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Abstract

A theoretical model of current distribution is developed to explain the performance
limitations of superconducting cables in transient magnetic fields. The model self-
consistently handles the coupled non-linear electromagnetic and thermal equations
which govern the behavior of the cable during both normal operation and quench/re-
covery events. A two-strand cable is used as an analogy to clarify critical concepts
which would be mathematically intractable for larger cable geometries.

The model emphasizes the role of "circulating currents" which are induced by
ramping magnetic fields in the vicinity of the low resistance cable terminations. Un-
like the fine-scale eddy currents which cause inter-strand coupling losses in cabled
superconductors, circulating currents can cause significantly uneven distributions of
the net transport current carried by the cable. Since circulating currents have not
attracted much attention in the literature, the theoretical model offers unique insights
into this important determinant of magnet performance.

Characteristic length scales have been identified which differentiate cable designs
into one of nine classifications. Analytic formulae characterizing current distribution
for each case are presented. Further, the stability criteria for cables in transient
magnetic fields is shown to be heavily dependent on cable length. These results have
important implications for researchers attempting to model full-scale magnets with
lab-scale experiments.

The theoretical model is shown to explain some of the more confounding results
from previously conducted experiments. The "Ramp-Rate Limitation" phenomenon
first encountered in the United States Demonstration Poloidal Coil (US-DPC) ex-
periment is shown to be a direct result of induced current imbalances within the
conductor. The model would need further refinement, however, to accurately predict



all features witnessed experimentally.

Finally, the findings of the theoretical analysis are used to propose suggestions
for minimizing circulating currents in order to improve the performance of supercon-
ducting cables in transient magnetic fields. Directions for future investigations are
also proposed.
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Title: Associate Director, Plasma Science and Fusion Center

Thesis Supervisor: Joseph. V. Minervini
Title: Head of PSFC Fusion Technology and Engineering Division
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Chapter 1

Introduction

Next generation fusion devices such as ITER' are relying on superconducting magnets

consisting of Cable-In-Conduit Conductors (CICC) to provide the "magnetic bottle"

needed for plasma confinement. In recent experiments however [1, 2, 3], CICC mag-

nets have exhibited lower than expected limiting currents when operated in transient

magnetic fields. While magnet designers are confident they can build robust mag-

nets which will be immune from this so-called "Ramp-Rate Limitation," a thorough

unerstanding of the physical mechanisms which cause this phenomenon could lead to

better (i.e. less costly) designs.

The main goal of this thesis is to provide a solid foundation for the study of what

is now believed to be the principal cause of ramp-rate limitation in CICC magnets,

namely, uneven current distribution within the cable [4, 5, 6]. While the effects

of current distribution have been studied before (see, for example, [7, 8, 9]), the

theoretical analysis in this thesis for the first time begins with a self-consistent physical

model which couples the electromagnetic and thermal equations which govern current

distribution and stability in superconducting cables.

The thesis takes the philosophical approach of trying to explain the important

physical insights in the simplest terms possible. For this reason, the geometrical com-

plexity of actual multi-strand cables has been abandoned in favor of a two-strand

'ITER is the International Thermonuclear Experimental Reactor, a joint project of the American,
Russian, Japanese and European fusion programs.

15



analogy which has the dual advantage of being mathematically tractable and physi-

cally intuitive. And despite its relative simplicity, the two-strand model contains all of

the relevant physics needed to explain the detrimental effects of current distribution

in larger cables.

1.1 Overview

The remainder of this chapter provides some general background on superconductors

in general, and CICC applications in specific. A description of the relevant material

properties and typical design configurations is followed by an introduction to the

concept of stability in Section 1.2.1. At the end of the chapter, a brief review of the

history of the ramp-rate limitation phenomenon is given.

Subsequent chapters focus on the modeling of current distribution and its effects

for CICC. Chapter 2 provides an overview of the theoretical constructs used through-

out the thesis and introduces the concept of circulating currents, the root cause of

current imbalance within CICC. Despite their importance, circulating currents have

previously been largely ignored in the literature; it is believed that this thesis provides

the first comprehensive treatment of this topic.

In Chapter 3, the two-strand model which provides the theoretical framework

used throughout the thesis is developed. In Chapters 4, 5 and 6, solutions to the two-

strand model equations are found for differing operating scenarios. For the first time,

important scaling laws are identified which allow the characterization of cables into

classes which depend on length, joint design and transverse conductance. Important

differences exist between the classes. One important finding is that "full-scale" cables

are difficult to simulate with "lab-scale" experiments.

In Chapter 7, heuristic modifications to the two-strand model are made to allow

a comparison of the theoretical analysis to experimental results. Despite the inherent

limitations of the two-strand model, the theory qualitatively agrees with experiment

for the two cases cited. While the theory would need to become more sophisticated

in order to achieve a better correlation with the data, the results as presented are
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Figure 1-1: An example of a Cable-in-Conduit Conductor (CICC) shown in cross-
section. Typically, the strands are twisted into triplets which are further twisted into

bundles which are then twisted into sub-cables and so on until the entire cable is

formed. Each strand consists of numerous superconducting filaments (not shown in

this figure) [10].

sufficient to corroborate the hypothesis that circulating currents account for the ramp-

rate limitation experienced in CICC magnets.

The thesis concludes with a summary of the major findings and suggestions for

future work in Chapter 8.

1.2 Background

A CICC cable is composed of multiple strands of conductor, each of which is composed

of numerous superconducting filaments embedded in a non-superconducting matrix,

typically made of copper. The strands are twisted together and compacted within

a structural conduit which provides a passage for a suprcritical helium coolant. A

cross-section of a typical CICC is diagrammed in Fig. 1-1. This section reviews the

relevant features of cable-in-conduit conductors (CICC's) and introduces the concept

of Ramp Rate Limitation.
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Figure 1-2: The critical surface plot for a commercially available Nb-Ti alloy. At
operating points below the surface, the alloy is superconducting; above the surface, it
is normal. Source: reprinted with permission from Wilson, Superconducting Magnets,
Copyright @1983 by Oxford University Press.

1.2.1 Basic Properties of Superconducting Materials

Superconducting materials exhibit their unique properties when operated within cer-

tain limits. Traditionally, these limits are defined as the critical temperature, T,, the

critical current density, J,, and the critical magnetic field, B,. These three quantities

are interdependent and form a three dimensional "critical surface" in a phase space

with coordinates of temperature, magnetic field, and current density. The critical

surface defines the boundary between the superconducting state (below the surface)

and the normal state (above the surface). The critical surface can be considered a

material property of the superconductor although it is also affected by manufacturing

techniques. The critical surface for a typical Nb-Ti alloy is shown in Fig. 1-2 as an

example.

Any superconducting device must be designed so that the superconductor remains

"comfortably" beneath its critical surface in the T, B, J-phase space. Any disturbance

in temperature, field, or current density which moves the operating point above the
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critical surface will cause the superconductor to go normal. This process is commonly

called "Quenching." The stability of the device against quenching is directly related

to how close the nominal operating point is to the critical surface.

The properties of a material in the superconducting state are very different from

its properties in the normal state. For stability analysis, the most important difference

is the sudden change in the electrical resistivity. Surprisingly, most materials which

possess a zero-resistivity superconducting state have relatively high resistivities in the

normal state. At cryogenic temperatures, the normal state resistivity of practical su-

perconductors is 10 - 100 pQ-cm while, for comparison, the resistivity of copper is less

than 0.1 uQ-cm [11]. For this reason, and since superconductors are usually operated

at very high current densities (often greater than 10' A/m 2 [12]), any local transition

to the normal state will be associated with tremendous Joule heating. Such local

Joule heating would quickly and irrevocably drive the surrounding superconductor

above the critical temperature and into the normal state.

To mitigate this "catastrophic" effect, superconducting wires are formed as a

composite material: superconductor filaments embedded in a stabilizer. In the event

of a local normal zone in the superconductor, the current can flow around the high

resistivity region by traveling through the stabilizer (typically made of copper). The

Joule heating associated with a normal zone is thus greatly reduced. In a good design,

a coolant (typically suprcritical helium) will be able to absorb the heat generated and

cool the strand back down to the operating temperature, where it will again be

superconducting. This is known as "Quench Recovery."

A stability analysis of a superconducting system determines the size of disturbance

which will cause a "Quench" and whether it will lead to a "Quench Recovery" or a

full quench of the entire conductor. Traditional stability analyses usually study the

stability of a conductor with respect to disturbances in temperature; the current

density and magnetic field are assumed to be uniform and constant. Computer codes

such as HESTAB [13] iteratively determine the minimum disturbance energy which

would cause the wire to Joule heat to a point where the temperature remains above the

critical temperature despite convective cooling provided by the suprcritical helium.
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The applicability of such a stability analysis to the problem of ramp rate limitation

will be briefly discussed at the end of this chapter in Section 1.2.3.

1.2.2 Cable-in-Conduit Conductors

Cable-in-Conduit Conductors (CICC's) were developed at MIT in the mid-1970's as

the initial step in developing large superconducting magnets for fusion reactors and

magneto-hydrodynamic (MHD) generators [10]. In the CICC design, multiple strands

of superconducting wire are cabled together and enclosed in a conduit which provides

structural support as well as a leak-tight passage for helium coolant. The principal

advantage of this geometry is that the surface area to volume ratio is much higher than

that of a "monolithic" design. The increased surface contact with the helium coolant

provides improved stability with respect to perturbations in temperature. This and

other advantages of CICC's for large scale applications are discussed in Hoenig [10].

The multiple strands of a CICC introduce new concerns for magnet applications.

Unless completely insulated, the strands are in electrical contact with their neighbors

and there are paths for currents to flow from strand to strand. If the strands are not

twisted, induced loop voltages will be proportional to the field rate of change and to

the dimensions of the cable (Faraday's Law). Since cables can be very long, signif-

icant induced voltages can occur even for small-diameter cables in slowly changing

fields. These voltages will drive eddy currents which travel along the length of one

superconducting strand and return down the length of a neighboring strand. The only

resistance encountered is at the contact points where the current traverses strands. If

this resistance is low, notable eddy currents can exist and the resulting Joule heating

will significantly contribute to the AC losses in the cable. This loss must be compen-

sated by additional cooling to maintain the conductor below the critical temperature

[12].

AC loss is a particular concern for AC magnets, but is also of interest for DC

magnets which must be brought from zero magnetic field to their operating magnetic

field in a reasonable amount of time. Fortunately, twisting the strands together

effectively reduces the magnetic coupling between strands, putting a handle on AC
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loss. Twisted strands in a changing external magnetic field experience an electric

field which changes direction every half twist pitch length. The maximum induced

voltages will thus be proportional to the twist pitch length rather than the length of

the cable [12].

Another way to reduce the coupling between strands is to decrease the conductiv-

ity between them. The optimum choice of electrical conductivity between the strands

balances the requirement of low AC loss (low conductivity) and adequate stability

(high conductivity-to ease current transfer around local normal zones) [12]. For mag-

nets that are designed to be ramped or cycled in time, AC loss is a primary concern

and highly resistive oxide coatings are often used. Completely insulating the strands

from each other is an option, but experience has shown that the performance of such

magnets can be "surprisingly low" [14].

Although a simple twisting of all the strands, as diagrammed in Fig. 1-3, reduces

eddy currents due to transverse magnetic fields, it does not help to reduce self-field

effects. The self-field is the magnetic field of a wire generated by the transport current

flowing through it. The self-field effect in multi-strand cables is similar to the "skin-

effect" in homogeneous conductors-a diffusion process in which any change in current

distribution begins at the surface and diffuses inward at a rate inversely proportional

to the conductivity [15]. By analogy, any change in the current distribution in a simply

twisted cable will first be felt by strands on the outside before diffusing inward. The

superconducting nature of the strands would severely limit the rate at which the

currents diffused. The resulting current imbalance would significantly reduce the

overall performance of the cable.

A "fully transposed" cable, however, is one which eliminates the self-field effect by

ensuring that no net self-field flux exists between the strands [12]. This is equivalent

to saying that the self-inductance of every strand is the same and that the mutual-

inductances between strands exactly balance. This can be achieved by a cabling

pattern in which the strands traverse the cable cross-section in such a way that each

spends an equal amount of time at each position in the cable space-i.e., the strands

spiral radially inward then outward along the length of the cable.
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Figure 1-3: Sketch of a "simply twisted" cable. Strands on the outside remain on
the outside over the length of the cable. Strands near the center stay near the center
[16].

One such cabling pattern which achieves a fully transposed geometry is a derivative

of the Litz wires often used for radio frequency work [12]. It begins by twisting a

small number of wires into a "rope" with a tight twist pitch. Then several small

ropes are twisted together with a somewhat looser twist pitch into a bundle. The

process continues, twisting bundles into larger cables with looser twist pitches. An

example of a cable made of five ropes of four strands each is shown in Fig. 1-4. The

Cable-in-Conduit Conductors discussed later in this thesis are similarly comprised of

multiply-twisted strands.

1.2.3 Ramp-Rate Limitation

To demonstrate the ability of CICC magnets to operate at the conditions required

for a fusion device, the United States Demonstration Poloidal Coil (US-DPC) was

designed and built by MIT and industrial partners. Tested in Japan in late 1990, the

magnet performed well in DC tests but exhibited an unexpected ramp-rate limitation

when ramped at high rate to high currents and fields. Figure 1-5 shows the measured
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Figure 1-4: Sketch of a "fully transposed" cable in the form of a multiply twisted
"rope." Source: reprinted with permission from Wilson, Superconducting Magnets,
Copyright @1983 by Oxford University Press.

limit for linear current ramping as a plot of maximum attainable current versus the

ramp time taken to reach that current. It is evident from the figure that the design

current of - 30 kA could only be reached at slow ramp rates (i.e., longer ramp times)

despite the fact it was designed to ramp to full current in approximately one second

[1].

The results of the US-DPC experiment were extensively studied using the tra-

ditional stability analyses referred to in Section 1.2.1. As mentioned above, these

analyses study the stability of a conductor to disturbances in temperature by de-

termining if the cooling (heat transfer to helium) is enough to bring the conductor

back down to its operating temperature after any foreseeable perturbation in tem-

perature. Such perturbations would be caused by energy deposited in the strands

from such causes as AC losses, nuclear heating, or frictional heating associated with

wire motion. For this reason the measure of stability of a cable is often given as a

"stability margin"-the volumetric energy perturbation which would marginally lead
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Figure 1-5: Quench current vs. ramp time for the US-DPC experiment. The time
evolution of the transport current and magnetic field are also shown (inset). The
degraded performance at faster ramp times is known as the "Ramp-Rate Limitation."
[1]
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to a non-recovering quench, typically measured in mJ/cc of wire [17].

In studies of the US-DPC coil, however, the stability margin was found to be

on the order of 100 mJ/cc for operating scenarios at which premature quench was

experienced [18]. This amount of energy is much larger than any foreseen energy

deposition in the system, leaving the source of ramp-rate limitation a mystery [1].

What the traditional stability analyses fail to consider, however, is the possibility

of non-uniform current distribution within the cable. The remainder of this thesis

is devoted to modeling the current distribution to be expected in CICC cables and

assessing the effects of this distribution on the stability of the magnet. By the end

of the thesis, we reach the conclusion that non-uniform current distribution indeed

accounts for the performance limitations encountered in the US-DPC as well as nu-

merous follow-up experiments.
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Chapter 2

Current Distribution in CICC

Cable-in-Conduit Conductors (CICC) have been used in numerous devices since they

were first introduced in the nid-1970's [10]. Accordingly, the literature contains many

reports of both experimental and theoretical studies of the performance of CICC's in

varying conditions. Until recently, however, nearly all of these studies were predicated

on the assumption that the current distribution among the cabled strands was nearly

uniform. While this assumption is valid in many cases and leads to numerous useful

results, its validity breaks down in the presence of pronounced transient fields.

This preliminary chapter offers a broad overview of the different sources of current

distribution in CICC and defines certain concepts which will be used in later chapters.

Unfortunately, the few researchers who have focused on non-uniform current distri-

bution ([4, 7, 8, 9, 19], for example) have not yet reached a consensus on terminology.

The terms chosen for this thesis are for the most part consistent with the literature

but are defined below for further clarity.

The overall current distribution is a combination of the directly applied (transport)

current and the induced currents. While it is convenient to distinguish between the

different sources of current flow within a CICC, it must be remembered that the total

current at a certain location is a superposition of the individual components.
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2.1 Current Distribution within Composite Super-

conductors

In isolation, a single strand of composite superconductor looks like a complete cable

unto itself. The strands are composed of tens to hundreds of superconducting fila-

ments imbedded in a metallic matrix (usually copper). Although the filaments are not

transposed, they are twisted in a helical manner to minimize the effects of transverse

fields. The electrodynamic behavior of single strands in changing magnetic fields has

occupied researchers since the fabrication technique was invented and still attracts

as much or more attention than the study of CICC's or other cabled conductors. At

this point, though, the physics of single strands is fairly well understood and several

comprehensive references are available [12, 20, 21].

For the purposes of studying current distribution in cables, however, the individual

strands can be treated in a macroscopic sense [22]. In other words, details of current

distribution within each strand are not necessary.

2.2 Distribution of Transport Current

The transport current is defined as the net current passing through the cable and is

generated by the magnet power supply. The cable is connected to the power supply

through a low resitance joint at either end. Joint design is a topic within itself

and much research is currently being done to optimize joints for cables in pulsed or

ramping fields [23]. One goal of joint design is to insure each strand in the CICC

is connected through the same resistance to the power supply leads. Such a joint

would produce, in steady-state, a uniform transport current distribution throughout

the cable.

For the purposes of this thesis, it is in fact assumed that the effects of unequal

strand-to-joint resistances are minimal. Thus, the current distribution due solely to

the transport current is considered uniform for each strand. As previously mentioned,

though, the overall current distribution is not uniform because of the induced currents
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which will be discussed next.

2.3 Induced Currents

Transient magnetic fields cause induced current loops within CICC cables even though

the strands are twisted to minimize such effects. In this thesis, the induced current is

divided into two components: interstrand coupling currents and circulating currents.

The interstrand coupling currents are the more familiar of the two but it is the

circulating currents which are of primary interest in this thesis.

2.3.1 Interstrand Coupling Currents

Coupling currents are well-known to anyone who is familiar with composite super-

conductors. Just as transverse fields induce coupling currents in a single strand of a

composite superconductor, they also induce interstrand coupling currents in a large

cable of twisted strands.

The primary effect of these unwanted induced currents has long been known as

"A.C. Loss," the Joule heating associated with eddy currents induced by changing

transverse magnetic fields. This effect has been extensively studied for composite

strands [20, 21] and cables [24] and can largely be understood without regard to how

the cable is terminated.

As mentioned in Section 1.2.2, the characteristic length of the interstrand coupling

currents is the twist-pitch length of the cable which determines the distance over which

the coupling currents reverse direction. The maximum interstrand coupling current

density in a strand is generally several orders of magnitude less than the transport

current density and thus they do not noticeably contribute to imbalances in the overall

current density of the cable. Section 4.2 goes into further detail about how interstrand

coupling currents are nonetheless important in determining the boundary conditions

which influence the circulating currents, which are discussed next.
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2.3.2 Circulating Currents

Like interstrand coupling currents, circulating currents are induced by changes in

the magnetic field. Circulating currents, however, have a characteristic length much

longer than the longest twist-pitch length and can appreciably alter the overalll dis-

tribution of current density in the cable. In fusion magnets, circulating currents are

mainly a result of the low resistance joints through which the cables are connected to

the power supply. These low resistance paths can locally "undo" much of the benefit

of subdividing the superconductor into twisted strands. In abstract terms, circulating

currents can be thought of as the component of the total induced current distribution

which passes through one or both joints.

In mathematical terms, circulating currents are driven by the end "boundary

conditions." Depending on the properties of the cable, they can be isolated near the

ends of the cable or they can join to form a "loop" current which changes the current

distribution over the whole length of the cable. The concept of circulating currents

is developed much more rigorously in Chapter 4.

2.4 Current Redistribution during Quench

The individual aspects of current distribution discussed so far-transport current,

interstrand coupling current, circulating current-all presume the cable is operating

in the superconducting state, as defined in Section 1.2.1. When all or a portion of the

cable enters the normal state, the current distribution can change quickly and dra-

matically. For normal regions which occupy only a portion of the cable cross-section,

current transfers from over-saturated strands to strands which are still supercon-

ducting. If the entire cross-section quenches over a long enough length, the higher

resistance of each strand damps out the induced current effects described above and

the current distribution becomes almost uniform.

In general, the redistribution of current due to quenching of the cable is non-linear

in nature and requires a coupled solution of the time-dependent thermodynamic and

electromagnetic behavior of the cable. This aspect of the stability analysis is dealt
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with in Chapter 5.

2.5 Summary

The overall distribution of current in a CICC is influenced by three distinct compo-

nents: the transport current, the interstrand coupling current, and the circulating

current. Of these three, the last is in many ways the least understood-it is certainly

the least studied.

Circulating currents are induced by changes in the magnetic field but behave

much differently than the eddy currents traditionally considered in AC loss analyses.

In some situations, the uneven distribution of current caused by circulating currents

can be appreciable and should be of concern to magnet designers. The remainder of

this thesis is devoted to explaining these circulating currents and their effect on the

stability of CICC magnets.
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Chapter 3

The Two-Strand Model

This chapter focuses on the development of a two-strand model of current distribution

in cables exposed to ramping magnetic fields. At first appearance, the model seems

rather simple but the results derived from the two-strand example exhibit surprisingly

complicated behavior. In later chapters, the model presented here will be shown

to self-consistently explain much of the "anomalous" behavior witnessed in cables

exposed to ramping magnetic fields.

This chapter begins with a discussion of the relative merits of the two-strand model

over the more ambitious approach of solving the problem for an actual cable geometry.

Next, a physical description of the two-strand cable is given and key attributes of the

cable are identified. The cable is then analyzed on a differential scale from which the

electromagnetic diffusion equations at the crux of the model are developed.

Although the temperature-dependent resistive elements in the model are included

for completeness sake, the coupling of the circuit equations with the heat equations

will not be presented until Chapter 5. The auxiliary equations needed to describe

the strand resistance and the behavior of the critical current density are presented in

that chapter, as well.
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3.1 Simple vs. More Complicated Cables

The current distribution in a cable-in-conduit superconductor is difficult to analyze

due to the complicated twisting geometry of the strands. For the purposes of analyzing

stability and studying ramp-rate limitation, however, it is instructive to simplify the

cable geometry as much as possible while still retaining the important physics of the

problem. For this reason, it was decided to develop the foundation of the analysis

using a two-strand model. This decision seems especially justified since the two-strand

results developed in this thesis are already significantly more elaborate than those of

previous studies [17, 25, 13]. The complexities of a fully-transposed multi-strand

cable are best left for the next "iteration," should more detail be deemed necessary.

The advantages of first studying a two-strand model are strong ones. Most im-

portant, the mathematics of the two-strand model are relatively straight forward and

do not cloud the underlying physics. In studying a full-sized CICC, it is necessary

to use a continuum model and very sophisticated numerical techniques. Actually, in

many circumstances, it is not even clear if such techniques exist. After studying the

problem extensively, this author concluded that even if a solution were to be found, it

would not be the best way to convey the important results which can be demonstrated

with the simpler two-strand model.

The two-strand model offers a physically intuitive way to understand the sources of

current distribution in superconducting cables. Although the model does not account

for the full geometrical complexity of a full-scale cable, the results nonetheless shed

light on many previously unappreciated aspects of current distribution and stability.

Since the model can be studied analytically, it is possible to develop important figures-

of-merit and scaling laws which can be used to classify the behavior of differing cable

designs.

It is important to point out that the two-strand model is self-consistent; it does

not rely on unknown or outside heat sources to initiate the quench and determine the

stability of the cable. The only source of instability is the current re-distribution which

is caused by a ramping magnetic field. If one were to actually construct a two-strand
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cable, the analysis presented in this thesis would accurately predict its behavior. The

extension of the analysis to multi-strand cables is the subject of Chapter 7.

3.2 Two Strand Model Geometry and Properties

Before discussing the details of the two-strand model, it is necessary to give a brief

physical description of the model in order to put the problem into context. The cables

being considered in this thesis are typically wound into solenoidal coils. Rather than

explicitly retaining the winding shape, however, the coil is considered to be straight

and parallel to the x-axis. The effects of the winding are included through the spatial

dependence of the magnetic field, (see Section 3.3.4).

The geometry of the two-strand model is diagrammed in Fig. 3-1. The individual

elements of the model will be discussed thoroughly in the next section but the diagram

and following description offer an overview. The two strands are twisted together in a

double helix with characteristic twist-pitch length, tp, and distance between centers,

w. In the figure, the strands are drawn as one-dimensional "filaments" even though

they actually have a strand diameter, d. The total length of the cable is and the two

strands are connected to the power supply at either end through low resistance joints

with transverse resistance, Ri. The cable experiences a transverse magnetic field

density, Bi(x, t), that is in general a function of space and time. Along the length

of the cable, the transverse electrical conductance-per-unit-length is ai. The value of

oI represents the conductivity of the medium which separates the two strands. This

medium could be vacuum, for instance, or the other strands of a full cable, which we

can treat as a medium with known properties.

To give an idea of the physical scale of the problem, the cables considered in this

thesis will vary in length from t= 1 to 100 m; the typical twist-pitch length will be

of the order 4p ~ 10 to 50 cm; and the cable width will vary from w - -to 5 cm.

Further details of the electrical parameters are introduced in the next section. The

details of the heat transfer parameters (not mentioned here) are left for Chapter 6.
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Figure 3-1: The two-strand model geometry. The two strands form a double-helix
with a constant width w. Also shown is an example of the magnetic field profile,
B(x,t).
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3.3 Notation and Parameters

At this point, we need to introduce the parameters and notation which will be used

throughout the thesis. In later chapters, new notation will be defined as needed, but

the definitions given here will hold true "globally."

3.3.1 Currents

The most important quantity in any discussion of current distribution is of course:

current. As was discussed in Chapter 2, the total current in the cable can be thought

to consist of several components. For the ease of mathematics and the ease of pre-

sentation, it will be useful to define separate notation for each component.

In general, the symbol I will be used to represent current in units of Amps. Since

it is necessary to differentiate between the currents in each strand, the subscripts

1 and 2 will represent the first and second strand, respectively. Strand one will be

defined to be the strand with the greater current-i.e. 11 > 12.1 Because the strands

are not insulated over their length, I1 and I2 are functions of axial location, x, and

time, t.

Critical Current

Besides the strand currents, the study of current distribution and stability also in-

volves another "current"- the critical current, I,. The critical current is not actually

a physical current but rather a definition of a limiting value for the current in the

strands: when 11 < 1,, strand one is "superconducting," all current flows through

the superconducting filaments; when I, > I,, strand one is "resistive," some or all

of the current flows through the resistive matrix surrounding the superconducting

filaments. It is this transition between superconducting and resistive states which

makes the current distribution problem interesting. The value of I is a function of

the magnetic field, B, and temperature, T, and thus acts as a coupling term linking

'This relation remains unambiguous as long as field reversals are not considered.
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together the current and heat equations which comprise the two-strand model. The

role of the critical current is discussed extensively in Chapter 5.

A simple model of the critical current which is appropriate for a single wire of

type II superconductor was proposed by Kim [26]:

Ic(T, B) = /B (3.1)

where is a property of the strand (units AT) appropriate for a fixed temperature, Tb.

The effects of temperature can usually be well approximated with a linear dependence

(truncated at zero) [12], giving:

& (1 - T~~T ) T < Tc(B)
I,(B,T) = T,-Tb (3.2)

0 T > Te(B)

where the critical temperature, T, is a function of the magnetic field:

J T+ (To - Tb)(1 - -) B < Beo
Tc(B) = 'CO (3.3)

Tb B > Bo

and Tco and Bco are characteristic properties of the superconductor which usually

need to be determined experimentally.

This modified Kim's model, Equation (3.2), will be used in Chapters 5 and 6 to

characterize typical Nb 3Sn conductors which have been used in numerous experiments

[4, 5]. The appropriate values for the superconductor properties in this instance are:

= 1250 AT

Teo = 18 K

B 0o = 19 T

The results developed in future chapters can be easily generalized to other super-

conductors which obey the modified Kim's model as well as superconductors with

altogether different critical current characteristics.
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Transport Current

When both strands are superconducting, it is useful to make the distinction between

the induced current component and the transport current component of each of the

strand currents. The transport current, Ir(t), is defined as the total net current

flowing through the cable: IT = I, + 12. It is a known quantity which does not

vary over the length of the cable (due to current conservation) but can be time

dependent. In a coil generating its own magnetic field, IT(t) is directly proportional

to the peak magnetic field, B(t). For cables inserted into background field coils,

however, IT(t) is independent of the magnetic field and can be an arbitrary function

of time. For instance, we will later study cases for which the transport current is

constant, IT(t) = IT, while the background field is ramped.

For the purposes of this thesis, the total transport current in the cable will be

evenly divided between the two strands.2 For the sake of convenience, then, the

notation IT/2 is used to designate one-half the transport current, i.e. IT/2(t) = }Ir(t).
Thus, in the absence of magnetic fields (and in the case 11 < I), the current in each

strand would be: I,(x, t) = 12 (x, t) = IT/2(t).

Induced Currents

With the introduction of a ramping magnetic field, however, induced currents must

now be considered as well as transport currents. The induced currents in strands

one and two are labeled IBI(x, t) and IB2(X, t), respectively. Notice that unlike the

transport current components, the induced currents are functions of x as well as t.

The total current in each strand is the combination of the transport current and the

induced current:

Ii(x,t) = IT/2(t)+IB1(xt)

I2(x,t) = IT/2(t)+IB2(xt)

2 The model could easily accommodate the more general case with the transport current not
divided evenly between the two strands, but the maldistribution of transport current is not the
focus of this thesis.
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where, again, we are now only discussing the I < 1, scenario. Adding these two

equations and noting that IT/2 = 1Jr(t) and IT I1 + 12 (by definition) yields the

expected but important result:

IB1(X, t) - IB2(x, t) = 0 (3.4)

This conservation law implies that any x-dependence of the induced current IBimust

be matched by the opposite dependence in IB2. In other words, the current "exiting"

strand one at location x flows across the cable and "enters" strand two at the same

x location. Mathematically, this is stated as:

aIB1 (X, t) IB2(X, t)

9x 8x

Transverse Current-per-Unit-Length

The quantity -IBI(x,t) has the units [A-m-1] and is the transverse current-per-

unit-length flowing between the strands at location x. Since the medium between

the strands is resistive (see 3.3.3), this transverse current produces Joule heating.

The study of such interstrand coupling losses has been treated by several authors

interested in AC losses [24] but does not play an important role in the stability model

being developed here.

In cases where 1, is no longer less than Ic, the distinction between transport

current and induced currents is no longer useful and the transverse current-per-unit-

length then includes the quench redistribution current (see Section 2.4) as well as

the induced currents. Thus, to develop the general case, the more general notation

S11(x, t) will be used throughout the remainder of this chapter.

Shorthand Notation for Currents

Since 11 and 12 are easily related, 1 + 12 = IT, we often focus only on 1 and drop

the subscript: I = I,. The transverse current-per-unit-length is also shortened to

I. Likewise, in the I, < I, regime, it is often convenient to use the notation IB
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and 8IB to replace BI and 131.

3.3.2 Inductances

For the purposes of calculating inductances, the cables are considered to be straight,

parallel cylinders. The necessary condition for this approximation to be valid is:

w/4, < 1 where w is the distance between centers and £, is the twist-pitch length.

This criterion is easily met for the cables being considered here.

The mutual inductance-per-unit-length of two parallel cylinders is given by: [27]

M=0.2 In -+ 1+- - 1+-+- 
w 22

where £ is the length and M is in units of [pH -m-11. In the limit under consideration,

w/£ < 1, this reduces to:
2f

M = 0.2 In -_- 1

The self-inductance-per-unit-length for a straight cylinder is: [27]

',= 0.2 In 2 _
I r 4

where r is the radius of the cylinder and L, is in units of [pH -m-1 ]. The quantity of

interest for the model turns out to be the "effective" inductance, C = 4, - M. From

the above two relations we find:

L = 0.2( + In)
\4 r)

This is the relation which will be used throughout the rest of the thesis.

3.3.3 Resistances

There are three "flavors" of resistance in the model: transverse joint resistance, trans-

verse cable resistance, and strand resistance. Each plays a very distinct role in the
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behavior of a cable experiencing a ramping magnetic field.

Strand Resistance

The strand resistances, R 1 and R 2 , axe actually resistances-per-unit-length (9/m):

where 7 is the resistivity and A, is the cross-sectional area of the wire. Since the

wires are composites of superconducting filaments within a conductive matrix, the

value of 77 is a volume-weighted average of two resistive paths in parallel:

77=( , (I - A))~
7 7 1

where A is the volume fraction of superconductor in the wire, qm is the resistivity of

the matrix material, and 77, is the resistivity of the superconductor.

The value of ?1,c changes dramatically depending on whether the strand current

is above or below the critical current:

77sc < , ; 0 < I < I

7c = 7f;0 < Ic < I

e> 0 = c < I

where 77ff is the "flux flow resistivity" which will be discussed in Section 5.2.1. Thus,

in general, 77 is a non-linear function: when I is less than I, the strand is supercon-

ducting and 77 = 77,/A . When I is greater than I, q begins to increase dramatically,

reaching the value q = 7m/(l - A) in the limit I > 1.

In the first case, I < I, the value of the resistivity, 77., is known as the "dynamic

resistivity" -the resistivity of a superconducting material experiencing a time-varying

magnetic field [20, 21]. For typical cases considered here, q,c - 1 0 -15- 1 0 -1 2m[24].

This translates into: I,, ~ 10-9-10-8 S/mfor typical strand dimensions.
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Typical values for 7, are a7m ~ 10-0-10-9 Qm, resulting in Rm ~ 1 0 -4 1 0 3

2/m. Since the case for I > I, is not considered until Chapter 5, for now, R1 and

Z2 can be considered arbitrary functions of I and Ic.

Joint Resistance

As diagrammed in Fig. 3-1, the two strand cable is terminated at either end in a joint

connecting the cable to the power supply. Although the joints have finite length, fT

(where T stands for "termination"), the transverse joint resistance is treated as a

concentrated resistance, Rj, in the initial presentation of the model. The effects of

the finite length joint are discussed in Chapter 7. The distinctive typeface for Ri was

chosen to distinguish the concentrated joint resistance with units [Q] from the strand

resistance-per-unit-length, R (Q/m). Although it is not required by the model, both

joints are assumed to have the same resistance for the purpose of this presentation.

The model of the joint as a concentrated resistance is shown in Fig. 3-2. The

transport current, IT, enters the joint and is split between the two strands according

to the relative resistances RT and 0F, as indicated in the figure. As mentioned in

Section 3.3.1, the joint is designed in such a way that the transport current carried

by each strand is considered to be equal-thus RT = R1. The overall transverse joint

resistance is defined as RJ = RT + R'. Fig. 3-2 will be referred to again when the

boundary conditions are discussed. At that time, the transverse voltage across the

joint, Vi, as defined in the picture, will be used.

The value of Rj will be one of the key parameters defining the current distribu-

tion behavior of the cable. It is important to note that the transverse joint resis-

tance (referred to from here on simply as "joint resistance") is much larger than the

characteristic joint resistance typically measured and reported experimentally. The

difference arises from the different paths through the joint followed by the induced

currents as opposed to the transport current. A discussion of this distinction is given

in Chapter 7. Since joints can be made in a variety of ways, the typical resistances

can vary greatly and thus a large range of values, R3 = 10--10-6 2, is considered

in the results to be presented.
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Ih(x,t)

VJ(t) IT(t) J ( )

x 0 12(xt)

Figure 3-2: Idealized model of cable termination. Each Joint is treated as a "lumped
parameter" resistance, J +

Transverse Conductivity

The transverse cable resistance (referred to from here on as "transverse resistivity")

can also cover a large range of values, depending on cable design. The transverse

resistance is not necessarily a material property since it can be strongly affected by

the cable manufacturing process. The surface condition of the strands also plays

an important role since the transverse resistance is dominated by contact resistance

between the strands. Also, strands are often deliberately coated with oxide layers to

further reduce the transverse resistance.

Since the transverse resistance is distributed over the length of the cable, it is

easier to define in terms of its inverse, aI, the transverse conductance-per-unit-length.

In the two-strand model, a1 is equivalent to the local conductance-per-unit-length

(Qm') between the two strands.

Although, in principal, oa could vary over length, it is considered to be a uniform

property in this model. This simplification can be justified by noting that the current

profiles of interest have length scales much longer than the twist-pitch length, the

scale over which ajwould tend to vary. While the spatial distribution of a1 could be

very important in AC loss calculations which focus on fine-scale current distributions,

a uniform 0j is the appropriate limit for the problem being considered here.

The value of I is notoriously difficult to estimate. Similar cables measured in
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different ways can lead to results which vary by orders of magnitude [14, 28, 29]. For

this reason, o- is left as an unspecified parameter in the model. Nonetheless, it is

one of the most important parameters in the model as its value will figure into all of

the scaling relations developed in the next two chapters. To give an idea of the range

over which a1 can vary, values ranging from 10-1000 S- 1m- 1 are considered in this

thesis.

3.3.4 The Magnetic Field

The magnetic fields considered in this model are generated by solenoidal magnets.

The field experienced by the cable is either the self-field of the coiled cable (for larger

windings) or the solenoidal field produced by a background field magnet (for smaller

windings). Of course, combinations of the two are possible. In any case, the field at

a given point along the cable is a known function of the operating conditions. This

specification of the field as a function of space and time, B(x, t), is what allows us to

"unwind" the magnet into a straight length. For small scale coils placed inside larger

magnets, the field can often be considered spatially uniform, i.e. B(x, t) = B(t).

Because of the symmetry of the double-helix cable winding, there are only two

principle directions in the cable: axial and transverse. It is the transverse component,

B1 , of the magnetic field which produces the flux linkages which drive the induced

currents studied in this thesis. Furthermore, because of the symmetrical geometry

of solenoidal coils, the magnetic field is everywhere orthogonal to the axis of the

cable and thus the magnitude of the transverse component, B±, is equal to the total

magnitude of the field:

Bw(x,t) = jB(x,t)l

The cable is twisted, of course, to minimize the effects of changes in the transverse

field. As can be seen in the Fig. 3-1, the twisting effectively reduces the net flux linked

by the cable since the induced voltages on strand one change sign at every multiple

of the twist-pitch length. But as discussed in Chapter 2, no cable is perfectly twisted

and, as we shall see, even a seemingly minor net flux linkage can cause large induced
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currents.

Although the model can handle magnetic fields with arbitrary time-dependencies,

only cases B±(x, t) = E_(x)t will be considered in order to simplify the analysis.

Since the linearly ramped magnetic field is of primary practical importance and there

is ample experimental data for this case, this is not a severe limitation. The numerical

solutions of Chapters 5 and 6 could easily be extended to handle the more general

case, but doing so does not add much insight into the problem.

In cases where the field is a function of x, the model requires that the axial

gradients of B± are more gradual than the twist-pitch of the cable:

1 BBi (
-B___< -(3.5)

This condition will be valid when the cable rests within an external field or when the

inner circumference of the solenoid is longer than the twist-pitch length of the cable,

fp. The importance of this condition will become apparent in Chapter 4.

It should be noted that the magnitude of B± is always much greater than the

correction term, h, generated by the self-field of the induced currents in the cable.

Thus the statement in the first paragraph of this section, "Bi(x,t) is a known func-

tion" is true for all cases. This can most easily be verified when the actual induced

currents are calculated in Chapter 4.

3.4 Derivation of the Two-Strand Model Equation

Now that the important parameters have been introduced, we will start to develop the

model equations. The first step will be to transform the magnetic field in such a way

that the strands can be considered "untwisted." This straight-forward transformation

simplifies the description of the problem and helps in the derivation of the equations.

The "untwisted" cable is then analyzed on a differential length scale to determine

the differential equations which govern the current distribution in the cable. Special

care is taken to derive the proper boundary conditions at each joint. Using Faraday's
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h(xt)
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B (x)
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Figure 3-3: The "untwisted" two-strand model geometry and the corresponding
transformation of the magnetic field.

law and its associated continuity conditions at the boundaries (x = 0,t), we show

that the initial differential equations are reduced to the desired theoretical model.

3.4.1 The Untwisting Transformation

Rather than dealing with the twisted geometry of the double-helix, it proves conve-

nient to study the problem from the reference frame of the two strands. The distance

between the two strands, w, is constant over the length of the cable and thus there is

a reference frame in which the two strands form a rectangular region, as diagrammed

in Fig. 3-3. In order to make this geometric transformation, however, the magnetic

field must be transformed as well.
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It is easy to see from the physical geometry, Fig. 3-1, that the small amount of

magnetic flux, dD, enclosed by the two strands over an infinitesimal length, dx, is:

d' = B±(x,t)w -dx cos (27rx +

where 6 is an arbitrary offset angle (i.e., the flux is not necessarily at an extremum

at x = 0). The cos +9) term enters due to the twisting of the strands. In the

untwisted reference frame, a similar calculation produces the result:

d4 = B,(x,t)w . dx

where B, is the transformed magnetic field. Since the true P is independent of the

reference frame, the necessary transformation is obviously:

B(x,t) '- B±(x,t) cos +0 (3.6)

By "untwisting" the strands, we have in effect "twisted" the magnetic field.

Since none of the other parameters are affected by this change in reference frames,

we are now prepared to derive the final model. As will be evident in the next section,

the untwisting of the cable makes the problem much easier to conceptualize.

3.4.2 The Two-Strand Model Differential Equation

Using the untwisted geometry, the next step is to look at the model on the differential

level. Fig. 3-4 shows a schematic of the two strands over an infinitesimal length, dx,

centered at an arbitrary location 0 < x < f. The goal is to use the integral form of

Faraday's law over a closed path and find the limit as dx -+ 0. The chosen path of

integration is shown in Fig. 3-5.

E -ds = B-da (3.7)
Sdt s 37

46



i(x-dWx) h(x) I(x+dx)
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Figure 3-4: Schematic of differential section of the two-strand model geometry

d eC2

4C, B?(x)

C4C

- YYf \\ YYYY

x x +dx

Figure 3-5: Path of integration used to develop two-strand model equation from

differential model.
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The rectangular path of integration, C, starts at location x on strand two, crosses

the cable along C1, follows strand one from x to x + dx along C2, re-crosses the cable

along C3, and then follows strand two from x + dx to x along C4. As drawn, the

direction of the unit vector, da, (which is normal to the surface S bounded by C) is

into the page.

The voltages along the first and third legs of the path, C, and C3, are related to the

transverse current-per-unit-length between the strands, -I, at locations x and x+dx,

respectively. Since the transverse conductivity-per-unit-length is uniform, the partial

path integrals are simply:

] E-ds = a (3.8)

( E -ds = (3.9)
c 0" +dx

where I I1 (x) is the transverse voltage from strand two to strand one at location

x. (The path length of integration, w, is implicitly contained in the definition of orj.)

The voltages along the second and fourth legs of the path, C2 and C4, have re-

sistive and inductive components. In Fig. 3-4, L represents the effective inductance-

per-unit-length, as discussed in Section 3.3.2. The resistive elements, as mentioned

above, are non-linear functions of strand current and temperature. The coefficients

R1 and R2 are thus the only non-constant coefficients in the integral equation. The

partial path integrals are:

J E-ds = I (ll + RI1) dx'

1E-ds = - J 12 +R 212 dx'

For sufficiently small dx, Ihand 12 are approximately constant over the length dxand

the integrals on the RHS reduce to:

E . ds = dx (L2 + R 1, (3.10)

48



E ds = -dx L + 22 (3.11)

The signs of the voltages are consistent with the chosen path of integration.

The complete closed path integral over C is the summation of the individual parts

calculated in Eqs. (3.8)-(3.11):

f E-ds = dx (il + R,1I, -dx L 12+ R22 12) - (3.12)

Using the definition of the transport current (IT 11+ 12) and the shorthand notation

introduced earlier (e.g. I = I,), Eq. (3.12) can be written as:

i s E -ds = dx + x at + + )I + 27

In the limit dx -+ 0, the first term on the RHS reduces to a second derivative:

r1 d2 ai
Eds dx + 2- + (1Z1 + IZ2 )I - + R21T (3.13)

-xOi KI~ +j at at.

The area integral on the RHS of Eq. (3.7) is relatively easy to calculate. In the

untwisted reference frame the transformed magnetic field is B - B? (see Eq. (3.6)).

For sufficiently small dx, B, is constant over the area, S, and the area integral is thus

given by:

d dSjB-da = isB, - da

d
- _(-Bjw -dx)

dx B x, t) Cos ( +0 (3.14)

where the signs are in accordance with dapointing into the page and the direction of

B? chosen to be out of the page, as drawn in Fig. 3-5.

Combining Eqs. (3.13) and (3.14), we achieve the final equation for the current
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distribution in the two-strand model:

1 a2I I _Bi (27rx + 1--- 2L-- (R1 + R2)1 = CO L4s+91- T - R21T (3.15)

Equation (3.15) is a non-linear diffusion equation forI, the current in strand one. The

current in strand two is related to this value through the definition of the transport

current. The field, Bi(x,t), and the transport current, IT(t), are assumed to be

known functions. The equation is non-linear because the coefficients lZ1and R 2are

non-linear functions of I and T, the temperature of the strands. Since it is second

order in space and first order in time, the Eq. (3.15) requires two boundary conditions

and one initial condition.

3.4.3 Boundary Conditions

The boundary conditions on Eq. (3.15) are derived from the continuity of transverse

electric field and the continuity of current at the ends of the cable. The cable is

terminated at either end in low resistance joints connected to the power supply. As

mentioned in Section 3.3.3, the joints will initially be approximated as resistors at

x = 0 and x = £. The effects of including the finite length of the joints is studied in

Chapter 7.

Continuity at the Joints

Referring back to Fig. 3-2, the voltage across the joint resistor at x = 0 measured

from strand two to one is:

At other locations, the voltage across the cable, V±(x) is (see Eq. (3.8)):

VwL W = 1 ail
or Ox ,
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In order to satisfy Faraday's continuity condition, the transverse electric field must

be continuous everywhere. Thus, at the boundary of the cable, Vj = V±(x = 0), or:

RIjT - = lim 1 ail (3.16)

Using continuity of current, it is easy to see from Fig. 3-2 that the currents flowing

through each half of the joint are merely the strand currents evaluated at x = 0.

Thus:

, = 1.O (3.17)

Ij = I21xo (3.18)

Combining Eqs. (3.16)-(3.18) and once again using the definition of the transport

current to eliminate 12, the desired boundary condition is achieved:

I aI 1
x =0; RJI - - RJIT (3.19)

where I A 1 and Rj R1 + R1. The boundary condition at x = f is found in the

same manner. Later in the analysis, it becomes useful to identify the natural length

scales in the problem; one of them enters through the joint condition:

The boundary length scale, fj, is discussed further in Section 4.2.3. Using this nota-

tion, the necessary boundary conditions are:

x = 0; I -fJ-- IT/2 (3.20)

7; IT/2 (3.21)

where the notation introduced previously, IT/2 = !IT is used. These boundary con-

ditions are in general true for all operating conditions. Together with Eq. (3.15) and
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an initial condition, they completely specify the problem at hand.

Initial Conditions

Although the general model is valid for all initial conditions, the current profile in

strand one is usually considered to be uniform in space at time t = 0, i.e. I(x)i 0 =

IL, 0 . In cases where the coiled cable produces its own field, the initial current is

typically considered to be Ilt-, = 0. For cases where a background magnetic field

is ramped but the transport current is constant, IJt= = IT/2 = }IT. There are no

induced currents in the cable at time t = 0.

3.5 Summary

At the beginning of this chapter, the decision was made to study the effect of current

distribution in cabled superconductors using a two-strand model. The two-strand

model offers a physically intuitive way to understand how ramping magnetic fields

induce circulating currents in cables terminated in low-resistance joints. Despite its

simplicity, the model can be used to reach surprising results which will be presented

in later chapters.

The notation and parameters used throughout the thesis were introduced in Sec-

tion 3.3. Of primary interest were the definitions of the different components of the

strand current and the distinction between induced currents and transport current.

Notation emphasizing this distinction will not be used until Chapter 4 but was in-

troduced in Section 3.3 for the sake of completeness. The remainder of Section 3.3

discussed the inductive and resistive elements of the model and the transverse com-

ponent of the magnetic field.

Finally the two-strand model equations were derived in Section 3.4. An "un-

twisting" transformation was used to simplify the derivation of the equations in the

differential limit. Equation (3.15) with its associated boundary conditions, Eqs. (3.20)

and (3.21), is the equation for the current in strand one in its most general form. It

is repeated here and will be referred to often in the coming chapters.
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The two-strand current distribution equation:

1 821 81 8B8 /2\rx \ T
-- _ - 2-- (R1  + Z 2)I= wcos + 9  C- --- 7Z2IT (3.22)Ca I X2  Et Ot 191

X = 0; 1 - fX- IT/2 (3.23)

818x
= J IT/2 (3.24)

t = 0; I(x) = IO (3.25)

Equations (3.22)-(3.25) hold true for all ranges of R and any BI(x, t). To solve

Eq. (3.22) in its general form, however, requires a numerical solution since the equa-

tion is non-linear and coupled to the heat equation (through the coefficients IZ1 and

I 2 , the resistances of the two strands). The introduction of the heat equation and

the numerics involved are presented in Chapter 5. When the resistance terms are

small (as is true when the strands are superconducting), though, the model can be

solved analytically. Solutions for this scenario are developed in Chapter 4. And

even when the non-linear terms are important, a linear approximation to the problem

yields analytic results (primarily for shorter cables) which provide new insight. These

approximate linear solutions are developed in Chapter 6.

53



Chapter 4

Current Distribution in the

Superconducting Domain

The differential equation developed in Chapter 3, Eq. (3.22), describes the distribu-

tion of current in a two-strand cable for a given transport current, IT, and a prescribed

transverse magnetic field, B±. As presented, however, this current distribution equa-

tion is not complete since the functional dependencies of the strand resistances, 1,

and R 2 have not yet been defined.

In this chapter, a range of operating conditions to be known as the "Supercon-

ducting Domain" is defined under which the simple limit 1Z = 72 = 0 becomes

appropriate, thus completing the model equations. The complentary domain, the

"Resistive Domain," is discussed in Chapter 5. This chapter begins by defining the

conditions which must be true in order for the simplifying assumptions of the Super-

conducting Domain to be valid.

The chapter continues with a derivation of the solution of the current distribution

equations in the Superconducting Domain. One of the important findings is the

existence of three distinct solution regimes corresponding to the overall length of the

cable: short, finite or infinite. Within each of these length regimes, the solutions

further reduce to different asymptotic limits depending on the nature of the joint

resistance: short-circuit, resistive, or open-circuit. Results are presented illustrating

the differing behavior of the solutions in each case. Analytic formulae defining the
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boundaries of these regimes and there subcases are emphasized.

Having achieved the solution for the currents in each strand as a function of time

and space, it is possible to determine at what point the Superconducting Domain is

no longer valid, i.e. when 1, = Ic. Thus, the results of this chapter will serve to

provide the initial conditions for the fully coupled electrical and thermal equations of

the Resistive Domain, the subject of the next chapter.

4.1 The Superconducting Domain

We start this chapter where we left off in Chapter 3 with the general model for current

distribution in the two strand cable Eqs. (3.22)-(3.24) (repeated here):

1 02I 0 - OB-ws 27rx SIT

-2, (_x1 + (22)wc£ +0 - - IZ2 IT (4.1)

(91
x = 0; 1 -1-- = IT/2 (4.2)

DI
x = ; I+ ia = IT/2 (4.3)

ax

where IT/2 = IT/ 2 .

The goals of this chapter are to define conditions for which the resistive terms,

(RI + R2)I and lZ2IT, are negligible and then find the corresponding solutions to

Eq. (4.1).

Scaling the resistive terms relative to the first two terms on the LHS of Eq. (4.1)

reveals that the resistive terms can be neglected when the following two conditions

are valid:

'Re 2L& < 1 (4.4)
Rt ZBm(x

~C 2E < 1 (4.5)
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where t is time and the other variables are defined in Section 3.3. For typical C- I~

100-1000 Q-1m-1, these conditions will always be true (except for the longest cables,

i.e. f > 1 km) when the strands are in their superconducting state, 1Z ~ Rc - 10-8

Q/m, and will never be true when the strands are resistive, 1Z R, - 10-' Q/m.

We define the domain of operations when both conditions, Eqs. (4.4) and (4.5), are

true to be the Superconducting Domain. Simply put, the Superconducting Domain

is valid for all cables of interest as long as the strand one current is less than the

critical current, i.e. I < I,. In this domain, the resistive terms in Eq. (4.1) can be

neglected resulting in the reduced equation for current distribution:

1 92I dI aBL 27rx IT- -- 2,C = - Cos +0 -- L (4.6)
QrL 1X2  t 4 ) &

It is this equation which will be used as the basis for the further results presented in

this chapter.

When I = I,, Eqs. (4.4) and (4.5), break down and the resistive terms in Eq. (4.1)

must be kept. This case will be handled in Chapter 5. For the rest of this chapter, it

is tacitly assumed that I < 1,.

4.2 Equations for the Induced Currents in the Su-

perconducting Domain

Equation (4.6) is a inhomogenous diffusion equation with a diffusivity, a 2 = (2a-±L)~1 .

Rewriting it in standard form:

2 92I 9j B-W 27rx aIT12a _-2 dt C 2wcos +' + -- (4.7)
X 2  &~ 2L

where the "dot" notation, bi, refers to the partial time derivative, -B 1 . Since only

the case of linear ramping fields will be considered, b 1 is a constant.

Equation (4.7) will be solved using a multiple length scale expansion which sep-

arates the induced current into its two components, circulating currents and inter-
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strand coupling currents. As discussed in Chapter 2, the circulating currents are

characterized by length scales on the order of the cable lenfgth, f, while the inter-

strand coupling currents are characterized by the length scale of the twist-pitch, t,.

The multiple length scale expansion allows each of the two components to be solved

independently as long as they are properly matched at the boundaries.

The asymptotic length limits of "infinite" and "short" cables will be addressed

before tackling the more general problem for the "finite" cable. Also, the joints will

be classified as either "open-circuit", "resistive", or "short-circuit" depending on the

joint resistance, Ri. In each case, the boundary conditions will need to be handled

differently in order to reach an analytic solution.

4.2.1 Superposition of Transport Current

The first step in solving Eq. (4.7) is to exploit the distinction between transport

current and induced current introduced in Section 3.3.1. If we define:'

I = IT/2(t) + IB(X, t)

we see that the particular solution IT/2 matches the last term on the RHS of Eq. (4.7)

and also homogenizes the boundary conditions, Eqs. (4.2) and (4.3). Thus, we are

left with the following equations and boundary conditions for the induced current IB:

202IB 8 IB p Bw (2irx
2 2 - 24 cos +0 (4.8)
OX2 at- 2L E )

X =0; IB 6_j_=0(4.9)

Bn
X = f; IB + =J - 0 (4.10)

Thus, in the Superconducting Domain, the induced currents are entirely decoupled

from the transport current. The final solution for the total strand current will be a

'Most of the notation in this chapter was introduced in Section 3.3.
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simple superposition of the the transport current plus the induced current.

Although we will now focus exclusively on the induced current, it is the total

current I = ITr/ + 1B which must remain less than the critical current in order for

the Superconducting Domain to be valid.

4.2.2 Multiple Length Scale Expansion

The length scale of the source term in the current diffusion equation above, Eq. (4.8),

is the twist-pitch length, 4p. The other geometric length scale in the problem is the

length of the cable, t. Since t > 4, a multiple length scale expansion helps to obtain

the analytic solution for the induced IB.

The multiple length scale expansion is defined for the arbitrary operator, U as

U(x) = (U) (x) + O(x) where ()indicates a local averaging over the length 4t:

J {fUdx 0<X <i

(U)= g-f guUdx, f x < -t (4.11)

-f Udx f -, 4 x < t

From the discussion in Chapter 2 it is clear that the local average of the induced

current, (IB), is the term that has been identified as the circulating current. The

remaining term IB = IB - (IB) is the component of the induced current typically

referred to as the interstrand coupling current.

Since the circulating currents are of principle interest in this thesis, the goal of the

multiple length scale expansion will be to solve for (IB). In the process, the solution

for 1B will be needed to provide "closure" and resolve the boundary conditions.

2The notation used here, (I) and iB, is typical for multiple length scale expansions. In this
case, however, the selection of the accent mark - offers the advantage of reminding us that the iv
term balances the sinusoidal source term.



Local Averaging, (1B)

Taking the local average of Eq. (4.8) produces the result:

a2  b Cos +7
0 \ (4.12)

The first term on the LHS can be simplified. For ease of understanding, we consider

only the middle branch of the averaging operator (i.e. £p < x <e - £,) but the other

branches are analogous.

K(,2B 1 ( 611B 1&B
\ 2/ - ( 8x+eY X

1 a (IB) 1 & IB -
ip ax 7Pa
a2 &(IB) 1 a'B I+e

where iis used instead of x to indicate that the features of the locally averaged current,

(IB), vary on a length scale t > p. Thus, the limit fe/. -+ c is used to define the

partial second order partial differential, a (Is).

For cases of interest, the scaling 1B < (IB) will be valid. This intuition must be

verified, of course, after the actual values of 1B and (IB) have been calculated. In

the meantime, the following limit is assumed:

22 ( ~ ) (4.13)

The RHS term of Eq. (4.12) also needs to be studied. To simplify the mathematics,

the model is limited to cases where field gradients are gradual, as defined by the

criterion:
1 B, 1 (4.14)

7i'--x £P

This assumption means the value of the magnetic field, B1 , is approximately con-

stant over the length scale of the averaging function. For the solenoidal coils being

59



considered here, this criterion is rarely a limitation-see Section 3.3.4.3 The local

averaging of the source term in Eq. (4.12) thus simplifies to:

27r
biCos (4 +0)) ~

" [sin ( + 0) - sin 0 0 < x < f

0 fp < x < 2 (4.15)

21r(e-x) sin(2'+0) -sin(2-+0)] f-, <<

Since the first and last branches, 0 < x < f, and t - t < x < f, of Eq. (4.15)

correspond to the limits 2 - 0 and t -+ f, the RHS vanishes for all three branches

and the desired result is:

Ki os (24 + )) = 0 (4.16)

Substituting Eqs. (4.13) and (4.16) into Eq. (4.12) produces the homogenous equa-

tion for the locally averaged induced current in strand one:

29(IB) - =(B - 0 (4.17)

The multiple length scale analysis has allowed us to derive an equation for the longer

scale induced current, (IB) (the quantity in which we are interested) that is inde-

pendent of the magnetic field distribution and the twist-pitch length of the cable.

These factors have not gone away, of course; they now enter the equation through the

boundary conditions.

The Difference Term, 1B

At x = 0 and x = t, the boundary conditions (Eqs. (4.9) and (4.10)) are defined for

the quantity IB, not (IB). Thus, it is still necessary to solve for the difference term,

1B, in order to generate the necessary boundary conditions for Eq. (4.17). Also, we

need to calculate 1B to verify the assumption 1B < (IB) which was used to simplify

'The more general case of arbitrary B 1..(x) can also be handled but the mathematics become
more cumbersome.
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Eq. (4.13).

The equation for 1B is obtained by subtracting the locally averaged Eq. (4.17)

from the point equation, Eq. (4.8). The result yields:,

__ B2j Is $w (2,x
2 a = ~ 24 cos + ) (4.18)

j92 - 2 - 4

Since any larger scale features have been averaged out, the length scale over which

the difference term IB varies is - ep. Using this scale length, the characteristic time

constant of Eq. (4.18) can be defined as: 7P = t
2 /a 2 = 2o-1I2). Using the typical

values introduced in Section 3.3 (o-± ~ 103 Q-'m-', C ~ 10-6 pH, tp ~ 1 m) the

value of the interstrand time constant is -r, - 1 msec. If we limit ourselves to studying

times, t >> r, (which will certainly be the case for any practical ramp time), Eq. (4.18)

will have reached steady state and the equation simplifies to:

, 8
2I_ B 1W (27rx

a 2  
- - cos -y--+0 (4.19)

Again using the no sharp gradients assumption from Eq. (4.14), the steady state

solution for the difference term is thus:

~ Bjw (27rx
IB PCos -+0IB = 87r 2La2 c +}

_ Bwe -1  (2rx
= 47 2  cos +4 +(4.20)

Notice there are no linear or constant terms because they are included in the (IB)

term by definition of the local averaging operator, Eq. (4.11).

The difference term, 1B, is the component of the induced current associated with

the interstrand coupling current. The interstrand coupling current is often defined as

the current-per-unit-length flowing between the strands, or 8B, where

OIB sin + - (4.21)
Ox 27r i 4
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This interstrand coupling current is interesting because it generates a heat load which

is measured as AC loss. In fact, as discussed in Chapter 2, most previous studies of

induced currents in twisted cables have the calculation of the interstrand coupling

current and its associated losses as their final goal (albeit in far more detail). For the

purposes of this thesis, however, the interstrand coupling current is an intermediate

step needed to specify the boundary conditions for the larger scale induced current,

(IB).

Since the value of !B and the scaled derivative £iJIB become components of the

boundary conditions, it is useful to introduce the following notation which will be

used in later sections:

= Ij = 4 2 cos 0 0  (4.22)

b. = -1= - 2 sin0 0  (4.23)
ax = 2,r

b1 = IB 4,r2 cos 0 1  (4.24)

, 91B B$1wtpcrib- - - sin 01  (4.25)
')x 2,r

where 00 0 and 01 (, + 0).

It is interesting to note that only the value of the magnetic field at the joints,

b(x=0,), enters into the boundary equations. This is only partially due to the

limitation of studying transverse magnetic fields with gradual gradients. In numerical

solutions for arbitrary field profiles, the field at the joint dominates the size of the

constants, bo, bl, b', and bi, even when the field profile possessed sharp gradients.

One of the implications of this result is that when modeling large scale coils in

the lab, it is necessary to match not only the peak field conditions (which affect the

stability of the cable) but also the field conditions at the joints (which affect the

magnitude of the induced currents). A well designed small-scale simulation will also

have to match the larger coil in other aspects, as will be described in the next section.
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4.2.3 Derived Length Scales

So far, three natural scale lengths have arisen in the problem: the length of the cable,

£, the twist-pitch length, p, and the length scale which enters the problem through

the boundary conditions, j. A fourth length scale, the "diffusion length", tD, can be

derived from the diffusion equation for the circulating current, Eq. (4.17). In order to

continue with the solution, it is first useful to define different operating regimes based

on the relative ordering of these four lengths. Since the lengths f, and eD have not

yet been discussed, they will be defined before the necessary criteria are developed.

The Diffusion Length, tD

The diffusion length is derived from scaling the two terms of the homogenous diffusion

equation, Eq. (4.17). At a given time, t, the second derivative in space must be of the

same order as the time derivative. The resulting length scale of the spatial gradient

is eD, i.e.:

2 a(1B) _ (IB)__ Dai
D t

where a is the diffusivity defined as a = (2orj)~2.

Since the diffusion length is time-dependent, the regimes of operation which will

next be developed are also time-dependent. The most logical time to use is the ramp

time, tramp = Bmna/b, the time it takes to linearly ramp the magnetic field from zero

to its final value. Thus, unless otherwise noted:

_tramp _ /_Bm__4_26
a ramp - (4.26)

The Boundary Scale Length, fj

The remaining length scale, fj, is derived from the ratio of the transverse cable

resistance, U 1 , to the joint resistance, Rj:

1
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The length tj only enters the problem through the boundary conditions, (see

Eq. (4.9)) and thus will be called the "boundary scale" length . It is a measure of

the distance from the joint at which the boundary conditions will still strongly affect

the solution if a steady state condition were to be reached.

To understand this last statement it is useful to think of how a two-strand cable

would react to an external voltage being applied across the cable at its mid-section,

x = f/2. Current would flow from strand two to strand one at location x = /2

and then would have to find the path of least resistance to close the circuit. The

two available paths are to cross through the transverse conductance, o, over the

two half-lengths of the cable or to cross at the joints at either end of the cable. In

steady state, inductance is not a factor. The resistance of the first path is 1/(oie)

and the resistance of the second path is 1/Rj. If the length of the cable is longer

than ej, the first path is the least resistive and the majority of the current does not

pass through the joint. On the other hand, if f < j, the path through the joints is

the least resistive and thus the boundary conditions strongly affect the solution eveni

at the center of the cable.

4.2.4 Cable Length Classification

The induced currents (and thus the current distribution) in a cable depends a great

deal on the length scales just defined. In this section, criteria will be developed to

differentiate cables into one of three length regimes. In each case, the behavior of

the induced currents is sufficiently distinct as to warrant a separate treatment of the

problem. The three categories are: the asymptotic limits of "short" and "infinite"

cables and the intermediate case of the "finite" cable. It is necessary to consider all

three cases since practical cables span this entire range.

The length classifications short, finite, and infinite relate the physical cable length,

E, to the diffusion length, £D, defined in Section 4.2.3. The cutoff criteria axe listed in

Table 4.1. The physical interpretation of these criteria is that for "short" cables, the

induced currents are fully diffused across the cable length while for "infinite" cables,

the currents induced at either end have not diffused far enough to reach the opposite
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ordering length classification

f << e) short
f ~ iD finite

S> ED infinite

Table 4.1: Definition of Cable Length Classifications (eD = rp/lVN/ ±)

end. In the "finite" cable, the currents induced at each boundary reach the other end

of the cable, but are not fully diffused.

Since the transverse conductivity, a_, can vary over a large range, two cables of

the same physical length can easily fall into different length classifications. Similarly,

a cable that is infinitely long for fast ramps can be merely finite for slow ramps.

Nonetheless, a rough idea of the lengths being discussed can be estimated using

typical values of the parameters involved. Using: cr = 1000 Q-'m-', L = 5. 10-7 H,

and tramp = 5 sec, the calculated diffusion length is £D = 100 m. Thus, using these

parameters, a large-scale model coil (e.g. US-DPC, e ~ 70 m) would be finite, most

lab-scale cables (f ~ 5 m ) would be short, and proposed fusion reactor coils (e.g.

ITER, t - 1 km) would be infinite.

It is especially important to keep these scalings in mind when trying to simulate

coils with a long physical length with lab-scale cables of a much shorter length. It is

likely that the two coils could fall into different length classifications and thus exhibit

different induced current behavior.

For short and infinite cables, we will be able to achieve closed form analytic

solutions. For the finite case, an analytic solution is found but the resulting infinite

series does not converge on a known function. Before proceeding to these solutions,

however, another set of classifications proves useful: the characterization of the joints.

4.2.5 Joint Classification

The joints are equally as important as the cable length in determining the behavior

of current distribution in cables exposed to ramping magnetic firelds. In this section,
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ordering I joint classification
e >> et open-circuit
f ~ eJ resistive
fs > t short-circuit

Table 4.2: Definition of Joint Classifications (fj = (a, ?)')

criteria will be developed to classify the joints into one of three regimes: open-circuit,

resistive or short-circuit. In each case, the boundary conditions on the current dif-

fusion equation are sufficiently distinct so as to warrant a separate treatment for

each.

The joints are characterized by the ratio of the boundary scale length, 6s, to the

cable length, t. The three possible orderings are listed in Table 4.2 along with the

corresponding joint classifications. In all cases, both £ and g> £,, the twist-pitch

length of the cable.4

It should be noted that the terms short-circuit, resistive and open-circuit in no

way refer to the inductive/resistive time-constant of the cable. For instance, the

induced currents in a short-circuited cable are not necessarily "inductance limited"

as the term sometimes implies. In the sense in which it is used here, the short-

circuit classification only means the induced currents flow predominantly through the

joints-the transverse current over the cable length is negligible. In this case the L/R

time constant, TLR = £//Rj, can be greater than or less than the ramp time, tramp.

Although the term "joint classification" has been used in Table 4.2, the same

joint on a different cable would not necessarily fall into the same classification. The

transverse conductivity, am, is equally as important as Wj in determining the joint

classification. If the parameters of the cable have been specified, though, the selection

of joint design alone can determine the behavior of the cable in ramping magnetic

fields.

4The case 4j ~ i, implies the transverse resistance of the joint is on the same order as the trans-
verse resistance of the cable over one twist-pitch length-ie., the effects of the joint are negligible.
This would represent a very poorly designed joint and is thus not of much interest here.
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The classification of cables into one of the three joint categories is an important

step in comparing the behavior of two different cable designs. Specifically, in designing

small-scale experiments to model the effects of induced currents in large coil designs,

it is critical to design the joint in such a way that the two cables fall into the same

joint classification.

The 3 x 3 World of (IB)

Together with the three cable length classifications defined in Section 4.2.4, the three

joint classifications emphasized in the previous section provide a 3 x 3 matrix of

operating regimes in which the solutions to Eq. (4.8) behave differently. For all cases

in which circulating currents exist, a given cable (characterized by f, ejand Li) falls

into one of the three joint classifications: open-circuit, resistive, or short-circuit, as

well as one of the three length regimes: short, finite or infinite.

The purpose of characterizing the cable using this 3 x 3 matrix is to better un-

derstand how the boundary conditions produce the circulating currents which are the

focus of this chapter. For each case, a slightly different solution technique is needed

to acquire a closed form analytic answer. In the finite length case, however, closed

form solutions cannot be found but an infinite series solution is obtained instead.

4.2.6 Boundary Conditions

Having characterized the different operating regimes, it is now time to complete

the task of calculating (IB). The first step is to separate the boundary conditions,

Eqs. (4.9) and (4.10), into their locally averaged and difference term components

using the definition 1B = (IB) + IB:

x= 0; (1B) iJ9(IB) = -Ji + i (4.27)
&x 8S(9 I(9 X~

x (ZB) + a(IB = -1 - 1 B (4.28)
ax B 9X
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where the solutions for iB and AIB, evaluated at x = 0 and x = i, are given in

Eqs. (4.22)-(4.25).

Since it has been shown that- (IB) - (I8) / while '1B ~ 1B/fp the relative

scaling of the terms in the boundary conditions depends on the ordering of the lengths

f, t, and fj. Since we have stated that we are interested in cables with f > A,, the

first term on the RHS of Eqs. (4.27) and (4.28) is negligible. The different possible

orderings of i and ij were defined in Table 4.2; in each case, different terms on the

LHS of Eqs. (4.27) and (4.28), dominate. The possibilities are thus:

x = 0; (18) = 8
open-circuit (i > fi): a = (4.29)

x =1; (I) = -{ 0; (I) --lA (IB) = l (
resistive (t ~ t)): ± a- (=0 (4.30)

x =l; (IB) + axhIs =--3 e

short circuit (ij > ): { ax ax _=0 (4.31)

S ax a xg

Note that in each case 1B/ (18) < 1, as assumed. In particulat, for the open- and

resistice circuit cases, 1B/ (I8) ~ A,/6 < 1, while in the short-circuit case, I8/ (iB)

,/Pl < 1.

Eqs. (4.29)-(4.31) provide the necessary boundary conditions for Eq. (4.17), the

diffusion equation which defines the behavior of the circulating currents in the two

strand model. In each case, the RHS of the boundary condition is a known value, as

specified in Eqs. (4.22)-(4.25).

4.3 Solutions to the Induced Current Equations

The results of Section 4.2 were the homogenous diffusion equation for the locally

averaged induced current (i.e., the circulating current) and the associated boundary

conditions, simplified for each possible joint classification. In addition, three cable

length regimes were identified: short, finite, an infinite.
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In this section, each of the three length regimes is examined separately in order to

emphasize the asymptotic limits of the short and infinite cases. The infinite regime

will be discussed first, followed by the short regime. In each case the ordering of the

length scales, £, £D, and Cj, implies an asymptotic limit which allows the solution to

be found in closed form. The more general case of the finite cable is studied last.

For each length regime, the problem is further divided into the three joint clas-

sifications: open-circuit, resistive, or short-circuit. These distinctions are not only

helpful in describing the behavior of the cable but also help in solving the equations

since the appropriate boundary conditions, Eqs. (4.29)-(4.31), are different in each

case.

4.3.1 The Infinitely Long Cable, e > D

Referring to Table 4.1, a cable can be considered infinitely long when f > D, where

t= Vrop/V'Ori]. When this condition is true, the effects of the circulating cur-

rents induced at one joint never reach the opposite end of the cable. Thus, each joint

can be considered separately and the two solutions later superposed. This section

focuses on the joint located at x = 0 but the results are equally valid for the joint at

x = .

As a result of the infinitely long condition, the boundary condition at x = f can

be replaced with the much simpler condition: (IB) -+ 0 as x -+ cc. This substitution

alone greatly simplifies the solutions and thus justifies the separate treatment of

the infinite case. The resulting equation, with general boundary conditions, for the

infinite case is thus (referring to Eqs. (4.17) and (4.27))

2 a(IB) a - B) 0 (4.32)

x =0; (IB)-fJa8 I) -bo + bo (4.33)

x -0; (IB) -+ 0 (4.34)
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t 1000 m
tp 2-10' m
w 102 m
0 -7r/2

(-1 100 E m-1
£ 0.7 pH

B5(0) 2 T/s
tramp 5 s

tD ~ 200 m
b'O~ 6. -10- 2 Amps m-1

Table 4.3: Cable parameters used in examples for Infinite Cable Length Regime.

where the definitions of bo and b' are given in Eqs. (4.22) and (4.23).

Exploiting the different joint regimes which have been identified in Section 4.2.5,

the boundary conditions at x = 0 can be simplified using the reductions given in

Eqs. (4.29)-(4.31). The distinct solution for each joint regime is developed separately

in the following paragraphs.

A standard format will be introduced in which the validity regime and reduced

boundary conditions for each scenario are stated before solving the diffusion equation,

Eq. (4.32). In each case the solution is evaluated for typical cable parameters and

th' results presented graphically.

For the infinite length regime, the typical cable parameters are given in Table 4.3.

The last two quantities in the table are derived from the other parameters according

to the definitions in Eqs. (4.23) and (4.26). The other length scale of interest, £j, will

be determined by the choice of Rf which will be different for each case.

In general, the final solutions will be directly proportional to a trigonemetric func-

tion (or combination of functions) of 0. The value of 0 therefore plays an important

role in determining the magnitude of induced currents in the two-strand model. A

statistical study of the effects of the arbitariness of 0 is considered in Chapter 7 but,

for now, the value of 0 is chosen arbitrarily.
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Infinite Length, Open-Circuit Joints

validity regime:

" f >> fD

" t > tj

boundary conditions:

Sx =0; (IB) = UJbo

Sx- oo; (IB) -+o

The Laplace transform is used to solve the diffusion equation for the given bound-

ary conditions in the semi-infinite domain 0 < x < oc. The Laplace transform of (IB)

will be defined as Z(p) where p is the transform variable. The transform of Eq. (4.32)

and its boundary conditions thus produces:

a2 - PZ = 0 (4.35)

x = 0; Z = p-1Ujb (4.36)

S ; Z -+ 0 (4.37)

where the initial condition is (IB)(tO) = 0. The value of Z is found using standard

solution techniques for ordinary differential equations. And, with a thorough table of

Laplace transforms [30], the inverse transform can be found directly:

Z = fjbp~'exp-Px/

(IB) = Ujb'OErfc ( 2 X) (4.38)

where Erfc(x) is the complement to the error function, Erfc (x) =1 - Erf (x). Re-

ducing this result to the "primary" parameters listed in Table 4.3 helps to show how
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Figure 4-1: Example of circulating current in the Infinite Length, Open-Circuit Joints
Regime.

(IB) scales:

(IB) - b5wep sin() Erfc (x (4.39)

To give a sense of how the circulating current behaves it is useful to present

the solution graphically. Using the parameters given in Table 4.3, the choice of

Rj = 2 - 10~ 9 gives ejle < 1 and thus satisfies the validity conditions for this

regime. For these values, Eq. (4.39) is plotted for several values of t in Fig. 4-1.

Since the open-circuit, infinitely long regime produces the smallest (IB), this is

a good time to check the assumption used in the multiple length scale expansion,

namely (IB) > 1. Comparing the solution for (IB), Eq. (4.39), to the solution for

1B, Eq. (4.20), it can be seen that this criterion is always true for j > E,, consistent

with the validity regime for this and all other regimes considered in this thesis.
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Infinite Length, Resistive Joints

validity regime:

boundary conditions:

* x=O; (IB) - fJ8  = tib'

" x - oo; (IB) - 0

The Laplace transform is again employed to simplify the partial differential diffu-

sion equation into an ordinary differential equation:

a2 2 - pZ = 0 (4.40)

x=0; Z-tj[ =pltbo (4.41)

XZ -+ 0 (4.42)

where the appropriate boundary equation for resistive joints was found in Eq. (4.30).

The value of Z is found using standard solution techniques. With a thorough

table of Laplace transforms [30] the inverse transform can be found directly:

Z = e b ' P-1 (P + exp

(IB) = 6 bo Erfc ( - exp - + -2t) Erfc ( X + (4.43)
2/t tiej f2 2 a -,I

The advantage of solving the infinite length regime separately can now be appreciated

as it would be difficult to extract the asymptotic limit represented by Eq. (4.43) from

the infinite series solution for the finite cable regime which will be developed later.
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Figure 4-2: Example of circulating current in the Infinite Length, Resistive Joints
Regime.

To better appreciate how (1B) scales with the engineering parameters, Eq. (4.43)

can be rewritten:

('Bw) sin(0) Erfc (E' )
(1B) = -- (4.44)27rR _exp (ajiRaj X + t ) Erfc ' + R"')

To give a sense of how the circulating current behaves it is useful to present

the solution graphically. Using the parameters given in Table 4.3, the choice of

Ri = 2 - 10-'" gives 6e/e - 1 and thus satisfies the validity conditions for this

regime. For these values, Eq. (4.44) is plotted for several values of t in Fig. 4-2.
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Infinite Length, Short-Circuit Joints

validity regime:

boundary conditions:

0 x = ; =(B -b40ex

Te t-+ n; (Ib) -i 0

The equation and boundary condition in the transform domain are:

a2 _ PZ = 0

x = 0;

X -4 00;

(4.45)

(4.46)

(4.47)

az - 1b'ax 0

Z -> 0

The value of Z is found using standard solution techniques. Using a thorough table

of Laplace transforms [30] the inverse transform can be found directly:

Z = ab'op-~ exp~

(IB) = ab' [27r~5t exp Erfc
4a2t a 2ceVt

(4.48)

To better demonstrate the scaling of (IB) in the infinite length, short-circuit joint

regime, the result can be rewritten in terms of the engineering parameters:

B__w__p_ _/___sn -sigCx 2  -
(1B) = sin(9)exp ( 2 'LCxErfc (4.49)

A/2/- 2t 4t ms/21

As might be expected, the magnitude of (IB) no longer depends on !Ri.
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Figure 4-3: Example of circulating current in the Infinite Length, Short-Circuit Joints
Regime.

To give a sense of how the circulating current behaves it is useful to present

the solution graphically. Using the parameters given in Table 4.3, the choice of

Rj = 1 - 10-6 Q gives 6/e >> 1 and thus satisfies the validity conditions for this

regime. For these values, Eq. (4.49) is plotted for several values of t in Fig. 4-3.
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Summary of Infinitely Long Cable Results

The solutions developed above for the cases of infinitely long cables with open-circuit,

resistive, or short-circuit joints only dealt with the end of the cable at x = 0. The

solutions for the currents induced at the opposite nd, z = e, are exactly analogous

and can be linearly superposed with the solutions presented here.

Since the time it takes for the circulating currents to diffuse into the center of an

infinite cable is by definition longer than the ramp-time, t,,,p, infinite cables suffer

the least from the effects of current distribution. This is good news for the design of

large scale magnet systems but highlights the difficulties of modeling large magnets

with lab-scale experiments.

4.3.2 The Short Cable, f < fD

When the length of the cable is much shorter than the diffusion length for ramp-times

of interest, the cable falls in the short cable regime. In this asymptotic limit, the

circulating current is fully diffused across the cable and both joints play a dominant

role in determining the overall current at all points along the cable at all times of

interest.

Whereas the Laplace transform proved to be an effective tool for solving (IB) in

the infinite regime, the addition of the second boundary condition makes this method

more difficult to employ. Instead, a perturbation analysis is used to solve the diffusion

equations.

Again, the different joint regimes identified in Section 4.2.5 will be used to allow

asymptotic solutions to be reached directly, where appropriate. The solution for each

joint classification is developed separately using the format introduced in the last

section. A specific example for each case will be given based on the typical cable

described in Table 4.4.5 First though, the perturbative method which will be used is

explained for the general case.

"The cable parameters are the same as were used for the infinite case except for the length and
the addition of 01.
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t 10 m
p 2-10-1 m

w 10-2 m
00 -7r/2

01 7r/4
QL 100 Q-im-1
L 0.7 pH

B$(0) 2 T/s
tramp 5 S

* D -200 Im
bo ~-6- 10-2 Amps m-'

, -4- 10-2 Amps m-1

Table 4.4: Cable parameters used in examples for Short Cable Length Regime.

Short Length - Perturbative Solution Method

In the short cable regime, it is useful to exploit the scaling £ < eD to allow a pertur-

bation solution of the current diffusion equation. In doing so, it is convenient to begin

by introducing the dimensionless variables, i = x/£ and i t/tamp. Substituting

these terms into Eq. (4.17) gives:

&2(IB) 2 f('B)_
a2__ ) 2 _ a 1B 0 (4.50)

while the boundary conditions, Eqs. (4.27) and (4.28) become (in general):

x=0; (I()I ) -bo + ibo (4.51)
(IB>-T &)

= 1; (B)+- + . - -b-bo (4.52)

where E2 = 2/(r2tm2P) = (f/£D) 2 is a very small number for the short cable regime.

The other dimensionless parameter which appears is tg/i. Depending on the joint

classification (open-circuit, resistive or short-circuit), £j/l will be ~ E, ~ 1, or ~ 1/c,

respectively. Each case will lead to a different solution, presented individually in the

three sections which follow this general discussion.

To take advantage of the small parameter, E, the induced current can be expanded
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in a perturbation series:

(IB) (, ) = (B)O ( ) + (IB)2 (; ') + - - - (4-53)

where (IB)2 / ('B)o ~ E2 . The next step is to substitute this expansion into Eq. (4.50)

and then group terms of similar order. Collecting terms of the order 60 produces the

result:
a 2(IB)0 = 0 (4.54)

while the collecting terms of the order E2 produces the equation:

a2 (IB)2  2 a(IB)O -0 (4.55)
&2 ~ ai 0(.5

The way in which these two equations will be solved depends on the boundary con-

ditions. In general, we are only interested in the zero-th order term and will only

obtain (IB) 2 if it is a necessary step in solving for (IB)0 .

At this point, the ordering of terms in the boundary conditions cannot be identified

since we have not yet specified which joint regime is applicable. In each of the sections

below, the scaling of the boundary conditions changes, thus producing results with

different behavior. At the start of each section, the 0 order boundary conditions are

listed, in accordance with Eqs. (4.29)-(4.31)
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Short Length, Open-Circuit Joints

validity regime:

boundary conditions (order E0):

" * = 0; (IB)o = fib'O

" * = 1; (IB)o = - b'

For this regime, we can solve the current diffusion equation for (IB)o directly. Equa-

tion (4.54) is integrated twice to produce the result:

(IB) 0 = C1(t + C2(t) (4.56)

where C1 and C2 are unknown functions of i which, in general, need to be solved

using the e0 order boundary conditions as well as the higher order equations.

In this case, however, C1 and C2 can be found directly from the order e0 boundary

conditions (listed above) and the higher order terms are never needed. The solution

is:

C1 = -e (b+ b') (4.57)

C2 = tib'o (4.58)

For time-scales of interest, the induced current is steady-state with a linear profile:

(IB) ~ (IB)o = -ej(b'o + b'). + fibfl (4.59)

Rewriting this equation in terms of the primary variables produces:

I)s( ( x
(IB) = 27r~ [Sin (01) )-(1- ) sin (0o)] (4.60)
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Figure 4-4: Example of circulating current in the Short Length, Open-Circuit Joints
Regime.

For the typical cable parameters given in Table 4.4, a joint resistance of R =

5 - 10- Q gives Cj/f < 1 thus satisfying the validity criteria for this regime. Evalu-

ating Eq. (4.60) for these values produces the steady-state current profile depicted in

Fig. 4-4. Notice that in order to obtain fj < the necessary joint resistance, ER, is

much larger than values which will be considered practical in the thesis. Nonetheless

the details of the Short Length, Open-Circuit Joints Regime have been included for

the sake of completeness.
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Short Length, Resistive Joints

validity regime:

< D

boundary conditions (co order):

* =; (IB)O - = ejbl

* =1; (IB)O + 9"a = -tib'

Again, for this regime, we can solve the current diffusion equation for (IB)O directly.

Equation (4.54) is integrated twice to produce the result:

(IB)O = C1(t): + C2 (i) (4.61)

where C1 and C2 can be found directly from the zero-th order boundary conditions

(listed above). The solution is:

C, = -e&(b +b') (4.62)

t ~+ JJ)bOI--t22,
C2 = t + 2fb - b (4.63)

For time-scales of interest, the induced current is again steady-state with linear profile,

but with more complicated coefficients. Rewriting this equation in terms of the

primary variables and dimensional units produces:

Eiwt, (1+o-iRjx)sin(O1) -(1 + o-±Ij( - x))sin(Oo)
(IB) = 27 [(1 2+a9je s (4.64)

For the typical cable parameters given in Table 4.4, a joint resistance of Rj =

5. 10-' gives ti/e - 1 thus satisfying the validity criteria for this regime. Evalu-

ating Eq. (4.64) for these values produces the steady-state current profile depicted in

Fig. 4-5. Again, the relatively high value of R. needed to match the validity regime
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Example of circulating current in the Short Length, Resistive Joints

indicates that this will not be a regime of principal interest when considering actual

cable design.
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Short Length, Short-Circuit joints

validity regime:

t < fD

i > f

boundary conditions (order 1/E):

* x =O; 8(I 5 =

* z = 1; "3 = o

boundary conditions (orderEo):

0 =; (IB) - I 2 =tbo0 e & 0

* x=1; (I)o + =

In the short-circuit regime, the large parameter £j/£ ~ 1/e elevates the derivative

terms of the boundary conditions to 1/c order and thus the derivatives (IB)o must

disappear at i = 0 and i = 1.

For this case, we will need to use the second-order equations in order to solve

the current diffusion equation for the zero-th order term. Again, the first step is to

integrate Eq. (4.54) to produce the result:

(IB)0 = C1(i) + C2(i) (4.65)

In this instance, however, the 1/6 order boundary conditions above are no longer

sufficient to entirely specify C, and C2 . Both conditions specify C = 0 but leave C2

an unknown function of time, i. Thus we only learn that (IB)O has no i dependence,

(IB)O = (-B)0 (t)

To solve for (IB)O, it is necessary to invoke Eq. (4.55) where the terms of order e2
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are balanced. Integrating Eq. (4.55) over the length of the cable, we arrive at

1 (19(IB)21 (9 (IB)2 C2 ( BO =0(-6
___ __ __ _- ___ _ = 0 (4.66)

From the boundary condition for the order-C2 terms, above,

1 (IBO - bo (4.67)

1 &(IB)2  1
2 b' (4.68)

Substituting these results into Eq. (4.66) provides the closure necessary to solve for

(IB)o. The resulting ordinary differential equation in time can be solved (with initial

condition (IB)O(t=0) = 0) to yield:

(lB)O = fL(b' - b'1) (1 - e- (4.69)
20

where 'ij = 7/t, and rj =_ C/R is the LIR time-constant of a cable with

insulated strands. Although we have determined that for this regime the joints are

short-circuits compared to the alternate reistive path, 1/ (oij), the term short-circuit

does not imply i < 'i.

Rewriting Eq. (4.69) in terms of the primary variables produces:

(IB) = (sin(91) - sin(Oo)) (1 - e-TJ) (4.70)

For the typical cable parameters given in Table 4.4, a joint resistance of Rj =

5-10- Q gives e/z > 1 thus satisfying the validity criteria for this regime. Evaluating

Eq. (4.70) for these values produces the current profiles depicted in Fig. 4-6 for several

values of time, t. The characteristic time-constant for this example is rj = 1.4 s. Since

the circulating current does not vary over the length of the cable, it makes sense to

plot (IB) vs. time, as shown in Fig. 4-7

The value of Rj chosen for this example can be considered typical for lab-scale

cables. Thus, the solution for the Short Length, Short-Circuit Regime just developed
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Example of circulating current in the Short Length, Short-Circuit Joints

will be used again in later sections of this thesis when short cables are analyzed.
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Figure 4-7: Example of circulating current vs. time in the Short Length, Short-Circuit
Joints Regime.
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Short Cables, Summary

While solutions were found for Short Cables with joints ranging from open-circuit

to short-circuit, it was shown that for typical values of joint resistance, Ri, only the

short-circuit regime will be of practical interest for the cables considered in the remain-

der of this thesis. Focusing then on only the asymptotic limit of short-circuit joints,

Eq. (4.70) revealed that the induced currents are uniform in space and exponentially

approach a steady-state in time. The characteristic time-constant, r = fL/R will

be an important factor in the consideration of Ramp-Rate Limitation in short cables,

as discussed in Chapter 6.

4.3.3 Finite Length cables, £ ~t

When the cable length, f, is of the same order as the diffusion length, eD, the solu-

tions for the induced currents are more difficult since asymptotic expansions are not

possible. Although they can be found, the solutions take the form of infinite series;

no closed form exists. Even so, it is still useful to consider the three distinct joint

regimes separately as the solutions for open-circuit and short-circuit joints can be

found more simply than the general solution for resistive joints.

Since the perturbative expansion used for short cables no longer helps for finite

cables, we once again turn to Laplace transform methods. Unfortunately, the inverse

transforms no longer converge on closed form solutions. For the cases of open-circuit

and short-circuit joints, the inverse transforms correspond to integrals of theta func-

tions, a type of elliptic function which can be represented by rapidly converging series

[31]. In the more general case of resistive joints, the solution in transform space has to

be inverted by integrating over the complex plane using residue theory. The solution

for each case is developed separately below using the now familiar format developed

above.

For the finite case, it proves useful to shift the origin of the reference frame to

the center of the cable. Thus, the domain -0 < x < will be used in the following

sections. The results can easily be shifted back to the original scale when necessary
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e 100 In
4 2-10-1 M
w 10-2 m

0o -7/2
01 ir/4

9-L 100 Q-1m-I
Ic 0.7 pH

AL(0) 2 T/s
tramp 5 S

D ~-200 In
b ~ 6 - 10-2 Amps m-'
b'__ ~ -4 - 10-2 Amps m-1

Table 4.5: Cable parameters used in examples for Finite Cable Length Regime.

(i.e., when plotting solutions). A specific example for each solution will be given

based on the typical cable described in Table 4.5.'

6The cable parameters are the same as were used for the short case except for the length, i.
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Finite Length, Open-Circuit Joints

validity regime:

boundary conditions:

* x = -f; (IB) = tib6

Sx =; (s) = -

Taking the Laplace transfrom of the current diffusion equation and the appropriate

boundary conditions listed above yields:

a2 a -Z (4.71)

x = -' Z = p-0ibo (4.72)

x = Z = -p-ilb (4.73)

where Z is the transform of (IB) and p is the transform variable. The initial condition

is assumed to be (IB) (t = 0) = 0. The value of Z is found using standard solution

techniques for ordinary differential equations:

j cosh (4-) tj sinh( )
Z= i(b' - b') c * (p sinh+')) (4.74)

2 osh ( ) 2/P p inc(e

Using a thorough table of Laplace transforms, the inverse of the first and second

terms on the RHS (designated below with the subscripts a and b, respectively) are

found to be

(IB) = - a2 (b6  b') to x i4 a2t dt (4.75)

(IB)b = - _ 2 (by + b' 4 i4 2 dt (4.76)
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where the theta function of the first kind, 01, and the theta function of the fourth

kind, 04, are defined as: [31]

0001 (v )ai$ (-1)"i(n- /pen2.g (4-77)

04 (v1r) S e'"2r eir2n" (4.78)
n=-0

Using these definitions, (IB)a and (IB)b can be reduced to:

(IB). = - n=1 (i- e-(2n-1) 2 2 t/ 2 ) cos (2n - 1)7x) 7 9 )
n12n - I

(JB)b = (b6 + b) 1 (- e4n222t/p) sin 2nx) (4.80)

Rewriting this result in terms of the primary variables gives a better sense of how the

circulating currents scale for this case:

=Bw_, (sin 01 - sin Oo) E'_ (1 - e-t/7n) cos ((2n 1
(IB) = L Pn=2- (4.81)

7B 2RJ + (sin 01 + sin o) E " I1 (i - e-t/bn) sin ((2 ) (8

where the time constants are defined using the notation

-rL = 2cr-1f2 (4.82)

-a, = r±/(2nw - 7r)
2  (4.83)

-bn = - 1(2nr)2 (4.84)

For Eq. (4.81), x ranges from -f/2 < x < f/2.

To give a graphical example, the joint resistance Ri = 5 - 10-4 Q is used. The

resulting ratio of the boundary scale to the cable length is, ei/t < 1 thus satisfying

the validity regime for this regime. The corresponding results are plotted in Fig. 4-8.

In the figure, the x-axis has been re-shifted to the range 0 < x < in order to

be consistent with the other figures in this chapter. The solution is plotted for the

first 100 terms of the infinite series but in this case more terms would be needed to
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Figure 4-8: Example of circulating current in the Finite Length, Open-Circuit Joints
Regime.

achieve better matching at the ends-the solution should be linear in x. Luckily,

this limitation will not affect future work as the open-circuit joint regime is not of

particular interest for the studies of current distribution.
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Finite Length, Short-Circuit Joints

validity regime:

0 11 >

boundary conditions:

e _ . a(IB) -o

0 X (IB) _

Taking the Laplace transfrom of the current diffusion equation and the appropriate

boundary conditions listed above yields:

2 -92Z =(4.85)

X = -; = -p-lb (4.86)

x = = -p-1b', (4.87)

where the initial condition is assumed to be (IB) (t = 0) = 0. The value of Z is found

using standard solution techniques for ordinary differential equations:

a cosh (') _ sinh (a)Z = - (b' - b' ) (b'+ b') (4.88)
2p3/2 sinh 2 p3/2 cosh

Using a thorough table of Laplace transforms, the inverse of the first and second

terms on the RHS (designated below with the subscripts a and b, respectively) are

found to be

(IB)a = -(b - be) j 4  i4rt df (4.89)

(IB) = +(b +b 1 ( 1 i4 t) dt (4.90)
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where the theta function of the first kind, 0 1, and the theta function of the fourth

kind, 04, are defined in Eqs. (4.77) and (4.78). Using those definitions, (IB). and

(IB), can be reduced to:

(2t~ = 2 (b' b,) [ 7r 2 &at + EO (_1)n - 4,, 2 ,2, 2 t/_,2 ) CS(2nrrx)1}4.91)

(IB)b = 2e(bo+b ) 2 b1- eo2,-}2,2,/g) sin (2n -- 1)7x 4.92)
1 (2n

Writing this result in terms of the primary variables gives a better sense of how

the circulating currents scale for this case:

(IB) = b5WefO0±e (sin 01 - sin Oo) [ + A 7 *1 _ (n - e(2/nb) cos (2xe)]
27r - (sin 01 + sin 00) 2 E-1 (-I" (I - e-t/T) sin (2n-1)rX

(4.93)

where the definitions of , r-, and rj were given in Eqs. (4.82) and (4.83). For

Eq. (4.93), x ranges from -1/2 < x < e/2.

To give a graphical example, the joint resistance Ri = 106 Q is used. The

resulting ratio of the boundary scale to the cable length is, ti/ >> 1 thus satisfying

the validity regime for this regime. The corresponding results are plotted in Fig. 4-9.

In the figure, the x-axis has been re-shifted to the range 0 < x < e in order to be

consistent with the other figures in this chapter.

The behavior of this regime is characteristized by the linear (in time) growth term.

For times such that t > r_ the exponential terms will be saturated and the "shape"

of the profile will be fixed while its "offset" grows in time. Of course this behavior

is limited to the validity regime of this region; for long enough times, the criterion

D ~tis no longer valid.
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Figure 4-9: Example of circulating current in the Finite Length, Short-Circuit Joints
Regime.
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Finite Length, Resistive Joints

validity regime:

* .etD

* J

boundary conditions:

-= . ___S1 2 (I) - J = b

Sx =; (IB) + = -fib'

Taking the Laplace transfrom of the current diffusion equation and the appropriate

boundary conditions listed above yields:

O 2 - PZ = 0 (4.94)

;= Z - ja = P b (4.95)

2 = P (4.96)

where the initial condition is assumed to be (IB) (t = 0) = 0. The value of Zis found

using standard solution techniques for ordinary differential equations:

Z = -E (b' - b') cosh ',)
2 p [cosh (9) + 3 sinh ( )

P [coshsina(a 2

- (b6 + b') si _ (Vx)(4.97)
2 p [sinh (") + ,yPe3 cosh 2.,

Unfortunately, our trusty thorough table of Laplace transforms will not have the

inverse of the the above function, even in series form. In this case, the inverse can be

found using contour integration and residue calculus. Since the mathematics become
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quite involved, the details are presented in Appendix A. The resulting series is:

t (b. e-42t2,/ COS (Ikn 1:

2 ~n=1 cos (Ia) - (1+ 3")kIcsin (/k) -i Cos (n
(bo+ b') + S

n=1 sin (k) +e s(k))

(4.98)

where k, and k, are the n-th positive solutions to the transcendental equations:

In tan(c) = ;

n cotI(k) = - ;

n > 0

n > 0

(4.99)

(4.100)

for n = 1, 2, 3 .. oo.

Writing the final result in terms of the primary variables is more difficult due to

the non-explicit nature of the k, and k, terms, but reducing the remaining terms

gives a better sense of how the circulating currents scale for this case:

(IB) = E (sin 01 - sin Oo) [I + Z= 1 +7e~'rI cos -

27rR + (sin 01 + sin Oo) [2+ ieZ C2e-*/m sin

(4.101)

where the definitions of the time-constants f, and , as well as the coefficients On
and C, are related to the eigenvalues k and kn:

,n = 2ajtCE2 (2k) 2  (4.102)

= 2ar±)U 2 (2k ) 2  (4.103)

O = [COS (k.) - + n sin (In) - 1 k2cos (k)] (4.104)
[cos 2 o)± _Rj cl~k/n a I jfJ \ J

0, = sin (k) + + )kn cos (kn) - j I sin (k,)] (4.105)

where n = 1,2,3... oo. For Eq. (4.101), x ranges from -£/2 < x < t/2.
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Figure 4-10: Example of circulating current in the Finite Length, Resistive Joints
Regime.

To give a graphical example, the joint resistance Rj = 5. 10-' Q is used. The

resulting ratio of the boundary scale to the cable length is, ej/e ~ 1 thus satisfying the

validity conditions for this regime. The corresponding results are plotted in Fig. 4-10.

In the figure, the x-axis has been re-shifted to the range 0 < x < e in order to be

consistent with the other figures in this chapter.

Although we have limited the validity region of this regime to cables in which

t ~ 6s ~ fD, this result, Eq. (4.101), is actually valid globally. It is only in this

regime, however, when no asymptotic limits can be taken that this full solution is

necessary. Since Eq. (4.101) cannot be written explicitly (i.e. k,, and Ic, are roots of

a transcendental equation), it is very useful to have independent, explicit solutions

for the other regimes.
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Finite Cables, Summary

The solutions for the circulating currents in finite cables were found for the range of

joint regimes from open-circuit to short-circuit. In each case, the solution was given

in the form of an infinite series. While the series solution for the open-circuit case

did not converge well at the endpoints x = 0 and x = f, the solutions for the resistive

and short-circuit cases exhibited rapid convergence.

For the short-circuit and open-circuit joint regimes, the characteristic time-con-

stants and scaling factors could be calculated explicitly. For resistive joints, however,

the time-constants and scaling factors have to be found through solving transcenden-

tal equations. For this reason, the Finite-Resistive solution is reserved for the case

when no other solution is applicable even though it can actually be used for all cases.

4.4 Conclusion

In this chapter, the domain of operation known as the Superconducting Domain was

identified. Basically, the Superconducting Domain is defined by the criterion: I < I,.

In this domain, the resistance of the strands is negligible and the current diffusion

equation can be solved analytically. Since the governing equation (in this domain) is

linear, the induced current, IB, and transport current, IT, can be solved separately

and later superposed. The goal of this chapter was thus to solve for the induced

currents in the Superconducting Domain.

As shown in Chapter 3, the simplicity of the two strand model allows us to focus

exclusively on the current in strand one, which for convenience is referred to simply

as I. The current in strand two is related to I through the equation: '2 = IT - I.

A multiple length scale analysis further divided the induced currents into two

components: the circulating current, (IB), and the interstrand coupling current, 1B.

The circulating currents have been identified as important determinants of current

distribution and Ramp-Rate Limitation. While the interstrand coupling currents are

interesting in there own right from the point of view of AC losses, they are needed

here only to resolve the boundary conditions on the circulating current equation.
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The multiple length scale expansion resulted in a homogenous diffusion equation

for the circulating current:

( - ( = 0 (4.106)

The difficulty in solving this equation arose from the need to satisfy boundary con-

ditions of mixed-type at either end of the cable:

x = 0; (B) - j 9('B) = J (4.107)
ax '9X

X = f; (IB) + 6&IB) - (4.108)
ax ax

where the spatial derivative of the interstrand coupling current, LIB is a known

value.

Although a general solution to Eqs. (4.106)-(4.108) was eventually developed, it

suffered from two drawbacks: the solution could only be expresed as an infinite series

and the coefficients were not explicit-they were roots of transcendental equations.

To avoid these difficulties, it proved useful to find closed form analytic solutions for

different regimes of operation wherever possible.

To identify asymptotic limits in which closed form analytic solutions were avail-

able, two characteristic length scales were introduced: the diffusion length, eD =

ftramp!/2/L, and the boundary scale, eJ = (oJ)-'. The different possible rel-

ative orderings of eD, J and the cable length, f, resulted in a 3 x 3 matrix which

described the different operating regimes. A graphical depiction of these regimes and

their boundaries is given in Fig. 4-11.

For each of the three cable length regimes (infinite, finite, short) a separate solution

technique was needed to find an analytic solution to the current diffusion equation,

Eq. (4.106). Additionally, for each of the three joint regimes (open-circuit, resistive,

short-circuit), different asymptotic limits of the boundary coditions, Eqs. (4.107) and

(4.108), was needed. Solutions for the circulating current, (IB), in each of the nine

resulting possibilities were discussed individually in Section 4.3. Rather than tabulat-

100



Short - 0 Infinite
103

Short Finite

102 Open-Circuit Open-Circ
Eq. (4.60) Eq. (4.81)
Fig. 4-4 Fig. 4-8

1 0 ---- - -.. ..... -- -------

Short

100 Resistive
Eq. (4.64)
Fig. 4-5

Finite
Resistive
Eq. (4.101)
Fig. 4-10

101-
Short Finite

2 Short-Circuit Short-Circ
10~ Eq. (4.70) Eq. (4.93)

Fig. 4-6 Fig. 4-9

10-3

uit
Infinite
Open-Circui
T A 2 )

Fig. 4-1

Infinite
Resistive
Eq. (4.44)
Fig. 4-2

Infinite
uit Short-Circuit

Eq. (4.49)
Fig. 4-3

10-3 10-2 10~1 10 10 102

Cable Length I Diffusion Length ( E / ED)

Figure 4-11: The 3 x 3 matrix of operating regimes. (eD = /V/2ia,

101

U

0

3

t

I



ing the nine results here, reference is made to the appropriate equations in Fig. 4-11.

The same figure also refers to plots of the solution in each regime for representative

cable parameters. The equations and figures do not include the transport current for

each strand, IT/2; the total strand one current would be I = IT/2 + (I) where IT/2

is an independently determined quantity.

Each solution is dependent in some way on the arbitrary angle, 0. In order to

present the solutions as simply as possible, the values of 9 used in the examples were

chosen to highlight the different features of the model. A thorough discussion of the

importance of 9 and how it might best be characterized is reserved for Chapter 7.

In the examples presented for the nine different operating regimes, the magnitude

of the circulating current varied over a large range. In some cases, the induced

current was negligible compared to expected values of the transport current per strand

(IT/2 ~ 100 Amps). In other cases, the induced current is large enough to actually

affect the stability of the cable. Naturally, we will tend to focus on the cases in which

('B) is large enough to cause concern.

From this point of view, one regime of particular interest was identified as the

Short Cable/Short-Circuit Joint regime which was valid for lab-scale cables with a

wide range of joint resistances. In this regime, the circulating currents can be of the

same order of magnitude as the transport current per strand. This case is studied

extensively in Chapter 6.

The Finite Length/Resistive Joint and Finite Length/Short-Circuit Joint regimes

are also of interest since the induced currents can range from approximately 5% to

20% of the transport current for typical cable parameters. The Finite Length Regime

will be treated in Chapter 5.

The Infinite regimes proved less interesting because the induced currents were

generally small and did not diffuse to the central, high-field region of the cable. This

may suggest that short test cables used to model the behavior of large magnet systems

will be much more susceptible to Ramp-Rate Limitation and cause unnecessary worry

for magnet designers.

The current distribution in the Superconducting Domain (as calculated using the
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analytic results of this chapter) will serve as the initial conditions for the Resistive

Domain considered in the next chapter. With a simple model of the critical current

as a function of magnetic field, the analytic solutions, for the current, I, can be solved

for the transition point I(x, t) = I(x, t) for the earliest possible time, t. At this point,

the strand resistance is no longer negligible and the analytic solutions are no longer

valid.

Of course, it is possible for the ramping field and current to reach "flat-top" at

time t = tamp before the onset of the Resistive Domain. After flat-top, b = 0 and

thus the induced currents start to decay. Thus, if I is not greater than I, at some

point during the ramp, the cable never enters the Resistive Domain.

Even without considering the non-linear Resistive Domain, the results of this

chapter already point to several important conclusions. First, the magnitude of the

circulating currents, and thus the imbalance in current distribution, depends only on

the transverse magnetic field at the joints, b5(x = 0) and bi(x = i). While the peak

field (usually at the center of the cable, x = /2), is important for calculating the

critical current, it does not directly affect current distribution in the Superconducting

Domain. One implication of this finding is that when modeling large magnet systems

using smaller scale experiments, it is important to consider both the peak field as well

as the field at the joints.

Another important conclusion was the definition of the 3 x 3 matrix of operating

regimes. Again, experimental comparisons of the effects of current distribution in

differing magnet designs need to take account of the possibly different regimes of

operation for each cable.
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Chapter 5

Current Distribution and Stability

Analysis in the Resistive Domain

for Full-Scale Magnets

In this chapter, the current distribution in a two-strand cable will be studied for the

case when one or both strands become resistive. Unlike Chapter 4 where analytical

solutions were found for the Superconducting Domain, this chapter will focus on the

numerical solutions of the coupled electrical and thermal equations which define the

two-strand model in the Resistive Domain. Special attention will be paid to the notion

of stability in full-scale magnets while lab-scale cables will be studied extensively in

the next chapter.

The Resistive Domain is defined simply as the complement of the Superconducting

Domain; if either strand is resistive over any portion of its length, the Superconduct-

ing Domain is no longer valid and the cable is said to be in the Resistive Domain. This

chapter begins with a description of the transition from the Superconducting Domain

to the Resistive Domain and then develops the electrical and thermal equations nec-

essary to fully characterize the cable's behavior when the strands become resistive.

The validity regime of the Resistive Domain is limited to a brief period of time in

order to take advantage of the incompressibile helium assumption which applies only

during the initial phases of heating. As such, the Resistive Domain model is adequate
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for studying stability but is inadequate for studying the full quench evolution.

Since the Resistive Domain equations form a non-linear set of second-order partial

differential equations, numerical techniques must be employed to solve the model. The

details of the numerics are developed in Section 5.3.

In Section 5.4, an example scenario is presented to highlight the general features

of the behavior of full-scale magnets in the Resistive Domain. The numerical results

are presented graphically and lead to the conclusion that full-scale magnets are un-

conditionally unstable in the Resistive Domain. The discussion of lab-scale magnets,

which behave very differently, is postponed until Chapter 6.

5.1 Onset of the Resistive Domain

The solutions derived for the Superconducting Domain in Chapter 4 are valid for

i < t, where t, is the time at which the current in strand one first reaches the critical

current at any point along the cable. In other words, t, is found by solving the

equation:

min[Ic(x, t,) - Iscdomain(x, t,)] = 0 (5.1)

where I, is a specified function of magnetic field and temperature and ISCdomain, is

the total current in strand one, expressed analytically using the results of Chapter 4.

The min operator works by scanning the range 0 <x < t to find which x minimizes

the value of its argument. While both I, and ISCdomain are expressed analytically, it

is in general impossible to solve Eq. (5.1) explicitly. Even so, standard root finding

techniques can be used to quickly converge on t,. The functional dependence of I,

was defined in Eq. (3.2) and is repeated here for ease of reference:

S.-(1 - T--T) T < Tc(B)
I,(B, T) = T 0 -T( (5.2)

0 T > Tc(B)

where:

Tb+(To-T)(1 -i-) B < B(3
T(B) =o (5.3)

Tb B > Bo
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and , To, and Bo are characteristic properties of the superconductor, as explained

in Section 3.3.1. Typical values are: = 1250 AT, To = 18 K, BO = 19 T.

For t < t, the strands are in the Superconducting Domain and the current dis-

tribution can be calculated analytically. For t > t, the strands are in the Resistive

Domain and the current distribution is now coupled to the thermal equations. The

new system of equations needs to be solved numerically, starting from the analytically

calculated initial condition I(x, t4) = ISCdomain(X, t*)

5.2 Resistive Domain Model Equations

The electrical equations for the two-strand model were developed for the general case

in Chapter 3. At the time, however, the temperature dependent strand resistances,

I1Z and 1Z2, were left as arbitrary functions of the strand temperatures, T and T2,

respectively. At this point, then, it becomes necessary to specify the definition of

strand resistance and introduce the thermal equations which only become important

in the Resistive Domain.

5.2.1 Electrical Equation in the Resistive Domain

The general equation for current distribution and the appropriate boundary condi-

tions were developed in Eq. (3.22) and are repeated here:

1 a2I IBj_ 2rx + 81T
-- - 2L- (- Z + Z 2 )I= w cos L+ -I -Z2IT (5.4)

x0; 1 - tJ - IT/2 (5.5)x=O;
'

X I/2 (5.6)

where I= I,, the current in strand one.

In Chapter 4, a local averaging technique was used in the Superconducting Domain

to isolate the interstrand coupling currents, which are characterized by the length
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scale 4p, from the longer length scale components of the current distribution. Without

repeating the details, (refer to Section 4.2.2), this procedure can again be used in the

Resistive Domain-this time keeping the resistive terms R1 and R.2. The resulting

equation is: 1

2 21 al 1 1 aI1/2282 1 2 1 (1 + R 2 ) I = IZ 2IT/2 - (5.7)

x=0; I-j a- -f sin 0+IT/2 (5.8)
'x 27

x=1; I+ - = J Bw sin 01 + IT/2 (5.9)
19X 27r

where I represents the total current in strand one (transport current plus induced

current) locally averaged over the twist-pitch length, 4p. As defined previously: IT/2 =

IT/2, 6- = (o-iRJ)-1, a 2 = (2o-_±)-' and 0 and 01 represent the orientation of

the joints with respect to the direction of the magnetic field at x = 0 and x =

respectively.

Non-linear Strand Resistance

The strand resistances, R1, and R 2, will now be defined. In general, 1Z is a function

of the strand current, I, and the temperature and field dependent critical current, Ic:

IZ(x, t) = R(I(X,t), (X, t))

Ic(x, t) =Ic(B (x, t), T(x, t))

Since the strand is a composite, the overall electrical resistance of a single strand is

equivalent to the resistance of two parallel paths: one path through the supercon-

ducting filaments and the other through the matrix. In Chapter 4 we ascertained

that the resistance of the superconducting path is negligible when the strand current

'For ease of presentation, the notation (I) introduced in Chapter 4 is shortened to I for the
purposes of this chapter.
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is less than the critical current. Thus, 1? = 0 when I < I,.

When the current in the strand is greater than the critical value, however, the

superconducting filaments develop a "flux-flow" resistance and the current begins to

be resistively shared between the superconductor and the matrix [12, 32]. Because

the flux-flow resistivity is much greater than the resistivity of the matrix, the super-

conductor in effect carries only an amount of current equal to the critical current, I.

The remainder, I - I, travels through the matrix. The resistive voltage per length

in this case is IR = R,(I - ia). Thus the non-linear resistance can be defined as:

IZ ~ ~ < = I(B, T) (.0

Rm(I - Ic)/I 1> I(B, T)

where Rm is the resistance per unit length of the matrix material defined as

(1 - A)A,

where A is the volume fraction of superconductor in the strand, 77m is the resistivity

of the matrix and A, is the cross-sectional area of a strand. R as a function of I/I

is depicted in Fig. 5-1

Since the current and temperature of strands one and two are distinct, correctly

calculating R1 and 1Z2 from Eq. (5.10) involves a little book-keeping:

-R1 = 7Z(11, Iz) (5.11)

R 2 = IZ(I 2 , Ic2) (5.12)

where 11 = 1, I2 = IT - I, Ic = I(B, T), and I,, = I,(B, T2). The fact that I,

depends on the temperature is what couples the electrical equation to the thermal

equation within the Resistive Domain.

The resistance relations defined in Eqs. (5.11) and (5.12) complete the electrical

model given in Eq. (5.7). That equation is valid only in the Resistive Domain, t > t,

where the initial condition at t = t, is found from the analytic solutions to the
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Figure 5-1: Non-linear strand resistance, 1?, per length.

Superconducting Domain equations.

5.2.2 Temperature Equations in the Resistive Domain

Once the model enters the Resistive Domain, Joule heating occurs and the strand

temperatures begin to rise. As shown in the previous section, the rising temperatures

change the resistances of the strands, thus coupling the thermal equations to the

electrical equation. The thermal portion of the two-strand model is now introduced.

The thermal portion of the model is similar to the one-dimensional model used in

the Quencher code developed by A. Shajii, [33]. The Quencher model was designed

to simulate quench propagation within cable-in-conduit conductors as the result of

externally applied heat loads. In that model, the current distribution was considered

uniform across the cross-section of the cable and the transport current was a known

function of time. As a result, the thermal equations themselves formed a closed

system and there was no coupling to an electrical model.

The Quencher model is derived from the general 3-D mass, momentum, and energy
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equations for the conductor and the helium coolant. The 3-D equations are then

reduced to a 1-D model appropriate for cables in a cryogenic environment. It is this

1-D model which will be used as the basis of the thermal model presented here. The

Quencher model goes on to take further limits of the 1-D model which are appropriate

for analyzing the development of quenches induced by external heat sources. These

limits, however, are not the appropriate limits for the study of quench/recovery events

caused by uneven current distribution in the cable. The final two-strand thermal

model is therefore significantly different than the existing Quencher model.

The 1-D thermal equations as derived in [33] are given here for ease of reference.

Cable Energy Equation:

pcCcA - =A-s - ' +Q--hp(T-T) (5.13)
Ct ax ax

Conduit Wall Energy Equation:

19T __T

p,,C,,A,- = A,- -a - hp(T. - Th) (5.14)

Helium Mass, Momentum, Energy and State Equations:

0Ph a+ (phvh) = 0 (5.15)

PVh + Vhh fpvh- = - -hlvh (5.16)
&+ ax ax 2dh

PhChAh . + V ) +phCAhThy = hp(T -T) +hp(T.-Th)

fPhAvhiVh h(5.17)
2dh

Ph = Ph(ph, T) (5.18)

where the subscripts "c", "w", and "h" stand for cable, wall and helium, respectively.

Standard notation is used for the material properties and flow parameters while the

quantity Q represents the Joule heating in the cable. The notation will be introduced

formally as each equation is discussed in detail below. The geometry of the problem
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Figure 5-2: Cross-section of two-strand model geometry

under consideration is diagrammed in cross-section in Fig. 5-2.

We will now make the necessary modifications and limiting assumptions to obtain

the final l-D thermal model to be used throughout the rest of this thesis.

The Strand Equations

In the present model, the non-uniform current distribution results in differing amounts

of Joule heating in the two strands and thus requires different temperature equations

for each. Dividing the energy equation for the whole cable, Eq. (5.13), into two

produces:

9T1ps sAsW-j-

& &T1  1 /1i 1 \ 2
AF -a ix(T - T2) - hp(Ti - Th) + R 1 (I 1 , I,)I12 + (5.1 9 )

19T2

a aT 2  2 1 2
A., F --,JX (T2 - T 1) - hp(T2 - Th) -+ ±2(I2, Ic2)122 + 5.2)
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where the subscript "s" stands for an individual strand. The two parameters which

do not require much discussion are T and T2, the temperatures of strands one and

two; Th, the bulk helium temperature; A,, the cross-sectional area of the strand;

and p, the perimeter of the strand. The other parameters are discussed in the next

paragraphs.

The material properties of the composite strand combine the properties of both the

superconductor and the matrix. The quantity pC, is the volume averaged specific

heat of the composite conductor and K, is the volume averaged thermal conductivity:

pC, = ApcC. + (1 - A)pmCm (5.21)

r' = As,, + (1 - A)K, (5.22)

where the subscripts "m" and "sc" stand for the matrix material (copper) and the

superconductor, respectively. C is the specific heat, p is the density, r, is the thermal

conductivity, and A is the volume fraction of superconductor in the strand. The nec-

essary properties as a function of temperature are found using computer subroutines

developed for the numerical studies of quench propagation, [34].

The first term on the RHS in each of Eqs. (5.19) and (5.20) is the axial heat con-

duction along the strands. The second term, involving i, represents the transverse

conduction and is new to this analysis since there were no transverse temperature

gradients in the Quencher model. The quantity ji represents the transverse thermal

conductance per length, W/m-K, and is thus analogous to o*±, the transverse electri-

cal conductance per length. The value of ni can vary over a wide range depending

on a number of factors (strand compaction, surface coatings, etc.) but it turns out

the exact value is not critical to the stability analysis of the cable. In general, it is

sufficient to study the two extremes: K I -* 0 and tc -+ oo.

The parameter h is the heat transfer coefficient derived from Newton's law of

cooling [33, 35]. For a given cable and given flow conditions, this value needs to be

determined experimentally for most practical cases. In the work presented here, a

typical value of h = 500 W/m 2 -K will be used.
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The R(I, I,)I2 terms in Eqs. (5.19) and (5.20) represent the Joule heating per-

unit-length caused by current flowing through the strands. The term:

1 ( 1 )2 = lim ( -dx)2
2o 1 ax d-o 2 dx ojdx ax

represents the Joule heating per-unit-length caused by current flowing between the

strands (refer to Fig. 3-4). This transverse Joule heating is deposited evenly in both

strands, thus accounting for the factor of 1/2. The transverse Joule heating is much

smaller than the "parallel" Joule heating but is included in the model for the sake of

completeness.

The Joule heating terms further couple the thermal equations to the electrical

equations. They also make the model non-linear-a much more difficult problem

than the coupling. Because of these terms, the two-strand model cannot be solved

analytically in the Resistive Domain. Approximate solutions which linearize the Joule

heating term are appropriate for a limited subset of cables and will be discussed in

Chapter 6. Other than that, though, the Resistive Domain will have to be treated

using numerical techniques.

The Wall Equation

While the conduit wall temperature plays an important role in quench development,

it has little effect on the stability of the cable. In order to better concentrate on the

important factors in the analysis, the conduit wall is not considered in the two-strand

model. Formally, the limit A, -+ 0 is used, where A, is the cross-sectional area of

the conduit. In this limit, Eq. (5.14) reduces to: T, = Th.

The Helium Equations

Because the supercritical helium typically used to cool CICC's is compressible, it is

necessary to solve the mass, momentum, energy and state equations simultaneously

in order to ascertain the temperature of the helium. The one-dimensional set of these

equations was given in Eqs. (5.15)-(5.17). Those equations are repeated here with

113



the modifications consistent with separate strand temperatures and the negligible

wall approximation, T = Th:

(9ph a

0pt- + x&Pho = 0 (5.23)

avh 19Vh 1Ph f PhlVhlVh
Ph + PhVh- - -- -- (5.24)at ax ax 2dh

PhChAh T +Vh ax + phC3AhThp = hp(T1 - Th) + hp(T2 - Th)

+ fphAhlvh V (5.25)
2dh

Ph Ph (ph, T) (5.26)

where Ph is density, Vh is the velocity of the helium, Ph is the pressure, f is the friction

factor, dh is the hydraulic diameter, Ch is the specific heat of helium at constant

volume and Cp = (1/Ph)ap/aTh. The two terms on the RHS of the momentum

equation, Eq. (5.24), are the pressure gradient and the frictional resistance. The

terms on the LHS of the energy equation,Eq. (5.25), represent, in order, latent heating,

convection, and compressibility. Notice that there is no conduction term in the helium

energy equation as it is shown to be negligible for cryogenic purposes, [33]. The last

term on the RHS of Eq. (5.25) is the viscous dissipation while the remaining two

terms on the RHS represent heat transfer at the strand boundaries. The equation of

state, Eq. (5.26), relates the pressure to the density and temperature and is necessary

to close the system.

These equations can be simplified significantly if we limit ourselves to a regime

in which the helium can be considered incompressible, i.e. -Ph ~ 0. For sufficiently

short times, At, this condition will always be true. To determine the limiting At, it is

useful to study the relative scaling of the terms in the mass equation, Eq. (5.23). The

incompressible approximation is valid when the ratio of the first term to the second

is > 1. The length scale of the spatial derivative is the length of the normal zone,
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en .2 Thus, the criterion becomes:

XtVh <

For typical helium velocities on the order of Vh = 1 m/s and normal zone lengths on

the order of I = 1 m, the incompressible approximation is valid for At < 1 s.

Since the purpose of this thesis is to study stability rather than quench, it is

advantageous to place a limit on the maximum "quench evolution" time for which

the model will be valid. For this purpose, we define r, to be the "stability time scale"

where 7, ~ 100 ms is small enough to ensure that the incompressible approximation

is valid. For times t - t,, < r, then, the helium energy equation is decoupled from

the mass, momentum, and state equations, simplifying to:

&Th
PhChAhN = hp(Ti - Th) + hp(T2 - Th) (5.27)

This is the necessary helium temperature equation for the two-strand model. The

equation is valid for t - t,, < r, - 100 ms during which time both the convection and

compressibility terms in Eq. (5.25) are negligible.

Thermal Boundary and Initial Conditions

The temperature equations for the strands, Eqs. (5.19) and (5.20) require boundary

conditions at x = 0 and x = f. In the Quencher model, [33], the choice of proper

boundary conditions was of significant importance. In this model however the re-

striction to a validity regime of t - t, < r, greatly reduces the role of the boundary

conditions.

We can consider two cases: 4,, < f and t,, = t. In the former case, the restriction

to t - t, < 7, ensures the thermal propagation does not reach the ends of the cable.

Thus, the cable can be considered an infinite domain for the purposes of determining

the thermal boundary conditions.. The latter case, f", = t, ensures that the heating is

2The normal zone is defined as the region of the cable experiencing Joule heating.
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uniform over the length of the cable and thus there are no axial temperature gradients.

In either case, the following boundary conditions are appropriate:

8T 1  8T2X = 0; -9 - -9 - 0 (5.28)

8T1 _ T2X = t; -9T = -T - 0 (5.29)

The helium temperature equation does not need boundary conditions because the

conduction, axial convection, and compressible terms are all negligible.

The initial conditions are straightforward-at the onset of the Resistive Domain,

all temperatures are equal to the background helium temperature, T:

t = t'; T1 (x) = T2 (x) = Th(x) = Tb (5.30)

5.2.3 Summary of the Resistive Domain Equations

Combining the electrical equation, Eq. (5.7), with the thermal equations developed for

the stability time-scale provides the final model equations for the two-strand model

in the Resistive Domain. The model is not valid for studying quench development

since the validity regime breaks down for t - t, > r'. However, the model is able to

determine whether the cable will eventually quench or recover, and thus provides the

tool necessary to study how current distribution affects the stability of the cable.

For ease of reference, the two-strand model equations in the Resistive Domain are

collected here together with their boundary conditions and auxiliary equations:
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The Two-Strand Model Equations for the Resistive Domain:

8T1

8T 2p ,C, A, aT

8Th
PhChAh O

21 + Z2 ) I + -R2IT/2+

A, - T- T - hp(T - Th)

+ 'IZ 2 + 1 8 2

8 8T2
- AS -I - (T 2 - T1) - hp(T2 - Th)

ax- ax
+ R2(IT - 1)2 + 1 (1 )2

- hp(Ti - Th) + hp(T2 - Th)

I < I,(B, T1 )

Rm(I- I(B,T1))/I I> Ic(B,T)

0 IT - I < I,(B, T2)

TZ (IT - I - Ic(B, T2))/(IT - I) IT - I > I,(B, T2 )

T < T,(B)

* > T(B)

Tb + (To - Tb)(I - B ) B < Bo

Tb B > Bco

(5.35)

(5.36)

(5.37)

(5.38)
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(5.32)

(5.33)

(5.34)

Auxiliary Equations:

0
R 1,

R2

1,(B, T)

T.(B)

1-k)

0



Boundary and Initial Conditions:

x=0; I-tiT

8T1 _ T2

Ox 8xaT I a

ax
aT1 _T 2

Ox Ox
t =I(x)

TI = T2

- ,j 2=o sin 0o+ IT/227r

0

= wloi sin 01+ IT/2
27r

0

= ISCdoman(X, t*)

5.3 Numerical Procedure

Following the success of the numerical approach used in the Quencher model, it

was decided that a similar global collocation procedure with adaptive meshing [36]

would be the best choice for the two-strand Resistive Domain model. The details of

the numerical procedure parallels that of reference [33]. Using a second-order fully

implicit time-advance algorithm reduces Eqs. (5.31)-(5.34) to a set of six ordinary

differential equations which are solved using the Colsys package developed by Ascher,

[37].

5.3.1 Time Advance Algorithm

The second-order accurate approximation to the time derivative will be defined by a

standard finite difference operator L 2 where:

(5.45)~O t L2U - 3 Ul, - 4 Uldt+ Ultd
5Tt+dt d

where U is an arbitrary quantity and dt is the timestep size. The value of U is known

at times t and t - dt. This method is fully implicit.
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5.3.2 Reduction of the Helium Temperature Equation

The first step in reducing the model to a system of ODE's is to solve for the he-

lium temperature in terms of the two strand temperatures. To do so, Eq. (5.34) is

discretized as follows:

PhChAh 0Th PhChAhL2Th = hp (T + T - 2Th) ,+dt (5.46)
t+dt

where the RHS is evaluated at t+dt. Because we have limited the model to time-scales

which ensure the incompressibility of the helium, phChAh is approximately constant

and thus this routine is fully implicit. Using the definition of the operator L 2 , given

in Eq. (5.45), the helium temperature can be stated as:

T1|t+dt + T2It+dt + C (4 ThIt -Thldt) (5.47)
Thlt+dt = 2 + 3E

where c = (phChAh)/(hp2dt).

Since the helium temperature enters the strand temperature equations through

the heat transfer term, it is useful to introduce a shorthand notation which can be

used in future equations:

Sh, hp(T - Th It+dt

= 2 3 {(T 1 - T2)Itlt + c (3 Tlt+dt -4 Tlt + Tht-dt)} (5.48)

Sh2  hp(T2-Th)t+dt
S hp (T2 - T1) + E (3 T2,1 - 4 T1, + + TItdt)} (5.49)

where Sh, and Sh2 will be called the helium coupling terms. These definitions will

allow the temperature equations for stands one and two to be expressed without

reference to ThIt+dt-
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5.3.3 The Reduced Set of ODE's

Having dealt with the helium temperature equation, the next step is to reduce the

remaining model equations into first-order ODE's. To do so, it is useful to introduce

three variables:

OI
ax

8T1
q, = -s ---

4T 2q2 = -S,---
Ox

(5.50)

(5.51)

(5.52)

Using these new variables, we can rewrite the three second-order equations,

Eqs. (5.31)-(5.33), as a first order vector equation:

&V
= F(x,v)Ox (5.53)

where the vector v is:
I

q1

T2

q2

and the vector F = [F 1, F2 , F3, F4 , F5 , F6]' (where'

ponents:

(5.54)

indicates "transpose") has com-

F, = t

F 2 = a-2 L 21I +2 I - IT/2 - aI2

F3 = -q1/s,

F4 = -pC.L 2TI + A- 1 [ 1I2 + L2 - Sh1 -- n(T1 - T2)]2 o-
F5 = -q2/Ks
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(5.58)
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F6 = -p.C.L 2T2 + A-' 'R2(IT - 1)2+ 2 S - T - T1)] (5.60)
2 o-1

The terms Sh, and Sh2 are defined in Eqs. (5.48) and (5.49). Equation (5.53) rep-

resents the full two-strand model in the Resistive Domain. It needs to be solved at

each time-step of the time evolution.

The necessary boundary conditions were given in Eqs. (5.39)-(5.42) and can be

directly translated into vector notation:

X = 0 ; V1 - fV2 = -- w - sin 0 + IT/2 (5.61)
27r

V4 = V6 = 0 (5.62)

x=e ; V1 + V2 = j sin01+IT/2 (5.63)
27r

v 4 = v6 = 0 (5.64)

where the individual components of v are defined in Eq. (5.54).

The initial conditions, Eqs. (5.43) and (5.44) translate into:

t = t" ; v1(x) = ISCdomin(X,t,) (5.65)
a

v2 (x) = TISCdomain(X,t') (5.66)

v3(x) = vs(x) = Tb (5.67)

v4 (x) = v6 (x) = 0 (5.68)

thus completing the numerical model.

Equation (5.53) together with its boundary and initial conditions can be solved

using a collocation scheme provided by the Colsys package of software [37]. At each

time step, each component of the vector v is resolved to within a user-specified toler-

ance. The package is called repeatedly as the time is advanced from t = t., the onset

of the Resistive Domain, to t = t,, + r,, the end of the stability event. At t = t,+ 're,

the cable is either well on its way to quenching or has recovered. For the purpose of

studying stability, no information beyond t = t, + r, is necessary.

The application of Colsys to quench propagation was studied extensively in [33]
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where convergence limits as well as CPU requirements were analyzed. The ability

of Colsys to re-mesh the domain at each time-step allowed the routine to efficiently

but robustly track the sharp quench boundaries at the edge of the normal zone. The

same behavior has been observed in solving the two-strand model. New convergence

studies have not been conducted because the results of the model indicated they were

not needed. This will be discussed in Section 5.4.2.

5.4 Numerical Solutions in the Resistive Domain

The two-strand numerical model has been run numerous times for varying parameters.

The end objective was to better understand how current distribution affected the

stability of the cable. Since the model cannot be solved analytically, the effects of

varying each of the operational parameters was studied independently. Some of these

results will be presented shortly.

The overall result, however, was easier to quantify than the need to run numerous

trials might suggest. After an exhaustive search, it has been determined that if

the cable enters the Resistive Domain, the only factor which affects stability (for

"realistic" design parameters) is the cable length, t. A short enough cable can recover

while a cable longer than a certain length will always quench once it enters the

Resistive Domain.

The important implication of the above statement is that, for longer cables, the

analysis presented in Chapter 4 for the Superconducting Domain is sufficient to derive

a robust stability criterion. For stable operation in a ramped magnetic field, the ramp

time, tramp, must be less than the transition time to the Resistive Domain, t,. Since

t, can be calculated from analytic formulae, the stability analysis of longer cables is

greatly simplified.

Before jumping ahead, however, the temperature evolution and current redistri-

bution in the Resistive Domain will be demonstrated using a numerical example.

The conclusion that longer cables are inherently unstable once they enter the Re-

sistive Domain will be shown convincingly although only a representative sample of
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the many runs which lead to this conclusion will be discussed. The study of "short"

strands in the Resistive Domain is in a sense more interesting because their behavior

is more varied-both recovery and quench are possible outcomes. The presentation

of this interesting behavior is delayed until Chapter 6 where it will be studied both

numerically and analytically.

5.4.1 Definition of "Full-Scale" and "Lab-Scale Cables"

For the purposes of the following discussion, "long" cables can be equated with full-

scale solenoidal magnets which generate their own field and thus experience a spatially

varied magnetic field, B(x, t). "Short" cables will be classified as lab-scale cables

which are tested inside the bore of larger background field magnets and thus reside

in an approximately uniform magnetic field, B(t).

A more rigorous criterion can be applied, though, which requires the introduction

of a new concept, the characteristic current transfer length. We will stipulate that a

long cable is one with a length longer than the characteristic current transfer length,

eX. The characteristic transfer length of the cable is derived from the steady state

limit of Eq. (5.7) with strand one fully quenched (i.e. , = 0):

a2 2 21 _R I = 0 (5.69)
x_2  2L

Using scaling arguments to balance the LHS terms provides the desired definition of

tx:
2a

ix = 2=

For the range of o-_and R, considered in this thesis, (see Section 3.3), fx ranges

from - 1 m to ~ 10 m. The cable length, L, must be greater than this value of Lx in

order to be considered long. In practice, this criterion coincides with the previously

mentioned distinction between full-scale and lab-scale magnets.
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5.4.2 Specification of Full-Scale Magnets

Full-scale magnets are large enough to provide their own magnetic field. Thus, the

field at any location is directly proportional to the transport current: B(x, t) cx IT(t).

In this thesis, we primarily consider only solenoidal magnets. For a given solenoid,

the transverse magnetic field is most easily calculated as a function of the position

vector, r, measured from the midpoint of center-line of the magnet. Knowing how

the cable is wound, however, allows a simple mapping B(r) -4 B(x), where x is the

distance from the leftmost joint.

In general, the field profile, B(x, t), will be at a maximum at the center, x = /2

and will fall off toward the ends, x = 0 and x = VA The constant of proportionality

between the transport current and the peak field at the center of the cable is known

as the "load-line", A, where:

IT(t) = ABi(x = /2, t) = ABW5a-t (5.70)

for the linear field ramps considered here.

For the purposes of demonstrating the behavior of full-scale coils in the Resistive

Domain, a triangular field profile will be used although an actual field profile would

be a more complicated function of x. The results will prove, however, that the only

aspects of the field profile which affect stability are the three local values of the field:

B±(x = 0,t), B±(x = t/2,t) and B±(x = ,t). A triangular profile is sufficient to

match these three conditions for an arbitrary field profile.

To demonstrate the effects of current distribution on the stability of a full-scale

magnet, a two-strand cable "reminiscent" of the US-DPC experiment will be used.'

The properties of this hypothetical cable are given in Table 5.1. The effects of varying

the parameters listed in the table will be studied as well.

'This x-dependence is typical of "double-pancake" windings, see [1].
4A more rigorous attempt to explain the actual Ramp-Rate Limitation experienced in the US-

DPC will be presented in Chapter 8. For now, we just borrow certain geometrical properties from
that experiment: strand size and composition, cable length, twist-pitch length, load-line, etc.
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cable length
twist-pitch length

cable width
effective inductance per length

transverse electrical conductivity
transverse joint resistance
joint orientation at x = 0
joint orientation at x =

helium background temperature
helium pressure

helium cross-sectional area
strand (one) cross-sectional area
volume fraction superconductor

matrix resistance per length
heat transfer coefficient

transverse thermal conductivity
peak field ramp-rate

field ramp-rate at joints
load-line

w
L
7 1

'RJ

00
91

Tb

Ph
Ah
A,
A

R-1
h

A

75 m
30 cm
1.5 cm
1 pH
100 S-Im-i

-7r/2
7r/2
4.5 K
5 atm.
0.64 mm2

0.48 MM2

0.45
1 mQ-m-'
500 W/m 2-K
0 W/m-K
1 T/s
0.5 T/s
47 A/T

Table 5.1: The Hypothetical Full-Scale Cable Properties.
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Figure 5-3: The onset of the Resistive Domain occurs when the strand current profile
intercepts the critical current profile at t = t,.

Beginning of the Stability Event

The Resistive Domain begins when the current in strand one reaches the critical

current. The cable described in Table 5.1 falls within the Finite Length/Short-Circuit

Joint Regime described in Section 4.3.3 and the analytic solution for the total strand

current for this regime was given in Eq. (4.93). Using this result and Eq. (5.2) which

describes the behavior of the critical current, the onset of the Resistive Domain is

found to occur at t, = 8.57 s. A plot of the resulting initial condition showing

11SCdoman (X, t*) and I,(x, t,) is shown in Fig. 5-3.

Notice from Fig. 5-3 that the triangular shape of the magnetic field profile produces

an inverted triangular profile for the critical current. The fact that the critical current

is at a minimum at x = /2 guarantees that the normal zone is initiated at the

center of the cable. For this reason, it is interesting to look at the time evolution

of the current and the critical current at x = e/2, as shown in Fig. 5-4. The figure

graphically shows how t, is determined. The associated value I, is indicated as well.

Figure 5-4 also shows the time evolution of the average current carried by each
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Figure 5-4: Time evolution of Ii(x = t/2,t), 12(x = f/2,t), fc(x = f/2,t), and IT/2(t)
in the Superconducting Domain. The Resistive Domain begins at t = t,.

strand, Ir/2. The difference between the intercepts I, = I, (at t = t, = 8.57 s) and

IT/2 = I, (at t = 9.41 s) demonstrates the effects of circulating currents on the onset

of the Resistive Domain. For this example, the cable first becomes resistive approxi-

mately 9% earlier than would have been anticipated had the circulating currents not

been considered.

The results of the numerical model developed in Section 5.3 above will determine

whether this earlier-than-anticipated resistance actually leads to a premature quench.

Numerical Results

Once the problem enters the Resistive Domain, the numerical methods developed in

Section 5.3 are used to solve the ensuing development of current and temperature

profiles. For the example case cited here, the results are presented graphically in

Figs. 5-5 through 5-11. Although the figures and discussion refer to one specific case,

it has been found that all cables longer than the transfer length, tx, exhibit the same

qualitative behavior.
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during the first 5 ms of the

Figure 5-5 shows profiles of the current in strands one and two at a series of

times after the onset of the Resistive Domain at t = t,. The last profile plotted is

for t = t, + 5 ms and the time between profiles is 1 ms. The figure shows that the

resistive zone which develops in strand one causes current to transfer from strand one

to strand two through the transconductance, oI. The length of the transfer region

grows but is characterized by the steady state transfer length, ex. For longer cables,

the joints are far enough removed from the disturbance region that they play no role

in the current redistribution-this is an important distinction between the behavior

of full-scale and lab-scale magnets.

Before discussing the current distribution further, the temperature profile and

critical current profile for strand one are plotted in Figs. 5-6 through 5-7 to complete

the picture of what is happening during the first milli-seconds of the resistive regime.

Figure 5-6 shows the temperature of strand one, T1 , in the immediate vicinity of

the resistive region (note the change of scale for the x-axis) for the first 5 ms of the

Resistive Domain. The temperature dependent strand one critical-current profile,
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Figure 5-6: Temperature profiles for strand one during the first 5 ms of the Resistive
Domain.

IC , is plotted for the same range of x and t in Fig. 5-7. The sharp gradients in each

plot result from the dominance of the Joule heating term over the conductance term

in Eq. (5.32).

Since most of the interesting behavior occurs near the center of the cable, it is

easier to visualize the stability event by focusing on the evolution of the local temper-

ature and current at the single location, x = £/2. Figure 5-8 shows the temperatures

of the two strands and of the helium at the center of the normal region vs. time.

Figure 5-9 shows the current in strand one I,, and the temperature dependent crit-

ical current, I,(B, T1 ), at x = £/2 as a function of time. Figure 5-10 is similar, but

shows the strand two values, 12 and I 2 (B, T2). In Fig. 5-11, the local combined Joule

heating of both strands at x = £/2 is plotted vs. time. The features of each of these

plots are described in the following paragraphs.

Together, the time-evolution of the strand currents and temperatures at the center

of the normal zone paint a clear picture of what happens when induced circulating

currents cause one strand of the two-strand cable to prematurely reach critical current
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Figure 5-10: Time evolution of the
at x = e/2.
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Figure 5-11: Time evolution of the combined local Joule heating in strands one and
two (i.e. R 1I + R212I2) at x = t/2.

in the peak-field region. Initially the small heat capacity of the strand at cryogenic

helium temperatures results in a rapid temperature rise in strand one, as seen in

the first few milli-seconds of Fig. 5-8. The critical current in strand one quickly

declines due to the elevated temperatures, as shown in Fig. 5-9. Current in strand

one locally transfers to strand two to avoid the resistive normal zone, but the rate of

this transfer is limited by the strand inductances. This current transfer takes place

over a length of the cable on the order of the characteristic transfer length, £x-see

Fig. 5-5. Over the first 1 ms, the transfer length and amount of current transferred

grow, but the critical current drops much more quickly than does the strand one

current (see Fig. 5-9) resulting in even more Joule heating, as shown in the first 1 ms

of Fig. 5-11.

Eventually, the higher strand one temperature translates into increased heat ca-

pacitance and slower rate of temperature rise (see Fig. 5-8, 1-5 ms). Also, once the

critical current reaches zero, the Joule heating actually diminishes since the strand one

current continues to fall (shown in Fig. 5-11 from 1-6 ms). The situation "worsens"
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however, when the rising strand two current (absorbing the current transferred out of

one) intercepts the declining strand two critical current (see Fig. 5-10 at t = 6 ms).

At this point, both strands begin Joule heating and both T and T2 monotonically

rise. The cable is irrevocably quenched.

An extensive survey of the entire parameter space has determined that this same

scenario occurs for every cable longer than the characteristic transfer length, £ > Lx.

Cases were run to study the effects of varying: b, h, rq, a-,, and '. Although

the quantitative features of each case (e.g. time at which strand two quenches, char-

acteristic transfer length, etc.) vary, there was no case for which the cable proved to

be stable.

Numerical Conclusions for Full-Scale Magnets

The results of the numerical model for full-scale magnets were quite conclusive: a

single strand driven to its critical current by a combination of transport and in-

duced currents will lead to a non-recovering quench. The inability of the current

in a quenching strand to transfer quickly to its neighbor limits the ability of the

unsaturated strand to act as a "protection circuit" on the stability time-scale.

It is interesting to compare stability (or in this case, instability) in the Resistive

Domain to a different type of stability analysis which is prevalent in the literature

[12, 17]. The "energy margin" of a cable is defined as the amount of energy a cable can

absorb quasi-instantaneously and still recover. This traditional measure of stability

was discussed in Chapter 2. Under normal operating conditions, a full-scale magnet

is designed to be stable with respect to even fairly large energy disturbances. If so,

why does the present analysis result in unconditionally unstable cables?

To answer this last question, it is necessary to identify the different initial condi-

tions assumed for stability in the Resistive Domain versus the energy margin analysis.

The energy margin analysis assumes that the transport current is evenly distributed

amongst the cabled strands, thus each strand begins with I < Ic. If the initial energy

deposition plus subsequent Joule heating can be dissipated quickly enough, the cable

can return to the state I < I. without any current transfer.
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The Resistive Domain, on the other hand, by definition assumes the current in

strand one has reached Ic-even before any heat has been added to the system.

Unless the strand one current can transfer to the other strand more quickly than the

critical current declines (due to Joule heating), the cable in the Resistive Domain

will experience continuous Joule heating and eventually quench. The fact that in

the Resistive Domain stability depends on the rate of current transfer is what dooms

longer cables to unconditional instability.

It is possible to combine the energy margin approach with the effects of current

distribution. Before the Resistive Domain is reached, a given cable with an analyt-

ically calculated current distribution could be subjected to an energy perturbation.

In this instance, there would be some amount of energy for which the cable would

be marginally stable. The attraction of focusing solely on the current distribution as

the source of instability, however, is that the results can self-consistently predict the

stability of an actual cable. There is no need to postulate a mysterious disturbance

to explain the onset of quench.5

Although the conclusion that all full-scale cables are unstable in the Resistive

Domain is disappointing in the sense that the numerical model incessantly produces

only one answer, we are in fact now able to clearly state a stability criterion for

this scenario. For full-scale magnets (i.e. shaped field profile, t > ix) the stability

criterion is: trap < t,, where t, is the time at which 11 first equals Ic. Since t,

can be calculated analytically, the stability criterion for long cables is an analytic

calculation.

5.5 Summary

When the strand current, I, is greater than the critical current, Ic, at any point along

the length of the cable, the resistance of the strands is no longer negligible. To analyze

current distribution and stability in this so-called Resistive Domain requires numer-

,Admittedly, many of the important parameters which determine the current distribution in the
cable are difficult to measure or are a priori unknown (6, for example). Philosophically, however, a
known parameter with an unknown value is quite different than an unknown source term.
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ical methods to solve the coupled, second-order, non-linear set of partial differential

equations which comprise the electrical and thermal descriptions of the model.

The Resistive Domain model was developed in Section 5.2 and was summarized

in Eqs. (5.3l)-(5.44). The details of the numerical procedure used to solve this model

were discussed in Section 5.3. The numerical solution was used to study a hypothetical

cable and the results were presented graphically in Figs. 5-5 through 5-11. The chosen

scenario featured a full-scale magnet, t ~ 75 m. The decision was made to delay the

discussion of lab-scale cables until the next chapter.

Through extensive numerical studies, a decisive conclusion was reached. Cables

which are longer than their characteristic transfer length, Ex = (01iR)-12, were

found to be unconditionally unstable in the Resistive Domain. This result allowed

the definition of a simple stability criterion for such cables: tam < t,, where t, is

the earliest time at which 1= 1, if the field is continuously ramped. The time t, can

be found by solving the analytic relation:

min[Ic(x, t*) - -11iSCd1 a(x, t,) = 0

where min is the minimization operator over the range 0 < x < e. Since I, and

'iSCdomain are both analytical functions, the results of the previous chapter are suffi-

cient to analyze stability with respect to current distribution for any given full-scale

magnet.

The analytic formulae in Chapter 4, however, are sufficiently complex as to make

it difficult to derive a "Universal" stability law applicable to all cable designs. In

other words, it is difficult to reduce the many critical parameters (f, Ep, ED, 6, EX,

field profile, etc.) into a reduced set of non-dimensional groups. As an example of

using the results of this chapter to analyze the stability of a specific cable, however,

the results of the US-DPC experiment are compared to theoretical predictions in

Chapter 7.

This chapter did not look at the behavior of lab-scale magnets, cables with t < Ex.

The interesting behavior of these shorter cables is the subject of Chapter 6. The fact
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that the differences between lab-scale and full-scale cables are sufficient to warrant

placing them in different chapters gives a hint of the difficulties in simulating larger

cables in the laboratory.
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Chapter 6

Current Distribution and Stability

in the Resistive Domain for

Lab-Scale Cables

After an unexplained ramp-rate limitation was first identified in the US-DPC experi-

ment, [1, 38], several investigators tried to study the phenomenon using scaled-down

versions of the US-DPC conductor [3, 5]. The results of these lab-scale experiments

verified the existence of ramp-rate limitation but it proved difficult to correlate the

behavior of the small-scale cables to the behavior of the full US-DPC.

The goal of this chapter is to theoretically study current distribution and stability

in lab-scale conductors and to compare the results to the findings of the previous

chapter, which addressed full-scale conductors. Unfortunately for experimenters, it

is found that the cable lengths typically used in lab-scale studies are too short to

properly simulate the actual behavior of full-scale magnets.

This chapter starts by carefully defining what is actually meant by the term "lab-

scale" cable. In doing so, the 1-D Resistive Domain model developed in Chapter 5

is reduced to a O-D model which, by definition, is appropriate for lab-scale magnets.

Since the resulting model is still non-linear, numerical solutions are again needed to

study the stability behavior in this regime.

The results of the numerical analysis point to the fact that the stability criterion
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developed for longer cables (i.e. tramp < t*) does not accurately describe the stability

behavior of lab-scale magnets (it is sufficient, but not necessary). Section 6.2 shows

how the "stability events" which occur when I = I can lead to either quench or

recovery, depending on several different factors. The concept of marginal stability is

defined in Section 6.2.4 and the remainder of the chapter is devoted to deriving the

marginal stability conditions for a given lab-scale cable.

In Section 6.3, the non-linear set of O-D equations for lab-scale magnets in the

Resistive Domain are linearized to allow an analytical study of stability. Although

several simplifying assumptions are necessary, analytic solutions for the marginal

stability criterion are derived and presented graphically. The implications for ramp-

rate limitation qualitatively agree with experimental evidence.

6.1 Derivation of Lab-Scale Cable Regime

Lab-scale cables are characterized by their relatively short length and their inability

to generate large magnetic fields. In order to simulate the high field conditions en-

countered by full-scale magnets, lab-scale magnets are usually placed within the bore

of a background field magnet. For the purposes of this chapter, then, the magnetic

field is considered to be spatially uniform and indpendent of the transport current.

The short lengths of lab-scale cables mean the influence of joint effects can span

the entire cable. The results of Chapter 5 showed that the joints did not play an

important role in the Resistive Domain for large-scale cables. For lab-scale cables, on

the other hand, we will see that the proximity of low-resistance joints to the normal

zone region will allow rapid current-transfer out of the resistive strand. Unlike full-

scale magnets, lab-scale cables are not necessarily doomed to eventual quench even if

they do enter the Resistive Domain.

The complete Resistive Domain model derived in Chapter 5 for full-scale magnets

can be reduced to a simpler model for the case of lab-scale cables which satisfy certain

cable length criteria. The reduced model results in coupled, non-linear ODE's which

are in general easier to analyze than the PDE's of Chapter 5. The O-D model for
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lab-scale cables and the associtated validity criteria are now derived.

6.1.1 Zero-D Model for Lab-Scale Cables

We have already stipulated that the magnetic field profile is uniform for the case of

lab-scale cables. If the current and temperature profiles are also uniform, then the 1-D

Resistive Domain model developed in Chapter 6 reduces to a O-D model. To derive

the conditions for when the O-D model is valid, we start with the l-D equations, given

in Section 5.2.3, and then use perturbation analysis (similar to the procedure used for

the Short Cable Regime in the Superconducting Domain, Section 4.3.2). The current

equation and the temperature equations will be discussed separately.

Zero-D Current Equation

The l-D current equation and its boundary conditions were given in Eqs. (5.31)-(5.44)

and are repeated here for convenience:

2 a( _ (I) 1 1 OIT/2
a 2 (R 2 + R2) (I= -R2 1 T/2 (6.1)

X = 0; (I) - (I? = -- wr sin Oo + IT/2 (6.2)J x- 27r

(I (I)Esin9 +
X = (I) + tj = L 4 sin 01 + IT/2 (6.3)19X 27r

where (I) is the total current in strand one locally averaged over the twist-pitch

length and IT/2 represents one-half the transport current.'

The two necessary criteria which define the lab-scale regime will now be defined:

i. t < fj

ii. t< x.

'While the shorthand notation I was used in Chapter 5, we return to the notation (I) to avoid
confusion when (I) is expanded in a perturbation series later on.
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where Lt is the boundary length scale, Lj = (o iRj)-', introduced in Section 4.2.3,

and Lx is the characteristic transfer length, Lx = (o-R.m)-, introduced in Sec-

tion 5.4.1. For typical parameter values, the second criterion is more restrictive than

the first and corresponds to cables with e < 5 - 10 m. To simplify the scaling argu-

ments which will be used shortly, we thus assume the following ordering: L < fx < tj.

If we define the small number E = L/ex, we can expand (I) in a perturbation

series with the first two terms equal to:

(I) (X, 0) = MIO (X, 0) + MI2 (X, 0) +..

where ()2 / (')0 ~ C2 . Substituting this expansion into Eq. (6.1) and keeping only

the terms of order 0 produces the result:

92(I)o 
(6.4)

Substituting the perturbation series into the boundary conditions and keeping terms

of order Lj/l > I/e2 produces the boundary conditions on the (I)o component of the

series:

X = 0; 0  0 (6.5)

X = f; = 0 (6.6)

The solution to Eq. (6.4) in consideration of these boundary conditions is (I)o (x, t) =

(I)o (t), an unknown function of time which is independent of x.

To determine the time-dependence of (I),, it is necessary to look at the c2 order

terms from Eq. (6.1):

2(1) & (I)~ 1 1 T/2 2 67
2 a2 __ - (RI + R 2 ) (I)o = R21r/2 - (6)
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Integrating this equation over the length of the cable produces the result

2 2 _ & aM2 _ - (R 1 + R 2 ) (I)o = -Zl2IT/2 - aIT/ 2

19 a9x 0 t C at
(6.8)

The E0 order terms in boundary conditions can be used to solve for the ()2 terms

in Eq. (6.8) and thus provide closure:

___ -(I)2 +LJ±WPf iooT,x = 0; f x = (I)o + ei 2B r sin Oo - IT/2 (6.9)

x = -; a 2 = - (I)O + f sin 01 + IT/2 (6.10)

Using Eqs. (6.9) and (6.10) to substitute into Eq. (6.8) provides the desired equation

for (I)0:

a2 (2 (I)O + e£ 4 (sin 01 - sin 6o) + 21T/2

a (I)o 1 9 T/2
2 (7Z1 + IZ2 ) (I)O = -ZI2IT/2 - (6.11)

which when rearranged gives:

a (I)o I R1 + R2 (Io IT/2+ 1 2
&()+ (+ 2-a + + ) IT/2 + ' (6.12)

where T = (sinG1 - sin o), 71 = f/R., and Oo and 01 correspond to the

alignment of the joints with respect the magnetic field at x = 0 and x = L, respectively.

Equation (6.12) is the desired current equation for lab-scale cables. Because of

the functional dependencies of R, and R 2 (refer to Section 5.2.1), Eq. (6.12) is still

coupled to the temperature equations when the cable is in the Resistive Domain, i.e.

(I)o > 1,. Importantly, though, the current equation is now 0-D in space, thus greatly

simplifying analysis for cables which meet the criteria: t < Lj and L < tx.

141



Zero-D Temperature Equations

Once we have determined that the current equation for lab-scale magnets is O-D, it is

relatively easy to derive the O-D temperature equations. We start by reiterating the

1-D thermal equations developed in Chapter 5, Eqs. (5.32)-(5.34)

8T1 0 0T 1
pCSA -A, = -A,-(T1 - T2) - hp(T - Th)

+ R112 + 1( )2 (6.13)

2T2  OT2
p 3 C 3,A' T = A, -9 -± x(T 2 - T) - hp(T2 - Th)

at ax "S x

+ Z2(IT - )2 + ( )2 (6.14)

PhChAh = hp(Ti - Th) + hp(T2 - Th) (6.15)

The first thing to notice is that the source terms (Joule heating) are spatially uniform

in lab-scale magnets due to the uniformity of the current, L = 0. Since the intial

condition is also uniform and the end conditions are adiabatic (refer to Eqs. (5.39)-

(5.44)), no axial temperature gradients are produced. Thus the conduction terms are

identically zero, = A n, T2 = 0.

Without the conduction terms, the 1-D thermal model reduces directly to the

desired 0-D model:

psCsAs = Z1 (I) - tL(T - T 2) - hp(T - Th) (6.16)

CA2(T - (1))2 - K(T 2 - T1 ) - hp(T2 - Th) (6.17)

aTh
phChAh = hp(Tl - Th) + hp(T2 - Th) (6.18)

These 0-D equations, appropriate for lab-scale magnets, are still non-linear (due to

the Joule heating terms) but are much easier to solve numerically than their corre-

sponding 1-D counterparts. If properly linearized, the equations can also be studied

analytically, as will be done in Section 6.3.
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6.1.2 Summary of Lab-Scale Model Equations

For cables in uniform magnetic fields that meet the length criteria £ < ej and f < tx,

the 0-D lab-scale model equations, derived above, descirbe the coupled thermal and

electrical behavior in the Resistive Domain, when (I)o > Ic. For convenience, the

model equations are summarized here. The substitution I ~ (J)o has been used to

simplify the notation.

Model Equations:

a'

(9T1

pX . T2

phChAh a

Auxiliary Equations:

R 1,

I(B, T)

TC(B)

/1 IZ1 + R23 91r2 1 _R2
= - + 2 + !I+ + + I/+

(6.19)

= IZ112 _ r (T - T2 ) - hp(T1 - Th) (6.20)

- Z2(IT -I 2 -. 2 - T1) - hp(T2 - T) (6.21)

= hp(T1 - Th) + hp(T2 - Th) (6.22)

0 I < 1,(B, TI)

Rm(1 - (T) I > Ic(B, T1 )

0 IT - I < I(B, T 2)

Rm(1 - ) I))I - I > Ic(B,T2)

Sc1(1 -- T-T ) T < T (B)

0 T > Tc(B)

Tb + (To - Tb)(1 - -E-) B < Bco

Tb B > Bco

(6.23)

(6.24)

(6.25)

(6.26)

The initial condition for the current equation is found from the analytic results of

the Short Cable Length Regime of the Superconducting Domain (see Section 4.3.2),

evaluated at t = t, the time when strand one first becomes resistive. At t = t,,

the temperature of the strands equals the background helium temperature, T. Thus,

all together, the initial conditions which are needed to solve the model equations
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Eqs. (6.19)-(6.22) are:

Initial Conditions:

t =t, ; I = ISCdomain(t,) (6.27)

T1 = T2 = T = T (6.28)

where the notation ISCdomain is used to refer to the analytic solution for the current

in strand one obtained from the results of the Superconducting Domain analysis in

Section 4.3.2.

The model equations, Eqs. (6.19)-(6.22), form a set of non-linear first order ordi-

nary differential equations. Because of the non-linear terms, a numerical solution is

needed to solve the system. The numerics will be presented in the next section.

The model equations can be linearized in order to obtain approximate analytic

solutions which provide insight into the behavior of lab-scale cables in the Resistive

Domain. This approximate analytic method is the subject of Section 6.3.

6.1.3 Numerical Solution Technique

Since the lab-scale model equations have been reduced to a set of first order ordinary

differential equations, there are several numerical techniques appropriate for solving

the model. The chosen method uses a variable-order, variable-step method imple-

menting Backward Difference Formulae as provided by the NAG Fortran Library

Routine D02EAF, [39]. Details of this method are given in [40].

The model equations as given above with their auxiliary equations and initial con-

ditions, Eqs. (6.19)-(6.28), are structured in a format which complies with a fortran

code that has been written to calculate the solutions. The code acts as a driver for

the D02EAF routine [39], which does the actual work of solving the time-evolution

of current and temperatures. The resulting code was used to generate the numerical

results which are presented in the following sections.
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6.2 Numerical Results for Stability of Lab-scale

Cables

After running just a few cases, it was apparent that the behavior of lab-scale cables is

dramatically different than the behavior of full-scale cables. The primary difference is

the ability of lab-scale cables to enter the Resistive Domain without fully quenching.

In other words, even if the current in strand one reaches its critical current (due to

induced circulating currents), a quick redistribution of current to strand two can allow

the cable to recover to a superconducting state. This process has also been observed

experimentally using magnetic pick-up coils which register the rapid redistribution of

current as a voltage "blip" [5].

While the explanation of the occurence of "blips" is an important result in itself,

the main goal of the theoretical model being developed here is to explain the overall

stability behavior of lab-scale cables. In this section, we will present representative

cases which exhibit the difference between stable and unstable operating scenarios for

lab-scale cables. We will then introduce the concept of marginal stability, the oper-

ating scenario for which a given cable is on the stable/unstable cusp. The numerical

model can be run in an iterative fashion to map out the marginal stability line for

varying magnetic field ramp rates, b. In other words, the model will be used to

study Ramp-Rate Limitation for small-scale cables.

6.2.1 Hypothetical Lab-Scale Cable

To demonstrate the behavior of lab-scale cables in ramping magnetic fields, numerical

results are presented graphically for the case of a hypothetical cable design. The

hypothetical design is similar to the actual cable design of small-scale experiments

conducted at MIT [2, 3]. The theoretical results presented here will be developed

further in Chapter 7 to allow a direct comparison to the experimental results. For

now, the hypothetical cable is used to communicate the main features observed in

lab-scale cables.
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cable length
twist-pitch length

cable width
effective inductance per length

transverse electrical conductivity
transverse joint resistance
joint orientation at x = 0
joint orientation at x = i

helium background temperature
helium pressure

helium cross-sectional area
strand (one) cross-sectional area
volume fraction superconductor

matrix resistance per length
heat transfer coefficient

transverse thermal conductivity

fp
w

L
Q-
RJ
00

01
Tb

Ph
Ah

A,

ltm
h

FKL

I m
15 cm
0.5 cm
0.7 pH
100 -1m'
I pQ
-- 7/4

-;r/4
4.5 K
5 atm.
0.64 mm 2

0.48 mm 2

0.45
1 mp-mi
1000 W/m 2 -K
oo W/m-K

Table 6.1: The Hypothetical Lab-Scale Cable Properties.

The parameters of the hypothetical cable design are presented in Table 6.1. Since

the lab-scale cables are tested in the bore of larger background field magnets, the

transport current is independent of the magnetic field. In the cases studied here, the

transport current is constant while the spatially uniform magnetic field is ramped

linearly in time. For a given cable, then, the operating scenario is defined by two

independent quantities: the transport current, IT, and the ramp-rate, B±.

Since the hypothetical cable falls under the Short Cable Length/Short-Circuit

Joint regime of the Superconducting Domain, Eq. (4.70) describes the circulating

current in strand one up until the point (I)= I,. Adding half the transport current

(a constant) to the circulating current gives the total current in strand one in the

Superconducting Domain:

I(t) = IT/2 + (IB) (t)

= IT/2 + 4Th-J (I - e-/rJ) (6.29)

where b5 is the uniform ramp-rate of the magnetic field; rj = Ve/Rj is the charac-
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teristic time constant of an insulated two strand cable; and IF B L3 (sin 01- sin Oo)

is the inductive source term.

At time t = t,, the current in strand one reaches the critical current and the

cable enters the Resistive Domain. In the Resistive Domain, the time-evolution of

the current becomes coupled to the time-evolution of the temperatures and the full

model, Eqs. (6.19)-(6.22), becomes necessary, starting from the initial condition 1,

I(4,) = I. (B (4), Tb).

For a given cable and given cooling conditions (i.e., specified heat transfer coeffi-

cient, h) the cable can either quench or recover after entering the Resistive Domain,

depending on the value of the initial condition, I,. In turn IL is dependent on the

transport current, IT, and the ramp-rate, b 1 . To demonstrate the different possible

outcomes, two examples are given using the hypothetical cable described in Table 6.1.

6.2.2 Example of Instability

In the first example, the total tansport current is IT = 135 Amps and the ramp-rate

is B1 = 1 T/s. Using Eq. (6.29) to calculate the total current in strand one, 1(t),

and Eq. (6.25) to calculate the critical current, Ic(t), for times t < t., the onset of the

Resistive Domain is calculated to begin at t = t, = 5.40 s and I = 1, = 385 Amps.

The time-evolution of I and I, is plotted in Fig. 6-1 for 0 < t < t,.

Once the cable enters the Resistive Domain the time-evolution of the currents

and temperatures occurs on a much faster time-scale. Figure 6-2 shows the current

in strands one and two, I, and 12, as well as the critical current, I,, for the first 5 ms

after t = t,. 2 The strand temperature, T = T, = T2 , and the helium temperature,

Th, are plotted over the same range of time in Fig. 6-3. As the plots indicate, under

these operating conditions (IT = 135 Amps, iB = 1.0) the cable quenches quickly

after it reaches the Resistive Domain.

2Since Ki- = oo for this hypothetical case, T = T2 and thus I,, = I,2 = Ic.
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Figure 6-1: The strand one current and critical current for the hypothetical cable in
the Superconducting Domain: IT = 135 Amps, B1 = 1.0 T/s, t, = 5.40 s, I, = 385
Amps.
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Figure 6-2: The strand currents and the critical current for the hypothetical cable in
the Resistive Domain. Unstable case: IT = 135 Amps, B1 = 1.0 T/s.
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Figure 6-3: The strand and helium temperatures for the hypothetical cable in the
Resistive Domain. Unstable case: IT = 135 Amps, B = 1.0 T/s.

6.2.3 Example of Stability

Let's see what happens if the operating condition is changed only slightly. In the

second example, the transport current is decreased by 5 Amps to IT = 130 Amps

while the ramp-rate remains the same, B I 1 T/s. As before, the time evolution of

I and I, is plotted for 0 < t < t, in Fig. 6-4. For this case, t,, = 5.42 s and 1, = 384

Amps, almost the same as in the previous example.

What happens after the cable enters the Resistive Domain, however, is substan-

tially different than what happened in the previous example. Figure 6-5 shows the

current in strands one and two I, and 12, as well as the critical current, I,, for

the first 5 ms after t = t,. The strand temperature, T = T, = T2, and the helium

temperature, Th, are plotted over the same range of time in Fig. 6-6. As the plots

indicate, under these operating conditions (IT= 130 Amps, bi= 1.0 T/s) the cable

is able to return to the Superconducting Domain (i.e. I < 1,) even after it enters

the Resistive Domain. This ability to "recover" under certain operating conditions
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Figure 6-4: The strand one current and critical current for the hypothetical cable in
the Superconducting Domain. Stable Case: IT = 130 Amps, B = 1.0 T/s, t, = 5.42
s, I, = 384 Amps.

is only observed in lab-scale cables-longer cables always fully quench after entering

the Resistive Domain.

In Fig. 6-7, the time-evolution of the currents is allowed to continue beyond the

first occurence of the Resistive Domain. As seen in the plot, each time I reaches the

ever-decreasing I, due to currents induced while the cable is in the Superconducting

Domain, a "blip" occurs. During the blip, the cable is in the Resistive Domain and

the current is quickly redistributed among the strands until the cable re-enters the

Superconducting Domain. The time-evolution of the temperatures during this cyclic

behavior is shown in Fig. 6-8. If ramped long enough, the cable will eventually quench,

but only when the transport current itself (without the circulating current) reaches

the critical current.

Since the cable in this example is able to survive the series of blips, it can be

operated at close to the DC limit.3 The cable is thus said to be "stable" with regard

3The rise in the background helium temperature due to the repeated quench/recovery blips
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Figure 6-5: The strand currents and the critical current for the hypothetical cable in
the Resistive Domain. Stable Case: IT = 130 Amps, b5 = 1.0 T/s.
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Figure 6-6: The strand and helium temperatures for the hypothetical cable in the
Resistive Domain. Stable Case: IT = 130 Amps, b- = 1.0 T/s.
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Figure 6-7: The strand one current and the critical current for the hypothetical cable
as it cycles between the Superconducting Domain and the Resistive Domain. Stable
Case: IT = 130 Amps, B± = 1.0 T/s.

to ramp-rate limitation for this operating condition. Numerous factors (in fact every

factor listed in Table 6.1) affect whether a two-strand cable is stable or unstable but

for a given design the stability is determined solely by IT and B1 .

In determining whether a cable is stable or unstable for a given operating scenario

(i.e. given IT and B), it is the first blip which is critical. If the cable can survive

the first blip without quenching, it will be stable to all further blips (until IT = 1,

the DC limit). This behavior is explained by the fact that I, is greatest for the first

blip (due the monotonically decreasing Ia). Since the intial Joule heating generated

when the cable enters the Resistive Domain is proportional to 1, the power balance

between heating and cooling is most heavily weighted toward heating during the first

blip. If the cooling is sufficient to bring the cable back into the Superconducting

Domain for the first blip, it will be more than sufficient for the subsequent blips.

Strong evidence supporting the ability of lab-scale cables to survive multiple en-

reduces the effective critical current from the DC value, but this is a relatively minor effect.
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Figure 6-8: The strand and helium temperatures for the hypothetical cable as it
cycles between the Superconducting Domain and the Resistive Domain. Stable Case:
IT = 130 Amps, B± = 1.0 T/s.

counters with the Resistive Domain has been gathered experimentally [4, 5]. Using

voltage taps, pick-up coils, and hall probes, researchers have detected short-lived

voltage spikes as well as rapid redistribution of current in 1-3 m samples exposed

to ramping magnetic fields. Previous attempts [4, 9] to explain these phenomena

have also looked at the effects circulating currents and reached the same conclusion

proposed in this thesis. In those efforts, however, the current distribution was not

coupled to the thermal behavior so as to allow an overall explanation of stability in

lab-scale cables, as will be covered in the next section.

6.2.4 Marginal Stability in Lab-Scale Cables

By focusing on the behavior of the cable during the first blip, we can define what we

mean by "marginal stability". If the cable is on the borderline between recovering

or quenching during the first blip, it is marginally stable. This concept is presented

graphically in Fig. 6-9. In the figure, the strand temperature is plotted versus time
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Figure 6-9: Strand temperatures for the hypothetical cable during
three cases: A, unstable; B, stable; and C, marginally stable.

the first blip for

for the first 5 ms after the onset of the first blip. In case A, the cable is in an unstable

operating scenario and quenches-the temperature begins to increase monotonically

before the strands cool enough to re-enter the Superconducting Domain. In case B, the

cable is stable since the cooling is sufficient to reduce the strand temperature enough

to allow the cable to recover. In case C, however, the strand temperature neither rises

monotonically, indicating quench, nor cools back down to within the Superconducting

Domain, indicating recovery. Case C is exactly the "marginal stability case".

Mathematically, the marginal stability case can be defined as the operating sce-

nario which leads to the condition a;T = a2T = 0 as t -+ oc. If this condition is

met, the cable reaches a steady-state equilibrium where the Joule heating is exactly

balanced by the cooling; the cable is neither quenching nor recovering.

The numerical procedure used to solve the current and temperature evolution

in the Resistive Domain can be run iteratively to determine the operating scenario

which produces the marginal stability case. For a given ramp-rate, bi, the transport

current, IT, is varied until the result of the first blip is the stady state equilibrium
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Figure 6-10: The marginal stability line for the hypothetical cable. . numerical
results; - - - curve fit.

T T = 0. Using this numerical procedure, the marginal stability line is plotted

in Fig. 6-10 for the hypothetical cable described in Table 6.1. For operating scenarios

below the marginal stability line in the IT-b-± phase domain, the cable is stable and

can reach peak fields near the DC design limit after surviving numerous blips. For

operating scenarios above the marginal stability line, the cable is unstable and will

quench on the first blip, much below the DC design limit.

It is difficult to extensively test the implications of the existence of a marginal

stabiliy criteria for lab-scale cables using the iterative numerical procedure just de-

scribed. For this reason, it was decided to linearize the non-linear equations in order

to study the problem analytically. The linearized equations lack the accuracy of the

numerical results but the important qualitative features are maintained. Using the

analytic solutions to the linearized equations, the current distribution and stability

behavior of lab-scale cables can be studied in greater detail.
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6.3 Linearized Resistive Domain

Even though the current and temperature equations for lab-scale cables reduce to a

set of equations which are O-D in space, the resulting model is still non-linear. In the

previous section, the model equations were solved numerically and iteration was used

to find the marginal stability line for a given cable design. In general, this procedure

is not adequate for doing parametric studies of cable design since it is computationally

inefficient. We would like to find a way to solve the model equations analytically to

improve efficiency and, more importantly, gain insight into how the different cable

parameters affect the stability.

In this section, we will linearize the current and temperature equations in order

to allow an analytic study of current distribution and stability in lab-scale cables.

The numerical results of the previous section will be used to help scale the linearized

parameters. The end goal is to calculate the "marginal" case for a specified cable, i.e.

to determine at which IT and b the cable reaches an unstable equilibrium between

quenching and recovering.

In the following discussion, we will limit ourselves to the scenario of constant

transport current and linearly ramping magnetic field. Also, the cables which will be

studied will fall into the Short Cable Length/Short-Circuit Joint Regime identified in

Chapter 4. This regime is appropriate for almost any lab-scale cable design.

Two a priori assumptions will be made as well. First, the two strands will be

considered to be in near-perfect thermal contact, T2 ; T1 = T. This assumption

will be valid for strands in good thermal contact and is needed in order to reduce

the linear analysis from a third order ODE to a tractable second order ODE. The

second assumption is that the helium temperature remains approximately constant

over the timeframe of the stability event, i.e. Th ; Tb. This latter assumption is

generally valid and was born out through numerous numerical examples. With these

restrictions in mind, the scenario which will be considered in the linearized analysis

is summarized in Table 6.2.
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Short Length Regime t < £D
Short-Circuit Joints t < ij
good thermal contact T T1 ~ - T2

constant helium temp. Th - Tb

Table 6.2: Restrictions in effect for the linearized stability analysis.

6.3.1 Linearized Resistive Domain Equations

The current equation for lab-scale cables in the Resistive Domain was given in

Eq. (6.19):

01 1 1+ Rl/ 912
-1+ - +_1 I= + -+ 2IT/2 +TF (6.30)

r Tj 2L & rj L)

where W was defined in Eq. (6.12). Using Eq. (6.23) to substitute for the 1z, and

)Z 2 coefficients reveals the coupling to the temperature dependent critical current, 1,.

For example, if I > I but 12 = IT - I < I, we have:

9I 1 r I(/3 1
-+--I + -(I - Ic(B, T)) = 2 + 1-I/ 2 ± (6.31)

To see the coupling to the temperature equation directly, we need to substitute for the

critical current, Ic(B,T). If the magnetic field at the onset of the Resistive Domain is

defined to be B(t,) = B,, the approximation B(t) ~ B, can be used (even for rapid

B1) for the extent of the Resistive Domain since it lasts for only a very brief time.

In this case, the critical current simplifies to:

I:(B, T) = Ir(T) =I I 1 - - (6.32)

where 1 = /B, and V is a simple transformation of the temperature, 9 = T - Tb.

The scale factor 79, is constant for the duration of the stability event; from Eq. (6.26),

79,, = (Teo - Tb) (I - B,IBo).
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Substituting Eq. (6.32) into Eq. (6.31) yields the final result:

81 1 '-) = m '- ' IT/2 + 12+4-t+ - + - - - 1 + (6.33)

where the temperature dependence is finally explicit. Equation (6.33) is a linear

equation which is coupled, however, to the temperature equation which is non-linear.

The temperature equations were given in Eqs. (6.20)-(6.22). Using the restrictions

listed in Table 6.2, the temperature equations for the two strands and the helium are

reduced to a single equation since T2 ~ T, = T and Th ; T. Again, using the

notation, 0 _ T - Tb, the remaining equation becomes:

- &0
pC.A,5 + 2hp9 = R 1 12 + R2(IT - 1)2 (6.34)

where the constant 0, replaces the temperature dependent C,. The decision of which

value to use for C, is determined by fitting the linear model to the results of the non-

linear model. For a wide range of cases, the value C, = 0.3 J/m-K provided the

optimal fit.4

The non-linear Joule heating terms on the RHS of Eq. (6.34) need to be linearized.

Looking for the moment at the case when R1 > 0 but Z2 = 0, substituting Eq. (6.23)

for R1 in Eq. (6.34) produces the result:

- 09
pCA.5 + 2hpO = R.I(I I) (6.35)

Using the numerical results as a guide, it was found that the behavior of the cable was

most sensitive to the difference (I-I,) while the factor which multiplies this difference,

I, was much less critical. For this reason it was decided to approximate the non-linear

Joule heating term with the following linear equivalent: Im(I - I,) - RmI(I - I,).

The value of the linearizing approximation, I, can be chosen in a way to most

closely match the numerical results for a number of cases. In general, I falls between

the initial current at the onset of the Resistive Domain, I, and the average current

4For comparison, C,(T = 5K) ; 0.15 J/(kg-K) and C,(T = 10K) P 0.85 J/(kg-K).
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per strand, IT/2:

I= zI* + (1 - Z)IT/2 (6.36)

where 0 < z < 1. After running many trials, the value z = 0.4 was chosen to optimize

the match between the analytic linear and numerical non-linear models.

Substituting the temperature dependent equation for Ic, Eq. (6.32), and the lin-

earized Joule heating term into Eq. (6.35) results in the desired linearized temperature

equation:
at9

psCsAs5 + 2hpd = RmI[I - I,(1 - 6/)] (6.37)

The coupled current and temperature equations, Eqs. (6.33) and (6.37), are both

first order, linear ordinary differential equations. The two equations can be solved

simultaneously using standard solution techniques. The most direct method is sub-

stitution, which results in a single second order differential equation.

6.3.2 Solving the Linearized Equations

Combining Eqs. (6.33) and (6.37) results in a second order differential equation for

the current, I. To study the marginal stability problem, it is useful to divide the time-

evolution into three segments to take advantage of the piecewise continuous nature

of R, and R 2 :

I. 0 < t < t, Both strands are superconducting, R1 = R 2 = 0.

II. t, < t < t. Strand one is resistive but strand two is superconducting, R, >

0,Z 2 = 0.

III. t > t.,, Both strands are resistive. R1 > 0, R 2 > 0.

At the transition times (t = t, and t = t.), the current and temperature must be

continuous. Also, the initial conditions at t = 0 are specified: I = IT/2 and V = 0.

Thus, for a given IT and b5, the problem becomes a straightforward series of three

initial value problems with suitable initial conditions found from the solution of the

previous region.
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To calculate the marginal stability case, however, we want to start at the end

and work backwards-this is not so straightforward. Since the mathematics (mostly

algebra) becomes quite intense, the details are left for Appendix C. In the next

paragraphs, however, the procedure used to develop an analytic stability criterion

will be described using figures in lieu of equations wherever possible. To do so, we

will first consider the problem in the "forward" sense (starting with a given IT and

B±) before considering how to begin at the desired end condition (j = z9 = 0 as

t --+ 00) and working backward.

Overview of Linear Model Solution Techniques

For 0 < t < t, the cable is in the Superconducting Domain and the current dis-

tribution can be calculated using the results of Chapter 4. The value of t, can be

calculated analytically by setting the current in strand one equal to the critical cur-

rent. This procedure is shown graphically in Fig. 6-11. The interface conditions which

are needed at the transition time t = t, are: 9 = 0 and I(t,) = I, as indicated in the

figure.

For times t > t,,, strand one becomes resistive while strand two remains super-

conducting. The coupled current and temperature equations for this region of the

Resistive Domain were given in Eqs. (6.33) and (6.37). While the mathematical de-

tails of the solution for the period of time t, < t < t, are given in Appendix C, the

results can be described in general using representative figures.

Depending on the cable design (geometry, cooling conditions, joint resistance,

etc.) and the operating scenario (IT and bi), the system can be in one of three

"mathematical states" after t = t,: overdamped, critically damped or underdamped.'

The behavior of the solution varies depending on which state the cable is in. Examples

for each of the three possibilities are given in Fig. 6-12 where the strand one current

and the critical current are plotted vs. time in the left column and temperature vs.

'Overdamped corresponds to a characteristic equation for the second order system with two
distinct real roots; critically damped implies a single, repeated real root; and underdamped means
the two roots are complex conjugates.
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Figure 6-11: Analytical results for time 0 < t < t,. The solutions from Chapter 4 can
be used to calculate ti, I,, and B* = B~jt i.

time is plotted in the right column. For now, the strand two current is being ignored

even though it plays a critical role in the stability process, as will be discussed shortly.

In the underdamped case, the solution is truncated at t = trec, the time at which

strand one again becomes superconducting, I < I,.

For the critically damped and overdamped cases, the temperature increases mono-

tonically and the critical current goes to zero. In these cases, the quenching of the

second strand, at some time t = t., is inevitable. Of course, from a stability point of

view, this event only makes matters worse as the Joule heating in strand two increases

the rate at which the strand temperature increases. Thus for the critically damped

and overdamped conditions, the cable cannot recover and is therefore "unstable".

For different initial conditions, however, the cable will be in the underdamped state

when it enters the Resistive Domain. For this case, the cable can behave in several

different ways. The first possibility is that strand one will recover before strand two

becomes resistive. This scenario is depicted in Fig. 6-13a and corresponds to the stable

operating regime for the cable. A second possibility is that the second strand becomes

161



500

400

300

E 200

100

0

500

400

300

2 200

100

0

420

400

380

360

340
U

320

300
0 2 4 6

t - t, (Ms)
8

I .

C

0 2 4 6 8 10
t - (is)

C

0 2 4 6 8 10
t - t (Ms)

- -I

I-

C-

50

40

30

20

10

10

0

7.0

6.5

6.0

5.5

105.0

4.5

4.0
10

50

-40

30

20

10

0

0 2 4 6
t - t. (Ms)

8 10

Figure 6-12: Examples of overdamped (top), critically damped (middle), and under-
damped (bottom) behavior after the onset of the Resistive Domain.
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resistive while the critical current is still declining (i.e. the strand temperature is still

increasing). Like the overdamped case just described, the added Joule heating from

strand two causes the temperature rise to accelerate thus preventing the possibility

of recovery, as depicted in Fig. 6-13b.

It is within the third subset of the underdamped state that we must look for the

marginal stability case. As shown in Fig. 6-13c, the critical current can be increasing

(i.e. the strand temperature is decreasing) when the second strand becomes resistive

at some time t = t,. This means that if the second strand did not contribute to the

Joule heating, the cable would recover. And even with the added Joule heat from

strand two, there is still a chance the cable may recover. In the marginal stability

case, the additional Joule heat from strand two exactly balances the excess cooling

which was contributing to the declining strand temperature before strand two can

became resistive. The net result is both strands remain resistive, but there is an

exact balance between the Joule heating and the cooling provided by the helium.

In summary, for a given cable, the onset of the Resistive Domain occurs at t = t,

and I = I, which both depend on the operating conditions IT and bi. Depending

on I, the cable is in one of three states during the Resistive Domain: under-, over-

or critically damped. The underdamped case provides the only possibility of recovery

but non-recovery is possible for this case, as well. To find the I, which leads to the

marginal stability case, it is necessary to find the boundary within the underdamped

case between quench and recovery. Unfortunately, because of the exponential nature

of the solutions and the complication of having to solve interface conditions at t = t_

and t = t,, finding the marginal I, requires the solution of four simultaneous tran-

scendental equations. The mathematics of this process are included in Appendix C.

Having found the I, which generates the marginal stability solution, it is a simple

matter to solve for the transport current, IT, which results in that I, for a given ba

using the analytic results of Chapter 4.

Although the marginal stability case resides within the underdamped regime, in

practice it was found to lie very near the border between the underdamped and

critically damped states. Since it is much easier to solve the single value of 1, which
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Figure 6-14: Comparison of the Marginal Stability Line as calculated using the full
non-linear model, the linear model, and the approximation to the linear model.

corresponds to the critically damped case than it is to solve the transcendental system

of equations needed for the more precise solution, this discovery provides a simple

approximate solution to the marginal stability line for a given cable. The full details

of this approximate method are also described in Appendix C.

The results of the linearized marginal stablity analysis are compared to the non-

linear results in Fig. 6-14 for the cable previously studied in Section 6.2.4. The

figure shows the exact and approximate solutions to the linearized marginal stability

line, as discussed above, along with the previously presented numerical results to

the non-linear equations. The two linear methods agree well with each other and

agree qualitatively with the non-linear results. While some accuracy has been lost by

linearizing the equations, the benefit of speedier calculation allows parametric studies

which would be more difficult if the non-linear equations had to be used.

The linearized equations can also be studied to isolate dimensionless parameters

which characterize the stability behavior of the cable. Although more work can be

done in this area, an interesting balance of dimensionless variables which leads to the
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model equations. View I.

lab-scale cable using linearized

marginal stability case is discussed in Appendix C, Section C.4.

6.3.3 Results of the Linearized Resistive Domain Model

Using the analytical results of the linearized model described in Section 6.3.1 and

derived in detail in Appendix C, the stability behavior of lab-scale cables in ramping

magnetic fields can now be explored. Using the hypothetical cable outlined in Ta-

ble 6.1, the complete range of operating scenarios (i.e., IT and bj) can be mapped

out. Again, we will consider linear field ramps, b 1 , and constant transport current,

IT.

In Fig. 6-15, the stability regimes for the hypothetical cable are shown as the

transport current per strand, IT/2, vs. maximum background field, B. for several

values of field ramp-rate, bi. The cable will quench if the operating point determined

by the combination of B. and IT/2 is above the limitation delineated for the desired

E1 and will not quench if the operating point is below the limit.

For each value of B1 , there is a discontinuity in the stability limitation which
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corresponds to the transition between quenching and recovering after the first "blip".

For example, for b = 1 T/s in Fig. 6-15, the discontinuity occurs at IT/2 = 65 Amps

and B. = 5.4 T. For values of transport current per strand IT/2 > 65 Amps, the

cable quenches the first time it enters the Resistive Domain, corresponding to the

stability limitation line to the left of Bm. = 5.4 T. For IT < 65, however, the cable

can survive the first and subsequent trespasses into the Resistive Domain until the

point where IT/2 m I, the DC operating limit (which occurs at B > 12 T for this

example). This explains the discontinuity in the stability line and opens up a much

greater region of stable operating scenarios which would not be available if the cable

always quenched on the first blip. This additional region is shaded in Fig. 6-15 for

the EI = 1 T/s case.

Another way to view the same information is presented in Fig. 6-16 where the

stability limitation for various value of B5 are plotted as fraction of critical current,

IT/2/Ic, vs. B.. Further, in Figs. 6-17 and 6-18, the stability limitation for the same

hypothetical cable is plotted with b as the dependent variable for several values of

Bm.. These extra views of the same data are presented since the experimental

literature has not settled on a single standard.

In general, these theoretical results agree with the findings of recent experiments.

A direct comparison of theory to an actual lab-scale experiment will be presented in

the next chapter.

6.4 Conclusions

In this chapter we derived the O-D model equations which are appropriate for lab-scale

cables in uniform background magnetic fields. The coupled electrical and thermal

equations were still non-linear, however, requiring numerical techniques to find exact

solutions. The numerical results revealed that lab-scale cables behave much differently

than the full-scale cables discussed in Chapter 5. In particular, unlike full-scale cables,

lab-scale cables exhibited the ability in some cases to survive an excursion into the

Resistive Domain without experiencing a non-recovering quench.
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Motivated by the desire to study the criteria which determine whether a lab-scale

cable is stable (i.e. recovers) or unstable when it first enters the Resistive Domain,

the non-linear lab-scale model was linearized to allow an analytical treatment of the

problem. Although the linearization yielded the desired solution, the necessary math

was cumbersome enough to be presented separately in Appendix C. The general

procedure, however, is described in Section 6.3.2.

The final result of the linearized model was an analytic relation which provided

the stability limit for a given cable as a function of the transport current, IT, the

field ramp-rate, 1, and the maximum magnetic field achieved, B.. The results

were presented graphically in Section 6.3.3 for a hypothetical cable design with DC

transport current.

In Chapter 5 it was stated that to avoid quench in a full-scale cable, the current

in strand one, I, cannot be allowed to reach the critical current, I,. Using the

same criterion for lab-scale cables would be too simplistic (and pessimistic). For low

enough transport currents, the cable can actually survive several episodes in which I
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is temporarily greater than J, but then recovers back to I < I.. Such a cable is said

to be operating in a stable mode since, despite episodic Joule heating, the cable can

be ramped to near its DC limit without fully quenching.

In a real cable, diagnostics designed to measure current redistribution and resis-

tive voltage register repeated "blips" (i.e. spikes) while the backround field is being

ramped. The term "blips" has thus been used in this thesis to refer to the repeated,

rapid redistribution of current which occurs each time one of the strands reaches the

critical current. The correspondence of these theoretically predicted blips with the ex-

perimentally measurd blips is strong evidence that the two-strand model is adequate

to explain the most important features of the behavior of multi-strand cables.

The theory developed in this chapter will be compared to experimental results for

a 27-strand cable in Chapter 7.
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Chapter 7

Application of the Two-Strand

Model to Multi-Strand Cables

In Chapters 3 through 6, the two-strand model was used to demonstrate the impor-

tance of circulating currents for cables operated in ramping magnetic fields. In this

chapter, we will try to extend this analysis to more complicated cable geometries in

order to compare the theoretical findings to experimental results. The limitations of

the two-strand framework limit the accuracy to which real experiments can be sim-

ulated, but the theoretical results nonetheless qualitatively match several important

features found experimentally.

Two experiments have been chosen for analysis and each will be presented sepa-

rately. First, however, some general concerns about how to best model multi-strand

cables are discussed.

7.1 The Two Sub-Cable Model

To accurately calculate the circulating currents in a multi-strand cable is a difficult

proposition. The direct approach of tracking the current in each strand individually

clearly gets out of hand very quickly when considering cables with upwards of a thou-

sand strands. One alternative is to use a continuum model which carefully translates

the twisting strands into a continuous non-isotropic medium. This approach was used
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successfully in calculating AC Losses for multi-strand cables [24], but proved to be

too cumbersome for the purposes of this thesis.

Thus, instead of generating a new and more difficult model from scratch, it was

decided to modify the two-strand model in such a way that it could be used to study

multi-strand cables. It is important to realize that the work presented in this section

represents a "conceptual" approach to current distribution and stability issues in

multi-strand cables rather than an exact physical model. The simplifying assumption

which allows the use of the two-strand model for the study of multi-strand cables will

now be discussed.

As described in Chapter 2, a cable-in-condut conductor (CICC) is composed of

many composite superconducting strands. The full cable is formed in stages with each

stage formed by twisting together the results of the previous stage (see Section 1.2.2).

For example, the US-DPC cable [1] was formed as follows: sets of three strands

were twisted into "triplets;" sets of three triplets were twisted into "ninelets;" sets of

five ninelets were twisted into "sub-cables;" and, finally, five sub-cables were twisted

together to form the full cable. A schematic cross-section of the final cable is shown

in Fig. 7-1.

Since each successive stage of the cable winding has a longer twist-pitch length

than the previous one, the major portion of the flux imbalance which causes circu-

lating currents is contributed by the final stage. For this reason, it is appropriate to

approximate the magnitude of the circulating currents by focusing on the last stage

flux linkage between the sub-cables while ignoring the finer scale structure. In or-

der to take advantage of the two-strand model developed in this thesis, two of the

five subcables are isolated for study, as indicated by the shaded regions in Fig. 7-1.

Each of the two shaded sub-cables is treated as a "pseudo-strand" for the purpose of

calculating an estimate of the current distribution.

The biggest modification needed, then, in order to analyze the multi-strand cable

using the two-strand model is to account for the number of strands of which each sub-

cable is composed. Also the spacing between centers, w, and the twist-pitch length,

4, are now associated with the final winding stage. Using these modifications, the
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Figure 7-1: Schematic cross-section of the 225 strand US-DPC cable highlighting two
of the five final stage "sub-cables".

two-strand model can be used to study the qualitative effects of current distribution

in multi-strand cables. Two examples of this procedure are given in Sections 7.2 and

7.5 below.

Before getting to the examples, however, two other aspects of multi-strand cables

should be discussed. In Chapter 3, the two-strand model was developed using a

simplified model of the terminations which connect the superconducting cable to the

power supply. In this chapter, we will consider a somewhat more sophisticated model

of these "joints." Also, up until now, the orientation of the cable with respect to

the direction of the magnetic field at the joints has been considered an arbitrary

parameter. In this chapter, a statistical procedure will be used to calculate the

expected value of this important variable in order to better match the theoretical

model to an actual cable design.

Rather than developing these added concepts independently, the improved joint

model and statistical study of the end conditions will be derived in the context of

the US-DPC cable, which will be presented as the first example in the next section.
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total number of strands Net~ 225
number of strands per subcable N 45

cable length e 150 m
twist-pitch length tp 30 cm

length of joint fT 100 cm
cable width w 1.5 cm

effective inductance per length L 1 pH
transverse electrical conductivity 0± <100 -nm- 1

transverse joint resistance Rj 3 pQ
peak field ramp-rate B 1 T/s

field ramp-rate at joints Bm, 0.5 T/s
load-line (at peak field) A 24 A/strand/T

load-line (at joints) Aj 12 A/strand/T

Table 7.1: Selected US-DPC Cable Properties.

The specific results from this first example are easily generalized and can be applied

directly to a second example, which is discussed in Section 7.5.

7.2 Theoretical Model of US-DPC Experiment

As mentioned in Chapter 2, the United States Demonstration Poloidal Coil (US-

DPC) tests were the first to identify the phenomenon now known as Ramp Rate

Limitation. The US-DPC experiment is described in detail in [1] and the pertinent

US-DPC cable parameters are summarized in Table 7.1. In this section, we will use

the two-strand cable model developed in Chapters 3, 4 and 5 to study the effects

of circulating currents in the US-DPC and make comparisons to the experimental

results.

Using the two sub-cable analogy defined in Section 7.1, two of the five US-DPC

sub-cables are isolated to approximate the dominant contribution to the circulating

currents. Since each sub-cable has 45 strands, the value of the circulating current

in the Superconducting Domain calculated using the results of Chapter 4 need to be

divided by N = 45 to determine the "per-strand" result. Similarly, since the full

cable consists of 225 strands, the transport current needs to be divided by N 0tt = 225
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to determine the "per-strand" basis.

In the US-DPC experiment, the magnetic field was produced by the coil itself

and thus the magnetic field is proportional to the transport current.1 The details of

the winding geometry and the spatial distribution of the magnetic field intensity are

contained in i1]. As mentioned in Chapter 5, only the values of the field intensity at

the joints and the center of the cable are needed to determine current distribution and

stability. The constants of proportionality relating the magnetic field to the transport

current at these three locations are given in Table 7.1.

For the purposes of this chapter, only the experimental runs which utilized a linear

ramping of the transport current (and thus magnetic field) are considered. The linear

ramp starts at t = 0, Ir = 0, and B = 0 and continues until a "flat-top" threshold

is reached at t = tramp, IT = Imax, and B = B,,. This scenario corresponds to a

considerable database of experimental results.

7.2.1 Characterizing the US-DPC Cable

The transconductance, os, is not known for the US-DPC cable. However, the cable

was especially designed to minimize o± by coating each strand with a thin layer of

chrome oxide [1]. For this reason, it is reasonable to assume that the transconductance

is low, specifically aO- < 100 Q-1n- 1 as indicated in Table 7.1. For this range of CI,

the US-DPC cable falls into the short cable regime as defined for the Superconducting

Domain in Section 4.3.2.' Rather than using the results of Section 4.3.2, though, the

governing equation for current distribution in the US-DPC model will be rederived in

this chapter to better account for the actual joint design used to terminate the cable.

We will, however, make use of one key finding developed for the short cable regime

without rederiving it from scratch: the current in each strand is spatially uniform

over the length of the cable.

'Some runs were conducted in the presence of additional background field magnets, but they will
not be discussed in this thesis.

2Although the US-DPC can be considered a "short cable" for the purposes of current distribution
in the Superconducting Domain, it is still a "full-scale" cable from the purposes of stability analysis
in the Resistive Domain, as will be discussed shortly.
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Another finding from a previous chapter will also be used here without further

discussing the details. Although, the value of o± is not known precisely, conservative

estimates of the transfer length, ex, range from 5 to 20 in. Since the cable length,

£, is much longer than eX, the cable is classified as a "full-scale" cable as defined in

Section 5.4.1. The implications of this classification are that the cable will quench if

it enters the Resistive Domain-the current cannot redistribute fast enough to allow

the cable to recover. Thus, if I = I anywhere along the cable (i.e. at the center,

where I, is lowest), the cable quenches.

The time at which I = I. for a linear ramp has previously been defined as t = t,.

If, however, the ramp is terminated before t = t,, the current never reaches the critical

current limt. In the experiment, the transport current (and thus the magnetic field)

was ramped at a linear rate up until t = tramp, at which time the current and field

were held constant. Thus, the criterion for stabiliy in the US-DPC experiment can

be summarized as tramp < t*. On the other hand, if the ramp time is such that

tramp > t,, the cable will quench at time t = t.,, before it reaches flat-top.

With this criterion in mind, we now derive the governing equation for the current

distribution in the US-DPC cable taking into consideration further details of the joint

design.

7.2.2 Model of Joints for US-DPC Cable

When developing the two-strand model equations in Chapter 3, the joints were treated

as idealized resistors at either end of the cable. While that approach was appropriate

for explaining the physics associated with circulating currents and current distribution

in general, the unique joint design of the US-DPC cable requires special treatment.

A schematic of the US-DPC cable is shown in Fig. 7-2 where the finite joint length,

tT, is emphasized. In this case, eT 1 m (the figure is not drawn to scale). The two

"strands" in the figure now represent two sub-cables, as discussed in Section 7.1. The

full cable geometry is discussed in full detail in [1].

A cross-section of one of the two low-resistance joints is shown in Fig. 7-3. The

figure shows the connection between two of the three double-pancake windings which
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Figure 7-2: Schematic of one section of the US-DPC cable with terminations.

comprise the full US-DPC coil. At the joints, the five sub-cables are untwisted and

encased in a solder-filled, flattened copper tube, as shown in the figure. The two

flattened ends of the adjacent pancakes are then overlapped and bonded. Again, the

full details are given in [1].

The two sub-cables which have been isolated for study are shaded in Fig. 7-3. The

five short vertical arrows in the figure represent the path of the transport current as

it travels through the joint. The resistance of the this current path was found by

measurement to be W11 ~ 1 nQ. The long horizontal arrow is indicative of the current

path of the circulating currents as they close through the joints. The resistance of

this path is what we have defined as Rj, the transverse resistance of the joint (refer

to Section 3.3.3).

To make an initial estimate of Ri from the measured value R1, we can use simple

ratios derived from the geometry of the joint design. If the resistivity of the copper

tubing, 7±ub,, is considered to be the dominant resistive term, the ratio Rj/R11 can
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Figure 7-3: Cross-ssection of the "lap" joint configuration used to join sections of
the US-DPC cable.

be found from the following relations:

|tubeAtube (7.1)
7tubew (7.2)

where the dimensions w and Atub, are defined in Fig. 7-3. Equations (7.1) and (7.2)

can be re-arranged to give R?/R1i = w2 /Al . Using the dimensions of the joint

given in the figure and the measured value of R11, the transverse joint resistance is

estimated to be Ri ~ 3pR.
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7.2.3 Governing Equation for Current Distribution in US-

DPC Model

Due to the design of the joints used in the US-DPC cable, the governing equation

for current distribution needs to be modified from the one given in Chapter 4. The

source of the difference is the fact that the sub-cables are not twisted within the joint

region. The ramping magnetic field therefore produces an appreciable flux linkage

between sub-cables in the joint region which has not been included in the original

analysis. In this section, we will include the effects of this added source term for the

case of the US-DPC cable.

Because the flux through the joints is now being included, the cable must be

divided into three regions, as diagrammed in Fig. 7-4. The two joints are each char-

acterized by a transconductance oj which can be derived from the overall transverse

joint resistance, Ri, and the physical length of the joint, tT (where subscript T stands

for "termination" since the notation Ej has already been used):

1
O-a = RCTJT

The two-subcables being studied (see Fig. 7-3) are straight and parallel in each joint,

separated by the distance w. The additional reference frames, x1 and x2 (shown in

Fig. 7-4), will be used to simplify the math later on.

As mentioned in Section 7.1, the cable itself can be considered insulated over its

length, e, since it falls into the short-cable length regime as defined in Section 4.3.2.

Thus, the current in each sub-cable cannot vary over the length-the current which

enters the one sub-cable at the joint does not transfer to the other sub-cable. There-

fore, to determine the current distribution in the cable, it is only necessary to focus

on the joints.

To develop the governing equation for the current distribution, the procedure is

exactly analagous to the development presented in Chapter 3. In this chapter, the

derivation will use the concepts presented in Chapter 3 without directly commenting

on many of the steps. The reader should refer to Section 3.4 for a review of the full
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X1 X X 2

Figure 7-4: The three regions of the US-DPC cable model: 2 joints and the cable
itself. (Note, the figure is not drawn to scale: > fT.)

details.

The magnetic field is approximately uniform over the relatively short length of

the joints. At the leftmost joint, the perpendicular component of the magnetic field

is BI.,, cos 0o where 00 is the orientation of the joint with respect to the direction of

the magnetic field. Similarly, BI__ cos 01 applies at the other joint. If we assume the

magnetic field profile is symmetric about the center of the cable, the simplification

Bi -= BJ=O = B ,, can be used, where Bj stands for the magnetic field at the

joints.

Within the first joint, 0 < x1 < £T, Faraday's law can be used to determine the

induced current (see Section 3.4 for more details):

1 0 2 IB 19I _ B
- - = W cos 0

or

2 92 IB &B w 8Biaj- -x 2L t 0 (7.3)

where a2 1/(2cx-C) and w is the width of the joint. The reference frame x1 is
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Figure 7-5: The contour of integration necessary to determine the second interface
condition, see Eq. (7.6).

defined in Fig. 7-4. Similarly, in the second joint, 0 < x 2 < tT, we get:

2 &2IB _ IB w aBj Cos 9 (7.4)

aj xi at ~ 2 a t s1 .4

where the reference frame x2 is defined as shown in Fig. 7-4.

Because the current over the cable length is constant, the first interface condition

is simply:

X1 = X2 = eT; IB continuous (7.5)

The second interface condition is more involved. Using Faraday's law around the

closed path indicated in Fig. 7-5 produces the following equation:

1 aIB + IV 1 IB je B(x) c 27rx +
+2 - -- wcos + xO-J x=O &o lx= OrJ a- x .__+ fo &t 4

Doing the calculus and transforming to the auxiliary reference frames x1 and x2, this

equation reduces to the second necessary interface condition:

+I a2 / OB + IB N _ ___

X1=X2= ; + k + =- 9 (sin 01 - sin Oo) (7.6)
& f ( 819X aX2 47r~L

where b B and the presumption is made that the magnetic field is approxi-

mately constant over the distance of one twist-pitch length, see Section 4.2.2.

In addition to the two interface conditions, two other boundary conditions are

required. In each joint, the induced current must be zero at the end of the joint not
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connected to the cable. In other words:

x 1 = 0 ; I= 0 (7.7)

x 2 =0 IB = 0  (7.8)

Together, Eqs. (7.5)-(7.8) provide the four necessary boundary conditions to solve for

the induced current, 1B, in each of the three regions-joint, cable, joint-of the US-

DPC model. Within the joints, IB is a function of x1 over the range 0 < x, < eT and

a function of x2 over the range 0 < x2 < tT. Along the length of the cable, however,

1B does not depend on x but is determined solely from the interface conditions where

the cable meets the joints.

With the boundary and interface conditions now specified, we can turn to solving

the induced current equations for the US-DPC model. Using separation of variables

to find the homogenous solution, IB, to Eqs. (7.3) and (7.4) produces:

sin(kai) ;0 < X1 < iT

IBh= afe J sin(k T) ; 0<x< (7.9)

sin(kx 2); 0 < X2 < ET

where Eqs. (7.7) and (7.8) have already been used to eliminate "cos" terms and

Eq. (7.5) has been used to to determine the coefficients, a,, are the same in each

of the three regions. The parameters k, need to be determined using the remaining

interface condition, Eq. (7.6).

Plugging Eq. (7.9) into Eq. (7.6) provides the transcendental equation necessary

to generate the values of k,:

ki tan(kiT) = 2 (7.10)

for n = 1,2,3,..., oo. Inspecting Eq. (7.9), however, we see that the solutions for

IB, exponentially decay in time as k, increases. Since we are typically interested in

ramp times on the order of 1 s or greater, we can limit the infinite series to a finite

number of terms while still maintaining any desired accuracy. The cut-off criterion
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can be expressed as ka 2 trmp > 1, at which point further terms become negligible.

For the US-DPC cable, the n = 1 term is dominant for time-scales of interest

and all higher terms are negligible. Thus, dropping the subscript n, the results above

simplify:

sin(kx); 0 < X < t

Ish = ae- sin(keT) ; 0<x<.e (7.11)

sin(kx2); 0 < X2 < eT

where k is determined from the transcendental equation:

k tan(keT) = 2 (7.12)

and 0 < k < 7r/(2fT).

Having solved for the homogenous solutions (except for the scaling constant a

which will be found from the initial conditions), it is next necessary to find the

particular solutions which complete the model. Since Eqs. (7.3) and (7.4) are second

order, the particular solutions in each of the joint regions have the form:

= bIx2 + cIx 1  ;0 < x 1 < t(
IB, = 1(7.13)

b2x + c 2x 2  ;0 < x 2 < fT

where the constant coefficients can be solved using substitution into the original

equations,Eqs. (7.3) and (7.4), along with the interface conditions, Eqs. (7.5) and

(7.8). The results are:

Wbj cos (7.14)
42

4Laj

b2 = -wb Cos 1 (7.15)
4f-aj

C1 = - (sin 01 - sin Oo) - (cos 01 + 3 cos U0) (7.16)

C2= cI + (b - b2 )T (7.17)

The final unknown, a, can now be determined from the initial conditions. The
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initial condition IB(x, t = 0) = 0 can only be specified for the region 0 < x < f (i.e.

the length of the cable, but not the joint regions) because the rapidly decaying terms

in Eq. (7.9) have been truncated. Since we are not interested in the fast time-scale

response in the joints, however, we do not need accurate initial conditions in those

regions anyway.

Combining Eqs. (7.11) and (7.13) to generate the complete solution for the induced

current in strand one, 1B = IB, +IB,, along with the coefficients derived in Eqs. (7.14)

and (7.17) and the initial condition IB(x = 0, t = 0) = 0 gives the final answer:

b1xi + c1x1 - (b1/ + ciT) (sin kx1/ sin kT)ek 2 S ;0 < X1 < tT

1B = (b It + CieT) ( k - e--2"t) ;0<x< (7.18)

b1 x2 + c1X2 - (bi1 4 + citT) (sin kX2 / sin kT) e-9 2 j ;0 < X2 < eT

where b1 and c1 are known from Eqs. (7.14)-(7.17).

To demonstrate the behavior of this solution, an example is shown in Fig. 7-6 for

arbitrary values of 0o and 01. Profiles of the induced current per strand are shown

at several times for EI= 1 T/s. Note that the figure is not drawn to scale as in

actuality the cable length, f, is much longer than the length of either joint, tT. Do

to its orientation (i.e. Oo), in the first joint the induced current tends to be negative.

In the second joint, however, the induced current tends to be positive and of a larger

magnitude. The net result is a positive induced current which is constant over the

length of the cable due to the relatively low transconductance, -cj.

Since we are most interested in the current distribution in the cable (as opposed

to the current distribution in the joints), it is useful to isolate the middle branch of

Eq. (7.18) and introduce simplifying notation:

1B = EB 4j [(cos 0 1 + cos 0o) - e (sin 0 1 - sin 00)] (1 - e-/r) ;0 < x < t (7.19)
4NRf?

where r = (kaj)-2 and e = 4,/(7rtT). The factor N has been introduced to convert

the total induced current (given in Eq. (7.18)) to the desired induced current per

strand. Equation (7.19) will be used to determine the stability behavior of the US-
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Figure 7-6: An example of the induced current per strand in the three regions of the
US-DPC model cable. The end regions represent the finite length joints (eT = 1 m)
while the center region represents the actual cable length (f = 150 m).
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DPC model cable.

7.2.4 Statistical Expectation of Flux Imbalance

In the example depicted in Fig. 7-6, the orientations of the joints were chosen arbi-

trarily. Since 00 and 01 are such important parameters, though, it makes sense to

use a more rigorous approach in assigning their values. In this section, a statistical

approach will be taken to find the "expected" contribution of 0o and 01.

The orientation of the joints contribute to the induced current through the scaling

factor:

' [(cos 01 + cos 0o) - E (sin 01 - sin 00)] (7.20)

which appears in Eq. (7.19). To determine the expected value, Exp[s], we first need to

split s into one component that depends only on 0o and one component that depends

only on 01:

+

,; cos 0o + E sin 00 (7.21)

,; cos 01 - E sin 0 1  (7.22)

We can derive the partial distribution function, PDF, of both ;o and ;, using a

graphical procedure. The next step is to build the PDF of the combination of ;o

and ;,. Then the expected value, Exp[c], can be found by integrating the weighted

PDF of g. The whole procedure is detailed in Appendix B and the final result for the

US-DPC model is:

Exp [C] = 0.95

Using this result in Eq. (7.19) removes all arbitrariness in the model. The final result

becomes:

IB = 5 Exp [] (1 - e-*/) (7.23)

With this expectation for the induced current per strand, the final step needed before
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comparing theoretical predictions to the experimental results is a description of the

critical current relations for the US-DPC conductor.

7.2.5 Field Profile and I, relation for US-DPC

For the US-DPC magnet, the peak field occurs at the center of the cable, x = t/2, and

is directly proportional to the transport current: B. = IT/(NtA). At the joints,

the magnetic field is significantly less than the peak field but is still proportional to

IT: Bj = IT/(NOtAJ). Both A and Ajwere given previously in Table 7.1 for the

US-DPC experiment.

The ramp-rate of the field at the joints, b, determines the magnitude of the

induced current, IB. The magnitude of the field at the center of the cable, B.,

determines the limiting critical current, -c, which in turn determines the onset of the

Resistive Domain. The magnetic field at intermediate locations along the cable varies

slowly between Bj and B. but the exact profile is not necessary for this analysis

(due to reasons discussed in Section 4.2.2).

Instead of the generalized Kim model for the critical current used in previous

chapters, we now turn to a more sophisticated model which has been specifically tuned

to match the properties of the actual US-DPC strands. The desired 1, relation was

originally developed in references [41, 42] and was benchmarked against experimental

measurements in [1]. The resulting I, (on a per-strand basis) is plotted against

magnetic field for a fixed temperature, T = 4.5 K, in Fig. 7-7. The full relation is

included for ease of reference in Appendix D, Eq. (D.1).

7.3 Comparing the Theoretical Model to Experi-

mental Results for US-DPC Experiment

Having solved for the induced currents,Eq. (7.23), and with an accurate model of

the critical current, Eq. (D.1), it is now possible to predict the stability behavior of

the US-DPC experiment. As mentioned in Section 7.2.1, the US-DPC is a full-scale
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Figure 7-7: Critical current per strand, Ie, for the US-DPC vs. magnetic field at the
temperature T = 4.5 K.

magnet which will quench if it enters the Resistive Domain. The stability criterion

can thus be stated as tramp < t, where tramp is the time at which the linear ramp is

ended and the transport current is held constant (i.e., "flat-top") and t, is the time

at which the current per strand in the first sub-cable equals the critical curent for a

linear ramp. The value of t, is dependent on the ramp-rate, b.

Figure 7-8 shows the average transport current at quench, I., vs. the time at

which quench occurs, tq, according to both experimental and theoretical results. Also

shown in the figure is the critical current per strand, Ic, in the peak-field region at the

time of quench. The theory can be seen to correctly predict the originally unexpected

result that the cable quenches at a transport current significantly lower than the

critical current.

According to the theory, the cable quenches when the transport current is less

than the critical current because one sub-cable is carrying much more than its fair

share of current due to the induced circulating currents, IB. The model of current
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Figure 7-8: Quench current per strand, Iq, vs. ramp time, t ramp, for the US-DPC
single coil test, [1]. Experimental (e) and theoretical (-) results.

distribution developed in this thesis thus provides an explanation for much of the

performance degradation experienced by the US-DPC.

While the theoretical results explain most of the significant discrepancies between

the expected quench current, I, and the actual quench current, Iq, the theory does

not match the shape of the experimental results at lower ramp times, tramp. While

the theoretical curve does tend to decrease as it approaches the origin, the slope is

too slight to match the observed data. This qualitative difference can be attributed

to the limitations of the two sub-cable model. It is expected that the concept of

circulating currents can better explain the shape of the data if a more sophisticated

(i.e. multi-strand or continuum) model were used to better estimate the induced

currents.
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7.4 Conclusions from the US-DPC Example

The results of the US-DPC model can be interpreted to reveal several conclusions. Of

primary interest is the fact that the calculated circulating currents can account for

the premature quenches which were experienced experimentally. The two sub-cable

model has sufficient explanatory power to predict the approximately 25% discrepanccy

between expected and actual results. A more sophisticated model would be needed,

however, to explain the "finer detail" of the results, namely the slight dependence of

quench current on ramp time.

A more specific conclusion concerns the joint design used to connect sections of

the US-DPC cable. Since the last stage sub-cables are untwisted over the length of

the joint region, there is a significant increase in the magnetic flux linkage which

drives the circulating currents for this type of design. If the twisting of the sub-

cables could be maintained throughout the joint region, the induced currents could

be substantially reduced and performance would improve correspondingly.

One further point to mention is that the US-DPC cable fell into the "short cable

length" regime, e << fD as defined in Section 4.3.2, because the strands were rela-

tively well insulated due to the chrome coating. While the chrome coating reduces

AC losses by minimizing interstrand coupling current, it also allows the circulating

currents to diffuse more quickly into the high-field region of the cable. This second

consideration may take precedence (or at least must be considered) in future cable

designs. The analytic results of Chapter 4 provide helpful tools in studying these

effects of the trans-conductance, or I.

7.5 Theoretical Model of Lab-Scale Experiment

After the surprising results of the US-DPC, researchers at MIT designed a series

of lab-scale tests to further study ramp-rate limitation and the general performance

degradation of superconducting cables in ramping magnetic fields. One of these lab-

scale experiments will now be used as a second example of the application of the
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theoretical results from previous chapters to actual cables. Unlike the US-DPC ex-

ample, for this case the general theoretical model of Chapters 4, 5 and 6 does not

have to be much tailored to match the experimental cable geometry. Accordingly, the

desired theoretical model of the lab-scale experiment will be developed rather quickly

making reference to relevant sections of this thesis without going into added detail.

The theoretical constructs which will be used to analyze the results of these ex-

periments were developed for a two-strand cable in Chapter 6. We will again use

the two sub-cable approach (see Section 7.1) to adapt the two-strand results to a

multi-strand cable. In the experiment discussed here, the transport current, IT, was

held constant while the spatially uniform background magnetic field was increased

from zero to B,. at a linear rate, b.

The details of a series of MIT lab-scale experiments are given in several published

accounts, [2, 3, 4, 5]. Pertinent aspects of the 27 strand cable design for one set

of experiments [2, 43] are recounted in Table 7.2. Some of the parameters listed

in Table 7.2 are "engineering" estimates rather than measured values. Notably, the

transverse joint resistance, Rj, and the heat transfer coefficient, h, have been chosen

to be consistent with generally accepted estimates but these values can not be cor-

roborated at this time. For the purpose of demonstrating the utility of the theory,

however, they are deemed to be sufficient.'

For the parameters listed in Table 7.2, the cable falls into the Short-cable length/-

short-circuit joint regime when in the Superconducting Domain and the lab-scale

cable regime when in the Resistive Domain. Thus, the two-strand model results of

Section 4.3.2 can be used with only minor modifications to study the behavior of the

27 strand experimental lab-scale cable.4

The first modification involves a simple accounting for the number of strands.

To reduce all quantities to a "per-strand" basis, the transport current has to be

'In fairness, a few other values of Kj and h were tried but did not match experimental results
as well as the values listed in Table 7.2.

4Since the sub-cables remain twisted within the joint region, we can dispense with the more
difficult joint model developed for the US-DPC cable in Section 4.3.2 above and return to the
simpler geometry diagrammed in Fig. 3-1.
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cable length
twist-pitch length

cable width
effective inductance per length

transverse electrical conductivity
transverse joint resistance

helium background temperature
helium pressure

helium cross-sectional area
strand (one) cross-sectional area
volume fraction superconductor

matrix resistance per length
heat transfer coefficient

w
L

Cr I

Tb
Ph
Ah
A,
A

Rh
h

1 im
15 cm
0.5 cm
0.34 pH
< 100 Q-m--1

1 pZQ
4.5 K
5 atm.
0.64 mm 2

0.48 mm2
0.45
1 mQ-m-1
1000 W/m 2 -K

Table 7.2: Selected Properties of the MIT Lab-Scale Cable.

divided by Nt = 27 while the circulating current calculated between two sub-cables

needs to be divided by N = 9, the number of strands per sub-cable. The second

modification concerns the trigonometric factor sin 01 - sin 00 in the source term T1,

which first appears in Eq. (6.12). This factor can be studied statistically using the

same methods derived in Appendix B to eliminate the need to arbitrarily select 00

and 01. The result is:

Exp [sin 01 - sin 0o] = 0.85

7.6 Comparing Theoretical Model to Experimen-

tal Results of the Lab-Scale Experiment

At this point it is possible to use the results of Chapter 6 to compare theoretical

predictions to experimental results. Figure 7-9 shows the experimentally determined

stability behavior of the lab-scale cable as reported in [431 at two different ramp rates,

b = 0.72 and 1.64 T/s. The results were obtained by keeping the transport current

(y-axis) constant and noting at what magnetic field (x-axis) the cable quenched for

each value of bi.

The figure also shows the correponding theoretical predictions for each bS us-
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Figure 7-9: DC quench current per strand, I., vs. quench field, B,, for the lab-

scale cable test, [2, 43]. Experimental (o, A ) and theoretical (-) results for two

ramp rates, Bi.
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ing the linearized stability model developed in Section 6.3. While the results do not

match the experimental data perfectly, the theory qualitatively accounts for the ad-

verse effects of increased B on the performance of the cable. If circulating currents

were not considered, for instance, the cable would be expected to operate at nearly

the DC limit, indicated in Fig. 7-9. The theory not only accounts for the general

degradation of performance in ramping magnetic fields but also qualitatively predicts

the dependence on bI.

7.7 Conclusions from Lab-Scale Cable Model

The comparison of theoretical predictions to measured results for the lab-scale cable

experiments is convincing evidence that circulating currents play an important role

in stability for superconducting cables. Further investigation is needed, however, to

better estimate important parameters such as Rj and h, before these results can be

considered conclusive. Also, a more detailed theoretical model (i.e. multi-strand or

continuum instead of two-strand) may be needed to fully explain the experimental

data.

194



Chapter 8

Conclusions

The problem of uneven current distribution in superconducting cables is of consid-

erable importance to designers of superconducting magnets which will be operated

in transient conditions. This thesis provides a theoretical foundation for the study

of induced circulating currents which can be a major source of current imbalance

in CICC magnets. While the limited scope of the thesis prevented a comprehensive

investigation of all aspects of the current distribution problem, several significant

contributions were realized.

The theoretical model used throughout the thesis is based on a two-strand, twisted

cable terminated in idealized joints. Compared to actual CICC windings with 100's

or 1000's of strands, the geometrical simplicity of the two-strand model has the dual

advantage of being mathematically tractable and physically intuitive. Nonetheless,

the two-strand model captures all of the relevant physics and provides a compelling

analogy for the behavior of current distribution in larger cables.

Most importantly, the results of the two-strand model provide important scaling

parameters which can be used to characterize CICC magnets into distinct regimes

determined by cable length and joint design. Since current distribution and stability

criteria differ for each regime, the theory has important implications for the mod-

elling of large-scale cables with sub-sized experiments. The scaling parameters also

identify the important design parameters which most effect current distribution in

superconducting cables.
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8.1 Current Distribution

The analysis of Chapter 4 resulted in two derived length scales which can be used

to characterize superconducting cables operated in ramping magnetic fields. The dif-

fusion length, fD = VT p/ 2Cr, provides a benchmark in determining whether

the cable length, f, should be considered short, finite, or infiinite for the specified

ramp time, tramp. The induced circulating currents for each of these length classi-

fications possess different qualitative behaviors. In general, short cables experience

proportionately larger imbalances than do finite or infinite cables.

The boundary scale length, ti = (crjRj)-', is a second independent characteris-

tic of the cable. The boundary scale determines the distance from the ends of the

cable at which the joint effects begin to saturate. The relative ordering of the cable

length, t, and the boundary scale, ef, determines the appropriate regime-open-

circuit, resistive, or short-circuit-for a given cable. For each of these joint regimes,

the induced circulating currents exhibit different patterns of behavior, resulting in

a total of nine distinct solution regimes (e.g., "short length/resistive joint," "finite

length/short-circuit joint," etc.). Figure 4-11 provides a handy summary of the nine

regimes and a reference to the pertinent solutions for each.

Since both the diffusion length scale and the boundary length scale depend on

the the transverse conductance, o-_, this one parameter has great influence on the

current distribution within a cable. Unfortunately, 0.1 is very difficult to measure

and is practically unknown for most cables. This concern is mentioned again in

Section 8.4, suggestions for future work.

One interesting discovery from the theoretical analysis was that the magnitude

of the induced currents was only dependent on the field ramp-rate at the joints,

b (x = 0) and B1 (x = t). This result is important when comparing lab-scale exper-

iments with uniform background field distributions to full-scale experiments in which

the field at the joints is typically much lower (- 50%) than the peak field. The result

also suggests extra care should be taken to place joints in low field regions or pro-

vide magnetic shielding (if possible) to reduce the destabilizing effects of circulating
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currents.

8.2 Stability Criteria

The current distribution model needs to be coupled to a thermal model in order to

predict the time-evolution of the current and temperature once the strand current

reaches the critical current. In Chapter 5, the necessary model was derived and

used to study the behavior of cables once they enter this so-called Resistive Domain.

Unfortunately, the resulting system of equations is non-linear and needs to be solved

numerically using advanced algorithms designed to solve higher order boundary value

problems.

The numerical results quickly yielded an important discovery, however: the sta-

bility behavior of cables which enter the Resistive Domain depends primarily on the

overall length of the cable, t, and the transfer length, tx = (0IZ)-1/2 . For cable

lengths longer than the transfer length, the cable invariably quenched soon after en-

tering the Resistive Domain. For cables shorter than the transfer length, though,

either quench or a rapid recovery were possible, depending on the cable design.

For practical design parameters, cables with L > £x are "full-scale" magnets

(t 2 50 m) which generate their own magnetic field. For such magnets, the sta-

bility criterion can be calculated using the analytic results of the current distribution

calculations of Chapter 4 to determine the total current (transport current + circu-

lating current) in strand one. This current, I, must be less than the critical current,

c, at time t = t,-amp. Thus, the stability criterion is:

t = trap ; I = I/2+ IB < Ic

where IT/2 is the average transport current per strand and 1B is the analytically

calculated circulating current.

For "lab-scale" cables, the length is typically i < fx and the stability criterion is

much more involved. In this case, however, several approximations are valid which
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allow the non-linear, coupled partial differential equations of the stability model to be

linearized and studied analytically. The linearized equations can be solved to yield

a marginal stability line which provides a boundary between stable and unstable

regimes in the phase plane defined by the operating conditions IT and b±. This

result was shown graphically in Fig. 6-14.

The theoretical study of lab-scale cables provided a convincing explanation for

many experimentally observed phenomena. Most interestingly, the theory predicts

that lab-scale cables which are operated within the stable regime may experience a

rapid redistribution of current when strand one reaches the critical current. Such

redistribution of current has been measured experimentally as a voltage "blip" using

specially designed diagnostics [4, 5].

The ability of lab-scale cables to recover from the Resistive Domain in certain

conditions must be carefully considered when using lab-scale experiments to predict

the behavior of full-scale magnets. Lab-scale results which exhibit the tell-tale "blips"

of rapid current redistribution cannot be directly compared to full-scale results since

full-scale magnets do not have a similar recovery mechanism.

8.3 Comparisons to Experiments

Although the main contribution of the two-strand model is its ability to explain

important scaling relations and not its quantitative accuracy, the results of the model

were nonetheless compared to the results of two different experiments. As expected,

agreement between experiment and theory left a little to be desired, but the theory

did explain some of the more confounding results of the two experimental campaigns.

The modified two-strand model provided a convincing argument that circulating

currents accounted for the approximately 25% degradation in the expected perfor-

mance of the United States Demonstration Poloidal Coil (US-DPC). Although the

US-DPC results exhibited a stronger dependence on ramp-rate, B1 , than the the-

ory predicted, it is believed that further refinements of the two-strand model could

eventually account for this discrepancy as well.
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The comparison of the theory to lab-scale results did better in matching the ramp-

rate dependency observed experimentally. Again, the theory proved to be a better

"qualitative" match than a "quantitative" one, but that was the original goal of the

model anyway. The results offer enough encouragement to merit further investigation

using a more sophisticated approach, as will be discussed in the next section.

8.4 Future Directions

The two-strand model was a necessary first step in the treatment of current dis-

tribution and the related stability criteria for cabled superconductors. The model

demonstrated the importance of circulating currents and provided a foundation on

which future work can be built. The following areas warrant further investigation:

" The two-strand model highlights the importance of various cable parameters

which are usually not measured. Specifically, the transverse cable conductance,

aj, and the transverse joint resistance, Rj, strongly influence the behavior of

circulating currents in superconducting cables but neither is a well known value

for a given cable design. An experimental program to develop a reliable method

of testing these parameters would be quite valuable in this regard.

" While the two-strand model provides a useful analogy for more complicated

cables, a more sophisticated approach would be needed to develop an accurate

predictive tool. During the course of researching this topic, some success was

achieved in developing a continuum model which incorporated the multiple

twisting stages of a fully transposed cable. This effort should be renewed if it

is determined that a more accurate picture of current distribution is necessary.

" This thesis emphasizes the importance of joint design in determining the mag-

nitude and effects of current distribution in CICC magnets. A joint designed

to offer the lowest possible DC resistance is not necessarily the best choice for

a magnet operating in transient fields; lowering the transverse joint resistance,

Rj, tends to increase the magnitude of induced circulating currents. Although
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purposefully increasing Rj leads to higher cooling costs, it would help to reduce

uneven current distributions. Alternatively, it may be worth investigating the

possibility of magnetically shielding the joint region since only B1 at the joints

contributes to circulating currents.

In the future, small-scale experiments designed to simulate full-scale magnets

will have to be designed more carefully. As mentioned many times previously,

the relative length of the cable compared to the length scales tj, £D, and tx

determines the current distribution and stability behavior. Without careful

attention to joint design and transconductance, the ordering of t, 6a, iD, and

tx for a small-scale simulation will not match the ordering for the original

full-scale design.

With further work, it seems probable that the harmful effects of non-uniform cur-

rent distribution can be completely understood and successfully controlled in future

magnets.
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Appendix A

Inverse Laplace Transforms

While most of the Laplace transforms encountered in Chapter 4 could be inverted

directly using tables [30], there was one instance which required special treatment.

Equation (4.97) represented the solution in the transform domain for the induced

currents in a cable of "finite" length and "resistive" joints. In this appendix, the

inverse transform of this solution will be found using contour integration and residue

theory.

A.1 Residue Calculus

In general, the transform pair f(t) #> g(p) can be related through the following

definition:

f(t) = ERes{e1tg(p); a.} (A.1)

where the points a,, are the complex poles of g(p) and the notation Res{g(p); a} is

used to indicate the residue of g(p) at p = a. The residue is defined as:

Res{g(p); a} =(r-)! d-1 {(p - a)mg(p)}] (A.2)
(M -1)!Idpm1 Ip=a

wher m is the order of the pole (i.e., singularity) which exists at p = a, (note that p

is in general complex).
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If the function g(p) can be expressed as a ratio

N(p)
g(p) = (A.3)

where N(p) is finite and non-zero at p = a (i.e. a is a simple pole, m = 1), then

L'hospital's rule can be used to evaluate Eq. (A.2)

Res{g(p); a}= D(a) (A.4)

Further details of this procedure can be found in [44].

A.2 Solving the Finite Length, Resistive Joints

Case

Equation (4.97) can now be solved using the techniques just described. To start, the

equation is repeated here:

Z = Z2

S-cosh
2p s ') + 9 sinh (-)]

Cj sinh (2)- (bo' + b'1) _ 'e(A.5)2 [sinh (-') + v'Pe cosh 2)(

The first term on the RHS can be rewritten:

Z1 (P) = (b' - b'1) f2 gi(y ) (A.6)

where:
cosh (y 2Vs)

91(s) = (A.7)
s (cosh(v/) + 2P v'sinh(Vs))

To find the inverse Laplace transform of g, it is necessary to identify the poles of

the equation. Using the notation g1(s) = N(s)/D(s), the poles are identified as the
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zeroes of the function D(s):

D(s) = 0 = s cosh(Vs) + V s sinhvG) (A.8)

The first zero is easily identified as s = ao = 0. The remaining zeroes are more

easily identified when the mapping s, = -k,' is employed for n = 1, 2,3. . . oo. Using

standard identities for sinh(ifk,) and cosh(ik,,), D(s) = 0 when:

2 kn tan(kn) = 1 ; > 0 (A.9)

where the values of kn > 0 produce the poles a, = -k,2, all of order m = 1. Identifying

the correct poles, as we have just done, is the most critical part of process.

The next step is to use L'hospital's rule as described above to evaluate the desired

residue at each of the poles:

f1 (t) = Res{elgi(p); a.}

=Eea" N(an)
n D'(a,)

- 2 t yxje- n COS 2kn)

=E c (A. 10)
n COS (k ) + 3-) kn sin (I:n) - ek2 cos ()

where kf = 0 and kn are evaluated using Eq. (A.9). Having determined the transform

pair g, (s) M f (t) it is possible to evaluate the needed inverse using the chain-rule:

91 (S) f, Mit
p 2  4a 2  4a2t

1 4a2 J2
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Plugging this result and Eq. (A.10) back into Eq. (A.6) produces the result:

c-1{Z1} =

- (b'6 - a'1) 1+os

2 n=1i2 cos/n) - (Co+s3L)ksin(In) - kgcos(fe)

(A.11)

The solution for the inverse of the second term on the RHS of Eq. (A.5), Z2 , can

be found in the same manner. The ao pole is again ao = 0 and the equation which

generates the poles for n > 0 is an = -k where:

21 ke cot (k,) = -1 ; n > 0 (A. 12)

For the n > 0 poles, finding the residue is again easiest using L'hospital's rule. The

pole at ao = 0, however, is of second order, m = 2, and thus it is necessary to use the

formal definition of the residue, Eq. (A.2).

The solution for the inverse of the Z2 component of the transform turns out to

be:

t~1{Z 2} =

Sx e~- 2,k
2t/e sin (i j)

(bo' + b') +-; je"k
2 J+j n1sin (Ik.) + (I + 39 Ik. cos (Icn) - - i2 sin I)

(A.13)

where kco = 0 and k7. are evaluated using Eq. (A.12).

Combining Eqs. (A.11) and (A.13) produces the desired solution for the induced

currents in a finite cable with resistive joints as given in Eq. (4.98).
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Appendix B

Statistical Expectation of Flux

Imbalance

The purpose of this appendix is to describe the procedure used to determine the

statisical expectation of the flux imbalance term, ,, which first appeared in Eq. (7.19).

For ease of reference, that term is repeated here:

s [(cos 01 + cos Oo) - c (sin 01 - sin Oo)] (B.1)

where 0 and 01 represent the unknown orientation of the joint with respect to the

direction of the magnetic field at x = 0 and x = t, respectively. The coefficient c is

defined as e A,/(*r). For the US-DPC cable described in Table 7.1, E = 0.1.

To determine Exp[c], the statistical expectation of ;, it is necessary to split C into

two components:

=;

co cos 0o + c sin 0 (B.2)

,; cos 01 - E sin 01  (B.3)

Since 0 and 01 are both random variables with identical, uniform probability distri-
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bution functions (PDF's), ;o and 'i are also random variables with identical PDF's.1

This similarity property simplifies the analysis since only one PDF has to be derived

to characterize both ;o and -;. To generalize, then, the variable x has been chosen

to represent either -o or '; and the variable E has been chose to represent either 0

or 01. Thus:

x = cos 0 + e sin += { = cos 00 + c sin 00

;1 = cos 01 - E sin 01

The variable 0 is a uniformly distributed random variable: -oo < 0 < oo. Due

to the periodicity of the "sin" and "cos" operators, however, we can equivalently

define E) to be a uniformly distributed random variable over a finite domain: 0m3n <

0 < 0 + 27r, where the choice of ., is arbitrary.

To simplify the construction of the PDF of X, it is easiest to choose emn to

correspond with a local minimum of x, as shown graphically in Fig. B-1. For the

range chosen in the figure, the specific value of 0 min is:

0min = tan-'(c) - 7r (B.4)

and the value of 0 which maximizes x is :

(max = tan-'(e) (B.5)

The corresponding minimum and maximum of X are:

xmrn = cos Omin + e sin Onin (B.6)

Xmax = cos m. + f sin 0m (B.7)

We will use the definition Fx(xo) = P [x xo] to mean the probability that the

random variable x is less than the designated value, xo. Fx(xo) is also known as the

cumulative distribution function (CDF) of x. From Fig. B-1 it is immediately evident

'While the second terms in Eqs. (B.2) and (B.3) have different signs, this only accounts for a
phase shift. Thus ;o and ;i have the same PDF.

206



Xmax
1

0 min e,, Omin+ 2n

emax

-- 1

Xmin

Figure B-1: The random variable x vs. 9 where () is a uniformly distributed random

variable such that 0,i : E) < (m3n + 27r.

that:

Fx(xo) = I ; X0 >X

10 ; X0 5;XMi.
(B.8)

For values of xo such that xmin < xo < Xm, the CDF is more difficult to

calculate. The critical step in the process is calculating the value of E3o such that

Omir < 0 < O3 and Xo = cos Go + E sin 0. An example is included in Fig. B-1.

The desired relation between 0 and Xo was found to be:

o = 2tan-1
S1+ Xo

(B.9)

With 0 solved in terms of Xo, the calculation of Fx(xo) for Xmin < Xo < Xmr

can be determined geometrically with the assistance of Fig. B-1. For the example in

the figure, X is less than Xo over the following subset of the 0 domain:

[E9mi < 0 < Ool U [Omin + 27r - (Oo -- Omi) < 9 < Omin + 2-7r] (B.10)
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where the second piece of the range is found from symmetry conditions. Since E is

uniformly distributed over the full range 0m. < ) < 0min + 27r, the ratio of the

subset, Eq. (B.10) to the full range defines Fx(xo). The final result (including the

parts calculated in Eq. (B.8)) is:

1 ; X0 _> xmax

Fx(xo) (E0-- 0min)/7r ; Xmin < XO < Xma (B.t1)

0 ; X0 :!; xmin

where 00 is defined in Eq. (B.9), Omi is defined in Eq. (B.4), and Xmin and xm,

are defined in Eqs. (B.6) and (B.7).

Having found the CDF, Fx(xo), it is now necessary to calculate the partial distri-

bution function (PDF) which is defined as fx(xo) = Fx(xo). Thus differentiating

Eq. (B.11) produces:

0 ;G x ;>Xm.

fx(xo) = [r(e cos Eo - sin 8O)]-1 ; Xmin < xo < xma (B.12)

0 ;X0 < xMin

We have already ascertained that f,, = f,,= fx. In technical terms, ;o and

si are "indepentally and identically distributed." In this special case, the combined

distribution for , = -o + C1 can be calculated using the convolution integral [45]:

f;(zo) = fz0  (zo) = f fx(xo)fx(zo - xo)dxo (B.13)

where fx(xo) is given in Eq. (B.12).

There is one additional subtlety which must be included in the analysis. By

definition, the induced current in strand one is positive;2 thus, instead of finding

the PDF for ;, we truly want the PDF for Ii, the absolute value. Exploiting the

2 1nstead of allowing the induced current in strand one to be negative, we would first re-label the
strands. Thus the induced current in the strand labeled one is always nonnegative.
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symmetry of the problem, we find that:

fi~j(zo) = 2J fx(xo)fx(zo - Xo)dXo (B.14)

where zo > 0.

The final step is to calculate the expected value of 1sA. By definition:

Exp [ 0] = j zofjI(zo)dzo (B.15)

where f1y (zo) is itself an integral as defined in Eq. (B.14). Equation (B.15) is thus

a double integral equation which must be calculated using numerical means. The

indices of integration, however, can be set to finite values by determining the finite,

non-trivial domain of the integrands (i.e. the domain over which the integrands are

not equal to zero). This step has been omitted here, but is straightforward.

For the purposes of this thesis, a fortran routine was written to evaluate Eq. (B.15)

for differing cable designs. For the example presented in Section 7.2, the result was

found to be Exp [IgI] = 0.95. In the main body of the thesis, this result is written

using the simplified (although slightly misleading) notation Exp [{] = 0.95.
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Appendix C

Analytic Solution to Linearized

Stability Equations

The coupled linearized current and temperature equations derived in Chapter 6 can

be solved using standard solution techniques. Unfortunately, the algebra becomes

quite involved and thus the details have been saved for this appendix.

C.1 Solving Current and Temperature Evolution

from Given Initial Conditions

Following the structure proposed in Section 6.3.2, the derivation is divided into three

segments:

I. 0 < t < t., Both strands are superconducting, R, = R 2 = 0.

II. t, < t < t,, Strand one is resistive but strand two is superconducting, R1 >

0, R 2 = 0.

III. t > t, Both strands are resistive. R1 > 0, R 2 > 0.
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Before the current in strand one reaches the critical current, the current distribution

is described by the Superconducting Domain solutions developed in Section 4.3.2.

For the Short Length/Short-Circuit Joint Regime appropriate for lab-scale cables,

Eq. (4.70) gives the current in strand one in the Superconducting Domain, 0 < t < t,:

11 = IT/2 + 'rTJ (I - e-,/,) (C.1)

where rj = £f/Rj and

4 rBL'' (sin 01 - sin Oo) (C.2)

The angles 0o and 01 represent the orientation of the joints with respect to the

direction of the transverse magnetic field.

At the time t = t,, the current in strand one, from Eq. (C.1), equals the critical

current. The values of t, can be found using by setting Eq. (C.1) equal to Eq. (6.25),

the equation for the critical current. The value of the strand one current and the

magnetic field at t = t, are defined to be 1, and B., respectively.

The hunt for the marginal stability case actually begins at t = t,, I = I, and

B = B. when the first blip occurs in the cable. The transport current can be deduced

from these three variables using Eq. (6.25) and Eq. (C.1):

IT/2 = I - PTJ (I - et*/T) (C.3)

Once the cable enters the Resistive Domain, the duration of the stability event

is short enough (~ 10 ms) that the magnetic field is approximately constant, i.e.

B(t) ~ B,. Thus, the critical current, Ic(B, T) becomes:

I(B, T) ~ Ic(B,,) = -)

= I -(C.4)
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where 0 is a simple transformation of the temperature, V = T - Tb. The scale

factor 79 , is constant for the duration of the stability event; it depends on the su-

perconductor properties and the magnetic field at the time of the blip, t": 1 ,

(Teo - Tb) (I - B./B, o).

C.1.2 t* < t < tx

For times t > t", the cable becomes resistive and the current equation is coupled to

the temperature equations. The current equation for lab-scale cables in the Resistive

Domain was given in Eq. (6.19) and is rewritten here:

aI + 1 RI1+ ?Z2 OIT/2 + 1 R2 )1,2+q C5-- + + I= + - - Ir2+W(C.5)
71 r 2,C at (7j

where T is defined in Eq. (C.2).

The temperature equations were given in Eqs. (6.20)-(6.22). Using the restrictions

listed at the outset of Section 6.3, the temperature equations for the two strands and

the helium are reduced to a single equation since T2 T1 = T and Th - Tb. Using

the notation, 0 = T - T, these relations become: d2 = 19 = d and 'dh= 0. The

remaining equation becomes:

p, C, A., + 2hp9 = ZI12 + 7Z2 (r -I)2 (C.6)

where the constant C, replaces the temperature dependent C,(D). The decision of

which value to use for 0, is determined by fitting the linear model to the results of

the non-linear model, as discussed in Section 6.3.1.

Looking ahead, Section C.1.3 will deal with the equations for cases when both

strands are resistive. For now, 1Z 2 = 0 and Eqs. (C.5) and (C.6) simplify. Using

Eq. (6.23) to substitute for R 1 , the results are:

-9 + (- + 11)I =9T/ + -I /2 + -- 1, + qF (C.7)
5i T7j 2 7m O't 71 Irm
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&9
pC.A,- + 2hp& = RmI(I - Ic) (C.8)

where rm = L/R, and the introduction of the variable I is discussed in Section 6.3.1

(refer to Eq. (6.36)). Although r > -r7, the 7j terms cannot be dropped since the

7m term on the RHS of Eq. (C.8) cancels the 7m term on the LHS at t ~ t,.

Substituting the temperature dependent equation for I,, Eq. (C.4), into Eq. (C.8)

results in the desired linearized temperature equation:

pC.,A,5 + 2hpd = RmI[I - I,(1 - 19/z9,)] (C.9)

Rearranging this result produces:

29 -29Irm + t - 1 (C.10)

where the dimensionless coefficients have been defined as follows:

lRmI(I*)ITm
(I 2pht9(I)) - 1 (C.12)

lEmI(I*)I*

and 2 -02. Since the value of I, the strand current when it first becomes resistive,

depends only on the operating conditions (IT, b 1 ), the coefficients are constants for

a given scenario.

The next step is to use the current equation to find a second relation for 29 which

can be substituted into Eq. (C.10). Substituting the temperature dependent equation

for Ic, Eq. (C.4), into the current equation, Eq. (C.7), and rearranging gives:

29 I +2, )I 2m 1 7mIT
-ui - 2lr 1 u a (13)

Plugging this last result into Eq. (C.10) produces a second-order linear Initial Value
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Problem (IVP) with the initial conditions I = I, and I = T + (IT/2 - I,)/rj at t = t,:

1 + I/7R -+ wRI = KRIT (C.14)

where the constant coefficients are defined as follows:

7k = ( I + - + .- (C.15)

2 + 1) 1
S= - - + + (C.16)7W dm k27,. TJ/ 2&,

_u 2+3 3m ty27
K 1+0 + -4 - p + IT12 (C.17)

2a T I, ( 1

and a and 3 are defined in Eqs. (C.11) and (C.12). Each of these constant coefficients

depends on the operating conditions since they are implicit functions of 1,.

As discussed in Section 6.3.2, Eq. (C.14) can be characterized as over-damped,

critically damped, or under-damped. The under-damped case is of immediate interest

since it corresponds to the operating scenario which produces the marginal stability

condition.' The characteristic equation for the second order ODE, Eq. (C.14), has

complex roots, p ± qi, in the under-damped case and the solution is of the form:

I = I [eP(t~t*)1" (c, cos [q(t - t,)/Tm] + c2 sin [q(t - t*)/Tm ]) + KR(W-rm )2I

(C.18)

where:

p = / (2rR)

q = (1/2) [4(WR7.)2 _ / 2]1/2

and the constants c, and c2 can be found from the initial conditions:

C, = 1 - K(wRrm) 2

'See Section 6.2.4 for a discussion concerning marginal stability in the linearized model.
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C2 = - /
q I, , q

Using Eq. (C.13), the temperature can be extracted from the current equation

just derived, Eq. (C.18), yielding:

-9= 1 - ~ [2pci + 2qc 2 + (1 + 2 7m/'rj)c1] cos [q(t - t*)/rm]

0c + [2pc 2 - 2qc1 + (1 + 2rm/Jr )c2] sin [q(t - t*)/m] J
-(1 + 2Tm/Jr)KR(WR7m)- 2 + -- I-/2/ T ) (C.19)

Knowing both I and 0 for times t, < t < ta, it is possible to calculate the occur-

rence of t, the time at which the current in strand two equals the critical current,

Ic(B, t9), or trec, the time at which the first strand recovers. Due to the complexity

of Eqs. (C.18) and (C.19), however, this calculation requires iteration; there is no

closed form solution.

C.1.3 t > tx

For cases in which the second strand quenches, we need to continue with the evolution.

For times t > t, both strands are resistive, Ri > 0, R 2 > 0, and Eq. (C.5) can be

rewritten:
- 1 1 91T/2I+ -1 = 4 + -I/2T+ (C.20)

where 1/r, (1/rj + 1/rm). Notice that this equation is no longer coupled to the

temperature equation. The initial condition is I = I, = I(t = t_) and the solution is

thus:

I = (I, - Jf)e-( -x-)/q + IJ (C.21)

where If -q=I' + I'/2-

The temperature equation, Eq. (C.6), for t > t, can be rewritten

aO7m,, +0 = ( 1) +JT - 1 (C.22)19, IT I.-+ I,
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where the dimensionless coefficients have been defined as follows:

/o(I.) = 2 (C.23)
'??m'T/2J*Tm

R-m(TI')- 1 (C.24)

For practical operating scenarios, it is important to note that ao > 0 while /% < 0.

Using equation Eq. (C.21) and the initial condition 0 = t, M 9(t = t,) (found

previously from iteration), the solution to Eq. (C.22) is:

= ao + ae-( - )/ + a2e~' ~t x)O (C.25)

where

ao = -(IT#

a, = ( 1 (1,If ( o-_a0M/7q)

a2  = -1a

Having solved the current and temperature equation in all three regions, we can

track the evolution of I and 0 for all time t, < t < oo for any given operating

scenario.

C.2 Solving for Initial Conditions from Specified

End Result

To determine the operating scenario which corresponds to the marginal stability case,

it is necessary to start with the final result of the current and temperature evolution

and work backwards. In Section 6.2.4 it was determined that the marginal stability

case corresponded with the limit j = j = 0 as t -+ oc. Investigating Eq. (C.25),

we see that this condition is equivalent with the specification a 2 = 0 since the factor
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i3o/ao is negative. In mathematical terms, the stability criterion for a "lab-scale" two

strand cable can thus be stated:

a2(I) = 0

where a2 is a complicated function of the initial condition, 1,.

The difficulty arises when we try to invert the functional dependence a 2(I,) to

achieve a stability criterion in terms of I,(a2), an expression which can be directly

related to the operating scenario. Unfortunately there is no closed form solution for

the value of , which corresponds to a2 = 0. To obtain the exact answer, an iterative

routine was used to solve the transcendental equations derived in Section C.1 to

provide the results presented in Chapter 6.

While the numerical solution of a system of equations is much speedier than it-

eratively evolving the full equations from varying initial conditions, it is still less

satisfying than an analytic result. It was discovered, however, that while the exact

solution to the linearized model still requires a numerical solution (albeit a much sim-

pler one) an approximate solution can be found using purely analytical calculations.

C.3 Approximate Solution to the Linearized Sta-

bility Model

After working extensively with the linearized two-strand model, it was discovered that

for typical cable designs the marginal stability condition nearly coincided with the

resonance condition for the second order system. Although we proved the cable actu-

ally needs to be under-damped to be in the marginal stability case (see Section 6.3.2),

the critically damped case is in fact an excellent predictor of marginal stability (see

Fig. 6-14 for a comparison).

Since it is much simpler to solve for the operating condition which corresponds

to critical damping than it is to solve for the condition which leads to a2 = 0, this

approximate method was found to be much more useful (and nearly as accurate) as

the method described in Section C.2. Referring to Eq. (C.14), the resonance condition
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is seen to be:

4rhwi = 1 (C.26)

For cables of interest, -r, << rj and the following approximations are valid (refer

to Eqs. (C.15) and (C.16)):

7R 01 /2+,/3o

fl+1
WR

Substituting these values into Eq. (C.26) reveals the approximate stability criterion

for the linearized equations:

1 + ,3/2 - d/8 - !2/(2d) = 0 (C.27)

where a and 3 are defined in Eqs. (C. 11) and (C. 12). Using only algebra (finding the

root of a cubic polynomial is the most difficult step [46]), Eq. (C.27) can be solved to

give the value of I, which corresponds with the marginal stability case. The operating

conditions, IT and b can be derived from I, using Eq. (C.3). The final results are

demonstrated in Section 6.3.3.

C.4 Scaling Considerations

The dimensionless variables in the simplified stability criteria, Eq. (C.27), can be

thought of as the following ratios (refer to Eqs. (C.11) and (C.12)):

Change in Enthalpy

Joule Energy
Net Cooling Power

Joule Power
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Substituting these "conceptual equivalences" into Eq. (C.27) provides the following:

Joule Energy =
+ 1 Energ Cooling Energy \

+ 1 Change in Enthalpy + Net Cooling Energy N Enthalpy

(C.28)

It was hoped that the energy balance represented by Eq. (C.28) would lead to new

insights into scaling relations for the stability criterion for lab-scale cables. No sig-

nificant insights were discovered, however, and thus this avenue of inquiry was not

pursued further.
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Appendix D

Critical Current Model for the

US-DPC Experiment

The critical current properties of the Nb 3Sn wires which were used in the US-DPC

experiment are well modeled by the critical current equation developed by Summers

et. al. [41). For ease of reference, the relevant details are briefly repeated here.

The heuristic equation is:

Ic(B, T, e) = C(e) [B,2 (T, )~1/2 (1 _ t2)2 b-1/ 2 (1 - b)2 (D.1)

where

C(e) = Co(1 - a EII)/ 2

Br2 = B.20(e)(1 - t 2) 2 [1 - 0.31t 2 (1 - 1.771n(t))]

B, 20 = Bc 2 0 ,(1 - a

t = T/To(e)

b = B/B,2(T,e)

To(e) = Tcom(l - a EI")'I"

a = 900 fore < 0, a = 1200 fore > 0

u = 1.7
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w =3

B20m = Maximum (strain-free) upper critical field

TcOm = Maximum zero-field critical temperature

Co = Coefficient independent of T, B, e

E= Uniaxial strain

The three parameters-B,201, Tcom,, and Co-are related to the material properties

of the superconductor. The strain, e, depends on manufacturing processes as well as

operating conditions. For the US-DPC coil, the values of these parameters were found

to be: [1]

Be20m = 27.5 T

TGm = 16 K

CO = 8800 AT-1/2

e = -0.1%

Using these parameters, Eq. (D.1) has been used in Section 7.2.5 to produce Fig. 7-7.
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