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We study how the universal contribution to entanglement entropy in a conformal field theory depends on
the entangling region. We show that for a deformed sphere the variation of the universal contribution is
quadratic in the deformation amplitude. We generalize these results for Rényi entropies. We obtain an
explicit expression for the second order variation of entanglement entropy in the case of a deformed circle
in a three-dimensional conformal field theory with a gravity dual. For the same system, we also consider an
elliptic entangling region and determine numerically the entanglement entropy as a function of the aspect
ratio of the ellipse. Based on these three-dimensional results and Solodukhin’s formula in four dimensions,
we conjecture that the sphere minimizes the universal contribution to entanglement entropy in all
dimensions.

DOI: 10.1103/PhysRevD.91.046002 PACS numbers: 11.25.Tq, 03.65.Ud

I. INTRODUCTION AND SUMMARY OF RESULTS

In recent years great attention has been devoted to the
properties of the entanglement and Rényi entropies of
quantum systems in their ground states. In a system with a
local Hamiltonian, the Hilbert space is split between the
degrees of freedom of a spatial region V and its comple-
ment V̄, and the entanglement entropy (EE) is defined as
the von Neumann entropy of the reduced density matrix of
one of the subsystems:

SE ¼ −TrVρV log ρV; ρV ¼ TrV̄ jgdihgdj: ð1Þ

The Rényi entropy is a generalization of EE defined by

Sq ¼ −
1

q − 1
log TrρqV: ð2Þ

For a normalized density matrix TrρV ¼ 1, the EE (1) is
obtained in the limit q → 1.
By now several properties of these quantities have been

uncovered for various classes of systems, and this has led to
substantial progress in disparate fields, from numerical
methods to the classification of phases of matter. See [1–4]
for reviews from different viewpoints.
Here we consider the ground state EE of conformal field

theories (CFTs), and we focus on their dependence on the
shape of the entangling region V. More precisely, we
consider in 3 and 4 spacetime dimensions the shape
dependence of the universal coefficients s3, s4 that appear
in the well-known expansion

S ¼ #
R
δ
− s3 þO

�
δ

R

�
for d ¼ 3;

S ¼ #
R2

δ2
− s4 log

R
δ
þO

�
δ2

R2

�
for d ¼ 4; ð3Þ

where δ is a short distance regulator, R is the linear size of
the entangling region V, and # stands for nonuniversal
coefficients. A similar formula with q-dependent coeffi-
cients applies to Rényi entropies.
While in even dimensions the universal coefficient

multiplies a logarithmic divergence, and hence its shape
dependence is given by a local functional of the geometric
invariants of Σ ¼ ∂V,1 in odd dimensions it is a fully
nonlocal functional of the entangling region, whose com-
putation is rather challenging.
Here we show that, for a general CFT in any dimension,

the variation of the universal term for a perturbed sphere
rðΩÞ ¼ R0ð1þ ϵfðΩÞÞ is second order in the perturbation:

sd ¼ sð0Þd þ ϵ2sð2Þd þOðϵ3Þ: ð4Þ

Based on ideas of the work [6], we generalize these results
for Rényi entropies.
We obtain this second order variation for the EE of a

perturbed circle (Fig. 1) in a d ¼ 3 CFTwith a gravity dual:

rðθÞ ¼ R0

�
1þ ϵ

X
n

ðan cos nθ þ bn sin nθÞ
�
;

~s3 ¼ 2π

�
1þ ϵ2

X
n

nðn2 − 1Þ
4

ða2n þ b2nÞ
�
; ð5Þ

1See (8) for the case of EE in d ¼ 4 [5].
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where ~sd ≡ ð4GN=Ld−1Þsd, with L the radius of the dual
AdSdþ1 and GN Newton’s constant.
We also consider an ellipse of semi-axes a, b as

entangling region, still in a d ¼ 3 CFTwith a gravity dual.
Figure 2 displays various analytic and numerical lower
bounds on ~s3, as a function of the aspect ratio b=a. We find
that ~s3 smoothly interpolates between the value for a circle
and the value for an infintely long strip, as the aspect ratio
goes to zero. In particular we have

~s3 ≥ 2π;
b
a
~s3 ≥

2π2Γð3
4
Þ2

Γð1
4
Þ2 ≡ π

2
~sðstripÞ3 ; ð6Þ

where the first bound is saturated at b=a ¼ 1 and the
second at b=a ¼ 0. The very tight lower bound shown in

Fig. 2 with a blue solid line is obtained numerically. It is
basically saturated for b=a≳ 0.1. From (5) we can also
determine the approach to b=a ¼ 1:

~s3 ∼ 2π

�
1þ 3

8

�
1 −

b
a

�
2
�

for b=a → 1: ð7Þ

From (4) it is clear that the sphere is a stationary point for
the universal term in EE among all shapes. From (5) we
conclude that in holographic theories in d ¼ 3 it is a local
minimum, while the numerical results for an ellipse (see
Fig. 2) hint at it being a global minimum.
In d ¼ 4 the sphere is a global minimum in the universal

term for EE [7]. Let us repeat the analysis here.
Solodukhin’s formula (8) determines the universal piece
for all CFTs [1,5]:

s4 ¼
a4
180

Z
Σ
d2σ

ffiffiffi
γ

p
E2 þ

c4
240π

Z
Σ
d2σ

ffiffiffi
γ

p
I2;

I2 ¼ KabKab −
1

2
K2; ð8Þ

where a4 and c4 are coefficients of the trace anomaly,2 E2 is
the Euler density normalized such that

R
S2 d

2σ
ffiffiffi
γ

p
E2 ¼ 2, γ

is the induced metric, and K the extrinsic curvature.
Because the first term in (8) is topological, shapes con-
tinuously connected to S2 give the same contribution. It is
easy to see that I2 is non-negative and vanishes only for the
sphere. Thus, we showed that the sphere minimizes the
universal term in EE.
The above evidence lead us to conjecture that, in a CFT,

the sphere minimizes the universal contribution to EE in all
dimensions among shapes continuously connected to it.3 It
is then natural to use the EE across a sphere as a c-function
[8–11]. It would be nice to provide more checks for this
conjecture; one could investigate e.g. higher dimensional
cases, second order perturbations around in the CFT setup,
and whether the sphere still minimizes the universal term to
EE away from a CFT fixed point.4 We believe these are
fascinating topics to explore.
The rest of this paper presents a derivation of these

results, organized as follows. In Sec. II we derive (4) using
CFT techniques. In Sec. III we derive (5) and an analogous
result for d ¼ 4. Section IV derives the analytic bounds (6)
for the elliptic entangling region in a holographic CFT3.
Section V describes how to establish tight numerical
bounds on s3 for a generic entangling region in a

2

V
x

y

FIG. 1 (color online). Perturbed circle (5) as entangling region
V, Σ ¼ ∂V. The correction to the universal coefficient s3 is of
order ϵ2 and it is given by (5) in a holographic CFT3.

0.2 0.4 0.6 0.8 1.0
b a

2 s3
strip

2

b a s3

FIG. 2 (color online). Universal coefficient ~s3 for an elliptic
entangling region with semi-axes a, b, in a d ¼ 3 holographic
CFT. The blue, solid curve is a tight lower bound obtained
numerically. The red, dashed curve ~s3 ¼ 2π is a lower bound set
by the area of an ellipsoid (52). The yellow, dotted curve is a
lower bound set by the area of a deformed strip (59). The green,
dash-dot curve ~s3 ¼ 2π½1þ 3

8
ð1 − b=aÞ2� is an approximation

obtained by considering perturbations of a circle (7). It is not
a bound.

2We normalize a4 and c4 so that they both equal one for a real
scalar field.

3We thank Hong Liu for crucial discussions on this topic and
Eric Perlmutter for discussions on the topology of Σ.

4See [12] for the shape dependence in gapped theories.
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holographic CFT3, and in particular the numerical bound
in Fig. 2.

II. PERTURBED SPHERE IN A GENERIC CFT

A. First order corrections to entanglement entropy

In this section, using general conformal field theory
arguments we investigate EE of a deformed sphere. The
parameter of the deformation will be denoted by ϵ. We
show that the contribution to the universal term in the
entropy linear in ϵ vanishes.
In polar coordinates

ds2 ¼ −dt2 þ dr2 þ r2dΩ2; ð9Þ

we take the entangling surface Σ to be r ¼ R½1þ ϵfðΩÞ�.
By changing coordinates we can think about the family of
these surfaces as being spheres (r0 ¼ R), and the field
theory living in curved space [13]:

ds2 ¼ −dt2 þ ð½1þ ϵfðΩÞ�dr0 þ ϵr0∂ΩfðΩÞdΩÞ2
þ r02½1þ ϵfðΩÞ�2dΩ2

¼ −dt2 þ ðδij þ ϵhij þOðϵ2ÞÞdxidxj; ð10Þ

with

hijdxidxj ¼ 2ðfdr02 þ r0∂Ωfdr0dΩþ r02fdΩ2Þ; ð11Þ

where i, j indices run over spatial directions, while μ, ν will
run over all spacetime directions. Soon we will introduce a
mapping to H ¼ S1 × Hd−1; there we will use α, β as
spacetime indices.
From now on we drop the prime from r0. An important

thing to note is that h is pure gauge:

hμν ¼ 2∇ðμξνÞ ξν ¼ ð0; rfðΩÞ; 0;…; 0Þ; ð12Þ

where ∇μ is the covariant derivative in polar coordinates.
The reduced density matrix in curved space differs from

the flat space one. To linear order in the perturbations:

ρ ¼ ρ0 þ ϵδρ

δSE ¼ −ϵTrðδρ log ρ0Þ; ð13Þ

where the subscript E stands for entanglement. To arrive at
this formula we used the cyclicity of the trace and the
normalization condition Trρ0 ¼ 1.
The reduced density matrix for a spherical entangling

surface is given by [14]5

ρ0 ¼
e−K0

Tre−K0
;

K0 ¼ 2π

Z
r<R

d~x
R2 − r2

2R
T00ð~xÞ: ð14Þ

Recently, [15] gave an elegant formula for δρ:

ρ−10 δρ ¼ 1

2

Z
M

hμνðTμν
I − TrðTμνρ0ÞÞ;

Tμν
I ðv; u;ΩÞ≡ ρv=2π0 Tμνðv; u;ΩÞρ−v=2π0 ; ð15Þ

whereM is (Euclidean)Rd, with a tube of size δ around the
entangling surface Σ cut out (see Fig. 3). The removal of
this tube serves as a short distance regulator. We like to
think of Tαβ

I ðv; u;ΩÞ as the analog of an operator in the
interaction picture in weak coupling perturbation theory.
Because instead of a time-ordered exponential
ρ0 ¼ e−K0=Tre−K0 , its fractional powers indeed generate
the appropriate time evolution.
Plugging into (13) and using the cyclicity of the trace we

get:

δSE ¼ ϵ

2

Z
M

hμν½TrðTμνK0ρ0Þ−TrðTμνρ0ÞTrðK0ρ0Þ�: ð16Þ

To lighten the notation we introduce the “connected” trace:

FIG. 3 (color online). Geometry of the manifold M of (15).
Lines of constant ðu;ΩÞ are drawn in purple. The entangling
surface Σ is marked by a blue line, and sits at u ¼ ∞. We use a
regularization procedure with a cutoff δ that cuts out a tube
centered around Σ fromM. ∂M is at constant u ¼ um, and it has
topology S1 × Sd−2. It is drawn in yellow. When we map to
hyperbolic space the Hamiltonian generates time evolution along
the purple lines. ∂M maps to the boundary of hyperbolic space.

5An explicit expression for the reduced density matrix is only
know in the case of planar and spherical entangling surface.
These are the known cases, where there the entanglement
Hamiltonian K0 generates a symmetry around Σ.
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TrðTμνK0ρ0Þc ≡ TrðTμνK0ρ0Þ − TrðTμνρ0ÞTrðK0ρ0Þ: ð17Þ

(16) can then be written as

δSE ¼ ϵ

2

Z
M

hμνTrðTμνK0ρ0Þc: ð18Þ

where we used Trρ0 ¼ 1.6

Now wewant to make use of the fact that h is pure gauge.
We partially integrate to get:Z
M

∇μξνTrðTμνK0ρ0Þ ¼
Z
∂M

nμξνTrðTμνK0ρ0Þ

−
Z
M

ξνTrðð∇μTμνÞK0ρ0Þ; ð19Þ

where ∂M is shown on Fig. 3. The Ward identity from the
conservation of the energy momentum tensor is

Trðð∇μTμνÞK0ρ0Þ ¼ 0; ð20Þ

hence only the boundary term remains on the right-hand
side of (19).7 Finally, we are left with

δSE ¼ ϵ

Z
∂M

nμξνTrðTμνρq0Þc: ð21Þ

The nonuniversal contributions to the entropy come from
the entanglement of degrees of freedom on the cutoff scale
δ. According to (21) the only contribution to δSE comes
from the cutoff-size region ∂M, hence we already antici-
pate that δSE will not contain a universal piece. In the
following, we confirm this intuition by explicit calculation.
We make a cautionary remark about boundary contri-

butions here. We have not been careful about imposing
boundary conditions on ∂M. In the context to mapping to
hyperbolic space, it is known that these boundary terms
contribute to the thermal entropy [14]. See [18] for addi-
tional discussions. We leave the analysis of this subtlety to
future work.

B. Calculation in hyperbolic space

The calculation of δSE is most easily done by going to
hyperbolic space, H ¼ S1 × Hd−1. We work in Euclidean
signature, and set the radius of hyperbolic space, or

equivalently of the entangling surface to 1. The change
of coordinates

τ ¼ sinðvÞ
coshuþ cosðvÞ ;

r ¼ sinh u
coshuþ cosðvÞ ; ð22Þ

leads to the unperturbed metric

ds20 ¼ ω2½dv2 þ du2 þ sinh2udΩ2
d−2�

ω ¼ 1

cosh uþ cosðvÞ : ð23Þ

The range of the coordinates are u ∈ ½0;∞Þ, v ∈ ½0; 2πÞ.
We can get rid of the conformal factor ω2 by a Weyl
scaling, and the remaining line element is H. Actually,
there is a conformal transformation relating the operators
onM to those onH, and implementing this transformation
on the entanglement Hamiltonian K0 we obtain the
Hamitonian on Hd−1, 2πH [14]. Going through these steps
we obtain (16) in H [15]:

δSE ¼ ϵ

2

Z
∂H

ω−2hαβTr½Tαβð2πHe−2πqHÞ�c; ð24Þ

where we used the conformal transformation rule of the
stress tensor.8

We can make the next step in two equivalent ways; we
can either perform a conformal transformation on (21) or
we can use that h is pure gauge,9 and integrate partially to
obtain

δSE ¼ ϵ

Z
∂H

ω−2nαξβTr½Tαβð2πHe−2πqHÞ�c; ð25Þ

where ∂H is S1 × Sd−2 at constant radial coordi-
nate u ¼ um.
The integrals can now be evaluated. From the trace-

lessness and conservation of the stress tensor it follows that
Tr½Tα

βð2πHe−2πqHÞ�
c
is position independent, and the non-

zero elements are [15,17]

6In M the “connectedness” of the correlator does not matter,
as one point functions in the ground state vanish, hence
TrðTμνρ0Þ ¼ 0. Nevertheless we kept the disconnected terms
to facilitate the transformation to H, where in even d the
transformation rule of these terms cancel the anomalous term
coming from the transformation rule of the stress tensor [15–17].

7We have to show that the counter term contributions vanish.
From (14) we see that K0 is an integral of T00, and the one point
function of T00 vanishes by conformal invariance, and (20)
follows.

8We emphasize that hαβ is what we get by the coordinate
transformation (22) and does not change under Weyl scaling.
Alternatively, we could also use that δSE should be given by a
Weyl invariant expression, and under a Weyl scaling the metric
deformation also changes. In the latter way of thinking the ω−2

factor comes from the transformation of h.
9Note that (12) only holds in flat space, in the conformally

related H there are additional terms (due to the change of the
covariant derivative under Weyl scalings). They conspire to yield
an integrand which is again a total divergence.
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Tr½Tv
vð2πHe−2πHÞ� ¼ −

ðd − 1Þωdþ2

2dþ1πd
CT

Tr½TI
Jð2πHe−2πHÞ� ¼ ωdþ2

2dþ1πd
CTδ

I
J; ð26Þ

where I, J run over Hd−1 and CT is the coefficient of the
stress tensor two-point function:

hTμνðxÞTρλð0ÞiRd ¼ CT

x2d

�
1

2
ðIμρIνλ þ IμλIνρÞ −

δμνδρλ
d

�
;

Iμν ≡ δμν − 2
xμxν
x2

; ð27Þ

and

ωd ¼
2πðdþ1Þ=2

Γðdþ1
2
Þ ð28Þ

is the volume of Sd.
In H coordinates n ¼ ð0; 1; 0;…Þ and ξ ¼ fω3 sinh u

ðsin v sinh u; 1þ cos v cosh u; 0;…Þ. Plugging these for-
mulas in (25), and not forgetting about the volume element
on ∂H that we omitted in the above formulae, we get:

δSE ¼ ϵωdþ2

2dþ1πd
CT

�Z
Sd−2

dΩd−2f

�

×
Z
S1
dvωðv; umÞð1þ cos v cosh umÞsinhd−1um

¼ ϵωdþ2

2dþ1d
CTð2e−umsinhd−1umÞ

�Z
Sd−2

dΩd−2f

�
: ð29Þ

It can be checked that the original expression (24) evaluates
to the same answer, if we plug in the explicit form of h.

C. Generalization to Rényi entropies

The above discussion can be generalized to the case of
Rényi entropies. The upcoming paper [6] develops pertur-
bation theory for Rényi entropies well beyond what we
consider here, and its authors suggested to us to generalize
the EE results to Rényi entropies. The formulas below have
some overlap with [6], but were obtained independently.
The change in the reduced density matrix (13) induces a

change in the Rényi entropies. To linear order we get:

δSq ¼ −
ϵq

q − 1

Trðδρρq−10 Þ
Trρq0

: ð30Þ

The q → 1 limit of this formula gives (13). As we have a
formula for the operator δρ (15), we can follow the same
steps as in previous subsections to arrive at

δSq ¼ −
ϵq

ðq − 1ÞTrρq0

Z
∂H

ω−2nαξβTrðTαβe−2πqHÞc: ð31Þ

The traces that we need can be argued to have the same
form as (26), except that the overall constant is not known:

TrðTv
ve−2πqHÞc ¼ −ðd − 1Þαq;

TrðTI
Je−2πqHÞc ¼ αqδ

I
J; ð32Þ

where αq is a q-dependent undetermined constant. Finally,
we obtain

δSq ¼ −
ϵqαqπ

ðq − 1ÞTrρq0
ð2e−umsinhd−1umÞ

×

�Z
Sd−2

dΩd−2f

�
: ð33Þ

It can be checked that the q → 1 limit of these expressions
gives back the EE results.

D. Analysis of the results

Let us analyze the result.
R
Sd−2 dΩd−2f picks out the

constant piece from the spherical harmonic decomposition
of fðΩÞ, which is just a change of radius R. Changing the
radius does not result in the change of the universal piece in
a CFT, however it changes the divergent pieces.10 We
conclude that δSq does not contain a universal piece.
To see this more explicitly from (29), we have to express

um in terms of the field theory cutoff δ. We do not know
what the exact relation between these two quantities is, only
its leading behavior

δ

2R
¼ e−um þ…; ð34Þ

where we have reintroduced the radius of Hd−1, or
equivalently the size of the entangling region. The relation
(34) can be motivated from the from the coordinate trans-
formation (22) by setting τ ¼ 0, going to δ distance to the
entangling region at r ¼ R − δ, and relating this to the
boundary of Hd−1, See Fig. 3. However, we should not take
this argument literally, as it would give the relation [14]

δ

R
¼ 1 −

sinh um
coshum þ 1

: ð35Þ

Although this expression gives the same leading behavior
as (34), it contains all both even and odd powers of e−um .
However, even powers would result in the change of
universal terms through (29), hence they are not allowed.11

10See (3) for the divergence structure and the universal pieces
in d ¼ 3; 4.

11Even powers of e−um in (34) would also invalidate the results
of [19].
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We conclude that (34) can only involve odd powers of e−um ,
so going through the explicit analysis of (29) we learned
something about (34).
In the regularization scheme we defined by cutting out a

tube around Σ, we obtain

δS ∝ ϵf0

��
R
δ

�
d−2

þ #

�
R
δ

�
d−4

þ…

�
; ð36Þ

where there the powers of R=δ decrease in steps of 2, and
hence no universal terms occur. We introduced f0 ¼
1

ωd−2

R
Sd−2 dΩd−2f for the constant mode of f.

In the EE case, we determined the prefactor as well:

δSE ¼ ϵf0
ωdþ2ωd−2

2dþ1d
CT

��
R
δ

�
d−2

þ #

�
R
δ

�
d−4

þ…

�
;

ð37Þ

Our calculation then makes it possible to determine the
coefficient of the area law term as follows. We obtained that
changing the radius R → Rð1þ ϵf0Þ introduces a change
in the EE (37). We can then reconstruct the coefficient of
the area law term

SE ¼ ωdþ2ωd−2

2dþ1dðd − 2ÞCT

�
R
δ

�
d−2

þ…: ð38Þ

Of course, this result only applies in the particular regu-
larization scheme that we used in this calculation.
We repeat that we have not been careful about boundary

conditions in this calculation. They could potentially give
additional contributions to the result (38).
In summary, we found that to linear order in the

deformation parameter ϵ there is no change in the universal
term in the entropies. The only change is in the divergent
terms, and they are all proportional to the spherical average
of the deformation. In particular the entropies do not
change, if this average vanishes. In the next section we
calculate the Oðϵ2Þ pieces for EE in the holographic setup.

III. PERTURBED CIRCLE IN A
HOLOGRAPHIC CFT

According to the Ryu-Takayanagi formula [20,21], in a
QFT with a gravity dual, the EE of a region Σ is propor-
tional to the area of the minimal surface in the dual
geometry that is homologous to Σ. For a CFT3 in its
ground state, the dual geometry is AdS4:

g ¼ L2

z2
ð−dt2 þ dz2 þ dr2 þ r2dθ2Þ: ð39Þ

With reference to Fig. 4, we take the entangling region to
be a perturbed circle r ¼ RðθÞ with

RðθÞ ¼ R0 þ ϵA cos ðnθÞ; ð40Þ

and parametrize the surface inside AdS as

r ¼ Rðθ; zÞ; Rðθ; 0Þ ¼ RðθÞ: ð41Þ

We organize the perturbation theory in ϵ so that the tip of
the minimal surface is at z ¼ 1 to all orders. Then both R0

and A are nontrivial series in ϵ, which we evaluate to the
order needed to obtain the leading correction to s3:

R0 ¼ 1þ ϵ2

4
þOðϵ4Þ; A ¼ 1þOðϵÞ: ð42Þ

The minimal surface to Oðϵ2Þ is:

Rðz; θÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
½1þ ϵR1ðzÞ cos ðnθÞ

þ ϵ2ðR20ðzÞ þ R22ðzÞ cos ð2nθÞÞ þ…�

R1ðzÞ ¼
�
1 − z
1þ z

�
n=2 1þ nz

1 − z2

R20ðzÞ ¼
�
1 − z
1þ z

�
n 1

4ð1 − z2Þ2 ½1þ 2nz

þ ð3n2 − 2Þz2 þ 2nðn2 − 1Þz3�: ð43Þ
(To obtain the leading result we do not need the explicit
form of R22). See [22] for the same solution in different
coordinates. Plugging into the area functional we obtain:

4GN

Ld−1S¼
2πð1þϵ2 n

2þ1
4
Þ

δ
−2π

�
1þϵ2

nðn2−1Þ
4

�
; ð44Þ

where L is the radius of AdS4 andGN is Newton’s constant.
The first term is just the area law term; the length of the
entangling region appears expanded to Oðϵ2Þ. From the
constant term we read off:

~s3 ¼ 2π

�
1þ ϵ2

nðn2 − 1Þ
4

�
;

~s3 ≡ 4GN

Ld−1 s3: ð45Þ

As shown in Fig. 5, we verified this result numerically,
using the methods outlined in Sec. V, and found excellent
agreement.
We can easily convince ourselves that for a generic

perturbation of the form

r ¼ R0ð1þ ϵfðθÞÞ;
fðθÞ ¼

X
n

½an cosðnθÞ þ bn sinðnθÞ�; ð46Þ

the result is a sum of contributions from different Fourier
components:
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~s3 ¼ 2π

�
1þ ϵ2

X
n

nðn2 − 1Þ
4

ða2n þ b2nÞ
�
: ð47Þ

Of course at higher orders in ϵ different harmonics mix, and
hence the result would no longer be a sum of their
individual contributions.
It would be very interesting to perform the CFT

calculation of Sec. II to second order in ϵ2. It would reveal
to what extent (47) is universal. We leave this problem to
future work.
For completeness, let us derive the same result for a

perturbed sphere in d ¼ 4. We can either carry out a
perturbative holographic computation, or directly use the
result (8). Considering an entangling region in the form of a
perturbed sphere

RðθÞ ¼ R½1þ ϵfðθÞ�; ð48Þ

we obtain

s4 ¼
a4
90

þ ϵ2c4g½f�;

g½f�≡ 1

240

Z
π

0

dθ sin θ½f00ðθÞ − cot θf0ðθÞ�2: ð49Þ

If we further specialize to the case fnðθÞ ¼ cos ðnθÞ, then
g½fn� can be calculated explicitly

g½fn� ¼
n2

480

�
ψ

�
nþ 1

2

�
þ ψ

�
−nþ 1

2

�

þ 2ðγ þ log 4Þ þ 4n2
2n2 − 5

4n2 − 1

�
; ð50Þ

where ψðxÞ is the digamma function. We list the first few
values of gðfnÞ in Table I. As in d ¼ 3 (47), we can verify
that the quadratic functional (49) does not mix different
harmonics. A crucial difference from (45) is that (50) is an
even function of n. The reason for this is that (8), (49) are
local functionals, while s3 is expected to be a nonlocal
functional of fðθÞ.

IV. ELLIPSE IN A HOLOGRAPHIC CFT3

In this section we derive two analytic lower bounds on
the universal coefficient ~s3 for an elliptic entangling region
in a holographic CFT3. Similarly to the perturbed circle
case, it would be interesting to also carry out the compu-
tation in a general CFT, or at least in free theories.
Still with reference to the coordinates (39), the entan-

gling region is

r ¼ RðθÞ≡
�
cos2θ
a2

þ sin2θ
b2

�−1
2

; ð51Þ

where a, b are the semi-axes of the ellipse. A trial surface
that satisfies the boundary conditions is the squashed
hemisphere

zðr; θÞ ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r2

R2ðθÞ

s
: ð52Þ

Plugging this expression into the area functional we obtain
a bound on ~s3, which turns out not to depend on the aspect
ratio b=a of the ellipse

1 2 3 4 5 6 7
n

20

40

60

80

s3 2

2 2

FIG. 5 (color online). Universal contribution to the EE for a
perturbed circle (40) in a d ¼ 3 holographic CFT3. The blue dots
are a tight lower bound obtained numerically, the blue line is the
analytic result (45).

FIG. 4 (color online). Actual minimal surface for a perturbed
circle (40) with n ¼ 5 and A=R0 ¼ 0.12, obtained numerically.

TABLE I. The values of g½fn�.
n 1 2 3 4 5 6

g½fn� 0 32
45

128
35

512
45

56960
2079

844384
15015
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~s3 ≥ 2π: ð53Þ

It is well known that the surface (52) is minimal in the case
of a circle (a ¼ b), and hence the bound is saturated at
this point.
To tackle the opposite limit, b=a ≪ 1, of a very thin

ellipse we start from the minimal surface determining the
EE of an infinite strip:

yðzÞ ¼ −zt
Z

z=zt

1

du
u2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u4

p zt ¼
Γð1

4
Þffiffiffi

π
p

Γð3
4
Þ
l
2
: ð54Þ

From this we construct the following trial surface satisfying
the boundary conditions:

yðz; xÞ ¼ −ztðxÞ
Z

z=ztðxÞ

1

du
u2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u4

p

≡ ztðxÞY
�

z
ztðxÞ

�

ztðxÞ ¼
Γð1

4
Þffiffiffi

π
p

Γð3
4
Þ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2=a2

q
: ð55Þ

By plugging into the area functional

A ¼ 2

Z
a

−a
dx

Z
ztðxÞ

δ
dz

1

z2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂xyÞ2 þ ð∂zyÞ2

q
ð56Þ

we can obtain a bound on ~s3. (We have to keep in mind that
we only integrate for x’s for which ztðxÞ > δ. We did not
display this to avoid clutter.) Let us use that the x
dependence only appears through ztðxÞ; we rescale z≡
ztZ to obtain:

A ¼ 2

Z
a

−a
dx

Z
1

δ=ztðxÞ
dZ

1

ztðxÞZ2

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1 − Z4
þ z0tðxÞ2

�
YðZÞ − Z3ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − Z4
p

�
2

s
: ð57Þ

By subtracting the diverging piece of the integrand and
adding it back we can get an expression for ~s3

A ¼ 2

Z
a

−a
dx

Z
1

δ=ztðxÞ
dZ

�
1

ztðxÞZ2

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1 − Z4
þ z0tðxÞ2

�
YðZÞ − Z3ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − Z4
p

�
2

s

−
1þ Z2

Z2

ffiffiffi
π

p
Γð3

4
Þ

Γð1
4
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ða2 − x2Þ þ b2x2

p
bða2 − x2Þ

�

þ 4aEð1 − b2=a2Þ
δ

−
8

ffiffiffi
π

p
Γð3

4
Þ

Γð1
4
Þ ; ð58Þ

where 4aEð1 − b2=a2Þ is the perimeter of the ellipse,12 and
thus the divergent term reproduces the area law. Note that
the minimal subtraction ∝ 1=Z2 would not have canceled
all divergences. By setting δ → 0 in the integral we only
introduce an OðδÞ error, hence:

~s3 ≥
8

ffiffiffi
π

p
Γð3

4
Þ

Γð1
4
Þ − 2

Z
a

−a
dx

Z
1

0

dZ

�
1

ztðxÞZ2

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1 − Z4
þ z0tðxÞ2

�
YðZÞ − Z3ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − Z4
p

�
2

s

−
1þ Z2

Z2

ffiffiffi
π

p
Γð3

4
Þ

Γð1
4
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ða2 − x2Þ þ b2x2

p
bða2 − x2Þ

�
: ð59Þ

Now we can do the logarithmically divergent x integral
first. The coefficient of the logarithmic divergent term
vanishes when integrated over Z. Then we are left with the
finite Z integral that depends on b=a. We do not know how
to evaluate this integral. However, we can calculate the
limit

b
a
~s3je→1 ¼

π

2
~sðstripÞ3 ~sðstripÞ3 ¼ 4πΓð3

4
Þ2

Γð1
4
Þ2 ð60Þ

by expanding the integrand around b=a ¼ 0.
Intuitively, this result comes from decomposing the

surface into strips of different lengths and adding up their
contributions. Because the EE of a strip is proportional to
its length and inversely proportional to its width we get the
answer by integrating ~sðstripÞ3 dx=2yðxÞ:

~s3 → ~sðstripÞ3

Z
a

−a

dx

2b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2=a2

p ¼ a
b
π

2
~sðstripÞ3 : ð61Þ

Thus we provided a lower bound on ~s3 which is saturated
for b=a → 0.

V. GENERIC REGION IN A HOLOGRAPHIC CFT3

In this section we describe how to compute numerically
the universal coefficient ~s3 for a generic entangling region
Σ in a holographic CFT3.
We consider a surface embedded in AdS4 that is

topologically equivalent to a disk. With reference to the
coordinates (39), we parametrize the surface as:

�
r ¼ Rðρ; θÞ
z ¼ Zðρ; θÞ ; ρ ∈ ½0; 1�; θ ∈ ½0; 2π�: ð62Þ

Smoothness of the surface constrains the functions R and
Z to have the following small r behavior:

12EðxÞ is complete elliptic integral of the second kind.
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Rðρ; θÞ ∼
X
l

Rlρ
jljþ1eilθ;

Zðρ; θÞ ∼
X
l

Zlρ
jljeilθ: ð63Þ

The above result is most easily seen by going to Cartesian
coordinates. At ρ ¼ 1 we impose the boundary condition

Zð1; θÞ ¼ 0 Rð1; θÞ ¼ RðθÞ; ð64Þ
where RðθÞ defines the entangling region. For an ellipse, it
is given by (51).
The function R can be chosen arbitrarily within the

constraints above, and we take it to be

Rðρ; θÞ≡X
l

Rlρ
jljþ1eilθ;

Rl ¼ 1

2π

Z
2π

0

dθe−ilθRðθÞ: ð65Þ

Expanding the equations of motion for Z near ρ ¼ 1
reveals that the Z of the minimal surface is not analytic at
ρ ¼ 1. Instead, it can be written as

Zðρ; θÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ρ2

q
Ξðρ; θÞ; ð66Þ

with Ξ analytic at ρ ¼ 1. We represent Ξ by expanding over
a basis of functions:

Ξðρ; θÞ ¼
X
n;l

ΞnleilθρjljP
ð0;jljÞ
n ð2ρ2 − 1Þ; ð67Þ

where Pða;bÞ
n are the Jacobi polynomials. This choice of

basis is known to be good, because its elements have little
linear dependence on each other, and span the space of
analytic functions on the disk quite efficiently. We have to
truncate the expansion at a finite value of n and l, and,
strictly speaking, our numerical result for ~s3 will be a lower
bound. However, if the minimal surface is sufficiently
regular, the bound obtained will be very tight.
In order to find the minimal surface, it is necessary to

evaluate efficiently and accurately both the area of a generic
surface and its variation with respect to an infinitesimal
change of the surface. This problem is complicated by the
fact that the area is a divergent quantity because of the
diverging conformal factor at the boundary of AdS. We
now describe how this can be accomplished.
The embedding (62) induces the following metric on the

disk:

g2 ¼
1

Z2
½ðR2

;ρ þ Z2
;ρÞdρ2

þ 2ðR;ρR;θ þ Z;ρZ;θÞdρdθ þ ðR2 þ R2
;θ þ Z2

;θÞdθ2�;
ð68Þ

and hence the area functional is

A½Z� ¼
Z

2π

0

dθ
Z

1

0

dρ
ffiffiffiffiffi
g2

p

¼
Z

dθdρ
Z2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðZ;θR;ρ − Z;ρR;θÞ2 þ R2ðR2

;ρ þ Z2
;ρÞ

q
:

ð69Þ

Varying this functional with respect to Z it is possible to
derive a rather involved equation of motion, which is best
handled with the aid of computer algebra. By expanding it
about ρ ¼ 1 we obtain the asymptotic behavior (66) for Z.
Because of the same asymptotics we find it convenient to
write

ffiffiffiffiffi
g2

p ¼ ρ

ð1 − ρ2Þ32 aðρ; θÞ; ð70Þ

so that aðρ; θÞ is smooth on the disk and

að1; θÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2ð1; θÞ þ R2

;θð1; θÞ
q

Ξð1; θÞ : ð71Þ

The area integral is divergent, and needs to be regulated.
The prescription is to cut off the integral at a fixed height
Zðρ; θÞ ¼ δ:

A½Z; δ� ¼
Z

dθdρ
ffiffiffiffiffi
g2

p
Θ½Zðρ; θÞ − δ�; ð72Þ

where Θ is the unit step function.
Because the divergence is associated with the boundary

of the surface, it is proportional to the perimeter P of the
entangling region, and we have

A½Z; δ� ∼ P
δ
− ~s3½Z� þOðδÞ: ð73Þ

The divergence does not depend on Z (provided the
boundary conditions are satisfied), and hence does not enter
the minimization procedure. In order to compute the finite
quantity ~s3½Z� we introduce a reference integrand aref ,
which agrees with a at the boundary, but whose regulated
integral can be computed analytically. The finite difference
between the integral of a and the integral of aref can then be
computed numerically with good accuracy.
We define

arefðρ; θÞ≡
X
l

alρjljeilθ;

al ¼ 1

2π

Z
2π

0

dθað1; θÞe−ilθ; ð74Þ

so that aref is a smooth function on the disk and
arefð1; θÞ ¼ að1; θÞ. Then we write
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A½Z; δ� ¼ ΔA½Z; δ� þ Aref ½Z; δ�; ð75Þ
with

ΔA½Z; δ� ¼
Z

dθdρρ

ð1 − ρ2Þ32 ða − arefÞΘ½Z − δ�;

Aref ½Z; δ� ¼
Z

dθdρρ

ð1 − ρ2Þ32 arefΘ½Z − δ�: ð76Þ

Then we have

ΔA½Z; δ� ¼
Z

dθdρρ

ð1 − ρ2Þ32 ða − arefÞ þOðδÞ; ð77Þ

where the integral is finite. The integral Aref can be done
analytically, and we have

Aref ½Z; δ� ¼
1

δ

Z
2π

0

dθ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ R2

;θ

q
− 2πa0 þOðδÞ; ð78Þ

where a0 is given by (74). Collecting all the pieces we have

A½Z; δ� ¼ 1

δ

Z
2π

0

dθ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ R2

;θ

q
þ
Z

dθdρρ

ð1 − ρ2Þ32 ½a − aref �

−
Z

2π

0

dθað1; θÞ þOðδÞ ¼ P
δ
− ~s3½Z� þOðδÞ;

ð79Þ

where we recognized in

P≡
Z

2π

0

dθ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ R2

;θ

q
ð80Þ

the perimeter of the entangling region. Using computer
algebra, it is possible to compute explicitly also the
variation of A with respect to a change in Z, without
forgetting that both a and aref depend on Z.
The integrals are conveniently evaluated using Gaussian

quadrature. In particular, the double integrals have the form

I ¼
Z

2π

0

dθ
Z

1

0

dρ
ρ

ð1 − ρ2Þ12 fðρ; θÞ; ð81Þ

with f smooth on the disk. We evaluate them as

I ¼ π

n

Xm
i¼1

Xn
j¼1

wifðρi; θjÞ; ð82Þ

where θj ¼ 2πj=n and wi, ρi are the weights and collo-
cation points of the Gaussian quadrature associated with the
measure

Z
1

−1
dρ

jρj
ð1 − ρ2Þ12 : ð83Þ

We have now cast the problem to the numerical
minimization of a real function of many variables (the
coefficients Ξnl), of which we know explicitly the gradient.
Therefore, we search for a minimum using the conjugate
gradient method.
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