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Abstract

This memo is an intermediate report for the sub-task: "Fatigue assessment of the TF
coil case," in the task: "MD10 - Magnet description of the work program." A
probabilistic assessment to the fatigue life of TF case has been performed by using
statistical and uncertainty analysis including: small sample statistics to analyze the effect
of Paris parameters;  Monte Carlo simulation to evaluate the effect of 3D crack
parameters; uncertainty estimation for the effect of stress, Walker's exponent and load
ratio.  These results are then incorporated to obtain the final fatigue life at given odds.

Assume that ITER consists of 100 significant components with a total confident limit
of 95%,  then the confident limits for each component should be 99.95%  (i.e., odds of
2,000 to 1). For such odds, the fatigue life is estimated to be 45,844 cycles for Case 1
with high stress peak, and  36,754 cycles for Case 2 with large stress range in DDR
design.  It is also found that  the 3D crack parameters including the initial crack depth,
the aspect ratio and the eccentricity have the most significant effect on the fatigue life.
Fracture toughness shows the least effect. The uncertainties due to the Paris parameters,
3D crack parameters, fracture toughness and the Walker's exponent can be reduced if
more test data are available by further experiments and literature survey.
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1.  Introduction and Problem Statement

This memo is an intermediate report for the sub-task: "Fatigue assessment of the TF
coil case," in the task: "MD10 - Magnet description of the work program."[1]  A
preliminary probabilistic assessment to the fatigue life of TF case has been performed by
using statistical and uncertainty analysis,[2,3,4]  for two typical cases in the TF case: case
1 with high stress peak, and case 2 with large stress range. The stress parameters for
those two cases are outlined in Table 1.[5]  Case 1 is analyzed in the text  as an example,
and the results of case 2 are attached in the Appendix as reference.

Table 1    Stress Pulses for TF Case (DDR)
Case First Peak Second Peak

1 340 MPa,  R=0,  x 1 526 MPa, R=0.54, x20
2 200 MPa,  R=0,   x1 412 MPa, R=0.19,  x20

The fatigue life is estimated by a numerical code developed at MIT[2]  based on the
following assumptions:  (a)  Linear elastic fracture mechanics (LEFM) is applied;  Paris
equation is used for the life estimation.  (b)   A part  is fractured as the stress intensity
factor at crack tip reaches the fracture toughness.  (c)   Mean stress effect is accounted by
the Walker exponent  (d)  Crack growth model:  a crack grows in an elliptical shape with
major axis "a" and minor axis "b";  The crack size is governed by the growth rates at two
points: a point at  the major axis "a" and a point at the minor axis "b"; The axis lengths (a
and b) as a function of the cycles are obtained by the numerical integration at these two
points respectively.  (e)  The local residual stress at the crack tip is neglected during life
estimation.

The technique of statistical and uncertainty analysis includes:  (a)  Small sample
statistics to analyze the effect of Paris parameters;  (b)  Monte Carlo simulation to
estimate the effect of 3D crack parameters;  (c)  Analytical evaluation for the effect of
stress, Walker's exponent and load ratio. These results are then incorporated to obtain the
final fatigue life at given odds.

2. Basic Equations

2.1 Fatigue life

Referring to Ref. 6,  an analytical expression for the fatigue life of a 3D crack is
derived as a function of the Paris parameters, initial crack size, critical crack size, load
ratio and mean stress. This expression will be used frequently in the following
uncertainty estimation.

The fatigue crack growth rate with constant stress amplitude is expressed by the
Paris equation, which is valid only for small-scale yielding at the crack tip (linear-elastic
fracture mechanics),

          

da

dN
= c(∆K)n

, (2.1)
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where stress intensity factor range •K = Kmax - Kmin,  c and n are Paris parameters,  a

and N  are the half crack length and fatigue cycle respectively.

Increasing the mean stress ((σmax + σmin ) / 2) for an applied stress range (σmax − σmin )
generally shortens fatigue life.  The effect of mean stress is often expressed by an
effective stress intensity factor range:[7]

       ∆Keff = Kmax(1 − R)m = ∆K(1 − R)m −1

, (2.2)

where R is the stress ratio (σmin / σ max) and m is the Walker exponent.
Combining the above two equations  gives:

             

da

dN
= c(Kmax )n 1 − R( )mn

, (2.3)

where:   Kmax = Yσmax πa .
Integration of Eq. 2.3  gives the fatigue life (the number of cycles to failure):

  N
f = σmax

− n 1− R( )−mn ξ , (2.4)

where :   
ξ = 1

c

da

Y n πa( )n/ 2ai

a f

∫
 .

The expression for ξ  can also be obtained in terms of crack depth b , instead of the
semi-crack length a , based on the known crack aspect ratio of b/a.  Note that the Y
expression must be modified accordingly:

ξ =
1

c

db

Y n πb( )n/ 2bi

b f

∫
,

where  bi   and  b f  are initial and final crack depths respectively.

 Taking logarithms of both sides of Eq. 2.4   gives

       
  
ln N

f( )= ln ξ( )− mn ⋅ln 1− R( )− n ⋅ ln σmax( ), (2.5)

For a thick plate such as the TF case,  the crack growth rate is very large in its final
stage of approaching final fracture so that  some variation of the final crack depth only

has a little effect on total life or the value of  ξ .  Therefore, 
  
ln N f( ) can be treated

approximately as a linear function of   ln σmax( ).
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2.2  Math structure

Suppose that the nominal life N can be modeled as a product of a statistical mean Nst
multiplied by factors  Fi  (i = 2, 3, 4, ...) giving the effects of the test variables ( e.g.,
Paris parameters,  3D crack parameters, fracture toughness, stress, load ratio and
Walker's exponent ):[3,4]

N = Nst F2 F3F4 ⋅ ⋅⋅ (2.6)

or write in an abbreviation:

N = Nst Fii ≥2∏  . (2.7)

Eqs. 2.6 or 2.7 can be linearized by taking logarithms of the factors as:

  
ln(N) = ln(N st ) + ln(Fi )i ≥2∑  . (2.8)

The mean of   ln(N) can be assessed as

  ln(N) = ln(N st ) + ln(Fi )∑  . (2.9)

The total uncertainty of   ln(N) is the square root of the sum of square for each variable
uncertainties at given odds,  according to the uncertainty propagation theory,[8]  as:

utot = ust
2 + uri

2

i ≥2
∑

(2.10)

The log of nominal value at given odds after uncertainties is the mean minus the total
uncertainty:

  ln(N) = ln(N) − u
tot  . (2.11)

The nominal life is then obtained from:

  N = exp(ln(N))  . (2.12)

2.3  Analysis of uncertainties[8]

Assume that  F is a function of various variables  x1, x2, ...

F = F(x1, x2 , x3,⋅ ⋅ ⋅) . (2.13)
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The center of the uncertainty interval of the results,  F0  ,  is a function of the center of
the uncertainty intervals of the variables (or typical ones):

F0 = F(x01, x02 ,x03 ,⋅ ⋅ ⋅)  . (2.14)

The effect of the uncertainty  ∆xi from variable  xi  on the uncertainty in the result  is
evaluated by:

∆Fi = F(x0 i ± ∆xi , x0(j ≠ i) ) − F0i  . (2.15)

The uncertainty of   ln(F)  is approximately the relative uncertainty of F:

  
uri = ln(F0 + ∆Fi ) − ln(F0 ) = ln 1 +

∆Fi

F0

 

 
  

 
 ≈

∆Fi

F0

 . (2.16)

3. Small Sample Statistics [9]

Assume that variable x  (e.g.,   ln(N))  has a set of n data: x1, x2, x3, ......, xn.  The
central tendency is usually measured by mean of these n values  as:

 
x =

1

n
xi

i=1

n

∑
  . (3.1)

The data dispersion is measured by the standard deviation as:

sx =
1

n −1
(xi − x )2

i =1

n

∑
   . (3.2)

It is found that the data distribution is approximately normal if the data number is
greater than 30,  and  it becomes a perfect normal distribution if the data number is
infinite. Unfortunately, most of the engineering problems have data number less than 30,
that is, a small sample problem (e.g., the present case). One approach to solve such a
small sample problem is to use student's t distribution, which is a modification of the
normal distribution. The flatness of a student's t  distribution is a function of the data
number  n  (or,  degree of freedom, it is equal to n-1 for a  single variable).  Less data
number leads to  flatter curve than the normal distribution.  The confident limits for the
mean in the student's t  distribution are:

x
c
m = x ± t

c, f
s

x

1

n
 
 

 
 

1/ 2

   , (3.3)
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where  tc , f  is a critical value, and is a function of the confident limits and degree of
freedom. Note that as n becomes very large, the confident limits approach the mean
value. Prediction limits for one more observation are

x
c
p = x ± t

c, f
s

x 1+
1

n
 
 

 
 

1/ 2

   . (3.4)

3.1  Paris parameters

Table 3.1 shows the fatigue lives for 17 sets of the Paris parameters in 316-type
wrought stainless steels at 4K.[10-13]  These data include those with annealing or aging
conditions, and variation of chemical compositions. The fracture toughness K1c is an
average over 6 sets of data.[14]

Table 3.1  Fatigue Life at 4K for TF Case (DDR) with Different  c  and n
No.  c  (m/cycle)

      ×10 −12
n  Ref. Life  N

  (cycle)
  ln(N)

1 12.3 2.5 10 525805 13.17269

 2 0.756 3.26 10 998129 13.81364

3 20 2.35 11 503182 13.12871

4 0.617 3.44 11 749958 13.52777

 5 13.2 2.56 11 411264 12.92699

 6 13.2 2.56 11 411264 12.92699

7 0.21 3.8 12 844495 13.64649

 8 0.789 3.26 12 956387 13.77092

 9 0.12 3.96 12 971946 13.78706

10 0.012 4.55 12 2142467 14.57747

11 0.09 3.96 12 1295603 14.07449

12 0.35 3.69 12 677595 13.4263

13 0.25 3.65 12 1054813 13.86887

14 0.5 3.57 12 652790 13.38901

15  0.14 3.81 12 1233796 14.02561

 16 0.26 3.75 12 778260 13.56482

17 4.81 2.91 13 414414 12.93462

Case 1 - Stress cycle:  340 MPa x 1, R=0;  526 MPa x 20, R=0.54
Initial crack depth = 0.4 mm
Eccentricity = 25 mm
Aspect ratio = 0.5

Critical stress intensity factor = 128 MPa m
Walker exponent = 0.67
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The statistic mean and standard deviation for    ln(N) are listed in Table 3.2.

       Table 3.2   Statistic results of    ln(N)
Mean Standard deviation

13.563 0.458

Student's t  distribution is applied to the small sample statistics for   ln(N) data,  listed
in Table 3.1.   The critical value of "t "  is a function of the confident limits and degree of
freedom. Given freedom of 16 based on 17 sets of independent data, the various t values
as well as the confident limits are listed in Table 3.3.[15]

Table 3.3  "t"  Values and Confident Limits for   ln(N)

Degree of Freedom = 16
Odds t  value Confident limit for

mean  of

  ln(N)

Confident limit for
one more prediction of

  ln(N)
100 :1 2.584 13.275 12.345

2,000:1 4.015 13.116 11.670
10,000:1 4.791 13.030 11.304

For the two-sided confidence limits of 67% in normal distribution, we have:

   ln(N) = 13.563 ± 0.458    (2 to  1)  .

Uncertainties at three different odds (e.g., confident limits of 99%, 99.95% and
99.99% ) for mean and one more prediction based on student's t  distribution  are
summarized in Table 3.4.  These values differ from the standard deviation by factors
2.58, 4.02  and 4.79 rather than 2.3, 3.3  and 3.7 in normal distribution because the
smaller the sample the fatter the tail of the t distribution.[8,9].

Table  3.4   Uncertainty of    ln(N) due to Uncertainty of  c  and n
Odds

against failure
Uncertainty

for mean of population
Uncertainty

for one more prediction
2-sided 2:1 0.458

1-sided 100:1 0.288 1.218
1-sided 2,000:1 0.447 1.893
1-sided 10,000:1 0.533 2.259
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3.2  Fracture toughness

Table 3.5  shows    ln(N) for 6 fracture toughness values of 316LN after aging at 4K.
The mean value of    ln(N)  (see Table 3.6) is slightly larger than the last one with an
increase of    ln(F2 ) = 0.153. The standard deviation is 0.0212. It indicates that the
fracture toughness only have minor effect on life because of the acceleration of crack
growth near the end of life.

   Table 3.5  Fatigue Live at 4K for Various Fracture Toughness [14]
No. Fracture

toughness

( MPa m )

Life N
(Cycle)

  ln(N)

1 67 874135 13.68099

2 80 894700 13.70424

3 90 902852 13.71331

4 167 919575 13.73167

5 160 918002 13.72995

6 202 924448 13.73695

   Case 1 - Stress cycle:  340 MPa x 1, R=0;  526 MPa x 20, R=0.54
c = 6.65 × 10−13  (m/cycle),  n = 3.34
Initial crack depth = 0.4 mm
Eccentricity = 25 mm
Aspect ratio = 0.5

 Walker exponent = 0.67

       Table 3.6   Statistic results of    ln(N)
Mean Standard deviation

13.716 0.0212

Student's t distribution is applied. The t values and confident limits for three different
odds are listed in Table 3.7, as well as the prediction limits in Table 3.8.  We obtain

  ln(F2 ) = 0.153 ± 0.0212  (2 to 1).

Table 3.7  "t" Values and Confident Limits for    ln(N)
Degree of Freedom = 5

Odds t  value Confident limits for
mean of    ln(N)

Confident limits for one
more prediction of    ln(N)

100 :1 3.366 13.687 13.639
2000:1 6.869 13.657 13.559

10000:1 9.678 13.632 13.494
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Table  3.8    Uncertainty of    ln(N) due to Uncertainty of Fracture Toughness
Odds

against failure
Uncertainty

for mean of population
Uncertainty

for one more prediction
2-sided 2:1 0.0212

1-sided 100:1 0.029 0.077
1-sided 2,000:1 0.059 0.157
1-sided 10,000:1 0.084 0.222

  ln(F2 ) = 0.153

4. Monte Carlo Simulation[16]

4.1   Crack size distribution

The distribution of defects in the TF case is probably the most significant issue for
any probabilistic assessment of the fatigue life.  Unfortunately, there is no such a data
base for the TF case.  In the study, we use the published data from the nuclear and piping
industry.
Among many models for the  crack size distribution,[17,18]  the Marshall model[19]  is
perhaps the most typical one.  It is expressed as an exponential form:

p(b) =
1

µ
exp −

b

µ
 
 
  

 
 , (4.1)

where  b is the  crack depth  and  µ  is the mean depth. The cumulative distribution of the
crack depth is then obtained from the integration of p(b) from 0 to b:

F(< b) = 1 − exp −
b

µ
 
 
  

 
 . (4.2)

Ref. 20 defines the maximum allowable crack depth for the TF case is 3.65 mm. In terms
of statistics,  we assume that  the odds of a crack size greater than 3.65 mm is  1:10,000.
It  then givens µ = 0.4mm .   A crack size distribution from random sampling of 1,000
points based on the Marshall equation is shown in Fig. 1.
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Fig.  1  Crack size distribution from random sampling based on Marshall equation
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       Fig. 2  A normal distribution of the aspect ratio of a 3D crack

4.2   Aspect ratio distribution

Aspect ratio is another important parameter of a 3D crack. However, very little
information is available in this field. References 18 and 21 use the data from NDE test,
and give a normal distribution of the aspect ratio:
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p(r = b / a) =
1

σ 2π
exp −

r − r ( )2

2σ 2

 

 
  

 
   , (4.3)

where   mean r = 0.5 ,   and standard deviation σ = 0.16.   A random sampling of  1000
points based the above normal distribution  is shown in Fig. 2.

4.3   Eccentricity distribution

There is no any published data available for the crack location distribution (i.e., the
eccentricity of a 3D crack). Previous experience tells us that most cracks likely stay on
surface or near the surface. However, a surface or near-surface crack is more easily found
by a  NDE test,  and then removed. Therefore,  we assume that the eccentricity of a 3D
crack follows a uniform distribution with mean e = 25mm  from the center to the surface
of the TF case.  Fig. 3 shows a uniform distribution drawn from 1,000 random sampling
for the eccentricity of a 3D crack.
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            Fig. 3   A uniform distribution of the eccentricity of a 3D crack

4.4   Life distribution

A Monte Carlo simulation has been performed from the random sampling of 1,000
points for the initial crack depth  "bi", the crack aspect ratio  "b/a"  and the eccentricity
"e",  as shown in Fig. 4.  The fatigue life was calculated for each random set of  bi, b/a
and e, which follow the respective distribution functions. The resulted data base of the
life were then analyzed by "Statgraphics."[15]   It is found that the life data "N" follow
approximately a log-normal distribution, as shown in Fig. 5,  and the   ln(N) data follow
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a normal distribution with a mean and standard deviation given in Table 4.1.  The
confident limits for three odds (i.e., 100:1, 2000:1 and 10,000:1) are listed in Table 4.2.

random  
number

sampling 
    "b"

sampling 
    "b/a"

sampling 
    "e"

life estimation

statistical  
  analysis

iteration

Fig. 4   Flow chat  of the Monte Carlo simulation
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Fig. 5  A lognormal distribution for fatigue life
Case 1 - Stress cycle:  340 MPa x 1, R=0;  526 MPa x 20, R=0.54
c = 6.65 × 10−13

 (m/cycle),  n = 3.34,  Walker exponent = 0.67
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     Table 4.1  Statistic results of    ln(N)
Mean Standard deviation

13.998 0.816
           Note:  based on 963 sets of data cut off at N=107 cycles

Table 4.2  Confident Limits for    ln(N)
Odds Confident limit for

one more prediction of ln(N)
100 :1 12.101

2,000:1 11.314
10,000:1 10.965

For the two-sided confidence limits of 67% in normal distribution, we have:

   ln(N) = 13.998 ± 0.816    (2 to  1)  .

Uncertainties at three different odds (e.g., confident limits of 99%, 99.95% and 99.99% )
for one more prediction  are listed in Table 4.3.

Table  4.3   Uncertainty of    ln(N) due to Uncertainty of 3D Parameters
Odds

against failure
Uncertainty

for one more prediction
2-sided 2:1 0.816

1-sided 100:1 1.897
1-sided 2,000:1 2.684
1-sided 10,000:1 3.033

  ln(F3 ) = 0.435

5.   Uncertainty Analysis

5.1  Uncertainty due to stress

Stress in the TF case is calculated by ANSYS based on a loading model during the
operation. However, if the model neglected some minor factors, an uncertainty of the
stress may arise and causes the uncertainty of the life.
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For a constant amplitude fatigue process,  the uncertainty of the life due to stress is
obtained by taking difference at both sides of Eq. 2.5 as

  
∆ ln N f( )[ ]= −n ⋅ ∆ ln σmax( )[ ]= −n ⋅ ln 1+

∆σmax

σmax

 

 
  

 
 (5.1)

If   ∆σmax << σ max ,  then

  

∆ ln N f( )[ ]≈ −n
dσ max

σmax

 

 
  

 
  . (5.2)

However, the stress for the TF case is not constant, there are two stress peaks during
operation. Assume that the life for each of stress peak  σ1  and σ2  is respectively  N1 and
N2.  Using Eq. 5.2 gives

  
∆ ln N1( )[ ]≈ −n

dσ1

σ1

 

 
  

 
  ,    and (5.3)

  
∆ ln N2( )[ ]≈ −n

dσ2

σ2

 

 
  

 
  . (5.4)

Further assume that the uncertainty for log-life (or the relative uncertainty of life) in a
fatigue process with two stress peaks is a geometry average over the uncertainties with
two stresses acting alone:

  
∆ ln N f( )[ ]=

∆ln N1( )[ ]2
+ 20 ⋅ ∆ln N 2( )[ ]2

21
 . (5.5)

Eqs. 5.3 to 5.5 indicate that as the applied stress increases, the life decreases with a factor
of n.

 A realistic evaluation of the uncertainty due to stress variation would need detailed
analysis for operation parameters.  Pending such a study,  the uncertainty limits are
chosen rather arbitrarily.  Assume that  the relative stress varies within  5%  for the two-
sided confidence limits of 67% in normal distribution. Therefore, the corresponding
log(life) value has a uncertainty, according to Eq. 5.5:

 
  
∆ ln N f( )[ ]≈ 0.167.

The critical values for a normal distribution and an extreme-value distribution with a
lower limit of zero (third kind) are listed in Table 5.1. The uncertainties  for the three
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different odds are obtained by scaling up from 0.167 with the selected scale  factors in
Table 5.1 using a combination of the normal and extreme-value distribution, and  are
summarized in Table 5.2.

Table 5.1   Critical Values for Different Odds
Odds 100:1 2,000:1 10,000:1

normal distribution 2.3 3.3 3.7
extreme-value distribution 3 4.2 5

selected scale factor 2.5 3.6 4

Table  5.2   Uncertainty of    ln(N) due to Uncertainty of Stress
Odds

against failure
Uncertainty

for one more prediction
1-sided 100:1 0.418

1-sided 2,000:1 0.601
1-sided 10,000:1 0.668

  ln(F4) = 0

5.2   Uncertainty due to Walker's exponent  m

Following the similar approach with the last section,  the life uncertainty due to "m"
for each stress peak alone is:

  
∆ ln N1( )[ ]= −n ⋅ ln 1 − R1( )∆m  , (5.6)

  ∆ ln N2( )[ ]= −n ⋅ ln 1− R2( )∆m  . (5.7)

The uncertainty of life for the fatigue process with two stress peaks is then

  
∆ ln N f( )[ ]=

∆ln N1( )[ ]2
+ 20 ⋅ ∆ln N 2( )[ ]2

21
. (5.8)

Assume that the maximum possible sway is  from 0.67  to  1, i.e.,  ∆m = 0.23.  It  is
corresponding to an odds of 10,000 to 1,  at which the uncertainty is, according to Eq.
5.8:

  
∆ ln N f( )[ ]= 0.582 .

The uncertainties at other odds are obtained by scaling back with the same ratios in Table
5.2, and listed in Table 5.3.
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Table  5.3   Uncertainty of   ln(N) due to Uncertainty of m
Odds

against failure
Uncertainty

for one more prediction
1-sided 100:1 0.364

1-sided 2,000:1 0.524
1-sided 10,000:1 0.582

  ln(F5 ) = 0

5.3   Uncertainty due to load ratio R

The uncertainty of load ratio R is in fact the uncertainty of stress range during the
operation.  The uncertainty of life due to R can be obtained by following the same
procedures in the previous sections.  First consider the uncertainty of  life for two stress
peaks respectively as

  

∆ ln N1( )[ ]= − mn ⋅ ∆ ln 1 − R1( )[ ]= −mn ⋅ln 1−
∆R1

1 − R1

 

 
  

 
  , (5.9)

 
  
∆ ln N2( )[ ]= − mn ⋅ ∆ ln 1 − R2( )[ ]= −mn ⋅ ln 1−

∆R2

1− R2

 

 
  

 
 . (5.10)

The uncertainty of life due to combined stress peaks is then

 
  
∆ ln N

f( )[ ]=
∆ln N1( )[ ]2

+ 20 ⋅ ∆ln N 2( )[ ]2

21
. (5.11)

Assume that the maximum possible sway  of R  is  0.1.  Then

  
∆ ln N f( )[ ]≈ 0.538 .

The uncertainties at other odds are obtained by scaling back with the same ratios in Table
5.2, and listed in Table 5.4.

Table  5.4   Uncertainty of    ln(N) due to Uncertainty of R
Odds

against failure
Uncertainty

for one more prediction
1-sided 100:1 0.336

1-sided 2,000:1 0.484
1-sided 10,000:1 0.538

  ln(F6 ) = 0
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6. Conclusions

The uncertainties of life due to various factors are summarized in Table 6.1 for three
odds (100:1, 2,000:1 and 10,000:1). The impact of each factor on the central value and
their standard deviations are also evaluated, and listed in the same table.  The nominal
life at given odds are obtained, according to Eqs. 2.11 and 2.12,  as shown in the bottom
line.

Table 6.1   Fatigue Life at Given Odds from Statistics and Uncertainty Analysis
(Case 1 of DDR)

No. Variable
Central
value

F 
i

Log
central
value

  ln(Fi )

2-side
2:1

(0.67)
uri

1-side
100:1
(0.99)

uri

1-side
2,000:1
(0.9995)

uri

1-side
10,000:1
(0.9999)

uri

F1 Paris parameters
c, n

7.768e5 13.563 0.458 1.218 1.893 2.259

F2 Fracture
toughness  KIc

1.153 0.153 0.0212 0.077 0.157 0.222

F3 3D crack
parameters

1.435 0.435 0.816 1.897 2.684 3.033

F4 Stress
σmax

1 0 0.167 0.418 0.601 0.668

F5 Walker exponent
m

1 0 0.145 0.364 0.524 0.582

F6 Load ratio
R

1 0 0.134 0.336 0.484 0.538

  ln(Fi)∑ 14.151

ui
2∑ 2.347 3.418 3.928

  ln(N) 11.804 10.733 10.223

N  (cycle) 133,786 45,844 27,529

Assume that ITER consists of 100 significant components with a total confident limit
of 95%,  then the confident limits for each component should be:[22]

(0.95)0.01 ≈ 0.9995 ,

which is equivalent to odds of  2,000 to 1. For such odds, the fatigue life is estimated to
be 45,844 cycles according to Table 6.1.
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The following Conclusions are drawn from the above analyses:

(a)  For odds of 2,000 to 1, which is probably the appropriate choice for the TF case, the
fatigue life is estimated to be 45,844 cycles for Case 1, and 36,754 cycles for Case 2 of
DDR design.

(b)  3D crack parameters including the initial crack depth, the aspect ratio and the
eccentricity have the most significant effect on the fatigue life.  Fracture toughness has
the least effect.

(c)   The uncertainties due to the Paris parameters, 3D crack parameters, fracture
toughness and the Walker's exponent can be reduced if more test data are available by
further experiments and literature survey.  The uncertainties due to stress and load ratio
can be reduced by improving the model.
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8. Appendix:
Data of Statistical and Uncertainty Analysis for Case 2

Table  A3.1  Fatigue Life at 4K for TF Case with Different c and n
No.  c  (m/cycle)

      ×10 −12
n  Ref. Life  N

  (cycle)
  ln(N)

1 12.3 2.5 10 404197 12.90966

 2 0.756 3.26 10 685842 13.4384

3 20 2.35 11 396364 12.89009

4 0.617 3.44 11 502763 13.12787

 5 13.2 2.56 11 313157 12.65446

 6 13.2 2.56 11 313157 12.65446

7 0.21 3.8 12 539571 13.19853

 8 0.789 3.26 12 657103 13.3956

 9 0.12 3.96 12 608114 13.31812

10 0.012 4.55 12 1241174 14.03157

11 0.09 3.96 12 810885 13.60588

12 0.35 3.69 12 439236 12.99279

13 0.25 3.65 12 687425 13.44071

14 0.5 3.57 12 430006 12.97155

15  0.14 3.81 12 787311 13.57638

 16 0.26 3.75 12 500500 13.12336

17 4.81 2.91 13 299279 12.60913

Case 2 - Stress cycle:  200 MPa x 1, R=0;  412 MPa x 20, R=0.19
Initial crack depth = 0.4 mm
Eccentricity = 25 mm
Aspect ratio = 0.5

Critical stress intensity factor = 128 MPa m

Walker exponent = 0.67

       Table  A3.2   Statistic results of    ln(N)
Mean Standard deviation

13.173 0.386

Table   A3.3  "t"  Values and Confident Limits for   ln(N)

Degree of Freedom = 16
Odds t  value Confident limit for

mean  of

  ln(N)

Confident limit for
one more prediction of

  ln(N)
100 :1 2.584 12.931 12.147

2,000:1 4.015 12.797 11.578
10,000:1 4.791 12.724 11.270
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Table  A3.4   Uncertainty of    ln(N)  due to Uncertainty of c and n
Odds

against failure
Uncertainty

for mean of population
Uncertainty

for one more prediction
2-sided 2:1 0.386

1-sided 100:1 0.242 1.026
1-sided 2,000:1 0.376 1.595
1-sided 10,000:1 0.449 1.903

    Table  A3.5  Fatigue Live at  4K for Various Fracture Toughness
No. Fracture

toughness

( MPa m )

Life N
(Cycle)

  ln(N)

1 67 607141 13.31652

2 80 612868 13.3259

3 90 614911 13.32923

4 167 624463 13.34465

5 160 623938 13.34381

6 202 626148 13.34734

   Case 2 - Stress cycle:  200 MPa x 1, R=0;  412 MPa x 20, R=0.19
c = 6.65 × 10−13  (m/cycle),  n = 3.34
Initial crack depth = 0.4 mm
Eccentricity = 25 mm
Aspect ratio = 0.5

 Walker exponent = 0.67

       Table  A3.6   Statistic results of    ln(N)
Mean Standard deviation

13.335 0.0125

Table   A3.7  "t" Values and Confident Limits for    ln(N)
Degree of Freedom = 5

Odds t  value Confident limits for
mean of    ln(N)

Confident limits for one
more prediction of    ln(N)

100 :1 3.366 13.317 13.289
2000:1 6.869 13.3 13.242

10000:1 9.678 13.285 13.204
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Table  A3.8    Uncertainty of    ln(N) due to Uncertainty of Fracture Toughness
Odds

against failure
Uncertainty

for mean of population
Uncertainty

for one more prediction
2-sided 2:1 0.0125

1-sided 100:1 0.018 0.046
1-sided 2,000:1 0.035 0.093
1-sided 10,000:1 0.05 0.131

  ln(F2 ) = 0.162

     Table  A4.1  Statistic results of    ln(N)
Mean Standard deviation

13.648 0.853
           Note:  based on 978 sets of data cut off at N=107 cycles

Table  A4.2  Confident Limits for    ln(N)
Odds Confident limit for

one more prediction of ln(N)
100 :1 11.664

2,000:1 10.842
10,000:1 10.477

Table  A4.3   Uncertainty of    ln(N) due to Uncertainty of 3D Parameters
Odds

against failure
Uncertainty

for one more prediction
2-sided 2:1 0.853

1-sided 100:1 1.984
1-sided 2,000:1 2.806
1-sided 10,000:1 3.171

  ln(F3 ) = 0.475

Table  A5.1   Critical Values for Different Odds
Odds 100:1 2,000:1 10,000:1

normal distribution 2.3 3.3 3.7
extreme-value distribution 3 4.2 5

selected scale factor 2.5 3.6 4



25

Table  A5.2   Uncertainty of    ln(N) due to Uncertainty of Stress
Odds

against failure
Uncertainty

for one more prediction
1-sided 100:1 0.418

1-sided 2,000:1 0.601
1-sided 10,000:1 0.668

  ln(F4) = 0

Table  A5.3   Uncertainty of   ln(N) due to Uncertainty of m
Odds

against failure
Uncertainty

for one more prediction
1-sided 100:1 0.099

1-sided 2,000:1 0.142
1-sided 10,000:1 0.158

  ln(F5 ) = 0

Table  A5.4   Uncertainty of    ln(N) due to Uncertainty of R
Odds

against failure
Uncertainty

for one more prediction
1-sided 100:1 0.184

1-sided 2,000:1 0.266
1-sided 10,000:1 0.295

  ln(F6 ) = 0
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Table   A6.1   Fatigue Life at Given Odds from Statistics and Uncertainty Analysis (Case
2)

No. Variable
Central
value

F 
i

Log
central
value

  ln(Fi )

2-side
2:1

(0.67)
uri

1-side
100:1
(0.99)

uri

1-side
2,000:1
(0.9995)

uri

1-side
10,000:1
(0.9999)

uri

F1 Paris parameters
c, n

5.26e5 13.173 0.386 1.026 1.595 1.903

F2 Fracture
toughness  KIc

1.162 0.162 0.0125 0.046 0.093 0.131

F3 3D crack
parameters

1.475 0.475 0.853 1.984 2.806 3.171

F4 Stress
σmax

1 0 0.167 0.418 0.601 0.668

F5 Walker exponent
m

1 0 0.04 0.099 0.142 0.158

F6 Load ratio
R

1 0 0.074 0.184 0.266 0.295

  ln(Fi)∑ 13.81

ui
2∑ 2.282 3.298 3.775

  ln(N) 11.528 10.512 10.035

N  (cycle) 101,519 36,754 22,811


