
CoMo: a Whiteboard that Converses about Code

by

Andrew Thomas Correa Sabisch

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Science in Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2014

c© Massachusetts Institute of Technology 2014. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 8, 2014

Certified by. .
Randall Davis

Professor
Thesis Supervisor

Accepted by .
Professor Leslie A. Kolodziejski

Chair of the Committee on Graduate Students

CoMo: a Whiteboard that Converses about Code

by

Andrew Thomas Correa Sabisch

Submitted to the Department of Electrical Engineering and Computer Science
on August 8, 2014, in partial fulfillment of the

requirements for the degree of
Doctor of Science in Computer Science

Abstract

Software engineers routinely solve problems by brainstorming at whiteboards. Among
other modes, they communicate with speech and sketch. Unfortunately, the white-
board plays the role of a passive medium. It serves only as a place to draw. But what
if it could engage in the conversation, even to a limited degree? Ideally it would help
guide the engineers to a solution by being an active participant in the conversation.

This thesis presents an early version of that vision: CoMo, a whiteboard that
converses about code. CoMo is capable of engaging its user in a constrained mixed-
initiative symmetric-multimodal conversation about a data structure manipulation.
When it understands the data structure, it uses a code synthesis system to generate
functioning C code. It can successfully hold a limited conversation and synthesize
code for 50 manipulations on 8 data structures. This thesis further presents findings
from an observational user study that helped guide the interaction with CoMo. Fi-
nally, this thesis presents the mixed-initiative code-generation framework that CoMo
implements to achieve its interaction, and the insights about having limited natural
conversations about data structure manipulations that were gleaned while creating
the framework.

Thesis Supervisor: Randall Davis
Title: Professor

2

Acknowledgments

Finishing this thesis was the most difficult thing I have yet accomplished. There are

many reasons for this, not least among which is that it is the first time in my life

there was no clear goal; I needed to define one and bring it to fruition myself. I want

to thank everyone that helped me through this, because this thesis was too great an

undertaking for me to have accomplished without their love, support, understanding,

play, and general ability to put up with me for the hardest 3 years. Thank you all.

Firstly I thank my adviser, Randall Davis. I have learned so much while under

his wing that I am sure will help me through the rest of my life. Among his plethora

gifts, I am most appreciative of my newly improved ability to manage projects and

more clearly express ideas. Thank you Randy. This experience has been invaluable.

I would not be the person I am today without you.

Most importantly, I thank my wife, Ashley. She calmed me down during the hard

times and helped me up during the harder ones. She took care of me: feeding me,

bathing me (I’m sorry that was required sometimes), and pointing out when I was

being self-destructive in the most gentle way possible. Without her love and support

I would not have been able to finish. Thank you, lar. You’re the lar. You cray. I love

you.

I thank Ali Mohammad for being an understanding ear, always ready with good

advice and a calm perspective. I supported him through the difficult final stages of

his thesis and, given all the help he gave back, I believe that he remembers (and

feels responsible for) giving even more support back. He edited my thesis, talked

me through difficult problems, reminded me of the bigger picture, and apologized

profusely for not doing more. Thanks Ali. You’re a great friend that I’m lucky to

have been given the oportunity to become so close with.

I thank Asma Al-Rawi (or, as she’s known on the streets, Em). She helped me

through some of the more emotionally challenging times. Whether it was by helping

me think through my issues over an IM chat, a phone call, or in person, she always

managed to calm me down by pointing out that one piece of information I just couldn’t

3

see. Due to her vast experience helping doctoral candidates finish their theses (and

probably through her stories of woe that nearly always trumped mine in severity),

she always managed to talk me off of the metaphorical ledge. Thank you, Em.

I thank Jonathan Eastep. He always had a way of remininding me of the good

life: life after school when money would not be an issue anymore and I could leave

my work at work. He gave me perspective that helped immeasurably. He focused me

on the goal and even bought me dinner when he visited. Really, he was an all-around

awesome friend. Thank you Jonathan.

I thank Marek Doniec. He is, without question, the best worst influence I have

ever had the privaledge to know. He helped me relax at the end of hard days and

easy days alike, and was a readily available gym buddy. As if that weren’t enough,

he also helped me practice my German. Thank you Marek.

I thank all the memebers of the Multimodal Understanding Group: especially

Jeremy Scott and Ying Yin. As academic siblings, we were in a uniqe position of

being able to understand one another and help one another with research projects

and academic life. Thank you all.

I thank the Agile Robotics group, and especially Seth Teller. Next to my adviser,

Seth had the greatest influence on how I think about and perform research, and about

how to manage large projects. Thank you AR, and thank you, Seth. I only wish you

were here to read this.

I thank all my remaining friends and family, especially my brother, my mother,

my father, and my uncle. They grounded me by reminding me of my roots, consoled

me with their love, and lifted my spirits with their presence. Thank you all. I love

you all.

Finally, I thank the broader CSAIL community, especially the members of TIG

and the CSC. They made this place fun. Without them, I would not have wanted to

come into work every day. I will never forget this time in my life, and I’ll always have

wonderful memories thanks to them. Thank you all.

4

This work was supported by DARPA grant #N66001-10-2-4089, “CANDOR: Clean-

Slate System Integrity using Selective Redo” and NSF grant #IIS-1018055, “Enabling

and Exploring Natural Systems.”

5

Contents

1 Introduction 18

1.1 CoMo: the Code Monkey . 19

1.2 A Linked List Reversal . 22

1.3 Code Synthesis . 26

1.4 Interaction . 28

1.5 Contributions . 30

2 Related Work 31

3 Observational User Study 36

3.1 Participants . 36

3.2 Procedure . 38

3.2.1 Instruction Sheets . 39

3.3 Hypotheses . 41

3.4 Limitations . 42

3.5 Results . 43

3.5.1 Analysis . 43

3.6 Architectural Implications . 49

3.6.1 Remembering Names . 50

3.6.2 First-Pass Geometry Heuristic 50

3.6.3 Input and Output States . 50

3.7 Summary . 51

6

4 CoMo: an Overview 53

4.1 Basis on the User Study Findings . 53

4.2 The User Interface . 54

4.3 Linked List Find Last . 56

4.3.1 Initiating the Discussion . 56

4.3.2 Continuing the Discussion . 59

4.3.3 Synthesis & Verification . 63

4.3.4 Labeling the Data Structure and Manipulation 69

4.4 Additional Functionality . 69

4.4.1 A More Educated CoMo . 69

4.4.2 Labeling Pointers . 69

4.4.3 Constraints . 70

4.4.4 Multiple Pointers . 70

4.5 Summary . 71

5 CoMo: Functionality 73

5.1 Mixed-Initiative Code-Generation Framework 73

5.2 The Storyboard Programming Tool 75

5.2.1 Programming with Examples 75

5.2.2 An Example SPT Run-Through 75

5.2.3 SPT Limitations & Ramifications for CoMo 79

5.2.4 Summary . 83

5.3 Linked List Find-Last . 83

5.3.1 Describing the Data Structure 83

5.3.2 Asking an Example Question 86

5.3.3 Nonsensical Questions . 88

5.3.4 Remaining Questions . 90

5.3.5 Code Synthesis & Verification 92

5.3.6 Labeling the Interaction . 99

5.4 System Overview . 99

7

5.4.1 System Architecture . 100

5.4.2 Interface Transition . 102

5.4.3 Sketch Recognition . 105

5.4.4 Speech Recognition . 108

5.4.5 Speech Generation . 110

5.4.6 Question Generation . 111

5.5 Assumptions, Algorithms, and Heuristics 113

5.5.1 Parsing a Data Structure . 114

5.5.2 Abstracting the CFG . 116

5.5.3 Heuristics . 117

5.5.4 Abstractions . 121

5.6 Limitations . 122

5.6.1 AVL Tree Insertion . 123

5.6.2 Min-Heap Pop . 126

5.7 Conclusions . 129

6 Domain 131

6.1 Summary of Structures . 131

6.2 Similarity Classes . 133

6.3 Stack Push . 136

6.4 Queue Dequeue . 141

6.5 Singly Linked List Reversal . 146

6.6 Singly Linked List Find Last . 149

6.7 Singly Linked List Delete . 152

6.8 Ordered Doubly Linked List Insertion 158

6.9 Binary Tree Left Rotation . 165

7 Contributions & Future Work 172

7.1 Future Work . 176

7.1.1 Recursion . 176

7.1.2 Composing Manipulations . 176

8

7.1.3 Specifying Algorithms . 177

7.1.4 Handling Multiple Large Structures 178

7.1.5 Joint Synthesis Work . 179

9

List of Figures

1-1 Describing a linked list to CoMo. 23

1-2 The next question CoMo asks is about a list with four nodes. 23

1-3 The next two questions CoMo asks are about the list with one node

and the empty list. 24

1-4 CoMo animates the code’s execution on a structure. The line “tmp1.ptr0=tmp2”

(highlighted in green) has almost completed its animation; the pointer

attached to b has almost completed its movement from the c node to

the a node. 25

1-5 CoMo animates the code’s execution on a new structure. The line

“head=head.ptr0” is in the middle of being animated; the head pointer

is half way through its transition between that c and d nodes. 26

3-1 Exercises teachers were asked to give students. 38

3-2 Reminders presented to subjects in order to encourage a rich interac-

tion. These were placed on the front sheet of subjects’ instructions. . 40

3-3 Sample visual data structure vocabularies presented to subjects. . . . 41

3-4 The time it took each session’s descriptions and their sum. 43

3-5 Subjects’ responses to qualitative questions on a 5-point Likert scale.

Average responses are displayed between minimum and maximum val-

ues. Note that the manipulation names were abbreviated to fit in the

figure; subjects were presented with unabbreviated text. 45

3-6 Examples of the vocabularies used in the first session. 47

3-7 An immediately understood visual shorthand. 48

10

4-1 CoMo’s User Interface . 54

4-2 CoMo’s Interface: Populated . 55

4-3 The user draws a general list. 56

4-4 CoMo questions how to inductively define the ellipsis. 56

4-5 An automatically generated list with four nodes that CoMo uses to ask

its first question: “How do you handle this case?” 57

4-6 The user adds the rtn pointer to make this first state reflect how the

manipulation begins. 57

4-7 The user demonstrates the manipulation and says, “Like this.” 58

4-8 CoMo: “How do you handle this case?” User: “That does not make

sense.” . 61

4-9 CoMo: “How do you handle this case?” User: “That does not make

sense.” . 61

4-10 CoMo: “How do you handle this case?” User: “That does not make

sense.” . 61

4-11 A question and the corresponding answer about a list with one node. 62

4-12 A question and the corresponding answer about an empty list. CoMo:

“How do you handle this case?” User: “Do nothing.” 63

4-13 CoMo animates the code on the initial example with four nodes. . . . 64

4-14 CoMo generates a structure with five nodes and animates the code. . 65

4-15 CoMo animates the new code on the same structure. 66

4-16 CoMo animates the new code on the list with four nodes. 67

4-17 CoMo generates a structure with three nodes and animates the code. 68

4-18 A doubly linked list general structure definition. 71

5-1 A linked list with four nodes and the same list reversed. 76

5-2 Linked lists that look the same reversed. 76

5-3 Example SPT input corresponding to linked list reversal. 77

5-4 Information SPT is able to infer from its input. 78

5-5 C code produced by SPT. 79

11

5-6 A shortened CFG and the resulting code. 79

5-7 The user draws a general list. 84

5-8 The question and answer about the inductive definition of the ellipsis. 84

5-9 The first questions (Fig. 5-9a) that CoMo asks and the user’s response

(Fig. 5-9b). 87

5-10 CoMo: “How do you handle this case?” User: “That doesn’t make

sense.” . 89

5-11 CoMo: “How do you handle this case?” User: “That doesn’t make

sense.” . 89

5-12 CoMo: “How do you handle this case?” User: “That doesn’t make

sense.” . 90

5-13 The question and answer about a list with one node. 91

5-14 A question and the corresponding answer about an empty list. CoMo:

“How do you handle this case?” User: “Do nothing.” 92

5-15 The input CoMo produces for SPT. 93

5-16 The default CFG used by CoMo. §5.5.2 explains how this was selected

and how it can be altered. 93

5-17 SPT’s output before and after CoMo removes dead code. 94

5-18 This sketch is missing tmp1 and tmp2. 95

5-19 CoMo adds tmp1 and tmp2, initializes them to null, and resets the

structure to its starting state in preparation for code animation. . . . 96

5-20 CoMo animates the code on the initial example with four nodes. . . . 97

5-21 The augmented input CoMo produces for SPT. 98

5-22 SPT’s output before and after CoMo removes dead code. 99

5-23 An overview of CoMo’s architecture. Input is displayed at the top and

output at the bottom. 101

5-24 The state transition diagram describing how CoMo reacts to user input.103

5-25 A list with four nodes and a constraint showing it is ordered. 107

5-26 The subtrees of CoMo’s grammar corresponding to labeling and recall-

ing data structures and manipulations by name. 109

12

5-27 Question about the list being less than the node to insert. 111

5-28 Question about the list being greater than the node to insert. 112

5-29 Subset of input to SPT illustrating constraint specification. 112

5-30 A binary tree. 114

5-31 A doubly linked list and extra node. The list is classified as the “main”

structure, and the extra node as an auxiliary structure. 115

5-32 A doubly linked list. 115

5-33 A binary tree repetition definition. CoMo parses four options. 116

5-34 The CFGs used to synthesize code for an ordered, doubly linked list

insertion. 117

5-35 The code synthesized for an ordered, doubly linked list insertion. . . . 118

5-36 An example AVL tree. 123

5-37 An AVL tree insertion consisting of a BST insertion followed by a

rotation. 124

5-38 A snapshot of a possible interaction with CoMo about an AVL tree

insert. CoMo has just performed a BST insertion, and the user is

explaining why a rotation is required. 126

5-39 An example min-heap. 126

5-40 The process of popping an element from a heap; the minimum element

is returned, and the next smallest is placed at the top of the heap,

ready for the next pop operation. 127

5-41 A snapshot of a user explaining a min-heap pop manipulation to CoMo.

Here, the user explains why a swap must happen. 128

5-42 The ability to move nodes’ positions allows the user to clean up the

sketch. This figure differs from Fig. 5-41b only in the positions of the

nodes. 129

6-1 A stack push and a linked list prepend. Note that these two manipu-

lations are nearly identical. 133

13

6-2 List reversals for an ordered, doubly linked list and unordered singly

linked list. Note that the operations required for the singly linked

list reversal are a strict subset of the operations required for ordered,

doubly linked list reversal. 134

6-3 The general stack and ellipsis definition 136

6-4 A question and answer about pushing onto a stack with four nodes. . 137

6-5 The questions and corresponding answers about stacks with nothing

to add. These questions proceed identically to one another. 138

6-6 Question and answer about what to do with a stack containing one

node and an add pointer pointing at a separate node. 139

6-7 Question and answer about what to do with an empty stack and an

add pointer pointing at a node. 139

6-8 The input CoMo generates for SPT. 140

6-9 The raw and cleaned synthesized code for the stack push manipulation. 140

6-10 The definition of a general queue. 141

6-11 A question and corresponding answer about a queue with four nodes. 142

6-12 CoMo: “How do you handle this case?” User: “That does not make

sense.” . 142

6-13 CoMo: “How do you handle this case?” User: “That does not make

sense.” . 143

6-14 CoMo: “How do you handle this case?” User: “That does not make

sense.” . 143

6-15 CoMo asks about a queue with one element and an rtn pointer pointing

at null. 144

6-16 The question and answer for an empty queue. CoMo asks, “How do

you handle this case?” and the user responds, “Do nothing.” 145

6-17 The input CoMo generates for SPT. 145

6-18 The raw and cleaned synthesized code for the dequeue manipulation. 146

6-19 The inductive definition of a general list. 146

6-20 A question about a list with four nodes. 147

14

6-21 Two questions about lists that look the same reversed. 148

6-22 The input CoMo generates for SPT. 148

6-23 The raw and cleaned synthesized code for the reversal. 149

6-24 CoMo recalls what a linked list is when asked. 149

6-25 The first question and corresponding answer that CoMo asks. 150

6-26 CoMo: “How do you handle this case?” User: “That does not make

sense.” . 151

6-27 CoMo: “How do you handle this case?” User: “That does not make

sense.” . 151

6-28 CoMo: “How do you handle this case?” User: “That does not make

sense.” . 152

6-29 CoMo asks about a list with one node and rtn pointer pointing at null. 153

6-30 CoMo: “How do you handle this case?” User: “Do nothing.” 153

6-31 The input to SPT generated from the find-last interaction. 154

6-32 The raw and cleaned synthesized code for the find-last manipulation. 154

6-33 CoMo recalls what a linked list is when asked. 155

6-34 CoMo asks a question about a singly-linked list with four nodes. . . . 155

6-35 CoMo asks a question about a singly-linked list with one node. 156

6-36 CoMo: “How do you handle this case?” User: “Do nothing.” 156

6-37 The user decides to give two more demonstrations on structures with

five nodes. 157

6-38 The input to SPT produced by CoMo. 158

6-39 The raw and cleaned synthesized code for the delete manipulation. . . 159

6-40 The inductive definition of a general linked list. 159

6-41 CoMo’s first question (and the corresponding answer) about a list with

four nodes. 160

6-42 CoMo asks about how to insert a node into a list with one node when

the node to insert is less than the node in the list. 161

6-43 CoMo asks about how to insert a node into a list with one node when

the node to insert is greater than the node in the list. 162

15

6-44 CoMo asks how to insert a node into an empty list, and the user responds.163

6-45 CoMo: “How do you handle this case?” User: “Do nothing.” 163

6-46 CoMo: “How do you handle this case?” User: “Do nothing.” 164

6-47 CoMo: “How do you handle this case?” User: “Do nothing.” 164

6-48 CoMo’s first try at producing SPT input. After one hour, CoMo halts

SPT and retries. 166

6-49 CoMo’s second try at running SPT. This produces code after anywhere

from 15 minutes to 2 hours. 167

6-50 The code produced after the second try. 168

6-51 The inductive definition of a general binary tree. 169

6-52 CoMo asks a question about a tree with four nodes. 169

6-53 CoMo asks two questions about trees that do not have enough nodes

to be rotated. 170

6-54 The input to SPT produced by CoMo. 171

6-55 The raw and cleaned synthesized code for the left rotation. 171

7-1 A singly linked list append. Notice that the auxiliary structure (be-

ginning with add) has more than one node. 178

7-2 An ordered, singly linked list insertion and an altered CFG that may

work for it. Neither of CoMo’s CFGs are sufficient to perform this

manipulation, however using this CFG may result in SPT synthesizing

correct code. 179

16

List of Tables

3.1 Participants’ Demographic Information 37

5.1 CoMo’s visual vocabulary. 106

5.2 List of phrases CoMo understands. 108

5.3 Things CoMo is capable of saying. 110

6.1 The list-like data structure manipulations about which CoMo can in-

teract, separated by similarity. “LL” and “DLL” stand for “Linked

List” and “Doubly Linked List” respectively. 135

17

Chapter 1

Introduction

Software engineers routinely discuss problems at whiteboards to find solutions, engag-

ing in a multimodal dialog, primarily speaking and drawing. Both of these modalities

have their advantages and disadvantages: drawing is visual and intuitive while speak-

ing is succinct and rich. At the whiteboard, drawing serves two purposes. It helps

engineers visualize the problem and break it down into solvable sub-problems, and

presents the problem in a more abstract, human-understandable form. Though draw-

ing is a powerful tool, it has its limitations. Some things are more easily, quickly,

and succinctly expressed with speech. For example, responding to some questions

by simply saying “Yes” or “No” can be quicker and more natural than any other

means. Together, these modalities can create a rich interaction full of potentially

useful technical information.

Imagine the whiteboard actively participating in technical conversations of these

kinds. It could engage in the conversation with the engineers by speaking, drawing,

and asking questions, thereby helping the engineers come up with solutions more

quickly. A smart whiteboard system of this kind has the potential to help engineers

by guiding them through the problem-solving process, potentially avoiding common

mistakes, and asking leading questions, e.g., about corner cases. Once a solution has

been found, the system could help with the implementation process by generating

code. Even if it can only generate simple code, a system like this has the potential

to be a great help to software engineers.

18

This thesis presents an early version of that vision: a smart whiteboard system,

called CoMo, that engages in a conversation-like interaction with a user involving

speech and sketch about a data structure manipulation. Once the interaction is com-

plete, CoMo uses a code synthesis tool to generate code implementing the discussed

manipulation, then CoMo helps the user test the code by animating it on a drawn

structure. This system has the potential to be used by students to better understand

how code works by watching it animated on concrete, drawn structures. CoMo is a

code generation tool that improves upon using state of the art code synthesis systems

alone. This thesis gives example interaction with CoMo, describes an observational

user study that guided the design of CoMo’s interaction’s structure, and details how

CoMo works.

1.1 CoMo: the Code Monkey

I implemented CoMo, a smart whiteboard system able to hold a limited conversation

involving speech and sketch concerning a wide range of different manipulations on

a variety of different data structures. CoMo’s name has two meanings. It is both

an abbreviation of “Code Monkey” and the Spanish word for “how,” used to ask

someone to repeat what they said. (In English we use “what.”) It is a “code monkey”

because it demonstrates its understanding of a conversation by synthesizing C code

and animating it on concrete examples, both those the user drew and those that they

asked CoMo to draw for them. As far as I am aware, CoMo is the first mixed-initiative,

symmetric-multimodal, conversation-to-code smart whiteboard system.

CoMo engages in a mixed-initiative, symmetric-multimodal interaction, that is

modeled after human-human conversations1. The interaction is multimodal in that it

involves both speech and sketch. The interaction is symmetric because both modes of

input are also modes of output: CoMo both interprets speech and sketch and speaks

and draws to ask questions. It is a mixed-initiative system because either CoMo

1Since the interaction is strongly constrained, the words “converse” and “conversation” are used
sparingly in this thesis. They are used only to frame CoMo in the broader goal of participating as
an engineer in the kinds of technical discussions mentioned above.

19

or the user can initiate an interaction. The user initiates interactions by drawing

concrete examples of data structure manipulations, while CoMo initiates interactions

by asking questions about concrete examples it draws.

Interactions with CoMo proceed in the five basic phases (Chapter 5 describes these

in full):

1. The user initiates the interaction by:

• asking CoMo if it knows what a specific data structure or manipulation is;

or

• demonstrating a concrete example on a drawn structure; or

• defining the general data structure to talk about.

2. CoMo asks questions (and interprets answers) about:

• an inductive general structure definition;

• a structure with four, one, and zero nodes; or—if the manipulation consists

of two structures: a main and an auxiliary one—the power set of compar-

isons between the main structure with four, one, and zero nodes and the

auxiliary structure with one and zero nodes; and

• if the manipulation is on an ordered structure that (as above) involves

multiple structures (e.g., an ordered linked list insertion)—the power set

of constraint comparisons between single-node structures where the main

structure’s node is less than and greater than the auxiliary structure’s

node.

3. CoMo uses SPT [28] to synthesize code by:

(a) generating input based on examples the user drew;

(b) selecting a control flow graph (CFG) to use;

(c) running SPT; and

(d) cleaning code and displaying it to the user.

20

4. CoMo animates the synthesized code on examples until the user is satisfied it

is correct.

5. If the code is incorrect, CoMo reruns synthesis (step 3) with new corrected

examples.

Using these phases, CoMo is able to have an interaction with and generate code for

a user about 50 manipulations on 8 structures. These structures and manipulations

are listed here:

1. Stack

(a) push

(b) pop

(c) poll

2. Queue

(a) enqueue

(b) dequeue

(c) peek

3. Singly Linked List

(a) insert

(b) delete

(c) reverse

(d) append

(e) prepend

(f) remove first

(g) remove last

(h) find first

(i) find last

4. Doubly Linked List

(a) insert

(b) delete

(c) reverse

(d) append

(e) prepend

(f) remove first

(g) remove last

(h) find first

(i) find last

5. Ordered, Singly Linked List

(a) insert

(b) reverse

(c) remove minimum

(d) remove maximum

(e) find minimum

(f) find maximum

21

6. Ordered, Doubly Linked List:

(a) insert

(b) reverse

(c) remove minimum

(d) remove maximum

(e) find minimum

(f) find maximum

7. Binary Tree

(a) left rotation

(b) right rotation

(c) left-right rotation

(d) left-left rotation

(e) right-left rotation

(f) right-right rotation

8. Binary Search Tree

(a) left rotation

(b) right rotation

(c) left-right rotation

(d) left-left rotation

(e) right-left rotation

(f) right-right rotation

(g) find minimum

(h) find maximum

The next section demonstrates how CoMo interacts with a user by describing one

example manipulation from the above list: a linked list reversal.

1.2 A Linked List Reversal

The user initiates an interaction with CoMo by asking if CoMo is familiar with a data

structure or by drawing an example of a data structure or a manipulation. In this

instance, the user chooses to ask CoMo if it knows about linked lists by saying, “Do

you know what a linked list is?” CoMo does not, so it responds by saying, “No” and

awaiting further input.

The user continues by explaining what a linked list looks like. They draw the

diagram seen in Fig. 1-1a: a head pointer to a list starting with an a node and ending

with a b node. As the user draws the diagram, CoMo recognizes their digital strokes as

nodes, pointers, and labels, and replaces the strokes with cleaned-up versions of these

symbols in real time. CoMo interprets the ellipsis in Fig. 1-1a to mean a repetition.

22

(a) A general list. (b) What ellipses represent.

Figure 1-1: Describing a linked list to CoMo.

It does not know what in the repetition repeats, so it asks the user, “What does

this expand to?” while displaying a new canvas with a copy of the ellipsis from the

previous drawing user draws the inductive rules for expanding an ellipsis, seen in

Fig. 1-1b: either replace the ellipsis with a node pointing to another ellipsis or with

just a node.

(a) CoMo: “How do you handle this case?” (b) User: “Like this.”

Figure 1-2: The next question CoMo asks is about a list with four nodes.

Now that the interaction has been initiated and the user has explained what kind

of structure they are talking about, CoMo begins to go through the list of cases

(above) that the code synthesis system [28] requires to successfully synthesize code2.

CoMo asks its first question about the manipulation by saying, “How do you handle

2The code synthesis system is described in Chapter 5.

23

this case?” and generating the list with four nodes seen in Fig. 1-2a. The user clicks

and drags on the pointers’ heads to reverse the list. Once the user is done reversing

the list, they say, “Like this.”

(a) CoMo: “How do you handle this case?”
User: “Do nothing.”

(b) CoMo: “How do you handle this case?”
User: “Do nothing.”

Figure 1-3: The next two questions CoMo asks are about the list with one node and
the empty list.

Next, CoMo asks about the empty list and the list with one node. Fig. 1-3 shows

the structures that CoMo generates. In response to each question, the user says, “Do

nothing” because these lists look the same reversed. CoMo has finished asking all

its questions, and so it says, “I think I understand.” The purpose of the interaction

was to explain to CoMo what a linked list reversal manipulation looks like, so that it

could synthesize code. To initiate the code synthesis process, the user says, “Generate

code.” CoMo responds with, “I will try” and code synthesis commences.

To synthesize code, CoMo generates a description of the interaction that can be

used by the Storyboard Programming Tool [28] to synthesize C code. Once code has

been synthesized, it is displayed next to all of the examples in the interaction (see

Fig. 1-4). The user verifies that the code is correct by having CoMo symbolically

execute the code on an example. The user switches to the initial list with four nodes3

and says, “Animate the code.” CoMo resets the list to its initial state and animates

the code’s execution. As part of the animation, CoMo generates the two temporary

3As described in Chapter 4, the user can switch between existing examples by clicking on tabs
along the top of CoMo’s canvas.

24

Figure 1-4: CoMo animates the code’s execution on a structure. The line
“tmp1.ptr0=tmp2” (highlighted in green) has almost completed its animation; the
pointer attached to b has almost completed its movement from the c node to the a

node.

pointers that are not present in the original diagram (tmp1 and tmp2; see Fig. 1-2)

and highlights the line of code it is executing in green while animating it. Fig. 1-4

shows the middle of the process, as CoMo executes the line “tmp1.ptr0=tmp2.”

As demonstrated above, CoMo is able to generate example structures. CoMo

uses the general description given at the beginning of the interaction by starting

with the skeleton (Fig. 1-1a) and repeatedly replacing the ellipsis with one of the

provided inductive steps (Fig. 1-1b)4. The user would like to test out the code on

an example that CoMo has not seen yet, so they say, “Generate a structure with

five nodes.” CoMo creates the structure and displays it on a new canvas next to the

code. “Animate the code,” the user says again. Fig. 1-5 shows CoMo animating the

4Due to the nature of the list description, CoMo will only be able to generate lists with at
least three nodes. Empty structure generation and single-node structure generation are handled by
copying existing elements from other examples and assigning all pointers to null.

25

Figure 1-5: CoMo animates the code’s execution on a new structure. The line
“head=head.ptr0” is in the middle of being animated; the head pointer is half way
through its transition between that c and d nodes.

reversal as it executes the line, “head=head.ptr0.” The user verifies that the code

works on this example, and is satisfied that the code is functionally correct.

1.3 Code Synthesis

CoMo synthesizes code using a system called the Storyboard Programming Tool

(SPT) [28]. A code synthesis system (e.g., [30, 27, 14]) attempts to synthesize code

based on a textual description of a manipulation. SPT’s description consists of a set

of example data structures as they are configured before and after the manipulation,

along with an outline of the expected code. The code outline contains simple log-

ical constructs (e.g., while and if statements) and placeholders where synthesized

code must be inserted. Systems like these model code synthesis as a search through

a symbolic representation of a constrained space of programs. These systems must

26

have two key properties: the ability to constrain the symbolic space of programs, and

the ability to search in it. These systems use the code outline to define this sym-

bolic search space, and the pointer assignments in the examples’ input and output

states to constrain it. More succinctly put, code synthesis is the process of solving

the constraint problem defined by the code outline and the set of examples consist-

ing of structures’ input and output states. Engaging CoMo in its mixed-initiative

symmetric-multimodal interaction improves upon using a text-based code synthesis

system (like SPT) alone by:

1. Removing rudimentary dead code.

2. Engaging in a mixed-initiative, symmetric-multimodal interaction and convert-

ing data structure manipulation diagrams into the input and output states that

the code synthesis system requires.

3. Providing feedback about what kinds of scenarios to provide, namely that the

following examples suffice for SPT [28] to synthesize correct code for many

simple data structure manipulations:

(a) Examples containing structures with four, one, and zero nodes.

(b) Examples enumerating all size comparisons between the main structure

when it has 4, 1, and 0 nodes and any auxiliary structures with one or no

nodes.

(c) Examples comparing single-node structures with different values in multi-

ple structure scenarios where the structure is ordered.

4. Removing the need to provide a code outline (called a control flow graph) to

the code synthesis system by automatically selecting one.

5. Aiding the user in verifying synthesized code’s correctness by animating it,

thereby facilitating the user’s own checking of the code.

27

1.4 Interaction

CoMo’s goal is to satisfy the code synthesis system’s requirements in as natural an

interaction as possible. Previous work provides several insights into what kinds of

interactions are natural and effective, namely:

1. Direct-manipulation interfaces—those where the user can directly manipulate a

representation of the system’s underlying model—facilitate users working with

the system by exposing them to a representation of the system’s model. This

makes it easier for the user to understand why the system behaves the way it

does.

2. Symmetric-multimodal interfaces (e.g., [1])—those that employ multiple modes

of interaction for both input and output—are more flexible and feel more natural

than interfaces that use only a single mode of input. The modes can make up

for each others’ weaknesses.

3. Mixed-initiative systems (e.g., [22])—those that allow both the user and the

system to initiate interactions—are more effective than those that require the

user to follow a prescribed script.

The remainder of this section describes these points in more detail.

Direct-manipulation interfaces are interfaces that present a system’s underlying

model in a concrete form that can be manipulated in a direct way, usually by pointing

and clicking. For example, CoMo allows users to demonstrate manipulations by

updating a data structure in-place; users click and drag pointers to reassign them.

CoMo demonstrates how direct-manipulation interfaces can make abstract actions

(in this case reassigning pointers) more easily understandable by replacing them with

physical ones (in this case grabbing and moving arrows).

Symmetric-multimodal interfaces are interfaces where all modes of input are also

modes of output. Different tasks are more quickly and succinctly expressed by differ-

ent modes of communication. For example, work by Adler [1] demonstrated that tasks

like specifying an object’s direction of motion are more easily expressed by drawing

28

a line, while answering a yes or no question is more easily expressed with speech—by

simply saying “Yes” or “No.” Multimodal interfaces are able to take advantage of the

strengths of the modes they employ, while interfaces using only one mode of input

must deal with that mode’s weakness.

Mixed-initiative interfaces are interfaces that allow both the user and the system

to initiate or guide an interaction. These sorts of interfaces remain dynamic and

responsive by guiding the user through a task (e.g., by keeping a list of steps to

perform) while allowing them to change the interaction’s focus (e.g., jumping ahead

a step) at any time. CoMo’s interface is mixed-initiative because either the user or

CoMo can initiate an interaction, e.g., by asking a question or giving a command.

Interactions differ by domain. For example, circuit diagrams are drawn with

different symbols than chemistry diagrams. To draw data structure manipulation

diagrams, I needed to determine how people draw operations on data structures. To

find out, I conducted a user study that paired 10 experts with 10 novices, and asked

the experts to explain a linked list reversal and a binary tree left rotation to the

novices. Chapter 3 discusses the user study and describes the interesting interactions

observed, namely that:

1. Teachers tend to ask students what they know before starting to explain some-

thing.

2. Teachers tend to describe manipulations in terms of before and after states, but

sometimes explain the process of the manipulation in detail.

3. Visual vocabularies are easily learned, understood, and used by people.

4. Teachers sometimes used an unannounced, unexplained drawn shorthand that

was immediately understood by students.

5. Interactions were mixed-initiative in the sense that teachers generally initiated

interactions by explaining a manipulation, but students also initiated interac-

tions by asking questions.

6. One subject drew a question when verbal communication repeatedly failed.

29

1.5 Contributions

The contributions presented fall in three categories. The first contribution includes

the findings from a user study, presented in Chapter 3. The second contribution is

CoMo, the first conversation-to-code smart whiteboard system, capable of holding

a mixed-initiative symmetric-multimodal interaction about 50 manipulations on 8

structures and correctly synthesizing functioning C code. The third contribution is the

novel mixed-initiative code-generation framework (MICGF) that CoMo implements

to engage in interactions about data structure manipulations, described in Chapter 5.

30

Chapter 2

Related Work

CoMo is motivated by two fields of research: programming by example (PBE; some-

times called programming by demonstration, or PBD, since the examples are demon-

strated) and multimodal systems—systems that employ multiple modes of input (and

sometimes output, also). As Lieberman [21] explains, work in programming by exam-

ple has two dominant approaches: creating systems that have a strong background in

AI and theory, and systems that rely heavily on heuristic approaches. Generally these

systems’ implementations start by performing exploratory user studies to determine

how best to structure the user interaction and often end with evaluative user studies

that determine how effective the system was at interacting with the user. This chap-

ter discusses some exploratory user studies, the systems that were created with the

insights from those studies, and finally it discusses some interesting evaluative user

studies that reveal more about sketch-based interfaces.

Adler and Davis [2] and Bischel et al. [6] performed two separate studies showing

that multimodal human interactions are complex, and interaction practices may vary

slightly from domain to domain. Adler and Davis sought to determine what natural

interactions about circuit diagram drawings look like. They explored the uses of color

and gesture with a multimodal system by asking a subject to explain a mechanical

system to a researcher. The study’s setup allowed the researcher to guide the inter-

action but removed the ability to observe how a natural human-human interaction

of this kind would proceed without the influence of the researcher. Since I wanted

31

to observe natural interactions between an expert and a novice, my study removed a

researcher from the dialog. Bischel et al.’s continued work sought to create a sketch

recognition system capable of accurately distinguishing gestures from non-gestures.

Their user study focused on mechanical diagram drawings also, however like my study,

the researcher was not involved in the discussion.

Plimmer and Apperley [26] provide more motivation for CoMo. They conducted

a user study that found the flexibility inherent in sketch-based interfaces leads users

to do more revisions of a graphical user interface design, which results in better final

designs. Cossairt et al. [11] showed a similar result in the domain of mathematics

problems. Their system recognized written set equations and generated a Venn dia-

gram representation. In a user study they performed, they found that students using

the system were better able to complete a math quiz on set equations than those

using pen and paper alone. This result is likely due to the fact that there is a dif-

ference between how easily understood a visual representation (like a Venn diagram)

is and how much harder it is to parse a written representation (like a set equation).

By parsing the set equations for students, they were able to focus on parsing and

understanding the visualization and did not have to parse the set equations. This is

a very similar task to CoMo’s—parsing, abstracting, and visualizing a user’s sketch

in a way that makes it easier to understand—the two major differences being the

different domain and the direction of the task CoMo performs. Instead of converting

a textual representation (set equation) of a problem to a diagrammatic one (Venn

diagram), it converts the diagrammatic representation (data structure manipulation

diagram) to a textual one (code).

Another motivating user study is presented by Good et al. [12]. Their study found

that humans are not adept at remembering specifics like corner cases when specifying

the exact rules to describe an observed behavior in a video game. In fact, errors

of omission were the most frequently performed kind of error the subjects performed

(74% of all errors). This observation greatly motivated CoMo’s questions; it is another

reason that CoMo asks questions about corner case examples.

Based on Adler and Davis’ user study (above), Adler built a system that served as

32

CoMo’s greatest motivation. He called the system Midos [1] and coined the phrase

“symmetric-multimodal user interface” to describe it. Midos is a system that allows

users to qualitatively describe a physical system (like a Rube Goldberg machine) by

specifying things like which block hit which block, and how the resulting collision

affects them. It determines which question to ask by qualitatively simulating the

physics of the scenario, determining what it does not know about that simulation,

and asking a clarifying question. There are two major differences between Midos

and CoMo: the domain and the exact method used to generate questions. The

second difference results directly from the first: while Midos asks about holes in

its understanding of a simulation, CoMo has no simulation to query, and so uses a

predetermined list of examples shown to work with its code synthesis system.

Traynor et al. [34] report on a study about their system with very similar goals

as CoMo: enabling non-experts with a system that facilitates interaction. Their

system attempts to enable non-technical end users to to exercise the capabilities of

a geographic information system by using Modungo et al.’s [24] programming by

demonstration language. Their study found that, despite its shortcomings, their vi-

sual PBD interface is preferred over alternatives such as using SQL. Similarly, Kahn’s

ToonTalk [19] is a system that attempts to make expert tasks more accessible to non-

experts—in this case focusing on programming. Like CoMo, this system abstracts

programming concepts with real-world objects. However, instead of boxes and arrows,

it uses the analogy of a town with working robots in it.

Bauer et al.’s Trainable Information Assistants (TrIAs) [5] cooperate with users to

solve a problem. Like CoMo, TrIAs are agents that are specialized to help a user with

a single task in a mixed-initiative interaction. Users can do things like give examples

and hints to the system while the system can do things like ask for more examples

and present its current hypothesis to the user. Unlike CoMo, these agents do not

interact with the user multimodally with speech and sketch; instead, interaction is

limited to a traditional WIMP interface [16].

Buchanan et al.’s CSTutor [8] is very similar to CoMo; differences arise from its

different goal: CSTutor teaches students simple data structure manipulations. In

33

contrast, CoMo is capable of discussing a data structure manipulation and gleaning

enough information to initiate code synthesis with. This difference can be anthropo-

morphized by saying, CoMo is a student that attempts to learn a new data structure

manipulation whereas CSTutor is (as the name suggests) a tutor, attempting to teach

a data structure manipulation. As a result, CoMo was programmed with knowledge of

what pointers and nodes are instead of, like CSTutor, with the details of its structures

and manipulations.

Alvarado et al. [4] created a system called LogiSketch, that simulates drawn digital

circuit diagrams. LogiSketch is similar to CoMo in that it automates a task for users,

however it differs both in the method of interaction (LogiSketch does not interact

multimodally) and in the domain. CoMo’s interaction was, in part, motivated by

two findings from the pilot study they performed: that large sketches tend to get

messy and hard to understand after some time, and that subjects were engaged in

the interaction. Like LogiSketch, CoMo cleans users’ diagrams to help de-clutter the

canvas but also generates sketches itself whenever possible, thereby further avoiding

user-introduced visual clutter.

Chen et al. [9] created a system called Sumlow that recognizes Unified Modeling

Language (UML) diagrams and allows them to be exported to a third party CASE

tool. They evaluated their system based on Green and Petre’s “Cognitive Dimen-

sions” [13] and found that, when compared with traditional CASE tools, Sumlow

benefited from the flexibility that a sketch-based interface allowed, but suffered from

sketch recognition errors.

Kaiser [20] showed with a user study of their system that multimodal speech and

sketch help to disambiguate one another, creating user interfaces that aid users in

avoiding errors by using the strengths of each mode of input. Further, the system

attempts to learn to better itself, which is roughly related to what CoMo attempts

to do.

Mangano et al. made a system, called Calico [23], with a goal similar to CoMo’s:

aiding users in design. They evaluated Calico by running a pilot study involving 16

pairs of participants designing a traffic light simulator with the system and found

34

that Calico helped users even if they did not use all of its features. Mangano et al.

determined that more training may be necessary for people to take full advantage of

their system’s features.

One final system that warrants mention is Roy’s Synbad [27]. Like SPT [28],

Synbad uses a SAT solver to synthesize code from constraints derived from a set

of concrete examples of manipulations, but boasts an improved synthesis time over

SPT. Future versions of CoMo may wish to take advantage of Synbad’s improved

runtime.

35

Chapter 3

Observational User Study

In this chapter, I describe a user study that I conducted to observe how data structure

manipulations are explained at a whiteboard. I asked pairs of subjects to discuss two

data structure manipulations and ensured that the pairs consisted of one subject who

was familiar with the manipulations (e.g., a computer science undergraduate) and

one who was completely unfamiliar with them, even how they were drawn. The user

study presented here served as a guide to CoMo’s interaction. In this user study I

concluded that CoMo should:

1. Remember the names of the data structures and manipulations it has encoun-

tered and recall them when asked.

2. Use direction to determine what kind of pointer an arrow represents.

3. Allow the user to describe manipulations either as input and output states or

with detailed pointer manipulations.

4. Allow the user to edit structures in place.

3.1 Participants

I recruited 20 undergraduate volunteers and asked each one:

1. whether they were a CS major

36

2. whether they had heard of a linked list

3. whether they had heard of a binary tree

4. when they were available to participate

Based on their response, each was classified as either a “teacher” or a “student.”

Teachers and students were paired based on their availability, and asked to spend an

hour in a conference room teaching and being taught the manipulations. Subjects

were not notified of whom they were paired with before the session began.

Teachers Students

Male 9 2
Female 1 8

Right-handed 9 9
Left-handed 1 1

Electrical Eng. and Comp. Sci. (EECS) 7 -
EECS & Math 3 -

Undeclared - 4
Mechanical Engineering - 3

Brain and Cognitive Sciences (BCS) - 1
Chemistry & Linguistics and Philosophy - 1

Music and Theater Arts & BCS - 1

Table 3.1: Participants’ Demographic Information

Table 3.1 describes the participants’ demographic information1. Teachers had

taken an average of three relevant computer science courses that included topics such

as “Introduction to CS,” “Software Engineering,” and “Algorithms.” Two out of the

ten students had taken a “CS for non-CS Majors” course. One student had taken

“Advanced Placement CS” in high school. Two students had some past experience

programming. No students had been taught anything about either of the data struc-

ture manipulations before the session.

1Two of the undeclared students planned on declaring EECS.

37

3.2 Procedure

Each session consisted of a teacher describing two data structure manipulation de-

scriptions to a student, one manipulation at a time. I chose two simple data structure

manipulations: a singly-linked list reversal and a binary tree left rotation. The teacher

was asked to teach the linked list reversal first because it was simpler and students

were complete novices. I assumed that easing them into the abstract concept of data

structure manipulations would make it more likely that students could learn the ma-

nipulations effectively, thereby engaging in interesting interactions to study. Unlike

[2], I decided against participating in the conversations, as I wanted to observe how

data structure manipulations were both learned and taught as well as what form the

learning interactions would take without my influence.

a

head

b c a

head

a

head

b c d e f

(a) Reverse these lists.

root

2

8

4

1 6

53

7

9

10

1

2

(b) Balance this tree.

Figure 3-1: Exercises teachers were asked to give students.

To test the students’ understandings, teachers were asked to give their students a

set of prepared exercises (Fig. 3-1) at the end of each description.

Sessions were held at a whiteboard in a private conference room and videotaped.

The camera was visible to the subjects throughout the session. Before the session

began, subjects were briefed privately in the same room. Each briefing consisted of

asking the subject to read and sign a consent form. Next, the subject was asked to

review printed instructions and ask any questions they might have. The teacher was

38

briefed before the student. The subject not being briefed was asked to step out of

the room during their partner’s briefing. When both subjects had been briefed and

all their questions had been answered, the camera was started and they were asked

to begin the linked list reversal description.

During the descriptions, I remained in the room working at a computer with my

eyes averted from the subjects. My purpose was to start and stop the camera and

ensure it was working during the descriptions. I did not interact with the subjects or

answer questions during either description, however, subjects were given an opportu-

nity to ask questions between descriptions. I took them out of the room to answer

any questions they might have individually.

After both descriptions were done, the subjects were given a two-page question-

naire that presented ten statements the subject was asked to evaluate on a five point

Likert scale, asked them to provide demographic information including their previous

programming experience, and gave them an opportunity to give any additional com-

ments on the session. Subjects were informed that their partner would not see their

responses, and that I would not look at them until they left the room. The teachers’

and students’ questionnaires differed slightly in their Likert statements (discussed

below). When they completed their questionnaires, subjects were thanked and com-

pensated with two movie ticket vouchers.

3.2.1 Instruction Sheets

Teachers and students were given different instruction sheets. The teachers’ instruc-

tion sheets consisted of two double-sided pages, the first page outlined the linked list

reversal, the second outlined the binary tree left rotation. The fronts of these pages

contained brief descriptions of the manipulations they were to teach, and the backs

contained exercises to give to the student after they understood the manipulation

(Fig. 3-1). I ensured that the teachers were already familiar with the manipulations

presented; the data structure manipulation instructions were there only to ensure

the teachers had an aide to get back on track, should the need arise. A cover sheet

was included with the teachers’ instructions. This stressed four key points (discussed

39

below) to ensure a rich interaction took place. The students’ instructions were much

simpler. They consisted of one single-sided page explaining, at a high level, what data

structures and data structure manipulations are. I ensured that students had little or

no experience with data structures, so their instruction sheets presented them with

some example data structure diagrams as well (Fig. 3-3).

Teachers’ reminders:

1. Explain the process—don’t just write pseudo code.

2. Don’t worry about being perfect, do your best. You are acting as a
teacher—this is not a job interview.

3. Do your best to make sure your student understands the manipula-
tion before showing them the examples.

4. Use this prompt only as a guide. Do not show your student this
prompt as a teaching aide.

Students’ reminders:

5. Ask questions if something is confusing.

6. It’s okay to draw on the board, yourself.

Figure 3-2: Reminders presented to subjects in order to encourage a rich interaction.
These were placed on the front sheet of subjects’ instructions.

Teachers’ cover sheets and students’ instruction sheets made an effort to stress

things that would encourage a rich interaction. Fig. 3-2 quotes the reminders in the

instructions I gave. I wanted to avoid situations where the teacher simply wrote

pseudo code to explain the manipulation (item 1), was overly nervous about getting

the details right (item 2), or showed the student the images on the prompt instead

of drawing on the whiteboard themselves (item 4). I also wanted to ensure the

student understood the manipulation before being given the exercises (item 3), and

was willing to ask questions (item 5) and use the whiteboard themselves, without

making the student feel as though they must (item 6).

40

3.3 Hypotheses

Before beginning the study, I posited several hypotheses. These hypotheses came

from my previous experience in teaching computer science, and from my previous

work in designing and creating sketch interfaces. The first hypothesis—implicit in the

teachers’ instruction sheets—was that having someone successfully complete exercises

can determine whether a person understands a manipulation.

loop

a b

cd

pascal

1

1 1

11 2

1 13 3

top

John

Xiao

Dieter

(a) Data structure vocabularies presented to students.

a

head

b c d

root

2

3 5

1 4a z

head

root

2

74

1 6

53

(b) Data structure vocabularies presented to teachers.

Figure 3-3: Sample visual data structure vocabularies presented to subjects.

I hypothesized that for the purposes of creating a system capable of holding a

limited multimodal conversation, fixing the system’s sketch vocabulary—the set of

symbols the system recognized—would simplify implementation without sacrificing

usability. I further hypothesized that the sketch vocabulary consisting of nodes drawn

as boxes or circles and pointers drawn as arrows would be one such vocabulary.

Fig. 3-3 shows a sampling of the example structures I presented to subjects in their

instruction sheets. I settled on this vocabulary, because I use it myself, and I have

noticed teachers and colleagues use it.

In traditional classroom environments, students draw only on their notepads. The

41

teacher is the only one expected to draw on the whiteboard unless a student is ex-

plicitly instructed to do so. I hypothesized that—despite being explicitly labeled as

“student” and “teacher”—the student would naturally interact with the whiteboard

during the sessions, because people learn better when interacting with the same sur-

face.

My final hypothesis was that, not only do people prefer interacting with the same

surface, but they prefer interacting with the same structure. That is, I hypothesized

that when teachers drew the required exercises to test their students’ understanding,

the student would prefer to draw over the same structure as opposed to drawing a

new structure that reflected the changes.

3.4 Limitations

Students’ prompts may have overly biased them to draw at the board by including

item 6, weakening my ability to draw a positive conclusion on the “same surface”

hypothesis.

Studying pairs consisting of one expert and one novice prevented me from deter-

mining how people might cooperate to settle on a visual vocabulary. With this study’s

setup, I cannot determine whether more experienced students may have attempted

to alter the visual vocabulary their teachers presented.

Asking teachers to give students exercises may have biased them toward confirm-

ing the hypothesis that successfully completing exercises accurately tests students’

knowledge. On the other hand, it gave me the opportunity to see whether they

strongly disagreed with it, as they were free to choose not to give any exercises.

I asked participants to discuss only simple data structure manipulations. Had I

asked the subjects to discuss more complex manipulations, I may have gotten more

interesting observations involving aspects of more complex manipulations. For exam-

ple, the structure of this study did not allow me to determine how people describe the

balancing algorithm involved in an AVL tree. I decided against using more complex

manipulations for practical reasons; finding a student demographic that was knowl-

42

edgeable enough to understand these more complex manipulations but that had not

yet seen them would be prohibitively difficult.

3.5 Results

The videos and questionnaires were reviewed and aggregated. This section reports

the aggregate results.

3.5.1 Analysis

 0
10
20
30
40

 1 2 3 4 5 6 7 8 9 10D
ur

at
io

n
(m

in
)

Session Number

(a) The durations of each description by session, with averages.

 0
10
20
30
40
50
60
70

 1 2 3 4 5 6 7 8 9 10

D
ur

at
io

n
(m

in
)

Session Number

(b) Combined total of both descriptions by session, and average.

Figure 3-4: The time it took each session’s descriptions and their sum.

Fig. 3-4 shows each description’s duration. The blue bars (left) in Fig. 3-4a show

the first session (linked list reversal) and the green bars (right) show the second session

(binary tree rotation). The blue line (lower) denotes the average linked list time of

12:58 and the green line (upper) denotes the average binary tree time of 23:51. Tree

descriptions took 84.4% longer on average. Plots in Fig. 3-4b are the sum of the plots

in Fig. 3-4a. The shortest session (8) took 19:39 and the longest (9) took a total of

63:26. Average session length was 36:47 (denoted by the horizontal line in Fig. 3-4b).

43

All durations were measured between the time the teacher began talking about the

data structure manipulation and the time the student completed the final exercise.

Unsurprisingly, list reversals took much less time than tree rotations on average.

However, in sessions 1 and 9 the list reversals took more time than the tree rotations.

After reviewing the recordings of these sessions, I determined that there were two

different reasons for this. In session 1, the teacher was quite nervous and ended up

stumbling over themselves. By the second description, they had relaxed enough that

the description went more smoothly and thus more quickly. In session 9, the partici-

pants happened to know each other2. The teacher knew that the student wanted to

be a computer science major, so in addition to describing the manipulation in great

detail, they also described the inner workings of a computer to clarify why algorithms

must proceed as they do. For example, the teacher explained why temporary pointers

are needed: they ensure memory references are not lost. This extensive background

knowledge did not need to be repeated, so the second description (though more com-

plex) took less time.

Though students were explicitly told they could draw on the board, their instruc-

tions did not require them to do so. As a result, the students in sessions 3 and 9

sat at a table and took notes on their instruction sheets. They did not get up to

interact with the teacher at the board before the exercises were given. To reference

something on the board while asking a question, these students pointed at the item

they were referencing without getting up from their seats. Student 9 came up only

to perform the exercises the teacher gave them. Interestingly, student 3 attempted to

do the exercises on their instruction sheet. For the simple linked list manipulation,

this was not a problem. For the tree manipulation, however, the student had trouble

working through the exercise on their own, and approached the board to work with

the teacher’s initial drawing. This suggests that working with the same drawing may

make it easier to think through manipulations than attempting to memorize the ma-

nipulation and work on a separate surface. However, since this is this study’s only

observation of this kind, I cannot draw a concrete conclusion.

2Remember: subjects were not told whom they had been paired with until entering the room.

44

I enjoyed explaining the binary search tree rotation.

Most of the time during the LLR was spent on questions.

The session went by quickly

I enjoyed explaining the linked list reversal.

We spent a lot of time clarifying things.

I spent more time talking than the student.

Two people is probably too many for one white board.

Most of the time during the BTR was spent on questions.

Some questions were confusing.

The student interrupted often to ask questions.

Strongly
Disagree Neutral

Strongly
Agree

(a) Statements presented to teachers.

I found the binary search tree description interesting.

Most of the time during the LLR was spent on questions.

The session went by quickly.

I found the linked list description interesting.

We spent a lot of time clarifying things.

I spent more time talking than the teacher.

Two people is probably too many for one white board.

Most of the time during the BTR was spent on questions.

Understanding the binary search tree rotation was easy.

Understanding the linked list reversal was easy.

Strongly
Disagree Neutral

Strongly
Agree

(b) Statements presented to students.

Figure 3-5: Subjects’ responses to qualitative questions on a 5-point Likert scale.
Average responses are displayed between minimum and maximum values. Note that
the manipulation names were abbreviated to fit in the figure; subjects were presented
with unabbreviated text.

45

Fig. 3-5 shows the aggregate results of subjects’ level of agreement or disagreement

with the statements. These questions were meant to determine whether the general

structure of the interaction was correct, i.e., whether interactions of this kind were

enjoyable for the subjects. I found that teachers did not think an unusual amount

of questions were asked and that they felt they understood the questions that were

asked. Unsurprisingly, students found the tree manipulation to be more difficult to

understand than the list manipulation and were slightly more critical of themselves

than the teachers were of them. Teachers and students agreed that teachers spent

more time talking than students and that subjects were comfortable writing at the

board together. In all, I determined that the interaction was enjoyable and productive

for both subjects.

In seven of the ten sessions (eight of the twenty descriptions) the teacher began

by asking the student whether they had heard of the data structure, for example by

asking, “Have you heard of a linked list before?” or “Do you know what a linked list

is?” In each case, the student replied that they had not, so the teacher started by

explaining what the data structure was, why one might use it, and (in some cases)

how it differed from similar structures.

Session 3 was one such session. The teacher asked the student, “Do you know

what’s a tree in computer science?” Due to the teacher’s accent, the student mis-

understood the teacher to be asking if the student knew how to represent a three in

binary. After repeated verbal attempts to clarify what they meant, the teacher finally

drew a biological tree and a binary tree. They pointed to the drawing of the binary

tree and asked the student if they had seen one before. This was an unexpected

observation. When verbal communication failed, the teacher resorted to the next

available mode of interaction: sketch. This successfully communicated the question

and the interaction was able to continue.

In eleven of the twenty descriptions, teachers used the visual vocabulary presented

in the instruction sheet. In eight of twenty descriptions, the visual vocabulary used

was very similar, but not identical. In only one instance (the list description in

session 1) was the vocabulary used significantly different from the one presented in

46

(a) An example of the vocabulary used in session 1 for the linked list reversal. Note that it
is significantly different from the vocabulary presented in the instruction sheet.

(b) An example of the vocabulary used in session 1 for the binary tree left rotation. Note
that it is nearly identical to the vocabulary presented in the instruction sheet.

Figure 3-6: Examples of the vocabularies used in the first session.

the teacher’s instructions. Fig. 3-6 shows an example of the vocabulary used in

session 1. This suggests that the vocabularies I chose were reasonable, supporting

my hypotheses. Further, in all descriptions, students copied their teachers’ visual

vocabularies with no apparent difficulty3. This, again, supports my hypothesis that

setting a visual vocabulary does not interfere with a person’s ability to understand

a data structure; even complete novices are able to quickly learn and understand

the meaning of structures drawn with this visual vocabulary. Once teachers chose

a vocabulary, they did not change it. However, in four of the twenty descriptions

3Recall that this was the first time students had seen drawings of this kind.

47

teachers spontaneously introduced a shorthand sketch vocabulary. Presumably to

speed up drawing, teachers omitted the outline of nodes (drawing only its contents,

e.g., “a” or “7”) and the heads on arrows (drawing them as simple lines). The only

characteristics defining the data’s structure were nodes’ and lines’ relative positions.

For example, binary trees were drawn with left and right children at their bottom

left and bottom right, connected by a line. Fig. 3-7 shows an example of the type

of shorthand observed (top-right) next to an example of the visual vocabulary used

throughout most of the conversation (left). The placement of the nodes and pointers

was unambiguous and consistent enough for the student to understand the new visual

vocabulary immediately, without the need for an explanation.

Figure 3-7: An immediately understood visual shorthand.

In six of the tree descriptions (but none of the list descriptions), teachers gave their

students additional exercises before giving them the exercises in their instructions.

This may indicate that one way people choose to verify someone else’s understanding

is to quiz them. However, this observation may have been due to the bias present in

the instruction sheets; asking the teachers to give examples likely influenced them.

Due to this bias, I cannot conclude that successfully demonstrating examples neces-

sarily means a person understood a manipulation fully.

In all but session 9, teachers demonstrated the manipulations by drawing the state

of a structure with a concrete number of nodes as it appears before and after the

48

manipulation. They did not go into the details of explaining the need for temporary

pointers or how to manage memory4. This suggests that the way humans think

about data structure manipulations is in terms of input and output states. There is

an important distinction between the desired manipulation (defined by its results) and

the code that implements that manipulation (largely influenced by the constraints of

computer architectures and programming language requirements). The difference lies

in details such as how to maintain memory (e.g., not dropping nodes and avoiding

dangling pointers). This observation demonstrates the difficulty students have when

learning to program, validating one of the findings from Good et al. [12]; people do

not naturally think about code and algorithms, they think about states and effects.

The final interesting qualitative observation I made was that three students at-

tempted to perform exercises on the binary trees their teachers drew. Instead of

redrawing the trees in their rotated states, these students erased and redrew elements

of the tree to reflect the change. However, in all cases they gave up their attempts to

edit the original structure and instead drew the end state next to the original drawing.

After reviewing the videos, I determined this decision likely due to the complexity of

tree rotations combined with the tedious nature of erasing and redrawing parts of a

data structure with physical ink.

3.6 Architectural Implications

The above analysis suggests that CoMo needs to be able to do the following:

1. Remember the names of the data structures and manipulations it has encoun-

tered and recall them when asked.

2. Use the direction an arrow is drawn in to determine what kind of pointer it

represents.

3. Allow the user to describe manipulations either as input and output states or

with detailed pointer manipulations.

4Recall that in session 9 the teacher and student were friends. The teacher gave a thorough
explanation of how to implement the manipulations, not just a description of what they were.

49

4. Allow the user to edit structures in place.

In this section I describe the features included in CoMo that resulted from these

requirements.

3.6.1 Remembering Names

As described above, descriptions often began with teachers asking questions like, “Do

you know what a linked list is?” Had the student answered affirmatively, the teacher

would not have had to explain the structure and the interaction could have moved on

to the explanation of the manipulation. Presumably, they may have even asked “Do

you know how to reverse a linked list?”

As a result of this observation, CoMo remembers the names of structures and

manipulations that it has encountered. With this simple memory, it can answer

questions of the sort seen in the study. For example, when asked “Do you know

what a linked list is,” it can answer “Yes.” and display a linked list description

from a previous interaction. This results in a far more succinct explanation, and it

eliminates one source of possible user errors: explaining the structure.

3.6.2 First-Pass Geometry Heuristic

Based on the observation that subjects understand geometrically consistent short-

hands, CoMo’s initial classification of arrows as pointers relies on the direction the

arrows were drawn in. For example, when drawing a doubly linked list, CoMo takes

note of the direction that next and prev pointers are drawn. When a new pointer is

drawn, CoMo compares the new pointer’s direction to the direction of all previously-

drawn next and prev pointers, and classifies the new arrow as the type of pointer

with the most similar direction.

3.6.3 Input and Output States

Since the majority of the descriptions observed in the user study consisted of teachers

describing only before- and after-state pairs, CoMo assumes the user will draw a

50

structure and edit it in-place. For example, when reversing a linked list, CoMo

assumes the user will draw a list with some concrete number of nodes and then

click-and-drag the pointers’ heads to reorder the list in reverse. CoMo then uses

these before and after states to synthesize code. Requiring the user to think about

the order of operations, dropped nodes, and temporary pointers are implementation

details that are not important for the purpose of understanding the manipulation, so

CoMo fills in these omitted implementation details.

However, since one pair of subjects worked through the exercises on a pointer-by-

pointer basis, CoMo also allows users to work through the process of a manipulation,

pointer-by-pointer as a computer would. As it turns out, the code synthesis system

that CoMo uses accepts only input- and output-state pairs. So, regardless of whether

the entire process is outlined or just the before and after states, CoMo (and its code

synthesis system) use only the first and last states of each example to synthesize code.

3.7 Summary

This chapter presented results from an observational user study I performed. I asked

pairs of subjects consisting of one expert and one novice to discuss a linked list reversal

and a binary tree left rotation. I confirmed the hypotheses that a visual vocabulary

consisting of nodes drawn as boxes or circles and arrows is reasonable and that fixing

a vocabulary does not appear to interfere with a person’s ability to understand a

data structure manipulation. I made some interesting and unexpected observations,

including:

1. Teachers sometimes ask about whether their students had heard of the structure

before beginning the explanation

2. One teacher drew a question when verbal communication repeatedly failed

3. The vast majority of teachers explained manipulations as a set of input and

output states on concrete examples.

51

The findings and observations from this study guided CoMo’s implementation.

The following features were implemented as a direct result of the study:

1. CoMo remembers the names of the data structures and manipulations it has

encountered and recalls them when asked.

2. CoMo uses direction to determine what kind of pointer an arrow represents.

3. CoMo allows the user to describe manipulations either as input and output

states or with detailed pointer manipulations.

4. CoMo allows the user to edit structures in place.

5. CoMo attempts to mimic the user’s drawing style by copying their drawn sym-

bols when generating structures of its own.

The next chapter describes CoMo from a user’s point of view. It goes through an

example interaction with CoMo, and highlights several interesting features. Chapter 5

continues the description of CoMo, by explaining the mixed-initiative code-generation

framework that CoMo implements to guide the interaction.

52

Chapter 4

CoMo: an Overview

This chapter describes the interaction with CoMo from a user’s point of view. It

describes what CoMo requires and how that affects its interaction with the user.

Chapter 5 describes the same interaction presented in this section, but from an im-

plementation perspective.

4.1 Basis on the User Study Findings

Based on the findings from the user study presented in Chapter 3, CoMo implements

the following features:

1. CoMo remembers the names of data structures and manipulations and is able

to recall them when asked by the user to do so.

2. CoMo recognizes pointer types based on the direction they are drawn in.

3. CoMo allows the user to describe manipulations either as input-output state

pairs or as a detailed manipulation process.

4. CoMo allows the user to edit structures in place.

5. CoMo attempts to mimic the user’s drawing style by copying their drawn sym-

bols when generating structures of its own.

53

Before demonstrating these features in use by describing an example interaction, the

next section describes the user interface that CoMo presents the user. The follow-

ing section describes an interaction with the assumption that the user is completely

familiar with CoMo.

4.2 The User Interface

Before diving into the details of an example interaction with CoMo, this section

describes the interface presented to the user.

Figure 4-1: CoMo’s User Interface

Fig. 4-1 shows CoMo’s user interface. The largest space is reserved for the canvas—

the area of the screen that can be drawn on and serves as the primary mode of input

to and output from CoMo. The user draws in this area and CoMo interprets the

54

drawings as data structures. Above the canvas is a row of tabs corresponding to

separate canvases. As the interaction with CoMo continues, more tabs appear as

more canvases are created—either when the user says, “Make a new canvas” or when

CoMo creates one to ask a question about an example data structure.

Figure 4-2: CoMo’s Interface: Populated

Fig. 4-2 shows the canvas after some interaction with CoMo. The bottom-left

corner of the canvas displays the most recently heard utterance, the top-left corner

displays a status message to the user, and the top-right is reserved for synthesized

code. In this figure, we see CoMo after having completed animating the code seen

in the top-right. The phrase “animate the code” appears at the bottom, because it

was the user’s utterance that initiated code animation. Code is highlighted in green

when playing; we see that CoMo has just finished animating the final line of code.

55

4.3 Linked List Find Last

This section goes through an example of a user describing to CoMo how to find the

last element of a linked list.

4.3.1 Initiating the Discussion

The user must initiate the interaction by either drawing a concrete example of the

manipulation or asking if CoMo has heard of a linked list before. The user begins by

asking, “Do you know what a linked list is?” CoMo responds by saying, “No” and

awaiting further input.

Figure 4-3: The user draws a general list.

(a) CoMo: “What does this expand to?” (b) User: “To this or this.”

Figure 4-4: CoMo questions how to inductively define the ellipsis.

The user continues by explaining what a linked list is, drawing the sketch seen

in Fig. 4-3. CoMo sees an ellipsis in the general structure and interprets this to

56

mean there is some repeating pattern. It cannot infer what that patten is from the

information given, so it asks, “What does this expand to?” while displaying a copy of

the ellipsis at the top of a new canvas. Fig. 4-4 shows the user’s response, consisting

of two options: a node linked with another ellipsis, and a single node.

Figure 4-5: An automatically generated list with four nodes that CoMo uses to ask
its first question: “How do you handle this case?”

Figure 4-6: The user adds the rtn pointer to make this first state reflect how the
manipulation begins.

Now that CoMo understands the structure that the user is talking about, it gen-

erates the list with four nodes displayed in Fig. 4-5 and asks, “How do you handle

this case?” There is one element missing from this example: the pointer that marks

the end of the list. The user draws a rtn pointer pointing to the null symbol in the

57

Figure 4-7: The user demonstrates the manipulation and says, “Like this.”

drawing1 (Fig. 4-6), clicks and drags the head of the rtn pointer to point at the end of

the list, and says “Like this.” CoMo reacts to the user’s input in real time, displaying

the last-heard utterance at the bottom left of the canvas and moving the arrow as

the pen moves across the canvas, snapping it to the d node when the user releases the

arrowhead by lifting the pen. Fig. 4-7 shows the digital canvas after the user makes

the addition, update, and utterance.

While not as complex as a conversation between two humans, the interaction is

more similar to a typical human-human interaction than it is to a normal computer

programming session. The user approached the board with a manipulation in mind

and, as though CoMo were human, started the interaction by asking a simple question:

“Do you know what a linked list is?” When CoMo responded that it did not, the user

explained by describing what that structure is, and then what a “find last” operation

on one looks like.

CoMo allows the user to focus on describing the details that are important to the

manipulation. Not once in the interaction has the user had to worry about memory

management, the order of operations, or the structure of the code required to perform

this manipulation. The user is able to describe nodes’ contents abstractly, using labels

1The user must draw the rtn pointer pointing at the null symbol initially to indicate its initial
state to CoMo. If the pointer were initially drawn pointing at the final element in the list, CoMo
would not know that the manipulation is to start with rtn pointing at null; it would assume that
the manipulation starts with rtn pointing at the last element.

58

like “a” and “b.” Each node’s pointer may be named “next,” but that is a detail

that can wait until the user is ready to address it. Further, since CoMo has remained

responsive to the user’s input by updating the sketch as the user draws new elements

and modifies them, a user familiar with CoMo will know how CoMo interpreted the

interaction.

4.3.2 Continuing the Discussion

Aside from the explicit knowledge of what the input and output states of the provided

example look like and the description of the general list, CoMo has been able to infer

several pieces of information from the above sketches, namely:

1. Two structures are required in this manipulation.

2. One structure has the pointer: head.

3. The other structure has the pointer: rtn.

4. Nodes in this structure have one pointer, name unspecified.

With this information, CoMo is able to determine what questions remain to be asked.

This section goes through the dialogues that take place about these questions.

At this point, the user has finished explaining what a linked list looks like, and

drawn the result of the find-last manipulation being performed on a list with four

nodes. Ideally, CoMo could start synthesizing code, however as detailed in Chapter 5,

for the Storyboard Programming Tool (SPT) [28] to synthesize code correctly, several

representative cases must be addressed. These cases are:

• A structure with four, one, and zero nodes, or—if there are multiple structures—

the power set of comparisons between the main structure with four, one, or zero

nodes and the auxiliary structure (or structures) with one or zero nodes2.

2E.g., in a stack push the main structure is the stack, and the secondary structure is the node to
push onto the stack.

59

• Comparisons between structures with one node each when one structure’s node

has a value greater than or less than the other’s3.

For the linked list find-last manipulation presented to CoMo here, CoMo identifies

head as the main structure and rtn as the auxiliary structure. As a result, the rules

above equate to the power set of comparisons when head points to a structure with

four, one, and zero nodes crossed with rtn pointing to a structure with one or zero

nodes. In other words, CoMo asks about the following cases:

1. The head pointer points at a list with four nodes and the rtn pointer points at

one node.

2. The head pointer points at a list with four nodes and the rtn pointer points at

null.

3. The head pointer and rtn pointer point at separate nodes.

4. The head pointer points at a list with one node and the rtn pointer points at

null.

5. The head pointer points at null and a rtn pointer points at a node.

6. The head pointer and rtn pointer both point at null.

The remainder of this section describes the questions CoMo asks to find out what to

do with these examples and how the user answers those questions.

CoMo asks the first three questions in the same way: by generating an example

structure and saying, “How do you handle this case?” The questions corresponding

to cases 1, 2, and 3 above can be seen in Fig. 4-8, Fig. 4-9, and Fig. 4-10, respectively.

All three of these questions involve the rtn pointer pointing at a node separate from

the list. These questions do not make sense to the user because the rtn pointer is

meant to act as a return statement in this manipulation. As a result, the user always

3This question requires the structure to be ordered and it requires that there be multiple struc-
tures involved in the manipulation, e.g., an ordered list insertion. SPT cannot handle comparisons
between nodes with equal values, so the case where the nodes have equal values is not included.

60

Figure 4-8: CoMo: “How do you handle this case?” User: “That does not make
sense.”

Figure 4-9: CoMo: “How do you handle this case?” User: “That does not make
sense.”

Figure 4-10: CoMo: “How do you handle this case?” User: “That does not make
sense.”

61

wants rtn to start out pointing at null, so the additional node invalidates the diagram,

as it does not have a place in the list. The user answers these questions by saying,

“That does not make sense.” This informs CoMo that these examples should not

be included in SPT’s description. CoMo acknowledges the user’s verbal answer by

displaying the understood text at the bottom-left and saying, “Okay” before asking

the next question.

(a) CoMo: “How do you handle this case?”

(b) User: “Like this.”

Figure 4-11: A question and the corresponding answer about a list with one node.

Next, CoMo asks the question seen in Fig. 4-11a, where the list has one node and

the rtn pointer points to null. As before, CoMo generates and displays the structure

while verbally asking “How do you handle this case?” Here, something must be

altered during the manipulation—the rtn pointer must end up pointing to the end

62

of the list. The user demonstrates the process to CoMo by clicking and dragging the

rtn pointer to point at the a node. Fig. 4-11b shows the state of the canvas after the

user finishes answering the question. Once they have finished updating the diagram,

the user says, “Like this.” CoMo interprets the utterance as a signal that the user is

done answering the question and acknowledges by saying “Okay.”

Figure 4-12: A question and the corresponding answer about an empty list. CoMo:
“How do you handle this case?” User: “Do nothing.”

Next, CoMo asks about what to do with the empty list (Fig. 4-12). In this

case, there is no element to point the rtn pointer to. The desired output state is

the same as the input state. The user says, “Do nothing” to answer this question.

CoMo understands this to mean that the input and output states in this example are

identical to one another. Again, CoMo signals it understands by saying “Okay.”

At this point, all of CoMo’s questions have been answered, so it says, “I think I

understand.” The user cannot think of anything else to add to the discussion, so they

initiate code synthesis by saying “Generate code.” CoMo responds by saying, “I will

try” and begins the code synthesis process.

4.3.3 Synthesis & Verification

Code synthesis is handled by the Storyboard Programming Tool (SPT) [28] and takes

less than one minute to complete on a 3.9GHz machine running Ubuntu 13.10 with

16GB of DDR3 RAM. Once the code is synthesized, CoMo displays it in the top-

63

right corner of all the examples that have been discussed, along with “Success!” in

the top-left corner, indicating code synthesis was successful.

Figure 4-13: CoMo animates the code on the initial example with four nodes.

As discussed in Chapter 5, the code that SPT produces is unintuitive. The only

way a user might verify that it works, is by running it through a test suite, or simulat-

ing it by hand on examples. CoMo facilitates the code’s verification by symbolically

animating the code on drawn examples. To begin verification, the user switches to the

first example by clicking on the tabs provided at the top of the screen, and initiates

code animation by saying “Animate the code.” CoMo resets the drawing to its origi-

nal state, adds the temporary pointers in the code that are missing from the sketch4,

and begins animating the synthesized code. As a line of code is animated, it turns

green, and its effect is shown by smoothly moving the affected pointer from its origi-

nal target to the target defined by the line of code being animated. Fig. 4-13 shows

4In the code seen in Fig. 4-13, these are the tmp1 and tmp2 pointers. SPT assumes that these
nodes were initialized to null, so CoMo points them toward the null symbol on the sketch.

64

what the user sees as the line “if(tmp1!=null) tmp2=tmp1.ptr0” is animated: tmp2

moves smoothly from the b node to the null symbol.

Figure 4-14: CoMo generates a structure with five nodes and animates the code.

As the user watches the code animate, they notice that the loop appears to execute

only once in all cases. The final line in the while loop’s body (head=rtn) assures

that the while condition (rtn!=head) will evaluate to false after the first iteration,

regardless of the size of the structure. The user knows that the only way to find the

last element of a singly linked list is to iterate down it. The user wants to test the

code on an example that CoMo has not yet seen, to verify that the code will not

iterate down a longer list. CoMo facilitates this by generating structures. The user

asks CoMo to generate a structure with five nodes by saying, “Generate a structure

with five nodes.” CoMo presents a new canvas with the requested structure and the

user says, “Animate the code.” Fig. 4-14 shows the final state of the manipulation,

with the rtn pointer pointing at the fourth node in the list—not the desired state.

The user corrects CoMo by saying, “No, like this” as they move the rtn pointer’s

65

head to the final element of the list. CoMo responds, “I think I understand.” The

user attempts code synthesis again by saying “Generate code.” “I will try” replies

CoMo, and code synthesis begins for the second time.

Figure 4-15: CoMo animates the new code on the same structure.

With the additional complexity introduced by the new example, code synthesis

takes on the order of two minutes to complete. The code seen in Fig. 4-15 is syn-

thesized and displayed in the top-right corner of the canvas. The user prompts code

animation by saying “Animate the code” and observes how the code progresses. As

the user watches this code animate, they notice that the while loop proceeds as ex-

pected, implementing an iterative solution to finding the end of the list. This code

successfully executes the manipulation, so the user verifies that the new code works

on the list with four elements (Fig. 4-16). As a final test, the user decides to try out

a list with three nodes. They say “Generate a structure with three nodes” and, once

the list is generated, “Animate the code.” CoMo animates the code on the structure

with three nodes successfully (Fig. 4-17), the user is satisfied that the code is correct

66

Figure 4-16: CoMo animates the new code on the list with four nodes.

67

Figure 4-17: CoMo generates a structure with three nodes and animates the code.

68

and the interaction is complete.

4.3.4 Labeling the Data Structure and Manipulation

As a final step, the user labels this data structure and manipulation by saying, “This

is a linked list find-last,” which CoMo parses using a simple regular expression. Recall

that the first question the user asked CoMo was, “Do you know what a linked list

is?” CoMo answered “No” because it had not ever encountered one. Now that the

user has labeled this data structure and manipulation, the structure will be recalled

in future interactions when the user asks this question, and it will recall the code and

examples when asked, “Do you know what a linked list find-last is?”

4.4 Additional Functionality

The linked list find-last example above illustrates a subset of CoMo’s abilities. This

section describes the remaining functionality.

4.4.1 A More Educated CoMo

Imagine that the user had already discussed a singly linked list reversal with CoMo

before the above scenario began. When asked whether it knows what a linked list

is, CoMo would have said “Yes” and displayed the structure definition from that

reversal interaction. This ability speeds up the interaction with CoMo and eliminates

one source of user error: describing the data structure. Similarly, the user could have

asked “Do you know what a linked list find-last is?” and CoMo would have said “Yes”

and brought up the examples and the code.

4.4.2 Labeling Pointers

CoMo recognizes that each node has the same number of the same type of pointers.

Each pointer is given a default name5 so that code synthesis functions correctly, but

5As may be apparent from the example above, that default name is “ptrn,” where n is the index
of that pointer’s type’s appearance, starting at 0. This is detailed in Chapter 5.

69

users can label pointers by drawing a name on them. Labeling pointers has no effect

on synthesis other than changing pointers’ names in the code. For example, had the

user labeled the pointers above by drawing “next” over one of them, the code would

have contained “next” pointers instead of “ptr0” pointers, but the example would

be otherwise identical.

4.4.3 Constraints

CoMo can discuss ordered data structures by recognizing drawn constraints. For

example, to discuss an ordered linked list containing three nodes labeled a through c,

the user can specify that the list is ordered by writing “a < b < c” (or the equivalent

for any pair of neighboring nodes) on the canvas. This specifies a relationship between

the nodes’ values that is used both by CoMo and SPT. When performing an ordered

linked list insertion, a constraint of this kind is present in the description. CoMo

has been programmed with the knowledge that it must ask questions comparing the

value of the node in a single-node list with the value of the node to insert. During

synthesis, SPT uses these values to synthesize conditions comparing values to one

another.

4.4.4 Multiple Pointers

Some structures have multiple pointers. For example, binary trees have left and

right pointers pointing to their left and right children and doubly linked lists have

next and prev pointers pointing to the next and previous node. CoMo is able to

distinguish pointers from one another by matching a pointer with the direction it is

generally drawn in.

Fig. 4-18 shows the diagrams drawn to describe a doubly linked list to CoMo. As

with the equivalent diagram for a singly linked list, first the user draws the general

structure of the list (Fig. 4-18a) and after being asked what the ellipsis represents,

they draw an explanation of what the ellipsis represents (Fig. 4-18b). CoMo is able to

recognize that the pointer coming from the ellipsis in the ellipsis expansion description

70

(a) A general doubly linked list. (b) The ellipsis expansion.

Figure 4-18: A doubly linked list general structure definition.

is a prev pointer, because it compares its direction with the directions of the pointers

in the previous drawing, and sees that its direction is more similar to the direction of

prev pointers than to the direction of next pointers.

4.5 Summary

This chapter demonstrated how an interaction with CoMo about a linked list find-last

manipulation produced correct, executable code. CoMo and the user interacted by

asking each other questions and providing answers to each others’ questions. The

user queried CoMo’s knowledge of a specific data structure, and CoMo asked the

user about specific instances of the manipulation they chose to discuss. Finally, code

was synthesized. CoMo helped the user determine that the code was incorrect, so

they added a clarifying example and code was re-synthesized. The discussion above

demonstrated how CoMo interacts about:

1. Querying what kinds of structures CoMo is familiar with.

2. Describing what general structures look like (employing ellipses to denote rep-

etition in structures).

3. Asking questions and interpreting answers about concrete structures.

71

4. Synthesizing code and verifying its correctness with animations.

5. Revising code by discussing more examples with CoMo.

6. Labeling the data structure and manipulation that was discussed.

This chapter described the features that were not included in the example, namely

that CoMo is able to:

1. Recall structures and manipulations by name, thereby speeding up the interac-

tion and removing possible sources of errors: repeating the explanation of the

structure or the manipulation.

2. Label pointers by drawing on them, thereby producing code compatible with

existing systems.

3. Order structures by interpreting drawn constraints and synthesizing order-aware

code.

4. Handle structures with multiple node pointers, like binary trees and doubly

linked lists.

The next chapter describes how CoMo guides the interaction with the user, and

how it achieves these capabilities.

72

Chapter 5

CoMo: Functionality

The previous chapter discussed an interaction with CoMo about a linked list find-last

operation. This chapter describes the same interaction but focuses on how CoMo

determines which questions to ask, how it asks them, and how it interprets their

answers. It also describes the Storyboard Programming Tool, the system that CoMo

uses to synthesize code from examples.

5.1 Mixed-Initiative Code-Generation Framework

The algorithm CoMo uses to decide what to ask, when to ask it, and how to ask it

is a mixed-initiative code-generation framework (MICGF). The framework is mixed-

initiative because it allows either the user or the system to initiate an interaction.

The MICGF’s purpose is getting the information for code synthesis that SPT requires

(see §5.2) in a natural, human-like way, as determined by the user study (Chapter 3).

At a high level, the MICGF consists of five basic steps:

1. The user initiates the interaction by:

• asking CoMo if it knows what a specific data structure or manipulation is;

or

• demonstrating a concrete example on a drawn structure; or

• defining the general data structure to talk about.

73

2. CoMo asks questions (and interprets answers) about:

• an inductive general structure definition;

• a structure with four, one, and zero nodes; or—if the manipulation consists

of two structures: a main and an auxiliary one—the power set of compar-

isons between the main structure with four, one, and zero nodes and the

auxiliary structure with one and zero nodes; and

• if the manipulation is on an ordered structure that (as above) involves

multiple structures (e.g., an ordered linked list insertion)—the power set

of constraint comparisons between single-node structures where the main

structure’s node is less than and greater than the auxiliary structure’s

node.

3. CoMo uses SPT [28] to synthesize code by:

(a) generating input based on examples the user drew;

(b) selecting a control flow graph (CFG) to use;

(c) running SPT; and

(d) cleaning code and displaying it to the user.

4. CoMo animates the synthesized code on examples until the user is satisfied it

is correct.

5. If the code is incorrect, CoMo reruns synthesis (step 3) with new corrected

examples.

CoMo performs these steps while remaining responsive to unexpected input. The

MICGF allows CoMo to guide the interaction in such a way that the user will provide

enough information to SPT for SPT to produce correct code.

74

5.2 The Storyboard Programming Tool

Program synthesis is the field of research dedicated to synthesizing a program that

meets a set of constraints. In our case, the constraints consist of the state of a data

structure as it appears before and after a manipulation. This section discusses the pro-

gram synthesis tool that CoMo uses, the Storyboard Programming Tool (SPT) [28],

and what influence its requirements had on the creation of the MICGF.

5.2.1 Programming with Examples

Code synthesis systems like SPT [14, 17, 31, 18, 33] allow the user to avoid program-

ming and instead simply supply before and after examples, consisting of nodes and

pointers. Instead of requiring the user to think of lines of code and the intricacies

of memory management (as with traditional programming), users of SPT specify the

desired input and output states of a manipulation.

As the following sections demonstrate, SPT requires examples of concrete data

structures. Concrete examples are far easier to conceptualize than more abstract,

general case examples. For instance, instead of having to specify what a list reversal

looks like on an arbitrarily long list. The example below demonstrates a user giving

SPT several concrete examples of different lists being reversed, and shows the code

that SPT produces as a result.

5.2.2 An Example SPT Run-Through

In order for CoMo to use SPT, the details of how SPT works must be considered:

what kind of input SPT requires and what kind of output it produces. This section

goes through the process of using SPT to synthesize code capable of reversing a singly

linked list, and highlights features and limitations that have consequences for CoMo.

A Conceptual Description

To synthesize code for a linked list reversal, SPT must be given concrete examples of a

data structure before and after the reversal, and an outline of the general structure of

75

ba c d

head

(a) A list with four nodes.

ba c d

head

(b) The reversed list.

Figure 5-1: A linked list with four nodes and the same list reversed.

the code to synthesize. Assume the user guesses that three examples will suffice. The

first example can be seen in Fig. 5-1, a list with four nodes. SPT is given a description

of the list as it appears before (Fig. 5-1a) and after (Fig. 5-1b) the reversal. Being

a proficient programmer, the user knows to make sure corner cases are handled, so

they select the empty list and the list with only one node (Fig. 5-2) as the other two

examples. These lists are identical when reversed, so only one state is shown in the

figures.

a

head

(a) A list with one node.

head

(b) An empty list.

Figure 5-2: Linked lists that look the same reversed.

Next, the user must specify the general structure of the code to synthesize. The

code structure SPT requires is sufficiently detailed that it often requires the user to

know more than they normally would unless they had seen linked list reversal code

already; it requires knowing the number of temporary pointers, the overall control

structures to be used, and the numbers of lines of code in every location of the

control structure. Being a proficient programmer, the user knows that manipulations

require temporary pointers to keep track of data, some initialization statements, a

set of statements that perform the manipulation (possibly in a loop that iteratively

76

performs it), and some clean-up statements. Since the user does not already have

the list-reversing code, they have to guess the answer to each of SPT’s required

elements. They might guess that at most three temporary pointers, three initialization

statements, five statements in a loop, and three clean-up statements suffice to perform

a singly linked list reversal. If code synthesis fails, the user can increase these numbers,

and if synthesis succeeds, they can attempt to shorten synthesis time and simplify

the synthesized code by decreasing the number of statements or temporary pointers.

Information Encoding

scenario scenario0
input head -> a, a.next -> b, b.next -> c, c.next -> d, d.next -> null
output head -> d, d.next -> c, c.next -> b, b.next -> a, a.next -> null;

scenario scenario1
input head -> a, a.next -> null
output head -> a, a.next -> null;

scenario scenario2
input head -> null
output head -> null;

list_reverse(Node head) {
 Node tmp1 , tmp2 , tmp3 ;
 ??(3)
 while (**) {
 ??(5)
 }
 ?=(3)
}

Figure 5-3: Example SPT input corresponding to linked list reversal.

As input, SPT requires the examples shown above (Fig. 5-1 and Fig. 5-2) to be

written in a textual description language. The input consists of a list of scenarios and

a control flow graph (CFG) that describe the examples and code outline, respectively.

Fig. 5-3 shows the three scenarios and the CFG for the list reversal example. Each

scenario consists of a label, an input state, and an output state. More succinctly, the

Backus-Naur Form (BNF) for a scenario is:

scenario <name>
input <assignment> [,<assignment> ...]
output <assignment> [,<assignment> ...] ;

77

The CFG’s syntax mimics C’s syntax. The only differences arise in specifying

placeholders for SPT to synthesize code. The “??(n)” placeholder specifies that

SPT should synthesize n statements, the “?=(n)” placeholder specifies that SPT

should synthesize n statements that are preceded by an if statement, and the “**”

placeholder specifies that SPT should find a conditional expression of the form x 6= y,

x = y, true or false, where x and y are either temporary variable names, derefer-

enced variables, or null1.

typedef struct {
 Node *next;
} Node;

(a) The node definition SPT infers.

typedef struct {
 Node *head;
} List;

(b) The list definition SPT infers.

Figure 5-4: Information SPT is able to infer from its input.

This input format serves to abstract the user from the code further than may

be initially apparent. Neither an explicit node definition (Fig. 5-4a) nor an explicit

structure definition (Fig. 5-4b) are needed. The node structure is inferred from the

pointers present in the scenarios. In this case, the next pointer is referenced in the

scenarios and no other pointers are mentioned, so SPT can infer that nodes each have

a single next pointer. SPT does not need to know about the structure’s definition,

since it treats the manipulation as a set of node- and pointer-based constraints, not

explicitly as a structure.

Synthesized Code

Fig. 5-5 shows SPT’s verbatim output synthesized with the input given in Fig. 5-

3. Synthesis takes about one minute on a 3.9GHz machine running Ubuntu 13.10

with 16GB of DDR3 RAM2. Note that the synthesized code matches the CFG in

the input almost exactly. Note also that in this particular case there is a statement

1If statements synthesized with the “?=(n)” may simply synthesize “true” or “false” as their
if statement’s condition, thereby making the conditional useless. Similarly, while loops’ conditions
(synthesized with the “**” placeholder) may simply generate “false.” A statement beginning with
“if(true)” is equivalent to the same statement without the conditional, and a statement beginning
with “if(false)” or a block beginning with “while(false)” is equivalent to no statement.

2Note that SPT does not take advantage of multiple CPUs.

78

void main() {
 tmp2 =head ;
 tmp2 =tmp1 ;
 tmp2 =tmp2 ;
 while(head != null) {
 tmp2 =head . next ;
 head . next =tmp3 ;
 head =head ;
 tmp3 =head ;
 head =tmp2 ;
 }
 if(true) head =tmp1 ;
 if(true) tmp3 =tmp3 ;
 if(true) head =tmp3 ;
}

Figure 5-5: C code produced by SPT.

without an effect: “head=head.” The user can take this redundant line as evidence

that five lines of code are more than are strictly necessary for this manipulation.

Further, all the conditional statements begin with if(true), making the conditionals

unnecessary. After experimenting with different, shorter CFGs, the user tries the CFG

in Fig. 5-6a. Using this, the code in Fig. 5-6b is synthesized. With fewer lines to

synthesize, synthesis takes only ten seconds. This conceptually simple change results

in an improved synthesis time and more succinct code.

list_reverse(Node head) {
 Node tmp1 , tmp2 ;
 ??(1)
 while (**) {
 ??(4)
 }
}

(a) A shortened CFG.

void main() {
 tmp2 =head ;
 while(tmp2 != null) {
 head =tmp2 ;
 tmp2 =head . next ;
 head . next =tmp1 ;
 tmp1 =head ;
 }
}

(b) Code produced with the shortened CFG.

Figure 5-6: A shortened CFG and the resulting code.

5.2.3 SPT Limitations & Ramifications for CoMo

SPT is a powerful tool that takes a significant step in bridging the gap between the

concept of what a manipulation is and the code that implements it. Even so, it has

five significant limitations that CoMo is able to address. This section discusses these

79

limitations and briefly describes how CoMo addresses them.

Dead Code

The first limitation is that SPT often synthesizes redundant statements, i.e., dead

code. These result from the randomness in the algorithm SPT employs. Some of this

code comes in the form of duplicate lines of code, and some is much more difficult

to find. The most straightforward types of redundancies are seen in Fig. 5-5. The

middle of the while loop has the line “head=head”, which has no effect, and the bottom

three statements are all preceded by “if(true),” which also has no effect. SPT also

synthesizes duplicate lines, where the same line of code is repeated in succession or

the same variable is assigned twice. For example, the lines:
head = temp2;
head = temp2;

or the lines:
head = temp1;
head = temp2;

do the equivalent of assigning head to temp2. Removing the first assignment in

these cases would result in functionally equivalent code. CoMo attempts to remove

trivial cases like these without removing seemingly redundant cases like this one:
head = head.next;
head = head.next;

Even more complex cases exist that make it impossible to remove all dead code;

dead code elimination is a form of compiler optimization in the same class as unreach-

able code elimination and redundant code elimination [3]. CoMo removes simple dead

code; for two sequential lines of code, CoMo removes any the first line if the pair meets

all of the following conditions:

1. The statements’ assignments have the same destination.

2. The statements’ assignments have the same condition (or no conditions).

3. The statements’ assignments’ destination is not a substring of its source (e.g.,

x = x.next).

80

Interaction

Next, specifying a manipulation in SPT’s scenario description language is not as

natural as drawing it. Much like computer code, the user must learn SPT’s input

format and fix syntax errors. For example, forgetting the semicolon at the end of

a scenario description will cause SPT to fail. CoMo addresses this by engaging the

user in a mixed-initiative, symmetric-multimodal interaction and converting drawn

diagrams into SPT’s textual input format.

Scenario Selection

The third limitation is that SPT has no way of knowing which scenarios are required;

it can only find code capable of performing the specified manipulation on the scenarios

it was given. Knowing which scenarios to give is left to the user; it is a matter

of knowing what the manipulation is and which examples are representative. For

example, the example presented in section 5.2.2 is the result of an educated guess

on the part of a programmer very familiar with list reversals. A less-experienced

user may have initially made incorrect assumptions, synthesized incorrect code, and

required more trial and error3. CoMo addresses this by asking the user a list of

questions in order to attempt to provide a representative set of examples for SPT.

These questions are:

1. What do you do with an empty structure?

2. What do you do with a structure with one node?

3. What do you do with a structure with at least four nodes?

4. What do you do with each of the comparisons between pairs of structures where

the main structure has four, one, or zero nodes in it and the other structure (or

structures) has one or zero nodes4?

3For example, the user might assume that including only a list with four nodes would suffice.
SPT would produce code that reverses only that list and has undefined behavior on any other list.

4This requires a manipulation that has multiple structures, e.g., in a stack push the main structure
is the stack, and the secondary structure is the node to push onto the stack.

81

5. What do you do with comparisons between structures with one node each when

one structure’s node has a value greater than or less than the other’s5?

Selecting a CFG

Fourth, specifying the CFG accurately requires much a priori knowledge of the struc-

ture of the code. Should it include a loop? How many statements should be used?

Will they need conditional statements? In the example above the user erred on the

side of too many statements and temporary variables in the first synthesis run. After

several attempts, the user finds the CFG with the fewest statements and temporary

pointers that produces succinct, correct code. In essence, requiring the user to provide

the CFG is equivalent to asking the user to bridge half the gap between the concept of

the manipulation and the implemented code. CoMo addresses this by automatically

selecting a CFG and converting the examples drawn by the user into SPT’s input

format so that code can be synthesized (see §5.5.2 for a complete description of how

CoMo handles CFGs).

Code Verification

The code SPT synthesizes is difficult to understand because it does not seem to follow

any kind of underlying logic. It has no comments and seems to be nothing more than

a random set of assignments that were put together and found to work. As it turns

out, this is exactly the method SPT uses to synthesize code. SPT uses a constraint-

based synthesis algorithm [29] using a SAT solver to find some lines of code that work

in the CFG on the provided scenarios. This is reflected in how difficult it is to follow

the logic of the code.

Further, the code SPT synthesizes cannot be compiled for three reasons. First,

SPT does not include function signatures or temporary pointer declarations. None

of the variables in the output code have been declared in this scope. Second, even if

5This question requires the structure to be ordered and it requires that there be multiple struc-
tures involved in the manipulation, e.g., an ordered list insertion. SPT cannot handle comparisons
between nodes with equal values, so the case where the nodes have equal values is not included.

82

the variables were declared in scope, the Node type has not been declared. Finally,

“true” and “false” are not technically valid C constants.

The final limitation that CoMo is able to address, is that due to how difficult the

code is to understand and the fact that it cannot be compiled, verifying the synthe-

sized code is either a tedious manual task involving going through several examples

by hand, or requires a test suite to be built and run independently of SPT. CoMo

addresses this by animating the synthesized code on examples to aid the user in ver-

ifying the code’s correctness. While this does not do full automation (the user must

still initiate the tests and determine for themselves whether the code is correct), it

replaces a tedious manual task with a semi-automated one.

5.2.4 Summary

At a high level, CoMo’s primary task can be seen as engaging a human in a nat-

ural interaction while collecting the information that SPT needs. The next section

describes how the MICGF guided the interaction with the user in the example dis-

cussed in Chapter 4.

5.3 Linked List Find-Last

This section describes the linked list find-last interaction from Chapter 4, but focuses

on the mechanisms CoMo uses to achieve the interaction.

5.3.1 Describing the Data Structure

The user initiates the interaction by asking CoMo, “Do you know what a linked

list is?” CoMo maintains a database of data structures and manipulations that it

uses to recall the data structures and manipulations by name. Since this is the first

interaction CoMo has had, it cannot find a data structure called “linked list,” and

so, says “No.”

The user draws the general data structure seen in Fig. 5-7. CoMo interprets the

83

Figure 5-7: The user draws a general list.

(a) CoMo: “What does this expand to?” (b) User: “To this or this.”

Figure 5-8: The question and answer about the inductive definition of the ellipsis.

84

presence of an ellipsis to mean that this is a general structure (as opposed to an

instance of a data structure). It does not have a definition for the ellipsis in this

structure, so its first question is, “What does this expand to?” as it displays a copy

of the ellipsis at the top of a new canvas, seen in Fig. 5-8a. CoMo expects the user

to answer the question by drawing options in the space below the ellipsis. Fig. 5-8b

shows what the user drew in response.

Sketch Generation

CoMo uses the drawings in Fig. 5-7 and Fig. 5-8 to generate lists of arbitrary length.

It parses the ellipsis expansion sketch by modeling the drawing as a graph and doing

a depth-first search through the elements’ pointers (ignoring the ellipsis it drew at the

top). As discussed in §5.5.1, each node and pointer in the sketch is grouped based on

connectivity—in this case into two groups—and each group is treated as one option

for expansion. CoMo classifies groups by how many nodes and ellipses they have; the

group with only a single node is classified as a base case expansion, meaning that it

will always be the final expansion when generating a structure.

Structure generation proceeds by starting with the general case (Fig. 5-7) and

iteratively replacing ellipses with one of the options (Fig. 5-8) until the desired number

of nodes has been reached. In the example above, the two options that CoMo parses

are the option where an ellipsis can be replaced with a node pointing to a new ellipsis,

or just a single node. Since the general list has two nodes and one ellipsis (Fig. 5-7)

and the smallest expansion has just a single node (Fig. 5-8), CoMo computes that

the smallest structure that can be generated with these drawings has three nodes.

Asking CoMo to generate a list with two nodes would result in CoMo saying, “I can’t

do that.” Had the user decided to draw the general list (Fig. 5-7) without the a

or b nodes and instead drawn a head pointer pointing directly at the ellipsis and

the ellipsis pointing directly at the null symbol, then any nonempty list could be

generated with the definitions. Since the user did not draw in this way, discussing an

example involving two nodes would require the user to draw it6.

6Future versions of CoMo could also include the ability to ask questions of the form: “Can you

85

Generating structures with zero or one nodes proceeds differently, since it is a

much simpler task and does not require a structure definition. This process starts

by finding all the common pointers in the drawn examples (in this case there is only

a head pointer) and cloning7 them onto a new canvas. Next, a null symbol from an

existing example is cloned and placed on the new canvas. If the empty structure is

being generated, then all pointers (just head, in this case) are directed toward the null

symbol, and the generation process is done. If the structure with one node is being

generated, a node from another canvas is cloned and placed onto the new canvas. The

pointers are assigned to the new node, all of the node’s pointers are assigned to null,

and the sketch generation process is done.

5.3.2 Asking an Example Question

To determine its next question, CoMo goes through the list of question types described

in §5.2.3. Currently, the user has indicated that there is a structure with one pointer,

labeled “head,” so applying the rules yields the following questions:

1. How do you handle a list with four nodes?

2. How do you handle a list with one node?

3. How do you handle an empty list?

CoMo starts with the first question about a list with four nodes. As with all

questions about how the manipulation proceeds on a specific example, CoMo expects

the user to do one of three things in response:

1. Demonstrate how the manipulation is performed (possibly with additions to the

sketch) and saying, “Like this.”

2. Say, “Do nothing,” denoting that the input and output states in this example

are identical.

draw me an example with two nodes?” This would allow CoMo to ask questions about structures it
cannot generate.

7Nodes and pointers are cloned (as opposed to being created from a template) to more closely
mimic the user’s drawing style. Notice that the list’s nodes in Fig. 5-9a have slightly differing sizes;
these are the sizes that the user drew the nodes in Fig. 5-7 and Fig. 5-8.

86

3. Say, “That does not make sense,” denoting that this example should not be

included in SPT’s input.

(a) CoMo: “How do you handle this case?”

(b) The user creates the rtn pointer, points it at null, reassigns it to d, and says, “Like
this.”

Figure 5-9: The first questions (Fig. 5-9a) that CoMo asks and the user’s response
(Fig. 5-9b).

Fig. 5-9 shows the question that CoMo asks and the answer that the user gives.

As part of the answer, the user adds a new pointer: rtn. CoMo interprets the new

pointer to be a new, auxiliary structure because (unlike head) it is not mentioned in

the general structure. CoMo modifies its list of question-generating cases to be:

87

• a list with four nodes

• a list with one node

• an empty list

Crossed with:

• rtn pointing at one node

• rtn pointing at null

More concretely, the questions CoMo asks are:

1. How do you handle the case where the list has four nodes and rtn points at one

node?

2. How do you handle the case where the list has four nodes and rtn points at

null?

3. How do you handle the case where the list has one node and rtn points at a

separate node?

4. How do you handle the case where the list has one node and rtn points at null?

5. How do you handle the case where the list is empty and rtn points at a node?

6. How do you handle the case where the list is empty and rtn points at null?

The distinction between a structure and an auxiliary structure accounts for why the

above list of questions does not include the case where rtn points to its own list.

5.3.3 Nonsensical Questions

Three questions from the above list involve rtn pointing at its own node and head

pointing to a list with four nodes (Fig. 5-10), one node (Fig. 5-11), and no nodes

(Fig. 5-12). These nonsensical questions are the result of CoMo interpreting the rtn

pointer to be a completely separate structure, instead of a pointer indicating which

node is to be returned. The user answers all of these questions identically: by saying,

“That does not make sense.” CoMo displays the utterance in the bottom-left corner,

marks these questions as nonsensical, and proceeds.

88

Figure 5-10: CoMo: “How do you handle this case?” User: “That doesn’t make
sense.”

Figure 5-11: CoMo: “How do you handle this case?” User: “That doesn’t make
sense.”

89

Figure 5-12: CoMo: “How do you handle this case?” User: “That doesn’t make
sense.”

5.3.4 Remaining Questions

The final two questions that CoMo asks involve the rtn pointer starting out pointing

at null, and the list containing one node (Fig. 5-13) and no nodes (Fig. 5-14). CoMo

does not ask about the case where the list has four nodes and rtn points at null,

because that question was already answered by the user. Despite CoMo asking the

more general question about what to do with a list with four nodes, the user answered

what to do with a list with four nodes and a rtn pointer pointing at null. CoMo did

not know about the rtn pointer when asking the question, but after reviewing the

answer to the question, it recognized that the example represented the case with a

list with four nodes and a rtn pointer pointing at no nodes, so it did not ask about

the case again.

The user answers the question about the list with one node by clicking and drag-

ging the rtn pointer to the a node and saying, “Like this.” (Fig. 5-13b) As with

the first question, CoMo takes note of the before and after states, and asks the final

question, which the user answers by saying, “Do nothing.” CoMo notes that the final

example has identical input and output states. At this point, CoMo has asked all its

questions, and thus code synthesis can be attempted. CoMo signals this to the user

90

(a) CoMo: “How do you handle this case?”

(b) The user moves the rtn pointer to point at the a node, and says, “Like this.”

Figure 5-13: The question and answer about a list with one node.

91

Figure 5-14: A question and the corresponding answer about an empty list. CoMo:
“How do you handle this case?” User: “Do nothing.”

by saying, “I think I understand” and awaits further input. Just because CoMo is

satisfied with the interaction does not necessarily mean that the user is. The user

can add additional examples by saying, “Make a new canvas” and drawing another

example or having CoMo generate an example by saying, e.g., “Generate a structure

with five nodes.” The user can add as many examples as they feel are representative

of the manipulation before initiating code synthesis.

5.3.5 Code Synthesis & Verification

To synthesize code, CoMo converts each of the examples into a scenario. Fig. 5-15

shows the SPT input generated from the examples shown above. CoMo names the

scenarios based on when they appeared in the discussion. Since the first and second

canvases in this discussion described the general structure of the list, there is no

scenario0 or scenario1; the first scenario is labeled scenario2 and corresponds to

the question about the list with four nodes. Scenarios 3–5 represent the nonsensical

examples CoMo presented, so they do not appear in the input either. The next

scenarios are scenario6 and scenario7, which correspond to the lists with one and

zero nodes, respectively.

92

scenario scenario2
input head -> a , a . ptr0 -> b , b . ptr0 -> c , c . ptr0 -> d , d . ptr0 -> null,
 rtn -> null
output head -> a , a . ptr0 -> b , b . ptr0 -> c , c . ptr0 -> d , d . ptr0 -> null,
 rtn -> d ;

scenario scenario6
input rtn -> null, head -> a , a . ptr0 -> null
output rtn -> a , head -> a , a . ptr0 -> null ;

scenario scenario7
input rtn -> null, head -> null
output rtn -> null, head -> null ;

main(Node head , Node rtn) {
 Node tmp1 , tmp2 ;
 ??(3)
 while (**) {
 ??(5)
 }
 ?=(3)
}

Figure 5-15: The input CoMo produces for SPT.

main(/*pointers*/) {
 /*tmps*/
 ??(3)
 while (**) {
 ??(5)
 }
 ?=(3)
}

Figure 5-16: The default CFG used by CoMo. §5.5.2 explains how this was selected
and how it can be altered.

93

CoMo starts with the default CFG seen in Fig. 5-16 that consists of three state-

ments followed by a while loop with five statements in its body and ending with three

statements preceded by if statements. It inserts all the pointers in the function sig-

nature and any temporary variables below it. This CFG was selected as the default

because it is general enough to work with most of CoMo’s manipulations (see §5.5.2).

CoMo knows that manipulation implementations usually require temporary pointers

(e.g., to avoid dropped nodes) so if the user did not add any temporary pointers to

the examples, CoMo adds two. The CFG in Fig. 5-15 reflects this addition. The first

line in the body of the CFG is “Node tmp1, tmp2;” This line informs SPT that it

has these two pointers at its disposal in the code. Since the states of tmp1 and tmp2

are not specified in any of the scenarios, SPT will not pay attention to their starting

or ending states; it will assume that they start out pointing to null and will place no

constraints on where they end.

void main() {
 rtn =head ;
 head =tmp1 ;
 tmp1 =rtn ;
 while(rtn != head) {
 rtn =head ;
 rtn =rtn ;
 rtn =head ;
 rtn =tmp1 ;
 head =rtn ;
 }
 if(tmp1 != null) tmp2 =tmp1 . ptr0 ;
 if(tmp2 != null) tmp2 =tmp2 . ptr0 ;
 if(tmp2 != null) rtn =tmp2 . ptr0 ;
}

(a) Raw output.

rtn =head ;
head =tmp1 ;
tmp1 =rtn ;
while(rtn != head) {
 rtn =tmp1 ;
 head =rtn ;
}
if(tmp1 != null) tmp2 =tmp1 . ptr0 ;
if(tmp2 != null) tmp2 =tmp2 . ptr0 ;
if(tmp2 != null) rtn =tmp2 . ptr0 ;

(b) Cleaned code.

Figure 5-17: SPT’s output before and after CoMo removes dead code.

After approximately 10 seconds, SPT produces the output seen in Fig. 5-17a.

CoMo removes simple dead code and displays the result (Fig. 5-17b) on the canvases.

Animation

CoMo animates code by:

1. Interpreting the code with a simple parser and interpreter, capable of handling

94

the simple kinds of statements, conditionals, and logic constructs that appear

in SPT’s output.

2. Relating the variables that appear in the statements to the drawn elements in

the sketch (first producing those variables if they do not already appear in the

sketch).

3. Animating a smooth transition for each pointer from its current position to the

target specified by each line of code.

Figure 5-18: This sketch is missing tmp1 and tmp2.

Fig. 5-18 shows the first example—the list with four nodes—after synthesis com-

pletes and CoMo displays the code next to the example. Before CoMo begins ani-

mating the synthesized code in Fig. 5-17b, it notices that the two temporary pointers

“tmp1” and “tmp2” are not present in any of the example sketches. It creates these

95

Figure 5-19: CoMo adds tmp1 and tmp2, initializes them to null, and resets the
structure to its starting state in preparation for code animation.

96

pointers and initializes them to point at null8 (Fig. 5-19). Once these pointers are

added, CoMo begins the animation process. At each line of code, CoMo finds the ref-

erenced pointer and its new target by name and, in a smooth animation, transitions

the pointer from its current target to its new target.

Figure 5-20: CoMo animates the code on the initial example with four nodes.

Fig. 5-20 shows CoMo in the process of animating the line “if(tmp1!=null)

tmp2=tmp1.ptr0.” Evaluating this line consists of two phases: determining what the

conditional evaluates to (true or false), and executing the line if the conditional

evaluates to true. To evaluate the conditional tmp1!=null, CoMo finds the tmp1

pointer and determines what its target is. In this case, its target is the a node,

which is not null, so the conditional evaluates to true. Next, CoMo finds the pointers

and targets needed to execute the line of code. It finds that tmp1 is pointing to a,

and follows a’s ptr0 to find its target: b. It finds the tmp2 pointer and computes

8The tmp1 and tmp2 pointers are initialized to null because SPT assumes that any variable not
mentioned in a scenario was initialized to null.

97

the trajectory from where the pointer currently points (null) to the center of the b

node. It animates the transition from the null symbol to the b node by moving the

pointer’s head 10px every frame of animation at 15Hz; Fig. 5-20 shows tmp2 midway

through the transition between pointing to null and pointing to b. Once the pointer

has reached its new target, CoMo assigns the pointer to it (resulting in the pointer

snapping to its new target), and moves on to the next line of code.

scenario scenario2
input head -> a , a . ptr0 -> b , b . ptr0 -> c , c . ptr0 -> d , d . ptr0 -> null,
 rtn -> null
output head -> a , a . ptr0 -> b , b . ptr0 -> c , c . ptr0 -> d , d . ptr0 -> null,
 rtn -> d ;

scenario scenario6
input rtn -> null, head -> a , a . ptr0 -> null
output rtn -> a , head -> a , a . ptr0 -> null ;

scenario scenario7
input rtn -> null, head -> null
output rtn -> null, head -> null ;

scenario scenario8
input head -> a , a . ptr0 -> b , b . ptr0 -> c , c . ptr0 -> d ,
 d . ptr0 -> e , e . ptr0 -> null, rtn -> null
output head -> a , a . ptr0 -> b , b . ptr0 -> c , c . ptr0 -> d ,
 d . ptr0 -> e , e . ptr0 -> null, rtn -> d ;

main(Node head , Node rtn) {
 Node tmp1 , tmp2 ;
 ??(3)
 while (**) {
 ??(5)
 }
 ?=(3)
}

Figure 5-21: The augmented input CoMo produces for SPT.

As described in Chapter 4, the user has CoMo animate the code on the lists

with four and five nodes and discovers that the code does not work properly. After

correcting the example with five nodes (see Fig. 4-14), they initiate code synthesis

as before, by saying, “Generate code.” As seen in Fig. 5-21, CoMo adds the new

scenario, scenario8, to the existing SPT input. Notice that the input is identical to

the previous input, except a new scenario has been added (scenario8) representing

the example with five nodes.

98

void main() {
 rtn =head ;
 rtn =tmp2 ;
 tmp1 =head ;
 while(head != null) {
 rtn =tmp1 ;
 tmp2 =head ;
 head =head ;
 tmp1 =rtn ;
 head =head . ptr0 ;
 }
 if(false) tmp2 =head ;
 if(rtn != null) rtn =tmp2 ;
 if(tmp2 != null) head =tmp1 ;
}

(a) Raw output.

rtn =tmp2 ;
tmp1 =head ;
while(head != null) {
 rtn =tmp1 ;
 tmp2 =head ;
 tmp1 =rtn ;
 head =head . ptr0 ;
}
if(rtn != null) rtn =tmp2 ;
if(tmp2 != null) head =tmp1 ;

(b) Cleaned output.

Figure 5-22: SPT’s output before and after CoMo removes dead code.

With the new scenario, synthesis takes approximately one minute, and produces

the code seen in Fig. 5-22a, which is cleaned and presented to the user as the code

seen in Fig. 5-22b.

5.3.6 Labeling the Interaction

Finally, CoMo labels the interaction by parsing the user’s utterance, “This is a linked

list find-last.” CoMo knows to label the structure as “linked list” and the manipula-

tion as “find-last” because it has a list of these words, labeled as either data structure

names or manipulation names, in its speech recognition grammar (discussed below).

As described in Chapter 4, the user verifies this newly synthesized code by testing it

on lists with three, four, and five nodes, and the interaction is complete.

5.4 System Overview

This section describes how CoMo is implemented. It breaks CoMo down into the

different subparts responsible for speech and sketch recognition and generation, in-

teraction management, and question generation. Further, it demonstrates the flexibil-

ity of the mixed-initiative code-generation framework by including a state transition

diagram showing how the user and CoMo structure the interaction together.

99

5.4.1 System Architecture

Fig. 5-23 shows CoMo’s functional architecture—how all its parts work together to

implement a fluid symmetric multimodal interaction with the user.

The user draws strokes on the canvas (at the top-left of the figure) that are in-

terpreted by the sketch recognition module. As described fully in §5.4.3, strokes are

first classified as either gestures or non-gestures. Non-gestures are interpreted as

parts of the data structure being drawn by the sketch recognition pipeline. These

non-gesture strokes collectively form the structure begin discussed. Gestures, on the

other hand, are passed directly to this underlying drawn data structure to update its

configuration. The only kind of gesture CoMo recognizes are pointer manipulations

Speech (seen at the top-right of the figure) is interpreted by the Sphinx speech

recognizer [37, 32]. As described fully in §5.4.4, Sphinx uses a speech grammar to

determine which utterances are to be recognized. The utterance and the drawn data

structures are fed directly into the Interaction Manager—the module responsible for

implementing the MICGF.

Section 5.4.2 describes how the Interaction Manager reacts to user input. De-

pending on the context of the interaction, the Interaction Manager issues four kinds

of commands: a sketch generation command, a speech generation command, a code

generation command, and a code playback command.

Sketch generation (as mentioned above) comes in three flavors: generating an

example to ask the user to perform a manipulation on, generating a canvas to ask

how the repetition symbol expands, and generating an empty canvas. The Interaction

Manager sends these kinds of commands to the Sketch Generator. The repetition

canvas is generated by copying a repetition symbol (an ellipsis or a triangle) onto

the top-center of a new canvas. As described above, there are two distinct methods

of generating an example structure. The simpler of the two (used for generating

structures with 0 or 1 nodes) involves copying pointers, nodes, and null symbols from

other canvases while the more complex (for generating larger structures) involves using

the inductive general structure definition. If the larger general structure definition

100

Speech

Sphinx grammar

Speech Recognition

Interaction Manager

generation
request

Structure
General

speech
request

generation
request

code

Displayed
to user

SPT

raw
outputPost-

Processor

Scenario
Converter

Code Synthesis

G
e
n
e
ra

l
S

tr
u
ct

u
re

im
p

o
ss

ib
le

 w
it

h

Sketch
Recognition

size
largesmall

Symbols

Strokes

Paleo

Nea

Ouyang

Context
Recognizer

UNIPEN

type gesture

not

Sketch Generator

typesize
structure

re
p

e
ti

ti
o
n

Repetition
Canvas

Generator

Simple
Generator

0|1

>1

check

okay

Structure
Canvas

Generator

e
m

p
ty

 c
a
n
v
a
s

Examples

Code

Player

Code Player

Spoken
to user

phrases Google
Synthesizer

PlayerWAV files
Speech
Synthesis

Figure 5-23: An overview of CoMo’s architecture. Input is displayed at the top and
output at the bottom.

101

does not allow creating the structure with the specified number of nodes, the Sketch

Generator informs the Interaction Manager. Otherwise, the new canvas is generated

and added to the existing examples.

Speech commands generated by the Interaction Manager are passed to the Speech

Synthesis module. As explained in §5.4.5, this module plays pre-made WAV files

generated with Google’s speech synthesizer. This module associates pre-determined

string labels with audio files that contain voice data and plays the files on command.

The final module in the system diagram is the Code Synthesis module, responsible

for interfacing with SPT [28]. As described above, this module converts the drawn

examples into SPT’s scenario-based input format, selects a CFG, and runs SPT. Once

SPT completes, this module removes dead code and displays it to the user. The Code

Player can then play through the code when commanded to do so by the Interaction

Manager.

5.4.2 Interface Transition

This section describes how the interaction manager from Fig. 5-23 guides the inter-

action while remaining responsive to the user’s input.

Fig. 5-24 shows a state-transition diagram describing how the Interaction Manager

reacts to input. The state diagram starts at the right; CoMo starts in an idle mode,

awaiting user input to initiate the interaction. The three ways that the user can

initiate the interaction are:

• asking CoMo if it knows what a specific data structure or manipulation is;

• demonstrating a concrete example on a drawn structure; or

• defining the general data structure to talk about.

If the user simply starts drawing a sketch—i.e., defining the general structure or

demonstrating a concrete example on a drawn structure—then, after a three second

pause (this heuristic is discussed in §5.5.3), CoMo parses the input and determines

whether the user has given a coherent diagram or not. Coherency is determined by

102

have
question

ask
question

require
input

received
input

coherent

in
co

he
re

nt

us
er

re
sp

on
ds

n
o
 m

o
re

q
u
e
st

io
n
s

generate

request
canvas/sketch/code

generate
code

request done

questions
answered

have
codesuccess animate

request

generate

request
canvas/sketch

running
SPT animate

code

g
e
n
e
ra

te

ca
n
va

s

re
q
u
e
st

sketch
generate

request

correct

exam
ple

generate
code

request

already
have code

idle

u
se

r a
sks

q
u
e
stio

n

draw

example

check
KB

fa
ilu

re
known

u
n
k
n
o
w

n

ad
d

sk
et

ch
es

Figure 5-24: The state transition diagram describing how CoMo reacts to user input.

103

two things: whether all the nodes in the diagram are of the same type and whether

all the pointers in an example exist in all examples (for the general definition, only

the main structure’s pointers must be present). If the diagram is incoherent, CoMo

requires more input before it can try parsing the sketch again. If the input is coherent,

then the question loop can begin in the “have question” state.

The other way to start a conversation with CoMo (seen in the example above), is

by asking CoMo whether it knows about a specific data structure or manipulation.

When asked, it queries its knowledge base—abbreviated in the diagram as “KB”—

the set of data structures and manipulations, referenced by name, that CoMo has

previously encountered9. If the KB does not contain the data structure or manipu-

lation, CoMo returns to its idle state. If the KB does contain the data structure or

manipulation, it adds the sketches associated with the data structure or manipulation

and begins the question loop.

The question loop starts in the state labeled “have question.” CoMo selects a

question based on a question order heuristic (discussed below) and asks it. Having

asked a question, it enters the state where it requires input in order to continue.

Once the user gives input, CoMo waits three seconds before attempting to parse it.

The parsing process proceeds identically as when coming from the idle state. One of

the inputs that the user may provide in the “require input” state is a command to

generate a new canvas, a sketch, or code. If the user tries to initiate code generation

from this state, CoMo will respond “I have another question first.” If the user says,

“Generate a structure with nodes” (or “Make a new canvas.”), CoMo creates the

sketch (or canvas) and waits for input for both the sketch (or canvas) and the original

question.

Once all of CoMo’s questions have been answered, it transitions to the “questions

answered” state. At this point in the interaction, the user generate more canvases and

sketches to demonstrate additional examples to CoMo, in which case CoMo reenters

the input parsing loop. If, however, the user is satisfied with the discussed examples,

9Note that mention of this knowledge base is omitted from the system architecture diagram
(Fig. 5-23) as it adds clutter without adding meaningful information. If it were in the diagram, it
would be a sub-part of the Interaction Manager module.

104

they can say, “Generate code” and CoMo will run SPT. While SPT runs, CoMo does

not allow the user to update any of the current examples or provide new ones. If SPT

complete successfully, then CoMo transitions to “have code,” if it fails, then CoMo

returns to “questions answered10.”

Once SPT completes successfully, CoMo transitions to the “have code” state. In

this state, CoMo can accept all three generation requests from the user. For example,

it can generate a new sketch or a new canvas to demonstrate a new example on.

The user can initiate code animation by saying, “Animate the code.” During code

animation (as with code synthesis), CoMo does not allow user input. Code animation

must complete before the user can interact with CoMo again. If the code does not

animate properly (e.g., as above when the code failed to find the last element of a five-

element list), the user can correct the example. This will cause the user’s correction

to be parsed in the “received input” state, fall through the “have question” state (as

there are no more questions), and fall through the “questions answered” state (as

CoMo already has code) to return to the “has code” state. It is left to the user to

determine that code synthesis must be retried. The user can engage in this loop until

they are satisfied with the code, at which point the interaction is complete.

5.4.3 Sketch Recognition

As demonstrated above, sketching is used both to compose and to manipulate data

structures. As the primary mode of input, sketches are recognized as drawn data

structures and gestures are used to edit the structure by clicking and dragging point-

ers. CoMo displays pointers with small red boxes at their tips. These boxes are

handles that can be clicked and dragged to reassign pointers, thereby either updating

the process of the manipulation or simply reassigning pointers to configure the data

structure in its final state.

As discussed in the user study (Chapter 3), different users conceptualized manip-

10SPT fails when there is no code that performs the manipulations on the provided examples.
At this point, it is left to the user to determine what is inconsistent in the discussed sketches, and
reattempt code synthesis.

105

ulations either as input and output state pairs or as a sequence of steps by working

through the details of memory management with temporary pointers. CoMo allows

both of these styles. Each intermediate step is recorded along with the beginning

and end states. This leaves the possibility of providing SPT with all of these states—

potentially improving synthesis time—despite it currently requiring only the begin-

ning and end states (see Chapter 7 for a discussion of this possible improvement).

Sketch recognition proceeds in two parts: shape recognition and symbol recogni-

tion. Shape recognition is the process of classifying a sequential set of strokes as lines,

boxes, circles, arrows, and characters. CoMo employs two distinct shape recognizers

in parallel. If a stroke is sufficiently small11 it is processed by a shape recognizer devel-

oped by Ouyang and Davis [25]. Ouyang’s recognizer was trained with a subset of the

UNIPEN [35, 15] dataset, a publicly available dataset of hand-drawn symbols. After

training, Ouyang’s recognizer is used to recognize all upper- and lower-case letters,

all numbers, and the > and < symbols. If a stroke’s bounding box is sufficiently large,

CoMo performs shape recognition with a limited reimplementation of PaleoSketch [7]

to classify a stroke as a single-stroke shape, and then compose the shapes with its

own shape-composition module, called NeaSketch12. At the end of this first stage

of sketch recognition, strokes are recognized by either Ouyang’s recognizer or by a

combination of PaleoSketch and NeaSketch.

Name Description

Label head one or more letters
Constraint a < b < c text including the > or < symbol

Null a circle with a line through it

Concrete Node a a a box or circle (optionally with a label)

Summary Node dots or a triangle
Pointer an open-headed arrow

Table 5.1: CoMo’s visual vocabulary.

11“Sufficiently small” entails a stroke’s bounding box being smaller than 40 pixels wide by 60
pixels high.

12I chose the name “NeaSketch” because “nea” means “new” like “paleo” means “old.” “NeaS-
ketch” seemed a fitting name for PaleoSketch’s helper.

106

Shapes must then be compared and composed to form the symbols that make up

the data structure (Table 5.1). This process consists of comparing a shape’s context—

all of the elements on the surrounding canvas—to interpret the shape as a symbol.

For example, a single character can be recognized as either a pointer or a node’s label.

The difference is whether the label is in a box (or circle) or not. When symbols are

composed to form a data structure, the sketch recognition task is complete.

head

a b c d

a < b < c

Figure 5-25: A list with four nodes and a constraint showing it is ordered.

Constraints are special types of symbols that serve as restrictions the user places on

the space of valid data structures. In CoMo, they are used to order a data structure.

The constraints that CoMo handles are the simple binary scalar comparators < and >.

The linked list seen in Fig. 5-25 has the constraint: a < b < c, marking it as ordered

from smallest to largest, starting at head. To interpret the constraint, CoMo breaks

it down into two sub-constraints, a < b and b < c, and processes each one, one at

a time. To process a < b, it determines that a and b are connected via next and

so assigns all pointers named next the relationship that, when following the pointer,

the target node must be greater than the parent node. More concretely, since a.next

points to b, a must be less than b. Processing the next sub-constraint yields the same

result. Had this been a doubly linked list, the same process would be applied to prev;

b is connected to a via prev, so prev would be assigned the reverse relationship as

next.

SPT is able to take simple constraints of this kind, however its input format

requires that the nodes be given a concrete number instead of an abstract constraint.

CoMo finds concrete values for the nodes (e.g., a = 5, b = 6, c = 7, d = 8; the number

generation algorithm is detailed fully in §5.4.6) to use in code synthesis. Constraints

107

allow CoMo to generate the scenarios SPT needs to synthesize code for manipulations

like ordered linked list insertions.

5.4.4 Speech Recognition

CoMo uses CMU’s Sphinx speech recognizer to recognize a simple set of state-

ments [37, 32]. Speech is used as a secondary mode of input. Unlike previous work

done by Adler [1], CoMo is constrained to understand specific commands. For ex-

ample, the user says, “Generate code” to initiate code synthesis and, “Do nothing”

to answer questions like, “How do you handle this case?” when CoMo presents them

with an empty list.

Do you understand?
Like this.
Do nothing.
That does not make sense.
To this (or this . . .).
This is a .
Do you know what a is?
Generate code.
Make a new canvas.
Generate a structure with node(s).

Table 5.2: List of phrases CoMo understands.

Table 5.2 lists the phrases that CoMo understands. The table is divided into

four sections that represent the different circumstances under which CoMo expects

speech. The user can ask the first utterance, “Do you understand,” at any time.

CoMo will respond either by asking a question or saying, “I think I understand” if

all its questions have already been answered.

The second section contains phrases expected as responses to the questions CoMo

poses about specific examples. The first three are responses to the question where

CoMo presents a new example and asks, “How do you handle this case?” “Like this”

is expected after the user demonstrates how to handle the case, “Do nothing” is used

to inform CoMo that the case has identical input and output states, and “That does

108

not make sense” informs CoMo that the example should not be used in code synthesis.

For example, the user says “Do nothing” when asked how to reverse a singly linked

list with one or zero nodes. The final statement, “Like this (or this . . .)” is used as

a response to the ellipsis expansion, and can include as many instances of “or this”

as desired13.

<label> = This is a <dsm_clause> ;
<recall> = Do you know what a <dsm_clause> is ;
<dsm_clause> = <ds_name> [<dsm_name>] | <dsm_name> ;
<ds_name> = [ordered] ([singly] | doubly) linked list |
 binary [search] tree | stack | queue ;
<dsm_name> = insert | delete | reverse | swap | traverse |
 search | find (max | min | last) | (left | right) rotation ;

Figure 5-26: The subtrees of CoMo’s grammar corresponding to labeling and recalling
data structures and manipulations by name.

The next section contains phrases that allow the user to label and recall data

structures and manipulations by name. CoMo has a list of the names of all the

structures and manipulations it can handle. After Sphinx successfully recognizes an

utterance, CoMo parses the returned string first to determine whether it is a labeling

utterance or a recalling utterance, and then which data structure or manipulation is

mentioned. For example, when Sphinx recognizes that the user said, “This is a binary

search tree left rotation,” CoMo first parses the string to see that it starts with “This

is” and then finds and recognizes “binary search tree” as a data structure and “left

rotation” as a manipulation.

The final section consists of the three phrases the user can utter to generate one

of the three things that CoMo can generate: code, canvases, and structures. Once

CoMo has a general structure definition (described above), it can generate example

structures with a user-specified number of nodes. As with recalling and labeling data

structures, CoMo parses the simple string that Sphinx returns, looking for the number

of nodes to generate.

13CoMo does not pay attention to how many times “or this” appears in the user’s utterance; it
only parses the diagram. It allows “or this” to appear arbitrarily many times in an attempt to be
more natural. §5.5.1 describes how this visual parsing process proceeds.

109

5.4.5 Speech Generation

CoMo uses Google’s speech synthesizer to generate audio. A list of utterances was

generated and can be played on demand.

Can you draw me a general structure?
What does this expand to?
How do you handle this case?
Okay.
I think I understand.
I will try.
Yes.
No.
I have another question first.
I can’t do that.

Table 5.3: Things CoMo is capable of saying.

Table 5.3 lists the phrases CoMo utters in response to, or in order to ask, questions.

As with the table on recognized speech, this is broken up into logical sections. The

first section contains the phrases relating to asking questions. If the user does not

lead with the structure definition (as in the examples above) CoMo can ask them

to draw it by saying, “Can you draw me a general structure?” As demonstrated

above, “What does this expand to” is used to ask what an ellipsis represents. CoMo

says, “How do you handle this case” when presenting the user with a new generated

example.

The second section contains the phrases CoMo uses to acknowledge user responses.

Though not explicitly stated after each answer in the examples, CoMo responds

“Okay” to each answer the user gives. CoMo says, “I think I understand” when

all its questions have been asked, “I will try” in response to a code synthesis request,

and “Yes” or “No” in response to a question about whether CoMo knows what a

specific data structure or manipulation is.

The final section contains the phrases used to inform the user that a requested

task could not be performed. If the user requests that code synthesis begin before all

of CoMo’s questions were answered, it responds by saying, “I have another question

110

first.” Similarly, if the user requests that CoMo generate a structure with a number

of nodes it is not able to14, CoMo will say, “I can’t do that.”

5.4.6 Question Generation

CoMo generates questions based on comparing the kind of information SPT requires

with the kind of information the user has thus far given. As discussed in §5.2, SPT

needs to know:

• An inductive definition of the general structure.

• What to do with a structure with four, one, and zero nodes; or—if there is more

than one structure—what to do with comparisons between the main structure

of sizes four, one, and zero, and any auxiliary structures of size one or zero.

• What to do with pairs of structures with differently valued nodes.

The example above demonstrated how all of these questions are asked except those

asking about comparisons between ordered structures. This section describes how

these questions are asked for a doubly linked list insertion, then it describes how the

constraints are used to generate input for SPT.

head tail

a b

ins

a < b

(a) CoMo: “How do you handle this case?”

head tail

a b

ins

a < b

(b) User: (after demonstrating) “Like this.”

Figure 5-27: Question about the list being less than the node to insert.

14Recall from above that one reason for this is that the drawn description of a general list would
not allow lists with two nodes to be generated. Alternatively, if the user has not yet drawn the
general structure, CoMo will respond to a request to generate structures with more than one node
with this phrase.

111

head tail

a b

ins

a > b

(a) CoMo: “How do you handle this case?”

head tail

a b

ins

a > b

(b) User: (after demonstrating) “Like this.”

Figure 5-28: Question about the list being greater than the node to insert.

An ordered doubly linked insertion consists of a two structures: the doubly linked

list (i.e., the “main” structure) and the node to insert (i.e., the “auxiliary” struc-

ture). To maintain the order of the list, the node is inserted in a location in the list

based on its value. To correctly handle constraints, CoMo must go through the pos-

sible configurations of relationships between manipulations involving both structures

when one is greater than the other and vice versa. Fig. 5-27 and Fig. 5-28 show the

constraint-based questions CoMo asks about the doubly linked list insertion. These

questions compare simple, differently valued, one-node structures with one another.

In these examples, the user would like the ordered list to have the smallest element

at the front and the largest element at the back.

...

scenario scenario4
input head -> a, a.next -> null, tail -> a, a.prev -> null,
 ins -> b, b.next -> null, b.prev -> null,
 a.val -> 5, b.val -> 6
output head -> a, a.next -> b, b.next -> null,
 tail -> b, b.prev -> a, a.prev -> null, ins -> b ;

scenario scenario5
input head -> a, a.next -> null, tail -> a, a.prev -> null,
 ins -> b, b.next -> null, b.prev -> null,
 a.val -> 6, b.val -> 5
output head -> b, b.next -> a, a.next -> null,
 tail -> a, a.prev -> b, b.prev -> null, ins -> b ;

...

data_selector val;

Figure 5-29: Subset of input to SPT illustrating constraint specification.

112

SPT’s input format requires two pieces of information to synthesize constraint-

aware code: concrete values and an explicit label for the variable containing a numeric

value. Fig. 5-29 shows these additions to SPT’s input. CoMo generates concrete

values based on the constraints. It starts at a node accessible by a pointer (in this

case it starts with a, accessible via head) and assigns it a value of 5. It then performs

a depth-first search on the node’s pointers and assigns values to nodes appropriate

to the constraint. In the case of scenario4, a = 5 and a < b, so b gets assigned 6.

After assigning values, CoMo adds them to the scenario: “a.val -> 5” and “b.val

-> 6.” SPT is informed that CoMo has selected “val” to contain a numeric value

with the directive “data selector val;” This directive informs SPT that it should

include value comparisons involving val in its search for conditions.

5.5 Assumptions, Algorithms, and Heuristics

This section describes the assumptions CoMo makes, and separates the algorithms it

employs from the heuristics it uses. CoMo makes two important simplifying assump-

tions about the data structures and manipulations that it handles. First, it assumes

that every node drawn in a description is of the same type—so, if one node has two

pointers, then all nodes should have two pointers. Second, it assumes that only one

node can be added, removed, or returned. As mentioned above, the node being re-

moved added or returned is called the auxiliary structure, while the structure being

added to, returned from, or removed from is called the main structure15. Pointers

other than those that are part of the main structure are assumed to be part of the

auxiliary structure. For example, the user used the rtn pointer to delimit the node

to be returned in the above example, and the ins pointer to denote the node to be

inserted in an insertion operation.

15This assumption causes CoMo to ask nonsensical question. The rtn pointer in the above example
was classified as the auxiliary structure. In a manipulation like a list append, this distinction becomes
more clear. CoMo classifies the list as the primary structure and the node to append as an auxiliary
structure.

113

5.5.1 Parsing a Data Structure

The first algorithm guides the process of “parsing” a data structure—the process of

modeling it as a graph and partitioning it into structures. There are two places parsing

is used: on inductive ellipsis (or, in the case of binary trees, triangle) definitions and on

drawn examples. For the ellipsis (or triangle) drawing, the sketch is parsed to separate

each of the options from one another. For an example data structure manipulation, it

is used to separate the diagrams into separate structures. This section demonstrates

how this simple algorithm functions by going through several examples of its use.

root

b

a

d

c

Figure 5-30: A binary tree.

To parse the simple binary tree structure seen in Fig. 5-30, CoMo performs an

depth-first search [10] beginning at a randomly-selected pointer, marking nodes as

visited as the tree is explored. In this diagram, the only present pointer is root, so

CoMo starts the depth-first search with a. a is marked as visited and its children, b

and d, are queued to be explored. Next, b is marked and its only child, c, is queued.

Next, d is marked, but since it has no children, none are queued. The c node is

marked and processed the same way. After this search, all the nodes in the tree have

been marked, and CoMo has recognized that this is a single structure.

Fig. 5-31 shows an example manipulation involving two structures: a linked list

insert. In this example, there are two pointers pointing at two separate structures;

head points at a list with four nodes, and ins points at a node to insert. As with the

tree, CoMo starts by randomly selecting a pointer from the sketch. In this case, it

114

head ins

a b c d x

Figure 5-31: A doubly linked list and extra node. The list is classified as the “main”
structure, and the extra node as an auxiliary structure.

selects head and marks all the nodes in the list starting at a and ending at d. When it

reaches d, it sees that its next pointer points at null, and so the search terminates. At

this point, a–d have been marked as part of the structure starting with head. CoMo

then selects the only remaining pointer from the drawing, ins, which points to the

x node. After this part of the sketch is searched through, x is marked as belonging

to the structure ins points to. Since the algorithm does not include null symbols in

its search, nodes from two separate structures using the same null symbol are not

confused as being a single structure.

head tail

a b c d

Figure 5-32: A doubly linked list.

Fig. 5-32 shows one final example of a data structure: a doubly linked list. This

structure contains two pointers, head and tail, and two node pointers, prev and

next. CoMo starts out parsing this structure the same way it did in the previous

example, with the a node that head points to. As before, a–d are marked as belonging

to the structure that head points to. This example differs in the next step; CoMo

explores the structure that tail is pointing to (starting at the d node) and finds that

d–a belong to the structure that tail points to, as well. Since all of these nodes are

connected and both head and tail were found to be pointing at the structure they

115

form, this collection of four nodes is classified as a single structure with two pointers.

xx xx

Figure 5-33: A binary tree repetition definition. CoMo parses four options.

Fig. 5-33 shows the triangle expansion for a binary tree16. As with an ellipsis

expansion, CoMo asks this question by displaying a copy of the repetition symbol (in

this case a triangle) at the top of a new canvas and asking, “What does this expand

to?” The user answers by drawing the four options seen in the figure. Parsing this

sketch proceeds slightly differently than with the above examples, because there are

no pointers to start with. Instead, every element in the graph—this time we need to

include null symbols also—is iterated over and, if it is a node, its pointers are explored.

CoMo starts with a randomly selected element (excluding the cloned triangle at the

top)—in this case, b is selected—and as with the examples above, b is marked and

its pointers are explored. The null b’s left pointer is pointing at and the triangle b’s

right pointer is pointing at are marked as visited. As the process continues, some

elements will be visited twice. When this happens, CoMo ignores them (they have

already been marked) and continues. When all the elements have been visited and

marked, the parsing process is complete.

5.5.2 Abstracting the CFG

As mentioned above, CoMo does not require the user to select a control flow graph

(CFG); CoMo selects one for them. The next algorithm that CoMo uses dictates how

it selects the CFG for SPT to use in code synthesis, and adds variables if necessary.

The CFG that CoMo selects is seen in Fig. 5-34a. This CFG was selected because

it is general enough to work with all the manipulations except one: the doubly linked

16Triangles are commonly used as the repetition symbol in tree drawings.

116

main(Node head , Node tail , Node ins) {
 Node tmp1 , tmp2 ;
 ??(3)
 while (**) {
 ??(5)
 }
 ?=(3)
}

(a) The default CFG.

main(Node head , Node tail , Node ins) {
 Node tmp1 , tmp2 ;
 ??(3)
 while (**) {
 ??(5)
 }
 ?=(8)
}

(b) The CFG used on the second try.

Figure 5-34: The CFGs used to synthesize code for an ordered, doubly linked list
insertion.

list insertion. To successfully synthesize code for the doubly linked list insertion,

CoMo follows an augmentation rule. If synthesis fails or if it takes longer than an

hour (the hour heuristic is discussed below), CoMo adds another five lines to the

bottom of the CFG and reruns SPT. The resulting CFG that is used to synthesize

code for the ordered, doubly linked list insertion is seen in Fig. 5-34b.

Fig. 5-35 shows the raw and cleaned code synthesized for the ordered, doubly

linked list insertion with SPT. This case illustrates one shortcoming of how CoMo

uses SPT. SPT determines that the first CFG is insufficient to synthesize the specified

manipulation by exhausting all code options in the CFG. This process takes several

hours to run. Once the second CFG is selected and run, synthesis then takes about

25 minutes.

5.5.3 Heuristics

This section discusses the five heuristics that CoMo employs. First, recall that CoMo

asks about examples with the main structure containing four, one, and zero nodes.

The number four is a heuristic. SPT needs an example with some number of nodes

larger than zero and one, and examples with four nodes were found to be effective in

synthesizing correct code.

Next, the order that CoMo asks its questions in was also selected because it seemed

natural. The order is:

1. Ask about the general structure.

117

void main() {
 tmp2 =head ;
 head =ins ;
 ins =tmp1 ;
 while(head != null && tmp2 != null && head . val < tmp2 . val) {
 tmp2 =head ;
 ins =tail ;
 head =tail ;
 tail =tmp2 ;
 tmp1 =head ;
 }
 if(tail != null) tail . next =head ;
 if(tail != null && head != null && tail . val < head . val) ins =tmp2 ;
 if(head != null) head . prev =tail ;
 if(tmp1 ==null) ins =head ;
 if(head != null) tail =head ;
 if(tmp2 != null) head =tmp2 ;
}

(a) Raw synthesized code.

tmp2 =head ;
head =ins ;
ins =tmp1 ;
while(head != null && tmp2 != null && head . val < tmp2 . val) {
 tmp2 =head ;
 ins =tail ;
 head =tail ;
 tail =tmp2 ;
 tmp1 =head ;
}
if(tail != null) tail . next =head ;
if(tail != null && head != null && tail . val < head . val) ins =tmp2 ;
if(head != null) head . prev =tail ;
if(tmp1 ==null) ins =head ;
if(head != null) tail =head ;
if(tmp2 != null) head =tmp2 ;

(b) Cleaned synthesized code.

Figure 5-35: The code synthesized for an ordered, doubly linked list insertion.

118

2. Ask about the repetition definition.

3. Ask about concrete structures.

The concrete structure questions differ when there is just a main structure, a main

structure and an auxiliary structure, and when there is an ordered main structure

and an auxiliary structure. When there is only a main structure, these questions’

order is:

1. What do you do with a structure with four nodes?

2. What do you do with a structure with one node?

3. What do you do with a structure with no nodes?

When there is a main and an auxiliary structure, the questions’ order becomes:

1. What do you do when the main structure has four nodes and the auxiliary

structure has one node?

2. What do you do when the main structure has one node and the auxiliary struc-

ture has one node?

3. What do you do when the main structure has no nodes and the auxiliary struc-

ture has one node?

4. What do you do when the main structure has four nodes and the auxiliary

structure has no nodes?

5. What do you do when the main structure has one node and the auxiliary struc-

ture has no nodes?

6. What do you do when the main structure has no nodes and the auxiliary struc-

ture has no nodes?

When there are multiple structures and the main structure is ordered, the ques-

tions’ order is the same as above17, however, instead of asking about the situation

17Note that CoMo does not assume anything about the values of the nodes. The user must input
a constraint to inform CoMo of the nodes’ values.

119

where both structures have one node, CoMo the two questions listed below, in the

order shown:

1. What do you do when the main structure has one node and the auxiliary struc-

ture has on node, and the main structure’s node has a value smaller than the

auxiliary node’s value?

2. What do you do when the main structure has one node and the auxiliary struc-

ture has on node, and the main structure’s node has a value greater than the

auxiliary node’s value?

The next heuristic CoMo employs was borrowed from Adler’s Midos [1]. Midos

waits three seconds before deciding that the user has completed their input. Similarly,

when giving an example that does not require a verbal acknowledgment (e.g., where

CoMo expects the user to respond, “Like this”), CoMo waits three seconds before

determining that the user has completed demonstrating the manipulation and moving

on to a new question.

If SPT takes more than one hour to run, CoMo assumes that the input it was

given is over-constrained, and that it will therefore fail to produce code. When this

happens, CoMo stops SPT and reruns it with the second, larger CFG. The value

of one hour was empirically chosen because the longest SPT takes to successfully

synthesize code with input generated by CoMo is about 45 minutes. The extra 15

minutes were added to give SPT some leeway.

Finally, several small heuristics exist within the sketch recognition module. One

example of such a heuristic is how CoMo determines whether to use Ouyang’s classifier

or PaleoSketch to recognize a stroke. Small strokes—strokes that have bounding boxes

smaller than 40 pixels wide by 60 pixels high—are classified by Ouyang’s recognizer,

and all others are classified by PaleoSketch. This heuristic places a constraint on the

user that simplifies the sketch recognition task. Most heuristics, however, come from

PaleoSketch [7], which has 26 heuristics used throughout the single-stroke recognition

process. Additionally, the remainder of the sketch recognition pipeline—NeaSketch

and the context recognizer—have some small number of heuristics based on Ehrenfels’

120

Gestalt principles [36], and some that were empirically determined to work. These

heuristics aide CoMo in determining things like when lines are parallel or diagonal,

and also when lines’ endpoints are close enough to be considered connecting.

5.5.4 Abstractions

During discussions, CoMo continually updates abstract representations of the node,

structure, and manipulation definition. It keeps track of the following things about

nodes:

• The types of pointers a node has (referred to as pointer types—these encapsulate

the difference between “next” and “prev” pointers).

• The name of each pointer type (initially “ptrn”).

• The constraints (if any) associated with each pointer type.

the following things about structures:

• The number of nodes in a structure.

• The name of the nodes (possibly the default: a single-letter name starting at

“a” based on the number of nodes in the sketch).

• The number and names of pointers.

• Where each pointer is pointing (i.e., the configuration of the structure).

and the following things about manipulations:

• The sequence of states in each example’s data structure manipulation.

• The general structure definition (like those seen in Fig. 5-7 and Fig. 5-8).

CoMo uses these abstractions to analyze the examples given and determine which

questions remain unanswered. Some examples of how these abstractions are used

include:

121

• To properly generate a structure with a single node, CoMo must know that a

node has two pointers.

• To generate SPT’s input, CoMo must know the names of the pointers and nodes,

and whether constraints exist and what they are.

• To understand what questions have been answered (and therefore which remain

to be asked), CoMo must know the configurations of the examples on the canvas.

Future work discusses how this information may be further used.

5.6 Limitations

This section discusses some of the interesting limitations preventing CoMo from hold-

ing a conversation with a user about more complex data structures—data structures

that violate one of the assumptions mentioned above. The following sections describe

what changes to CoMo would allow it to interact about an AVL tree insertion and

a min-heap pop. Brief descriptions of the manipulations are given in each section.

For a more complete description, see Cormen et al.’s Introduction to Algorithms, 3rd

edition [10]. Note that each of the manipulations presented here would also require a

more sophisticated code synthesis system, however since that is not the topic of this

thesis, this section will assume that the availability of a synthesis system that works

identically to SPT for these manipulations.

To be able to converse about new manipulations, one or more observational user

studies would have to be performed (similar to the one presented in Chapter 3) to

determine how people describe them. As before, CoMo’s interaction could then be

modeled after the findings of these user studies. Since these user studies have not

yet been performed, the following sections conjecture plausible findings, and model

CoMo’s augmentation after them.

122

5.6.1 AVL Tree Insertion

An AVL tree is a self-balancing binary tree with the property that the heights of any

node’s two subtrees will never differ by more than one. This is called the AVL tree

property.

root

5

9

20

181

2

0

1

0

1

Figure 5-36: An example AVL tree.

Fig. 5-36 shows an example AVL tree. Notice that each node also stores its

height—the length of its largest subtree—typically drawn above and to the side of

each node. These heights can be used to compute whether a rotation needs to be

performed to balance the tree by comparing each node’s left child’s height u against

its right child’s height v and determining whether |u − v| ≥ 2. If this inequality is

true, one of the six possible tree rotations must be performed to balance the tree.

Treating null symbols as though they have a height of −1 makes this inequality work

for all cases in an AVL tree.

Fig. 5-37 shows an example AVL tree insertion. The insertion starts with the AVL

tree and node to insert seen in Fig. 5-37a. A binary search tree insertion is performed

and the heights of the nodes are updated (Fig. 5-37b). The node labeled “20” violates

the AVL tree property—its left child has a height of 1, its right child has a height of

−1, and |(−1)− 1| ≥ 2—so a rotation must be performed. The tree is balanced with

a right rotation about the node labeled “20,” the heights are updated, and the tree

is again a valid AVL tree (Fig. 5-37c).

123

root

5

9

20

181

2

0

1

0

1

add

10
0

(a) The AVL tree and a node to add.

root

5

9

20

181

3

0

2

1

1

10
0

(b) The AVL tree after the node was added
with a non-balancing BST insertion, violat-
ing the AVL property.

root

5

9

18

1

2

0

1

0

1

20
0

10

(c) The AVL tree after being rebalanced.

Figure 5-37: An AVL tree insertion consisting of a BST insertion followed by a
rotation.

124

CoMo needs three additional abilities to be able to converse about this manipula-

tion. First, CoMo needs the ability to store multiple values in nodes (currently, only

a single numerical value can be stored) An additional value is required to store the

height of each subtree. This addition is a two-part task: first augmenting the context

recognizer in the sketch recognition module to recognize that a number above and

to the side of a node signifies a second value, and second augmenting CoMo’s inter-

nal representation of data structures to lift the “one value” constraint. Adding to

the internal representation would involve giving each value a default name—perhaps

“val1” and “val2”—and allowing one or both to appear in constraints.

The next augmentation CoMo needs is allowing the user to specify a complex con-

straint like the AVL tree property, perhaps by drawing “|ptr1.val2− ptr0.val2| ≤

2” on the canvas. This would require augmenting the constraint-handling code that

currently only works on simple constraints like “a < b < c.”

The third and final augmentation required is the ability to verbally compose ma-

nipulations. The AVL tree insertion involves five manipulations: a BST insertion

and four tree rotations. As shown above, the first step in each AVL insertion is a

BST insertion. This can result in violating the AVL property, which requires one

of the four rotations to be performed. Determining which of the rotations must be

performed is a matter of following four simple rules.

Fig. 5-38 shows a snapshot of how a user might describe an AVL tree insertion

to a user. Describing it would consist of two phases. It would start with the user

saying, “Perform a binary search tree insertion,” which CoMo would do, resulting in

Fig. 5-38. Next, the user would say, “Since this is true,” while drawing the condition

seen on the canvas, “then do a right rotation about this node,” while pointing at the

d node. Giving an example for each different rotation would result in CoMo stitching

together previously learned manipulations to form a new, more complex one, like an

AVL tree insertion.

125

root

b

a

d

ec

3

0

2

1

1

x
0

d.ptr0.val2 - d.ptr1.val2 < -2

Figure 5-38: A snapshot of a possible interaction with CoMo about an AVL tree
insert. CoMo has just performed a BST insertion, and the user is explaining why a
rotation is required.

5.6.2 Min-Heap Pop

Min-heaps are structures that always have the minimum element at the top. Pop

operations on min-heaps return the smallest element—the one at the top of the heap.

Heaps implemented as binary trees are always complete, and each node has a larger

value than its parent. These two constraints on heaps are together called the heap

property.

top

5

1

18

920

Figure 5-39: An example min-heap.

126

Fig. 5-39 shows an image of one possible min-heap. Popping the top element off

of this heap proceeds in three steps: removing the top element, putting the “last”

element in its place, and re-heapifying the heap—a recursive operation that ensures

the heap property is met.

top

5

1

18

920

rtn

(a) A heap.

top

5 18

920

rtn

1

(b) The top element is removed.

top

5

9

18

20

rtn

1

(c) The last element is placed at the top.

top

9

5

18

20

rtn

1

(d) The heap is (recursively) re-heapified.

Figure 5-40: The process of popping an element from a heap; the minimum element
is returned, and the next smallest is placed at the top of the heap, ready for the next
pop operation.

Fig. 5-40 demonstrates how a min-heap pop proceeds. Fig. 5-40a shows the heap

from the example diagram above next to a rtn pointer, meant to denote the node to

return. First, the top element of the heap is removed and returned18 (Fig. 5-40b). The

18Note that this description is conceptual; it ignores the order of operations. An actual imple-
mentation would proceed differently, however the purpose of this explanation is to communicate the
idea of what steps go into a min-heap pop, not to mirror an implementation.

127

heap is now incomplete—it is missing a root element—so the bottom-most element in

the heap is removed from its position and placed at the root of the tree (Fig. 5-40c).

The heap is complete, but it violates the heap property. To fix this, an operation,

usually called “re-heapify,” must be performed. This is the process by which, starting

at the root node, each node is recursively swapped with its smallest-valued child if

that child’s value is less than it. Once this operation is complete, the heap looks like

the diagram in Fig. 5-40d and the min-heap pop is complete.

Assume that a user study was performed that determined people describe heap

operations in terms of the recursive re-heapify manipulation.19 Let us also assume

that CoMo has been taught to re-heapify a list.

top

b

e

c

d

rtn

a

b > a < c

(a) The user has clicked-and-dragged . . .

top

b

e

c

d

rtn

a

b > a < c

d > e > b

(b) The user draws a constraint . . .

Figure 5-41: A snapshot of a user explaining a min-heap pop manipulation to CoMo.
Here, the user explains why a swap must happen.

In principle, CoMo’s current abilities should suffice in handling this manipulation;

what is missing is a sufficient code synthesis system. Fig. 5-41 shows a snapshot of

the interaction with the user about the min heap operation. This figure has analogous

diagrams to Fig. 5-40c and Fig. 5-40d; after describing the heap (complete with the

constraint “b > a < c”), simple pop operation, and placing the last element at the

top of the heap (Fig. 5-41a), the user describes why the e node must be swapped down

one level by writing, “d > e > b” and clicking and dragging the heads of pointers to

19This may in fact be the case, since adding and removing elements from a heap require it to be
re-heapified as a final step.

128

show the heap in its re-heapified state.

top

e

b

c

d

rtn

a

b > a < c

d > e > b

Figure 5-42: The ability to move nodes’ positions allows the user to clean up the
sketch. This figure differs from Fig. 5-41b only in the positions of the nodes.

One addition that would improve CoMo’s interaction would be the ability to move

the positions of nodes. As is apparent from the diagram, the inability to move nodes

can quickly result in messy drawings. The conceptually simple change of swapping

two nodes (by updating five pointers) results in many overlapping nodes. Swapping

node positions could be achieved by clicking and dragging nodes. After swapping the

pointers, clicking and dragging nodes would allow the user to clean up the sketch,

resulting in a figure like that seen in Fig. 5-42.

5.7 Conclusions

This chapter discussed how CoMo guides the interaction with the user to ask and

answer questions, interpret answers and sketches, and communicate multimodally. It

described how the mixed-initiative code-generation framework’s simple set of rules

for generating example questions—asking about cases involving four, one, and zero

nodes—and simple rule for guessing an appropriate CFG—starting with a default

one, augmenting it, and retrying—result in a powerful system able to hold a limited

conversation about 50 manipulations on 8 structures, synthesize code, and help the

user verify the code’s correctness with animations. Further, it discussed some of

129

CoMo’s limitations by describing the augmentations needed to enable CoMo to discuss

an AVL tree insert, a min-heap pop, and a red-black tree search.

130

Chapter 6

Domain

CoMo’s domain (i.e., the set of data structures and manipulations for which it can

successfully synthesize code) is a set of common pointer- and node-based data struc-

ture manipulations that conform to the following constraints:

1. All nodes in the structure are of the same type.

2. Nodes contain at most one value and some number of pointers.

3. The manipulation does not contain any recursive or subroutine calls.

4. At most one node can be added, removed, or returned from a structure.

This chapter lists the data structures and manipulations in CoMo’s domain, then it

describes the interaction for a representative subset of manipulations.

6.1 Summary of Structures

CoMo can handle the following data structure manipulations:

1. Stack

(a) push

(b) pop

(c) poll

2. Queue

(a) enqueue

131

(b) dequeue

(c) peek

3. Singly Linked List

(a) insert

(b) delete

(c) reverse

(d) append

(e) prepend

(f) remove first

(g) remove last

(h) find first

(i) find last

4. Doubly Linked List

(a) insert

(b) delete

(c) reverse

(d) append

(e) prepend

(f) remove first

(g) remove last

(h) find first

(i) find last

5. Ordered, Singly Linked List

(a) insert

(b) reverse

(c) remove minimum

(d) remove maximum

(e) find minimum

(f) find maximum

6. Ordered, Doubly Linked List:

(a) insert

(b) reverse

(c) remove minimum

(d) remove maximum

(e) find minimum

(f) find maximum

7. Binary Tree

(a) left rotation

(b) right rotation

(c) left-right rotation

(d) left-left rotation

(e) right-left rotation

(f) right-right rotation

8. Binary Search Tree

(a) left rotation

(b) right rotation

(c) left-right rotation

(d) left-left rotation

(e) right-left rotation

132

(f) right-right rotation

(g) find minimum

(h) find maximum

This sums up to a total of 50 manipulations on 8 data structures.

6.2 Similarity Classes

There is quite a bit of similarity across the different kinds of data structure manipu-

lations that CoMo can handle. For example, a stack push and a linked list prepend

look virtually identical in code and thus virtually identical when drawn. As seen in

Fig. 6-1, the differences between the two manipulations are just the labels chosen

for their pointers (“head” or “top”) and the direction they are drawn in (vertical or

horizontal).

top

a

b

c

add

x

(a) A stack before the push manipulation.

top

a

b

c

add

x

(b) The same stack after the manipulation.

head

a b c

x

add

(c) A list before the prepend manipulation.

head

a b c

x

add

(d) The same list after the manipulation.

Figure 6-1: A stack push and a linked list prepend. Note that these two manipulations
are nearly identical.

Manipulations are also considered similar when the set of operations in one manip-

133

ulation is a strict subset of the set of operations in the other. Fig. 6-2 demonstrates

this by comparing an ordered, doubly linked list reversal to an unordered, singly

linked list reversal. The singly linked list reversal consists of a strict subset of the

operations required to perform the ordered, doubly linked list reversal; it requires half

the pointer reassignments and no constraint. Demonstrating that CoMo can discuss

and successfully generate code for the more complex of the two effectively demon-

strates that it can successfully discuss and generate code for the less complex of the

two.

head tail

a b c

a < b < c

(a) An ordered, doubly linked list before the
reverse manipulation.

head tail

a b c

a < b < c

(b) The same list after the manipulation.

head

a b c

(c) An unordered, singly linked list before the
reverse manipulation.

head

a b c

(d) The same list after the manipulation.

Figure 6-2: List reversals for an ordered, doubly linked list and unordered singly
linked list. Note that the operations required for the singly linked list reversal are a
strict subset of the operations required for ordered, doubly linked list reversal.

Table 6.1 groups the list-based manipulations into similarity classes. If CoMo can

successfully discuss the most complicated example in a similarity class and generate

code for it, then it can handle the remaining, less-complex examples. This chapter

gives seven representative examples of these manipulations. Manipulations with a

section number below them are demonstrated in the referenced section. Most of the

demonstrated manipulations are on singly linked list-based data structures because

134

manipulating the extra pointer in a doubly linked list-based data structure adds

visual complexity without adding any useful information. Two manipulations on

doubly linked list-based structures are included (the queue dequeue in §6.4 and the

ordered doubly linked list insertion in §6.8) to demonstrate this complexity.

Stack LL Ordered LL Queue DLL Ordered DLL

push prepend enqueue prepend
(§6.3) append
pop remove-first remove-min dequeue remove-first remove-min

(§6.4) remove-last remove-max
poll find-first find-min peek find-first find-min

find-last find-max
reverse reverse reverse reverse
(§6.5)

insert insert
delete delete
(§6.7)

insert insert
(§6.8)

append
remove-last remove-max

find-last find-max
(§6.6)

Table 6.1: The list-like data structure manipulations about which CoMo can interact,
separated by similarity. “LL” and “DLL” stand for “Linked List” and “Doubly Linked
List” respectively.

Table 6.1 only sorts the list-based manipulations. There are an additional six

kinds of rotations that can be performed on binary trees and binary search trees (see

§6.9) and a find-min and find-max operation on a binary search tree. The find-min

and find-max operations are in the same similarity class as the linked list find-last1;

see §6.6 for a very similar manipulation.

1Indeed, in the worst case of a binary search tree being perfectly unbalanced, it very nearly
resembles a singly linked list list. The only difference is the additional null-pointer that each tree
node has.

135

6.3 Stack Push

Stacks are sequential lists of objects that ensure the first element added to the stack

will be the last element out of it (FILO). Stack operations consist primarily of “push”

operations that add an element to the top of the stack, and “pop” operations that

remove an element from the top.

(a) The user draws a general stack. (b) The user defines the ellipsis expansion.

Figure 6-3: The general stack and ellipsis definition

The user starts the interaction by asking CoMo, “Do you know what a stack is?”

CoMo replies “No,” so the user draws the general ellipsis seen in Fig. 6-3a. CoMo

asks, “What does this expand to?” while displaying a copy of the ellipsis from the

user’s general stack drawing. The user answers the question by drawing the two

possible expansions seen in Fig. 6-3b.

Next, CoMo asks what to do with a stack containing four elements (Fig. 6-4a).

The user responds by adding an add pointer pointing at an x node, and updating

the sketch by clicking and dragging x’s pointer to point at the top of the stack, and

the top pointer to point at the x node. The final state of the canvas can bee seen in

Fig. 6-4b.

The next three questions are about when the stack has four, one, and zero nodes

136

(a) CoMo: “How do you handle this case?” (b) User (after adding add and performing
the manipulation): “Like this.”

Figure 6-4: A question and answer about pushing onto a stack with four nodes.

and the add pointer is pointing at null. Fig. 6-5 shows the structures that CoMo gen-

erates while asking “How do you handle this case?” The user answers “Do nothing”

to each of these.

The final two questions that CoMo asks are how to push a node onto a stack with

one (Fig. 6-6) and zero (Fig. 6-7) nodes in it. These questions proceed identically:

CoMo generates the sketches and asks “How do you handle this case?” The user

answers by updating the sketch by clicking and dragging the pointers’ heads and

saying, “Like this.” After the user answers the final question, CoMo says, “I think I

understand.”

The user cannot think of anything to add and says, “Generate code.” CoMo gen-

erates the input to SPT seen in Fig. 6-8 and after about five seconds, SPT generates

the code seen in Fig. 6-9a. CoMo cleans the code and presents it to the user. Fig. 6-9

shows the cleaned code. The user tests the code out on stack with four elements and

a new stack with five elements. They are satisfied that the code is correct, so the

interaction is complete.

137

(a) CoMo: “How do you handle this case?”
User: “Do nothing.”

(b) CoMo: “How do you handle this case?”
User: “Do nothing.”

(c) CoMo: “How do you handle this case?”
User: “Do nothing.”

Figure 6-5: The questions and corresponding answers about stacks with nothing to
add. These questions proceed identically to one another.

138

(a) CoMo: “How do you handle this case?” (b) User (after updating the sketch): “Like
this.”

Figure 6-6: Question and answer about what to do with a stack containing one node
and an add pointer pointing at a separate node.

(a) CoMo: “How do you handle this case?” (b) User (after updating the sketch): “Like
this.”

Figure 6-7: Question and answer about what to do with an empty stack and an add

pointer pointing at a node.

139

scenario scenario2
input top -> a , a . ptr0 -> b , b . ptr0 -> c , c . ptr0 -> d , d . ptr0 -> null,
 add -> x , x . ptr0 -> null
output top -> x , a . ptr0 -> b , b . ptr0 -> c , c . ptr0 -> d , d . ptr0 -> null,
 add -> x , x . ptr0 -> a ;

scenario scenario3
input top -> a , a . ptr0 -> b , b . ptr0 -> c , c . ptr0 -> d , d . ptr0 -> null,
 add -> null
output top -> a , a . ptr0 -> b , b . ptr0 -> c , c . ptr0 -> d , d . ptr0 -> null,
 add -> null ;

scenario scenario4
input add -> a , top -> b , a . ptr0 -> null, b . ptr0 -> null
output add -> a , top -> a , a . ptr0 -> b , b . ptr0 -> null ;

scenario scenario5
input add -> null, top -> a , a . ptr0 -> null
output add -> null, top -> a , a . ptr0 -> null ;

scenario scenario6
input add -> a , top -> null, a . ptr0 -> null
output add -> a , top -> a , a . ptr0 -> null ;

scenario scenario7
input add -> null, top -> null
output add -> null, top -> null ;

main(Node add , Node top) {
 Node tmp2 , tmp1 ;
 ?=(3)
 while (**) {
 ??(5)
 }
 ?=(3)
}

Figure 6-8: The input CoMo generates for SPT.

void main() {
 add =add ;
 top =top ;
 add =add ;
 while(false) {
 add =top . next ;
 top . next =add ;
 add =top ;
 add =top . next ;
 top =add ;
 }
 if(false) top =add . next ;
 if(add != null) add . next =top ;
 if(add != null) top =add ;
}

(a) The raw code.

if(add != null) add . next =top ;
if(add != null) top =add ;

(b) The cleaned code.

Figure 6-9: The raw and cleaned synthesized code for the stack push manipulation.

140

6.4 Queue Dequeue

A queue, like a stack, is a structure that keeps the order of a set of elements. Unlike

a stack, the first in is guaranteed to be the first out (FIFO). One way to implement

a stack (the way presented here) is with a doubly linked list.

(a) The user draws a general queue. (b) The user defines the ellipsis expansion.

Figure 6-10: The definition of a general queue.

The user starts by asking CoMo, “Do you know what a queue is?” CoMo responds,

“No.” The user then draws a general queue, seen in Fig. 6-10a. CoMo recognizes the

ellipsis in the general queue to be a form of repetition, but does not know what for the

repetition takes, so it asks, “What does this expand to?” and displays a new canvas

with a copy of the ellipse at the top. The user answers by drawing the inductive

definition of the ellipsis, seen in Fig. 6-10b, and saying, “To this or this.”

Next, CoMo asks the user what to do with a queue containing four elements.

CoMo generates the sketch seen in Fig. 6-11a and asks, “How do you handle this

case?” The user responds by adding a rtn pointer pointing at null, moving it to

point at the front of the queue, updating the pointers to remove the front element

from the queue, and saying, “Like this.”

The next three questions are seen in Fig. 6-12, Fig. 6-13, and Fig. 6-14. In each

case, CoMo brings up the figure shown and asks the user, “How do you handle this

case?” The user considers these questions to be nonsensical, as they involve a rtn

141

(a) CoMo: “How do you handle this case?”

(b) User (after adding rtn and performing the manipulation): “Like this.”

Figure 6-11: A question and corresponding answer about a queue with four nodes.

Figure 6-12: CoMo: “How do you handle this case?” User: “That does not make
sense.”

142

Figure 6-13: CoMo: “How do you handle this case?” User: “That does not make
sense.”

Figure 6-14: CoMo: “How do you handle this case?” User: “That does not make
sense.”

143

pointer starting out pointing at a node, so in each case the user answers with the

phrase, “That does not make sense.”

(a) CoMo: “How do you handle this case?”

(b) User: “Like this.”

Figure 6-15: CoMo asks about a queue with one element and an rtn pointer pointing
at null.

The final two questions are seen in Fig. 6-15a–6-16. Each involves rtn pointing

at null, so the user answers them by updating the sketch to reflect the state after

the manipulation, and saying, “Like this.” After the user answers its final question,

CoMo says, “I think I understand.”

The user cannot think of anything to add, so they say “Generate code.” CoMo

generates the input to SPT seen in Fig. 6-17 and, after about 30 seconds, SPT

generates the code seen in Fig. 6-18a, which CoMo cleans and presents to the user.

144

Figure 6-16: The question and answer for an empty queue. CoMo asks, “How do you
handle this case?” and the user responds, “Do nothing.”

scenario scenario2
input front -> a , a . ptr0 -> b , b . ptr0 -> c , c . ptr0 -> d , d . ptr0 -> null,
 back -> d , d . ptr1 -> c , c . ptr1 -> b , b . ptr1 -> a , a . ptr1 -> null,
 rtn -> null
output front -> b , b . ptr0 -> c , c . ptr0 -> d , d . ptr0 -> null,
 back -> d , d . ptr1 -> c , c . ptr1 -> b , b . ptr1 -> a null,
 rtn -> a , a . ptr0 -> null, a . ptr1 -> null ;

scenario scenario5
input back -> a , front -> a , rtn -> null, a . ptr0 -> null, a . ptr1 -> null
output back -> null, front -> null, rtn -> a , a . ptr0 -> null, a . ptr1 -> null ;

scenario scenario7
input back -> null, front -> null, rtn -> null
output back -> null, front -> null, rtn -> null ;

main(Node rtn , Node back , Node front) {
 Node tmp2 , tmp1 ;
 ?=(3)
 while (**) {
 ??(5)
 }
 ?=(3)
}

Figure 6-17: The input CoMo generates for SPT.

145

void main() {
 tmp2 =back ;
 back =tmp1 ;
 rtn =tmp2 ;
 while(false) {
 tmp2 . ptr1 =back ;
 rtn . ptr1 =front ;
 tmp2 =back ;
 front =back ;
 tmp1 . ptr0 =front ;
 }
 if(rtn ==front) front =back ;
 if(front != null) back =tmp2 . ptr1 ;
 if(tmp1 != front) back . ptr0 =tmp1 ;
}

(a) The raw code.

tmp2 =back ;
back =tmp1 ;
rtn =tmp2 ;
if(rtn ==front) front =back ;
if(front != null) back =tmp2 . ptr1 ;
if(tmp1 != front) back . ptr0 =tmp1 ;

(b) The cleaned code.

Figure 6-18: The raw and cleaned synthesized code for the dequeue manipulation.

The cleaned code is seen in Fig. 6-18b. The user then tests the code on a queue with

four elements, and a new queue with five elements. They are satisfied that the code

works, and so the interaction is complete.

6.5 Singly Linked List Reversal

The singly linked list reversal was demonstrated in the Introduction. An abbreviated

version is presented here for completeness.

(a) The user draws a general linked list. (b) The user defines the ellipsis expansion.

Figure 6-19: The inductive definition of a general list.

The user starts by asking CoMo, “Do you know what a linked list is?” CoMo

146

responds, “No.” The user then draws a general linked list, seen in Fig. 6-19a. CoMo

recognizes the ellipsis in the general list as a form of repetition, but it does not know

what form the repetition takes, so it asks, “What does this expand to?” and displays

a new canvas with a copy of the ellipse at the top. The user answers by drawing the

inductive definition of the ellipsis expansion, seen in Fig. 6-19b, and saying, “To this

or this.”

(a) CoMo: “How do you handle this case?” (b) User (after reversing the list): “Like
this.”

Figure 6-20: A question about a list with four nodes.

Next, CoMo asks the user what to do with a list containing four elements. CoMo

generates the sketch seen in Fig. 6-20a and asks, “How do you handle this case?” The

user responds by clicking and dragging the heads of pointers to reflect the state of

the list after being reversed and saying, “Like this.” The result of the manipulation

can bee seen in Fig. 6-20b.

Next CoMo asks about the two examples seen in Fig. 6-21. In each case, CoMo

displays the example and asks, “What does this expand to?” Both of these lists look

the same reversed, so the user responds only verbally, by saying, “Do nothing.” Once

both questions are answered, CoMo says, “I think I understand.”

The user cannot think of any examples to add, so they say, “Generate code.”

CoMo runs SPT with the input shown in Fig. 6-22, and after about 20 seconds, SPT

synthesizes the code seen in Fig. 6-23a. CoMo cleans the code (seen in Fig. 6-23b)

and displays it to the user.

147

(a) CoMo: “How do you handle this case?”
User: “Do nothing.”

(b) CoMo: “How do you handle this case?”
User: “Do nothing.”

Figure 6-21: Two questions about lists that look the same reversed.

scenario scenario2
input head -> a , a . ptr0 -> b , b . ptr0 -> c , c . ptr0 -> d , d . ptr0 -> null
output head -> d , a . ptr0 -> null, b . ptr0 -> a , c . ptr0 -> b , d . ptr0 -> c ;

scenario scenario3
input head -> a , a . ptr0 -> null
output head -> a , a . ptr0 -> null ;

scenario scenario4
input head -> null
output head -> null ;

main(Node head) {
 Node tmp2 , tmp1 ;
 ?=(3)
 while (**) {
 ??(5)
 }
 ?=(3)
}

Figure 6-22: The input CoMo generates for SPT.

148

void main() {
 tmp1 =head ;
 head =tmp1 ;
 head =tmp2 ;
 while(tmp1 != null) {
 tmp2 =head ;
 tmp1 =tmp1 ;
 head =tmp1 ;
 tmp1 =head . next ;
 head . next =tmp2 ;
 }
 if(false) head =tmp1 ;
 if(false) head =tmp1 ;
 if(false) head =tmp1 . next ;
}

(a) The raw code.

tmp1 =head ;
head =tmp2 ;
while(tmp1 != null) {
 tmp2 =head ;
 head =tmp1 ;
 tmp1 =head . next ;
 head . next =tmp2 ;
}

(b) The cleaned code.

Figure 6-23: The raw and cleaned synthesized code for the reversal.

6.6 Singly Linked List Find Last

The singly linked list find last operation was fully described in chapters 4 and 5. It

will differ here every so slightly, because CoMo just had a simple conversation about

a linked list.

(a) The general list that CoMo remembers. (b) The ellipsis expansion that CoMo remem-
bers.

Figure 6-24: CoMo recalls what a linked list is when asked.

The user begins by asking CoMo, “Do you know what a linked list is?” CoMo

says, “Yes.” and brings up the figures from the previous interaction, seen in Fig. 6-24.

The user then asks, “Do you know what a linked list reversal is?” CoMo responds,

“No.”

149

(a) CoMo: “How do you handle this case?”

(b) User (after adding the rtn pointer and updating it): “Like this.”

Figure 6-25: The first question and corresponding answer that CoMo asks.

150

After waiting three seconds for more input (and receiving none), CoMo asks its

first question. It displays the list seen in Fig. 6-25a and asks, “How do you handle

this case?” The user adds a rtn pointer pointing at null and moves it to point at the

end of the list, seen in Fig. 6-25b. The user then says, “Like this.”

Figure 6-26: CoMo: “How do you handle this case?” User: “That does not make
sense.”

Figure 6-27: CoMo: “How do you handle this case?” User: “That does not make
sense.”

Next, CoMo asks about the three examples seen in Fig. 6-26, Fig. 6-27, and

Fig. 6-28. As with the analogous questions in the queue dequeue manipulation (seen

in Fig. 6-12, Fig. 6-13, and Fig. 6-14), the rtn pointer points at an element separate

from the main structure. The user decides this does not make sense, since the rtn

151

Figure 6-28: CoMo: “How do you handle this case?” User: “That does not make
sense.”

pointer is meant as a return statement, and they respond to each question by saying,

“That does not make sense.”

Next CoMo asks two questions about examples where rtn points at null, the first

with a list with one node (Fig. 6-29) and the second with an empty list (Fig. 6-30).

The user answers the first question by moving the rtn pointer to the only element in

the list (Fig. 6-29b) and saying, “Like this,” and the second question by saying, “Do

nothing” (Fig. 6-30). After the user answers this final question, CoMo says, “I think

I understand.”

The user cannot think of any other examples to give CoMo, so they say, “Generate

code.” After about 30 seconds, the code seen in Fig. 6-32a is synthesized. CoMo cleans

the code to what is seen in Fig. 6-32b and displays it to the user.

6.7 Singly Linked List Delete

This is the final demonstration of a singly linked list manipulation in this thesis. Since

the singly linked list in this manipulation is not ordered, a del pointer is added to

denote the node to be removed.

The user starts by asking CoMo, “Do you know what a singly linked list is?”

CoMo responds, “Yes” and brings up the inductive singly linked list definition from

the previous examples, seen in Fig. 6-33.

152

(a) CoMo: “How do you handle this case?”

(b) User (after demonstrating): “Like this.”

Figure 6-29: CoMo asks about a list with one node and rtn pointer pointing at null.

Figure 6-30: CoMo: “How do you handle this case?” User: “Do nothing.”

153

scenario scenario2
input head -> a , a . ptr0 -> b , b . ptr0 -> c , c . ptr0 -> d , d . ptr0 -> null,
 rtn -> null
output head -> a , a . ptr0 -> b , b . ptr0 -> c , c . ptr0 -> d , d . ptr0 -> null,
 rtn -> d ;

scenario scenario6
input rtn -> null, head -> a , a . ptr0 -> null
output rtn -> a , head -> a , a . ptr0 -> null ;

scenario scenario7
input rtn -> null, head -> null
output rtn -> null, head -> null ;

main(Node head , Node rtn) {
 Node tmp1 , tmp2 ;
 ??(3)
 while (**) {
 ??(5)
 }
 ?=(3)
}

Figure 6-31: The input to SPT generated from the find-last interaction.

void main() {
 rtn =head ;
 head =tmp1 ;
 tmp1 =rtn ;
 while(rtn != head) {
 rtn =head ;
 rtn =rtn ;
 rtn =head ;
 rtn =tmp1 ;
 head =rtn ;
 }
 if(tmp1 != null) tmp2 =tmp1 . ptr0 ;
 if(tmp2 != null) tmp2 =tmp2 . ptr0 ;
 if(tmp2 != null) rtn =tmp2 . ptr0 ;
}

(a) The raw code.

rtn =head ;
head =tmp1 ;
tmp1 =rtn ;
while(rtn != head) {
 rtn =tmp1 ;
 head =rtn ;
}
if(tmp1 != null) tmp2 =tmp1 . ptr0 ;
if(tmp2 != null) tmp2 =tmp2 . ptr0 ;
if(tmp2 != null) rtn =tmp2 . ptr0 ;

(b) The cleaned code.

Figure 6-32: The raw and cleaned synthesized code for the find-last manipulation.

154

(a) The general list that CoMo remembers. (b) The ellipsis expansion that CoMo remem-
bers.

Figure 6-33: CoMo recalls what a linked list is when asked.

(a) CoMo: “How do you handle this case?” (b) User (after adding del and performing
the manipulation): “Like this.”

Figure 6-34: CoMo asks a question about a singly-linked list with four nodes.

155

The user does not say or draw anything, so after waiting three seconds, CoMo

asks its first question about a list with four nodes, seen in Fig. 6-34, by generating a

list and saying, “How do you handle this case?” The user responds by drawing a del

pointer pointing at the c node, removing it from the list by reassigning b’s pointer to

point at d, and saying, “Like this.”

(a) CoMo: “How do you handle this case?” (b) User (after performing the manipula-
tion): “Like this.”

Figure 6-35: CoMo asks a question about a singly-linked list with one node.

Next, CoMo asks about a list with one node. Since it saw a del pointer in the

previous example, it adds it to point at the only node in the sketch it generates. As

before, CoMo asks, “How do you handle this case?” The user responds by moving

the head pointer to point at the null symbol and saying, “Like this.”

Figure 6-36: CoMo: “How do you handle this case?” User: “Do nothing.”

CoMo asks its final question about an empty list. It generates the sketch and

156

says, “How do you handle this case?” The user responds only verbally, by saying,

“Do nothing.” CoMo has finished asking all of its questions, so it says, “I think I

understand.”

(a) The user removes the next-to-last node.

(b) The user removed the next-to-first node.

Figure 6-37: The user decides to give two more demonstrations on structures with
five nodes.

At this point, the user is unconvinced that CoMo has received enough examples

to generate code correctly. Instead of initiating code synthesis by saying “Generate

code,” the user says, “Generate a structure with five nodes.” CoMo does, and the

user proceeds to demonstrate how to remove the next to last element of a five-element

list (Fig. 6-37a). Once done with that, the user says again, “Generate a list with five

nodes.” After CoMo does, the user demonstrates how to remove the second element

from this new five-element list (Fig. 6-37b). Now the user is satisfied that enough

examples have been given, and so they say, “Generate code.” CoMo responds, “I will

157

try.”

scenario scenario2
input del -> c ,
 head -> a , a . ptr0 -> b , b . ptr0 -> c , c . ptr0 -> d , d . ptr0 -> null
output del -> c ,
 head -> a , a . ptr0 -> b , b . ptr0 -> d , c . ptr0 -> d , d . ptr0 -> null ;

scenario scenario3
input del -> a , head -> a , a . ptr0 -> null
output del -> a , head -> null, a . ptr0 -> null ;

scenario scenario4
input del -> null, head -> null
output del -> null, head -> null ;

scenario scenario5
input del -> d , head -> a ,
 a . ptr0 -> b , b . ptr0 -> c , c . ptr0 -> d , d . ptr0 -> e , e . ptr0 -> null
output del -> d , head -> a ,
 a . ptr0 -> b , b . ptr0 -> c , c . ptr0 -> e , d . ptr0 -> e , e . ptr0 -> null ;

scenario scenario6
input del -> b , head -> a ,
 a . ptr0 -> b , b . ptr0 -> c , c . ptr0 -> d , d . ptr0 -> e , e . ptr0 -> null
output del -> b , head -> a ,
 a . ptr0 -> c , b . ptr0 -> c , c . ptr0 -> d , d . ptr0 -> e , e . ptr0 -> null ;

main(Node del , Node head) {
 Node tmp2 , tmp1 ;
 ??(3)
 while (**) {
 ??(5)
 }
 ?=(3)
}

Figure 6-38: The input to SPT produced by CoMo.

CoMo generates the input seen in Fig. 6-38 from the examples above. After about

ten seconds, SPT produces the code seen in Fig. 6-39a. CoMo cleans the code (Fig. 6-

39b) and displays it to the user. After testing this out on a few examples, the user is

satisfied that the code works, and the interaction is complete.

6.8 Ordered Doubly Linked List Insertion

The ordered, doubly linked list insertion is the most complicated manipulation that

CoMo can handle. Ordered insertions proceed based on the values of the nodes

involved. In the following example, no concrete values are used in the interaction with

158

void main() {
 tmp1 =head ;
 head =del ;
 del =tmp1 ;
 while(head != del) {
 tmp2 =del ;
 del =del . ptr0 ;
 del =del ;
 del =del ;
 del =del ;
 }
 if(tmp2 ==null) tmp1 =tmp2 ;
 if(true) head =tmp1 ;
 if(tmp2 != null) tmp2 . ptr0 =del . ptr0 ;
}

(a) The raw code.

tmp1 =head ;
head =del ;
del =tmp1 ;
while(head != del) {
 tmp2 =del ;
 del =del . ptr0 ;
}
if(tmp2 ==null) tmp1 =tmp2 ;
head =tmp1 ;
if(tmp2 != null) tmp2 . ptr0 =del . ptr0 ;

(b) The cleaned code.

Figure 6-39: The raw and cleaned synthesized code for the delete manipulation.

the user. As mentioned in the previous chapter, CoMo is able to handle constraints

abstractly; specifying the list is ordered consists of drawing a line of the form, “a <

b < c.”

(a) A general ordered doubly linked list. (b) The inductive ellipsis expansion.

Figure 6-40: The inductive definition of a general linked list.

The user starts by asking, “Do you know what a doubly linked list is?” CoMo

responds, “No,” so the user draws a general doubly linked list (Fig. 6-40a) and, when

asked as in the previous examples to do so by CoMo, the inductive ellipsis expansion

(Fig. 6-40b).2

2Note that, due to the geometry heuristic mentioned in the user study findings in Chapter 3,
CoMo recognizes the pointers as their correct types on the first try. This classification can be seen
in the colors CoMo displays the pointers with.

159

(a) CoMo: “How do you handle this case?”

(b) User (after adding ins and performing the manipulation): “Like this.”

Figure 6-41: CoMo’s first question (and the corresponding answer) about a list with
four nodes.

160

CoMo’s first question is about what to do with a list of length four. Fig. 6-41

shows the question CoMo asks and the answer the user gives. CoMo does not yet

know that the list is ordered, and it does not know that the manipulation requires

an auxiliary structure, so the user answers by adding the auxiliary structure (an ins

pointer pointing at a separate x node) and a constraint (seen in Fig. 6-41b: “a<x<b”),

and updating the list to contain x where the constraint dictates it should be: between

the a and b nodes. To signal they are done answering the question, the user says,

“Like this.”

(a) CoMo: “How do you handle this case?”

(b) User (after demonstrating): “Like this.”

Figure 6-42: CoMo asks about how to insert a node into a list with one node when
the node to insert is less than the node in the list.

Now CoMo is aware of the constraint and the fact that multiple structures are

needed. The next question it asks is about a list with one node and a single node

to insert where the list’s node is less than the node to insert. Fig. 6-42a shows

161

the structure presented to the user as CoMo asks, “How do you handle this case?”

The user has decided that the list is ordered smallest to largest (as indicated by the

previous constraint “a<x<b”), so the user updates the sketch to reflect this by putting

b in front of a. When done, they say, “Like this.”

(a) CoMo: “How do you handle this case?”

(b) User (after demonstrating): “Like this.”

Figure 6-43: CoMo asks about how to insert a node into a list with one node when
the node to insert is greater than the node in the list.

The next question CoMo asks, seen in Fig. 6-43, is similar. The only difference is

that it asks about what to do when the node to add is larger than the node in the

list. As seen in Fig. 6-43b, the user places the node to add behind the node in the

list, and says, “Like this.”

Next, CoMo asks about how to add a node to an empty list. As seen in Fig. 6-44,

the user answers by placing the node in the list and saying, “Like this.”

The final three questions that CoMo asks are about how to add zero nodes to lists

162

(a) CoMo: “How do you handle this case?”

(b) User (after demonstrating): “Like this.”

Figure 6-44: CoMo asks how to insert a node into an empty list, and the user responds.

Figure 6-45: CoMo: “How do you handle this case?” User: “Do nothing.”

163

Figure 6-46: CoMo: “How do you handle this case?” User: “Do nothing.”

Figure 6-47: CoMo: “How do you handle this case?” User: “Do nothing.”

164

of length four, one, and zero. For each question, CoMo generates the sketch, presents

it to the user, and says, “How do you handle this case?” and the user responds by

saying, “Do nothing.” Once these are answered, CoMo says, “I think I understand.”

The user is satisfied with the range of examples that CoMo has, so they say,

“Generate code.” CoMo responds “I will try.” CoMo generates the input seen in

Fig. 6-48 and begins synthesis. After an hour3, CoMo halts SPT and tries synthesis

again with the input seen in Fig. 6-49. After another hour, SPT produces the code

seen in Fig. 6-50a and CoMo cleans it to be the code seen in Fig. 6-50b. After

running this code on the examples given and on a new example containing a list

with five nodes, the user is satisfied that the code is correct, and the interaction is

complete.

6.9 Binary Tree Left Rotation

The final manipulation shown in this chapter is the binary tree left rotation. The

kind of left rotation that CoMo talks about it one that rotates about the root.

The user starts the conversation by asking, “Do you know what a binary tree is?”

CoMo responds, “No,” so the user draws the general binary tree seen in Fig. 6-51a.

CoMo recognizes the triangle symbol as a form of repetition but does not know the

form the repetition takes, so it displays a new canvas with a copy of the triangle

at the top and asks, “What does this expand to?” The user answers with the four

examples seen in Fig. 6-51b.

CoMo asks its first question about a tree with four nodes. It displays the sketch in

Fig. 6-52a and says, “How do you handle this case?” The user responds by reassigning

the pointers to configure the tree to be in its rotated state and says, “Like this.”

Next, CoMo asks questions about the two trees seen in Fig. 6-53 that do not have

enough nodes to be rotated. For each question, CoMo asks, “How do you handle

this case?” and the user responds “Do nothing.” Once these questions are answered,

3Recall from the previous section that CoMo gives SPT an hour to run on the first try. If SPT
has not completed synthesizing code in that time, it retries with a broader CFG.

165

scenario scenario2
input ins -> x , x . ptr0 -> null, x . ptr1 -> null,
 head -> a , a . ptr0 -> b , b . ptr0 -> c , c . ptr0 -> d , d . ptr0 -> null,
 tail -> d , d . ptr1 -> c , c . ptr1 -> b , b . ptr1 -> a , a . ptr1 -> null,
 a . val -> 5, x . val -> 6, b . val -> 7, c . val -> 8, d . val -> 9
output ins -> x , x . ptr0 -> b , x . ptr1 -> a ,
 head -> a , a . ptr0 -> x , b . ptr0 -> c , c . ptr0 -> d , d . ptr0 -> null,
 tail -> d , d . ptr1 -> c , c . ptr1 -> b , b . ptr1 -> x , a . ptr1 -> null ;

scenario scenario3
input ins -> b , b . ptr0 -> null, b . ptr1 -> null,
 head -> a , a . ptr0 -> null, tail -> a , a . ptr1 -> null,
 a . val -> 5, b . val -> 6
output head -> a , a . ptr0 -> b , b . ptr0 -> null,
 tail -> b , b . ptr1 -> a , a . ptr1 -> null, ins -> b ;

scenario scenario4
input ins -> b , b . ptr0 -> null, b . ptr1 -> null,
 head -> a , a . ptr0 -> null, tail -> a , a . ptr1 -> null,
 a . val -> 6, b . val -> 5
output head -> b , b . ptr0 -> a , a . ptr0 -> null,
 tail -> a , a . ptr1 -> b , b . ptr1 -> null, ins -> b ;

scenario scenario5
input ins -> a , a . ptr0 -> null, a . ptr1 -> null,
 head -> null, tail -> null, a . val -> 5
output ins -> a ,
 head -> a , a . ptr0 -> null, tail -> a , a . ptr1 -> null ;

scenario scenario6
input head -> a , a . ptr0 -> null, tail -> a , a . ptr1 -> null,
 ins -> null, a . val -> 5
output head -> a , a . ptr0 -> null, tail -> a , a . ptr1 -> null,
 ins -> null ;

scenario scenario7
input ins -> null, head -> null, tail -> null
output ins -> null, head -> null, tail -> null ;

data_selector val ;

main(Node head , Node tail , Node ins) {
 Node tmp2 , tmp1 ;
 ??(3)
 while (**) {
 ??(5)
 }
 ?=(3)
}

Figure 6-48: CoMo’s first try at producing SPT input. After one hour, CoMo halts
SPT and retries.

166

scenario scenario2
input ins -> x , x . ptr0 -> null, x . ptr1 -> null,
 head -> a , a . ptr0 -> b , b . ptr0 -> c , c . ptr0 -> d , d . ptr0 -> null,
 tail -> d , d . ptr1 -> c , c . ptr1 -> b , b . ptr1 -> a , a . ptr1 -> null,
 a . val -> 5, x . val -> 6, b . val -> 7, c . val -> 8, d . val -> 9
output ins -> x , x . ptr0 -> b , x . ptr1 -> a ,
 head -> a , a . ptr0 -> x , b . ptr0 -> c , c . ptr0 -> d , d . ptr0 -> null,
 tail -> d , d . ptr1 -> c , c . ptr1 -> b , b . ptr1 -> x , a . ptr1 -> null ;

scenario scenario3
input ins -> b , b . ptr0 -> null, b . ptr1 -> null,
 head -> a , a . ptr0 -> null, tail -> a , a . ptr1 -> null,
 a . val -> 5, b . val -> 6
output head -> a , a . ptr0 -> b , b . ptr0 -> null,
 tail -> b , b . ptr1 -> a , a . ptr1 -> null, ins -> b ;

scenario scenario4
input ins -> b , b . ptr0 -> null, b . ptr1 -> null,
 head -> a , a . ptr0 -> null, tail -> a , a . ptr1 -> null,
 a . val -> 6, b . val -> 5
output head -> b , b . ptr0 -> a , a . ptr0 -> null,
 tail -> a , a . ptr1 -> b , b . ptr1 -> null, ins -> b ;

scenario scenario5
input ins -> a , a . ptr0 -> null, a . ptr1 -> null,
 head -> null, tail -> null, a . val -> 5
output ins -> a ,
 head -> a , a . ptr0 -> null, tail -> a , a . ptr1 -> null ;

scenario scenario6
input head -> a , a . ptr0 -> null, tail -> a , a . ptr1 -> null,
 ins -> null, a . val -> 5
output head -> a , a . ptr0 -> null, tail -> a , a . ptr1 -> null,
 ins -> null ;

scenario scenario7
input ins -> null, head -> null, tail -> null
output ins -> null, head -> null, tail -> null ;

data_selector val ;

main(Node head , Node tail , Node ins) {
 Node tmp2 , tmp1 ;
 ??(3)
 while (**) {
 ??(5)
 }
 ?=(8)
}

Figure 6-49: CoMo’s second try at running SPT. This produces code after anywhere
from 15 minutes to 2 hours.

167

void main() {
 tmp1 =tail ;
 tmp2 =tmp2 ;
 tmp1 =tail ;
 while(tmp1 != null && tmp2 != null && tmp1 . val < tmp2 . val) {
 head . ptr0 =tail ;
 ins . ptr0 =tmp1 . ptr1 ;
 tail . ptr1 =head . ptr1 ;
 ins . ptr1 =tmp2 . ptr1 ;
 tail =tmp2 ;
 }
 if(ins != null && head != null && ins . val < head . val) head =head . ptr0 ;
 if(head ==tmp2) head =ins ;
 if(head != null && ins != null && head . val < ins . val) tmp1 =head . ptr0 ;
 if(head != null && ins != null && head . val < ins . val) head . ptr0 =ins ;
 if(head != null && tmp1 != null && head . val < tmp1 . val) tmp1 . ptr1 =ins ;
 if(tmp1 ==null) tail =ins ;
 if(head != null && ins != null && head . val < ins . val) ins . ptr1 =head ;
 if(ins != null && tail != null && ins . val < tail . val) ins . ptr0 =tmp1 ;
}

(a) The code SPT produces after running SPT the second time.

tmp1 =tail ;
while(tmp1 != null && tmp2 != null && tmp1 . val < tmp2 . val) {
 head . ptr0 =tail ;
 ins . ptr0 =tmp1 . ptr1 ;
 tail . ptr1 =head . ptr1 ;
 ins . ptr1 =tmp2 . ptr1 ;
 tail =tmp2 ;
}
if(ins != null && head != null && ins . val < head . val) head =head . ptr0 ;
if(head ==tmp2) head =ins ;
if(head != null && ins != null && head . val < ins . val) tmp1 =head . ptr0 ;
if(head != null && ins != null && head . val < ins . val) head . ptr0 =ins ;
if(head != null && tmp1 != null && head . val < tmp1 . val) tmp1 . ptr1 =ins ;
if(tmp1 ==null) tail =ins ;
if(head != null && ins != null && head . val < ins . val) ins . ptr1 =head ;
if(ins != null && tail != null && ins . val < tail . val) ins . ptr0 =tmp1 ;

(b) The code after CoMo cleans it.

Figure 6-50: The code produced after the second try.

168

(a) A general binary tree. (b) An inductive definition of the triangle.

Figure 6-51: The inductive definition of a general binary tree.

(a) CoMo: “How do you handle this case?” (b) User (after demonstrating): “Like this.”

Figure 6-52: CoMo asks a question about a tree with four nodes.

169

(a) CoMo: “How do you handle this case?”
User: “Do nothing.”

(b) CoMo: “How do you handle this case?”
User: “Do nothing.”

Figure 6-53: CoMo asks two questions about trees that do not have enough nodes to
be rotated.

CoMo says, “I think I understand.”

The user is satisfied that enough examples have been given and says, “Generate

code.” CoMo responds, “I will try” and generates the input to SPT seen in Fig. 6-

54. After about ten seconds, SPT synthesizes the code seen in Fig. 6-55a and CoMo

cleans it to be the code seen in Fig. 6-55b and displays it to the user. After testing it

out on a hand-drawn tree with five nodes, the user is satisfied that the code is correct,

and the interaction is complete.

170

scenario scenario2
input root -> a , a . ptr0 -> d , a . ptr1 -> b , b . ptr0 -> c , b . ptr1 -> null,
 c . ptr0 -> null, c . ptr1 -> null, d . ptr0 -> null, d . ptr1 -> null
output root -> b , a . ptr0 -> d , a . ptr1 -> c , b . ptr0 -> a , b . ptr1 -> null,
 c . ptr0 -> null, c . ptr1 -> null, d . ptr0 -> null, d . ptr1 -> null ;

scenario scenario3
input root -> a , a . ptr0 -> null, a . ptr1 -> null
output root -> a , a . ptr0 -> null, a . ptr1 -> null ;

scenario scenario4
input root -> null
output root -> null ;

main(Node root) {
 Node tmp2 , tmp1 ;
 ??(3)
 while (**) {
 ??(5)
 }
 ?=(3)
}

Figure 6-54: The input to SPT produced by CoMo.

void main() {
 tmp2 =root ;
 tmp1 =tmp1 ;
 tmp1 =tmp1 ;
 while(tmp2 != null) {
 tmp2 =tmp1 ;
 tmp2 =tmp2 ;
 tmp2 =tmp1 ;
 tmp1 =root . ptr1 ;
 root =root ;
 }
 if(tmp1 != null) root . ptr1 =tmp1 . ptr0 ;
 if(tmp1 != null) tmp1 . ptr0 =root ;
 if(tmp1 != null) root =tmp1 ;
}

(a) The raw code.

tmp2 =root ;
while (tmp2 != null) {
 tmp2 =tmp1 ;
 tmp1 =root . ptr1 ;
}
if(tmp1 != null) root . ptr1 =tmp1 . ptr0 ;
if(tmp1 != null) tmp1 . ptr0 =root ;
if(tmp1 != null) root =tmp1 ;

(b) The cleaned code.

Figure 6-55: The raw and cleaned synthesized code for the left rotation.

171

Chapter 7

Contributions & Future Work

The contributions presented fall in three categories. The first contribution includes

the findings from a user study (Chapter 3). In this study, I determined that:

1. Teachers tend to ask students what they know before starting to explain some-

thing.

2. Teachers tend to describe manipulations in terms of before and after states, but

sometimes explain the process of the manipulation in detail.

3. Visual vocabularies are easily learned, understood, and used by people.

4. Teachers sometimes used an unannounced, unexplained drawn shorthand that

was immediately understood by students.

5. Interactions were mixed-initiative in the sense that teachers generally initiated

interactions by explaining a manipulation, but students also initiated interac-

tions by asking questions.

6. One subject drew a question when verbal communication repeatedly failed.

The second contribution is CoMo, the first conversation-to-code smart whiteboard

system capable of holding a mixed-initiative symmetric-multimodal interaction about

50 manipulations on 8 structures and correctly synthesizing functioning C code. The

structures and manipulations CoMo can handle are enumerated here:

172

1. Stack

(a) push

(b) pop

(c) poll

2. Queue

(a) enqueue

(b) dequeue

(c) peek

3. Singly Linked List

(a) insert

(b) delete

(c) reverse

(d) append

(e) prepend

(f) remove first

(g) remove last

(h) find first

(i) find last

4. Doubly Linked List

(a) insert

(b) delete

(c) reverse

(d) append

(e) prepend

(f) remove first

(g) remove last

(h) find first

(i) find last

5. Ordered, Singly Linked List

(a) insert

(b) reverse

(c) remove minimum

(d) remove maximum

(e) find minimum

(f) find maximum

6. Ordered, Doubly Linked List:

(a) insert

(b) reverse

(c) remove minimum

(d) remove maximum

(e) find minimum

(f) find maximum

7. Binary Tree

(a) left rotation

(b) right rotation

(c) left-right rotation

(d) left-left rotation

173

(e) right-left rotation

(f) right-right rotation

8. Binary Search Tree

(a) left rotation

(b) right rotation

(c) left-right rotation

(d) left-left rotation

(e) right-left rotation

(f) right-right rotation

(g) find minimum

(h) find maximum

The third and final contribution is the novel mixed-initiative code-generation

framework (MICGF) that CoMo implements to engage in interactions about data

structure manipulations (Chapter 5), which proceeds in five basic steps:

1. The user initiates the interaction by:

• asking CoMo if it knows what a specific data structure or manipulation is;

or

• demonstrating a concrete example on a drawn structure; or

• defining the general data structure to talk about.

2. CoMo asks questions (and interprets answers) about:

• an inductive general structure definition;

• a structure with four, one, and zero nodes; or—if the manipulation consists

of two structures: a main and an auxiliary one—the power set of compar-

isons between the main structure with four, one, and zero nodes and the

auxiliary structure with one and zero nodes; and

• if the manipulation is on an ordered structure that (as above) involves

multiple structures (e.g., an ordered linked list insertion)—the power set

of constraint comparisons between single-node structures where the main

structure’s node is less than and greater than the auxiliary structure’s

node.

3. CoMo uses SPT [28] to synthesize code by:

174

(a) generating input based on examples the user drew;

(b) selecting a control flow graph (CFG) to use;

(c) running SPT; and

(d) cleaning code and displaying it to the user.

4. CoMo animates the synthesized code on examples until the user is satisfied it

is correct.

5. If the code is incorrect, CoMo reruns synthesis (step 3) with new corrected

examples.

It improves upon using a text-based code synthesis system alone by:

1. Removing rudimentary dead code.

2. Engaging in a mixed-initiative, symmetric-multimodal interaction and convert-

ing data structure manipulation diagrams into the input and output states that

the code synthesis system requires.

3. Providing feedback about what kinds of scenarios to provide, namely that the

following examples suffice for SPT [28] to synthesize correct code for many

simple data structure manipulations:

(a) Examples containing structures with four, one, and zero nodes.

(b) Examples enumerating all size comparisons between the main structure

when it has 4, 1, and 0 nodes and any auxiliary structures with one or no

nodes.

(c) Examples comparing single-node structures with different values in multi-

ple structure scenarios where the structure is ordered.

4. Removing the need to provide a code outline (called a control flow graph) to

the code synthesis system by automatically selecting one.

5. Aiding the user in verifying synthesized code’s correctness by animating it,

thereby facilitating the user’s own checking of the code.

175

7.1 Future Work

Several features would greatly increase CoMo’s abilities. This remainder of this chap-

ter discusses these extensions and lays out plans to create them.

7.1.1 Recursion

The first feature to add would be the ability to handle recursive manipulations.

Adding this functionality requires two additions:

1. SPT (or another code synthesis system) must be able to support specifying and

synthesizing recursive functions.

2. CoMo must accept user input for recursive functions.

For example, to describe a binary search tree insertion, CoMo could accept a

verbal command from the user like, “This is a recursive manipulation.” Then, the

user could demonstrate the base case—inserting a node into an empty tree—followed

by an insertion on a more complex tree, saying at each level of the tree, “Recurse

here.”

7.1.2 Composing Manipulations

CoMo should be able to compose previously explained manipulations. Take an AVL

tree insertion as an example. An AVL tree is a form of self-balancing binary search

tree (BST). Insertions in AVL trees consist of three parts:

1. Inserting the node as one would with a standard (i.e., non-self-balancing) BST.

2. Bookkeeping to determine whether the tree needs to be balanced.

3. Balancing the tree (if needed) with tree rotations.

Tree rotations are manipulations that change the configuration of a binary tree

without altering its in-order property. In AVL trees, the balancing step is one of four

manipulations. Assuming CoMo had already been taught these manipulations—the

176

BST insertion and the four BST rotations—describing the AVL tree insertion would

be a matter of describing:

1. How to compose previously-learned manipulations.

2. Which manipulations to compose—a process that is potentially far simpler than

re-describing each of the sub-manipulations.

The user could describe each manipulation, one at a time, and after they are

convinced CoMo understands them sufficiently, can verbally label them by saying

“This is a binary search tree insertion.” When the time comes to compose the

manipulations into the AVL tree insertion, the user could start the interaction by

saying, “Perform a binary search tree insertion, then possibly a left rotation, right

rotation . . . ” and list the rotations that AVL tree insertions may require. CoMo

would ask for the conditions under which to perform one of the manipulations.

The user would first go through the process of demonstrating the bookkeeping in-

volved in an AVL tree insertion—drawing the tree heights next to nodes. They

would then draw the condition under which the left rotation should happen while

saying, “Perform a left rotation if this is true.” For example, they may write the line:

a.left.key > a.right.key + 1

to describe when to perform a right rotation. The user would then do the same for

the remaining rotations.

7.1.3 Specifying Algorithms

Another interesting piece of functionality that CoMo should have is the ability to

understand explanations about algorithms. Currently, CoMo allows the user to spec-

ify only the manipulation, not the method used to achieve it. Take the example of

describing list sorting to CoMo. Currently, one would give several examples of un-

sorted lists, then update each list by clicking and dragging pointers until it is sorted.

CoMo would generate input for SPT, which would find some code that works. There

would be no way to specify whether the quicksort algorithm or the bubble-sort algo-

rithm should be generated; depending on the examples given, both could be equally

177

likely. The user should be able to use temporary pointers to show the process of the

manipulation, then communicate that to SPT—possibly based on intermediate state

specification or some new feature in SPT’s description format. From a user perspec-

tive, the algorithm description process will be a pointer-by-pointer run-through of the

desired algorithm.

7.1.4 Handling Multiple Large Structures

One of the assumptions CoMo makes about its manipulations is that at most one

node can be added, removed, or returned. To lift this assumption, CoMo would need

two augmentations. First, CoMo would require an alternate list of questions. In

addition to asking about examples where the main structure has four, one, and zero

nodes crossed with the auxiliary structure having one or zero nodes, CoMo would

also have to ask about three examples were the main structure has four, one, and

zero nodes and the auxiliary structure has four nodes. This small change alone would

allow CoMo to handle manipulations like the linked list append seen in Fig. 7-1.

head

a b c

add

d e f

Figure 7-1: A singly linked list append. Notice that the auxiliary structure (beginning
with add) has more than one node.

The next augmentation involves the CFG rule, and can be demonstrated with

Fig. 7-2. In this figure, two ordered, singly linked lists are to be combined—the one

starting with ins is to be inserted into the one starting with head. A node order is

specified with the constraint, “a < b < d < e < c < f,” indicating the final order

the nodes should have in the head list. Determining where to insert each element

requires iterating over the ins list and head list in tandem to determine where to

insert each node. Fig. 7-2b shows a possible CFG for this manipulation. This CFG

178

head

a b c

ins

d e f

a < b < d < e < c < f

(a) An ordered singly linked list append.

main(Node head , Node ins) {
 Node tmp1 , tmp2 , tmp3 ;
 ??(3)
 while(**) {
 ?=(6)
 }
 ?=(3)
}

(b) A possibly adequate CFG.

Figure 7-2: An ordered, singly linked list insertion and an altered CFG that may work
for it. Neither of CoMo’s CFGs are sufficient to perform this manipulation, however
using this CFG may result in SPT synthesizing correct code.

adds an additional temporary pointer and more lines to the center of the while loop,

and it allows those lines to use conditionals.

7.1.5 Joint Synthesis Work

A final interesting direction would be integrating more tightly with the code synthesis

system. Currently, communication between the code generation portion of CoMo and

the user interface portion is limited to the simple serial interaction of state specifica-

tion. That is, after receiving input from the user, CoMo generates input for SPT and

waits for it to finish synthesizing code. How could the internals of SPT be exposed

to aid CoMo’s understanding of the manipulation? Three possible paths could be

explored, namely:

1. Intermediate state specification.

2. Over-constrained specification question generation.

3. Under-constrained specification question generation.

To explain what can be achieved with intermediate state specification, take the

example of a linked list reversal. When describing the manipulation, the user clicks

and drags pointers to reassign them from the in-order to the reverse-order configura-

tion. As this happens, CoMo keeps track of each intermediate state. These states are

not given to SPT, but the information is there. If SPT accepted these intermediate

179

states, including them would give SPT hints about how functioning code might look

and may result in quicker synthesis time.

Next, imagine that the input to SPT is under-constrained. This could result in

SPT finding two distinct pieces of code that satisfies the input’s constraints. CoMo

could ask a disambiguating question about an example structure that is affected

differently by the different pieces of code. It could then ask, “How do you handle

this case” (as with other example questions) and integrate the user’s response into

an updated input to SPT. On the other hand, if the input has conflicting constraints

(i.e., if it is over-constrained), SPT will not be able to synthesize any code that works

on the input. CoMo would have to determine which of the scenarios in the description

is over-constraining SPT, or perhaps resort to asking the user what is conflicting.

With these features, CoMo has the potential to evolve into a much more capable

system. It could evolve into a software engineering tool—a tool able to engage in more

complex discussions about data structures and manipulations. Its abilities could

expand to discussing manipulations consisting of multiple manipulations, recursive

manipulations, and specifying algorithms. It could tie into the inner workings of the

code synthesis system to generate questions, and possibly speed up code synthesis.

It could be an active software engineering tool, building its ever-growing knowledge

base by interacting with users and learning from them, potentially helping to create

and visualize new algorithms, data structures, and manipulations.

180

Bibliography

[1] Aaron Adler. MIDOS: Multimodal Interactive DialOgue System. PhD thesis,
Massachusetts Institute of Technology, June 2009.

[2] Aaron Adler and Randall Davis. Speech and sketching: An empirical study
of multimodal interaction. In SBIM ‘07: Proceedings of the 4th Eurographics
workshop on Sketch-based interfaces and modeling, pages 83–90, New York, NY,
August 2–3 2007. ACM.

[3] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers—Principles, Tech-
niques and Tools. Addison Wesley Publishing Company, 1986.

[4] Christine Alvarado, Andy Kearney, Alexa Keizur, Calvin Loncaric, Miranda
Parker, Jessica Peck, Kiley Sobel, and Fiona Tay. Logisketch: A free sketch
digital circuit design and simulationsystem. In Proceedings of the Workshop on
the Impact of Pen and Touch Technologies in Education, WIPTTE ‘13, 2013.

[5] Mathias Bauer and Dietmar Dengler. Trias: Trainable information assistants for
cooperative problem solving. In 1999 International Conference on Autonomous
Agents, Agents ’99, 1999.

[6] David Bischel, Thomas Stahovich, Eric Peterson, Randall Davis, and Aaron
Adler. Combining speech and sketch to interpret unconstrained descriptions of
mechanical devices. In Proceedings of the 2009 International Joint Conference
on Artificial Intelligence (IJCAI), pages 1401–1406, Pasadena, California, July
2009.

[7] Brandon Paulson Brandon and Tracy Hammond. Paleosketch: Accurate prim-
itive sketch recognition and beautification. In Proceedings of the 13th Interna-
tional Conference on Intelligent User Interfaces, IUI ’08, pages 1–10, New York,
NY, USA, 2008. ACM.

[8] Sarah Buchanan, Brandon Ochs, and Joseph J. LaViola Jr. Cstutor: a pen-based
tutor for data structure visualization. In Proceedings of the 43rd ACM technical
symposium on Computer Science Education, SIGCSE ‘12, pages 565–570, New
York, NY, USA, 2012. ACM.

[9] Qi Chen, John Grundy, and John Hosking. An e-whiteboard application to
support early design-stage sketching of uml diagrams. In Proceedings of 2003

181

IEEE Human-Centric Computing Conference, HCC ’01, Piscataway, NJ, USA,
October 2003. IEEE.

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. The MIT Press, 3rd edition, 2009.

[11] Travis J. Cossairt and Joseph J. LaViola Jr. Setpad: A sketch-based tool for
exploring discrete math set problems. In Proceedings of the Ninth Eurograph-
ics/ACM Symposium on Sketch-Based Interfaces and Modeling 2012, pages 47–
56, June 2012.

[12] Judith Good, Katherine Howland, and Keiron Nicholson. Young people’s de-
scriptions of computational rules in role-playing games: an empirical study. In
IEEE Symposium on Visual Languages and Human-Centric Computing 2010,
pages 67–74, September 2010.

[13] Thomas R. G. Green and M. Petre. Usability analysis of visual programming
environments: a ‘cognitive dimensions’ framework. Journal of Visual Languages
and Computing, 7:191–174, 1996.

[14] S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan. Synthesis of loop-free pro-
grams. In PLDI, PLDI 2011, 2011.

[15] Isabelle Guyon, Lambert Schomaker, Réjean Plamondon, Mark Liberman, and
Stan Janet. UNIPEN project of on-line data exchange and recognizer bench-
marks. In Pattern Recognition, 1994. Vol. 2—Conference B: Computer Vision
amp; Image Processing., Proceedings of the 12th IAPR International. Conference
on, volume 2, pages 29–33, 1994.

[16] Ken Hinckley. Input technologies and techniques. In Andrew Sears and Julie A.
Jacko, editors, Handbook of Human-Computer Interaction. Lawrence Erlbaum
and Associates, 1998.

[17] S. Itzhaky, S. Gulwani, N. Immerman, and M. Sagiv. A simple inductive synthesis
methodology and its applications. In OOPSLA, OOPSLA, 2010, 2010.

[18] R. Joshi, G. Nelson, and K. H. Randall. Denali: A goal-directed superoptimizer.
In Programming Language Design and Implementation, PLDI, pages 304–314,
2002.

[19] Kenneth F. Kahn. Toontalk—steps toward ideal computer-based learning en-
vironments. In Mario Tokoro and Luc Steels, editors, A Learning Zone of
One’s Own: Sharing Representations and Flow in Collaborative Learning En-
vironments. IOS Press, illustrated edition, 2004.

[20] Edward C. Kaiser. Multimodal new vocabulary recognition through speech and
handwriting in a whiteboard scheduling application. In In Proceedings of the In-
ternational Conference on Intelligent User Interfaces, pages 51–58. ACM Press,
2005.

182

[21] Henry Lieberman. Your Wish is My Command: Giving Users the Power to
Instruct their Software. Interactive Technologies. Morgan Kaufmann Publishers,
1st edition, March 2001.

[22] Henry Lieberman, Elizabeth Rosenzweig, and Christopher Fry. Steptorials:
Mixed-initiative learning of high-functionality applications. In ACM Conference
on Intelligent User Interfaces, number 19 in IUI ’14, pages 359–364, February
2014.

[23] Nicolas Mangano and André van der Hoek. The design and evaluation of a tool to
support software designers at the whiteboard. Automated Software Engineering,
19(4):381–421, December 2012.

[24] F. Modugno, A. T. Corbett, and B. A. Myers. Evaluating program representa-
tions in demonstrational visual shell. In Empirical Studies of Programmers: Sixth
Workshop, pages 131–146, Norwood, NJ, 1996. Ablex Publishing Corporation.

[25] Tom Y. Ouyang and Randall Davis. A visual approach to sketched symbol recog-
nition. In Proceedings of the 2009 International Joint Conference on Artificial
Intelligence (IJCAI), pages 1463–1468, 2009.

[26] Beryl Plimmer and Mark Apperley. Interacting with sketched interface designs:
an evaluation study. In CHI ‘04 Extended Abstracts on Human Factors in Com-
puting Systems, CHI EA ‘04, pages 1337–1340, New York, NY, USA, 2004. ACM.

[27] Subhajit Roy. From concrete examples to heap manipulating programs. In SAS,
pages 126–149, 2013.

[28] Rishabh Singh and Armando Solar-Lezama. Spt: Storyboard programming tool.
In Proceedings of Computer Aided Verification, number 24 in CAV ’12, pages
738–743, July 2012.

[29] Armando Solar-Lezama. Program Synthesis By Sketching. PhD thesis, EECS,
UC Berkeley, 2008.

[30] Armando Solar-Lezama. Program sketching. International Journal on Softgware
Tools for Technology Transfer, 15(5-6):475–495, October 2013.

[31] Armando Solar-Lezama, L. Tancau, R. Bod́ık, S. A. Seshia, and V. A. Saraswat.
Combinatorial sketching for finite programs. In Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS, pages 404–415, 2006.

[32] List of publications for the cmu sphinx speech recognizer. http://cmusphinx.

sourceforge.net/wiki/research. Accessed: 2013-12-09.

[33] S. Srivastava, S. Gulwani, S. Chaudhuri, and J. S. Foster. Path-based inductive
synthesis for program inversion. In PLDI, PLDI, 2011, 2011.

183

http://cmusphinx.sourceforge.net/wiki/research
http://cmusphinx.sourceforge.net/wiki/research

[34] Carol Traynor and Marian G. Williams. A study of end-user programming for
geographic information systems. In Papers Presented at the Seventh Workshop
on Empirical Studies of Programmers, ESP ’97, pages 140–156, New York, NY,
USA, 1997. ACM.

[35] The UNIPEN dataset. http://www.unipen.org/. Accessed: 2013-12-09.

[36] Christian von Ehrenfels. über gestaltqualitäten. In Vierteljaheresschrift für Wis-
senschaftliche Philosophie, 1890.

[37] Willie Walker, Paul Lamere, Philip Kwok, Bhiksha Raj, Rita Singh, Evandro
Gouvea, Peter Wolf, and Joe Woelfel. Sphinx-4: A flexible open source framework
for speech recognition. Technical Report SMLI TR2004–0811, Sun Microsystems
Inc., 2004.

184

http://www.unipen.org/

	Introduction
	CoMo: the Code Monkey
	A Linked List Reversal
	Code Synthesis
	Interaction
	Contributions

	Related Work
	Observational User Study
	Participants
	Procedure
	Instruction Sheets

	Hypotheses
	Limitations
	Results
	Analysis

	Architectural Implications
	Remembering Names
	First-Pass Geometry Heuristic
	Input and Output States

	Summary

	CoMo: an Overview
	Basis on the User Study Findings
	The User Interface
	Linked List Find Last
	Initiating the Discussion
	Continuing the Discussion
	Synthesis & Verification
	Labeling the Data Structure and Manipulation

	Additional Functionality
	A More Educated CoMo
	Labeling Pointers
	Constraints
	Multiple Pointers

	Summary

	CoMo: Functionality
	Mixed-Initiative Code-Generation Framework
	The Storyboard Programming Tool
	Programming with Examples
	An Example SPT Run-Through
	SPT Limitations & Ramifications for CoMo
	Summary

	Linked List Find-Last
	Describing the Data Structure
	Asking an Example Question
	Nonsensical Questions
	Remaining Questions
	Code Synthesis & Verification
	Labeling the Interaction

	System Overview
	System Architecture
	Interface Transition
	Sketch Recognition
	Speech Recognition
	Speech Generation
	Question Generation

	Assumptions, Algorithms, and Heuristics
	Parsing a Data Structure
	Abstracting the CFG
	Heuristics
	Abstractions

	Limitations
	AVL Tree Insertion
	Min-Heap Pop

	Conclusions

	Domain
	Summary of Structures
	Similarity Classes
	Stack Push
	Queue Dequeue
	Singly Linked List Reversal
	Singly Linked List Find Last
	Singly Linked List Delete
	Ordered Doubly Linked List Insertion
	Binary Tree Left Rotation

	Contributions & Future Work
	Future Work
	Recursion
	Composing Manipulations
	Specifying Algorithms
	Handling Multiple Large Structures
	Joint Synthesis Work

