
DOE/ET-51013-323

Reflectometry Measurements on Alcator C-Mod

Paul C. Stek

March 1997

This work was supported by the U. S. Department of Energy Contract No. DE-AC02-
78ET51013. Reproduction, translation, publication, use and disposal, in whole or in part
by or for the United States government is permitted.

PSFC/RR-97-5



Reflectometry Measurements on Alcator C-Mod

by

Paul Cornelis Stek

Submitted to the Department of Physics

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

March 1997

@ 1997 Massachusetts Institute of Technology. All rights reserved.

A uthor ......... .............. ...........................
Department of Physics

March 11, 1997

Certified by........................... .................
Dr. Jim Irby

Research Scientist, Experimental and Group Leader
Thesis Supervisor

C ertified by .........................................................
Professor Miklos Porkolab

Director of the Plasma Science & Fusion Center
Thesis Supervisor

A ccepted by ........................................................
Professor George Koster

Chairman, Physics Department Committee on Graduate Students



Reflectometry Measurements on Alcator C-Mod

by

Paul Comelis Stek

Submitted to the Department of Physics
on March 11, 1997, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

This thesis presents the development of a novel millimeter wave reflectometer for the
study of electron density profile evolution in the Alcator C-Mod tokamak.

The rate at which energy is transported from the center to the edge of a tokamak
plasma is one of the main issues dictating the size and cost of future fusion reactors.
A factor of two improvement in energy confinement time over basic operation or L-
mode can be attained by operating in high or H-mode. The H-mode is characterized
by a transport barrier at the plasma edge.

To study the density profile and its evolution during H-mode a novel 5 channel
millimeter wave reflectometer was developed. With this diagnostic, electron density
gradients of 2 x 10 20m 4 have been observed during ELM-free plasmas within 0.5 ms
of the transition from L to H-mode. The width of the transport barrier was measured
to be less than 2 cm during the initial H-mode period.
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Chapter 1

Thesis Outline and Goals

1.1 Plasma Transport

One of the key issues in the development of plasma fusion as an energy source is

learning how to predict and control the transport of particles and energy within the

plasma. Energy transport in a plasma is much faster than the diffusion predicted by

random collisions between plasma constituents. Collective effects driven, presumably,

by density and temperature gradients speed the transport of energy from the center

to the edge of the plasma. This has had a disastrous effect on the development of

commercial reactors as the faster energy is transported, the larger and more expensive

a reactor must become.

Kaye and Goldston [1] identified a baseline level of confinement named the Low

Mode or L-mode that virtually all tokamaks conform to provided no special efforts are

made. Several enhanced confinement modes of operation have also been observed (see

review by Stambaugh et. al. [21). In all such modes the turbulence that presumably

drives transport is suppressed in some portion of the plasma. The most common of

these enhanced confinement modes is the High Mode or H-mode first observed on the

ASDEX tokamak [3]. In this mode of operation, very large gradients in temperature

and density are observed at the outer edge of the plasma, indicating some form of

a transport barrier has formed there. Energy confinement in H-mode is two to four

times that during L-mode. Most reactor proposals plan on taking advantage of this

15



confinement enhancement.

1.2 Alcator C-Mod

Alcator C-Mod is a shaped and diverted follow-on to the very successful Alcator A

and C tokamaks. It is a compact tokamak capable of operating at nine tesla, 1.5

mega-amps of plasma current. With a main plasma volume of one cubic meter and

a combined ohmic and ICRF heating power of five megawatts, C-Mod has a power

density and divertor heat flux comparable to that expected on future reactors. As one

of only two large tokamaks commissioned in the last decade, C-Mod is a testing ground

for many new concepts in plasma science, particularly divertor operation and high

power density ICRF heating. With its high field and high current and power density,

C-Mod is well positioned to study plasma confinement in regimes complimentary to

those studied elsewhere.

1.3 Plasma Diagnosis

In order to study transport phenomena, accurate measurements of the local tem-

perature and density of electrons and ions and their gradients are needed. Despite

extensive effort devoted to plasma diagnosis, the electron temperature, via electron

cyclotron emission, is the only quantity that is routinely measured with high precision

and localization.

1.3.1 Reflectometry

Reflectometry is a diagnostic particularly well suited for studying the electron density

profile and fluctuations during H-modes. Based on the same concept as ionospheric

sounding, reflectometry involves launching microwaves into the plasma and measuring

the propagation time to some reflecting layer. For the polarization and frequencies

16



used in the C-Mod reflectometer, the index of refraction is given by:

2=c 2 k2 (We)2 n e2
N 2  2  1 - where, w2 

- (1.1)
w 2 1me

where wp, is the electron plasma frequency. Figure 1-1 shows the basic concept of

reflectometry. A given frequency, f, is launched from the right towards the plasma.

At the position R,(f) where n = n,(f) the wave is reflected. By using multiple

frequencies and measuring the time a pulse takes to propagate to the reflecting layer

and back, the density profile can be determined a. A new diagnostic technique called

differential phase or amplitude modulated reflectometry is employed in this thesis.

This technique involves upconverting a fixed frequency and launching both sidebands.

The phase difference between the two returned signals gives the group delay with

very high time response. Figure 1-2 shows an example of the data obtained from the

reflectometer before and after an L-mode to H-mode transition.

1.4 Thesis Goals

The first goal of this thesis is the development of a diagnostic to measure the electron

density profile in the plasma edge in C-Mod. A five channel microwave reflectometer

with an innovative modulation scheme was developed for this. The second goal is

to study the time evolution of H-mode profiles in C-Mod. And, the third goal is to

distinguish between the varieties of H-modes seen on C-Mod.

1.5 Thesis Outline

The approach to studying Alcator C-Mod plasmas using reflectometry is outlined

below.

* Chapter two will introduce some of the basic concepts in tokamak physics in-

cluding energy and particle confinement.

'Dispersion is a major factor here and will be discussed in Chapter 4.

17



n

nQf)

0 Rjt) a

Figure 1-1: Reflectometry Concept Multiple frequencies are
launched from the right, and the group delay to the cutoff
layer and back is monitored.

" Chapter three will cover the Alcator C-Mod tokanak, some of the diagnostic

tools available, and the main research goals of C-Mod.

" Chapter four introduces the basic theories behind reflectometry.

" Chapter five presents the reflectometer diagnostic developed for C-Mod includ-

ing an innovative modulation scheme.

" Profile inversion, calibration, and comparison with other diagnostics is presented

in chapter six.

" Chapter seven discusses the electron density profile evolution during H-modes

in C-Mod. Fluctuations and ELM's during the various types of H-modes seen

on C-Mod will also be presented.

" In Chapter eight, conclusions and recommendations for future work are pre-

sented.
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Thomson Scattering L-Mode (0.80 s)
ThrsnSecaiering H-M-de (1 , s)

Reflectometer L-Mode (0.80 s)
Ref'ectm't-r H -M d (C.2 'I

Center LCFS
I . ., 1

0.75 0.80
Major Radius (m)

0.85 0.90

Figure 1-2: Example H-mode Profile Shot 950602028. During an
H-mode, the profile steepens greatly near the last closed
flux surface (LCFS). The high gradient can form in less
than 1 ms. (The absolute calibration of the Thomson
scattering is suspect for reasons to be discussed.)
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* In Appendix A the group delay measured for a linear profile is presented along

with a matrix technique for inverting a piecewise linear profile.

* Appendix B is a table of some of the many acronyms used in this thesis with

references to the first usage.
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Chapter 2

Plasmas and Plasma Fusion

In this chapter, plasmas, plasma fusion, and tokamaks will be presented. The in-

tention is that a reader with little prior knowledge of fusiona will understand the

motivation for the research presented in later chapters. A more detailed introduction

to plasma physics can be found in Chen [4]. Wesson [5] is an excellent, though quite

expensive, reference on tokamaks.

2.1 Plasma

A plasma is gas in which at least a fraction of the atoms present are ionized. They

are typically characterized by high electrical conductivity. Some common plasmas are

welding arcs, lightning, and the discharges in fluorescent light bulbs. While in these

plasmas only a small fraction of the constituent gas is ionized, their conductivity is

dominated by this small ionized fraction. Plasma is often referred to as the fourth

state of matterb, and in fact only 0.5 percent of the known universe is in the first

three states: gas, liquid, and solid. Most of the rest is plasma.

Despite the cosmological disposition of matter to be ionized, plasmas are relatively

'Like the wife of the author who is proofreading this.
'It should be noted that the other three states, under most conditions, will have a well defined

phase transition and phase boundary. There is no such boundary or transition between a gas and
a plasma. The naming of an object as either a gas or a plasma in many cases reflects more on the
analysis being performed. In addition, designating plasmas the fourth state of matter opens the
door to a host of other conditions that could lay claim to being a state of matter such a neutron
star or a black hole.
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remote from the average human's existence.c And while fluorescent lights and arc

welders are useful appliances, their understanding hardly warrants the $ 1 billion

annual worldwide budget for plasma research. In fact, most of the study of plasmas,

the subject of this thesis included, is directed towards the development of nuclear

fusion as a "cleaner" energy source for the future.

2.2 Fusion

Nuclear fusion is the combining of two nuclei to form a larger nucleus and usually a

free neutron or proton. The source of the energy given off by most stars is the fusing

of hydrogen into heliumd (a fact only recognized early this century). While there is a

very long list of possible fusion reactions, the most promising ones for terrestial power

production aree:

D 2 + T3 -+He 4+ n'+17.6MeV (2.1)

D 2 + D 2 -+He 3 + n'+3.27MeV (2.2)

D 2 + D 2 - T 3+HI+4.03MeV (2.3)

D2 +He3 -+H e+H 1 +18.3MeV [5] (2.4)

There is a direct analogy between fusion reactions and the chemical reactions that

may be more familiar such as burning methane:

CH4 + 202 -+ CO2 + 2H 20 + Heat (2.5)

First, this reaction will proceed provided the activation energy is provided. However,

if one wants to ignite the reactants, one must transfer some of the resulting heat

to the other reactants to provide their activation energy. To maintain ignition, one

CEnterprise and Voyager crew members excepted.
dFor stars fainter than the sun, this fusion is accomplished by direct proton-proton reactions. For

stars brighter than the sun, the conversion of of hydrogen to helium is catalyzed by carbon [6].
e MeV = 106 electron volts = 1.6 x 10-13 joules. The electron volt is also used as a unit of

temperature in plasma physics where I eV = 1.1605 x 10' K.
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needs to keep the reactants hot enough, long enough, and with sufficient density to

make the reaction self-sustaining.

The same principles apply to fusion. While a fusion reaction liberates a million

times more endrgy than a typical chemical reaction, the Coulomb repulsion of the

nuclei makes the activation energy higher by the same factor. For two nuclei to fuse

they need to get close enough for their wavefunctions to overlap significantly. The

cross-section for deuterium-tritium (DT) fusion, the most likely initial fusion fuel, has

a maximum at over 100 keV.

2.3 Lawson Criteria

Lawson [7} set a lower limit for the performance of a fusion reactor. A self-sustaining

reactor would need to heat some quantity of fuel and confine the hot fuel long enough

and at sufficient density to produce enough fusion energy to provide the electricity

needed for the heating of the original quantity of fuel. Lawson found that at 20 keV

the product of the density, n, and energy confinement time, TE, must be:

nfTE > 6 x 101m9-3S. (2.6)

This is now known as the Lawson Criterion or " break even". Achieving this criteria

has been a goal of the fusion community for the last 40 years, but only recently

have experiments come close to achieving the required temperature, density, and

confinement time simultaneously (Q = 1 in Fig. 2-1).

Most practical fusion schemes, however, require far better parameters than those

set out by Lawson's Criteria. "Ignition" (Q = oo in Fig. 2-1) requires that enough en-

ergy from the fusion products be confined within the plasma to maintain its temperaturef.

Producing a tokamak capable of producing igniting plasmas is arguably the next step

after the current set of tokamak experiments. The International Tokamak Experi-

mental Reactor or ITER is the current embodiment of this goal. Much of the work

-fNote that for DT fusion, 80% of the fusion energy is carried by the neutron which does not
interact with the plasma. This greatly adds to the fusion challenge.
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Figure 2-1: Progress Toward Plasma Fusion [8] Fusion boosters
point out that over the last 25 years the percentage in-
crease in the fusion triple product nrT compares favor-
ably with the growth in the number of devices per unit
area on a microprocessor chip. Note that C-Mod has
performance parameters comparable to machines such as
JET that have 100 times C-Mod's plasma volume at 10
times C-Mod's cost.

on smaller machines such as Alcator C-Mod is conducted with the design and devel-

opment of ITER, or some device like it, in mind.

2.4 Magnetic Confinement

Now that the desirability of creating extremely hot plasmas that stay hot for a signifi-

cant period of time has been established, how does one do this on earth in a controlled

manner? The obvious problem is heat transfer from the plasma to the vessel confin-

ing it. While many approaches to confining the hot plasma have been suggested, the
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most developed technique is through magnetic confinement.

A plasma may be confined using a strong magnetic field. A particle with charge

q moving in a magnetic field B feels a force perpendicular to both the magnetic field

and its velocity: F = q(v x B). As a consequence, in a uniform magnetic field with no

electric field present, charged particles stream freely along the field lines but gyrate

about the field lines with a gyro (Larmor) radius and frequency given by:

rt = - _ =B (2.7)
qB m

In the presence of an electric field, the kinematics become more complicated. The

particle is free to accelerate due to the component of E parallel to B; however, the

component of E perpendicular to B produces a drift9 perpendicular to both E and

B:

VExB = E x B/B 2 . (2.8)

If the field lines are curved, the drifth relative to the B field lines due to the centrifugal

force and the radial variation in the field (dictated by V - B = 0) is given by:

m RK B /,, ',,\

v, ± Va = mR!xB2 o + ). (2.9)

Any confinement scheme must at least provide E and B fields such that ionized

particles are confined subject to these drifts.

An engineering principle is that breaks in symmetry lead to stress concentrations

that limit the strength of a structure. Presumably the higher the magnetic field the

better the plasma will be confined, so a symmetric shape for magnetic confinement

is probably desirable. The current shortage of magnetic monopoles dictates that

V - B = 0, precluding the possibility of a spherically symmetric magnetic confinement

device. Cylindrical symmetry with B along the axis of symmetry (z) fails because
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Toroidal Magnetic Field Coil

Equilibrium Field Coils

Ohmic Transformer Stack

Vacuum Vessel

Figure 2-2: Schematic of a tokamak, indicating both cylindrical
and toroidal coordinate conventions [9]

particles can stream out of the containment vessel along z. A cylinder with especially

high fields on the ends can confine particles and was the basis of the now defunct

mirror concept. Cylindrical symmetry with B in the 0 direction also fails as the

curvature drift forces oppositely charged particles to drift in opposite directions. This

charge separation results in an electric field along z which in turn drives an outward

radial E x B drift. Toroidal' symmetry, however does allow for particle confinement

as will be discussed in the next section.
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2.5 Tokamaks

Currently the tokamak' is the most promising concept for producing the first fusion

reactor. A strong toroidal field is provided by the large toroidal field coils shown in

Fig. 2-2. To avoid the vertical charge separation and resultant radial E x B drift

discussed in the previous section, a poloidal field is introduced which allows particles

streaming along a field line to short out any vertical E field. This poloidal field can

only be provided by a toroidal current running in the plasma. The plasma current

is driven by induction. Current is ramped through a coil passing through the center

of the torus. This produces a change in magnetic flux through the torus, inducing a

toroidal voltage and current in the plasma. External field coils provide the vertical

field needed for radial force balance and allow for shaping of the plasmak

2.5.1 Flux Surfaces

Many problems in tokamak physics can be studied as a one dimensional system by

using "flux coordinates". A tokamak plasma is sketched in Fig. 2-3. First note

that there is toroidal symmetry. The magnetic flux passing through the disk drawn

through point A is equal to some value 4. Now, beginning at point A and following

the poloidal B field around the center of the plasma back to A marks out a contour

in the R-Z plane and a three dimensional surface, S, if it is rotated about the central

axis of the tokamak. By Gaus's Law, any disk with a boundary lying wholly on the

surface described by S will measure the same flux 4. Starting from the point of highest

4 in the center of the plasma, the values of 4 describe a series of concentric "flux

surfaces". This mapping is valuable because many plasma parameters are constant

on a flux surface. For example, pressure balance in magnetic confinement is provided

TPhysicists get most of their inspiration from food: The tandem mirror looks a lot like a Tootsie
Roll. A tokamak is shaped like a bagel or donut. A competitor of the tokamak that forsakes all
symmetry, the stellerator is also shaped like a donut but the coils spiral around the donut making
it look like a cruller.

'The term "tokamak" is derived from the Russian words "toroidalnaya kamera magnitnya?',
crudely translated as toroidal magnetic chamber.

kWhile the complexity of this arrangement may remind some of the work of Rube Goldberg,
it should be reiterated that this is the most symmetrical, hence least complicated, arrangement of
magnetic fields for a magnetic plasma confinement device.
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by J x B = Vp. In addition, since b is constant on a flux surface, B -Vo = 0. By

symmetry, both V0 and Vp lie in the R-Z plane. Since both are perpendicular to B,

V0 and Vp are everywhere parallel, hence p can be described as a function of 4.
Another flux surface quantity is the safety factor, q. Again in Fig. 2-3, if one

begins at point A and follows a field line as it travels along the surface S until one is

again at the same poloidal location as A, the number of times one has traversed the

tokamak toroidally is q. When q is a rational number, a perturbation on a flux surface

can be resonant. Often, q = 1 near the center of the plasma. This can result in a

relaxation oscillation called a sawtooth that limits the current density at the center

of the plasma.1 The current profile in most tokamak plasmas is peaked on axis, so

q increases as one moves out from the center. Higher q increases plasma stability.

A higher toroidal current improves confinement, but lowers q. By elongating the

plasma, q at the edge can be kept high while raising the current. The left hand figure

in Fig. 2-4 shows an elongated plasma. The ratio b/a is the elongation, n.

2.5.2 Impurities

Preventing plasma contamination by impurities is a major hurdle along the road to

building a fusion reactor. The first problem posed by impurities is dilution of the

reactants. At reactor temperatures (- 20 keV), light elements such as carbon and

oxygen will be fully stripped of their electrons. For every percent of ions that are

oxygen, an eight percent increase in the electron density and the Lawson criteria is

required. In addition, alpha particles produced in a burning plasma will also dilute

reactants. Once the alphas have deposited their energy in the plasma, they need

to be swept out in some way. To make matters worse, in many regimes, impurities

accumulate in the center, diluting the plasma where it is most reactive.

The other and generally more critical issue is radiative energy loss due to impu-

rities. Because light elements such as carbon and oxygen are fully stripped in a hot

plasma, Bremsstrahlung is the dominant radiation mechanism. The heavier elements

such as iron, tungsten and molybdenum are not fully stripped in a reactor temper-

'In fact, almost all plasmas on Alcator C-Mod have sawtooth oscillations.
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B

Figure 2-3: Flux Surfaces All the points on the torus passing
through the point A have the same value of V, and to
first order the same values of pressure, temperature, and
density.

ature plasma. So not only are they more effective radiators of Bremsstrahlung, but

they emit line radiation also. An ion fraction of less than .05% molybdenum is enough

to radiate half of the alpha particle heating in a 10 keV plasma, effectively doubling

the performance needed to reach ignition.

While high Z materials such as molybdenum pose serious problems if they get into

the main plasma, they do have some advantages over low Z materials such as carbon

as a plasma facing material. The first advantage is that the sputtering yieldm of

molybdenum by impacting deuterium ions is lower by two orders of magnitude than

the sputtering yield of carbon at temperatures below 100 eV. Thus, far fewer molyb-

denum atoms will get into the plasma. The second issue is desorption of adsorbed gas

from the plasma facing surfaces. Carbon can adsorb 0.4 hydrogen atoms for every

carbon atom. The impact of ions and neutrals from the plasma on carbon surfaces

can release these atoms. In addition, hydrogen is quite mobile in a graphite lattice,

mThe sputtering yield is the number of atoms liberated from a surface for every impacting atom.

29



Edge

X point
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Figure 2-4: Limited and Diverted Plasmas The figure on the left
is a cross section of a limited plasma with an elongation
of , = b/a. Impurities generated at the plasma/wall in-
terface (limiter) are free to enter the main plasma. On
the right is a diverted plasma. Note that the plasma/wall
interface (strike points) are well removed from the main
plasma.

so a hydrogen inventory tens or hundreds of times the plasma inventory is available

in the walls of a carbon tiled machine. As a result, neutral and plasma density can

be difficult to control in a carbon tiled machine.

2.5.3 Limiters and Divertors

The plasma must at some point contact a material surface. At this interface, ener-

getic ions can sputter atoms off the surface. These atoms can then enter the main

plasma. In addition, atoms adsorbed on the surface can be liberated by incident

ions. Typically there is a dynamic equilibrium between the rate of incidence and of

desorption, so a material surface can act like either a pump or a source. Also, as a

surface is heated, adsorbed atoms are liberated. And of course the material can melt,
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sublimate, or fracture if the constant or temporary heat load on the surface is too

high.

The simplest technique for providing a plasma/solid interface is a limiter, shown

on the left in Fig. 2-4. Here, the edge of the plasma is defined by a piece of material

designed to withstand the heat load from the plasma. The main problem with this

arrangement is that atoms liberated from the limiter surface by impacting ions are

free to enter the main plasma. This problem can be avoided in principle by using a

magnetic divertor, shown on the right in Fig. 2-4. Particles that exit the main plasma

stream along the magnetic field lines to contact material walls well removed from the

main plasma.

The "last closed flux surface" (LCFS) or "separatrix" is the outermost flux surface

that encircles the plasma without contacting a material surface. The "X-point" is

the point on the LCFS where the magnetic field is exactly toroidal. From this point,

particles on a flux surface can either circle the plasma or go to the divertor. The

points where the LCFS intersect the divertor plates are the inner and outer strike

points. The "'core" plasma is the central portion of the plasma. Its boundary is not

precisely defined, but can be taken as the region where the temperature is at least

30% of the central temperature. The "edge" plasma is the plasma outside of the core

plasma. The "scrape-off layer" (SOL) is the plasma outside of the LCFS, a subsection

of the edge. The "private flux region" (PFR) is the region below the separatrix in

the divertor region.

The divertor has four functions. First, it provides a boundary for the plasma

that is not a material surface. Second, neutrals and neutral impurities entering the

scrape-off layer are ionized and pumped to the divertor, away from the main plasma.

Third, along the path to the strike point, the plasma can be cooled through collisions

to reduce sputtering at the strike point. And fourth, the heat destined for the strike

points can be dissipated by intentionally introducing impurities to cool the plasma

through radiation. This is called a "dissipative divertor".
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2.6 Energy Transport and H-Modes

The transport of energy deposited in the center of a tokamak plasma is poorly under-

stood. Simple models of gyrating and drifting particles colliding with each other, thus

transporting energy in a diffusive manner, greatly underestimate the rate at which

energy is carried across field lines. This anomalous cross field transport is probably

due to turbulence driven by temperature and density gradients in the plasma. An

accurate picture of this turbulence is beyond the capabilities of current plasma diag-

nostics. As a result, predictive models of confinement in a future machine based on

the details of energy transport are not available. However, by mapping out energy

confinement as a function of the various parameters that can be controlled, a scaling

of the energy confinement with respect to the plasma density, temperature, current,

major radius, etc. can be developed which can empirically predict the performance of

future machines. Kaye and Goldston [11 studied confinement in several machines and

identified a mode of operation for auxiliary heated plasmas where rE oc IpP-I, where

1/3 < -t 1/2, Ip is the plasma current, and P is the input power. This scaling was

later named Low or L-Mode", and has been modified somewhat over time giving the

ITER89-P [10]scaling law:

TITER89-P = .048I0 8 5R 2 a 0 .s3 0 5 .1B0 2 amuosP-0 5, (2.10)

where R is the major radius, a is the minor radius, rn is the plasma elongation, n, is

the central electron density, Bt is the toroidal magnetic field, and amu is the average

atomic mass unit of the ions (all units are MKS). The ITER89-P scaling has proven

very robust in predicting confinement in the basic mode of operation for virtually all

large tokamaks.

The rather poor confinement observed in L-mode points to very large and ex-

"This rather unfortunate name refers to a 'mode' of operation. The nomenclature is unfortunate
because 'mode' is also used throughout plasma physics to discuss eigenmodes of some equation.
These eigemnodes typically are the cause of some degradation in confinement. PEP, super, and H
describe good confinement modes of operation while ITG, ubiquitous, ballooning, tearing, and kink
describe particular transport driving (bad) plasma instabilities.
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pensive fusion reactors. This unfortunate result has encouraged extensive research

into operating regimes with better than L-Mode confinement. Stambaugh et al. [2]

reviewed research in "Enhanced Confinement Modes" of operation. They distinguish

between two groups: those characterized by peaked density profiles, and those with

flat density profiles. The first group includes PEP (Pellet Enhanced Performance),

Super, and IOC (Improved Ohmic Confinement) modes. The improved confinement

of all of these modes is assumed by many to be due to suppression of the ion temper-

ature gradient (ITG) mode'. Plasmas having density profiles that are more peaked

than the ion temperature profile are believed to be stable to this mode. The second

group of enhanced confinement modes consists of the many variations of "High" or

"H-Mode" which will be discussed below.

2.6.1 H-Mode Characteristics

Groebner [11] provides a recent review of H-mode experimental observations. The

US-Japan Workshop on H-Mode Physics [12] is a comprehensive and up to date (1995)

presentation of the current status of H-mode experiments and theory worldwide. The

H-mode was first seen on ASDEX [3] in 1982 and has since been observed on virtually

all high performance tokamaks. Above some threshold edge temperature or applied

heating power, a transport barrier can form in the plasma edge resulting in greatly

improved global particle confinement and typically a factor of two improvement in

global energy confinement over L-mode levels. Typically, H-modes are observed dur-

ing divertor operation, though they have been observed on some limiter machinesP.

H-modes have also been induced in low input power tokamaks by biasing the plasma

relative to the vacuum chamber.

In diverted plasmas, several phenomena characterize the transition from L-mode

to H-mode (L-H transition). The two most apparent phenomena are a dramatic

'Originally known as the r7i mode.
PRather than reference individual machines, the interested reader is referred to the papers by

Groebner and Stambaugh cited above.
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rise in the plasma density and a drop in D-alpha emission". The rise in density

appears to be the result of improved particle confinement, while the drop in the D-

alpha emission is a signature of a decrease in the recycling of deuterium in the SOL.

It is important to note that while the drop in D-alpha emission does indicate an

increase in the confinement time of the whole plasma (SOL and PFR included!), it

does not directly translate to a change in the core plasma particle confinement. As

the H-mode progresses, the recycling light may return to or even exceed the original

emission levels.

Other key phenomena observed at the L-H transition are an increase in the electron

density inside the LCFS and a drop in the density outside the LCFS. In the steep

gradient region (SGR) near the LCFS, density fluctuations appear to be suppressed

in H-mode. The electron temperature typically increases at the transition. Other

characteristics observed with the proper diagnostic set include a dramatic increase in

impurity confinement and a large sheared poloidal rotation in the SGR. Typically, the

core density and temperature profiles during H-mode are flatter than during L-mode

operation. Edge Localized Modes (ELMs) appear in most long duration H-modes and

can be identified as bursts of D-alpha emission and magnetohydrodynamic (MHD)

fluctuations. ELMs come in many varieties and are a temporary relaxation of the high

pressure gradient at the edge. In some machines as much as 5% of the plasma's stored

energy can be released in a single 1 ms ELM, making ELMs the source of the highest

peak heat loads in these machines. While ELMs do degrade energy confinement, they

also appear to control the buildup of impurities and control the rise in plasma density.

An ELM-free H-mode with low recycling is always a transient phemonena as impurity

radiation and uncontrolled density rise eventually lead to a cooling of the SGR and

a return to L-mode.

Operationally, four other factors affect access to and maintenance of H-modes.

The first is wall cleanliness and conditioning. Presumably, low neutral pressure and

qThese phenomena can occur for reasons other than an L-H transition. For example, impurity
injections, MARFEs, and changes in divertor operation can greatly change the plasma density and
D-alpha emission. Distinguishing periods of H-mode operation from these other phenomena during
early C-Mod operation was something of a challenge.
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low impurity levels aid in achieving the high edge temperatures required for H-mode

operation. Second, the size of the gap between the LCFS and any walls or limiters

needs to be as large as practical with the particular heating scheme being used. This

also is probably related to reducing sputtering or desorption of impurity and majority

atoms. Third, the direction of the ion B x VB drift should be towards the divertor.

Directing the ion B x VB drift away from the divertor typically requires twice the

input power to achieve H-mode. Fourth, the density must be within some range for

a given input power. A low density limit has been seen on most machines. While the

cause of the low density limit is not clear, higher impurity fractions, locked modes,

and smaller sawteeth are possible reasons. The upper density limit is related to the

energy density achievable for a given input power and the temperature needed to

achieve H-mode.

Energy confinement during H-mode is typically twice the value expected with

ITER89-P scaling and is generally believed to be largely due to a suppression in

transport at the edge. Both JET and DIII-D have achieved H factors approaching

four during "Hot Ion H-modes" on JET and during "VH-modes" on DIII-D. In the

VH-modes, poloidal rotation and suppressed fluctuations extend inward over most of

the plasma radius, apparently combining the good qualities of both central and edge

enhanced confinement regimes.

2.6.2 Model for Transport Barrier

All machines that attain H-modes and have the capability to measure significant

plasma rotation observe a sheared poloidal plasma rotation during H-mode. This

shear is most likely caused by an E x B drift, driven by a radial electric field, E T .

The interested reader is referred to the review article by Ward [131. A sheared flow

perpendicular to a density gradient decorrelates the convective eddies that drive the

transport. The skewed eddies are thus more heavily damped by the increased relative

speed between eddies. In addition, the skewed eddies break up into smaller eddies,

'The source of this electric field, is the cause of much speculation and is beyond the scope of this
thesis.
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reducing the step size for a volume of plasma moving across the pressure gradient.

Together, these effects enable a sheared flow to produce a transport barrier.

2,.6.3 Issues for H-Modes in a Reactor

Current plans for test reactors such as ITER count on obtaining a factor of two im-

provement in energy confinement by running in H-mode rather than L-mode. How-

ever, operating in H-mode presents five major challenges, three of which, ironically,

are a result of overly good particle confinement. The first problem is the accumula-

tion of impurities and helium. Some mechanism needs to be developed to sweep out

impurities and ash without significantly reducing energy confinement. The second

issue is controlling the density in H-mode. As the plasma density rises, the heating

power needed to reach ignition temperatures also goes up. Third, the low SOL density

seen in H-modes reduces the coupling of ICRF and lower-hybrid waves to the plasma,

reducing the power launched per unit area of antenna. Fourth, the high peak heat

loads due to type one ELMs complicate divertor designs. And fifth, the high edge

temperatures required for H-mode operation are difficult to incorporate in dissipative

divertor concepts.
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Chapter 3

Alcator C-Mod

The Alcator C-Mod" (hereinafter "C-Mod") tokamak is the third of the Alcator line

of tokamaks built at the Massachusetts Institute of Technology. Alcator A and Alca-

tor C6 were both compact, high magnetic field, high electron density tokamaks with

circular poloidal cross-sections. C-Mod was built to test shaped and diverted plas-

mas in a compact, high magnetic field tokamak. As the only large tokamak to be

commissioned in the United States in the last decade, C-Mod benefits from and tests

some of the latest concepts in plasma physics and fusion technology.

aC-Mod was originally proposed as a modification of the Alcator C tokamak, hence the name
"C-Mod". However, as the design work progressed it became clear that very little of the original
machine could be used. In fact, rather than being modified for use in C-Mod, the Alcator C vacuum
chamber, power supplies, and magnets were shipped to Lawrence Livermore National Lab where
they became the MTX experiment.

bCommissioned in 1973 and 1979, respectively.

Parameter Symbol Typical Maximum
Major Radius R 0.67 m
Minor Radius a 0.22 m -
Elongation r 1.7 1.85
Toroidal Field BT 5.3 tesla 7.9 tesla
Density n, 1.5 X 1020 m-3  1.2 x 1021 m-3
Plasma Current I, .8 MA 1.5 MA
ICRF Power PICRF 2 MW 3.5 MW

Table 3.1: Alcator C-Mod Parameters (as of August 1996) The
plasma current and auxiliary power is expected to increase
in the coming years.
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UPPER WEDGE PLATE 10,750LBS

CYLINDER 44,000LBS
EF-4 MOUNTING BRACKETS 2JOOLS

I0T) EF COILS 10,500LBS

PLASMA 0,000002LBS
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LOWER COVER 57,680LBS
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Figure 3-1: Alcator C-Mod Cross Section [14] The machine sits
atop three six foot pillars in the center of a 50 x 50 x
40 foot experimental cell. Surrounding the shown struc-
ture is a two foot thick "igloo" constructed of boronized
concrete for radiation attenuatation.
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Figure 3-2: Top View of Machine The diameter of the cryostat is
approximately four meters. The major density diagnos-
tics are labeled.

3.1 Major Components

C-Mod developed from the collaboration of scientists and engineers from many disci-

plines. No physics thesis is complete without at least pointing out a few of the major

engineering efforts involved in building and running this machine.

Vacuum Chamber: The stainless steel C-Mod vacuum chamber is unique in

several ways. First, it is a torus without a poloidal insulating break. This allows

the chamber to be strong enough to support the poloidal field coils. This is key to

producing a shaped, compact, high field tokamak because there is no space for an

independent support structure for the poloidal field coils. Second, the walls of the
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vacuum chamber are 0.75 inch thick in order to support these coils.

These features create a few problems. Because the chamber can not be separated

during maintenance periods, the only access to the machine is through one of the

nine eight-inch-wide horizontal portsc. Only two people are able to work inside the

chamber simultaneously during maintenance periods and all objects installed in the

chamber must be small enough to be moved manually. Another problem is that

without an electrical break, large toroidal currents are driven in the chamber walls

during plasma initiation. In addition, the fields created by the poloidal field coils

take on the order of a millisecond to penetrate the vacuum vessel. Nonetheless,

future reactors are also expected to have thick conducting vacuum chambers and will

thus face the same problems.

TF Coils: The toroidal field (TF) coils on C-Mod are capable of producing a 9

tesla field on the major axis of the machine. Because the vacuum chamber does not

come apart, the coils must have a break in them. Each of the twenty coils contains

six turns and are constructed of four sections: a top, a bottom, an outer leg, and a

section of the central column which passes through the center of the donut shaped

vacuum chamber. Because copper is not strong enough to support the stresses to

which the C-Mod magnets are subjected, the sections of the coils are constructed of a

laminate composed of high conductivity copper and Inconel. The coils are supported

by a thick, stainless steel superstructure. The individual sections of each coil are

allowed to move so that they may press against the support structure. This required

the development of sliding, conducting joints for coils carrying 250 kiloamperes in

each turn. The TF coils have worked without problem and provide a field ripple of

less than one percent everywhere inside the limiter radius.

Support Structure: The TF magnets are supported by a thick, stainless steel

superstructure comprised of the upper cover, the lower cover, and the cylinder, as

shown in figure 3-1. These three pieces weigh 80 tons and are held together by 96

Inconel bolts, each of which is preloaded to 500,000 lbs. Operationally, this structure

cThe tenth horizontal port, A-port, is six inches wide to accommodate the toroidal field coil bus.
There are twenty vertically viewing ports, each is teardrop shaped, seven inches long and two inches
wide at the widest.
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carries significant eddy currents adding to the challenge of obtaining a field null at

plasma initiation.

Poloidal Field Coils: The plasma current, position, and shape are provided by

a set of three ohmic heating coils wrapped around the central TF column and five

pairs of poloidal field (PF) coils. They are also called equilibrium field (EF) coils.

This coil set, despite being rather removed from the plasma boundary, allows for a

wide variety of plasma shapes and divertor geometries. The joints between these coils

and the buswork were replaced in 1993 by electroforming new joints on the ends of the

coils, a unique application of a technology usually reserved for precision microwave

components.

Cryogenics: The coils and the superstructure of C-Mod all operate at liquid

nitrogen temperatures. This increases the conductivity of the copper by a factor of

five to six. Cooling of the magnets is accomplished by boiling off liquid nitrogend. The

vacuum vessel temperature must be controlled independently of the the coils to ensure

vacuum integrity. Typically, the vacuum vessel operates near room temperature. The

tokamak takes approximately one week to cool down after a maintenance period or

to warm up at the beginning of a maintenance period. Warming up the machine too

fast will create thermal gradients that can deform or crack the superstructure. Also,

during a run, nitrogen escaping from the cryostat displaces some of the oxygen in the

experimental cell which reduces the oxygen level below OSHA designated standards,

and thus prevents access to the experimental cell between shots'. Typically, the

cooling time of the magnets is the rate determining step in the experimental shot

cycle.

Power Systems: Twelve power supplies transfer as much as 500 MJ into the

C-Mod coils during a 1.5 second shot. The power to run these supplies is extracted

from an alternator and flywheel located adjacent to the C-Mod experimental cell.

The flywheel is spun up during the fifteen to twenty minute period between shots.

dLN 2 is a significant portion of the C-Mod operating budget, accounting for approximately $1 mil-
lion per year.

eImprovements in the cooling system and the cryostat have greatly reduced the amount of nitro-
gen escaping into the cell. Cell access between shots is now somewhat more common, though still
frowned upon.
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The 72 ton flywheel is the world's largest single stainless steel forging.

Computer Controls: Most of the power supplies and other machine controls

such as gas valves, are controlled with a custom built, digitally programmable ana-

log computer. This hybrid computer can take up to 96 analog input signals which

typically include most of the magnetics, along with a channel of the interferometer,

bolometer, and visible bremsstrahlung array. The input vector is multiplied by a

matrix to determine a vector of outputs that represent the quantities to be controlled

such as plasma position, plasma current, strike point location, and plasma density.

These outputs are then compared to the desired values and the difference, the time

derivative of the difference, or the integral of the difference is produced. The resulting

vector is then multiplied by a second matrix to give the voltages to be sent to the

power supplies and gas valves to control the plasma. The hybrid computer has a 1

ms response time.

3.2 Diagnosing C-Mod Plasmas

Alcator C-Mod has an extensive diagnostic set, too large to discuss here. A thorough

discussion of the various diagnostics can be found in the C-Mod Five Year Research

Program [14] and in the article by Marmar [15]. Some of the main diagnostics other

than the reflectometer are described below.

3.2.1 Two Color Interferometer

The primary electron density diagnostic on C-Mod is the Two Color Interferome-

ter [19] or TCI. It consists of coaxial carbon-dioxide (CC 2) and helium-neon (He:Ne)

laser beams in a Michelson configuration. The view of the interferometer is shown in

Fig. 3-3. Both beams are expanded to ellipses to fill a vertical port. Ten detectors

evenly spaced across the CO 2 beam measure the phase shift across the face of the

beam while four detectors measure the phase shift of He:Ne beam. The CC 2 beam is

sensitive to the line integral of the plasma density and to the motions of the interfer-

ometer optics. The He:Ne beam is much more sensitive to the motion of the optics
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and less sensitive to the plasma density than the CO 2 beam. Together these can be

used to separate the phase shift caused by vibrations and plasma. The line integrated

density measurements are typically good to 5 x 1018 M-3. Data from one channel is

available in real time for density feedback using the hybrid computer discussed in

@3.1.

The TCI has two limitations. First, the beam passes through a large portion of the

vacuum chamber above and below the main plasma. There can be a large inventory

of cold (> 10 ev), relatively dense (1019 to 1021 m-3) plasma in these regions. These

SOL plasmas are currently not measured or modeled sufficiently to separate edge and

main plasma contributions to the path integrated density measurements.

The second problem is the limited view port size. The small port size results in all

the TCI chords passing through both the edge and the core of the plasma. Fig. 3-4

shows the expected measurements for several different profiles which give identical

phase shift measurements on channel 4. Distinguishing between all but the most

extreme cases is not possible given the limited radial view. These limitations make

density gradient measurements unreliable, however the central density measured by

the TCI should be good to twenty percent in all but pellet fueled plasmas.

3.2.2 Core Nd:YAG Thomson Scattering

Another key density diagnostic is the Thomson Scattering System (TS). This is based

on a multipulse (50 Hz) Nd:YAG laser shining through a vertical port and viewed at up

to nineteen vertical positions1 through a horizontal port. Temperature measurements

are made by observing the doppler broadening of the laser light due to motion of

the electrons. Density measurements are made by observing the amplitude of the

scattered light. Properly calibrated, this diagnostic has the ability to make local

(2 cm resolution) measurements of the free electron density and temperature with,

usually, a five percent random error due to photon statistics. The challenges of

this diagnostic are maintaining alignment, reducing the stray light, and absolutely

f For the period during which the data for this thesis were taken, three or four channels were
operating.
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Figure 3-4: Modeled TCI Measurements for several density pro-
files. Note that the quite different profile shapes shown
on the left result in nearly identical path length measure-
ments on the right, making profile inversion difficult.

calibrating the device. While the signal to noise of the temperature measurement

depends on the absolute power and alignment of the beam, the Thomson scattering

temperature measurement is in general believed to be reliable. However the density

measurement depends directly on the amplitude of the light collected and is very

sensitive to alignment, changes in the collection optics, and efficiency of the detectors.

Calibration of the Thomson Scattering using the reflectometer will be discussed in

§ 6.4.4.

3.2.3 Probes

Lagmuir probes are used to measure edge plasma parameters at several locations

within the machine [20]. In the divertor, there are sixteen sets of three probes each

on the inner and outer divertor surfaces (see Fig. 3-5). In addition, there are probes on

the front faces of the limiters and a movable rf probe at A-port (the same port used by
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Figure 3-6: Example EFIT Reconstruction

the reflectometer). Finally, a fast scanning probe can be fired vertically to the LCFS.

This probe generates edge temperature and density profiles with excellent spacial

resolution up to three times per shot. Currently it is limited to ohmic operation.

3.2.4 Magnetics and EFIT

The equilibrium fitting code EFIT [21] numerically solves the Grad-Shafranov equa-

tion based on inputs from the magnetics diagnostics [22]. Fig. 3-6 shows the curves

of constant flux as reconstructed by EFIT. Currently the only internal magnetic field

measurement is the tilt angle of the ablation cloud from injected lithium pellets [9].
Such measurements are extremely perturbative and are not a part of normal opera-

tion. In addition no data from kinetic measurements are included. As a result, the

current profile determined by EFIT is parabolic. Comparison of the LCFS location

measured during L-mode by the divertor probes, the fast scanning probe, and EFIT

indicate that EFIT predicts the LCFS location to within 3 mm. The accuracy of

EFIT is less certain during H-modes and PEP modes as the current profile during
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Figure 3-7: B-Dot Coils The crosses mark the poloidal location of
the fast magnetic coils mounted on the 3 poloidal limiters.
There is also an array of fast coils under the tiles on the
inner wall.

these modes is not expected to be parabolic. A diagnostic neutral beam is currently

being modified for use on C-Mod to address this issue. In addition to the magnetics

used for magnetic profile reconstruction, arrays of fast magnetic pickup coils with a

500 kHz frequency response are attached to the limiters as shown in Fig. 3-7 at four

toroidal locations to measure m and n numbers for magnetic fluctuations.

3.2.5 Electron Cyclotron Emission

Two Electron Cyclotron Emission (ECE) diagnostics have been installed on C-Mod

for measuring electron temperatures. The Michelson Interferometer [23, 24] uses a

scanning mirror arrangement to measure a temperature profile every 30 milliseconds.

It is connected to the machine via a long quasioptical beam line equipped with a

liquid nitrogen temperature calibration source. The beam views radially across the
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Figure 3-8: Visible Diode Array Views [25] The views have been
mapped to the same toroidal location.

midplane with a spot size of - 3 cm in the poloidal direction. Attached to the same

beamline is a nine channel grating polychromator (GPC) which is cross calibrated

relative to the Michelson. The GPC has up to a 500 KHz frequency response and a

1.5 cm spacial and 9 eV thermal resolution. A third ECE diagnostic, a heterodyne

radiometer, is under development for diagnosing temperature fluctuations.

3.2.6 Spectroscopic Measurements

C-Mod has a host of spectrometers to study the line emission from the visible to the

X-ray. In addition, five imaging diode arrays [25] (shown in Fig. 3-8) image the D-a

emission and typically a carbon line. Four of the five arrays use Reticon linear diode

arrays and have 1 KHz frequency response. Top Array 1 has up to 1 MHz response for

viewing ELMs and hydrogen pellet ablation. Kurz [26] has combined the information

from all these arrays to perform tomographic reconstruction of the emission.
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3.3 Major Areas of Physics Research

3.3.1 Transport Scaling

As discussed in §2.6, one of the most daunting problems facing plasma physics is

understanding energy transport in a tokamak sufficiently to be able to predict the

performance of a reactor. With its high magnetic field, high current density, and high

electron density, Alcator can explore a range of parameters that are complimentary to

what the rest of the fusion community can observe. For example, one important result

is the testing of neo-Alcator scaling in shaped plasmas. Studies on the circular Alcator

C tokamak produced the neo-Alcator scaling law [27] for the energy confinement time:

Tneo-Alcator = .166neR 2 -a-04o 5  .(3.1)

This strong dependence on ne and the lack of a dependence on Ip disagrees with the

ITER89-P scaling observed elsewhere:

TITER89-P = -048I0.85R 1 2a 0 3 n0 ' B0 2 amu  p- (3.2)

On C-Mod, the ITER89-P scaling appears to be holding for significantly shaped

plasmas [28] adding confidence to its predictive qualities.

3.3.2 ICRF Heating

For many experiments on C-Mod, the 1 to 1.5 megawatts provided by ohmic heating

is sufficient. However, auxiliary heating is normally required in order to study plas-

mas with temperatures greater than 1 keV. Most large tokamaks use neutral beams

as their primary auxiliary heating scheme. However, the small ports and the long

port extensions on C-Mod allows only perpendicular launch of neutral beams. In

addition, the high plasma densities run on C-Mod make such beams impractical for

most current experiments. For Electron Cyclotron Resonance Heating (ECRH), C-

Mod would require sources above 140 GHz, but sources are not readily available.
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Thus, Ion Cyclotron Resonance Heating (ICRH) is C-Mod's only auxiliary heating

sourceg. ICRH has the advantage of rugged and efficient sources and transmission

systems. The biggest challenge for ICRF heating is the limited surface power density

at the antenna and the generation of impurities due to RF sheaths formed between

the plasma and the antenna or between the wall and the antenna. Directly in front

of the antenna the launched waves are evanescent. A thicker evanescent region will

require larger fields at the antenna to couple a given power. The cutoff is located

where:

2 2

N2 = I + (3.3)
11 WW" w(W+wci)

where nil = . kil is dictated by the geometry and phasing of the antennas. Substi-

tuting -= and solving for wp, gives:

w = (N - 1)(w + w)wd (3.4)

On C-Mod, Nil ~ 7, f = 80 MHz, and f6 ~ 29 MHz at the edge for a 5.3 tesla

on axis plasma. So the cut-off density is at ne ~ 7 x 10" in3 . This lies on the

outer edge of the SOL and is well below the lowest density monitored by the C-Mod

reflectometer. During L-H transitions, the location of this layer can move enough

to halve the loading on the antennas. Initially this posed a significant limitation on

heating during H-mode operation. ICRF heating puts several other restrictions on

plasma operation, in particular the choice of toroidal field, plasma shape, and plasma

composition.

Figure 3-9 shows the four straps of the two ICRF antennas currently in the ma-

chine. Each antenna is capable of launching two megawatts at 80 MHzh. To date,

the most successful heating results have been achieved at 5.3 tesla using a hydrogen

minority in a deuterium plasma. Up to 3.5 MW have been coupled in with an antenna

surface power density of 10 MW/m 2 . Successful ion heating has also been achieved

9 Lower hybrid heating and current drive are to be installed in 1997 or 1998.
4Sources tunable from 40 to 80 MHz are currently being installed.
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Figure 3-9: The Two ICRF Two Strap Antennas The tiles
around the edge are for protection from the plasma. The
bars rotated at 100 form a "Faraday Shield" that shorts
out the electric field in front of the antennas. The curved
shape of the antennas is intended to match the shape of
the plasma to improve coupling.

at 7.9 tesla using a He3 minority in a deuterium plasma. More will be said on the

issues of coupling the ICRF to the plasma in § 7.2.1.

3.3.3 Divertor Operation

Alcator C-Mod has an advanced, "closed" divertor and usually operates with a single

null at the bottom of the plasma, as shown in figures 3-5 and 3-6. Upper X-point

and double null configurations are also possible for low input power shots. In the

lower X-point configuration, the outer (right hand in Fig. 3-5) strike point can be

positioned anywhere from the bottom of the divertor (slot configuration) to above

probe 10 (flat plate configuration).

C-Mod is unique in that it uses a high Z metal, molybdenum, on all plasma facing
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surfaces . Most tokamaks use carbon. More than 8000 molybdenum tiles cover much

of the inside of the C-Mod vacuum chamber. The small rectangles shown in Fig. 3-3

along the bottom, inner cylinder, and top of the vacuum vessel indicate the surfaces

covered by tiles. The limiter between ports A and B and the two limiters on either

side of port G are also covered by molybdenum tiles.

During L-mode operation, the density can be controlled well via gas puffing, unlike

a carbon walled machine. After major disruptions, the next plasma attempt usually

succeeds though a "fizzle" or short low current plasma may result instead. One fizzle

usually conditions the walls sufficiently to obtain a plasma on the second attempti.

Both of these results are attributed to the molybdenum walls. Unfortunately, the

radiated power in C-Mod prior to wall conditioning with boron is very high, often

over 50%.

The C-Mod divertor has three modes of operation [20, 29]: sheath limited, high

recycling, and detached. In the sheath limited regime, the electron temperature and

pressure is conserved along a field line. In the high recycling regime, pressure is

conserved on a field line, but temperature is not. And in the detached regime, both

electron pressure and temperature are not conserved. Detachment has only been

observed with electron temperatures of 6 eV or less.

3.3.4 Improved Confinement Modes

Both PEP and H-modes have been achieved in C-Mod. The PEP modes provided

very peaked density profiles with central densities greater than 1.2 x 1021 m 3 . The

thesis by Ganier [9] reviews the PEP results.

An excellent review of H-mode studies on C-Mod can be found in Greenwald [30,

31]. H-modes have been achieved on C-Mod in ohmic and ICRF heated plasmas but

only in diverted operationk. Alcator C-Mod is normally run with the ion B x VB drift

A plasma facing surface is any spot on the machine that can be touched by hot plasma either
during normal operation or during a disruption.

3 The vacuum vessel walls can be further conditioned by electron cyclotron discharge cleaning,
glow discharge cleaning, lithiumization via pellet injection, and boronization.

kVery little run time has been devoted to high power limited plasmas, so the ability to obtain
limited H-modes is not precluded.
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directed towards the divertor (down). This is the favorable direction for obtaining H-

modes. A small number of H-modes has been achieved with the B x VB drift in the

opposite direction and required twice the power needed for obtaining H-mode with the

favorably directed drift. This increased power threshold may be due to the reduced

power delivered to the outer strike point in reversed field operation. This reduced

power makes the outer strike point significantly colder and often detached. As a result

the pumping effectiveness of the divertor is reduced. Typically, the compression ratio

is half that achieved with the B x VB drift down. However, main chamber pressures

are within the range for which H-modes would be expected in normal operation.

The characteristics of the various manifestations of the H-mode in C-Mod and the

variation with respect to surface conditions will be discussed further in § 7.
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Chapter 4

Reflectometry Theory

In this chapter, a rather basic discussion of the theory of reflectometry will be pre-

sented. It should be noted that the understanding of the effect of fluctuations on the

returned signal from a reflectometer is an area of continued research and is beyond

the scope of this thesis. The interested reader is referred to the occasional IAEA

meeting on reflectometry [32, 331 for the latest theories.

4.1 Dispersion Relations

Krall and Trivelpiece [34] derive the dispersion relations for an electromagnetic wave

propagating in a cold, stationary, collisionless, homogeneous plasma. The derivation

will be briefly outlined here using their notation. The magnetic field is chosen to be

in the z direction and the wave is assumed to be traveling in the y-z plane at some

angle 0 relative to B (see Fig. 4-1). The perturbed quantities of the wave, E1 , B1 , vil,

and ni, are assumed to have a spatial and temporal form of:

E1(r, t) = $1 (k,w) exp(i(k - r - wt)]. (4.1)

By applying Maxwell's equations, along with continuity and m = q(E + v x B), a

matrix relation for the electric fields is derived. In the limit of frequencies far above
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Figure 4-1: Coordinate System for Wave Propagation Deriva-
tion.

the ion cyclotron and ion plasma frequency, this matrix relation becomes:

I1 0 [ 1 1
N 2- [E12

N2 o N2 sin 0 cos 0 - 0 (4.2)

0 - sin 0cos 0 sin 26 -0 1j

L Nw2 J- L

2
where EW 1 + 2e (4.3)

W2 --W2____ oCe

E 3 1- W-- (4.5)w2

1e

and 1 = (*,2 - the electron plasma frequency, (4.6)

eB
= = the electron cyclotron frequency, (4.7)

m
c2 k 2

and N 2 2 = the square of the index of refraction. (4.8)
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For propagation perpendicular to the magnetic field, 0 = 900, Eq. 4.2 reduces to:

1 §-I_ -Lea 0 Ei.

.LE - 0 -E =0, (4.9)

0 0 1 - E3 12

which has two roots corresponding to E1 polarized perpendicular to or parallel to BO.

For E1 |1 Bo N 2 = c2k 2 WP 0-mode (4.10)

c2 k2  
"2 w2 _ ,2

and for E 1l Bo N 2 =- 2 _ W _ e X-mode (4.11)
W2 w 2 2 -O 2

LO h

where Wh = (w, + w2,)2 is the upper hybrid frequencya. These functions are plotted

in Fig. 4-2. A wave can propagate where N 2 is positive and is evanescent where N 2 is

negative. N 2 becomes infinite at a resonance and equals zero at a cutoff. The cutoffs

are of particular interest for reflectometry. For waves propagating perpendicular to

Bo, N 2 equals zero when:

W =We for O-mode, (4.12)

W + + w+2) =WPJC for X-mode, (4.13)

Wce (W C L2\
or W-= - + + P) WLHC for X-mode. (4.14)

wpJIc is the "Right Hand Cutoff" (RHC) and wLuc is the "Left Hand Cutoff"

(LHC)b. The right and left moniker originates from solving Eq. 4.2 for k H1 B where

the solutions are two circularly polarized waves with the same cutoff frequencies: wpIC

and WLHC. For a generic C-Mod plasma, the cutoff frequencies are plotted in Fig.

4-3.

'X-mode is also known as E-mode.
'They are also referred to as the "Upper" and "Lower" cutoffs in some publications, ex. Hubbard

[24].
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Figure 4-2: 0 and X Mode Reflection Above are plotted the dis-
persion relations for perpendicular propagation for the 0
and X mode for a cold plasma assuming stationary ions.
In the shaded regions the waves are evanescent.

4.2 Accessibility in Toroidal Geometry

The first requirement for the application of the cutoffs discussed in § 4.1 to tokamak

plasma diagnosis is determining where the plasma can be probed with a given fre-

quency. To aid in this, the mapping of the cutoffs to major radius-density space will

be presented. For the O-mode, this mapping is quite simple and is shown in Fig. 4-4.

The cutoff frequency, f,, is proportional to the square root of the electron density

and independent of B. The first intersection from the right of the density profile with

each of the horizontal curves is where that particular frequency will reflect. For mod-

erately hot plasmas, absorption at the first harmonic can prevent access to the cutoff.

The total magnetic field in a tokamak falls off approximately as 1/r for low 3 plasmas

giving the hyperbolic curve where f, = fp,. Low field launched 0-mode waves can

not pass this curve. For example, 125 GHz launched from the low field side would

not reach the cutoff for the density profile shown, as the resonance at 0.8 meters will

absorb the launched wave. Frequencies below 105 GHz should be unaffected, as the
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not optically thick.
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Figure 4-4: 0-Mode Accessibility Plot for 5.3 Tesla An example
density profile is included. On C-Mod the inner wall is at
0.44 meters and the limiters are at .905 meters. Typically
the LCFS is at .89 meters and the plasma magnetic axis
is at .68 meters.

edge plasma is too cold and tenuous at the location of their cyclotron resonance to

have a significant optical depth.

The O-mode case is simple compared with the X-mode case shown in Fig. 4-5.

Here the curve f, = fp, is included along with the right hand axis from Fig. 4-4, so

0 and X mode access can be compared. Equation 4.13 can be solved for fpe,c,it as a

function of launched frequency, f, and radius, r:

ft(f, r) = (f - f(r)) f r) (4.15)

Then, using B(r) = Bo0 and Eq. 4.6, nci as a function of r can be specified. The

curves labeled on the right of Fig. 4-5 correspond to the critical densities for the

RHC from 120 to 300 GHz. Above about 210 MHz, absorption at f = 2f, becomes

important. Substituting this condition into Eq. 4.15 gives the curve fp, = v'2fe on

which the access curves from 240 to 300 terminate. The ECE diagnostics observe
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Figure 4-5: Accessibility Plot for 5.3 Tesla The values 20 to 140
on the left correspond to the curves demarking the critical
densities for 20 to 140 GHz for the LHC. The numbers
120 to 300 on the right do the same for frequencies 120
to 140 GHz for the RHC.

emission in this range of frequencies. A density profile that cuts through these curves

will cut off the ECE emission, giving a potentially very accurate density measurement

at the expense of a temperature measurement.

The curves labeled at the left of Fig. 4-5 correspond to the LHC. Using the same

analysis in Eq. 4.14 results in:

fp2ecrit() = (f 2 + f. 2 (r) (4.16)

In order to be launched from the low field side of the tokamak and reach the LHC, the

launched wave must at some point pass through the RHC/upper hybrid resonance

pair. This can be seen in Fig. 4-2. In a tokamak diagnostic, the plasma density near

the horns is low and gets higher as the launched waves approach the plasma center.

On Fig. 4-2 this corresponds to moving from right to left. If the density is zero where

f = fe, then the resonance and the cutoff are in the same place and the launched
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Figure 4-6: Right Hand Cutoff and Upper Hybrid Resonance
for 100 GHz. Note that once the separation between he

cutoff and the resonance is greater than a few free space
wavelengths, virtually no signal passes through.

wave will pass through unimpeded. If the density is increased, the separation of the

resonance and the cutoff will grow. If the separation distance becomes on the order of

a wavelength, little power will be coupled through. For C-Mod at 5.3 tesla, 90 GHz

and below should be unaffected, however frequencies above 90 GHz may reflect off

the RHC well outside of the main plasma. Figure 4-6 shows the separation between

the upper hybrid resonance and RHC for 100 GHzc. The toroidal field ripple reduces

Bt by 10% relative to a 1/R scaling at the radius of the launching horns, further

increasing this problem'. If high field launch were feasible on C-Mod, frequencies

above 110 GHz would encounter the cyclotron frequency at f, = v'/f,. However,

for a thermal electron distribution, the optical depth for the first harmonic in X-mode

is small, so significant absorption should not be expected. Two important features

to note from Fig. 4-5 are that for low field launch, only the RHC allows one to

currently the plasma behind the radius of the antennas is poorly diagnosed. Whether the
plasma density is 1016 or 1018 m-3 in this region is completely unknown.

dThe ripple at the LCFS, however, is less than 1%.
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Figure 4-7: Accessibility Plot for 7.9 Tesla (see Fig. 4-5 for label-
ing scheme.

study hollow profiles, while the LHC allows one to study a given density with a lower

frequency using generally less expensive sources and detectors. Figure 4-7 shows the

same accessibility plot for 7.9 tesla. At this field, frequencies above 140 GHz will

suffer the same access problems in reaching the LHC as was discussed for frequencies

above 90 GHz at 5.3 tesla.

4.3 Wave Propagation in a Stratified Medium

In this section the propagation of 0-mode waves through an inhomogeneous medium

will be discussed. Much of the material, including the notation, is extracted from

Ginzberg [35] chapter 4. The particular condition to be discussed is k 11 Vne, k I BO,

and, of course, E1 11 Bo. The wave equation for these conditions is:

d2PIZ(Y) + 2

y2 + 2 C(L, y)k12(y) = 0. (4.17)
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For clarity and to make the author's life easier, E will be substituted for ti,(y) for the

remainder of this section. First, a linear density profile for which the wave equation

can be solved exactly will be presented. Equation 4.17 has the same form as the time

independent Schroedinger Equation':

d0 2m
d2 )+ 2m (E - V(y)) =0. (4.18)

The WKB method commonly used to solve Eq. 4.18 will be discussed and finally an

"Abel like" inversion of reflectometer data to give density profiles will be presented.

4.3.1 Exact Solution for Linear Density Profile

For 0-mode propagation perpendicular to the magnetic field with a linear density

profile, an exact solution can be obtained. Inserting

n,(z) = n, -, n(y1 ) = n, = the critical density for w, and E = 1 .
Y1 y1

into Eq. 4.17 and making the substitution:

2 )1/3 (WJ2/36(
=((y -y = - y (4.19)

reduces Eq. 4.17 to:

d2E
+ CE =0. (4.20)

Equation 4.20 has solutions of the form of Bessel functions with the boundary condi-

tion that E -+ 0 as y -+ oo (or C -+ -oc).

E(C) = A(1 2 (J113 (3 ) + J-1 1 3 (p3/2 for C > 0 (4.21)

E(C) = A(-() (-11/3 (3 /2 + 1- 1 3 ( (_)3/2 for C < 0, (4.22)

'All those classes amount to one line in my thesis!
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or the Airy integral:

E(C) = cos - (x dx. (4.23)

For ( > 1, i.e. for y many wavelengths from the reflecting layer, Eq. 4.23 reduces to:

E(() _ (-1/4 cos (3/2 - (4.24)

The fields calculated here are for a standing wave with one wave travelling in and

one travelling out. This can be seen most clearly by including the time dependent

portion of E. The real portion of the electric field, '((, t), is simply:

t)= E cos[w(t - to)] (4.25)

A 2o/ cos (2r3/2 _ _r w(t _ to)] + cos [ (3/2 - + O(t - to)

(4.26)

The first term on the right corresponds to a wave moving in the +( or -y direction.

The term on the left is a wave moving in the -( or +y direction. With a little algebra,

a portion of the argument of the cosines above can be written in a very suggestive

form:

2(3/2 2] (YI _ Y)3/2 _ 7 (4.27)
3 4 3coy 124

/2 (y - y')41 2dy' - (4.28)
C 1 . 1

= j N(y')dy' - (4.29)

= f'i k(y')dy' - (4.30)
Jy 4
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Now choosing to so that the phase of the wave going in the positive y direction at

some point y" is zero at t = 0, we get:

(y", t) K cos wt -- [] N(y')dy' - -) + Kcos(wt), (4.31)

where:

3A 3A 2rrc
K 3 - and, Ao =- (4.32)

2/7(/4 2 ( 274 Y)1/6 N (y) 4O

So the phase difference between the launched and reflected waves for a linear profile

equals the integral of the local index of refraction along the path travelled by the

wave times 21 minus a ' correction.

4.3.2 The W.K.B. Method

Key to the application of reflectometry is the approximation of "Geometrical Optics"

or the "W.K.B. method"J. The approximation of geometrical optics is that the

wavelength of E.M. radiation at a given location can be determined by the local

index of refraction. Also, the power reflected from a gradient in the index is small.

Again Ginzberg [35] gives a rigorous derivation of the approximation of geometrical

optics. Dicke and Wittke [37] do the same for the quantum mechanical analog. The

derivation will not be repeated here other than to say a function of the form:

E(y) = Eo(y)e- !- 1(Y) and 0(y) = t N(y)dy (4.33)

fIt should be noted that while Wentzel, Kramers and Brillouin each independently in 1926 and
Jeffreys in 1924 applied this technique to wave mechanics, Gans used them to study radio waves in
the ionosphere in 1915 and Lord Rayleigh used them to study sound waves in 1912 [36]. The value
of working in a popular field is evident.
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is inserted into Eq. 4.17 and ordered in terms of '. Eo(y) is assumed to vary slowly

with respect to A and yo is an arbitrary constant. After some algebra the result,

E ) C+ + f' N(y)dy C- -iE- f_ N(y)dy
E(y) e CN0(y) e ± Nf() (4.34)

N (y) NI(y)

is found, where the + and - represent waves propagating in the +y and -y directions.

This approximate solution holds provided:

dN

Ao dy «1
N2 < 1.(4.35)

The W.K.B. approximations fail near a reflection. The phase for a linear profile has

been calculated above. If the profile is assumed to be linear near the reflecting layer,

a correction of - 2 to the phase is applied. Multiplying the total phase shift by two

for propagation into and out of the plasma, we get:

2w a 7r

() = - N(y)dy - -. (4.36)

The steepest density gradient expected in the main C-Mod plasma will occur in the

SGR of an ELM free H-mode. The expected lower limit for the scrape off length, ISOL,

in the SGR is the ion banana orbit width ~ 2mm. Assuming ne = n exp(-y/.002)

where n, is the critical density for f. For an exponential density profile relation 4.35

reduces to:

Al < N = 1 - (f (4.37)

For wavelengths from .6 to .27 cm (50 to 110 GHz) and assuming IsoL ~ .002 meters,

WKB theory holds for g < 0.7. This is not a problem as long as the gradient

continues to the critical density. However, if the profile has a kink in it as shown in

Fig. 4-8, a significant reflection can occur at the steep gradient.
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Figure 4-8: Profile Kink

4.3.3 Profile Inversion

For O-Mode, the phase of the returned wave is:

() = 4I(f
C JR.U)

(f2_f (X)) dx -
(4.38)

As an electron density profile diagnostic, the desired term is R,(f). Some algebra

allows its extraction from eq 4.38. Divide both sides by ' and take the derivativeC

with respect to f to get:

S =d _ dRC(f) [a f
47r df df + J (f 2 - f2e()) 1 (4.39)

Now, fpe(Rc(f)) = f(the plasma frequency at the critical radius of the frequency f is

f) so the first term on the right hand side of the above equation is zero provided the

density gradient is nonzero. The next few steps effectively perform an Abel inversion.
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Multiply both sides by (fo - f2) - and integrate over f from 0 to fo:

fo c do5 df fo( " f dx df (440)
4irdf (f-f2)? - Jw(f2 -f2) (f2 -f2)

Now switch the order of integration (We will revisit this step in a § 4.3.4.):

a ff0ffd
=f' f" x(4.41)

=IRe(fo) Ie(x) (f2 - f(X)) )(f2 _ f2);

a (f.2f (X))2 dudx (4.42)
R4(fo> =_ (f -- 2 - fe (x)) 12

where u = (f2 _ (X)) ,

Sfoc do df (4.43)

o 47 df (f2 -- f2)3 J&(f) 2

= (a - R,(fo)) . (4.44)

Dividing both sides by -2 and adding a gives:

Re(fo) =a-f f c do df (4.45)
10 2 7r2 df (f02 - f 2)2

So determining the radius, R,(fo) where the plasma frequency equals the launched

frequency fo requires knowing the term 0 for all f between 0 and fo. At first this

appears to be a daunting task, however it should be pointed out that the integrand

strongly weights the the value of ! near the cutoff over those at lower frequencies.

As a consequence, reasonable profiles can be obtained using far less than the complete

knowledge of the group delay from 0 to fo.

4.3.4 Hollow Profiles

One problem with the derivation above is dealing with hollow density profiles such

as the one shown in Fig. 4-9. Here f3 sees past the hollow profile, while fi reflects
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Figure 4-9: Hollow Profile Inversion Problems

before the hollow portion. The group delay observed by fj does not contain enough

information to reconstruct the profile of the hollow region. In the derivation above,

the problem arises in going from Eq. 4.40 to Eq. 4.41 by switching the order of

integration. This is only allowed if f and R, are one to one. Figure 4-10 plots R,(f)

and shows the difference in the two regions of integration. The horizontal lines in the

left hand figure are the paths for the first integration in Eq. 4.40 which omit a portion

of the hollow region. The figure on the right hand side shows the integration region

for Eq. 4.41. The first integration follows the vertical paths shown. The result of a

hollow profile will be an underestimation of the distance from "a" to the reflecting

layer. While it may appear possible to reconstruct some of the hollowness for the

particular case shown through an iterative approach and some smoothing procedure,

in practice, the noise in each measurement and the fluctuation in the density at the

local maximum and minimum between the cutoffs for f, and f3, make such analysis

impractical.
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4.4 Plasma Absorption and Emission

Hutchinson [38] derives the optical depth r for single pass for the 0-mode at an

arbitrary angle. For the specific case of perpendicular propagation his result reduces

to:

La /2 TWce
r- where, a=2-w e(1- and L= -=R

WCC 2c MC, mec

ds

(4.46)

where R is machine major radius. The cyclotron resonance for 110 GHz is at 90 cm for

5.3 Tesla operation. This is typically in the SOL with ne < 1020 m-3 and Te < 100 eV

giving a maximum optical depth of .3 for a single pass or .6 for a return path. This

has not appeared to adversely affect operation. For the rest of the frequencies used

the cyclotron resonance is well outside the main plasma. When operating at lower

field absorption has limited access.

Emission of radiation in the frequency bands used can be an issue. If the plasma
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density is low enough, runaway electrons can be presents. The runaways are very

relativistic, thus reducing their emission frequency by the ratio of their rest mass to

their relativistic mass. So the reflectometer can observe emission from these electrons

despite the nominal cyclotron resonance being much higher. Large bursts of emission

can often be seen often coinciding with sawtooth crashes. The bursts could be due to

runaway electrons being kicked out of the center of the plasma where their emission

was cutoff or having some of their parallel momentum converted to perpendicular

momentum by the sawtooth crash, again causing their emission to be seen. Previous

work on Alcator C has demonstrated the existence of a cyclotron maser [39] effect. On

one occasion, a C-Mod reflectometer mixer failed during a shot with a high runaway

population. High plasma emission or X-rays from fast electrons hitting machine walls

are assumed to be the cause. Reflectometers on other machines have experienced

failures due to unknown causes [40, 41]. Emission from runaways may be the culprit.

4.5 Relativistic Effects

Binslev [42] has worked out relativistic corrections to the cutoffs for reflectometry.

For a given 0-mode reflectometer frequency, the relativistic cutoff density, nerd, will

be slightly higher than the density, necoid, calculated from cold plasma theory. For

temperatures below 20 keV the correction factor to five significant digits is:

* r = vo ~ + 4.892 x 10-3 V 2.24 x 10~6
ne cio j \keV kV

+ 2.3 x 10~" (e) (4.47)

9The collision frequency between particles in a plasma drops as their velocity increases. Runaways
are electrons that have been accelerated by the ohmic current drive to velocities where the drag due
to collisions is small compared to the accelerating potential. Such electrons can reach energies in
the 10's of MeV's.
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and the relativistic index of refraction No is

f2 .
N,, ~- 2  (4.48)

For almost all our current operating conditions, Te is less than 4 keV, giving vo <5 1.02.

This is small compared to the other errors in our measurements, however this could

become an issue in the future as heating power and confinement times increase. In

particular, cross calibration of the Thomson Scattering system based on reflectometer

cutoff (see § 6.4.4) should not be attempted on ICRF heated shots.
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Chapter 5

The Alcator C-Mod Reflectometer

In this chapter the hardware and rf techniques used for the C-Mod Reflectometer will

be described.

5.1 Design Philosophy

At the time this project was being developed, reflectometry had met with limited

success [43, 24, 44, 45, 46, 47]. In order to apply Eq. 4.45, most experiments required

that the phase of the returned signal be monitored as the launched frequency was

swept over either a broad or narrow range. If at any point the returned signal dis-

appeared or gained too much noise, the do term would pick up a modulo 27r error.

The difficulty in following the phase of the returned wave over the long periods of the

source sweep would compromise these diagnostics.

Hubbard, Prentice, and Sips from the Joint European Tokamak (JET) provided

much useful advice on the specific difficulties they encountered with their reflec-

tometer. Two issues that had been particularly challenging to the JET group were

combining multiple frequency bands into one transmission and receiving line, and

dealing with the complicated mode structure of their long, overmoded transmission

line with multiple bends. C-Mod has the good fortune of comparatively easy access

to the machine, and few of the radiation shielding requirements of the JET program.

The diagnostic at A-port was arranged so that few bends in the waveguide runs
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would be needed, and so it would not be necessary to be greatly overmoded. Also,

each waveguide band was given a separate pair of horns. Additionally, this diagnostic

was considered an experimental diagnostic subject to major reconfiguration. Further,

connectorized components built to designated specifications for all rf circuit boards

operating at more than 30 MHz were purchased, allowing the designers/builders of

this diagnostic to expend and develop their expertise elsewhere.

5.2 Differential Phase or AM Reflectometry

Sufficient progress has been made in reflectometry so that it can now be proposed

as a core electron density diagnostic for fusion research plasmas [48]. Key to this

progress has been the development of alternative modulation techniques. "Differential

Phase" (DP) or "Amplitude Modulated" (AM) reflectometry has become a common

diagnostic technique [49, 50, 51, 52, 53]. This approach was first suggested by Rich

Chedester of Millitech Corporation. It was first proposed as a plasma diagnostic on

C-Mod in 1990 [54].

Figure 5-1 shows the fundamental idea behind DP reflectometry. Instead of mea-

suring the change in phase as one sweeps the frequency, one launches two closely

spaced frequencies and measures the phase difference of the returned waves.

Launched signal: sin[27r(F + AF)t] + sin[27r(F - AF)t]

Received signal: sin[27r(F + AF)t - 41+ sin[27r(F - AF)t - 02]

OW =47r 2 P
C () = (f2 _ 2)2 dx - (51)

In the detector the two signals are mixed and the low frequency term is:

sin[27r(F + AF)t - 01 - (27r(F - AF)t - 02)] = sin[47rzAFt - AO]

where, A4 = 41 - 02
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Figure 5-1: AM Technique A4 = 01 - 02

The group delay for the beat wave to travel to the reflecting layer and back is:

r = 41rAF (5.2)

As long as AF < F- and the density profile does not have a major break in slope at

ne = nc(F), then 7. is independent of AF. Then AF can be chosen such that the

expected range of A4 is less than 27r so there is no ' ambiguity in rg. For example,

if the group delay from the launching horns to the critical layer can range from 1

to 2 ns (corresponding to an optical path from 30 to 60 cm), then AF ; 500MHz.

Higher frequencies will give better phase resolution provided the separation distance

between the two reflecting layers is small relative to the turbulence corelation length.

Another popular approach to making profile measurements with reflectometry is

to use an electronically swept oscillator and monitor the returned phase or returned
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frequency as the source is swept over either a narrow (100 MHz to 1 GHz) or broad

(one waveguide band) range. The advantages and disadvantages of a fixed-frequency,

multi-channel DP reflectometer as developed for C-Mod compared to such swept

systems are:

Advantages:

" No frequency modulation needed. This reduces some of the complexity of

the system.

" No 2nr ambiguity in the returned phase. By choosing AF small enough,

as discussed above, temporary loss of signal due to plasma turbulence does not

result in an ambiguity in the returned phase. Systems that depend on following

the phase of the returned signal during a frequency sweep can "lose fringes".

" Time response dictated by output filtering rather than sweep rate.

The integration time over which a measurement is made can be made as short

or as long as desired.

" Simplified transmission system. The performance of a fixed frequency DP

reflectometer is completely independent of the mode structure of the transmis-

sion line provided the isolation between the launching line and the receiving line

is high. In a swept system, multiple reflections in the transmission lines must

kept small or somehow calibrated out.

" No reference leg is needed. A swept system requires a reference arm. This

can be a major or minor detail depending on the distance from the source to

the launching antennas and the modulation technique.

" Automatic frequency stabilization. All drifts in the millimeter wave oscil-

lators are mixed out in a DP reflectometer receiver. The phase information is

carried on the 2AF beat wave which can be provided by a very stable crystal

oscillator.

Disadvantages:
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" Sensitive to multiple reflections. Multiple reflections in the vacuum cham-

ber during plasma operation or during calibration will corrupt signals in a DP

reflectometer. A fast swept system can in principle distinguish between re-

flections from the plasma and multiple reflections inside the chamber. To ac-

complish this the launched frequency must be swept fast enough so that the

expected returned frequency offset range is large compared to the broadening

expected from fluctuations, and the expected range of returned frequencies from

a plasma reflection must not overlap the range for multiple reflections.

" More complicated fluctuation analysis. The returned fluctuation signal

from a DP reflectometer will be the product of the scattering of the two launched

frequencies. To date, high frequency data have been of little application other

than stating that the plasma is turbulent or quiescent. For analysis of frequency

and k spectra a single sideband of the reflectometer should be used.

" Limited number of data points. For each data point of a DP reflectome-

ter, a source and a receiver is needed. A swept system is limited only by the

integration time needed per data point and the required sweep rate.

5.3 Choice of Frequencies and Polarization

The original goal of the reflectometer was to provide edge profiles to aid in the inver-

sion of the interferometer chord-integrated density measurements. Before operating

the machine, the expected plasma density profiles were parabolic with central densi-

ties of 1 to 2 x 10Im-3. The separatrix density was predicted to be 2 to 5 x 10 1 9m- 3.

The toroidal field on C-Mod is largely dictated by the ICRF heating scheme

desired. The most successful heating scheme has been achieved using deuterium with

a hydrogen minority at 5.3 Tesla. This puts the RHC out of reach (see Fig. 4-2).

The LHC cutoff had not been used before for reflectometry. In order to get to the

lower cutoff, the launched waves must pass the 0-mode cutoff. Any power coupled

into the 0-mode by not matching the field pitch properly would be reflected. As this
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reflecting layer may be much closer to the horn than to the lower X-mode cutoff, the

measurements could be corrupted. To avoid these issues, this diagnostic operated in

the O-mode. With the expected density range, frequencies between 50 and 110 GHz

fit both the expected densities and financial restrictions.

The actual profiles have proven to be flatter than parabolic in L-mode and sepa-

ratrix densities are about twice the expected values. In addition much of the current

operation is in H-mode where separatrix densities generally exceed 1.5 x 1020 m-3 .

Tests using X-mode are planned for Spring 1997 (see § 8.3.3).

5.4 Transmitters and Receivers

The diagnostic was built with 50 and 60 GHz in WR-15, 75 and 88 in WR-12, and 110

in WR-8 waveguides. The sources were purchased with the intention of also trying

a narrow band sweep system, and trying several receiver arrangements for the DP

technique. The 50, 75, and 88 GHz oscillators all have 1 GHz of veractor tuning and

2 GHz of mechanical tuning. The 110 GHz oscillators have somewhat less mechanical

tuning. The 60 GHz oscillators were salvaged from the Tara interferometer and have

very limited tuning capabilities. In retrospect, the wide tunability of most of the os-

cillators proved more of a complication than an asset as the frequency stability of the

oscillators is somewhat compromised at the expense of tunability. Oscillators occa-

sionally drifted beyond their operating band due to thermal variations during the run

and possibly due to mechanical vibrations. Were the author to rebuild this diagnos-

tic from scratch, thermally stabilized oscillators with 400 MHz' of mechanical tuning

would be purchased. Figure 5-2 shows a schematic of the transmitter and receiver for

the 50 GHz channel. Signal from the transmitting Gunn oscillator is upconverted,

then passed through an isolator, and finally combined with the 60 GHz signal in a

standard 3 dB directional coupler. After the coupler, the waveguide is tapered up to

WR-42 for the ten foot run to the vacuum feedthrough. The upconvertor generates

the first upper and lower sidebands while the fundamental sideband and all the other

'to allow for various modulation frequencies to be used
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Figure 5-2: Receiver Details
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Figure 5-3: RF Source Box The source box shown above allows the
user to select three frequencies (500, 235, and 132.5) to
be sent to the upconvertors. The frequency choice can be
made via CAMAC either between shots or during a shot.
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sidebands are suppressed by 20dB relative to the two transmitted sidebands. Two 18

dB isolators are needed to prevent pulling of the oscillator frequency by changes in

the power reflected by the plasma.

Experiments on JET [55] showed very rapid (~ lps) 30 dB changes in the signal

amplitude returned from the plasma. For the C-Mod reflectometer, the two returned

sidebands, which can each vary by 30 dB, needed to be mixed. To mix the two

returned sidebands without introducing large variations in the conversion loss, one

sideband is passed through a limiting ampb giving a constant 10 dBm output which

is put into the LO of a mixer. The other sideband, after being mixed with 970 MHz,

is then mixed with the limited signal producing a 30 MHz signal carrying the group

delay measurement. Since only one sideband has been limited, the power can still

vary greatly. Before making a final phase measurement, the signal is limited again,

then sent to the phase detectors. This system has a dynamic range of 50 dB with a

phase variation of less than five degrees.

The bandwidth of the input to the limiting amp should be equal to the bandwidth

of the filters on the output of the phase detectors in order for the quadrature sum

of the phase detector outputs to remain constant. For this reason, when profile

information was the primary interest, 2 KHz wide crystal filters centered about 30

MHz were placed before the 30 MHz limiting amp. This eliminated the possibility of

studying fluctuations on that particular channel. Typically, this filter was used in all

but the 88 GHz channel. Figure 5-4 shows the amplitude of the quadrature sum of

the two outputs with and without the crystal filter.

Three different upconversion frequencies can be generated for the transmitter and

receiver discussed above. When operating with the very narrow bandpass filters

described above, the difference frequency between doubled upconversion frequency

and the downconversion frequency must be good to a few hundred hertz. This nar-

row bandpass was not planned for when ordering the 970 and 500 MHz oscillators.

These oscillators could not be tuned enough to bring them within the filter band-

bA limiting amp is an amplifier designed to run in saturation. The output power (typically 10
dBm) is independent of the input power. These amps serve the same purpose as automatic gain
control (AGC) amps. A limiting amp typically settles faster but is noisier than an AGC amp.
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Figure 5-4: Effect of Crystal IF Filter. Both of the traces above
are the quadrature sum of the outputs from the phase
detectors using a 2 KHz low pass filter. The upper trace
has a 2 MHz wide filter before the limiting amp; the lower
trace has a 2 KHz wide filter before the limiting amp.
During the period between .75 and 1.0 seconds the plasma
is in H-Mode.

pass. Figure 5-3 shows the resulting RF source box. This design is somewhat more

complicated than originally planned, however, the setup as shown worked fine. When

operating with the 235 MHz upconversion frequency, the difference frequency between

the Gunns is 295 MHz, and with 132.5 MHz, the difference frequency is 397.5 MHz.

For all data shown in this thesis, the 500 MHz upconversion frequency was used as it

provides the highest spatial resolution.

Not shown in Fig. 5-2 are digitally selectable bias voltages for the Gunn oscilla-

tors. In principle, the modulation frequency could be changed during a shot. This

capability has not been pursued to date but could be useful in attempting to make

radial correlation measurements.
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Figure 5-5: I/Q Schematic

5.5 Phase Detectors

The phase detectors are I/Q modules (cosine and sine detectors) with digitally se-

lectable filters. Figure 5-5 is a block diagram of the device. The core of the device

is an I/Q chip manufactured by Merrimac. It operates with a 30 MHz LO and a

27 to 33 MHz RF. The harmonics produced by this chip were isolated from the rest

of the circuit by the filters and pads before and after the chip. Signals intended for

profile studies were low pass filtered using the 2 or 20 KHz filters. These are active

8 pole Bessel low filters based on the Maxim 'MAX274ACNG'C filter chip. They are

intended to avoid aliasing when digitizing at 5 and 50 KHz respectively. The Aurora

A12 d digitizers can take 8192 samples per channel. At 5 KHz, 1.64 seconds of data

can be obtained, which is longer than most shots currently run on C-Mod. The 416

'I found these to be quite useful chips. Each chip has four sections with a two pole filter provided
by each section. Filter characteristics are specified by three precision resistors on each section.
Software for choosing the resistors is also available.

dNow manufactured by Jorway.
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KHz filter is a passive 12 pole Chebychev filter manufactured by K&L that eliminates

aliasing when digitizing at 1 MHz. Aurora A14 digitizers were used for fluctuation

measurements. They provided for 130 ms of data per shot. Multiple gates allowed

this 130 ms to be distributed in multiple windows throughout the shot.

However, with the crystal filter in front of the limiting amp, operation was re-

stricted to only the lowest frequency low pass filter.

D CO

Figure 5-6: Equipment Rack Above is the equipment rack where
all reflectometer electronics are housed. The many cables
used in this device are not shown for clarity.

5.6 Waveguides, Windows and Horns

5.6.1 Waveguides

Access to the C-Mod vacuum chamber is rather restricted, so all electronics are lo-

cated in a rack about ten feet from the vacuum flange. This distance also helps
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Figure 5-7: A-Port Side View Also in this port, though not shown,
are two cameras and several other spectroscopic diagnos-
tics. Spectrometers for the Edge Thomson Scattering are
located to the left of the reflectometer rack.

reduce the flux of X-rays and neutrons on microwave components.' This waveguide

run required tapering up to overmoded waveguide. WR-42 was used because it re-

duced the attenuation to an acceptable level and would not carry many modes other

than the desired TE10. In addition, WR-42 is the largest standard size waveguide

that can easily pass through a 1.33" "Conflat" vacuum window. A larger waveguide

would have greatly complicated the vacuum feedthroughs. With a very gradual bend

the waveguide could be oriented to match the angles of the horns without tapering

down again. For a continuous small perturbation to an overmoded waveguide, the

conversion to other modes is small unless the two modes are phase matched [56].

'Data on radiation damage to millimeter wave components is unavailable. There has been a

degradation over time of either sources or mixers. It is not clear if this is due to aging, operator
error, or radiation damage.
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5.6.2 Windows

The windows used for all but the 110 GHz system were 0.015" thick pieces of mica

clamped between two 0-rings: One sitting in a groove milled in a mini-Conflat (1.33")

flange and the other in a groove milled in the flange of a short section of waveguide.

While this configuration did produce a very low loss (> 0.5 dB), wide band vacuum

feedthrough, the manufacture and installation of these feedthroughs was difficult due

to the limited space on the surface of a mini-Conflat and the propensity of the mica

to cleave when stressed nonuniformly. Because of these difficulties, standard glass

mini-Conflat windows were used for the 110 GHz system. These resulted in a 1.5 dB

loss for each windowf. Specially milled gaskets hold the window end of the vacuum

waveguide in place.

5.6.3 Horns

The Alcator C-Mod vacuum chamber is a uniquely hostile environment for conducting

structures. A major issue for the design of the microwave horns was withstanding

the torques induced in the horns during a plasma disruption. Elongated plasmas are

vertically unstable. During a shot, the plasma is stabilized by feeding back on the

current in the EF coils, particularly EFC (see Fig. 3-1). In the event of a failure in

the feedback system, the plasma may move vertically 10 cm in one millisecond [57].

The resulting change in the radial flux through structures at the midplane drives

currents that, when coupled with the toroidal field, induce a surprisingly high torque

about the vertical axis [58]. All vacuum components were designed to withstand a

vertical disruption of a 3 MA plasma at 9 Tesla with the plasma center at 75 cm and

an upward velocity of 10 cm per millisecond. This was the most dangerous plasma

being considered before Alcator was commissioned. Currently, "halo" currents flowing

through the inner cylinder during disruptions limit operations to 1.5 MA9 and 7.9

Tesla [59].

fIn general returned signal amplitude was more than sufficient so a 3 dB loss from the windows
did not compromise operation.

9Actually the limit was raised from 1.2 MA in August 1996. Only one shot so far has had 1.5
MA.
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Figure 5-9: Horns in Machine This will be a photo looking radially
outward of the horns. Note that they are rotated ten
degrees to match the field pitch at the plasma edge and
that they are pointing towards the midplane so that their
beam patterns overlap.

In addition, ferromagnetic material near the plasma can greatly disrupt opera-

tions by perturbing the magnetic field symmetry and preventing the initial plasma

breakdown. Standard microwave horns of electroformed nickel or copper are not

suitable for use on C-Mod due to their high conductivity along with nickel's feromag-

netism. Instead, C-Mod's horns were constructed by electric discharge machining

(EDM) pyramidal holes in solid steel blocks. The width of the horns was dictated

by the size of the horizontal port allocated to the reflectometer. Originally, 20 to 88

GHz horns were chosen. However, the 20 GHz horns were later replaced by horns for

110 GHz once it became clear that the edge densities were higher than expected.

The six horns are mounted on a reentrant flange at the midplane on A-port (see

Fig. 5-7 and Fig. 3-2). The ends of the horns are at the major radius of the inside of

the outer cylinder of the vacuum vessel. The three upper horns are pointed down at
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5 degrees and the lower horns are pointed up at 5 degrees so that their beam patterns

overlap at about 80 cm. The horns are rotated clockwise as seen by looking radially

in ten degreesh to match the expected field line pitch. The angle of the field at the

edge changes depending on the current, plasma shape, and toroidal field. Ten degrees

was chosen because the faraday shields of the ICRF antennas are set at this angle

so edge field pitch was expected to match this. (note: this was how I made that

choice. I should probably come up with some discussion of what this angle should

be in retrospect. It is not all together clear where the two modes separate with a

sheared field and a density gradient.)

5.7 Data Aquisition and Data Analysis

Scientists and students working on C-Mod have the luxury of using the MDS+ [60]

data aquisition system . This provides a very simple to use, menu-driven interface

between the CAMAC based data aquisition system and the user.

A 1 MHz clock is supplied to all diagnostics over an optical fiber. This clock

is then divided down in a "decoder" module to provide slower digitization rates.

Encoded in the clock is a start "event" four seconds before the anticipated initiation

of the plasma. MDS+ then calculates time bases for each signal. This central timing

system ensures that all digitizers use the same clock so that the timing of events seen

on different diagnostics can be reliably compared.

After a shot, data from all diagnostics are transferred over a fiber optic data

highway to a magnetic storage disk. Typically, within a few minutes of a shot, data

from all diagnostics are available to all users on the C-Mod cluster of workstations.

After a day's run, all data are archived in an optical disk "jukebox". All data from

all shots on C-Mod are available automatically in a few minutes. Shots that have

been accessed recently are stored on magnetic disk and are available within seconds.

Data are processed on Digital Alpha workstations using the IDL interpretive pro-

hBT and I, are always parallel.
Replete with two computer scientists, Tom Fredian and Josh Stillerman, to whom the author is

greatly indebted
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graming language. Processed data are stored on the same magnetic and optical disks

used for raw data.
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Chapter 6

Profile Reconstruction

In this chapter, the steps involved in determining density profiles from the raw data

from the five reflectometer channels are described in detail. The resulting profiles

are compared with other diagnostics including the fast scanning probe, the grating

polychromator, Thomson scattering, and the two color interferometer. Along the

way, some of the common phenomena seen by the reflectometer will be presented. In

addition, the perturbation to the SOL by the fast scanning probe will be documented

and a couple of plausible models for this perturbation suggested.

6.1 Inversion Algorithm

In § 4.3.3, the location of the critical layer, Rc(fo), for a given frequency, fo, was

calculated from group delay measurements for an O-mode reflectometer via a simple

integration:

R.(fo) = a -d(f) df (445)
Jo 27r2 df (f2f2)0 )

The integral above requires knowledge of d for all f between 0 and fo. For any

practical reflectometer, the number of data points is limited and some interpolation

scheme is needed. For a broad band swept system the number of data points is

dictated by sweep rate and signal to noise ratio. For a fixed frequency or narrow
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band swept system, however, the number of data points is dictated by the number

of channels available. As a result, the number of data points measured in a profile is

much smaller. with a fixed frequency system. However, since no sweeping is required,

the time response can be much higher. On C-Mod, the term j is measured for up to

five different frequencies. Between measured frequencies, L is linearly interpolateddf eryitroae

with respect to f 2 ,. The density is assumed to be zero outside of the limiter radius

and linear between the limiter and the first data point. This will be discussed further

in § 6.3. The integral in Eq. 4.45 is approximated by the sum of 1 GHz wide bins:

Rc c to- d4l 2 1
Rc(fo) =a - T-Z - x

Tr2 = [f2( l)]

c d4 "-~r fo -_
+ x7 -f X. - acos A(6.1)2ir2 df (2fo ' 61

where f is in GHz. The third term on the right is required to deal with the singularity

in the integrand of Eq. 4.45 at f = fo. Figure 6-1 shows the evaluation of several

profiles using five data points as expected from the C-Mod Reflectometer and the

inversion routine described above. In general, the inversion agrees reasonably well

with the input profiles. Profiles with many sharp changes in slope, such as Fig. 5 in

Fig. 6-1, are not well represented due to the limited number of measurements.

6.2 Data Reduction

The steps involved in converting raw group delay measurements into density profiles

will be presented in the next few figures. Shot 9506090116 will be used as an example.

This shot was chosen because many of the phenomena typically measured by the re-

flectometer are present and the Thomson scattering system was absolutely calibrated

a few days after this run. This was a 7.9 tesla shot with a lithium pellet injected

anc oc f 2 , interpolating w.r.t. f biases the inversion toward concave profiles.
'The shot numbering system deserves some explanation. The first two digits are the year, the

next two are the month, the next two are the day, and the last three are the shot on that day. So
this was shot 11 on the ninth of June, 1995.
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at .75 seconds, followed by an H-modec at .85 seconds, and a poloidal detachment

starting at 1.3 seconds. The bottom plot in Fig. 6-2 shows the time history of the line

integral of the plasma electron density as measured by the TCI. Clearly apparent is

the pellet injection and the poloidal detachment. The very small kink in the density

trace at .85 seconds is the H-mode. The top two plots in Fig. 6-2 show the I/Q output

for the 110 GHz channel.

The phase of the returned signal (third plot from top) is extracted by taking the

arctangent of the ratio of the two I/Q outputs. Fringe jumps are apparent between 0.4

and 0.5 seconds and at 0.7 seconds. The fourth plot shows the phase measurement

after the fringe jumps have been removed. This step of the analysis is done by

identifying fringe jumps manually via a graphical computer interface. A suitable

automatic computer algorithm has not yet been developed. Visually determining

when a fringe jump has occurred is generally straight-forward. However, there are

times when it is possible to have a 27r ambiguity. These times are: during plasma

startup; when the cutoff layer is inside or near the inversion radius where sawtooth

modulation of the critical radius can be large and rapid; in the 300 ms following pellet

injection, presumably, due to locally hollow portions of the density profile during the

relaxation of the current profile; and during a dithering H-mode.

Prior to the shot, the reflectometer is reflecting off of the inner wall of the vacuum

chamber located at a major radius of 44.0 cm. With a 1 GHz difference frequency

(30 cm beat wavelength), a mirror located at 59, 74 or 89 cm would also give a phase

of zero. For historical reasons, the the phase of the returned wave relative to one

reflecting from a mirror at 89 cm major radius is displayed and a negative phase

corresponds to a greater group delay. This means that a channel measuring 0 degrees

is reflecting near the LCFS which is typically located at 89 to 90 cm. Figure 6-3

shows the phase of the returned wave for all five channels.

cThis was the first H-mode ever observed above 5.3 tesla and was first identified by the
reflectometer.

97



S
0

x

950609011

3-

24

TCI Channel 4

0

0

-100-

-200-

-300-

-400 -

60 75

u -500-

-600- 88

-700-

-800 110

-900-

-1000
0.2 0.4 0.6 0.8 10 1.2

Time (sec)
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6.3 Calibration

A key element of the operation of any reflectometer is absolute calibration. This has

been a challenge for several experiments [61, 24]. When launching into a metallic

vacuum chamber, reflections will not be limited to the inner wall, and power reflected

from objects other than the inner wall will corrupt the measured group delayd. In

principle, a swept frequency reflectometer can distinguish between reflections from

the inner wall and other structures in the machine. However, filtering in the receiver

must be carefully chosen to eliminate spurious reflections while maintaining sensitivity

to the expected range of profile shapes and locations [62]. For a fixed frequency

reflectometer, any spurious reflections can corrupt the returned signal. That this

is a problem for the C-Mod reflectometer can be seen in Fig. 6-4. This is from shot

950609013 which like 950609011 had a pellet and an H-mode. The H-mode between .8

and .86 seconds is much longer than the one in shot 11 and has a far more pronounced

effect on the 110 GHz channel. In fact, the phases measured for the 75, 88, and 110

GHz channels are inconsistent: they predict the critical layers for 75 and 88 GHz lie

further in the plasma than the critical layer for 110 GHz. By inferring an offset, these

channels can be brought into agreement. Justification for inferring this offset and a

protocol for doing so will occupy § 6.3.1 and § 6.3.2

6.3.1 High SOL Density Plasmas

Fig. 6-5 shows the phase measurements for shot 951206031. This was a particularly

high density, gas fueled, ohmic shot. Note that as the density rises, all channels of

the reflectometer go out to a fixed value. Also they reach this value in sequence,

from lowest to highest frequency. This value is independent of plasma shape and

position and remains the same from shot to shot. In particular it is independent

of gaps between the LCFS and any limiting surface. This effect can be seen on the

lower frequency channels for most diverted shots and on the higher frequency channels

dOther potential problems include amplitude to phase modulation in the receiver, pulling of
oscillators and induced phase shift in filters due to the magnetic fields induced by the EF coils, and
poor isolation between the receiving and launching arms of the receiver.
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Figure 6-6: Fast Scanning Probe Mapping for a high field, high
q shot.

on shots with extensive gas puffing, especially when the divertor is detached. This

effect is also visible, though less clearly, on shot 950609011 (see Fig. 6-3). Note that

channels 50 through 88 GHz all encounter an upper limit at .7, 1.05, and 1.3 seconds.

The only fixed object that can be causing this is the limiter located 16 cm toroidally

from the reflectometer horns (see Fig. 3-2). These observations point to there being

a steep gradient in the plasma density at the limiter radius, near the limiter. This

steep gradient can be used to calibrate the reflectometer by assuming a step function

in the plasma density at the limiter radius.

6.3.2 Comparison with Fast Scanning Probe

The fast scanning probe (FSP) is located 180 degrees toroidally from the reflectometer

(see § 3.2.3 and Fig. 3-2). In general, the FSP insertion into the SOL up to the LCFS
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produces no significant change to the main plasma other than an occasional rise in

the radiation from molybdenum linese. For a small number of shots the edge q was

high enough1 for the location of the FSP to map along the field lines to the view of

the reflectometer (see Fig. 6-6). For ohmic plasmas with the proper field mapping, a

perturbation to the SOL caused by the FSP can be seen with the reflectometer. This

perturbation is not seen on shots where the flux tube intersected by the FSP does

not map to the reflectometer view. Figure 6-7 shows an expanded view in Fig. 6-6

of the mapping of the probe flux tube to the reflectometer toroidal position for two

shots. In shot 950607023, the mapping misses the reflectometer field of view and

no perturbation of the profile is observed. Shots 950607030, 28 and 29 (see Fig. 6-

8 & 6-9) are a density scan at constant BT and plasma current. In shot 30, only the

60 GHz channel was at the fixed position9 that is presumed to be the limiter radius

prior to the FSP insertion. The group delay is increased on the 60 GHz channel

during portions of the period of the probe insertion, but the other three channels

show no significant effect. Also note that the first perturbation on the 60 GHz profile

occurs at approximately the same time as the tip of the FSP crosses the limiter radius.

Profiles for the reflectometer during both the depleted phase and the post probe phase

are plotted with a smoothed profile from the FSP. Note the quite good agreement

during the depleted phase between the probe and the reflectometer. The reflectometer

profiles were obtained using the algorithm described earlier in this chapter with an

offset such that the fixed position attained by each reflectometer channel corresponds

to an step function in the density profile at the limiter radius.

Shots 950607028 and 29 show the same traits as shot 30 but at higher density. For

shot 28 only the 75 Ghz channel is affected and on shot 29 only the 88 Ghz channel

is significantly affected. The reflectometer profiles for each of these shots also show

better agreement with the FSP during the depleted phase. On shot 29 the limitations

of using only five fixed frequencies is apparent. The critical radius for the 110 GHz

channel probably does not change as the probe is inserted, however there are not

eThe probe head is constructed from molybdenum.
f High Bt, low plasma current
90n this day the 50 GHz channel was not operating.
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enough data to construct a profile with an inflection point as in shot 28.

6.3.3 Models for Probe Observations

Two models can explain the observed interaction between the SOL, the limiter, and

the probe. It should be pointed out that either of these models will allow this steep

gradient to be used as a calibration marker. The first, and more conventional, is to

assume that the limiter and the probe are both sinks for particles. Figure 6-10 shows

a two dimensional representation of the SOL. Ions and electrons will recombine at

the limiter so it is a plasma sink and will deplete the plasma along the field lines that

intersect it. Cross field transport will supply plasma to these field lines creating a
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SOL Perturbation by FSP at Higher Density shots
950607028 & 29. A density scan at the same field and
current as in Fig. 6-8. Note that only one channel is
strongly affected by the probe in each shot.
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net flow from the main plasma to the limiter. The reflectometer sits approximately

16 cm from the AB poloidal limiter. The fast scanning probe lies approximately 2.8

meters along the field line from the limiter. The divertor is approximately another

three meters further along the field line. If we take the probe to be located in a

region without significant flow Stangeby [63, 64] provides a rather simple model of

the density profile along the x axis. Assume a constant source, S, depositing particles

into the flux tube as shown. Defining the Mach number, M, and the ion sound speed,

C,:

V 'k(T + Te) 1/
M = - where i= (6.2)

CSI

Stangeby derives the following relation from the momentum equation and continuity

dM S 1+ M 2

(6.3)dx nc, 1 - M 2 '

For S oc n this can be integrated to give:

L-x 2M n(M) 1
= M and = M(6.4)L +M2 o + 2

where L is the distance from the probe to the limiter. The Bohm condition that

the velocity at the edge of the sheath equals the sound speed is assumed. From this

parameterization, the density variation along the flux tube is obtained. Note that the

reflectometer is expected to measure 60% of the value measured by the fast scanning

probe. This depletion in front of the reflectometer at the limiter radius may explain

the fixed value in the group delay measured by the reflectometer channels for high

SOL density shots.

The probe inserted into the SOL depletes the density along the flux tube that it

intersects. This increases the group delay for a channel previously seeing the limiter

radius and now looking deeper into the SOL and decreases the group delay for channels

looking deeper into the plasma. This can be seen in Fig. 6-9 for the 88 and 110 GHz

channels respectively. Stangeby [64] gives a value for the length of the flux tube
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Figure 6-10: SOL Model

depleted by a probe of dimension d:

d2c~
Le1 ~ d (6.5)

D.

The probe is 1.5 cm in diameter and for a 5 eV deuterium plasma c, ; 16 km/s giving

D± < 1.7m 2/s. This is far greater than the Bohm value of - 0.06m 2 /s or the value of

0.08 to 0.2 m2 /s estimated from fast scanning probe measurements [65]. So while this

calculation demonstrates that observing a perturbation of the SOL from the FSP is

expected, the upper limit it gives to the diffusion coefficient is so far removed from the

expected value that the measurement is not particularly useful beyond calibrating the

reflectometer. Matthews [66] has performed similar experiments on DITE using two

probes rather than a probe and a reflectometer. He was able to make quite detailed

measurements of Di by measuring the two dimensional profile of the perturbation

caused by one probe. Unfortunately the current C-Mod arrangement provides no

spacial resolution in the poloidal direction, preventing similar measurements from

being performed here.

108



1.5

1.0

0.5

0.0
1.5

1.0

0.5

0.0

E 0
* oo40o

0.000

Lim. Rod.

0 000 0 0
0

0

0.010 0.020 0.030
Distance from LCFS (meters)

Figure 6-11: Density Measurements From FSP shot 950607029
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Another model for the probe and limiter measurements assumes that the SOL

is extremely turbulent. For the comparisons shown in Fig. 6-9, the electron density

measured by the two working langmuir probes on the end of the FSP were smoothed

and averaged. Figure 6-11 shows the densities measured by the probe looking towards

the limiter and looking towards the divertor. The noise on the data is quite apparent

and presumably represents fluctuations in the plasma density. A density profile that

is varying greatly in space will bias a reflectometer measurement to larger major

radius as shown in Fig. 6-12. If the limiter somehow damps the oscillations in the

plasma, the reflectometer will see what appears to be a very steep gradient at the

limiter radius. If the probe moving into the SOL does the same thing, it will allow

a reflectometer channel that previously saw only to the limiter radius to see deeper

into the plasma, in agreement with what we observe.

6.4 Comparison with Other Diagnostics

6.4.1 Typical Features Observed with the Reflectometer

Returning to shot 950609011, the profile generated using the inversion scheme de-

scribed earlier is shown in Fig. 6-13. There are a few common phenomena that are

worth mentioning that are apparent during this shot. First, the deuterium pellet

that is fired into the plasma at .75 seconds has very little effect on the region of the

plasma that the reflectometer is observing. The pellet apparently deposits little in

the plasma edge, while the plasma inventory increases greatly (as shown by the TCI

in Fig. 6-2). Second, when strong gas puffing is applied, the region between the LCFS

and the limiter can reach densities of 1020 m- 3 or more. The gas valve is controlled

by the hybrid computer, which compares the density measured by the TCI with a

preprogrammed density waveform. Typically, the gas puff is turned off after a pellet

as the central density exceeds the preprogrammed density. The closing of the gas

valve results in a dramatic decrease in the SOL density and quite often an H-mode.

When the gas puff is turned back on again, the high SOL density returns. Third, a
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Figure 6-12: Reflectometer View of a Turbulent Edge. If the
plasma edge is very turbulent a reflectometer channel
reflecting in this region will measure a shorter group
delay relative to a time averaged or spatially smoothed
profile.

shot that survives until current rampdown, often will exhibit a poloidal detachment.

In the shot in question, this occurs at 1.3 seconds. At this time the plasma current

is being ramped down and rather than being diverted it is limited on the inner wall.

The cold plasma outside the LCFS again can be quite dense (> 1.5 x 1020 m-3 ).

6.4.2 Sawtooth Observations

One check on the inversion routine is to compare where the reflectometer would posi-

tion various sawtooth phenomena to what the x-ray tomography and ECE diagnostics

observe. A sawtooth is a relaxation oscillation at the plasma center. The generally

accepted explanation for this oscillation is that the current density will tend to peak
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Figure 6-13: Density Profile Evolution for Shot 950609011.
Contour spacing is 1019 m- 3 from 1 to 15 xlO'9 .

on axis where the conductivity is the highest. However if the current density gets too

high the central plasma is unstable to resistive tearing modes. During the sawtooth

crash, plasma inside the inversion radius mixes with plasma just outside the inversion

radiush. The effect on the density profile is shown schematically in Fig. 6-14. The

effect on the temperature profile is similar except the heat pulse generally extends

diffusively out to the plasma edge. The inversion radius is pretty clearly observed

via either ECE or x-ray tomography. Here the value for the inversion radius is taken

from the x-ray diagnostics. The mixing radius is where the temperature and density

are promptly effected by the sawtooth crash. The mixing radius is not as clearly de-

fined as the figure suggests. After the sawtooth collapse, the profile gradually peaks

up again to the presawtooth shape. At larger radii the plasma sees a perturbation

appearing on a diffusive time scale.

'The inversion radius is widely believed to be at the q = 1 surface.
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Figure 6-14: Crude Sawtooth Model. The density and tempera-
ture profiles change in less than a millisecond from the
dashed profile to the solid profile. The thin lines show
how the profile may evolve back to the pre-sawtooth
profile during the 10's of milliseconds before the next
sawtooth.

Figure 6-15 shows sawtooth signals from the reflectometer and several of the GPC

channels. Channel 5 of the GPC shows a very rapid upward spike in the temperature

at the sawtooth crash. This channel is clearly looking in the region between the

inversion radius and the mixing radius. Channel 6 however has a more rounded

shape, putting it near or just inside the mixing radius. This places the mixing radius

somewhere between 0.75 and 0.78 meters major radius. Looking at the 110 GHz

reflectometer channel for this shot in the top plot in Fig. 6-15, three distinct sawtooth

responses can be seen as the plasma density is ramped up. Before 0.41 seconds the

group delay modulation from the sawteeth is too large for the reflectometer to follow.

Presumably, this corresponds to a presawtooth location for the critical layer inside

the inversion radius. From 0.41 to 0.52 seconds the reflectometer sees a very rapid

spike corresponding to a reduced group delay. Since the group delay is reduced, the

channel is looking outside the inversion radius. The very rapid response implies that

the critical layer is inside the mixing radius. The slower sawtooth response to the
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sawteeth after 0.53 seconds indicates the critical layer is outside of the mixing radius.

Comparing these observations with the inversion generated by the reflectometer

gives quite good agreement. At about 0.42 seconds the inversion radius is crossed by

the contour corresponding to 1.5 x 1020 m- or the 110 GHz channel.

6.4.3 Comparison with TCI and TS

Figure 6-16 shows profiles generated by the reflectometer, Thomson scattering, and

the two color interferometer for shot 950609011 again. The agreement between the

Thomson scattering and the reflectometer is rather good, though the two central

channels of the TS are inside the inversion radius, a region not measured by the

reflectometer. The interferometer on the other hand measures a much higher density

between 0.80 and 0.90 meters. While the interferometer profile inversion is hampered

by a shortage of information about the density at large minor radius, the chord

measurements at 0.76 and 0.78 meters in general indicate substantially larger densities

than those measured by the reflectometer. This effectively eliminates the possibility

of including the reflectometer and the TCI in a combined profile inversion. A source

for this problem has not yet been determined, though a likely explanation is plasma

unaccounted for outside the LCFS, particularly in the upper portions of the machine

where there are no probes present.

6.4.4 Thomson Scattering Calibration

One of the most powerful plasma diagnostics is incoherent Thomson scattering (see

§ 3.2.2). Thomson scattering can give local measurements of the electron temper-

ature and density, however it is also one of the most difficult to calibrate. Deter-

mining the electron temperature can be comparatively straightforward by observing

the linewidth of the scattered light. The electron density calibration is much harder

to determine because it depends on the absolute magnitude of the ratio of the scat-

tered over incident light. Any time alignment, transmission efficiency, or detection

efficiency changes, the diagnostic needs to be recalibrated. The standard calibration
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Sawtooth Mixing Radius shot 950609011 Channel 5
of the GPC shows a very rapid upward spike at the saw-
tooth crash, indicating that it is located inside the saw-
tooth mixing radius. Channel 6 shows a more rounded
sawtooth response, indicating it lies at or outside the
sawtooth mixing radius. (The position of the GPC chan-
nels is moving because the TF is ramping up.) The
reflectometer sawtooth response resembles channel 5 of
the GPC at 0.45 seconds and channel 6 at 0.55 seconds
indicating the cutoff is moving from inside to outside the
mixing radius.
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Figure 6-16: Comparison of TCI, TS, and Reflectometer. shot
950609011 The Thomson scattering diagnostic and the
reflectometer agree reasonably well during the shot,
however the interferometer gives a consistently higher
value at large R and a somewhat lower value in the cen-
ter.

technique involves backfilling the vacuum chamber with some gas (typically hydro-

gen or argon) and observing light from Raman or Rayleigh scattering. Typically the

vacuum chamber must be kept at a uniform temperature and a whole day is needed

to get the desired statistics. On C-Mod this can only be accomplished during an

extended (one month or more) maintenance period. The TS can be cross calibrated

with the density profiles generated by the reflectometer or the interferometer or by

observing the cutoff on the ECE for particularly high density shots. This of course

transfers whatever systematic errors are present in one diagnostic to the Thomson

scattering.

An alternate, and potentially very accurate, technique for calibrating at least the

central channel of the TS is to observe the transition from transmitting to reflection
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Thomson Scattering Calibration from Reflec-
tometer Cutoff. On the left are traces from the TCI,
TS and 110 GHz Reflectometer Channel for the entire
shot. On the right is a blown up view of each trace
during the initial density ramp as the reflectometer cuts
on. The TS measurement from the plasma center crosses
1.5 x 1020 m-3 as the reflectometer sees the cut off.

of a channel of the reflectometer. Figure 6-17 shows shot 950609011 agains. Shown

on the left are the the central channel of the interferometer and TS along with the

110 GHz channel of the reflectometer. On the right is a blowup of the same signals

near the time of the reflectometer is making the transition from looking through the

plasma (t=0 to 0.36 seconds) and reflecting off the plasma (t > 0.41 seconds.) During

this time, the density measured by the TS increases from 1.4 x 1020 to 1.65 x 1020 m 3.

If the plasma is assumed to be peaked on axis and a constant value over the central 2

cm that the TS scatters from, then the density must have equalled the critical density

for 110 GHz (1.5 x 1020 m-3) at some point during the period 0.36 < t < 0.41. Hence,

the reflectometer confirms the calibration of the central channel to - 10%. This is

not too impressive: however, on shots where the density ramp is slower, this number

This run day was the last of the spring 95 campaign so the TS could be calibrated in the days
immediately following the run.

117



can be reduced to - 5%, making this calibration technique potentially more accurate

than traditional scattering calibrations. It should be pointed out that this technique

only assumes that the plasma density has a maximum on axis, the plasma density is

relatively flat near the center, and the definition of the plasma frequency is accurate,

all rather safe bets.
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Chapter 7

Reflectometer Studies of H-modes

As was discussed in § 2.6 and § 3.3.4, an important topic in fusion research is un-

derstanding and controlling the characteristics of H-mode plasmas. The dominant

characteristic of these modes is the formation of a high gradient in density and tem-

perature at or near the LCFS. Reflectometry is particularly well suited to the study

of the evolution of this Steep Gradient Region (SGR). In this chapter, the transition

rate from an L-mode to an H-mode density profile and the width of the fluctuation

suppression region during C-Mod H-modes will be presented.

7.1 H-mode Characteristics

Figure 7-1 shows the raw data from a typical ICRF heated H-mode from the spring

of 1995. After 100 ms of application of 2 MW of ICRF power, the D, emission drops

dramatically at 0.82 seconds indicating a drop in particle recycling and a transition

from L to H mode. This is followed by a few ELMs and an ELM-free period to

0.85 seconds after which the ELMs start again and a return to L-mode at 0.885

seconds. During the ELM-free period the stored energy as measured by the magnetics

rises modestly from 90 to 115 kJ while the line integrated density rises much more

dramatically. However, showing the greatest change is the radiated power as measured
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Figure 7-1: Radiation Limited H-mode (shot 950602024) The L-
H transitions occur at the rapid drop in the D, emission
beginning at 0.82 seconds. The spikes in the D, emission
are type 3 ELMs. Note the rapid rise in the radiated
power measured by the "27r bolometer" during the ELM-
free periods.
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by the "27r bolometer"" indicating an accumulation of impurities. By the end of the

ELM-free period, the radiated power exceeds the applied RF power and approaches

the total input power (typically the ohmic power is 1 to 1.5 MW). This high radiated

power can not be sustained for long. ELMs starting at 0.85 reduce the radiated power,

presumably by pumping out impurities. This radiation limited behavior is typical of

operation during the spring '95 run period, with ELM-free periods during RF heating

lasting 20 ms or less. This is shorter than the energy confinement timeb. H-factors

(re/71TEs9-P) did not exceed 1.4 for any 5.3 tesla H-mode lasting on the order of an

energy confinement time.

7.1.1 Edge Temperature Threshold

There is a strong correlation between the temperature measured at the plasma edge

and the plasma state (L-mode, H-mode, or ELMy H-mode)c. Figure 7-2 shows the

outermost channel of the GPC positioned 2 cm inside the LCFS during the shot

discussed above. The sawtooth modulation of the edge temperature is evident. If a

sawtooth raises the edge temperature above 400 eV, the plasma enters an H-mode, and

below 320 eV the plasma returns to L-mode. Observing a GPC channel within a few

centimeters of the LCFS shows this pattern in general. However, the exact location

where the temperature needs to be a given value is still an area of research [67]. The

decline in the edge temperature during the H-mode is due to an increase in radiated

power (See Fig. 7-1). Note that the radiated power exceeds the input ICRF power

after 20 ms in H-mode, causing the edge to cool and drop below the threshold power.
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Figure 7-2: Edge Temperature Threshold shot 950602024. The
dashed vertical lines indicate L-H transitions. Note that
they are triggered by sawteeth and the temperature on
the GPC channel at 87 cm needs to exceed -400 eV for
plasma to be ELM-free and must stay above 320 eV to
remain in H-mode. Studies with the a GPC channel closer
to the separatrix give values closer to 100 to 150 eV [67]
as the threshold temperature near the LCFS.
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7.2 Electron Density Profile Evolution

Figure 7-3 shows the time evolution of the density profile during ICRF heating for

shot 950602024. Note that the density gradient at the LCFS increases dramatically

at the L-H transition. On the same time scale or slower, the density in the SOL

drops leading to a density gradientd on the order of 2 x 1022 m-4. The temperature

profile measured by the GPC during one percent BT scans also shows a steep gradient

located very close to the LCFS with a scale length on the order of 0.7 cm [68]. The

gradient during the ELMy period (ex. 0.865 seconds) is substantially less with the

greatest change being in the SOL density. At an H-L transition the SOL density

immediately increases while the profile inside the LCFS relaxes within 10 ms.

7.2.1 ICRF Loading

The loading to the ICRF antennas is strongly dependant on the SOL directly in

front of the antenna. The cutoff density for the fast ion cyclotron waves for the kl

spectra launched is - 7 x 1018 m- 3 (see § 3.3.2). This is well below the cutoff density

for the lowest frequency of the reflectometer (50 GHz, 3.1 x 109 m-3 ). The flux

tube viewed by the reflectometer does not map directly to the region in front of the

antennas and the antenna Faraday shield sits one centimeter behind the A-B limiter.

Nonetheless, the loading should be expected to correlate somewhat with the lowest

densities measured by the reflectometer. The drop in antenna loading during H-mode

appears to correlate more with the formation of a steep gradient at the LCFS than

the density near the limiter radius. This indicates that the SOL in front of the ICRF

'The 27r bolometer is a diode sensitive to X-ray and UV emission from the plasma. It does not
provide as accurate a measurement of the emission as the bolometer arrays, however it has the fast
time response needed for studying these rapidly changing plasmas.

'For shot 950602024 -r- = WMHD/(POhmi, + PR1') ~ 120 kJ/4 MW = 30 ms
'This section is included as edge temperature thresholds are key to understanding C-Mod H-

modes and the author contributed to its observation, though, of course the real credit belongs to
Hubbard and O'Shea (see references).

dThis value is at the limit of the reflectometer resolution, and the actual gradient may, in fact, be
greater than this. This resolution is in part determined by observing the profiles calculated by the
reflectometer during ELM free H-modes. On occasion, the group delay measurements will imply a
multivalued density (see for example Fig. 7-10). The "overhang" is never greater than 0.5 cm, hence
the assumed error bar.
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antennas is substantially different than the SOL in front of the reflectometer horns.

The sharp change in the density at the LCFS also contributes significantly to power

reflection, or the turbulence, which is higher when the gradient at the LCFS is lower,

increases transport to the region directly in front of the antenna (behind the poloidal

limiters and the antenna limiters).

The low loading values during ELM-free H-modes limit the power that can be

transmitted by the ICRH system. In addition, the sudden drops in loading at L-H

transitions trigger temporary transmitter shutdowns because they are indistinguish-

able from arcs in the ICRF transmission lines or antennas. To ameliorate the dele-

terious effects of the drop in antenna loading at the L-H transition, radial position

feedback on the ICRF loading was implemented beginning in November '95. The

outer gap (the gap between the LCFS and the limiter) is controlled by the hybrid-

computer (see page 42). Experimentally, the outer gap should be 1 to 2 cm to switch

from L to H-mode. After the H-mode commences, this can be reduced to as little

as 0.5 cm'. This motion is not enough to keep the loading at the L-mode level, but

it is sufficient to keep the ICRF from tripping out [70]. Because of this motion, the

density profile changes in the SOL are much less distinct after the implementation of

radial position feedback.

7.2.2 Profile Transition Time Scale

The density rise inside the LCFS can be extremely fast. The transition at 0.97 seconds

in Fig. 7-3 is an example of a fast transition with no ELMs. The density profile as

measured by the reflectometer changes from an L to an H-mode profile in less than

0.5 milliseconds. Two possible issues present themselves. First, is the density profile

monotonically decreasing as one travels from the plasma center to the edge? The 110

GHz channel may be reflecting off of a local maximum near the LCFS. Second, the

the 110 GHz channel reflecting off of the SGR rather than the actual cutoff further

'Based on correlations with the divertor probes, during L-mode, EFIT calculates the LCFS
contour to within a few millimeters, however during H-mode the limitations of the EFIT current
model may increase this error to as much as a centimeter [69], so while the gap may be 0.5 cm
according to EFIT, the actual gap may be closer to 1 cm.

125



in the plasma.

To determine if the density profile is monotonic, an approach is to compare the rise

in the line integrated density to the increased inventory required to fill in the shaded

region in Fig. 7-4. One question is whether the density profile is hollow in the region

inside the SGR during the initial phase of the H-mode. The TCI indicates a very rapid

rise in the line integrated density during the initial portion of the H-mode on shot

950602024 (see Fig. 7-1). However, for this shot the SOL density is also very high.

Figure 7-5 shows a cross section of a similar plasma with the TCI chords overlaid.

Note that all the TCI cords have long paths passing through the SOL (demarked by

dashed contours) both above and below the main plasma. Also the density at the

pivot pointf is 1020 m-3 , so the density rise inside the LCFS that can be documented

by the reflectometer is actually less than the drop in density outside the LCFS. As a

result, the density rise inside the LCFS during the initial portion of the H-mode for

shot 950602024 can be accounted for by a drop in the plasma inventory in the SOL.

Shot 950602028 is a lower density shot with virtually the same magnetic configura-

tion as shot 950602024 and displaying the same radiation limited H-mode phenomena.

Because the SOL density is lower on this shot, the interferometer can provide more in-

formation about the density rise inside the LCFS. Figure 7-4 shows the profile change

between L and H-mode. The 110 GHz channel moves to its H-mode position 4 ms

after the H-mode commences. During this time the interferometer channels one and

four see a line integrated density rise of 4 x 10 8m-2 . Figure 7-5 shows how the reflec-

tometer profile can be used to predict the interferometer measurements. Assuming

a piecewise linear profile divided into 32 levels and assuming density is constant on

a flux surface, a pathlength matrix can be constructed such that [nl] = [path length

matrix]- [n]. Rows from the path length matrix for channels one and four are plot-

ted in the upper left hand corner of Fig 7-5. Below that is the measured change in

density predicted by the reflectometer assuming the density profile is not hollow. For

r/a greater than 1.1, the reflectometer has no measurement, however for low density

fThe pivot point it the location where the density remains constant during the L-H transition.
This is typically very close to the LCFS. Outside the pivot point the density drops and inside the
pivot point the density rises.
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shots such as 950602028, the density outside the LCFS is expected to be small. The

plot in the lower left corner shows the expected change in the line integrated density

compared to the measured change. Based on these measurements the shaded region

is not fully filled in at this time, 4 ms after the H-mode begins. This is however not

unexpected. The plasma source is either neutrals in the main chamber being ionized

in the plasma edge or plasma from the divertor and SOL being transported into the

main plasma via some anomalous pinch. The second source is at the edge with some

presumably narrow width dictated by edge transport issues. The neutrals entering

the plasma will also be ionized near the LCFS9. The time scale discussed here is short

relative to the 20 ms [71] particle confinement time for an L-mode plasma, so a local

maximum near the LCFS might be expected.

Unfortunately the errors on the above calculations are large. The three largest

sources of error are: the absolute calibration and inversion of the reflectometer (±2.5

mm in critical layer location), effective TCI chord location (±1 cm radially), and the

density outside the limiter radius. The upper plot in Fig. 7-6 shows the change in

density for a non monotonic profile (solid line). The dashed line is given by assuming

that the L-mode reflectometer measured profile is displaced inward relative to the

real profile and that the density outside the limiter radius is 0.15 x 1020 m 3 ,or half

of the cutoff density for the lowest reflectometer frequency. During the H-mode the

density outside the limiter radius is assumed to go to zero. This will give a lower

bound on the change in the interferometer measurements required keep the H-mode

profile monotonic. This is the lower line plotted in the lower curve. The starred line

is the measured change in line integrated density and the upper curve is the measure-

ments expected with the measured reflectometer profile with the density outside the

limiter radius remaining constant during the L-H transition. Unfortunately, without

a point density measurement, the errors in the reflectometer and the interferometer

measurements due primarily to plasma outside the limiter radius.

gFor a 100 eV plasma the electron impact ionization and charge exchange reaction rates are 3
and 3.75 x 10-cm3 /s respectively. Assuming an electron density of 1014 cm-3 and that the neutral
deuterium atoms have the Frank-Condon energy of 3 eV, the neutrals will travel 0.25 cm before
either ionizing or charge exchanging. Including multiple charge exchange events broadens the source
somewhat, but it is still limited to 1.5 cm from the plasma edge.
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7.3 Fluctuation Suppression During H-mode

As was discussed in § 2.6, the anomalous transport of particles and energy in tokamak

plasmas is believed to be due to microinstabilities driven by gradients in constituent

temperature and/or density. The nature of these instabilities is poorly diagnosed

and hence poorly understood. During an H-mode, a transport barrier forms near the

LCFS. On other tokamaks, very high rotation velocities have been measured near

the LCFS, leading to the hypothesis that a radially sheared velocity profile near the

LCFS suppresses the microinstabilities or decorrelates them sufficiently to allow a

large pressure gradient to form. The reflectometer is an excellent qualitative tool for

studying this fluctuation suppression region or FSR because of its high sensitivity to

fluctuations and good radial spatial resolution.
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Figure 7-7: Model of Scattering from a Rotating Mode. The
figure on the left shows a Doppler wheel as used in a
heterodyne interferometer. A mode rotating in a plasma
can give the same upsift in a reflectometer.

7.3.1 Note on Fluctuation Measurements

The study of plasma fluctuations via reflectometry is not straightforward and was not

intended to be the main focus of this thesis. Unlike collective Thomson scattering

or magnetic diagnostics, the frequency and amplitude of the returned phase does not

directly correlate with the motion of the plasma. The first issue is plasma rotation.

A good analogy is the Doppler wheel often used in heterodyne interferometry [38, 72]

(see Fig. 7-7). The upshifted frequency is:

1 + -sinO
f' =f X C

wr
- sin 0'

The angle and power of the upshifted beam is determined by the line spacing on

the wheel and the blaze of the grating. A plasma has perturbations that travel on

a flux surface in just such a fashion. A rotating metallic drum with some dents can

easily produce the Doppler wheel effect in a reflectometer mockup. (Without the

dents no Doppler shift is seen.) Nazikian [73] demonstrated this effect on TFTR.

Continuing the analogy, the blaze and the spacing of the waves in a tokamak plasma

are not givens, but the quantities one would hope to infer. Note that as a result
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the frequency spectra seen by a reflectometer may not be the same as seen by other

diagnostics such as magnetics. A further complication is the sensitivity to a given

6n/n is higher as n approaches n,, so the slope of the profile near the cutoff can

greatly affect the sensitivity to fluctuations. This is particularly an issue for studying

fluctuation levels during L-H transitions when the gradients vary greatly.

In addition there are several problems unique to the C-Mod system. The intention

of the differential phase arrangement is to reduce the effects of fluctuations on the

group delay measurement. Fluctuations that appear coherently on both side bands

are largely subtracted out. The incoherent portions are not. This effectively amplifies

fading and power reflected from the edges of the beam pattern over the fluctuations

directly in front of the horn. In addition, the limiting amps that are required to

make reliable phase measurements of the beat wave, will produce harmonics of any

fluctuation signals. With these caveats, the reflectometer typically sees a rather

featureless fluctuation spectra with a slow decay out to the filter cutoff frequency of

416 kHz. The amplitude of the fluctuations does change dramatically depending on

the plasma state.

7.3.2 Rate of Fluctuation Suppression at L-H Transition

Figure 7-8 shows the suppression of fluctuations at an L-H transition. The diagnostic

that shows the transition first in low density plasmas is the magnetics on the inner wall

(second plot from the bottom). At 0.908625 seconds the fluctuations are suppressed.

On the reflectometer (third plot from the bottom), the transition is less clear, but

has certainly occurred by 0.90865 seconds. Also, the average phase of the returned

wave remains at the L-mode position for 50 ps after the fluctuation level has dropped.

This implies that the profile near the reflecting layer has not changed. So while some

of the observed drop in the fluctuations during an H-mode seen by the reflectometer

can be attributed to an increase in the gradient near the reflecting layer reducing the

reflectometer sensitivity to some Sn/n, the amplitude of the fluctuations also drops.
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7.3.3 Transport Barrier Width

The fluctuation level as observed by the reflectometer drops dramatically during most

H-modes. Figure 7-8 shows how the fluctuations drop quickly for a channel cut off

near the LCFS in the L-mode phase prior to the H-mode. However, the drop in

fluctuations is limited to a region near the LCFS. Figure 7-9 shows shot 950602024

again'. The main chamber and one channel from the divertor D, array are shown in

the top two plots. The divertor D, channel views the region near the inner nose of

the divertor. The D,, views elsewhere drop coincident with the L-H transition. Only

after the divertor D, emission and the SOL layer density drops does the fluctuation

level on the 75 GHz channel drop.

The FSR appears to be limited on the outside to 0.5 cm of the LCFS. The extent

of the FSR into the main plasma is more difficult to measure with reflectometry. For

virtually all ELM-free H-modes, all 5 channels of the reflectometer are reflected in

the SGR or at larger major radius within 500 ps of the transition. However for very

low initial density H-modes, the change in the electron density profile is slow enough

to allow for a brief study of the fluctuation level inside the main plasma after the H-

mode commences. Shot 950602019 was the lowest density shot to achieve ELM-free

H-modes on this day'. Figure 7-10 shows the first 1.5 ms of an H-mode during this

shot. At 0.8614 seconds, the fluctuation level measured by the magnetics on the inner

wall drops and is followed shortly by a drop in the D, emission (see lower two plots).

The phase signal measured with a 400 kHz bandwidth is shown in the middle trace.

Notice that the fluctuation level drops dramatically at 0.86205 seconds, 650 ps after

the start of the H-mode. The power in the band from 100 kHz to 400 kHz integrated

over 128 ps is displayed above the raw phase data. For at least the initial 300 ps of

the H-mode, the fluctuation level does not change significantly and the average phase

stays constant. The fluctuation level increases at 0.8618 seconds as the cutoff moves

hIt should be pointed out that this shot has a rather high lower triangularity (same shape as
shown in Fig. 7-5) and a slot divertor, however the fluctuation phenomena are not unique to this
magnetic configuration.

At lower densities Z-effective is higher, so more power is radiated. This shot stays in H-mode
for only 5 ms before returning to L-mode due to radiative energy losses.
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from the L-mode to the H-mode position. This is to be expected as the profile near

the cutoff is flatter or nonmonotonic during this period

The profiles both before and after the L-H transition are shown in the top figure.

The 88 GHz cutoff density is shown with the horizontal dashed line. The cutoff

location moves from 0.874 to 0.892 meters between 0.8618 and 0.8621 seconds. For

at least the first 300 ps the FSR extends less than 1.8 cm inside the LCFS.

With an 0-mode reflectometer, this approach of measuring the FSR width is

very limited. A channel cutoff inside the plasma before the L-H transition gener-

ally changes to being cutoff in the SGR some time after the L-H transition with a

discontinuous jump. With the planned divertor cryo-pump, the density rise during

ELM-free H-modes may be controlled sufficiently to keep the density in the SGR be-

low the critical density of the highest reflectometer channel. An X-mode reflectometer

using the RHC on a machine where w,/wc < 1 would have more success with this

measurement as the location of the cutoff is not as dependent on the density profile.

7.4 Enhanced D, H-modes

7.4.1 Post-Boronization

In January of 1996, the machine walls were "boronized" [74, 75] (coated with boron

via plasma deposition). This greatly reduced the rate of high Z impurity accumulation

in H-mode plasmas and allowed H-factors of 2.5 to be reached in ELM-free plasmas.

Figure 7-11 shows a "trophy" shot from an impurity confinement study during this

period. The rise in the radiated power beginning at 0.7 seconds is due to an intentional

impurity injection (scandium). This shot demonstrates a very long confinement time

for impurities in ELM-free plasmas ~ 1 second [76]. After 0.86 seconds the D" light

iThe H-mode profile between the 88 and 110 GHz cutoffs is shown as a dashed line because
during this transient phase, there may be far more structure in the profile than the reflectometer
can resolve. The group delay for the 110 GHz channel actually increases during the H-mode. However
on the 1 ms time scale, the profile at 0.83 meters (r/a = 0.7) probably does not change. The profile
reconstruction routine, however, does not take this into account. The actual profile is expected to
be somewhat higher than shown in the few cm inside the LCFS and closer to the L-mode level near
0.84 meters.
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rises and the radiation measured by the bolometer decays. Impurity confinement

drops to - 0.1 second [76] and the stored energy increases modestly. Very occasional

isolated ELMs have been observed during the period of elevated D, emission, but

none that have the periodicity of type three ELMs often seen during ohmic H-modes,

nor do they have a significant effect on the stored energy that one would expect from

type 1 ELMs. One possibility is that the emission we see is due to "grassy" ELMsk

that are too fast for the C-Mod diagnostics to observe or the response time of the

C-Mod SOL is long compared to the ELM period. Magnetic fluctuations are often

seen during these Enhanced D, (EDA)' H-modes [77] at typically 65 kHz, however

they saturate in amplitude rather than showing the exponential growth characteristic

of ELM precursors.

Since boronizing the machine walls, such EDA H-modes have become quite com-

mon. They present a very promising mode of operation for future fusion reactors as

their energy confinement time is quite high (H-factor - 2) yet the particle confine-

ment is greatly reduced from that of an ELM-free H-mode (see § 2.6.3). These are

effectively steady state H-modes with their duration dictated by operational issues,

in contrast to the H-modes from the spring '95 run whose duration were limited by

high radiated power due to impurity accumulation.

The reflectometer was handicapped during this run period due to two problems.

The first was a failure of a mixer in the 110 GHz system. The second was a change in

the interaction between the SOL and the limiter radius. In general, the steep gradient

previously seen at the limiter radius was not observed after boronization, except

during strong impurity puffing. The assumption is that the higher edge temperatures

seen after boronizing resulted in a narrower SOL. As a result the calibration technique

presented in § 6.3 was in general not available. However, shot 960214030 provides

a an opportunity to compare uncallibrated data from an ELM free H-mode and an

kGrassy ELMs have been observed to have many of the same qualities as the EDA H-modes in
that they reduce particle confinement without reducing the energy confinement greatly.

'The name for this type of plasma has changed with each conference in the last year. They
have also been called as Enhanced Recycling H-modes or High Recycling H-modes. The publication
of this thesis with the Enhanced D, name and EDA acronym should end any controversy on this
subject.
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EDA H-mode. Figure 7-12 displays the 60 to 88 GHz channels for this shot. Notice

that after the H-mode commences at 0.61 seconds, there is very little variation in the

group delay even when the plasma enters the EDA phase at .87 seconds. In addition,

the loading on the antennas does not change significantly, also indicating that the

decay lengths in the SOL are not changing dramatically. The position feedback on

the loading is on at this time which will tend to stabilize the loading, however the

position of the LCFS changes only 2 millimeters during this period. The pedestal

height for this shot is on the order of 3 x 1020 m3 , so these measurements only indicate

that the SOL and the lower third of the SGR are still in an H-mode state in an EDA

H-mode.

During EDA H-modes, the fluctuation level observed by the reflectometer increases

dramatically (see Fig. 7-13). The frequency spectrum of the observed fluctuations is

quite broad out to 400 kHz (the cutoff frequency of the anti-aliasing filter). There

is a broad peak typically between 100 and 150 kHz. During EDA H-modes is one

of the few occasions when the fluctuations observed by the reflectometer show any

significant features. This peak has only been observed during EDA H-modes and all

occasions when the fast sampling window is positioned during an EDA H-mode, a

peak in the spectra has been observed. Comparisons between the reflectometer and

the magnetics have not shown any significant correlation [78]. The frequency of the

peak in the spectra is on occasion modulated by the sawteeth as shown in Fig. 7-14.
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the different time base.)
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Figure 7-14: EDA H-mode Fluctuation Frequency modulated
by Sawteeth. In this contour plot of the amplitude of
the Fourier transform of the fast signal from the 88 GHz
channel, the modulation of the peak frequency can be
seen. The spikes in the edge ECE signal at 0.02 second
intervals are instrumental.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

Multi-channel, differential phase reflectometry can provide very accurate electron

density profiles with, depending on plasma conditions, fraction of a millisecond time

response. However, calibration remains a significant challenge due presumably to

multiple reflections in the vacuum chamber before and after a plasma. By calibrating

the reflectometer channels via observed features in the density profile, profile recon-

structions with accuracy of approximately 0.5 cm have been obtained that agree well

with many diagnostics, though not with the TCL It is believed that the discrepancy

between the reflectometer and the TCI can be at least in part attributed to inade-

quately modeled high density plasma outside the LCFS. Fluctuation measurements

with a differential phase reflectometer, though qualitatively useful, are not well suited

to quantitative fluctuation measurements. However, as will be shown in the following

section, some comparatively simple additions to the basic DP receiver will allow for

fluctuation studies using individual sidebands. A comparison of the capabilities of

the three main electron density diagnostics is presented in table 8.1.

Density profiles during many phases of C-Mode plasma operation have been mea-

sured using the differential phase reflectometer. L-H transitions have proven particu-

larly interesting with density gradients of 2 x 1022 m-4 measured 0.5 ms after an L-H

transition. This rapid rise in plasma inventory is in rough agreement with measure-
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Table 8.1: Electron Density Diagnostic Comparison (for 1995
run)

ments from the TCI, however for brief periods after the L-H transition a locally hollow

density profile probably exists. At the L-H transition the fluctuation level measured

by the reflectometer drops dramatically for channels reflecting in a 1 cm the region

extending from the LCFS inward. The rapid density rise inside the LCFS following

the L-H transition prevents one from making these fluctuation measurements after

the first few milliseconds of the H-mode.
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Interferometry Thomson Reflectometry
Scattering

Profile moderate excellent good
reconstruction

Component good moderate good
durability

Usefulness for excellent bad bad
feedback control

Ease of analysis excellent good poor
and availability (could be good)
of data

Cost moderate very high moderate to high
to high

Dynamic range good excellent poor

Maintenance high very high high (could be low)

Ease of excellent poor poor
calibration (could be high)

Time response excellent poor excellent

Edge profile poor moderate good
diagnosis (could be excellent) (could be excellent)

Fluctuation moderate very poor good
diagnosis (good central

poor edge)



8.2 Future Reflectometry Work

The success of this thesis and the need for more detailed knowledge of the electron

density profile in C-Mod warrant an aggressive approach to further reflectometry

developmenta. However, the current funding and manpower shortages on the C-Mod

experiment place a limit on what experiments can be done. The following actions are

recommended, assuming the current staffing arrangementb and the continued interest

in studies of enhanced confinement modes of operation.

8.2.1 Reliability Improvement and Maintenance Reduction

The reflectometer was developed as an experimental diagnostic and as a graduate

student thesis project. As might be expected some aspects bear the shortcomings of an

initially less than polished design and many late night modifications. The wiring and

hardware are currently being streamlined by a graduate student and a staff engineer.

In addition to general straightening up of the experimental rack several upgrades are

needed. The Gunn oscillators should be stabilized such that their IF drifts less than

1 MHz. This will reduce the need to tune the system in the morning before each

run day and is essential for the instrumentation described in § 8.2.6 for fluctuation

diagnosis. The mica vacuum windows should be replaced with a more rugged design.

Quite probably a simple glass window will suffice though the transmission needs to be

tested. At the same time, an improved technique should be developed for installing

and removing the waveguides from the narrow reentrant vacuum port. In addition,

all other experiments using triggers from the reflectometer CAMAC crate should

receive their trigger through a fiber rather than direct cable connection to reduce the

possibility of damage to sensitive equipment due to ground loops.

The analysis software can benefit from similar attention. In particular, data re-

duction and profile inversion requires far more operator input in fringe jump detection

aThis section is intended not only as a the author's suggestion of how to develop refiectometry,
but also as a memo to the C-Mod scientific staff regarding what work is needed for the diagnostic's
continued use on C-Mod.

'A single graduate student working under the guidance of a staff scientist with occasional help
from the engineering and technical staff

147



than it should. The author will attempt the software upgrades some time after this

thesis is complete to simplify this process. Also, dropping the upconversion frequency

from 500 to 350 MHz could significantly simplify the the fringe jump correction rou-

tine. This upgrade is also needed for following PEP mode profile evolution.

8.2.2 Calibration and Profile Reconstruction

Probably the biggest issue with the current system is the difficulty in calibrating

the diagnostic. A movable calibration plate mounted on a rod such that it can be

moved radially should do much to alleviate this problem. Figure 8-1 is a sketch of

the proposed calibration assembly. Also, installing absorbing structures on both sides

of A-port would reduce the multiple reflections that are assumed to be the cause of

calibration difficulties. These upgrades should allow improvement in the reliability

and accuracy of the diagnostic. However, obtaining scale length measurements on

the order of 1 mm as is desired for studying balooning mode stability limits during

H-modes, for example, is probably beyond the capabilities of the diagnostic as cur-

rently configured. Resolution of that range will require greater care with respect to

amplitude to phase modulation, the beam patterns of the launching horns, and the

ray tracing of the launched waves.

8.2.3 Cross Calibration Profile

As has been stated before, the other density diagnostics also have serious shortcomings

and strengths. The Thomson scattering diagnostic in particular is difficult to keep

calibrated between shutdowns. However, TS is the only diagnostic with the potential

resolution and dynamic range currently requested. Standard C-Mod operation calls

for one or two "fiducial" shots per run day. These have a standard set of control

inputs and are intended to monitor the day-to-day condition of the machine walls by

monitoring impurity levels, radiated power fraction, and L to H transition thresholds.

A similar fiducial for diagnostic cross calibration would also be useful. In particular,

a slow ramp in the electron inventory through a central density of 1.5 x 1020 m-
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Figure 8-1: Proposed Calibration Paddle

would allow for an accurate cross calibration between the Thomson scattering and

the reflectometer. This should be performed in L-mode at low to modest current to

ensure that the density profile is peaked on axis and that the sawteeth are small. The

ramp in density must be slow enough to allow for sufficient laser pulses to minimize

the random error in the Thomson scattering measurement due to photon statistics.

It is expected that a diagnostic fiducial can either be incorporated into the current

fiducial shot or be performed on a weekly or bi-weekly basis so as not to overburden

the run schedule.

In addition, there exists a significant gap in the reflectometer density coverage

between 0.95 and 1.5 x 10 2 0 m-3 (88 and 110 GHz) that compromises the profile

inversion of the reflectometer. For this calibration scheme to be accurate to 5%, at

least one more frequency is needed. This can be accomplished by adding a complete

channel (both millimeter and rf components) at 100 GHz or by applying the technique

suggested in § 8.2.5. Either of these will require substantial funds (- $10,000 to

$20,000), however, a robust TS calibration technique is well worth this expense.
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8.2.4 X-Mode Polarization

The least expensive option to extend the density range of the reflectometer is to rotate

the polarization to X-mode and study the group delay to the LHC. This approach will

allow for access central densities of 4.5 x 10 20m- 3 at 7.9 tesla using the frequencies we

currently have available (see Fig. 4-7). This should be particularly interesting for PEP

mode studies. For 5.3 tesla H-modes, pedestal heights up to 2.3 x 1020 m-3 can be

studied (see Fig. 4-5). This is a 50% increase over current capabilities and will allow

the diagnostic to see beyond the SGR for some H-mode shots. However, pedestal

heights of 3.5 x 1020 m-3 have been measured by ECE cutoff, so for many if not most

H-modes the problem of only being able to probe to the SGR will probably continue.

In addition, there are some complications that need to be addressed. First, along the

way to the X-mode cutoff, the beam will have to pass the 0-mode cutoff. Because

the 0-mode cutoff comes first, signal reflected from this cutoff has the potential to

corrupt the group delay measurements far more than the X-mode cutoff can corrupt

our current 0-mode measurements. The current horns do not allow for adjustment

of the launch angle to match the field pitch at the plasma boundary. A set of scalar

horns would allow for this rotation based on the expected current and toroidal field

for the day's experiments. Getting the polarization correct for all shots during a run

will probably be impossible. However, it may be possible to estimate the fraction

of the power going into each mode by observing the cutoffs during the plasma ramp

up and ramp down. Second, the group delay will be considerably more than with

the current 0-mode system. This will probably necessitate reducing the modulation

frequency by as much as a factor of four. Third, there is the issue of what the

highest useable frequency is. As shown in Fig. 4-6, even a small electron density

behind the limiter can cause significant separation between the upper cutoff and the

upper hybrid resonance. This prevents access to the left hand cutoff at 5.3 tesla for

frequencies above 90 GHz. Lastly, it should be pointed out that unlike the right hand

wave, the left hand wave is more sensitive to hollow profiles than the O-mode. This

cNote that toroidal field ripple is significant at the horn location dropping the B-field by 10
percent over a 1/R dependance.
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can be seen by looking at figure 4-5. (Moving from right to left, the LHC X-mode

curves slope up while the RHC X-mode curves slope down.) The location of the

cutoff layer is the intersection of the plasma density profile with the curves shown. So

while rotating the polarization will improve the dynamic range of the reflectometer,

given the flat to hollow profiles it will not change the reflectometer into a core density

diagnostic.

8.2.5 More Sophisticated Modulation Techniques

There are many modulation techniques that one can envision. Several groups (????)

have been developing pulsed reflectometry techniques. With the millimeter wave

hardware in hand at present, such techniques should be simple to implement. Another

option that may prove useful is putting multiple modulation signals in the upconvertor

as shown in Fig. 8-2. By using two or more upconversion frequencies, multiple group

delay measurements can be derived from one set of millimeter wave components.

This could be especially useful for an LHC X-mode diagnostic where the separation

in critical density between oscillator frequencies is greater than in O-mode. The

upconversion frequencies shown are arbitrarily chosen, and again for LHC X-mode

the 1 GHz IF should probably be reduced to 250 MHz. The input power to the

upconvertor is limited and the upconversion efficiency drops as the power is reduced,

so the number of upconversion frequencies will be limited. Multiple data points could

be achieved via a swept or multiplexed upconversion signal.

8.2.6 Fluctuation Diagnostics

So far the reflectometer has been used primarily as a density profile diagnostic and

studies of fluctuations have been limited to very qualitative ones. For comparisons

with reflectometers elsewhere and to measure Doppler shifts due to plasma rotation, a

single sideband of a reflectometer channel should be studied independently. Figure 8-3

shows the modifications needed to the current reflectometer to observe one sideband.

The rotation of perturbations in the density near the critical layer will Doppler shift
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Figure 8-2: Multiple Upconversion Frequency Concept. By us-
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measurements chan be performed with a single millimeter
wave transmitter and receiver.
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the returned signal. This will give a crude measure of the plasma rotation velocity.

In no way should such a measurement alleviate the need for spectroscopic rotation

measurements during H and PEP mode studies. However, the time response for the

reflectometer for such measurements can be on the order of tens of microseconds, so

such a rotation measurement may provide some insight into the sequence of events

during L to H transitions for example. Placing a receiving horn well off the midplane

will improve the sensitivity to rotation. PEP mode studies at 7.9 tesla using X-mode

polarization should prove particularly interesting as the 110 GHz channel will be able

to reach the region where the internal confinement barrier is expected to be.

A key interest of turbulence modelers is the correlation length of the fluctuations

that drive turbulence. The multiple upconversion concept sketched in Fig. 8-2 lends

itself well to measuring this. By correlating the sidebands from multiple modulation

frequencies, the correlation length can be mapped out provided the density gradient

is also measured. All of these investigations will require developing an improved

raytracing code or application of a two or three dimension full wave code such as the

one developed by Irby [79]. Lenses to focus the launched and returned beam may also

be needed to improve k resolution. The effect of modifying the launching antennas

should be investigated using the codes described above.

8.3 More Ambitious Upgrades

8.3.1 ICRF Loading Studies

Another potential application of reflectometry on C-Mod would be the study of the

plasma directly in front of the ICRF antennas. In O-mode, frequencies of interest

would be 10 to 30 GHz. These frequencies can be transmitted via coaxial cable, so

a complicated waveguide run could be avoided and access could be provided via a

vertical port. There is enough room to fit a microstrip patch antenna on the wall

between the two pairs of two strap antennas. Here reflections from the edges of the

ICRF antennas is probably inevitable, however, by eliminating the nonlinear gain
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amplifiers in the DP receiver, these extra reflections can be zeroed out at the phase

detector.

8.3.2 Eliminating Limiter Effects

While the limiter has proven useful for calibration, it greatly modifies the SOL. To

eliminate this problem making the reflectometer measurements more useful for di-

vertor modelers, the horns could be positioned off of the midplane either below or

above the limiter. This will eliminate the symmetry provided by midplane launch

and will necessitate a flux mapping provided by EFIT to interpret the data. On

the other hand, moving the launching horns to an off axis location will improve the

profile reconstruction accuracy with respect to flux surfaces, as there is considerable

flux expansion as one moves away from the midplane.

Moving the limiter is also a possibility. Plans for the tangentially viewing inter-

ferometer call for at least part of the limiter to be removed. Moving the horns to

another port is extremely unlikely due to the limited diagnostic space available.

8.3.3 Higher Frequencies

A severe limitation to the current diagnostic is operating frequency. The frequencies

available limit measurements to 1.5 x 10 2 0 m-3 while current high recycling H-Modes

now have densities as high as 3.5 x 10 20m- 3 within a few centimeters of the LCFS.

At 5.3 Tesla, cyclotron absorption greatly limits operation from 115 to 125 GHz.

The next window, from 125 to 220 GHz would allow the study of densities from

1.9 x 1020 to 6 x 1020 m-3 . Millimeter wave equipment becomes quite expensive

over 110 GHz, but the work demonstrated in this thesis and elsewhere [48} provided

sufficient confidence that either an O-mode system for frequencies above 125 GHz or

an X-mode system from 170 to 230 GHz will work. Such a project may be well suited

for collaborations perhaps performed under an SBIR.

The other option is to arrange for high field launch to the LHC. The millimeter

wave equipment for such a reflectometer is already available in the current O-mode
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system. The thin inner wall protection tiles (~ 1.5 cm thick) make the threading of

transmitting and receiving lines to the midplane on the inner wall a daunting task,

not to mention developing antennas.

8.4 Future H-Mode Work

It is not altogether clear what the long range goals for C-Mod should be with respect

to H-mode development. C-Mod has already contributed greatly to the scaling of L

to H transitions. With the boronization of the vacuum chamber, H factors in excess

of 2.5 have been achieved which is comparable to the values achieved elsewhere in

ELM-free H-Mode. To continue improving the H-factor, VH-modes will probably be

needed. To get VH-modes some method of off axis current drive will be needed. The

planned four strap ICRF antenna will provide this capability.

Controlling the density rise during ELM-free H-modes is another issue. Divertor

pumping may help in achieving lower density EF H-modes. Currently a prototype

divertor cryopump is in place and ready for testing during the spring 1997 run cam-

paign.

From the point of view of understanding H-mode physics, several diagnostics are

needed. Currently, the plasma current profile and the edge toroidal and poloidal

rotation are not measured. The diagnostic neutral beam should help in determining

all of these quantities. In addition, the views for the current UV spectrograph [81]

are being modified to look for doppler shifts due to plasma rotation. If these efforts

prove successful, Doyle [62, 82] has demonstrated that with good poloidal rotation

measurements and high shear in the rotation velocity, quite good spatial resolution

can be inferred from collective scattering diagnostics. Stated another way, without

good knowledge of the plasma rotation velocity all frequency measurements have an

error bar corresponding to k -ve which can be far in excess of the natural frequency

spread in the fluctuations, making the measurement quantitatively useless.
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Appendix A

DP Measurement of a Linear

Profile

For a linear profile as shown above we can get a simple expression for the phase

measured with a differential phase reflectometer.

3r for r > 0,

0 for r < 0.

F 2
n,(F) =

For r > 0 the index of refraction, N, is given by:

n (r)
n' (F)

O3a
2 r )

I
2

(A.1)

In the WKB limit we get the following with the -7r/2 correction at reflection:

() (F) 27rN F, r) -r 27r
O(F) =2 2 lr(Frdx 2 +2-

_47rF

C

(A.2)

y-
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Figure A-1: Linear Profile

Now substitute: U 10- and integrate:

4-irF
C

y - f u du

Now let's look at a two frequency system.

AF
F1 =Fo+ 2 ,

F AF)

47r(Fo + ") 2(Fo + )2] 47r(Fo
2 y + 32a

= A y 2[(F0 + A)33_ (Fo - )3]47rAFy +-42 23J 3 _Q
C C30

(A.5)
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Now make the approximation F0 > AF:

AF 3 _ (F AF) 3  2AP3Fo+2 - 0- 3FF2 2 4 (A.6)
; 3AFF 2

Substituting in gives the rather simple result:

47r
A (Fo, AF) = -AF [y + 2Rc(F)j

r F 2  (A.7)
= -AF y+2-

C 1 0

A couple of interesting features of this result are: first, the phase measurement

is proportional to the modulation frequency. One can unfortunately gain no more

information about a linear density profile by changing the modulation frequency. In

addition, since the largest contributions to the group delay for most expected profiles

are the location of the reflecting layer and the slope in the region near that reflecting

layer, under most conditions no great improvement in profile reconstruction can be

expected by using multiple modulation frequencies.

Second, the ultimate resolution of a reflectometer will be the absolute error in

the phase measurement. The amplitude to phase modulation specifications can be

relaxed by increasing the modulation frequency. For example, the phase error over

the dynamic range of the limiting amps used in the C-Mod reflectometer is ±2.5 deg.

In order to obtain ±2 mm resolution one needs a modulation frequency of I Ghz.

Third, this simple result points to a second approach to profile inversion. By

assuming the profile is piecewise linear and monotonic one can construct a matrix

equation relating R as a function of n. This approach has the added advantage of

providing a method of including errors, point measurements, and constraints in the

inversion. Figure A-3 shows how a profile might be linearized. The following tour de

force of LaTex will show what should be obvious, that the group delay measured by

each reflectometer channel can be put into a form <bi = E ayxj.
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where Oji is the contribution to the phase of the beat wave from each linear section

and,

C

=

(A.11)
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Writing Oji explicitly gives:

4
7r f+* Ni+(x)dx - ' fj ' N_(x)dx

4ir f *o N+(x)dx - R' Ni_(x)dx

fi+ Ni+(x)dx - f'- Ni_(x dx

47 Rf+ Ni+(x)dx

if nx+1 < n,+

if n3 < n_ < ni+1 < n,+

if n< _ rnc-< nfl < nj+1

if nc_ <n< n < n+l

if nog ; nj

(A.12)

where,

nc Af
ncaE e(fi 2 )

Nia(x) = (I n(x)
njia

and R.± = Re: (f

and Nja(n) = 1 - -)
ni±

Now change the variables of integration,

dNia 1 1
dn 2ni± N

and dn = fl - nj
dx x,+ 1 - xj

and integrate

1 b Ni±(b)
Ni dx = N a

-2ni j'+1 - x3  Ni+ (b)

nj+l - na JNi (a)

= 2ni± xj+1 - xj [N3s(b) - Nia(a)]
3 nj+1 - n

finally giving

Oji = (x3+1 - x3) O3.j
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N (n) - - Ni (nj) + N_(nj+1)

N?,(nj) - Ni+(nj+1) - Ni_ (n,) + 0

NZ+(nj) - 0 - Ni_ (nj) + 0

NZ+(n.) - 0 - 0 + 0

0

if n.+, < n+

if nj < n,- < nj+1 < nci+

if nj < n, < n, < nj+1

if n,_ < n < n, < nj+l

if n., ; n,

K M 2n ,
3(nj+1 - nj)

b -xo000 + (-%, + u(j-10)) Xj

j=0

r=-0 for i=0

wh re - # 3i for i > 0

A point density measurement or constraint, n, at x can be included with:

(n - nj)xj+1 + (nj+1 - n)x, = (nj+1 - nj)x.

Multiple constraints can be represented by a matrix equation:

C.X.=Q
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A smoothing constraint can be included with:

S -X = 0.

where S =

1 -1 0

-1 2 -1

0 -1 2

0

The diagonal weighting matrix, W, includes the weights each equation and corrects

for differences in units in the individual equations. The whole system reduces to:

W.
A

C

S

.X=W. Q
0

(A.24)

Using singular value decomposition [83], this equation can be inverted to get the

matrix X.
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Appendix B

List of Acronyms

Acronym Meaning First Usage

D-Alpha Emission from the cc line of Deuterium page 34
Emission

DP Differential Phase page 76

ECE Electron Cyclotron Emission page 48

EDA Enhanced Da page 139

EF Equilibrium Field (Coils) page 41

ELM Edge Localized Mode page 34

FSR Fluctuation Suppression Region page 130

GPC Grating Polychromator page 49

H-Mode High Confinement Mode page 33

ICRF/ ICRH Ion Cyclotron Resonance page 50
Frequency/Heating

Table B.1: List of Acronyms
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Acronym I Meaning I First Usage

ITER

L-Mode

L-H Transition

LCFS

LHC

O-Mode

PEP

PETS

PF

PFR

RHC

SGR

SOL

TCI

TF

TS

VH-mode

X-Mode

z

International Tokamak Experimental
Reactor

Low Confinement Mode

Low to High Mode Transition

Last Closed Flux Surface

Left hand Cutoff

Ordinary (E 11 B) Mode E&M Wave

Pellet Enhanced Performance

Princeton Edge Thomson Scattering

Poloidal Field (Coils)

Private Flux Region

Right Hand Cutoff

Steep Gradient Region (Transport Barrier
Region)

Scrape Off Layer

Two Color Interferometer

Toroidal Field (coils)

Thomson Scattering

Very High (confinement) Mode

Extraordinary (E I B) Mode EM Wave

Atomic Number
a _________________________________________________ L
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page 23

page 32

page 33

page 31

page 57

page 57

page 32

page 43

page 41

page 31

page 57

page 34

page 31

page 42

page 40

page 44

page 35

page 57

page 29
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