The non-axisymmetric run for shot 950112013 took a full 48 hours for 650

time steps using an older version of TSPS-3D. The estimated time using the newer

algorithm used for the simple "restrained tilt" is about 18 hours.

If a particular geometry requires N degrees of freedom for an axisymmetric case,

studying n=1 modes with arbitrary phase requires 3N degrees of freedom. This means

that matrix loading times increase by a factor of 9 and - the real limiting factor - matrix

inversion times increase by a factor of 27. Iterative N 2 linear algebra routines such as

conjugate gradient methods do not help computation time because they take O(N)

iterations for these problems; however, they are still useful because they do not require

storage space for an inverted or decomposed matrix. Finally, the factor of 27 for non-

axisymmetric cases can be reduced if different algorithms are used after the plasma

strikes the wall, since once it returns to the same coordinate frame as the chamber the

different Fourier modes decouple; this is the enhancement seen from 48 down to 18

hours for the C-MOD simulation. Note that even though the scaling from symmetric to

asymmetric cases is disappointing, TSPS-3D is nevertheless the only currently existing

tool which can be easily used to study non-axisymmetric halo currents in complex
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geometries, so that perhaps the correct time to compare the three dimensional runs to is

"infinity"!

We have demonstrated a wide range of the capabilities of TSPS-3D and the sheet

current model. In the next chapter we will collect the spread of information into a

compact summary, and examine some directions for the future.
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Chapter 6. Conclusions

The development and initial testing of the sheet current model and the TSPS-3D code

have been carried out to the furthest point one can reasonably go without starting to

narrow the focus to a specific application. It is obvious that the wealth of information

which is generated by just a single three-dimensional run can serve as a starting point

for many different follow-on investigations. We therefore consider this to be an

appropriate stopping point for this body of work, and in this last brief chapter will

summarize the major results and some suggestions for future work.

6.1. Summary

The sheet current model developed in this thesis is a representation of a disrupting

tokamak plasma by a set of nested current sheets, which are the most reasonable

compromise between computationally difficult non-linear flux surface models, and

filament models which do not allow the flow of continuous poloidal currents. Inclusion

of poloidal currents is crucial since the experimentally measured large poloidal halo

currents will interact with the toroidal magnetic field to produce strong loads on the

tokamak vessel. Prior to the development of the sheet current model, there was no

efficient tool for performing predictive studies of axisymmetric halo currents and

almost no tools whatsoever for non-axisymmetric cases.

By restricting the focus of the model to the global quantities of interest, which are the

currents and magnetic fields and the forces resulting from their interaction, the need to

resolve complex, short time- and length- scale plasma physics is eliminated. In addition,

the resulting integral formulation has been shown to be especially useful in handling

realistic tokamak and plasma parameters, such as the complicated tokamak geometries

exemplified by the Alcator C-MOD divertor structure. More significantly, the integral

form eliminates the need for additional degrees of freedom to represent vacuum fields.

Simple scaling arguments have been considered for the case of axisymmetric halo

currents, showing that the currents will have a reasonably persistent force-free character

that makes their contribution to the structural loads small compared to that of toroidal

eddy currents. This characteristic is particular to axisymmetric disruptions, where the
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only source of poloidal current is that which evolves from the equilibrium poloidal

plasma current.

A numerical code call TSPS-3D has been developed to solve the sheet current equations

in arbitrary geometries. The code has been matched against experimental data from the

Alcator C-MOD experiment and used to investigate scalings of axisymmetric

disruptions with some of the basic plasma parameters. Investigations of the electrical

interaction between the wall and plasma have also been performed for non-

axisymmetric cases, and reveal a decidedly different character in these events than in

the axisymmetric ones. The wall has a new source of poloidal current, as the toroidal

current in the plasma couples to this direction as the plasma undergoes a non-

axisymmetric displacement. Before the plasma strikes the wall, large eddy currents can

be driven both toroidally and poloidally, and eddy currents have no force-free

constraint to keep the load small. Curiously, though, these preliminary run show that

the region of the wall which is in contact with the plasma does not experience large

asymmetries in the halo current, so that the peak loads on the vessel are caused by eddy

currents in regions not in contact with the plasma, or by large axisymmetric toroidal

eddy currents which are generated in the impact regions.

6.2. Suggestions for Future Work

The modeling of halo currents has revealed many other possible lines of investigation,

some directly related, some not.

1) Direct application of TSPS-3D to evaluate the structural sufficiency of existing

tokamaks or of proposed designs, such as ITER. This work should be combined with

finding a better means of taking the loads output by TSPS-3D and using them to

perform dynamic analysis on realistically shaped tokamaks, since load information is

not useful unless it can be turned into information on stresses.

2) Instrumentation of machines like Alcator C-MOD to provide experimental evidence

for strong, poloidally localized toroidal eddy currents.
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3) Experimental testing of mock-ups of the chamber wall (of course, the real chamber

would do even better!) to confirm or possibly disprove the validity of treating the

vacuum vessel as an unbroken, isotropic, single-layered structure. This is by far the

weakest assumption in the sheet current model, given the incredibly complex

connections between the tiles, brackets, backing plates, etc. It seems very likely that the

wall should at least be treated as an anisotropic structure, since the conduction of

current into the stainless steel wall through the tiles is very different from conduction

along the plane of the wall. It is possible that toroidal current never penetrates to the

steel.

4) Theoretical investigation of the apparent suppression of non-axisymmetric currents

in the wall in regions touching the plasma. It is quite possible that this is either an

artifact of the specific cases used in Chapter 5, or of the sheet current model itself since it

imposes stringent boundary conditions on the moving wall/sheet interface.

5) Numerical investigation of incorporating the full free-boundary problem into the

model even when the plasma hits the wall. If this is possible without a major excess of

computation time, then the sheet current model would become a useful tool for

dynamic PF system design as well as more self-consistent disruption studies.

Any of these possibilities would also represent another step towards repairing the

existing rift between fusion theory and fusion experiment; the general field of "fusion

engineering" requires the skills of the practitioners in both areas.
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Appendix A. Algebraic Details

The sheet current model achieves its compact form because of the incredible cleverness

of classical mathematicians, who fully mastered all nuances of the Laplacian operator.

In addition, the lack of high-speed computing forced them to be resourceful enough to

find closed-form expressions for things the modern analyst would immediately subject

to numerical attack. This is not meant to bemoan the state of modern applied

mathematics; certainly many contemporary problems have become sufficiently complex

to defy the most clever analytic techniques, and certainly one should always take

advantage of labor-saving tools when they become available. However, this philosophy

should be used consistently: since there are so many closed-form expressions available

from the toils of our predecessors, we should use them rather than wasting

computational resources on repeating them.

The following sections provide the some explicit steps used to get results which were

treated as "given" in the derivation of the sheet current model. They will not add any

physical understanding to the problem, but should serve as a time-saving reference for

anyone pursuing related work. Obviously none of the work is new, and all of it is

repeated in a large number of math texts. The references listed at the end of this

Appendix are simply my personal favorites for Green's functions, integral equations,

and techniques for efficiently turning closed-form expressions into hard numbers.

The notation used here is consistent with that in the main thesis; specifically, for a

parameterized curve R(v) and Z(v) in cylindrical coordinates, the tangential and normal

vectors in the TNB frame are given by

1 (dR dZ,

1 (dR dZ,
e~ Iez -TeRP dV d Z

dR2 dZ2
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dR - dZ
We further define R ;7 , Z =

Some steps in the derivations use equations taken directly from the references, so an

appropriate notation is used to number these equations. For example, (G&R 9.137.2)

refers to equation 9.137.2 in Gradshteyn and Ryzhik; the prefix A&S refers to

Abramowitz and Stegun.

A.1. Green's Theorem

Consider two scalar functions f(T), g(7 ) and their gradients Vf, V g. Over some volume

of space V, bounded by a surface A with unit normal n^, some simple identities tell us

that for the integrand given by fV-Vg, we may write

f fV-Vg dV = f V.(f g) dV - f Vf-Vg dV

The functions f and g are completely interchangeable at this point, so we may also write

f g-V.Vf dV = f V.(gvf) dV - f Vg-Vf dV

Subtracting these two relations leads to

f (gV2f - fV2g) dV =f (V.(fVg) - -V.(gVf)) dV

which after applying the divergence theorem to the right hand side can be put in the

form of Green's second identity,

(A.1) f(gV2f - fV2g) dV = f(fg - gVf)fi dA

Green's first identity is obtained by adding our two starting relations; we will not be

using it here. Suppose now we consider two particular functions instead of the arbitrary

f and g. Let F be the solution to Poisson's equation,
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(A.2) V2F(ir) = S(7)

where S(7) is a known source term. For the second function, we presume the existence

of a special function G(7,r') which satisfies the particular equation

(A.3) V2G(-r, ') = 8(- - -')

where 8(7) is the Dirac delta function, satisfying f f(r')(7 - T') d7' = f(T), and the

Laplacian operator can be applied to G in either the primed or unprimed coordinates.

Plugging (A.2) and (A.3) into (A.1) and integrating over the delta function yields the

scalar form of Green's theorem:

(A.4) F(7) = fG(r,7')S(T') dV' + fG(7')v'F(r') - F(7')V'G(7,7'))f' dA'

Something remarkable happens in the case when one wishes to solve (A.2) for F in free

space, where the boundary surface is at infinity and F is presumed to go to zero. Green's

theorem reduces to

(A.5) F(T) =f G(7,T')S(7') dV'

and equation (A.2) has been solved with no further work whatsoever! This result is

independent of the coordinate system; it requires only that G and S be known functions.

S presumably depends on the problem at hand; G is in fact a known function. It is

possible to derive it by solving (A.3) with Fourier transforms, but we will simply give

the result here:

(A.6) G(7,T') =

It is common, and usually physically appropriate, to refer to the point at T' as the

source point and the point at 7 as the observation point.
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Green's theorem represents a powerful method to write down closed-form solutions to

Poisson equations, or else change them to an integral form which, as demonstrated by
this thesis, lends itself to efficient numerical solution when confronted with difficult

geometries, especially when compared with solving the equivalent differential

equations (see the discussion in the last section of Chapter 2).

A.2 The Green's Dyadic for the Vector Potential

Suppose that instead of the scalar Laplacian operator in (A.2) we have the vector

Laplacian; for example, we desire to solve the equation

(A.7) V2F(7) = 2(7)

Is there a way to apply Green's theorem and write down the solution as easily as we did

in the scalar case? The answer is yes, although the exact form will now be dependent on

the coordinate system. However, by knowing the solution in the Cartesian system it is

then possible to derive the correct result for any other. Let us consider the Cartesian

case.

Since the unit vectors are constant and independent of the coordinates themselves in the

Cartesian system, the components of the vector Laplacian have a simple form and the

unit vectors themselves can be pulled outside of it:

(A.8) (V2Fx)X + (V2 Fy)Zy + (V2Fzfz

Taking the dot product of (A.8) with each of the unit vectors in turn yields three

uncoupled scalar equations

V2F,=-, = S,

(A.9) V2Fy= ey = SY
V2 Fz =1-ez = Sz

with the solutions to each equation given by the methods of the previous section:

Fx = f G S'. dV'
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(A.10) Fy = fG S'y dV'

Fz =f G S'z dV'

However, it is only possible to do this since the unit vectors implicit in equation (A.7)

are constant and can be pulled outside the operator. This cannot be done for an

arbitrary coordinate system. However, if we already know the solution for the Cartesian

system, why not just take this solution and express it in the desired system? Suppose

the desired system has unit vectors GI, e2 e3, and the source term is given in its

components S1, S2, S3. The solution is desired in the form F1, F2, F3 . The first step is to

find the Cartesian components of the source, but expressed in terms of the new

coordinate system:

= JG ( )S1 + (x.2)S2 + (^x.3)S3 dV'

(A.11) Fy = G [(y-G1)S1 + ( y-^2)S2 + (^ 8.3 )S3 ]' dv'

Fz = G [(kzZ 1)S1 + ( z2)S 2 + (UzZ' 3)S3 ]I dV'

Note all quantities in the square brackets are in the primed coordinate system. The next

step is to take the appropriate linear combinations of (A.11) to find the components of T

in the new coordinates; for example:

(A.12) F2 = G [[( 2 x)(8g) + (X2-y)y,10J + (^2*^y)( z*^1)' IS1' +

[(U x) y+ (22. y)(y.y2)t + (32Zy)(z-2)' ]S2'+

[(0 - )( x-3)' + (2.Yy -3)' + (02-y)( z,3)' ]S 3'] dV'

Careful attention should be paid to whether a certain quantity is in the primed or

unprimed coordinate system. The various dot products in (A.12) and the equivalent

expressions for Fx and F, can be re-written very efficiently as a unitary dyadic operator

M. Letting the subscript k range over each Cartesian component x, y, and z, and letting

the subscripts i and j range over the components 1, 2, and 3 of the new coordinate

system:

(A.13) Mij = J( k j
k
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The components of M must be known to carry out the above process; they can be found

if the functional relationships between the two coordinate systems are known, as is

presumably the case. Examples of this procedure can be found in any text on vector

calculus.

If we define G = GM then the solution to (A.7) can be written in the compact form

r(7) = f(7,7').(7') dV'

where the operation under the integral sign is dotting a second-rank tensor with a

vector, which yields another vector. The object G is the Green's dyadic for the vector

Laplace operator.

To avoid dragging around too many constants, let us redefine the Green's function G to

be

G(7,7') = "
4nJ 7 - 7'

so that it immediately follows that equation (2.32) in the text, V2X = -oTf, has the

solution (2.33), - = f JT' dV'. We will now examine the components of G in some

specific coordinate systems.

In cylindrical coordinates (R, 0, Z) with the 0=0 plane aligned with the y=O Cartesian

plane, the unit vectors are related back to the Cartesian ones through the relations

eR =COS$ + sin$ e
e = -sino , + cos$ Gy

The z vector maps to itself. If T is also given in cylindrical components, then after

applying (A.13) and the trigonometric identities

cos(a ± b) = cos(a)cos(b) T sin(a)sin(b)

sin(a ± b) = sin(a)cos(b) ± cos(a)sin(b)

we get the result
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cos(4) sin($-4') 0
G= G -sin($H) cos($-$') 0

0 0 1

G =g--
4n R2 + R'2 - 2RR' cos($--.') + (Z-Z')2

To deal with the different locally axisymmetric coordinate frames, we saw in Chapter 4

that it is useful to evaluate the cylindrical components of W when given the components

of T in the local TNB frame of a sheet. Note that in this case, the rows of G yield the (eR,
eo, ez) components after the columns are dotted with the ( P% <v', 3e') components of J':

(A.14) G = G

- cos($-$') cos($-q') sin($-$')

sin($-f) -, sin($frp) cos(0-$')

R,
0

Finally, if A is desired in the TNB frame, so that the rows yield the (e P , Y,
components, we have

(A.15) G= G

RR' ZZ'QQ + cos($4-)

ks k2 s

Z
s1 in($40)

RZ' ZR'

,Q- + Wcos($O)

-Q, sin($4o)

Z
Q
- sin("-')

sin(4-0)

cos(4')

To work in terms of sheet currents IZ requires no modifications; Kp, of course, is zero.
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A.3 Analytic Integration of the $ dependence

As stated in Chapter 4, the Fourier expansion of R and the restriction to locally

axisymmetric displacements means the f integration over the Green's dyadic can be

evaluated analytically, yielding (4.18-20). To reach this result, we need to calculate the

following five integrals:

(A.16)

(A.17)

(A.18)
0

sin(n$')cos($-o')

1 R2 + R'2 - 2RR cos($p-') + (Z-Z)2

cos(n$')cos($-$')

- R2 + R'2 - 2RR' cos($W) + (Z-Z) 2

sin(n$')sin(o-$')

V R2 + R'2 - 2RR' cos(O-o') + (Z-Z')2

(A.19) f027cos(n$')sin($-4')

o 1R2 + R'2 - 2RR' cos($-(') + (Z-Z')2

(A.20) fo~cos(no') or sin(n$')
'o <R2 + R' 2 - 2RR' cos($p') + (Z-Z')2

In these integrals, R and Z appear only as parameters; since we required the sheets to

always remain toroidally axisymmetric about some axis, R' and Z' also have no $'

dependence. We define the following:

= (R + R')2 + (Z - Z')2
4RR'

k =

0p'-0(

(X 2

Using these definitions and the trigonometric identities given earlier, along with the

additional identity cos(x) = 2 cos 2 (x/2) - 1, we can write (A.16) in the form
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2 (sin(n$)cos(2na) + cos(n$)sin(2nx))(2 cos2IS - 1)

J f(1 - k cos 2 a

Careful examination of the symmetries in the second term shows it to integrate

identically to zero. The next step is to use the identity

n

cos(2na) = jC,'jcos2ia
j=0

where the Cnj can be found from (G&R 1.331.3). This puts (A.16) in the form

n

,Cnj(2cos2( +1)a - cos2ja)
(A.21) 4 sin(n$) i=o da

O1 - k cos 2a

where the change in the range of integration comes from using the even symmetry of

cosine about 2/2 between 0 and n. This brings us to an integral which can be found in

tables:

7T

2 cos2ja n (2j-1)!! I
(G&R 3.682) Jd - 2 +1 jf F(j±y, p; j+1; k)

ff(1 - k cos2t)P j LJ' 2

where F(a, b, c; z) is the hypergeometric function (see, for example, G&R chapter 9 or

A&S chapter 15) and the notation (2j-1)!! = 1-3 -5-.. ..-(2j-1). This last notation is defined to

be 1 if j is zero.

Since we are interested principally in the case p=1/2, we define for convenience

7t (2j-1)!! 1 1
F+(j,k) = 2 j+I j! F(j+j, ; j+1; k)

The reason for the "+" superscript will become apparent later. After applying (G&R

3.682) to (A.21) we can finally write (A.16) as
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(A.22) 4sin(n$) XC,,j(2F+(j+l,k) - F+(j,k))
j=o

A very similar series of steps can be used on the remaining integrals, yielding

(A.23)4 cos(n) C,(2P+(j+1,k) - $+(j,k)) = (A.17)

( 4 s(n$) n1 -
(A.24) s(n) n +(jk) - EC,j (2f+(j+,k) - =+(j,k)) (A.18)

o =O

F4snn)n-1 n

(A.25) - E i~ )[Cn-li'P+(jik) XC,,(2i+(j±1,k)-P(~) = (A.19)
1W 1= j=O

4 cos(no) or sin(n4) n
(A.26) 4rCnj+(j,k) = (A.20)

Using these results we may now write the Fourier-anaylzed form of (A.14), yielding the

components to be used in (4.18-20) but without the scale factors R'Q' from the volume

element dV' and without adjusting for the use of K instead of K,.

G cos(n$) i Co T+sin(no) Q 71W

G - -sin(n$) go T+
=R,n - cos(n ) 2

G cos(n4) T+G0nsin(no) Tc1W 1

G _ sin(n$) R go T+= -cos(n4) Q 2

G cos(n) ' go
GZ in~ Q 0,n4- o3

szon = 0, all orders

where
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n

+= C,(2F+(j+1,k) - F+(j,k))
j=0
n-1 n

T+ = ECn..,jF+(j,k) - ICnj(2+(j+1,k) - F+(j,k))
j=0 j=0
n

T+ = YCn,jF+(j,k)
j=0

The introduction of the T terms will save much effort when evaluating 1 in the next

section. Note that for n=O, the summation up to n-1 in T is zero.

These expressions are not useful without a convenient means of evaluating F^+(j,k). It

turns out that this function can be calculated through a recursion relation in j, starting

with elliptic functions. Suppose we define two "ladder functions" by

F+(j,k) = F(j+i, i; j+1; k); F-(j,k) = F(j-I, j; j+1; k)

We repeat here some recursion relations between various arguments of the

hypergeometric function:

(G&R 9.137.2) (2a-c-ak+bk)F(a,b;c;k) + (c-a)F(a-1,b;c;k) + a(k-1)F(a+1,b;c;k) = 0

(G&R 9.137.13) c(a-(c-b)k)F(a,b;c;k) - ac(1-k)F(a+1,b;c;k) + (c-a)(c-b)F(a,b;c+1;k) =0

(G&R 9.137.18) cF(a,b;c;k) - (c-a)F(a,b;c+1,k) - aF(a+1,b;c+1,k) = 0

From (G&R 9.137.2) we find an intermediate step:

F(j+}, L; j+1; k) = j F+(j,k) + 2(1-k)(j,k)

which can be substituted into (G&R 9.137.13) to yield the first needed relation:

F-(j+1,k) = j+1 [F-(j,k) - (1-k)F+(j,k)]
(j+})k

Using this and (G&R 9.137.18) yields the second:
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F+(j+1,k) = F+(j,k) - 2j F-(j+1,k)
J+2

To start the recursion, we can see by examining the original integral (G&R 3.682) that

2 2
F+(O,k) = - K(k), F-(O,k) = - E(k)

where K(k) and E(k) are the complete elliptic integrals of the first and second kinds,

respectively. These are functions of a single argument and can be evaluated quickly on a

computer through high-accuracy parametric curve fits given in [3]. Note that F+(j,k) and

F-(j,k) are always linear combinations of K(k) and E(k); it is possible to use the recursion

relations to track the coefficients of the elliptic functions separately. This is desirable for

cases where special techniques are to be used to handle the logarithmic singularity in

K(k) as k approaches unity. Care should be taken when using different references on

elliptic functions; for example, [4] defines the argument k to be the square root of the

one used in [3].

The original function F+(j,k) is given by 2 (2j-)! F+(j,k); the function P-(j,k) will be

encountered in the next section and is given by the corresponding expression
T (2j-1)!! F-(j,k).

Some particular values of the various quantities calculated in this section are

CoO = 1

C1,o = -1 C1 ,1 = 2

C2,o=1 C2,1 =-8 C2,2 =8

F+(O,k) = K(k)

F+(1,k) = [K(k) - E(k)]

F+(2,k) = [K(k) - E(k)] - k2 (1-1)E(k) - (1-k)K(k)
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As an example of one of the kernels,

G40,0 = 2p 1- (k) - E(k)]

which gives the result used in equation (3.19).

A.4 The Green's Dyadic for the Magnetic Fields

Once the expressions for X are known, there is no need to evaluate a complete new set

of integrals to calculate i; nor is there a need to calculate any numerical derivatives.

Recall that X = xA = Vxf G.T' dV. Since the curl is taken in the unprimed

coordinates in this last expression, only derivatives of G are required, and a new dyadic

which we will call W can be calculated analytically, so that i= -' dV. The

corresponding cylindrical components of W are given by

3Gay oGzy
- az
c)GOa a

TR az

1 cGzy oGz
V-R a) - az

I~ a 1 c)GR~
. ~ R R(RG) - R ao

zy = 1(RG _) - 1GRvKFR R ao

To evaluate these explicitly, we also require the partial derivatives

k - 2(R+R')

A= 2(R+R')

3 k 2k
-= (Z-Z')

az = 2(Z-Z')

and also the derivative -(F+(jk)). To do this last task we employ the following

property of hypergeometric functions:
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d
(A&S 15.2.5) T(kc-a (1-k)a+b-c F(a, b; c; k)) = (c-a) kc-a-l (1-k)a+b-c-1 F(a-1, b; c; k)

From this expression it follows

d +(j(j,k) +(j,k)
k ) 2k(1-k) 2k

dT+ T~ T+

and - = 2k(1-k) - 2k

Substituting these various expressions into the partial derivatives of G given above

yields the components of 9; as before, the scale factors R'Q' are not included and no

adjustment is made for the use of k.

S -sin(n$) go nZ'
%-v~ cos(n$) q3/2 LRQ 3

S -cos(n) o Z-VJ~,n -sin(no) 7rp/2 L Q'(1 -k))

_ cos(n$) go Z-Z'T
,n - sin(n$) 793/2 1-k 1

= sin(n$) ' [ +
~,n -cos(n4) 7tQj 3 /2 I2

R(Z-Z')T

Q'(1-k) 2

- T" +3

ri +

Q' k- 3Q'(1-k) F2R R 7 J

-R-R' 2

( sin(n$) go Z
n -- cos(n$) gp 3/ 2 1-k 2

cos(n$) go F__ 1 ( N]
SR + k R - R'Onsin(no) np3/2 [ 2R , R T2 +1-k yL1 )l
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A.5 Conversion between Coordinate Frames

The conversion from the wall frame S and the plasma frame S' is specified, as described

in Chapter 2, by two sets of parameters. The first is the displacement of the origin of S'

relative to the origin of S in Cartesian coordinates, given by the vector & = (A., Ay, Az).

The second is the set of angles which give successive rotations of the coordinate planes

of S' (see figure 2.3), given by (x,, , xy). To rotate a coordinate system in a particular

plane is a simple matter; for example, for a single rotation of $xz in the X-Z plane we

would get

KX = cos(xz) ^ + sin($xz) e^

Y =e Y

z= -sin($xz) 0^ + cos(Oxz) ez

Successive rotations look a bit messier but follow in an identical manner. Thus we build

up a transformation matrix M given by

cosrxycos xz-sinxzsinyzsinxy cosyzsin4xy cosxysinxz+sinyzsinxycosxz
M =-sinoxycosoxz-sinoyzcosoxysin~xz cosoyzcosoxy sin~yzcos~xycos~xz-sin~xysin~xz

-cosoyzsinoxz -sinoyz cosoxzcosoyz

A position vector 7 whose coordinates are (R,,Z) has Cartesian components7 = R

cos$ex + R sin$eY + Ziz, and transforms by T'= -(7-&).The cylindrical coordinates in

S' are determined by

0'= tan-, (y'/x')
R'= y'2 +x' 2

Z'=Z'

Starting in S', the inverse transformation is r = T-17' + S. Components of a vectorfield

X transform in almost the same manner, but without the displacement: A' = M=X, and

the inverse through X = M-1-'. These manipulations must done on the Cartesian
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components of X, which can be changed to and from the cylindrical or TNB

components as was done in the first section.

Finally, in the sheet-current model it is necessary to know k in both frames; it is given

by

x' xp' + y' yp'

after x', y', and R' (or x, y, and R for the inverse) have been obtained as before. The

quantities xp' and yp' are the transformed components of the vector R cos$ex + R sin$ey

+ Zez, which transforms like a vector field, not a position vector.

A.6 References

1. P. M. Morse, H. Feshbach. Methods of Theoretical Physics, Pts. I-IL. McGraw-Hill, New

York, 1953.

2. R. Courant, D. Hilbert. Methods of Mathematical Physics, Vols.I-II. Wiley Interscience,

New York. Reprinted 1989.

3. M. Abramowitz, I. Stegun. Handbook of Mathematical Functions. Dover, New York.

Ninth Edition, 1972.

4. I. S. Gradshteyn, I. M. Ryzhik. Table of Integrals, Series, and Products. Academic Press,

San Diego. Fifth Edition, 1994.

192



Appendix B.

Notes on the Free-Boundary Problem



Appendix B. Notes on the Free-Boundary Problem.

The current implementation of the sheet current model sidesteps an entire area of MHD

modeling, namely the solutions to the innocuous-looking equilibrium relation

(B.1) 0x=

The amount of detail contained in such a compact expression is surprising, and not

immediately clear to those who are not expressly involved in studying it. This brief

appendix is meant to provide an "outsider's view" of equation (B.1) in the context of

free-boundary problems, and to investigate some interesting methods that were

contemplated to incorporate numerical solutions into TSPS-3D. Since the penalty

function was ultimately employed in the code instead of exact solutions to (B.1), the

reader should be warned that this section is not intended to be a complete review of

solving MHD free-boundary equilibria; the numerical method given here may not in

fact be the correct choice, and should be taken with a grain of academic salt.

We will begin by defining what exactly we mean by the free-boundary problem, and

how it comes about in (B.1), relative to a fixed-boundary problem. The next step is to

develop an illustrative model, which will be used in the context of the sheet-current

equations developed in the main thesis. The method of "parameter imbedding" will be

introduced to find numerical solutions to the model; a simple example of how it works

will also be given. Finally, we will show a sample free-boundary sheet-current problem

and some numerical results.

B.1. What is the Free-Boundary Problem?

The perspective of the graduate student not intimately involved in MHD equilibria is

that MHD equilibrium means the Grad-Shafranov equation and fixed-boundary

equilibria. Most introductory MHD texts (in the author's opinion) gloss over the free-

boundary problem and do not at all make it clear why some extra degrees of freedom

seem to appear out of nowhere. However, the free-boundary problem is not any harder

than the fixed-boundary one, or more incomplete; it is simply different. Let us examine

the problem we would like to solve:
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"How do I find a static equilibrium composed of a current-carrying plasma

confined in externally applied magnetic fields?"

The answer to this question begins with additional questions. Are you interested in

finding what type of plasma can be confined in an existing machine? Do you want to

build a machine so that it can confine a particular plasma? Do you have an existing

experiment and you want to reconstruct the plasmas it has already generated?

The answers to these questions determine whether it is the fixed- or free-boundary

problem that you will need to solve. To briefly list the differences between the two:

In the fixed-boundary problem:

* The shape of the plasma is already known (determined, for example, by its

desirable stability or transport characteristics).

* The toroidal plasma current is determined by the MHD momentum

equation.

* The external magnetic field system is determined by matching the applied

field to the plasma contribution by enforcing n I = 0 at the plasma

surface. The exact distribution and magnitude of coil currents which give

the desired field must come from other constraints, usually those imposed

by engineering necessity.

In the free-boundary problem:

* The shape of the plasma is not known. Usually you either want to

reconstruct it from existing data, or simulate it (e.g. for halo-current or

feedback studies) using the design of an existing machine. It comes from

the MHD momentum equation.

* The toroidal plasma current is either specified from existing data, or found

by coupling Ohm's Law to Maxwell's Equations.

* The external field system is specified, including the location of the coils

and the coil currents.
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The free-boundary case is actually the more intuitive one when compared to the

simplest equilibrium problems we first learn to solve. Consider the spring-mass system

shown in figure (B.1), consisting of a block with mass m connected to a linear spring,

which is in turn fixed to a wall. The spring is assumed to follow Hooke's Law and to

have a spring constant k. Suppose we pull on the block, applying an external force Fext.

As the spring is stretched some distance x from its neutral position, it imposes a

restoring force, Fsp = -kx. If the system is in equilibrium, these forces balance and the

equation of motion becomes

(B.2) d 2x
(B.) mdt2 - k ext = 0

sp Fext

X

X 0

Figure B.1. A simple spring-mass system

We create a free-boundary problem of sorts by asking, "Given a certain spring and a

certain external force, where does the block come to rest?" The answer is obviously

Fext

k

We can create a fixed-boundary problem from the same setup by asking, "If I want the

block to stay at location x given a certain external force, what kind of spring do I need?"

Again the answer is trivial:

k =Fext
x
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There is no other characteristic which makes one type of problem fundamentally

"deeper" than the other. In practice, one may be harder than the other if the known and

unknown quantities are related in a complicated way; for example, if k in the above

example varied non-linearly with position, e.g., k(x) = ko(x 3-x), then the fixed-boundary

problem can still be solved trivially for ko but the free-boundary problem would no

longer have a single unique solution for x.

Let us see now how this example translates to MHD equilibria.

B.2. Explicit Free-Boundary MHD Equations

We will assume without question that the plasma we seek to confine can be accurately

modeled as an ideal MHD fluid. Our complete set of equations will consist of the ideal

MHD momentum equation and Maxwell's Equations, with T coupled to r through

Ohm's law with a constant conductivity. Since there are certainly more parameters in

this case than in our previous simple example, we will keep a careful count of equations

and unknowns to see that the free-boundary problem does not introduce any unusual

information.

The ideal MHD momentum equation is

(B.3) p Dt2 = J(T) x 9(j,r) - VP

where D/Dt is the convective derivative. Using the same Tchar >> TMHD ordering as in

the main thesis, we drop the inertial term on the left; for a plasma which is cold or low-

b, we can neglect the pressure gradient, leaving the familiar

(B.4) J(r)xB(J,r)=O

where the various dependencies have been written explicitly. How many equations is

this? Consider writing the velocity as v = v + v// e/ where e/ is in the direction parallel

to the magnetic field. Dotting (B.3) with this unit vector shows that v// is a free function
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independent of time; for a static equilibrium, we choose it to be zero. Thus (B.4) is in fact

coupled only to the two unknowns in v 1 , or, to draw analogy with (B.2), "if".

Now we couple this system to Maxwell's equations. Beginning with

(B.5) V- = 0

(B.6) V x B = pj

we see that by Helmholtz's Theorem we have uniquely determined the three unknowns

in B. Substituting Ohm's law into Faraday's Law and taking the MQS limit of charge

conservation, we close the system with

(B.7) V-j = 0

(B.8) V x - -t

and we have uniquely determined the three unknowns in J.

The magnetic field can be broken into two parts, the known external fields and the

unknown contribution from the plasma current: B = Bext + Bpi. Using Green's functions

with the results in Appendix A, we can eliminate BpI in terms of j once and for all:

(B.9) BPI = -fG ' dr'

where the dependence of G on the plasma shape is known.

For clarity, we restrict ourselves at this stage to toroidally axisymmetric equilibria. If we

introduce the TNB coordinates used in Chapter 2 and Appendix A, we see that the two

unknowns from the quantity "if" become the familiar parameterizations R(p,v,t) and

Z(p,v,t). The shape of the plasma surface therefore consists of two unknown functions of

a single variable, R(v,t) and Z(v,t).
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In general, solving this system will require discretizing J into some convenient

representation; we will do so in the specific form of the sheet current model,

J (PV) = Kn(v)

where A is the thickness of sheet n and 8 the Dirac delta function. For simplicity, we will

hereafter work in terms of only a single sheet carrying a current K and having a shape

specified by R(v,t) and Z(v,t).

The two unique components of (B.4) are

(B.10) KBO - KoBy = 0

(B.11) BP = 0

The electrical part of the system simplifies further for the axisymmetric case; from (B.7)

it follows that RKv(v,t) is a function of time only, defined to be Ky(t); from (B.5) and

(B.11) RBv is also a spatial constant; from (B.6) so is RBO. Enforcing (B.10) means that

RK (vjt) has the same property, and we accordingly define that combination to be KO(t).

Re-defining B ext = R e + Bext so that the new Bext is purely poloidal, and substituting

(B.9) and the above definitions into (B.10) and (B.11), we arrive at the two explicit

equations for the two unknowns R(v,t) and Z(vt):

(B.12) ev(R,Z) [f (GRcej, + Gz,,z)K' + Bext] f, - k + R + 0

(B.13) e (RZ) [f (GR OR + Gzo z)^'0 + 6ext = 0

where

v M R + dVZ)
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1 dR, dZ,
eP= Q eZ - eR

dR2 dZ2

po Q' (Z-Z') R'2+R2+(Z-Z')2
G(R, Z, R', Z') = RR'(R+')2+(Z-Z)2 (R-R') 2+(Z-Z)2 E(k) - K(k)

GzO(R, Z, R', Z) = 27t 2 )2 K(k) + R 2-R 2 -(Z-Z') 2 E(k)27C ' _(+R:2+(ZZ)2(R-R') 2+(Z-Z') 2

4RR'
k = (R+R')2+(Z-Z')2

K(k) and E(k) are the complete elliptic integrals of the first and second kinds,

respectively. It is clear that (B.12-13) are highly non-linear in the unknowns R and Z; the

quantities KR and k, are treated as "known" in these equations, although in practice

they must be determined by the coupling with (B.7-8).

Free-boundary numerical solvers commonly employ some kind of iterative technique to

solve these equations, either by solving a linearized form at each iteration or by

optimization methods. It is often less than obvious how these algorithms work;

frequently, after a certain parameterization for R(v) and Z(v) is chosen, the number of

equations no longer matches the number of unknowns, and additional constraints must

be placed in the system, in a seemingly arbitrary fashion. Furthermore, for problems

which are also time-dependent, it is undesirable to require an iterative scheme at each

time-step in a simulation. In the halo-current problem, for example, coupling (B.12-13)

to the linear-algebra system derived in Chapter 4 would require iterations over the

multiple integrals, resulting in slow execution times.

As a possible cure for this problem, we suggest the method of parameter imbedding; a

brief introduction to this method is given in the next section.
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B.3. An Introduction to Parameter Imbedding

Parameter imbedding is not a new technique. It is found in various guises and under

various names in the fields of nonlinear dynamics and mechanical engineering, to name

just a few. We will consider here a brief description of how it works, as well as a simple

example. In the next section we will employ it on a simple MHD free-boundary

problem.

Parameter imbedding is based on two simple ideas. The first is that not all nonlinear

problems are difficult to solve. There are plenty of nonlinear operators whose inverses

are known; xn, exp(x), cos(x) all have their counterparts x-, ln(x), arccos(x), for example.

The second idea is that there are systems of equations which can be solved quite easily

numerically; linear algebra systems and systems of coupled ODEs can be handled by

countless "black box" algorithms which are readily available. The idea behind parameter

imbedding is to take a complicated nonlinear system, reduce it to a simpler one whose

solution is known, and then evolve the system back to the original one by integrating a

system of ODEs. The variable of integration is a parameter which is either natural to the

problem (such as time, or a mechanical load in a structural equilibrium problem) or one

which is introduced artificially, such as placing a coefficient in front of a particularly

troublesome term in the original equations. The key is to choose the parameter so that,

for some value, the resulting system of equations can easily be solved by standard

methods.

Let us consider a simple example. Suppose we desire to find all the roots of a generic

nth-order polynomial:

n
(B.14) jai zi = 0

i=O

This is a "hard" problem in the sense that the answer cannot be written down

analytically, and numerical solutions require specialized (although, in this example, not

difficult) techniques other than matrix operations or ODE integration.

Suppose instead the problem was to find all the roots of the single-term polynomial:

201



(B.15) an zn = C

This is a considerably easier problem, with the analytic solution

(B.16) zj = r1/1 exp(i(00 + 27t(j-1))/n), j = 1. .n, r exp(iO0 ) = C/an

Let us now introduce a parameter t into (B.14):

n-1
(B.17) an zjn + tjai zji = C, C = -ao

i=1

We see that for t=O, we have our easy problem of (B.15), whereas for t=1, we have the

original problem of (B.14). If we take the derivative of (B.17) with respect to t, then by
dz-

definition we get a linear equation for dt:

n-1
-jai zji

(B.18) dt i n-1
nan zjn-1+ t i ai zji-1

i=1

Thus, to solve (B.14) we simply integrate (B.18) from t=O to t=1 with a packaged ODE

solver, starting with the initial condition (B.16) at t=O. The results of this process with a

randomly chosen fifth-order polynomial are shown in figure (B.2). The solutions in the

figure evolve from the Xs to the Os; note how they start as evenly spaced points on a

circle in the complex plane, as they should.

The "collapse" of two of the roots to a single repeated root raises an interesting point,

which is the fundamental caveat of employing parameter imbedding. It is quite possible

that the complete properties of the "simple" operator you start with are still unknown;

the existence of multiple solutions may not be immediately evident. Suppose, if one did

not know that xn has n solutions, the following imbedding method was employed:

t~ai zji + aiz= C
i=2
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Figure B.2. Roots of a fifth-order polynomial evolving with imbedded parameter.

Clearly for t=O there is only one value of z which solves the resulting linear equation;

how can it evolve into n different solutions? The answer is that it cannot. At some point

during the integration of the ODE, the path followed by the root would, in principle,

undergo a bifurcation. In practice, the right hand side of the ODE develops a pole at the

bifurcation point, and the integration breaks down. Thus parameter imbedding in this

simple form is only useful if all branches of the solution can followed from the start

(which obviously requires that their existence be known a priori), or if the evolution of a

single solution is known to be smooth.

BA. An MHD Free-Boundary Problem via Parameter Imbedding

We return now to our original task of solving the MHD free-boundary problem, as

given by equations (B.12-13). Suppose we let our unknowns R and Z vary in "time" in

response to varying B ext, K4, Ky, or B . Here, "time" can be true time dependence from a

real PF coil scenario and resistive decay of the plasma currents, or it can be a purely

artificial variation from some configuration where the equilibrium is known.
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The first step is to differentiate equations (B.12-13), being sure to catch all of the implicit

dependencies on time and the plasma shape; for example,

dAext rBext b ext k + et& .
dt - at + Z

dG aG. G. aG. bG.
- -- R+-Z+ R' +-Z'
dt - R z R Z'

The result is two rather complicated-looking but nevertheless linear equations for k and

2. They are spatial equations; t is just a parameter. Little illumination would be gained

by writing these equations out in full, but they have the form of two coupled linear

inhomogeneous Fredholm integral equations, of the second kind:

(B.19) fik + gZ + fGii ' +f G12 z' = S

(B.20) f2 + g2 Z + fG 21 ' + fG 22 ' = S2

It should be noted that f, g, G, and S are highly nonlinear in v, R, Z, t, Bext, KO, etc.;

however, we are focusing exclusively on k and Z at this point. Temporarily assuming

all other quantities are known, we solve (B.19-20) for k and Z by any preferred method

for linear equations, such as Fourier analysis:

R(v,t) = N0(t) + R1(t)cos(v) + . .

U =-{ o, . . . ,n, Z,, . . ., Zn}

After doing the Fourier integrals over (B.19-20), we have a numerically invertible matrix

problem consisting of 2(n+1) equations and 2(n+1) unknowns:

M(t, R, Z, etc.) -U(t) = S (t, R, Z, etc.)
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We can therefore solve the free-boundary problem by integrating a system of ODEs:

(B.21) - 1 - S (t, U, etc.), U = {RO, ... , R, Zo, .. ., Zn}

Once the system is in the form (B.21), t is the independent variable and v appears only

as a parameter.

Of course, (B.21) requires initial conditions. These will depend on the application and

type of parameter that was chosen. Three possibilities (there are no doubt many others)

are

* A true time-dependent simulation through a series of quasi-equilibria

(such as with "slow" disruptions) would use t as "real" time. The initial

condition would be a real equilibrium reconstructed from a shot, or with

parameters constructed from a specialized equilibrium code (possibly

fixed-boundary if this is for machine design).

* Finding a single static free-boundary equilibrium by evolving the system

from an analytically determined cylindrical system. Here the imbedded

parameter would be the inverse aspect ratio, a/R; it would evolve from 0

to some desired value.

* Finding a single static equilibrium by evolving from a "fake" equilibrium.

Suppose we have a desired PF scenario, and a plasma with a known total

toroidal current and current profile. The poloidal current can be specified,

or instead one can let its value float and fix the plasma minor radius (R1

from the above notation) or some other aspect of the geometry, so long as

the proper number of knowns and unknowns are swapped. The correct

shape for this plasma is of course unknown, so one can start with any

shape (circular, say). The parameter used here is completely artificial.

Since the plasma shape was picked arbitrarily, it will not be force free;

Txi will have some non-zero value. So the equation to be solved is

205



J(t)xB(t) = (1 - t) (J (t=O)xB(t=O))

which gets integrated from t=O to t=1.

Either of the last two procedures can be used to generate an initial condition for the

first.

As an example of the third procedure, consider a single circular shell immersed in an

external magnetic field consisting of a 5.3T toroidal field at a major radius of 1.5m (with

I/R dependence, of course), and a uniform vertical field of -0.15T. We will fix the total

plasma current at Ip = 800kA; the plasma has an initial major radius of 1.5m and a minor

radius of 0.15m. The initial current densities are found by

rQ
(B.22) KJ f dv = Ip

(B.23) Kv, j -C BQdv, C =f Q dv

As we evolve the parameter t from 0 to 1, we will fix Ip and let KO be given by (B.22). To

make sure our scenario corresponds to a plasma of an appropriate size once the

equilibrium is found, we will fix the circumference C at its initial value, and in exchange

for this degree of freedom we will let Kv float. Again, it should be emphasized that this

is an "even trade" in the number of unknowns; if we were unconcerned about the

plasma size we could certainly have held the poloidal current fixed instead.

Solving (B.19-20) with Fourier analysis, using modes up to n=2, and integrating the

resulting ODEs gives the evolution of the shape of the plasma sheet shown in figure

(B.3).

Clearly in this case, parameter imbedding was not imposed correctly; the solutions

show a distinct 'buckle" at early "times". In fact, over ninety-five percent of the CPU

time for this particular simulation was spent jumping from the third mostly circular

shell to the fourth decidedly non-circular one. However, the adaptive integration
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scheme used did reduce the step size down to near round-off in this region, so that the

complete run took several hours on a fast DEC Alpha workstation.

E O
N

-0.05 
-

-0.1-

-0.15-

1.35
i 1

1.45 1.55
R (m)

1.65 1.75

Figure B.3. Shell evolution over "time"

How well does the final shape represent a flux surface? A plot of this shell combined

with a contour plot of the flux surfaces (see figure B.4) shows that the match is close but

not perfect; near the corners of the triangular shape there is clearly penetration of the

flux lines.

However, the shape is definitely reminiscent of the sum of a uniform vertical field and

the circular flux contours generated by the initial plasma shape:

+ 0
Some possible contributions to the problems are an insufficient number of Fourier

modes, a poor choice of constraints (what would happen if the poloidal current were
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held fixed, for example?), and the possibility that single current sheets cannot form a
static equilibrium in a uniform vertical field.

Final Shell w/ Flux Surfaces

N
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Figure B.4. An overlay of flux contours over the final shell

In spite of the problems of this particular example, it is felt that parameter imbedding is
still a viable method for solving free-boundary problems in the context of natural
evolution through quasi-equilibria. It is unfortunate that the host of other complications
involved in impacting a plasma against the wall to generate halo currents prevented
these ideas from being implemented in this thesis.
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