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ABSTRACT

We present a novel quantitative scheme of cluster classification based on the morphological properties that are
manifested in X-ray images. We use a conventional radial surface brightness concentration parameter (cSB) as
defined previously by others and a new asymmetry parameter, which we define in this paper. Our asymmetry
parameter, which we refer to as photon asymmetry (Aphot), was developed as a robust substructure statistic for
cluster observations with only a few thousand counts. To demonstrate that photon asymmetry exhibits better
stability than currently popular power ratios and centroid shifts, we artificially degrade the X-ray image quality
by (1) adding extra background counts, (2) eliminating a fraction of the counts, (3) increasing the width of the
smoothing kernel, and (4) simulating cluster observations at higher redshift. The asymmetry statistic presented here
has a smaller statistical uncertainty than competing substructure parameters, allowing for low levels of substructure
to be measured with confidence. Aphot is less sensitive to the total number of counts than competing substructure
statistics, making it an ideal candidate for quantifying substructure in samples of distant clusters covering a
wide range of observational signal-to-noise ratios. Additionally, we show that the asymmetry-concentration
classification separates relaxed, cool-core clusters from morphologically disturbed mergers, in agreement with
by-eye classifications. Our algorithms, freely available as Python scripts (https://github.com/ndaniyar/aphot), are
completely automatic and can be used to rapidly classify galaxy cluster morphology for large numbers of clusters
without human intervention.
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1. INTRODUCTION

Clusters of galaxies are complex objects where many astro-
physical processes are taking place. Cluster classification based
on X-ray morphology can help us understand the dominant phys-
ical processes in particular types of clusters, shed light on the
cluster formation histories, and give new insights into the evolu-
tion of both the large-scale structure of the universe (Allen et al.
2011) and the baryonic component of galaxy clusters (Böhringer
& Werner 2010).

Two distinctive features of galaxy clusters that are detectable
in X-ray images are (1) cool cores (CCs) and (2) departure
from axial symmetry, presumed to arise from galaxy cluster
mergers. CCs exhibit sharp central peaks in X-ray emission,
while asymmetry manifests as secondary peaks, filaments, and
clumps in X-ray surface brightness. It is believed that these
features emerge at different stages of cluster evolution and
are outcomes of completely different physical processes that
affect the entire intracluster medium (ICM). One important
reason to classify cluster morphology is that we can explore
any correlations between morphology and residuals in various
cluster scaling relations, resulting in more robust estimates of,
for example, galaxy cluster mass (M500).

The substructure clumps in the X-ray emission are often
associated with active processes of dynamical relaxation after
mergers. For such clusters (with a high amount of substructure),
the characteristic processes are turbulence (Vazza et al. 2011;
Hallman & Jeltema 2011), shocks, and cold fronts in the
ICM (Markevitch & Vikhlinin 2007; Hallman et al. 2010;

Blanton et al. 2011), giant and mini radio halos (Cassano
et al. 2010) and relics (Ferrari et al. 2008). After the process
of relaxation is over, CCs start to develop (Fabian et al.
1994; Peterson & Fabian 2006; Hudson et al. 2010; McDonald
et al. 2013) and the evolution of the ICM is governed by the
processes of gas cooling and heating, active galactic nucleus
feedback (McNamara & Nulsen 2007) and thermal conduction
(Voit 2011). We are still far from a detailed understanding
of these processes, but their correlation with morphology
is established both from observations and simulations. For
example, observations suggest that more dynamically disturbed
systems have weaker CCs (Sanderson et al. 2009).

In this work, we propose a new classification scheme,
based on the arrangement of galaxy clusters in the two-
dimensional plane of disturbance and CC strength. As explained
above, this choice of fundamental morphological parameters is
observationally well-motivated. To choose the parameters that
best quantify CC strength and disturbance, we first formulate
some requirements.

1. These parameters need to be objective, quantitative, and
reproducible.

2. The parameters should be model independent.
3. They should allow substructure analysis for low signal-to-

noise (S/N) observations.
4. These parameters should be relatively insensitive to expo-

sure time, the level of the X-ray background, or a cluster’s
angular size on the sky. A composite test that checks all
these sensitivities together is simulating observations of a
cluster at higher redshift.

1

http://dx.doi.org/10.1088/0004-637X/779/2/112
mailto:nurgaliev@physics.harvard.edu


The Astrophysical Journal, 779:112 (15pp), 2013 December 20 Nurgaliev et al.

5. The substructure parameters should agree with the human
expert judgment.

The radial surface brightness profiles of X-ray emission can
be used to quantify the extent to which a CC is present, although
assigning clusters to categories (CC vs. non-CC, NCC) is still a
topic of discussion (Hudson et al. 2010; McDonald et al. 2013).
We adopt here the concentration prescription of Santos et al.
(2008), who showed that their implementation can discriminate
between “strong,” “medium,” and “no” CCs. Importantly, in
the context of the requirements listed earlier, the Santos et al.
(2008) concentration parameterization is robust even for low
S/N observations and is roughly model independent.

The quantification of “disturbance” is significantly harder.
There is no simple physical (or mathematical) quantity that can
measure “disturbance” or, as it is usually called, the amount of
substructure. Pinkney et al. (1996) list 30 different substructure
tests and conclude that no single one is good in all cases.
Two substructure statistics have, nevertheless, became popular
recently: centroid shifts (Mohr et al. 1993) and power ratios
(Buote & Tsai 1995, 1996). Their popularity can be explained by
their model independence and ease of computation. They also
satisfy, reasonably well, the requirements formulated above.
For a more detailed review of various substructure statistics,
see Buote (2002), Böhringer et al. (2010), Rasia (2013), and
Weißmann et al. (2013). We present below a new substructure
statistic that is superior based on the above requirements.

We stress that any substructure statistic should be suitable for
high-redshift clusters, with observations of poor quality. This
is an area where the other substructure tests do not perform
very well. Most morphological studies have been carried out for
nearby clusters with high S/N X-ray images (105 counts per
cluster being the typical value for these studies). However, large
surveys or serendipitous discoveries of high-redshift clusters
will yield images with, typically, only several hundred counts
(e.g., McDonald et al. 2013). Thus, a reliable next-generation
substructure statistic must perform equally well on low-S/N,
high-redshift observations.

Here, we present a new substructure statistic, photon asym-
metry (Aphot), which quantifies how much the X-ray emission
deviates from the idealized axisymmetric case. This statistic is
somewhat similar to existing efforts to use the residuals after
subtracting a beta-model fit (e.g., Neumann & Bohringer 1997;
Böhringer et al. 2000; Andrade-Santos et al. 2012) or double
beta-model (Mohr et al. 1999). However, Aphot is model inde-
pendent and specially designed to work well for observations
with low photon counts.

In Section 2, we present the X-ray sample that has been
used to develop our approach. Section 3 defines the various
morphology measures that are compared in this work, while
Section 4 explores performance using simulated datasets. Our
results and conclusions are presented in Sections 5 and 6,
respectively. We defer an analysis of how these morphological
parameters correlate with the scaling relations residuals to a
future paper.

2. SAMPLE AND DATA REDUCTION

2.1. Sample

To test our classification method and compare the properties
of photon asymmetry to the properties of previously known
substructure statistics, we used the high-z subsample of the 400
square degree galaxy cluster survey (abbreviated 400d), which
is a quasi-mass-limited sample of galaxy clusters at z > 0.35

serendipitously detected in ROSAT PSPC data (Burenin et al.
2007). The high-redshift subsample of 400d was published in
Vikhlinin et al. (2009a) and consists of 36 clusters with z > 0.35
that exceed a certain luminosity threshold that corresponds to
≈ 1014M� in mass (see Vikhlinin et al. 2009a for details).

All clusters in the sample have been observed with the
Chandra X-Ray Observatory and used to constrain cosmological
parameters in Vikhlinin et al. (2009a, 2009b).

The reasons for choosing this cluster sample are as follows.

1. The redshift range covers 0.3 � z � 0.9 and is similar to
the redshift range of both Sunyaev–Zeldovich (SZ) surveys
and next-generation X-ray surveys (e.g., eRosita), allowing
extensions to larger samples in the future.

2. High-resolution Chandra imaging is available, which is
very suitable for substructure detection. As we show in the
paper, telescope resolution is very important for detecting
and quantifying substructure.

3. A range of photon counts. Since our goal is to develop a
substructure statistic that is maximally applicable to high-z
clusters with low S/N observations, the high-z part of the
400d catalog is perfect for testing our substructure statistic.

4. The basic selection criterion is X-ray luminosity, which
adequately samples the range of cluster morphologies and
core properties. Thus, the sample should be representative
with respect to cluster morphological types.

2.2. Data Reduction

We perform all industry-standard X-ray data reduction steps.
We start with flare-cleaned event2 files that are identical to those
used by Vikhlinin et al. (2009a). Following many other cluster
studies (e.g., Santos et al. 2008), we apply a 0.5–5.0 keV band
filter that optimizes the ratio of the cluster to background flux.
We chose to use a higher upper cut-off than what was used in
many other studies (2 keV), because for massive clusters there
is significant emission above 2 keV.

We detect point sources with an algorithm similar to wavde-
tect from the CIAO package (Fruscione et al. 2006) and replace
the regions of point sources with a Poisson distribution with a
mean value equal to the local background density of counts. In
most cases, this means that we add no counts in the region of
the removed point source because the typical local background
level is ∼10−2 counts per pixel.

We estimate the global background level from regions on the
chip free of point sources, away from chip gaps, and sufficiently
far away from the cluster center (a 2–4 R500 annulus)

We compute all morphological parameters directly from the
raw event2 band-filtered files without additional binning or
smoothing. All substructure statistics that we consider in this
paper can be formulated in terms of sums over counts instead
of integrals over surface brightness distributions, as they are
usually presented. We believe that this is the best way to perform
statistical tests because any post-processing may distort and bias
the statistic’s distributions.

We use exposure maps that include corrections for CCD gaps,
spatial variations of the effective area, ACIS contamination, bad
pixels, and detector quantum efficiency.

We produce smoothed images of the clusters using an
algorithm similar to asmooth (Ebeling et al. 2006), which
chooses the appropriate smoothing scale adaptively for each
count based on the local density of counts. These smoothed
images are used for two (and only two) purposes.
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1. Visualization for by-eye classification and by-eye compar-
ison of the cluster’s relative ranking produced by various
substructure statistics,

2. Generation of simulated cluster observations. See
Section 5.2 for more details.

All the steps in the data reduction pipeline are automatic, but
the results of each step were visually inspected. For the clusters
that had several observations, we merged all observations that
had the entire R500 aperture on the CCD.

3. CLASSICAL MORPHOLOGICAL
PARAMETERS/SUBSTRUCTURE STATISTICS

3.1. Power Ratios

Power ratios were introduced in Buote & Tsai (1995, 1996)
and have been widely used ever since (e.g., Jeltema et al. 2005;
Ventimiglia et al. 2008; Cassano et al. 2010). They are able
to distinguish a large range of morphologies and are physically
motivated and easy to compute (Jeltema et al. 2005). The method
consists of a multipole expansion of the surface brightness
and computes the powers in different orders of the expansion.
The corresponding formulas are usually quoted as integrals over
surface brightness, but since we prefer to work with individual
counts and not smooth the surface brightness in any way, we
replaced all the integrals with appropriately weighted sums over
counts.

The powers are given by:

P0 = [a0 ln(Rap)]2 (1)

Pm = 1

2m2R2m
ap

(
a2

m + b2
m

)
, (2)

where Rap is the aperture radius. The moments am and bm are
calculated using

am(R) =
∑

ri�Rap

wir
m
i cos(mφi) (3)

and
bm(R) =

∑
ri�Rap

wir
m
i sin(mφi), (4)

where ri, φi are the coordinates of the detected photon in
polar coordinates and wi is its “weight,” which is inversely
proportional to the effective exposure at the given CCD location.
The center of that polar coordinate system is chosen to set P1 to
zero.

In order to render the morphological information insensitive
to overall X-ray flux, each of the angular moments Pm,m =
1, 2, 3... is normalized by the value of P0, forming the power
ratios Pm/P0. The power ratios P2/P0, P3/P0, and P4/P0 have
been used to characterize cluster substructure (Jeltema et al.
2005). P3/P0 has been found to be the best characterization of
“disturbance.”

Aperture choice is very important for power ratios as they
are most sensitive to the substructure at the maximum radius.
Values of 1 Mpc, 0.5 Mpc, and R500 have been used as aperture
radii. We use R500 as it allows a more consistent comparison
of clusters of different mass than a fixed physical scale as R500
is a natural scale for clusters of all masses and redshifts. The
other substructure statistics are also based on an R500 aperture,

therefore, our comparison of various substructure statistics is
consistent.

As many authors have noted, the power ratios calculated
by the formulas above give values for Pm biased high due to
photon noise. This can be easily seen in the case of a perfectly
symmetrical cluster—the random distribution of the angles φi

and the non-negativity of Pm lead to a distribution of Pm with a
nonzero mean. Different authors have used different methods
to account for these biases. We based our method of bias
correction on the work of Böhringer et al. (2010), where the
bias was computed by randomizing the polar angles for all
collected photons, but keeping their radial distance fixed. The
mean of the power Pm of the mock observations obtained this
way is interpreted as the typical photon noise contribution to
the measurements of Pm and is subtracted from the Pm of the
real observations. We did not perform Monte Carlo simulations
for randomizing polar angles, because the mean of Pm with
randomized angles (uniformly distributed φi) can be easily
calculated analytically:

nm = 〈a2
m〉 =

〈[∑
wir

m
i cos(mφi)

]2
〉

=
∑

w2
i r

2m
i 〈cos2(mφi)〉 = 1

2

∑
w2

i r
2m
i . (5)

We need to subtract this value from both a2
m and b2

m, which
results in the following formula for Pm:

Pm = 1

2m2R2m
ap

(
a2

m + b2
m − 2nm

)
. (6)

After bias correction, the background counts do not contribute
to the powers m �= 0, but still contribute to a0 = ∑

wi . To make
P0 and, consequently, the ratios background independent, we
need to also subtract the background contribution from a0:

a0 =
∑

wi − wbkgr(Rap), (7)

where wbkgr (Rap) is the expected total weight of all background
photons within the aperture Rap.

3.2. Centroid Shifts

A centroid shift is another popular measure of the “distur-
bance” of clusters. It is defined by the variance of “centroids”
obtained by the minimization of P1 within 10 apertures (r �
n × 0.1 R500, with n = 1,2. . .10). The value of centroid shifts
is expressed in units of R500, which makes it a dimensionless
quantity. Centroid shifts are defined slightly differently by dif-
ferent authors (see Mohr et al. 1995; Poole et al. 2006; O’Hara
et al. 2006; Böhringer et al. 2010). Here, we used

w =
[

1

N − 1

∑
i

(xi − 〈x〉)2

]1/2

× 1

R500
, (8)

where xi is the position of the centroid of a given aperture.

3.3. Concentration

Concentration parameter is defined as the ratio of the peak
over the ambient surface brightness. Concentration has been
widely applied to X-ray images (Kay et al. 2008; Santos et al.
2008, 2010; Cassano et al. 2010; Hallman & Jeltema 2011;
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Semler et al. 2012) and has proved useful in distinguishing CC
from NCC clusters.

We adopted the definition of concentration provided by
Santos et al. (2008):

cSB = Flux(r < 40 kpc, 0.5 keV < E < 5 keV)

Flux(r < 400 kpc, 0.5 keV < E < 5 keV)
. (9)

The radii 40 and 400 kpc were chosen to maximize the separa-
tion between CC and NCC clusters. We computed concentration
around the brightness peak, as defined in Section 4.4; this is the
same center that we used for photon asymmetry. Complete de-
tails on the stability of the concentration parameter can be found
in Santos et al. (2008).

4. PHOTON ASYMMETRY

In this section, we describe our proposed morphological
classifier, namely photon asymmetry.

4.1. Optical Asymmetry and the Motivation
for Photon Asymmetry

In optical astronomy, the asymmetry parameter is a part of the
“CAS” galaxy classification scheme that stands for concentra-
tion (C), asymmetry (A), and clumpiness (S) (Conselice 2003).
Asymmetry quantifies the degree to which the light of an object
(galaxy) is rotationally symmetric. It is measured by subtracting
the galaxy image I180 rotated by 180◦ from the original image
I0 (Conselice 2003):

A = |I0 − I180|
I0

. (10)

This definition tests central (or mirror) asymmetry, i.e.,
whether the image is invariant under a “point reflection”
transformation (which is equivalent to rotation by 180◦ around
the central point). Although this definition of asymmetry has
been applied to X-ray images of clusters before (e.g., Rasia
2013), it is only reliable for observations where the number
of counts in each (binned) pixel is 
1. This condition is not
satisfied for most cluster observations.

One can come up with a similar definition of circular or
axial asymmetry that would test whether the image is invariant
under rotation by an arbitrary angle around the central point.
That would involve finding the average intensity of the image in
concentric annuli and comparing local intensity with the average
intensity in the annulus:

A =
∫ R

0
rdr

∫
dφ(I (r, φ) − I (r))2. (11)

This could also be a good measure of substructure and indeed
people have tried to apply similar ideas for substructure statistics
(e.g., Andrade-Santos et al. 2012).

The above definitions of asymmetry, both Equations (10)
and (11), are hard to implement for distant clusters whose
observations have fewer counts. We could generate smoothed
images of clusters and apply the above definitions to these
images, but that can generate biases. The large radial variations
in surface brightness and the presence of substructure prevent
us from choosing a single, global optimal smoothing scale. We
cannot use an adaptive scale either, because asymmetry is then
strongly dependent on the details of the adaptive smoothing
algorithm. Also, by producing smoothed images (with either a

fixed or adaptive scale), we effectively introduce some model-
dependent priors on cluster structure. We would prefer, however,
to only use objective information: the positions (and possibly
energies) of the detected photons.

Fortunately, there is a way to adapt the definition of asym-
metry so that it can be computed efficiently in the limit of low
photon counts, which we present in this paper. This adapta-
tion is possible for both central and axial asymmetry. Central
asymmetry might seem preferable, because it would have a zero
value for a relaxed, but elliptical cluster. However, in our sample
with few counts and ill-defined ellipticities, the values of axial
and central asymmetries correlate strongly. Additionally, axial
asymmetry is conceptually simpler for our statistical framework,
so we concentrate on it for this paper.

Our strategy for adapting Equation (11) to the case of few
counts with known coordinates is the following. We split the
image into a few annuli and check whether the surface brightness
is uniform in each of these annuli. In the limit of few counts,
this is the same as checking whether these counts are uniformly
distributed in the annulus. This amounts to checking that their
polar angles are uniformly distributed in the 0 � φ < 2π range.

4.2. Photon Asymmetry within an Annulus

To assess the degree of non-uniformity of the angular dis-
tribution of the counts, we use Watson’s test (Watson 1961).
Watson’s test compares two cumulative distribution functions.
Other members of this family of non-parametric tests for
the equality of distribution functions include the well-known
Kolmogorov–Smirnov test, as well as the less well-known
Cramer-von Mises and Kuiper’s tests. For the reasons explained
in the Appendix, Watson’s test is the only one that works in
our specific situation. Unfortunately, Watson’s test is only able
to test the null hypothesis, i.e., compute the probability that
the given sample is drawn from the assumed distribution. Our
case is slightly different—we know that our sample (of counts
as a function of polar angles) is not drawn from the uniform
distribution, so, in principle, goodness of fit tests are not appli-
cable to our case. However, as we show in the Appendix, we
can interpret the value of Watson’s test as the estimate of the
distance between the true underlying distribution function and
the assumed distribution function.

Let us consider the photons that arrive in an annulus Rin <
r < Rout relative to the cluster center. The specific definition
of these annuli will be discussed in Section 4.3. Let Φ be a
polar angle (random variable) of a cluster photon in the chosen
coordinate system, centered on the cluster, and φ1, φ2, · · · , φN

be the polar angles of the observed photons in the annulus (N =
the total number of observed photons in the annulus). Then, we
define:

F (φ) = Prob(Φ � φ) (12)

as the true angular (cumulative) distribution function and

FN (φ) = 1
N

∑{
1, if φi � φ
0, otherwise (13)

as the measured (empirical) distribution function. Being dis-
tribution functions on a circle, F and FN also depend on the
arbitrary starting point φ0, which we write as

F = F (φ;φ0),

FN = FN (φ;φ0). (14)

4
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Figure 1. Method described in this paper comparing the observed cumulative probability distributions of the angular positions of photons (FN ) with that of a uniform
distribution (G). This figure shows empirical FN and uniform G distribution functions in the outermost annulus for three progressively more disturbed clusters
(0159+0030, 1354-0221, and 0152-1358). The more disturbed clusters manifest greater differences between FN and G and correspondingly higher values of the
distance metric dN .

(A color version of this figure is available in the online journal.)

We can now introduce Watson’s statistic U 2
N [FN, F ] as

U 2
N [FN, F ;φ0] = N

∫
(FN (φ;φ0) − F (φ;φ0))2dF

U 2
N [FN, F ] = min

φ0

U 2
N [FN, F ;φ0], (15)

i.e., UN is the minimum value of integrated squared difference
between FN and F over the possible starting points φ0.

The greater the value of U 2
N , the less likely that FN is produced

by drawing from F. In our case, F is unknown, but we can test
how likely it is that FN is drawn from another distribution G
that represents an idealized axisymmetric source. (G would be
uniform in the absence of instrumental imperfections):

U 2
N [FN,G] = N min

origin on the circle

∫
(FN − G)2dG. (16)

Interestingly, it is possible to interpret U 2
N [FN,G]/N as the

distance between F and G:

U 2
N [FN,G]/N = distance(F,G) +

1

12N
+ Noise, (17)

where the term 1/12N comes from the properties of the statistic
distribution under the null hypothesis. The detailed derivation of
Equation (17) is presented in the Appendix. Here, we note that
the mean value of Noise is smaller than 1/12N for the relevant
values of N, therefore

d̂N = U 2
N/N − 1/12N (18)

is an estimator of distance(F,G), the distance between the
observed and uniform distributions of photons in the annulus.
The variance of this estimator scales as 1/N , so that we can
obtain a better estimate of the distance as N increases.

The method is illustrated in Figure 1, where we show FN ,
G, and the value of d̂N in the outermost annulus for three
progressively more disturbed clusters. The more disturbed
clusters manifest greater differences between FN and G and,
consequently, higher values of d̂N .

As we are interested in the distance between the observed
and a uniform distribution of cluster-only photons (as opposed
to cluster and background photons), we additionally need to
multiply that distance by the squared ratio of total counts N to
cluster counts C in that annulus. As the number of cluster counts
C is not directly observable, we estimate it by subtracting the

expected number of background counts in the annulus from the
total counts N. The resulting background-corrected expression

d̂N,C = N

C2

(
U 2

N − 1

12

)
(19)

is an estimate of the distance between the true photon distribu-
tion and the uniform distribution (see the Appendix for details).

4.3. How to Choose the Optimal Annuli

The first step in choosing optimal annuli is to select the
maximum aperture radius. R500 is a good choice, because
cluster X-ray emission is typically indistinguishable from the
background beyond this radius. Also, we exclude the region
r < 0.05R500 from the analysis because pixelation artifacts at
small radii distort Watson’s statistic.

Second, we need to choose the number of annuli inside this
0.05R500 < r < R500 region. One can use any number of annuli
for the computation of asymmetry. The tradeoff is between the
asymmetry S/N in each individual annulus and radial resolution.
We found that it is desirable to have at least a few hundred
counts in each annulus, so we used four annuli for our sample of
clusters. This optimization may be different for a cluster sample
with a different number of counts.

Finally, we need to choose the radii of these annuli. The
relative uncertainty of asymmetry is estimated to be

√
N/C,

where N is the total number of counts and C is the number of
cluster counts. The radial binning should be chosen carefully,
because low numbers of N or C in any bin inflate the uncertainty.
This is a nontrivial task as the radial brightness profile is very
different between clusters. We choose the radial binning to
achieve a uniform relative uncertainty in asymmetry, for each
annulus, across the clusters in our training set. The following
choices of boundaries in units of R500 lead to the most uniform
uncertainty across bins: 0.05, 0.12, 0.2, 0.30, and 1. We caution
that applying this technique to X-ray survey instruments or
datasets that exhibit a broader point-spread function (PSF) than
Chandra’s 0.5 arcsec FWHM will require a careful re-evaluation
of radial binning, since we desire annuli widths dr 
 FWHM.

The last step in the computation of photon asymmetry is to
combine the values of asymmetry from the four annuli. We
use a weighted sum of distances from each annulus d̂Nk,Ck

(see
Equation (19); k numbers the annuli and Nk and Ck are the total
and cluster counts in the kth annulus) with a weight equal to the
estimated number of cluster counts Ck in that annulus:

Aphot = 100
4∑

k=1

Ckd̂Nk,Ck

/ 4∑
k=1

Ck. (20)

5
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We introduced a multiple of 100 into the definition of
Aphot to bring all the asymmetries to a convenient range 0 <
Aphot � 3. The resulting quantity is independent of exposure
and background level.

4.4. Cluster Centroid Determination

The standard prescription for optical asymmetry is to choose
the center that minimizes asymmetry. However, this method is
prone to producing values of asymmetry that are biased low.
This effect is especially noticeable in our resamplings with very
low count numbers.

We based our choice of centroiding on three considerations:
(1) we favor a centroid choice that is independent of the
asymmetry computation, (2) if the cluster possesses a strong
core, we use that feature to define the cluster center, and (3) by
assigning the cluster center to a high S/N region of the image,
we can compute asymmetry in annuli at high S/N.

Based on these requirements, we chose the center to be the
brightest pixel after convolution with a Gaussian kernel with
σ = 40 kpc. At z = 1, a single Chandra pixel corresponds to
about 4 kpc and the Chandra PSF FWHM is of the order of 2
pixels, so the smoothing scale is much coarser than the Chandra
angular resolution.

The centroid defined as a convolution with a Gaussian kernel
is not very sensitive to the size of this Gaussian kernel. We chose
the kernel size to be 40 kpc to be consistent with our definition
of concentration. We use this centroid for both asymmetry and
concentration. We stress that the Gaussian-convolved image
is used only for centroiding, not for the computation of any
substructure statistics.

5. SIMULATED OBSERVATIONS AND DETERMINATION
OF UNCERTAINTIES

5.1. Simulated Observations

We now address the questions of (1) sensitivities of substruc-
ture statistics to observation parameters and (2) uncertainties of
these substructure statistics, by calculating them for simulated
observations with the desired parameters (such as exposure or
background level). The idea of using simulated observations in
similar ways goes back to the works of Buote & Tsai (1996),
Jeltema et al. (2005), Hart (2008), and Böhringer et al. (2010).
Generating these simulated observations is straightforward if
we have the map of the true cluster surface brightness (or, more
precisely, the cluster brightness multiplied by the CCD expo-
sure map)—we would draw each pixel value from the Poisson
distribution with the mean equal to that brightness. As we do
not know that true underlying brightness distribution, we use
instead our best approximation to it, which is the result of an
adaptive smoothing algorithm.

To simulate changing the exposure, before drawing from the
Poisson distribution, we need to multiply the surface brightness
map by a constant; to change the level of the background, we
need to add a constant to the surface brightness map; to change
the telescope PSF, we need to convolve the existing brightness
map with the new PSF (the real Chandra PSF is negligibly
small).

To simulate how the clusters would look if they were moved
to a higher redshift, we need to calculate the expected X-ray
flux from that cluster, rescale the number of observed counts
accordingly, change the image spatial scale (which is a small
correction as angular diameter distance does not change much
from z = 0.3 to 1), and then increase the amount of the

background to its old value. The only tricky part in this process
is the calculation of the new cluster flux that should include the
change in the luminosity distance and the K-correction (Hogg
et al. 2002) that compensates for the shift in the cluster emission
in the observed frame:

Fluxnew

Fluxold
= D2

L,old

D2
L,new

K(znew)

K(zold)
. (21)

Since we do not need to simulate this very precisely—we
only want to get an idea of how it affects the substructure
measures—we use a simple approximation to the results of
Santos et al. (2008) for the 0.5–5 keV energy band:

K(z) = 1

1 + 2z
. (22)

5.2. Uncertainties

To estimate the uncertainties of the various substructure
statistics, we used the algorithm described above to generate
100 mock observations with exactly the same exposure and
background level as in the original observations, but varied
noise realizations. Then, we computed the substructure statistics
for these samples and found the median, the 16th lowest, and
the 16th highest observed value in the sample. We treat the
median as the characteristic central value of statistic for this
set of mock observations and the interval between the 16th
lowest and the 16th highest observed values as the 1σ , or 68%
confidence, interval. Using order statistics for the central value
and the confidence interval is the most sensible choice for us,
because the distributions for any substructure statistic values
are asymmetric and extremely heavy tailed. The statistic value
obtained from the real observation did not always fall within this
confidence interval for two reasons. First, as this is only a 68%
confidence interval, we expect approximately one-third of all
points to be outside of the 1σ range. Second, the resampling
process tends to overestimate the cluster substructure. This
arises because our smoothed surface brightness maps do contain
some residual noise due to Poisson statistics from the cluster and
the background, and we then inject an additional component of
shot noise when computing a fake cluster observations. Thus, the
value of the statistic for mock observations may be biased and
the confidence intervals for the mock observations and the real
ones are not expected to agree. However, we expect that the true
surface brightness and the inferred one would produce samples
of statistic values with similar variances. Therefore, we can use
the variability of the simulated sample to determine the size of
the error bars, but should center the error bars on the statistic
value obtained for the real observations instead of the mean of
the sample. A similar method of calculating uncertainties from
simulated observations was used by Böhringer et al. (2010).

The method described above provides robust uncertainty esti-
mates, but requires complicated machinery that generates adap-
tively smoothed maps and mock observations. We have used this
machinery to perform substructure sensitivity tests, but one may
want to use simpler uncertainty estimation methods when one
is only interested in the uncertainty of asymmetry for a given
observation. Therefore, we developed a simplified uncertainty
estimation method that does not use the adaptive smoothing
algorithm. We used a subsampling method to determine the
scatter in the measured asymmetry values. We generated mock
observations that take a random half of the counts from the
original observation and computed substructure statistics from
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Figure 2. Comparison of Aphot uncertainties computed by two different meth-
ods. The horizontal axis represents uncertainties estimated by “repoissoniza-
tion” (Weißmann et al. 2013). The vertical axis represents uncertainties esti-
mated by resampling half of the observation photons with replacement. The two
methods agree well, suggesting that the simpler of the two methods (resampling)
is a sufficient representation of the “true” uncertainty.

(A color version of this figure is available in the online journal.)

them. The scatter in the resulting asymmetry values is expected
to

√
2 larger than what we would obtained for the full sam-

ple, so we need to reduce these error bars by
√

2. This method
avoids additional assumptions about clusters introduced by the
adaptive smoothing algorithm and is significantly simpler to im-
plement. We compared the error bars produced by both methods
(Figure 2) and found them to be similar.

We also produced samples of 100 mock observations each,
where we changed one parameter of observation (such as
exposure) for our sensitivity tests. In these tests, we viewed
the adaptively smoothed images of clusters as the true surface
brightness distributions in the sky. Unlike the previous group of
simulations, here the true value of the statistic is not relevant.
The median and the 68% confidence interval for each such
sample represent how the statistic reacts to the corresponding
change in the parameter of observation (such as exposure).

6. RESULTS AND DISCUSSION

6.1. Sensitivity of Morphological Parameters to Data Quality

An important test for any substructure statistic is its insen-
sitivity to the observational S/N. Here, we present sensitivity
tests of two currently popular substructure parameters (centroid
shifts and power ratios P3/P0) and the new one introduced in
this paper (photon asymmetry, Aphot). We conducted four tests
that degraded the observations in different ways, namely (1) re-
duced the number of photons (exposure), (2) increased the level
of background, (3) “blurred” the observation with a larger PSF
(or, alternatively, decreased the cluster’s angular size), and (4)
altered the observations in all these ways, simulating an obser-
vation of the same cluster with the same exposure as if it was at
a higher redshift.

The plots of all sensitivities are presented in Figures 3 and 4,
with different statistics in rows and the sensitivity tests in
columns. Figure 3 shows 1σ confidence intervals, but only
for a subset of representative clusters, while Figure 4 shows
median values of statistics that we obtained in our Monte Carlo
simulations (see Section 5.2). We chose to present plots of only
P3/P0 for power ratios, because P3/P0 is believed to be the best

indicator of substructure. The plots of P2/P0 and P4/P0 look
qualitatively very similar.

All statistics show a relative insensitivity to the number of
cluster counts, at levels above ∼2000 counts. However, in the
low-count regime, both the power ratios and the centroid shifts
show strong biases. The power ratio tends to be biased low for
all clusters. Centroid shifts tend to be biased high, more so for
clusters that do not show significant substructure. Each cluster
seems to have its own threshold count value, so that centroid
shifts are stable when there are sufficient cluster counts, but start
to increase as the simulated number of counts falls below this
threshold value. This behavior of centroid shifts is not surprising,
because the statistical error of finding a centroid of a few points
should scale as the inverse of the square root of the number of
photons, unless there are significant secondary emission peaks
that “pin” centroids of certain radii. In other words, although
this bias has a similar behavior for many clusters, it cannot be
corrected simply as a function of the number of counts—it also
depends on the morphology (Weißmann et al. 2013).

Centroid shifts, perhaps unsurprisingly, are the most stable
statistic with respect to background levels. The determination
of centroid is simply insensitive to a uniform background (unless
there are so few counts that the 1/

√
N effect described in

the previous paragraph starts playing a role). Power ratios are
relatively stable with respect to background levels, although
they become consistent with zero for every cluster in the sample
after even a moderate background increment due to increased
uncertainty. Asymmetry is insensitive to background levels as
long as a reliable estimate of cluster counts is possible in each
annulus. However, when the square root of the total counts
becomes comparable to the cluster counts, the estimate of
cluster counts may become close to zero (or even negative). This
unphysical estimate of cluster counts, being in the denominator
in Equation (19), drives the statistic to high absolute values. This
is a drawback of Aphot, which could be fixed by a more careful
separation of background and cluster counts.

None of the statistics are stable against PSF increase because
with a 30′′ PSF the substructure is completely washed out
and undetectable by any method. Asymmetry has a stronger
sensitivity to PSF because it probes the non-uniformity of the
photon distribution on all angular scales, starting from the lowest
Fourier harmonics to the highest. Power ratio P3/P0, on the
other hand, is only sensitive to the third Fourier harmonic.
It is interesting that the PSF has a much stronger influence
on any substructure statistic than does the number of counts.
This observation suggests that a telescope’s angular resolution
is more important than its effective area for substructure studies.

The redshift test is the most challenging: the luminosity
distance increases very fast and the K-correction adds to the flux
dimming, effectively making the high-z simulated observations
dominated by background. Fluctuations in background increase
the variability of the centroid estimation, driving centroid shifts
to higher values. (A similar effect is demonstrated by sensitivity
to cluster counts.) The power ratio median “dives” down to
negative values (again, similar to the counts test). Additionally,
power ratio uncertainties increase very quickly, which is the
result of background correction (subtraction of two nearly equal
terms in Equation (6)). Photon asymmetry also suffers from
background correction, but overall shows less sensitivity to
simulated redshift than either the power ratio or the centroid
shifts.

What sets the photon asymmetry apart from power ratios
and centroid shifts is its much smaller relative uncertainties.

7



The Astrophysical Journal, 779:112 (15pp), 2013 December 20 Nurgaliev et al.

Figure 3. Sensitivity of three substructure statistics: power ratios, P3/P0 (1st row), centroid shifts, w (2nd row), and photon asymmetry, Aphot (3rd row) to the quality
of observations: number of counts within R500 (1st column), background level (2nd column), telescope PSF (3rd column), and cluster redshift at a fixed exposure (4th
column). Only a representative subset of the clusters is shown in this figure—the complete sample is shown in Figure 4. An idealized morphological statistic would
be insensitive to the quality of observations, i.e., all the lines should be parallel to the x-axis. The photon asymmetry parameter presented in this paper shows a better
stability and better resolving power for observations of poor quality than commonly used power ratios and centroid shifts. The names of the clusters are identical to
those used in Vikhlinin et al. (2009a).

(A color version of this figure is available in the online journal.)

Figure 4. Similar to Figure 3, but now showing the full sample of 36 clusters from Vikhlinin et al. (2009a). Uncertainties are excluded in this plot for visual clarity—see
Figure 3 for a subset of these clusters with uncertainties. The points where uncertainties exceed the entire dynamic range for the corresponding substructure statistic
are excluded from the plots.

(A color version of this figure is available in the online journal.)
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Figure 5. A demonstration of how well each of the three substructure statistics examined in this paper are able to discriminate between the true photon distribution
and the idealized case of axisymmetry for each of the 36 clusters in Vikhlinin et al. (2009a). For each cluster, we compare the measured substructure statistic with the
expectation for a perfectly smooth, axisymmetric source. The horizontal bars represent 1σ confidence intervals. The red points indicate clusters that are within 1σ of
axisymmetry and, thus, are indistinguishable from the unrealistic case of perfect axisymmetry. The yellow and green points indicate clusters that are within 3σ and
>3σ of axisymmetry, respectively. Since no cluster should be perfectly symmetric, this plot demonstrates the sensitivity of each statistic to low levels of substructure,
with Aphot performing the best overall.

(A color version of this figure is available in the online journal.)

Unlike power ratios and centroid shifts, photon asymmetry is
typically further than one standard deviation away from zero. So,
photon asymmetry is capable of separating relaxed and slightly
unrelaxed cluster populations in the case of observations with
even a few hundred X-ray counts. To demonstrate that photon
asymmetry is better than its competitors at distinguishing the
clusters that are inconsistent with axisymmetric sources in the
low S/N regime, we calculated the number of clusters in our
sample that are 1σ consistent with circularly symmetric sources.

In order to compare the statistical significance of three
different substructure parameters (photon asymmetry, centroid
shifts, and power ratios), we generated a set of idealized,
axisymmetric clusters for each cluster. This was done by
retaining the exact radial location for each of the N detected
photons for each cluster, but with a random realization of polar
angles for each photon’s position. We then computed the relevant
structure metric. For each cluster, we subtracted the mean of the
parameter values computed from the fake circular clusters from
that obtained from the actual cluster. We also assigned the scatter
in the fake measurements as the uncertainty, for each cluster.
Figure 5 shows the departure from the circular case, with photon
asymmetry clearly achieving a more significant determination
of cluster substructure. Confidence intervals overlapping with 0
(red points) mean that the cluster is indistinguishable from the
axisymmetric case. The yellow points indicate clusters that are
within 3σ of axisymmetry.

The number of clusters that are statistically inconsistent (at
3σ ) with the idealized, axisymmetric case, as determined by
different substructure statistics, are as follows.

1. Power ratio P3/P0: 5 (out of 36)
2. Centroid shifts w: 21 (out of 36)
3. Photon asymmetry Aphot: 27 (out of 36)

In other words, photon asymmetry has the best resolving
power to measure “disturbance” in our sample.

The tendency of centroid shifts to be biased high for low-
count observations makes it questionable whether centroid shifts
can provide any meaningful results for samples of clusters
with non-uniform S/N. We tested how the properties of the
entire 400d sample would change if every cluster were moved
to a higher redshift. In Figure 6, we plot the distributions of
w and Aphot for the entire set of simulated observations at
the original redshifts (blue), at the redshift z + 0.3 (green),
and at the redshift z + 0.6 (red). We can see from the figure
that although the scatter is greater for the cluster sample at

Figure 6. Distributions of substructure statistics for the entire sample of
simulated observations at different redshifts. Left: the peak of Aphot distribution
does not move, for simulated observations at higher redshift. Right: the peak of
w distribution shifts to higher values as the clusters are shifted to higher redshift.

(A color version of this figure is available in the online journal.)

a higher redshift, the peak of the Aphot distribution does not
shift. This observation confirms that we can safely compare the
values of asymmetry for cluster observations of significantly
different S/N and redshifts. In Figure 6, the situation is different
for w: the peak in its distribution shifts significantly moving
to higher redshift, creating the false impression that higher-
redshift clusters are more disturbed than their lower redshift
counterparts.

Overall, photon asymmetry is more stable with respect to
changes in number of counts, background and redshift, and has
smaller uncertainty than both centroid shifts and power ratios.

6.2. Asymmetry-concentration Diagram

We propose a cluster classification scheme based on both con-
centration and asymmetry. Figure 7(a) shows the asymmetry-
concentration diagram in logarithmic coordinates. The colors in
Figure 7 are based on cluster “disturbance” as evaluated by eye
by a group of nine astronomers. Each participant was asked to
score the disturbance of the clusters on the scale 1–3 (fractional
values allowed), with 1 being least disturbed and 3 being most
disturbed. We found that 11 of the clusters were unanimously
ranked in the most disturbed half. We call this group of clusters
“most disturbed” and mark them in red in Figures 7–9. Another
12 clusters were unanimously placed in the least disturbed half
of the rankings. We call this group of clusters “relaxed” and
mark them in blue. The remaining 13 clusters are “average” and
are marked in green.
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(a) (b)

(c) (d)

Figure 7. (a) Cluster classification by Aphot (the substructure statistic introduced in this paper) and surface brightness concentration (cSB; Santos et al. 2008). This
classification scheme clearly separates relaxed, CC clusters (high cSB, low Aphot) from non-relaxed, disturbed systems (low cSB, high Aphot). (b) An alternative popular
automatic classification scheme based on power ratios (Jeltema et al. 2005)—see the text for details. Overall, the uncertainties are larger than in the asymmetry-
concentration plane and the clustering of same-type clusters is not as pronounced. (c) Cluster classification using centroid shifts w instead of Aphot. Panel C shows a
similarly good separation of relaxed and disturbed clusters, however the values of w may be correlated with observational S/N, as shown in Section 6.1. (d) Same as
A, but in linear coordinates. This plot emphasizes that there are no clusters that are both highly concentrated and “asymmetric,” consistent with the picture of CCs
representing a “relaxed” state that can be disrupted by cluster mergers. The horizontal dashed lines splitting the range of concentrations correspond to CC categories,
as defined by Santos et al. (2008). The vertical dashed lines splitting the range of asymmetries correspond to asymmetry categories as defined here (low asymmetry:
Aphot < 0.15; moderate asymmetry: 0.15 < Aphot < 0.6; strong asymmetry: Aphot > 0.6). In all panels, colors are assigned based on by-eye classifications of
“disturbance” (see the text for details): blue—most relaxed, green—average, red—most disturbed. Where the corresponding values are consistent with zero, they are
plotted with arrows as their lower limits. Where they are negative, they are plotted with arrows at their upper limits. Values with negative upper limits are absent from
the plots.

(A color version of this figure is available in the online journal.)

Figure 8. Comparison of photon asymmetry, Aphot, with power ratios, P2/P0 and P3/P0, and centroid shifts, w. Where power ratios are consistent with zero, they are
plotted with arrows as their lower limits. Where power ratios are negative, they are plotted with arrows at their upper limits. Power ratios with negative upper limits
are absent from the plot. Colors are assigned based on a by-eye classification of “disturbance”: blue—most relaxed, green—average, red—most disturbed (see the text
for details). There is no obvious correlation between Aphot and the other substructure parameters, with the exception that they all tend to agree on the most disturbed
systems.

(A color version of this figure is available in the online journal.)
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Figure 9. Comparison of three substructure statistics with an average by-eye disturbance score, as evaluated by a group of nine astronomers. The correlation coefficient
between the by-eye score and the corresponding statistic is shown on the plots. The colors based on the by-eye disturbance score are presented in the same way as in
Figures 7 and 8.

(A color version of this figure is available in the online journal.)

The asymmetry-concentration diagram (Figure 7(a)) shows
a significantly better separation of clusters at different states
of dynamical equilibrium (as assessed by human experts) than
the competing scheme of cluster classification based on power
ratios proposed by Jeltema et al. (2005) and presented in
Figure 7(b). The other drawbacks of the power ratios classi-
fication scheme are that log P2/P0 and log P3/P0 correlate (cor-
relation coefficient = 0.61) and that both P2/P0 and P3/P0 are
often consistent with 0. Therefore, what we see in Figure 7(b)
is mostly noise, whereas most clusters in Figure 7(a) show a
significant detection of substructure, as discussed above.

A similar separation of clusters at different states of dynam-
ical equilibrium can be achieved using w instead of Aphot as
the substructure statistic (Figure 7(c)), however Aphot is more
stable and less biased for low S/N observations, as discussed
above.

One can see that in Figure 7(a) clusters avoid the upper
right corner, which confirms the standard assumption that
concentrated or CC clusters are more regular. Figure 7(d), which
is the same as Figure 7(a) but plotted in linear coordinates, shows
this even better. It has a characteristic L-shape, which implies
that clusters are primarily either “concentrated” (upper part of
the diagram), “asymmetric” (right side), or “normal” (lower left
corner).

In all the relevant panels of Figure 7, we plot two dashed
vertical lines as threshold values that separate low-, medium-,
and strong-asymmetry clusters. The threshold values are Aphot >
0.15 and Aphot > 0.6. The horizontal dashed lines separate
strong, moderate, and NCCs, as defined by Santos et al. (2008).
The threshold values are cSB > 0.075 and cSB > 0.155.

The asymmetry-concentration classification scheme makes a
clear separation between the radial and the angular structure.
Concentration only probes the radial photon distribution, while
asymmetry probes the angular photon distribution. We expect
these to be uncorrelated, a point to which the data attest
(correlation coefficient = −0.20). We show how asymmetry
compares with power ratios and centroid shifts in Figure 8. Aphot
and w are correlated strongly with a correlation coefficient of
0.87. This indicates that for high S/N data, Aphot and w agree
well on which clusters are disturbed.

6.3. Relative Ranking of Clusters by the Amount of
Substructure, a By-eye Classification

In Figure 9, we show how photon asymmetry, centroid shifts,
and P3/P0 power ratio compare with a visual classification.
We find that the photon asymmetry parameter correlates with
the human “by-eye” ranks almost as strongly as centroid shifts,

with a Spearman rank correlation coefficient of 0.71 for Aphot
and 0.75 for w. The power ratio P3/P0, on the other hand, shows
a much lower correlation coefficient of 0.47.

In Figures 10–12, we present three side-by-side comparisons
of morphological indicators. In each figure, the left panel
shows the (same) X-ray images of galaxy clusters, ordered by
increasing values of our photon asymmetry parameter. The right
panel shows these same clusters, ranked by increasing centroid
shifts, power ratio P2/P0, and by-eye disturbance, respectively.
To produce the by-eye ranking, we averaged the disturbance
scores (1–3) obtained from all nine human experts. We then
ranked the clusters by their average disturbance score.

7. CONCLUSIONS AND FUTURE WORK

In this work, we introduced a new cluster substructure
statistic—photon asymmetry (Aphot)—that measures the unifor-
mity of the angular X-ray photon distribution in radial annuli.
We compared photon asymmetry with two other measures of
cluster morphology, power ratios (with a novel method for back-
ground correction) and centroid shifts, using the 400d cluster
sample and simulated observations derived from it. Our focus
was on the performance of these substructure statistics in the low
S/N regime that is typical for observations of distant clusters.
Our main conclusions are as follows.

1. The angular resolution of a cluster observation is far more
important than the total counts in terms of detecting and
quantifying substructure.

2. Both centroid shifts and photon asymmetry are significantly
more sensitive to the amount of substructure than power
ratios.

3. Both centroid shifts and photon asymmetry agree well with
by-eye classification.

4. Centroid shifts are the best-performing substructure statistic
in the low spatial resolution (θ � 5′′) and background-
dominated (

√
Fbg � Fsource) regimes.

5. Photon asymmetry is the best-performing substructure
statistic in the low-count regime.

6. Photon asymmetry is the most sensitive measure of the
presence of substructure; 27 out of 36 clusters in the
sample are classified by photon asymmetry as clusters
with significant substructure (i.e., they are inconsistent
with being axisymmetric), whereas the second best statistic,
centroid shifts, finds significant substructure in only 21 out
of 36 clusters.

7. Photon asymmetry is the only statistic that is insensitive
to observational S/N below ∼1000 counts. Consequently,
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Figure 10. Clusters sorted by asymmetry (left) and centroid shifts (right). The value of the substructure statistics increases top-to-bottom and left-to-right in both plots.
The cluster name is in upper left corner and the value of the statistic is in the lower right corner. The names of the clusters are identical to those used in Vikhlinin et al.
(2009a). Left plot: clusters sorted by the value of asymmetry—the new substructure measure that is presented in this paper. Right plot: clusters sorted by the value of
centroid shifts. The size of the scale bar in the lower left corner is 0.5 Mpc.

(A color version of this figure is available in the online journal.)

Figure 11. Clusters sorted by asymmetry (left) and power ratios P3/P0 (right). The value of the substructure statistics increases top-to-bottom and left-to-right in both
plots. The cluster name is in upper left corner and the value of the statistic is in the lower right corner. The names of the clusters are identical to those used in Vikhlinin
et al. (2009a). Left plot: clusters sorted by the value of asymmetry—the new substructure measure that is presented in this paper. Right plot: clusters sorted by the
value of P3/P0. The white circle is the aperture used for calculating the power ratio (R500). The size of the scale bar in the lower left corner is 0.5 Mpc.

(A color version of this figure is available in the online journal.)

it is the only statistic suitable for comparison of clusters
and cluster samples across a large range of S/N, counts,
backgrounds, and redshifts. It is the best candidate for
studying the influence of substructure on bias and scatter in
scaling relations.

We also suggested using concentration (a measure of CC
strength) and asymmetry (which quantifies merging or distur-
bance) as the main parameters for cluster classification. We find
that clusters can demonstrate either a high degree of concentra-
tion or asymmetry, but not both at the same time. It is possible
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Figure 12. Clusters sorted by asymmetry (left) and “by-eye” level of disturbance (right). The value of the substructure statistics increases top-to-bottom and left-to-right
in both plots. The cluster name is in upper left corner and the value of the statistic is in the lower right corner. The names of the clusters are identical to those used in
Vikhlinin et al. (2009a). Left plot: clusters sorted by the value of asymmetry—the new substructure measure that is presented in this paper. Right plot: clusters sorted
by the average value of their “disturbness” evaluated by four numan experts. The size of the scale bar in the lower left corner is 0.5 Mpc.

(A color version of this figure is available in the online journal.)

to use centroid shifts instead of photon asymmetry as the mea-
sure of cluster disturbance, but asymmetry is preferable given
its better stability with respect to observational S/N.

We are currently applying the photon asymmetry metric
in a comparison of X-ray and SZ-selected cluster samples to
study the impact of morphology on cluster scaling relations and
measure how morphology evolves with redshift.
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APPENDIX

As explained in Section 3, our method of calculating asymme-
try includes two steps: calculating the asymmetry in an annulus
and combining the asymmetries from several annuli. To measure
the asymmetry in each annulus, we use the statistical framework
of testing whether a given sample is drawn from a given prob-
ability distribution. The sample in our case is the empirical

angular photon distribution function FN and the given probabil-
ity distribution is the true angular photon distribution function
G that would be produced by a perfectly circularly symmetric
source. We note that G is not trivial because of non-uniform
detector illumination and various detector imperfections.

We define FN as the empirical cumulative angular distribution
function of the photons in the kth annulus:

FN (x) = 1

N

∑
Rk

in<ri<Rk
out

1{φi/2π � x}, (A1)

where 1{A} is the indicator function of event A and N is the
number of counts within the annulus Rk

in < r < Rk
out. Also, for

convenience, we rescale the angular range [0, 2π ) to [0, 1). We
also let F be the true underlying distribution function for FN ,
i.e., F is the limit of FN when N → ∞.

Note that Kolmogorov–Smirnov, Cramer-von Mises, and
similar tests are usually used to check for the equality of two
probability distributions. The values of these statistics give the
probability of the null hypothesis (that the given sample is
drawn from the given distribution), when compared with the
null distribution. In our case, instead of checking whether FN is
a realization of the known F, we need a measure of “distance”
between F and G based on the measurement of FN . In the
following, we show how one can use the value of Watson’s
test (a modification of the Cramer-von Mises test suitable for
distributions defined on a circle as opposed to a segment) to
quantify the distance between F and G based on the sample FN .

In the following, we use the notation

U 2[F,G; dH] =
∫

(F (x) − G(x)

−
∫

(F (x) − G(x))dH(x))2dH(x), (A2)
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where F, G, and H are arbitrary distribution functions defined
on [0, 1] and all of the integrals are taken over the same [0, 1]
interval.

Using this notation, Watson’s statistic U 2
N is simply

U 2
N = N U 2[FN, F ; dF]. (A3)

It can be viewed as a minimum of the L2 distance between
FN and F over all possible points of origin on the circle (Watson
1961):

U 2
N = min

origin on the circle

∫
(FN − F )2dF. (A4)

In the limiting case N → ∞, under the null hypothesis
that the sample φi comes from the hypothesized distribution
F (x), the values of statistic U 2

∞ = limN→∞ U 2
N have the same

distribution as K2π−2, where K is distributed according to
Kolmogorov’s distribution:

Prob
{
U 2

∞ < x
} = Prob{K < π

√
x}

= 1 − 2
∞∑

k=1

(−1)k−1e−2k2π2x2
. (A5)

We will not need the exact form of this limiting distribution, but
we need to know its mean, which can be derived from known
moments of Kolmogorov’s distribution:

〈
U 2

∞
〉 = 〈K2〉

π2
= 1

12
. (A6)

It may be shown (Watson 1961) that given a discrete sample
x1, x2, · · · , xN hypothetically distributed according to F (x), the
statistic can be computed as

U 2
N = 1

12N
+

N−1∑
i=0

(
2i + 1

2N
− Fi

)2

− N

(
1

2
− 1

N

N−1∑
i=0

Fi

)2

,

(A7)
where Fi = F (xi).

Now, let us apply Watson’s test statistic to the empirical
distribution function FN and an arbitrary distribution function
G for which we need to compute a distance (in our method, G is
the distribution function that represents a circularly symmetric
source):

W 2
N = NU 2[FN,G; dG]. (A8)

Integrating by parts, one can show that

U 2[FN,G; dG] = U 2[FN,G; dFN ]. (A9)

Now, we replace dFN with dF in the right-hand side of
Equation (A9). While it is evident (Doob 1949) that as N → ∞

U 2[FN,G; dFN ] − U 2[FN,G; dF] = R2
N → 0 in probability,

(A10)

the merit of this approximation and the rate of convergence are
discussed below.

U 2[FN,G; dF] can be transformed in the following way

U 2[FN,G; dF] =
∫ [(

FN − F −
∫

(FN − F )dF

)

+

(
F − G −

∫
(F − G)dF

)]2

dF

= U 2[FN, F ; dF] +
∫ (

FN − F −
∫

(FN − F )dF

)

·
(

F − G −
∫

(F − G)dF

)
dF + U 2[F,G; dF] (A11)

The first term, U 2[FN, F ; dF], is distributed according to
Kolmogorov’s distribution and its mean is 1/12 (see Equa-
tion (A6)).

The second term,

V =
∫

(FN − F − Δ)g(x)dx,

g(x) =
(

F − G −
∫

(F − G)dF

)
F ′(x), (A12)

has zero mean, because it is a sum of integrals of a function that
has zero expectation value at any point on the segment

〈FN (x) − F (x)〉 = 0 ∀x : 0 < x < 1 (A13)

with bounded functions g(x) and
∫

g(x)dx = const.
The third term is the desired distance d between F and G.
Combining Equations (A8), (A10), and (A11), we find the

following estimator d̂N of d

d̂N = W 2
N

N
− 1

12N
. (A14)

This estimator is biased by the average value of R2
N :

〈d̂N − d〉 = 〈U 2[FN,G; dFN ] − U 2[FN,G; dF]〉 = 〈
R2

N

〉
.

(A15)
We were not able to obtain an analytic bound on R2

N and its N
dependence. Judging by the form of Equation (A10), R2

N should
be of the order of 1/

√
N . Considering this asymptotic behavior

of R2
N , our wish to explicitly correct for “smaller” bias 1/12N

may look strange. The reason for this explicit correction is that
1/12N is bigger than R2

N for relevant values of N (N < 103).
We confirmed this statement by multiple numerical experiments
with various distribution functions of F and G. As N reaches
higher values (N ∼ 104), 〈R2

N 〉 can become greater than 1/12N ,
but both terms tend to zero with increasing N.

Now, we need to take into account that the acquired light
comes both from the cluster and the background. We model
the counts distribution function F as a weighted sum of cluster
emission FCl and a uniform background G:

F = αFCl + βG, α + β = 1, α = C/N, (A16)

where C is the number of cluster counts and N is the total number
of counts in the given annulus. Then, we obtain

d =
∫ (

F − G −
∫

(F − G)dG

)2

dG

= α2
∫ (

FCl − G −
∫

(FCl − G)dG

)2

dG = α2dCl

(A17)
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Now, using Equation (A14), we see that

dN,Cl = N

C2

(
W 2

N − 1

12

)
(A18)

is our estimator of the distance between the observed photon
distribution function FN and the underlying cluster emission
distribution function FCl.

The sum of distances d
(k)
Cl in four annuli, where k numbers

the annuli, weighted by the estimated number of cluster counts
in these annuli Ck, and multiplied by 100 gives the photon
asymmetry:

Aphot = 100
4∑

k=1

Ckd
(k)
Nk,Cl

/ 4∑
k=1

Ck. (A19)
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