
Vortex-Induced Vibration of Flexible Cylinders in

Time-Varying Flows

by

Themistocles L. Resvanis

MEng Mechanical Engineering, Imperial College London (2008)

Submitted to the Department of Mechanical Engineering
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2014

c○ Massachusetts Institute of Technology 2014. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Mechanical Engineering

August 7, 2014

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
J. Kim Vandiver

Professor of Mechanical and Ocean Engineering
Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
David E. Hardt

Chairman, Department Committee on Graduate Students



2



Vortex-Induced Vibration of Flexible Cylinders in

Time-Varying Flows

by

Themistocles L. Resvanis

Submitted to the Department of Mechanical Engineering
on August 7, 2014, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

This thesis investigates two aspects of Vortex-Induced Vibrations (VIV) on long flexi-
ble cylinders. The work is split into a minor and major part. The minor part addresses
the effect of Reynolds number on flexible cylinder VIV. The major contribution ad-
dresses the prediction of VIV under unsteady current excitation or time-varying flows.

The study on the effect of Reynolds number makes extensive use of a recent
set of experiments performed by MARINTEK on behalf of SHELL Exploration and
Production Co. Three 38𝑚 long cylinders of different diameters were towed through
the ocean basin over a wide range of Reynolds numbers in both uniform and sheared
flows. The experimental data showed that the response amplitudes and dimensionless
response frequency are strongly influenced by the Reynolds number. Both of these
Reynolds effects should be of interest to riser designers that traditionally rely on
experimental data obtained at much lower Reynolds numbers.

In this thesis, I propose a dimensionless parameter, 𝛾, that governs whether lock-in
under unsteady flow conditions is possible and show that it is useful for determining a
priori whether the response under unsteady conditions will be similar to the response
under steady flows. The unsteady flow parameter, 𝛾, describes the change in flow
speed per cycle of cylinder vibration and is defined as:

𝛾 =
𝑑𝑈/𝑑𝑡

𝑈
𝑇𝑛

The experimental data necessary to support this work is taken from a set of exper-
iments performed at the State Key Laboratory of Ocean Engineering at Shanghai
Jiao Tong University (SJTU), where a 4𝑚 long flexible cylinder was towed through
an ocean basin under carefully selected amounts of acceleration/deceleration. Anal-
ysis of the experimental data showed that the response can typically be divided into
three regimes based on the 𝛾 value:

For very quickly accelerating flows (𝛾 > 0.1) the cylinder cannot react quickly
enough and at most a couple of cycles of small amplitude vibration will be observed.

For moderately accelerating flows (0.02 < 𝛾 < 0.1), the cylinder will typically start
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vibrating and can build up a significant response. However, most of the time, the
flow will have exited the required synchronization region before the cylinder manages
to reach the large amplitudes observed in steady flows.

For very slowly accelerating flows (𝛾 < 0.02), the flow is changing considerably
slower than the cylinder’s reaction time and thus, the cylinder has more than enough
time to build up its response. Under these conditions, the observed response is qual-
itatively similar to the response of flexible cylinders in steady flows.

The 𝛾 dependence that was identified in the SJTU data is not limited to that spe-
cific situation but instead, is a general property of low mass ratio cylinders vibrating
in unsteady flows. This is shown by demonstrating how the unsteady flow parameter,
𝛾, can be used to analyze unsteady response data from the aforementioned SHELL
tests where the riser models were considerably longer than the SJTU model.

This thesis shows how a single ramp test –where the towing speed is continuously
varied in a control manner– may be used to obtain the same information as 10 constant
speed tests covering the range of speeds. This can and will significantly reduce the
number of runs necessary to completely characterize the VIV response of flexible
cylinders and will translate into large cost savings in the future. The thesis closes
by describing the differences observed in the VIV response at high mode numbers
depending on whether the time-varying flow was accelerating or decelerating. In
both situations a ‘hysteresis’ effect is noted, where the cylinder is found to ‘lag behind’
preferring to vibrate in the previously excited mode as a result of cylinder lock-in. In
accelerating flows, this means that the cylinder will typically be responding one mode
lower than it would have in a steady flow. In decelerating flows, the same ‘lag’ or
‘hysteresis’ will cause the cylinder to respond one (or more) mode number(s) higher
than it would have in a steady flow.

Thesis Supervisor: J. Kim Vandiver
Title: Professor of Mechanical and Ocean Engineering
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Chapter 1

Introduction

Any bluff body exposed to an external flow will experience large forces as a result

of the flow separation that occurs downstream of the body. This occurs at most

Reynolds numbers of engineering interest. Bodies with circular-cross sections (or

other symmetric profiles) are subject to Vortex-Induced Vibrations (VIV), which is

a sub-class of the general fluid-structure interaction problem. The flow separation

results in a periodic vortex shedding that can cause severe structural failures if the

vortex shedding frequencies coincide with the structure’s natural frequencies.

The ground work for understanding VIV was only completed during the 19𝑡ℎ and

20𝑡ℎ century but the phenomenon itself has been observed and has fascinated people

for centuries, ranging from the construction of Aeolian harps in antiquity that were

used as autonomous musical instruments to the Renaissance era when Leonardo Da

Vinci was fascinated with turbulence and eddies shed downstream of a reed on a river

bank (Blevins, 1986).

During the 20𝑡ℎ century, interest and research on VIV has waxed and waned as

different communities/industries identify it as a potential source of severe failures

that needs to be researched and better understood:

∙ The 50’s saw some of the first systematic VIV studies and the development of

the first VIV suppression devices as a result of a series of failures of large factory

smokestacks. (Scruton, 1955)
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∙ This was followed by the nuclear energy industry that also studied the problem

while designing heat exchangers and fuel rods. (Chen & Chun, 1976)

∙ Coastal engineers needed to study the problem in order to understand the forces

on submerged piles caused by ocean waves. (Sarpkaya, 1978 and Sumer &

Fredsoe, 1988)

∙ The early 80’s saw a lot of work on the VIV of long flexible structures; including

cables for towed sonar arrays and mooring lines, related to the expansion into

deeper water by the offshore engineering community.

∙ More recently, the Oil and Gas industry has been the major driver for VIV

research on long flexible structures. This is closely tied with the industry’s push

to deeper water in search of new or previously untapped oil and gas reserves.

Many structural components that are used in offshore drilling and production

industry are susceptible to VIV caused by the presence of underwater currents.

These components include but are not limited to: drilling risers, production

risers, free-spans on export pipelines, mooring lines and cables, subsea jumpers

and umbilicals.

Figure 1-1: Offshore installation showing mooring lines, tendons, risers, SCR and
flowlines (rigzone.com, 2014)
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As oil and gas exploration and production move into deeper water, the fatigue damage

accumulated due to VIV is quickly becoming one of the most critical, if not the

most critical, aspect of deepwater riser design. Since many of the aforementioned

components are critical components for the smooth operation of a facility and hence

a venture’s profitability, they are typically designed with very large safety factors.

The large safety factors are a result of several issues, some of the most important are:

∙ Extreme variability in ocean conditions and the engineer’s reluctance to design

a structure with an operating life of 20-30 years based on environmental (meta-

ocean) data that was only collected over the duration of a few months.

∙ Lack of experimental data and understanding of VIV at the high Reynolds num-

bers (500,000 to 2,000,000) that is typical of offshore structures. Considering

the hundreds of offshore platforms installed and the thousands of risers in use

there is a surprisingly small number of high Reynolds numbers model tests.

The latter point is probably one of the reasons why the Oil and Gas industry has

continued to fund research on VIV with the emphasis being primarily on understand-

ing the phenomena as it relates to structures of interest rather than over-idealized

scenarios. In the long term, this is a winning proposition for the industry because

as the community’s confidence in understanding VIV increases their designers will

be more willing to reduce the safety factors they impose on a given structure, thus

considerably reducing costs.

1.1 Scope of the Thesis

This thesis investigates two aspects of Vortex-Induced Vibrations on long flexible

cylinders. The work is split into a minor and major part. The minor part addresses the

effect of Reynolds number on flexible cylinder VIV. The major contribution addresses

the prediction of VIV under unsteady current excitation or time-varying flows.

The study on the effect of Reynolds number makes extensive use of a recent set

of experiments performed by MARINTEK on behalf of SHELL Exploration and Pro-
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duction Co. Three 38𝑚 long cylinders of different diameters were towed through the

ocean basin over a wide range of Reynolds numbers in both uniform and sheared flows.

The experimental data revealed that the response amplitudes and dimensionless re-

sponse frequency were strongly influenced by the Reynolds number. Both of these

Reynolds number effects should be of interest to riser designers that traditionally

rely on or make use of experimental data obtained at much lower Reynolds numbers.

Identifying the Reynolds number effects on the response of flexible cylinders in steady

flows proved critical to explaining other details that were observed in the response.

This was necessary before even attempting to compare these results with the VIV

response observed in unsteady flows.

The major contribution of the thesis is in the area of VIV in time varying flows.

Experimental investigations of VIV on rigid or flexible cylinders, with few exceptions,

are usually performed in laboratories, towing tanks or ocean basins under carefully

controlled conditions. The typical way of performing such experiments in towing tanks

involves mounting the cylinder on a carriage and towing the carriage and cylinder

through the tank at a constant speed. For obvious reasons an experimentalist would

like to keep constant as many independent variables as possible during an experiment.

The disadvantage is that a typical test matrix will require the testing of the

cylinder at many different current speeds in order to achieve a very fine grid of reduced

velocities for each natural frequency included in the test matrix. Towing tanks, such

as the one at MARINTEK in Trondheim, Norway, which are capable of conducting

tests on long flexible cylinders are expensive to operate. It is quite common for

VIV experiments to require a few weeks to cover a satisfactory test matrix. This

translates into hundreds of thousands of dollars in testing costs. This thesis explores

a new method of carrying out VIV tests that can cover the same test matrix in a

more efficient manner. This method requires conducting ‘ramp tests’, in which the

carriage speed (or flow velocity) is varied in a carefully controlled way so as to obtain

the equivalent of a large number of steady speed tests in a single tow through the

tank.

There are two questions that have to be answered first:
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∙ Can VIV achieve lock-in conditions during unsteady flow conditions? If so,

what are the requirements or parameters that primarily govern whether lock-in

will be observed?

∙ If lock-in is achieved under unsteady flow conditions will the cylinder response be

the same as what is observed under steady flow conditions? The VIV response

is typically characterized by the response amplitude and stress (or curvature or

strain) and the response frequency.

In this work, I propose a dimensionless parameter, 𝛾, that governs whether lock-in

under unsteady flow conditions is possible and show that it is useful for determining

a priori whether the response under unsteady conditions will be similar to the re-

sponse under steady current conditions. The experimental data necessary to support

this work is taken from a set of experiments performed at the State Key Laboratory

of Ocean Engineering at Shanghai Jiao Tong University (SJTU), where a 4𝑚 long

flexible cylinder was towed through an ocean basin under carefully selected amounts

of acceleration/deceleration. Further evidence is drawn from a subset of the afore-

mentioned SHELL tests which shows how a single ramp test can be used to extract

data equivalent to ten or more individual tests at constant speeds.

1.2 Thesis Outline

This thesis starts by giving a very brief description of some very fundamental concepts

of VIV and is immediately followed by Chapter 3 which describes the two experimental

datasets used in this work.

Chapter 4 includes the analysis of the first of these. The 38𝑚 SHELL dataset,

showed that the response amplitude and the dimensionless response frequency of

flexible cylinders are significantly influenced by the Reynolds number. In the Reynolds

number range between 5,000 through 200,000, the response amplitude increases while

at the same time the dimensionless response frequency decreases. The Reynolds

number effects on the response amplitude are shown to be a direct consequence of the
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effect that Reynolds number has on the lift coefficient. Both effects identified have

serious implications for riser design.

Chapter 5 outlines a method by which both Reynolds number effects identified

in Chapter 4 may easily be incorporated into commonly used VIV prediction pro-

grams that currently do not incorporate any Reynolds number dependence for their

hydrodynamic coefficient databases. The chapter closes by describing the importance

that correctly modelling the two Reynolds number effects can have on the predicted

stresses and damage rates.

Chapter 6 shows that even though the In-Line (IL) motion is relatively small it

can induce large stresses and even larger damage rates due to the higher response

frequency in that direction. Despite the large IL stresses, an analysis of the damage

rates at every position around the circumference of the cylinder’s cross-section showed

that the most damaging location around the cross-section almost always coincides

with the Cross-Flow (CF) directions. In any case, this chapter reaches the important

conclusion that the CF and IL damage rates as well as their most damaging vector-

combination are always of the same order of magnitude reaffirming the community’s

belief that a conservative design that only models the CF vibration is sufficient to

characterize the fatigue life of an offshore riser.

The thesis continues with its main contribution which is the investigation and

analysis of VIV in time-varying or unsteady flows. Chapter 7 introduces the un-

steady flow parameter, 𝛾, a dimensionless parameter that describes the change in

flow speed in a single cycle of cylinder vibration. Chapter 8 describes the analysis of

the SJTU dataset that included tests with slowly and quickly accelerating flows. The

chapter shows that the unsteady flow parameter, 𝛾, is well suited in characterizing the

response of flexible cylinders in time-varying flows. Similar to steady flow VIV, the

current speed still has be within a specific band of values (synchronization region),

but the response can typically be divided into three regimes based on the 𝛾 value:

∙ For very quickly accelerating flows (𝛾 > 0.1), i.e., more than 10% speed variation

per cycle) the cylinder cannot react quickly enough and at most a couple of

cycles of small amplitude vibration will be observed.
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∙ For moderately accelerating flows (0.02 < 𝛾 < 0.1) the cylinder will typically

start vibrating and can build up a significant response amplitude. However,

most of the time the flow will have exited the required synchronization region

before the cylinder manages to reach the maximum amplitudes observed in

steady flows.

∙ For very slowly accelerating flows (𝛾 < 0.02), i.e., less than 2% speed variation

per cycle) the flow is changing considerably slower than the cylinder’s reaction

time and thus the cylinder has more than enough time to build up its response.

This thesis shows that the VIV response of flexible cylinders in time-varying flows

is qualitatively similar to the response of flexible cylinders in steady flows and can

often be larger than what is observed in a typical VIV test matrix where cylinders are

tested at predetermined speeds believed to be close to the speed that will cause the

greatest response. The larger response amplitudes observed in slowly time-varying

flows are the result of allowing the cylinder to ‘choose’ the fluid speed at which it will

respond the most vigorously instead of limiting it to a few specific speeds.

This, in turn, is one of the most compelling reasons to use ‘ramp tests’ or slowly-

varying flows for future VIV model testing. Designers are typically interested in the

most damaging response not one that is believed to be close to the most damaging.

Another reason to introduce ‘ramps’ in VIV model testing is to explore the transition

between multiple modes in a single run through the basin or towing tank.

Chapter 9 shows how a single ramp test may be used to obtain the same informa-

tion as ten constant speed tests. This can and will significantly reduce the number

of runs necessary to completely characterize the VIV response of flexible cylinders

and will translate into considerable cost savings in the future. The chapter closes by

describing the differences observed in the VIV response at high mode numbers de-

pending on whether the time-varying flow was accelerating or decelerating. In both

situations a ‘hysteresis’ effect is noted, where the cylinder is found to ‘lag behind’

preferring to vibrate in the previously excited mode as a result of cylinder lock-in. In

accelerating flows, this means that the cylinder will typically be responding one mode

25



lower than it would have in a steady flow. In decelerating flows, the same ‘lag’ or

‘hysteresis’ will cause the cylinder to respond one (or more) mode number(s) higher

than it would have in a steady flow.

Chapter 10 offers suggestions for future model tests using ramps. Specifically,

‘ramp tests’ are designed in a way that will keep the 𝛾 value constant throughout the

test. This is complemented by a discussion on issues that will result due to ‘mode

overlap’ or closely spaced natural frequencies.

The thesis closes by summarizing the most important conclusions identified in this

work and provides recommendations for future work that could further our under-

standing of VIV in time-varying flows.
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Chapter 2

Background VIV

Over the past decades there has been a lot of research focusing on VIV and the general

vortex shedding process behind stationary cylinders. This has been accompanied by

detailed investigations in order to understand what happens to the boundary layers

as the fluid flows around the cross-section. Reviewing every contribution to the field

of VIV on rigid and flexible structures is not within the scope of this thesis. This

has already been done by established and experienced researchers and the reader

is referred to the very thorough review papers by Sarpkaya (1979, 2004), Bearman

(1984), Williamson & Govardhan (2004, 2008) and the books by Blevins (1986) and

Summer & Fredsoe (2006) to list but a few.

Despite the extensive research studies, both experimental and numerical, it is

important for the reader to understand there is no complete analytical solution to the

vortex shedding process despite some of the most famous fluid mechanics researchers

having attempted the problem, including Stokes, Oseen, Lamb and Blahsius. The

solution would require solving the full set of the Navier-Stokes equations and this is

further complicated by the fact that the body can move inside the stream. Researchers

as far back as the early 80’s assumed that computing power will eventually enable

us to solve the Navier-Stokes equations but more than 30 years later and after a

huge increase in computing power, Computational Fluid Dynamics (CFD) is still

seeing limited use in VIV prediction and is mostly limited to optimizing the design

of suppression devices or for the most fundamental of problems at low Reynolds
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numbers.

Typical riser design requires predicting VIV under a multitude of ocean conditions,

often thousands of different current profiles will be used to characterize the meta-ocean

statistics of a given location, for each individual riser. Additionally, the design process

is often iterative and has to be repeated several times which makes any attempts at

using CFD for actual riser design prohibitively expensive.

The vast amount of experimental work has been essential in providing insight to

the VIV problem, to the point where engineers can quite confidently (albeit with

large safety factors) design a tubular member that will not fail due to VIV. Bearman

(1984) points out that “Progress on (these) practical engineering problems has been

made possible through the understanding gained from fundamental studies”.

All structural dynamics problems involve an excitation source and the structure’s

response to this force. Identifying the source and understanding the behavior of the

structure’s response are necessary steps in gaining insight that can be useful in design

recommendations or VIV suppression/mitigation strategies. The following sections

will provide the reader with a very brief background to some fundamental concepts

of VIV, just enough, so that the remainder of the thesis makes sense to someone not

yet familiar with many of the intricacies of VIV.

2.1 Vortex Shedding

Flow around a rigid cylindrical structure (or any other bluff body) is characterized by

flow separation at all but the smallest of Reynolds numbers. Flow separation occurs

when the boundary layer thickness increases suddenly and separates from the surface

leading to large areas of flow recirculation.

Figure 2-1 shows the form that the recirculation or flow-separation behind a sta-

tionary cylinder takes as a function of Reynolds number. For any Reynolds number

larger than ∼ 40, the flow separation is characterized by the shedding of vortices. It

should be pointed out that the flow is very two-dimensional, with the vortices be-

ing shed in a coherent vortex sheet, up until a Reynolds number of approximately
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200, 000 − 500, 000 where the two-dimensionality breaks down and strong three di-

mensional effects are observed, in what is known as the drag crisis regime.

Figure 2-1: Flow separation and vortex shedding behind a stationary cylinder
(Blevins, 1986).
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Theodore von Karmann was among the first researchers to study these periodically

shed vortices giving his name to the instantly recognizable “von Karman Vortex

Street”. Figure 2-2 is a photograph of a von Karmann vortex street clearly show-

ing the periodicity in the wake.

Figure 2-2: Vortex street behind a stationary cylinder (Van Dyke, 1982).

The frequency of the shed vortices behind a STATIONARY cylinder is given by the

Strouhal relationship shown below. 𝑈 is the velocity of the free stream, 𝐷 is the

cylinder’s diameter and 𝑆𝑡 is an experimentally measured constant of proportionality

known as the Strouhal number.

𝑓𝑣𝑜𝑟𝑡𝑒𝑥 𝑠ℎ𝑒𝑑𝑑𝑖𝑛𝑔 = 𝑆𝑡
𝑈

𝐷
(2.1)

Even though the exact form of the shed vortices and the size of the wake depend on

the Reynolds number, the Strouhal number remains surprisingly constant over a large

range of Reynolds numbers. Figure 2-3 shows the experimentally measured Strouhal

number from a large number of experiments.
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Figure 2-3: Strouhal number as a function or Reynolds number (Blevins, 1986)

Every time a vortex is being formed and shed, the large amounts of vorticity lead

to local regions of low pressure on the cylinder’s surface. Because vortices are being

shed alternately from both sides of the cylinder these regions of low pressure will also

exist on alternate sides. This will lead to a ‘lift force’, primarily, in the cross-flow

direction that has the same periodicity as the shed vortices.

2.2 Elastically Mounted Rigid Cylinders

If the cylinder was free to move instead of being held fixed in space, one would expect

that the presence of a periodic forcing will quickly lead to strong vibrations.

Understanding the behavior of flexible structures undergoing VIV is much more

straightforward if one starts with the simpler case of a spring-mounted rigid cylinder.

This elastically mounted cylinder, which can now respond to the vorticity in the

downstream wake, has a single natural frequency given by the square root of the

ratio of the spring stiffness to the system’s mass. The mass term has to include the

physical mass of the cylinders (and contents) as well as the mass of the accelerated
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fluid (surrounding) when the cylinder starts moving, which is known as the added

mass.

This simplified scenario of an elastically mounted cylinder is one of the building

blocks of VIV and has been the focus of many studies and to this day continues to

fascinate some researchers. Figure 2-4 is very typical of the response of a spring-

mounted cylinder exposed to a cross flow. The top portion of the figure shows the

ratio of the Shedding Frequency 𝑓𝑠 to the natural frequency 𝑓𝑛 as a function of the

reduced velocity, 𝑉𝑟 = 𝑈
𝑓𝑛𝐷

. The lower portion of the figure shows how the response

amplitude, 𝐴𝑦, non-dimensionalized by the diameter, 𝐷, varies as a function of the

reduced velocity.

The first observation that one can make is that the width of the resonance is much

larger than one would expect at such low levels of damping. Examining the ratio of

𝑓𝑠
𝑓𝑛

gives some clues as to what is happening: Instead of the vortex shedding frequency

increasing with the increasing velocity (or 𝑉𝑟) as one would expect from the Strouhal

Relationship it remains roughly constant and equal to the natural frequency during

most of the resonance. This is one of the quintessential features of VIV and is termed

lock-in, synchronization or wake-capture. As soon as the cylinder starts moving the

vortex shedding process becomes ‘easier’, with the shed vortices being stronger and

with greater spanwise coherence and most importantly the vortices are being shed

at a frequency very close to the cylinder’s natural frequency instead of the frequency

dictated be the Strouhal relationship.

The entire phenomenon is due to the fact that the cylinder’s added mass starts

decreasing immediately after the resonance. This results in an increase of the struc-

ture’s natural frequency which will be closer to the shedding frequency thus allowing

the resonant conditions to continue.

The lock-in bandwidth or synchronization region was found to increase with in-

creasing response amplitude by Bearman & Obasaju (1982). It was later discovered

that the mass ratio is critical to determining the lock-in bandwidth, with low-mass

ratio cylinders having considerably larger lock-in bands than their high mass ratio

counterparts. The mass ratio is defined as the ratio of the cylinder’s mass to the ratio
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of displaced fluid due to a solid cylinder of the same outer diameter:

𝑚* =
𝑚

1
4
𝜋𝜌𝑓𝑙𝑢𝑖𝑑𝐷2

Figure 2-4: Response of a spring mounted rigid cylinder (Blevins, 1986)
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Anyone familiar with basic vibration theory will recognize that a periodic forcing at

the structure’s resonant frequency will cause a very large response that is only limited

by the amount of damping present. Figure 2-4 shows that the resonant amplitude

at 𝑉𝑟 ∼ 6 is actually not that large considering the very small amount of damping

present 𝜁 ∼ 0.2% (typical of many lightly damped structures). In fact, studies have

shown that reducing the damping even further would not lead to a considerably larger

response. This reveals one of the most interesting non-linear features of VIV, namely,

that these systems have limit-cycles which prevent the response from increasing in-

definitely at resonant conditions. This is best explained by the non-linear dependence

of the lift-coefficient on the response amplitude shown in Figure 2-5.
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Figure 2-5: Lift coefficient (𝐶𝐿) vs. 𝐴/𝐷 curve at a specific dimensionless response
frequency

This nonlinear relationship is characterized by the fact that, at small amplitudes, the

lift coefficient is positive and increases with increasing response amplitude up until a

certain point after which the lift coefficient decreases. Eventually, the lift coefficient

becomes negative, which implies that instead of energy flowing from the fluid into the

structure, the opposite actually occurs: Energy flows from the structure to the fluid in
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order to limit the response. The maximum response amplitude due to VIV can depend

on many things such as aspect ratio, end conditions, surface roughness, damping, etc.,

which makes comparisons among different datasets quite tricky. The general rule of

thumb is that the largest response amplitude will be roughly one diameter. This

is also the reason why the response amplitude is typically non-dimensionalized by

dividing by the cylinder’s diameter.

As previously mentioned, elastically mounted rigid cylinders have been studied

extensively and many interesting features of the response can now be explained by

the behavior of the wake and the pattern of the shed vortices. This was only made

possible with the development of flow visualization techniques such as Particle Image

Velocimetry. The reason that these intricacies will not be expanded on further in

this thesis, is because many of the unique response characteristics (response branches

etc.) are not observed on flexible cylinder VIV and furthermore it is not yet clear if

many of the unique wake patterns observed will survive or be relevant at the higher

Reynolds numbers that are typically of interest to offshore engineers.

2.3 VIV of Flexible Cylinders

The vortex induced vibration of flexible cylinders shares many common features with

the response of elastically mounted cylinders which makes analyzing and understand-

ing their response substantially simpler. Indeed many of the commonly used VIV

prediction tools use experimental data obtained from rigid cylinders combined with

a strip-theory approach to model the response of a flexible structure.

Triantafyllou et al. (2003) studied the response of a pinned-pinned flexible beam

which could vibrate both perpendicular to, as well as in-line to the flow. The upper

portion of Figure 2-6 shows the Cross-Flow (CF) and the In-Line (IL) response am-

plitudes as a function of the reduced velocity (𝑉𝑟). The lower portion of the figure

shows the cylinder trajectories at a few selected values of reduced velocity.
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Figure 2-6: Transverse (CF) and Inline (IL) response of a flexible cylinder as a function
of reduced velocity (Sarpkaya, 2004 (originally Triantafyllou et al., 2003))

VIV on flexible cylinders tends to be much more damaging because unlike an elasti-

cally mounted cylinder (i.e., a spring mounted rigid body) which only has one natural

frequency (or two if IL motion is permitted) a continuous structure will have an infi-

nite number of natural frequencies each one corresponding to a different mode shape

for the structure. The presence of infinitely many resonances means that it is sus-

ceptible to large amplitude vibrations at a huge range of current velocities unlike

the elastically mounted rigid cylinder which was susceptible to VIV at a specific cur-

rent velocity and a small band around it, known as the synchronization region. One
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can gain a lot of insight into a flexible cylinder VIV problem if he can conceptually

treat every normal mode and associated natural frequency as an individual elastically

mounted cylinder responding to the flow conditions.

However, there are also many differences or challenges with VIV on flexible cylin-

ders, some of these are associated with the spatial variation of a given mode’s response

and others are directly related to the variability in the ocean environment. The cur-

rent velocity along the cylinder length need not be constant, in fact this is extremely

rare in the actual ocean environment where there can be substantial difference in

current strength and direction as a function of depth associated with the existence of

thermoclines and loop-currents.

This spatial variation is demonstrated with the schematic in Figure 2-7, showing

an idealized current profile and regions along the riser that could be sources of exci-

tation and other regions that will act as sources of hydrodynamic damping.

These spatial variations when combined with the fact that natural frequencies and

modes are closely spaced gives rise to many interesting problems. Vandiver (1985,

1993) identified a method to predict lock-in and the location of the power-in or ex-

citation region under linearly sheared currents. This was achieved by balancing the

power into the structure with the power dissipated through damping.

The Lake Seneca and Miami I and II field experiments demonstrated the concept

of ‘mode competition’ which is the possibility of having two different sources of VIV

at different frequencies if they are spatially separated by a large enough distance.

The same tests demonstrated the existence of mode-switching where the response at

a given location can jump from mode to mode as time progresses. This is a direct

result of closely spaced natural frequencies and current speeds that can excite a num-

ber of neighboring modes after the lock-in or synchronization bands are taken into

account (Swithenbank, 2007).
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Figure 2-7: Power flow model for a flexible cylinder (Vandiver, 1993).
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Kim et al. (1985, 1986) were among the first to comment on the existence of

travelling waves in the VIV response of very long cables. These were later observed

and confirmed by Vandiver et al. (2009) and Marcollo et al. (2007) in the Lake

Seneca and Miami I and II tests where the dense instrumentation even allowed the

calculation of wave propagation speeds. These travelling waves were also associated

with large amounts of response at higher harmonics (3X, 5X) which are a considerable

source of fatigue damage (Vandiver, 2006).

Considerable efforts have been made in recent years to try and improve cable and

riser VIV prediction software that is being used extensively in the offshore industry.

This is often done in conjunction with the model testing of flexible cylinders in a

towing tank or the ocean environment. As our understanding of cable and riser dy-

namics improves and as new phenomena are observed, efforts are made to incorporate

such findings or to improve the quality of the predictions. Recent examples of this

are Mukundan et al. (2010), Resvanis & Vandiver (2011) and Campbel & Slocum

(2013).e

Recent efforts have concentrated on benchmarking all three of the most com-

monly used VIV prediction packages (VIVA, VIVANA & SHEAR7) against the same

experimental datasets. This is an industry wide initiative led by DEEPSTAR in or-

der to assess the inherent modeling differences of the three software packages. The

experimental datasets included:

∙ NDP 38𝑚 high mode number tests donated by the Norwegian Deepwater Pro-

gram (a 38𝑚 long cylinder tested at MARINTEK)

∙ The Miami I and II tests donated by DEEPSTAR (a 700𝑓𝑡 long riser model

tested in the ocean, offshore Miami)

∙ The ExxonMobil 10𝑚 rotating rig tests donated by Exxon (a 10𝑚 long cylinder

tested at MARINTEK)

The project’s aim was to study how inherently conservative each software package

was by comparing carefully collected experimental data with predictions. The exper-

imental data was intentionally expanded to include three different datasets, because
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it had been observed that a software package that produces good predictions against

a specific dataset does not necessarily produce good predictions for another. The idea

was to compare each VIV prediction package against a very large number of tests from

different model tests and thus get a more ‘global’ perspective on how conservative a

given prediction package is, as well as, the extent of the scatter of its predictions.

These studies indicated that the extent of the scatter is one of the most important

factors in choosing just how large the necessary safety factor will be in order to

guarantee a given probability of failure. (Fontaine et al. (2011, 2013) and Tognarelli

et al. (2013)).
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Chapter 3

Description of Experiments

3.1 The 38𝑚 SHELL Experiments

The 38𝑚 SHELL experiments were conducted in the spring of 2011 at MARINTEK’s

ocean basin on behalf of SHELL International Exploration and Production Co. The

experiment involved towing three densely instrumented flexible cylinders, of different

diameters, in uniform and sheared currents. The full test matrix included more than

430 runs which tested the effects of fairings, strakes, staggered buoyancy and marine

growth on riser response in uniform and linearly sheared currents. An interesting

feature of this data set was the very large range of Reynolds numbers covered while

testing the three different pipes. Towing velocities ranged from 0.25𝑚/𝑠 to 3.45𝑚/𝑠

which correspond to Reynolds number range from 5,000 to 220,000. More details on

the experimental set-up can be found in Lie et al.(2012). The properties of the three

different pipes are summarized in Table 3.1. (MARINTEK, 2011)
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Figure 3-1: The 12𝑚𝑚 diameter riser model covered in ribbon fairings. The model is
shown mounted on the carriage before it is submerged

Table 3.1: The 38m SHELL Tests Pipe Properties

Pipe 1 Pipe 2 Pipe 3

Length 38 𝑚 38 𝑚 38 𝑚

Outer Diameter (Hydrodynamic Dia.) 12 𝑚𝑚 30 𝑚𝑚 80 𝑚𝑚

Optical Diameter (Strength Diameter) 10 𝑚𝑚 27 𝑚𝑚 27 𝑚𝑚

Inner Diameter (solid rod) 21𝑚𝑚 21𝑚𝑚

EI 16.1 𝑁𝑚2 572.3 𝑁𝑚2 572.3 𝑁𝑚2

E 3.27x1010𝑁/𝑚2 3.46x1010𝑁/𝑚2 3.46x1010𝑁/𝑚2

Mass in air(with contents) 0.197 𝑘𝑔/𝑚 1.088 𝑘𝑔/𝑚 5.708 𝑘𝑔/𝑚

Mass in water(with contents) 0.078 𝑘𝑔/𝑚 0.579 𝑘𝑔/𝑚 0.937 𝑘𝑔/𝑚

Mass ratio 1.74 1.54 1.14
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The smallest cylinder, Pipe 1, was instrumented with 52 fiber optic Bragg strain

gauges measuring pipe curvature in each of the Cross-Flow (CF) and In-Line (IL)

directions. The optical fiber was located at a distance of 5𝑚𝑚 from the neutral axis

and was covered by a silicon sheet 1𝑚𝑚 thick. The medium and large diameter

cylinders, Pipes 2 & 3 respectively, had curvature (strain) measured at 30 different

locations along the length and accelerations at 22 points in both the CF and IL

directions. All sensors were sampled at a frequency of 1200Hz. The largest diameter

pipe was simply the medium sized pipe with a clam-like plastic shell, 25𝑚𝑚 thick,

surrounding it. For the medium and large pipes, the curvature was measured at a

distance of 13.5𝑚𝑚 from the neutral axis and the fiber optic cable was then covered

by a silicon sheet 1.5𝑚𝑚 thick. Data will also be drawn from a set of runs where

the largest diameter pipe was covered in P40 sandpaper in order to alter its surface

roughness.

Damping tests conducted in air for all three pipes yielded structural damping ra-

tios of ∼ 0.5 − 0.7% of critical damping.

The SHELL tests also included some ‘ramp tests’, where the pipes were exposed

to uniform flows while the carriage and cylinder were accelerated or decelerated in

linear and quadratic manners. Of the approximately 430 runs in the test matrix, ap-

proximately 15 were of the ramp type and all the remaining were at constant speed.

These ‘ramp tests’ were tests of opportunity which led to the development of the

𝛾 parameter. Once its importance was understood, a new set of model tests were

planned which allowed for a systematic evaluation of VIV as a function of 𝛾. These

tests were conducted at the ocean basin in the State Key Laboratory at Shanghai

Jiao Tong University.
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3.2 Shanghai Jiao Tong University Tests (SJTU Tests)

Unlike the SHELL ramp tests, the time-varying tests at the State Key Laboratory

of Ocean Engineering at SJTU were designed from the very beginning to explore the

influence of 𝛾 on lock-in and VIV. As such, they cover a much larger range of flow

accelerations. These tests were the result of an ongoing collaboration between Prof.

Shixiao Fu’s research group at SJTU and Prof. Kim Vandiver’s research group at

MIT. These tests were conducted at the ocean basin in the State Key Laboratory

during the summer of 2012.

The flexible cylinder tested was 4m in length and was made using a wire cable for

the core with a composite layer which encased the Fiber Optic Bragg strain gauges

surrounding the core. The entire structure was then covered in a thin layer of rubber

shrink tubing. Table 3.2 lists the most important physical properties of the riser model

constructed at SJTU. The axial and bending stiffness were determined after subjecting

a section of the riser model to tensile and three-point bending tests, respectively. More

details can be found in Appendix D.

Table 3.2: The SJTU riser model properties

Model Length 4 𝑚

Outer Diameter 24 𝑚𝑚

Mass in air 0.69 𝑘𝑔/𝑚

Mass ratio 1.53

Bending Stiffness EI 10.5 𝑁𝑚2

Axial Stiffness EA 6.67x105𝑁

Pretension 500 𝑁

There were a total of four fiber optic cables embedded in the composite layer of

the cylinder; two in each of the CF and IL directions. The CF direction had 7

measurement locations whereas the IL direction had 11. The strains were recorded

at a sampling frequency of 250 Hz. Damping tests in air showed that the structural
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damping ratio was 1.5% of critical damping.

The cylinder was mounted on the Forced Oscillation Apparatus that was designed

by Prof. Shixiao Fu (Fu et al., 2013). Figures 3-2 & 3-3 show the riser model mounted

on the carriage. The relatively short track length of the experimental apparatus was

the largest limitation in the design of the test matrix. The short track length meant

that it would not be feasible to start a ramp test at zero velocity and reach the target

velocity before reaching the end of the track while accelerating at rate that would

allow us to observe VIV and lock-in. The way around this limitation was to program

the carriage to start at zero speed and immediately jump to a speed close to the

target speed and then accelerate or decelerate at the desired rate through the target

speed.

The original test matrix was designed to excite the 3𝑟𝑑 and 4𝑡ℎ modes under many

different accelerations and decelerations. In order to excite the 3𝑟𝑑 and 4𝑡ℎ modes

the carriage would have to be towed at speeds of approximately 1.4 and 2.3 𝑚/𝑠

assuming a dimensionless response frequency of 0.15. In practice, the cylinder was

tension dominated and the initial pretension was set to ∼ 500𝑁 . During the tests, the

large drag forces resulted in tensions that were comparable or larger than the initial

pretension. The increased overall tension affected the cylinder’s natural frequencies

which resulted in the natural frequencies ‘tracking’ the speed and always being excited

at modes 2-3 independent of whether the towing speeds were centered around 1.4 or

2.3𝑚/𝑠.

There were a total of 27 ramp tests around the ‘target speed’ of 1.4𝑚/𝑠 with

accelerations ranging from 0.002 to 1.119𝑚/𝑠2. In addition to these, 28 further ramp

tests were performed around the ‘target speed’ of 2.3𝑚/𝑠 with accelerations ranging

from 0.032 to 1.403𝑚/𝑠2. The test matrix also included multiple runs at constant

speeds which would serve as a baseline to compare to the data extracted from the

ramp tests. Table 3.3 lists the acceleration and the associated 𝛾 for all the ramp tests

performed at SJTU that are included in this thesis.
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Figure 3-2: The SJTU riser model before it was submerged in the ocean basin

Figure 3-3: End connection (Model, Clamp, Universal Coupling, Force Transducer,
End Plate)
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Table 3.3: Ramp tests performed at SJTU

tests around 1.4 𝑚/𝑠 tests around 2.3 𝑚/𝑠

Test # acceleration (𝑚/𝑠2) 𝛾 Test # acceleration (𝑚/𝑠2) 𝛾
1a 1.119 0.105 19a 1.402 0.035
2a 0.499 0.040 19b 1.400 0.037
2b 0.505 0.042 19c 1.395 0.036
2c 0.496 0.043 19d 1.402 0.036
2d 0.492 0.039 20a 0.866 0.018
3a 0.311 0.025 21a 0.646 0.018
4a 0.230 0.016 21b 0.670 0.017
5a 0.166 0.012 21c 0.669 0.019
5b 0.168 0.012 21d 0.655 0.018
5c 0.166 0.013 22a 0.464 0.013
5d 0.173 0.013 23a 0.354 0.008
7a 0.115 0.009 25a 0.240 0.006
8a 0.087 0.007 25b 0.249 0.006
9a 0.074 0.005 25c 0.249 0.006
10a 0.068 0.005 25d 0.259 0.007
10b 0.059 0.004 26a 0.202 0.005
10c 0.059 0.004 27a 0.172 0.004
10d 0.059 0.004 28a 0.123 0.003
11a 0.046 0.003 29a 0.072 0.002
12a 0.044 0.003 29b 0.077 0.002
13a 0.039 0.003 29c 0.093 0.002
14a 0.034 0.002 29d 0.073 0.002
15a 0.023 0.002 30a 0.069 0.002
16a 0.016 0.001 31a 0.046 0.001
17a 0.014 0.001 31b 0.050 0.001
18a 0.002 0.000 31c 0.046 0.001
142a1 steady flow 0 31d 0.032 0.001
142a2 steady flow 0 231a steady flow 0
142b steady flow 0 231b steady flow 0
142c steady flow 0 231c steady flow 0
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Chapters 4 through 6 make used of the steady flow data from the 38𝑚 SHELL dataset.

The same dataset includes some unsteady flow cases or ’ramp tests’ that are presented

in Chapter 9. The SJTU data is presented in Chapter 8.
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Chapter 4

Reynolds Number Effects on the VIV

of Flexible Cylinders

The Reynolds number, 𝑅𝑒, is a very important dimensionless parameter in most fluid

dynamics problems including VIV.

𝑅𝑒 =
𝑈𝐷

𝜈

Recently, independent studies by Govardhan & Williamson (2006) and Klamo et al.

(2005) have shown that the Reynolds number is an extremely important parameter

when analyzing the response amplitude of rigid cylinders undergoing VIV in labora-

tory experiments. Both studies demonstrate that the mass ratio does not influence

the peak response amplitude whereas there is a strong dependence on the Reynolds

number - with the peak response amplitude increasing with the Reynolds number in

the range 500 <𝑅𝑒 <12,000.

Despite being an important factor that governs the behavior of VIV, it has been

very hard to study the effect of Reynolds number on the VIV response of flexible risers.

Most of the high Reynolds number data remains the proprietary information of the

oil and gas companies that funded the experiments, and only a few published datasets

are available to researchers. Furthermore, when attempting to compile enough data so

as to span a reasonable Reynolds number range, one inevitably runs into the problem
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of comparing data from many different systems with different dynamic properties,

instrumentation procedures, etc.

To date, the most comprehensive study of the Reynolds number effects on flexible

cylinders is the work of Swithenbank et al. (2008) who compiled and organized the

𝐴/𝐷 vs. 𝑅𝑒 number data from ten different datasets including laboratory and field

experiments.

This thesis includes attempts to build on the past work by using data from recent

experiments on flexible pipes where the Reynolds number range spans three orders

of magnitude. The aim of this chapter is to reveal the trends that exist between

the Reynolds number and some of the most important VIV response parameters

(dimensionless response frequency, Cross-Flow (CF) & In-Line (IL) amplitudes and

drag coefficient 𝐶𝑑). All the flexible cylinder data that are presented in this chapter

are from the 38𝑚 long SHELL tests at MARINTEK.

4.1 Effect of Reynolds Number on the Response of

Elastically Mounted Rigid Cylinders

Govardhan & Williamson (2006) and Klamo et al. (2005) independently showed that

the Reynolds number influences the peak response of a rigid cylinder free to vibrate

in a cross-flow. After accounting for the Reynolds number dependence both authors

were able to show excellent correlation between peak response amplitudes with their

respective damping parameters. The authors clearly demonstrated that the response

amplitude depends on the Reynolds number and some form of the damping parameter.

Vandiver (2012) reviewed the history of the various forms of damping parameters,

including the two used by Govardhan & Williamson and by Klamo et al. He explains

the shortcomings of all previous damping parameters used in the study of VIV and

then introduces a new damping parameter 𝑐*, which is defined below.

𝑐* =
2𝑐𝜔

𝜌𝑈2
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By far the most interesting result to follow from his analysis, is that a very simple re-

lationship is shown to exist between the lift coefficient, 𝐶𝐿 the dimensionless response

amplitude, 𝐴*, and the damping parameter, 𝑐*, as shown in Equation 4.1:

𝐶𝐿 = 𝐴*𝑐* (4.1)

The key points from this analysis are repeated here because they not only provide

great insight into the VIV problem but also help explain the strong Reynolds number

dependence that Govardhan & Williamson (2006) and Klamo et al. (2005) discovered

and will be shown to exist with flexible cylinder data later on in this chapter.

Starting with the equation of motion for a rigid, spring-mounted cylinder exposed to

a cross flow,

𝑚𝑦 + 𝑐𝑦̇ + 𝑘𝑦 =
1

2
𝐶𝐹𝜌𝑈

2𝐷 sin (𝜔𝑡 + 𝜑) =
1

2
𝐶𝐹𝜌𝑈

2𝐷 sin𝜔𝑡 cos𝜑 + cos𝜔𝑡 sin𝜑

and after substituting 𝑦 = 𝐴 sin(𝜔𝑡) for the response amplitude, the resulting equa-

tion can be separated into two equations. The first describes the dynamic equilibrium

between the stiffness and inertial terms:

(𝑘 −𝑚𝜔2)𝐴 =
1

2
𝐶𝐹𝜌𝑈

2𝐷 cos𝜑

The second equation describes the equilibrium between the damping force and the

lift force:

𝑐𝜔𝐴 =
1

2
𝐶𝐹𝜌𝑈

2𝐷 sin𝜑

After rearranging this equation, the relationship shown in Equation 4.1 is obtained

for the lift coefficient:

𝐴* ≡ 𝐴/𝐷 =
𝜌𝑈2

2𝑐𝜔
𝐶𝐹 sin𝜑 =

1

𝑐*
𝐶𝐹 sin𝜑 =

𝐶𝐿

𝑐*
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It is a well-known fact that the Reynolds number influences the lift coefficient of sta-

tionary cylinders (Norberg, 2003). Klamo et al. (2005) and Govardhan & Williamson

(2006) showed that dimensionless response amplitude, 𝐴*, is very dependent on

Reynolds number for spring-mounted, rigid cylinders. However, Equation 4.1 makes

it clear that the Reynolds number effect on 𝐴* for rigid oscillating cylinders is entirely

embodied in the lift coefficient, because 𝑐* is composed only of parameters that have

no Reynolds number dependence.

At this point Equation 4.1 becomes extremely useful, because it allows the calcu-

lation of the lift coefficient from quantities that both Govardhan & Williamson (2006)

and Klamo et al. (2005) measured in their experiments. Namely, for every damping

value tested, there is a corresponding peak 𝐴* achieved by the vibrating cylinder. Af-

ter calculating the 𝑐* corresponding to each damping value it is then straightforward

to calculate the 𝐶𝐿 using Equation 4.1.

Doing so, one creates curves of 𝐶𝐿 vs 𝐴*, at the specific value of reduced velocity

(𝑉𝑟) that 𝐴* was recorded at. This was done with the data used in Govardhan &

Williamson (2006) and Klamo et al. (2005) and the 𝐶𝐿 versus 𝐴* curves that were

created are shown in Figures 4-1 and 4-2 respectively.

The keen observer will notice that even though the shape of the curves is very

similar, the 𝐶𝐿 values are quite different. This is due to differences in experimental

setups such as aspect ratio, end plates etc. Despite this, it is very obvious that in

these Reynolds number ranges, increasing the Reynolds number of the flow will lead

to an increase of the magnitude of the lift coefficient.

The Reynolds number effect on the response amplitude, 𝐴/𝐷, is best explained

through the effect that Reynolds number has on the lift coefficient. The purpose of

the next section is to show that a similar dependence of 𝐴/𝐷 on Reynolds number

may be observed in the VIV response of flexible cylinders after analyzing the 38𝑚

SHELL data.
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Figure 4-1: 𝐶𝐿 vs. 𝐴/𝐷 constructed using data from Govardhan & Williamson
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Figure 4-2: 𝐶𝐿 vs. 𝐴/𝐷 constructed using data from Klamo et al.

53



4.2 Analysis

The variables under investigation are:

4.2.1 The Dimensionless Response Frequency

𝑓 * =
𝑓𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝐷

𝑈

The dimensionless response frequency for each test was calculated by identifying the

resonant frequency, 𝑓𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒, from the response spectra of several curvature sensors

within the power-in region. In a similar way that the Strouhal number is the constant

of proportionality that relates the frequency of the shed vortices behind a STATION-

ARY cylinder with the upstream current speed, the dimensionless response frequency,

𝑓 *, relates the response frequency of a vibrating cylinder with the upstream current

speed.

Analysis of the recorded data revealed the strong presence of higher harmonics in

most of the test cases. All of the time-series data used in this chapter were band-

pass filtered around the dominant CF or IL frequencies often denoted as 1X or 2X

respectively. Thus, the higher harmonics (3X, 4X and 5X) are excluded from the data

shown in remainder of the chapter unless it is otherwise explicitly stated.

4.2.2 Response Amplitude

For the medium and large sized pipes, the amplitude at every accelerometer loca-

tion was determined after integrating the accelerometer time history in the frequency

domain. For the smallest pipe, the response amplitude was determined after recon-

structing the displacement response based on the measured curvature and identifying

the mode weights. In all cases, once the response amplitude, 𝑦(𝑥/𝐿, 𝑡), was known,

the spatial mean of the Root Mean Square (RMS) values in time, 𝜎𝐴/𝐷, was calculated

according to:
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𝜎𝐴/𝐷 =

∑︀𝑁
𝑖=1 𝜎𝐴/𝐷

𝑁
=

∑︀𝑁
𝑖=1

√︁
1
𝑀

∑︀𝑀
𝑗=1(𝑦𝑗(𝑡) − 𝑦)2𝑖

𝑁𝐷

Where 𝑁 is the number of sensors and𝑀 is the number of samples in the time history

under consideration. 𝑦𝑗(𝑡) and 𝑦 are respectively the instantaneous amplitude and

the mean value in time at a specific sensor.

Even though the above parameter is useful when looking at data from uniform

flow tests, it should not be used with response data from sheared flow tests. Sheared

flow tests usually have large response amplitudes within the power-in region but the

response outside the power-in region is considerably smaller. Therefore averaging

the response amplitude over the entire riser length is not appropriate. Instead, the

maximum RMS value, 𝜎𝑀𝐴𝑋
𝐴/𝐷 , along the length is a more appropriate metric.

𝜎𝑀𝐴𝑋
𝐴/𝐷 ≡ max[𝜎𝐴/𝐷|𝑖=1, 𝜎𝐴/𝐷|𝑖=2, ..., 𝜎𝐴/𝐷|𝑖=𝑁 ]

To account for the possibility that the maximum response occurs at a location which

falls between two measurement locations, a modal reconstruction along the lines of

Lie & Kaasen (2006) was performed for each test case. Figure 4-3 contains an example

of a typical response reconstruction.

Figure 4-3 is a typical example of the response of a riser in a sheared flow. The test

is number 3112, which involved towing the medium sized cylinder, Pipe 2 (𝐷 = 0.03𝑚)

in a sheared current with a maximum speed of 1.5𝑚/𝑠 at 𝑥/𝐿 = 0. The maximum

Reynolds number is ∼ 40, 900, but the Reynolds number corresponding to the power-

in region will be somewhat smaller. The blue stars indicate the measured quantities,

while the continuous green curves represent the modal reconstruction. The maximum

response is on the high velocity end of the riser, but the location of the power-in region

is not immediately apparent.
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Figure 4-3: Modal reconstruction of CF response for Test 3112 (sheared flow with
max. velocity of 1.5𝑚/𝑠 at 𝑥/𝐿 = 0)
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4.2.3 Drag Coefficient

The drag coefficient along the length of the pipe was estimated based on the method

outlined in Jhingran et al. (2008). The key points are repeated below. Starting with

the equation of motion in the In-Line, direction:

(𝑚(𝑥) + 𝑚𝑎(𝑥, 𝜔))
𝜕2𝑦

𝜕𝑡2
+ 𝑐(𝑥)

𝜕𝑦

𝜕𝑡
+ 𝐸𝐼(𝑥)

𝜕4𝑦

𝜕𝑥4
− 𝑇 (𝑥)

𝜕2𝑦

𝜕𝑥2
= 𝐹 (𝑥, 𝑡)

Taking the temporal mean,( 𝑡), makes all zero-mean terms vanish. If EI is neglected

for a tension dominated riser, the above formula simplifies to:

−𝑇 (𝑥)
𝜕2𝑦

𝜕𝑥2

𝑡

= 𝐹 (𝑥, 𝑡)𝑡

The forcing term on the right-hand-side is simply the mean drag force per unit length,

which can be expressed as:

𝐹 (𝑥) =
1

2
𝐶𝐷(𝑥)𝜌𝐷𝑈(𝑥)2

Substituting and rearranging yields the mean drag coefficient 𝐶𝐷 at a specific location,

𝑥:

𝐶𝐷(𝑥) =
4𝑇 (𝑥) 𝜕2𝑦

𝜕𝑥2

𝑡

𝜌𝐷𝑈(𝑥)2

It is important to emphasize that all these quantities are calculated locally (i.e., at a

specific sensor, located at a distance x from the end) and as such the drag coefficient

will vary considerably along the length of the riser. This is demonstrated in Figure

4-4. The plot shows the drag coefficient 𝐶𝐷 at every curvature sensor along the riser.

The data presented in this plot is typical of the data used to create Figure 4-10,

where all the test cases (Pipe 3 and Pipe 3 Rough) and all the sensor data have been

included.
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Figure 4-4: Drag coefficient as a function of 𝑥/𝐿 for Test 3112. The red lines indicate
the uncertainty in the 𝐶𝐷 calculation at every measurement location
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4.2.4 Power-In Location

The power-in region is traditionally defined as the region along the length of the pipe

where the wake is well correlated with the riser motion.

In uniform flow tests when the pipe is responding at low mode numbers, the

power-in region extends over the entire riser length. Since the entire pipe is exposed

to the same current, determining the corresponding Reynolds number for such a case

is straightforward.

The same cannot be said for sheared flows. Here, the current varies along the pipe

length and, as such, the Reynolds number varies from 0 on one end to 𝑈𝑚𝑎𝑥𝐷
𝜈

on the

high velocity end. The question that then arises is: what is the appropriate Reynolds

number for such a case?

Choosing the Reynolds number that corresponds to the location of the power-in

region seems like a sensible choice. Identifying the power-in region in sheared flows

is still a matter of current research, yet one can try to use previous experimental

evidence to approximately identify this region.

VIV experiments on flexible cylinders in sheared and non-uniform currents, such

as the Lake Seneca tests, the Miami II tests, the 38𝑚 NDP tests as well as the current

SHELL tests typically show that the largest strains are always near the high velocity

end and the response decays as you move toward the low velocity end (see Figure

4-3).

The exact location of the power-in region will eventually depend on which mode

(of all the potentially excited modes) ends up dominating the response. In this work,

it will be assumed that the power-in region is approximately centered at a distance

𝑥/𝐿=0.25 away from the high velocity end. Accordingly, the Reynolds number for

the sheared flow cases, to be used in the comparisons later on, will be 25% smaller

than the maximum Reynolds number which is always at 𝑥/𝐿=0.

The trends between the response amplitude and the Reynolds number for the

sheared flow cases are not very sensitive to the precise location at which the Reynolds

number is computed, which in this work is at 𝑥/𝐿=0.25. If a slightly larger or smaller

59



Reynolds number had been chosen the data on a plot of 𝐴/𝐷 vs. 𝑅𝑒 would simply

shift slightly to the right or left respectively and all trends in the plots of 𝐴/𝐷 vs.

𝑅𝑒 would appear the same.

4.3 Results

Table 4.1 summarizes some of the key results from the tests. The Reynolds number

reported for the sheared flow tests is the value corresponding to what is believed to

be the power-in region and not the maximum Reynolds number on the riser.

Table 4.1: Range of values for all test cases under review

Reynolds number Mode # 𝜎𝐴/𝐷 𝜎𝑀𝐴𝑋
𝐴/𝐷 𝑛𝜁

Pipe 1 Unif. 4.9 × 103 − 3.76 × 104 10 - 26 0.32 - 0.52 0.47 - 0.84 0.07 - 0.18

Pipe 1 Shear 4.1 × 103 − 2.54 × 104 9 - 30 0.26 - 0.36 0.39 - 0.49

Pipe 2 Unif. 6.6 × 103 − 6.8 × 104 3 -11 0.30 - 0.57 0.42 - 0.83 0.02 - 0.08

Pipe 2 Shear 6.2 × 103 − 5.9 × 104 3 - 13 0.27 - 0.47 0.36 - 0.71

Pipe 3 Unif. 3.6 × 104 − 1.3 × 105 2 - 7 0.39 - 0.64 0.54 - 0.91 0.01 - 0.05

Pipe 3 Shear 2.7 × 104 − 1.6 × 105 2 - 8 0.36 - 0.62 0.49 - 0.81

Rough Unif. 1.8 × 104 − 1.2 × 105 2 - 7 0.31 - 0.48 0.46 - 0.73 0.01 - 0.05

Rough Shear 4.9 × 104 − 1.5 × 105 4 - 11 0.31 - 0.40 0.39 - 0.50

Figure 4-5 shows how the response amplitude of the medium sized cylinder (Pipe 2)

varied as a function of Reynolds number. The plot shows the spatial mean (𝜎𝐴/𝐷)

and maximum (𝜎𝑀𝐴𝑋
𝐴/𝐷 ) in both the CF and IL amplitudes for all the uniform flow

cases. The influence that Reynolds number has on the response data is clearly visible,

with the response amplitude in both CF and IL directions increasing as the Reynolds

number is increased.

If one assumes that the power-in region for uniform flows covers the entire riser

length, then there is no hydrodynamic damping present, and the only damping present

in the system is the structural/hysteretic damping which is the same for all cases.
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Since all other factors are the same, the scatter can be attributed to variations in

reduced velocity. This is further reinforced by the fact that at the larger Reynolds

numbers (and hence higher velocities and higher excited mode numbers) the scatter

is smaller. At high mode numbers the natural frequencies are spaced much closer

than at low mode numbers, which means that there is a higher probability that the

selected constant towing speed will coincide or be very close to that mode’s critical

reduced velocity.

Figure 4-6 shows how the dimensionless response frequency,𝑓 *, determined from

the uniform flow tests, varied as a function of the Reynolds number. Looking at the

bare cylinder data, it is obvious that the dim. response frequency decreases as the

Reynolds number increases. A best fit, through all of the bare pipe data (i.e., exclud-

ing the roughened pipe) presented in Figure 4-6 in the Reynolds range investigated is:

𝑓 * = −0.0065 ln𝑅𝑒 + 0.21 (4.2)

Figure 4-7 shows the spatial mean RMS amplitude, 𝜎𝐴/𝐷, in the CF and IL directions

for all the pipes tested in this experiment. The figure also shows the best fit from

Swithenbank et al. (2008).
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The first thing to point out here is the peculiar behavior seen in the CF response of

Pipe 1. Initially, the response amplitudes are large but at Reynolds numbers greater

than 17,000-18,000 the response amplitude starts decreasing rapidly. This behavior

was very puzzling in the beginning and was initially attributed to a strong travelling

response and a shift from strong standing wave to travelling wave response in Resvanis

et al. (2012). Follow-up investigations by MARINTEK (2012), showed that at large

towing speeds the drag induced very large deflections (sag) on the small riser model

(pipe 1). This in turn meant that the flow was no longer normally incident on the pipe

and this was especially true of the two ends of the model. The variation in incident

current meant that only a portion of the cylinder was available for power-input to the

model with considerable portions now contributing to damping which in turn greatly

limited the response amplitude.

The relatively large scatter in the CF RMS A/D values of Pipe 3 is due to the

fact that the responding modes are much lower (3-7) and a lot of the variability can

be attributed to reduced velocity effects.
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Figure 4-7: Spatial mean RMS amplitude, (𝜎𝐴/𝐷) vs. Reynolds number for the CF
and IL directions in uniform flows

64



The best fits through the bare Pipe 2 and Pipe 3 data for the CF and IL direction

are:

CF direction: 𝜎𝐴/𝐷 = 0.077 ln𝑅𝑒− 0.343 (4.3)

IL direction: 𝜎𝐴/𝐷 = 0.023 ln𝑅𝑒− 0.087 (4.4)

In Figure 4-8, note how the maximum RMS response amplitudes, 𝜎𝑀𝐴𝑋
𝐴/𝐷 , for the

sheared cases are always smaller than the uniform flow cases. This happens because

under sheared flow conditions the power-in length is limited to a small portion of

the riser and the remaining sections provide hydrodynamic damping. As a result,

the sheared flow cases always have higher damping values than their corresponding

uniform flow cases. The increased damping will in turn limit the maximum resonant

amplitude.

The best fit through the data for the CF direction is:

CF direction: 𝜎𝑀𝐴𝑋
𝐴/𝐷 = 0.077 ln𝑅𝑒− 0.343 (4.5)

Once again, the roughened pipe data was not included when calculating this fit and

neither was the Pipe 1.

Figure 4-9 shows the spatial mean (spanwise averaged) drag coefficient, 𝐶𝐷, along

the riser length calculated from the uniform flow cases.
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Figure 4-9: Spanwise averaged 𝐶𝐷 vs. Reynolds number for uniform tests
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Little emphasis has been placed until this point on the results of the roughened cylin-

der; it has been included here to demonstrate how profoundly the surface roughness

can alter the response characteristics. The roughened cylinder results are directly

comparable with the large diameter (Pipe 3) results since all other properties (aspect

ratio, 𝑅𝑒, etc) are the same. From Figure 4-6 it is apparent that the dimensionless

response frequency is considerably larger for the rough pipe, whereas Figure 4-7 re-

veals that the response amplitude in both CF and IL directions is significantly smaller

than its bare cylinder counterpart.

Figure 4-10 shows the drag coefficient at every location along the riser as a func-

tion of the Reynolds number at that location. Only the data corresponding to the

largest diameter pipe with and without the rough surface finish has been included.

The surface roughness caused by the attached sandpaper was applied in order to

create a more turbulent boundary layer thus mimicking a flow at even higher larger

Reynolds numbers than was attainable with the largest diameter pipe.

At a given Reynolds number the variation in 𝐶𝐷 is due to the 𝐴/𝐷 dependence,

especially obvious when looking at the uniform flow results, which show a lot of scat-

ter consistent with the variation in 𝐶𝐷 seen at the nodes or anti-nodes of a strong

standing wave response. At Reynolds numbers smaller than 105 there is a lot of

overlap in the 𝐶𝐷 values shown. As Reynolds number increases, well into the drag

crisis region, the 𝐶𝐷 for the smooth pipe starts decreasing whereas the 𝐶𝐷 for the

roughened pipe is considerably larger.
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4.4 Chapter Summary

The first part of this chapter provides an explanation for the strong influence of

Reynolds number on the response of spring-mounted rigid cylinders vibrating freely

in a cross-flow. This is attributed to the effects that Reynolds number has on the

lift coefficient, demonstrated here, using the experimental data from Govardhan &

Williamson (2006) and Klamo et al. (2005).

The most interesting result from the analysis of the SHELL 38m long data, is

the clearly demonstrated effect that increasing Reynolds number has on the response

amplitude of flexible cylinders. The trend identified is in good agreement with what

has been previously reported for flexible cylinders and there are strong similarities

with the effect of Reynolds number on rigid cylinders. For elastically mounted rigid

cylinders vibrating in a cross flow, this work shows that the lift coefficient increases as

the Reynolds number is increased. The same should hold true for the lift coefficient

of flexible risers and should be the main cause of the increasing response amplitude

as a function of Reynolds number in the range tested.

Many of the factors that influence the response of rigid cylinders are also important

for the response of flexible cylinders. A lot of the scatter seen in the plotted results- in

this work and in previous studies- can be attributed to variations of these parameters

between experiments. The most notable are damping, reduced velocity, aspect ratio

and responding mode number as well as surface roughness.

The dimensionless response frequency for a vibrating riser decreases as the Reynolds

number is increased, approaching a limiting value between 0.13 and 0.14 at Reynolds

numbers up to 1.4 × 105. This is a very interesting result because Strouhal number

data from stationary cylinders in the same Reynolds number range show that it re-

mains roughly constant at ∼ 0.18 − 0.2 from 𝑅𝑒 ∼ 500 until the drag crisis region

around 𝑅𝑒 ∼ 2 × 105. This has important implications for riser designers, since a

lower Dim. Response Freq. at a given Reynolds number will typically mean a lower

excited mode and hence smaller strains and stresses for a given current speed.

Further experimental evidence, at even higher Reynolds numbers, is necessary to
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see if this limiting value will hold even beyond the drag crisis regime.

Later on in this thesis, many comparisons of the VIV response in steady and

unsteady flows will be shown. It would have been impossible to explain differences

between these if the Reynolds number effects not been sorted out beforehand, for it

would have been too difficult to distinguish which response characteristics were due

to the unsteady nature of the oncoming flow and which were due to the Reynolds

number.
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Chapter 5

Incorporating Reynolds Number

Effects in VIV Prediction Programs

The main aim of this chapter is to propose a methodology for the incorporation of

a Reynolds number dependent lift coefficient (𝐶𝐿) curve into a VIV response predic-

tion program like SHEAR7 (Vandiver et al., 2012). The SHEAR7 predictions are then

compared with experimental data from the recent SHELL 38m tests which showed

strong Reynolds number effects.

SHEAR7 is a semi-empirical VIV prediction program that is capable of predict-

ing the response (amplitude, stress, frequency and mode) and the associated damage

rates for a given current profile. It uses experimentally measured fluid coefficient

data from CF forced vibration tests at a single Reynolds number and then applies an

approach similar to strip-theory to predict the response of a long flexible riser. The

𝐶𝐿 curves currently used in SHEAR7 do not currently account for Reynolds number.

The proposed methodology to incorporate Reynolds number effects in VIV predic-

tions is shown to produce good results in the Reynolds number range between 5,000

and ∼70,000. It should not be used outside this range until further experimental

evidence is collected to confirm its validity beyond this range.
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5.1 Effect of Reynolds on 𝐶𝐿 vs. 𝐴/𝐷 curves

Govardhan & Williamson (2006) and Klamo et al. (2005) independently showed that

the Reynolds number influences the peak response of a rigid cylinder free to vibrate in

a cross-flow. Both groups clearly demonstrated that the response amplitude depends

on the Reynolds number and some form of damping parameter. The relationship

identified by Govardhan & Williamson is shown in Equation 5.1.

𝐴* = (1 − 2.2𝛼 + 0.30𝛼2) log(0.41𝑅𝑒0.36) = (1 − 2.2𝛼 + 0.30𝛼2)𝑓(𝑅𝑒) (5.1)

Equation 5.1 consists of two terms, the first describes the amplitude’s dependence on

the mass-damping parameter, 𝛼, and the second term, 𝑓(𝑅𝑒), describes the ampli-

tude’s dependence on the Reynolds number.

Even though both groups investigated the response as a function of the Reynolds

number they did not show the effect that Reynolds number might have on the lift

coefficient. Vandiver (2012) shows how the various forms of the damping parameter

proposed through the years are related to each other and, most importantly, how cast-

ing the damping in the correct dimensionless form of 𝑐*, allows one to calculate the lift

coefficient using only the response amplitude and damping through the relationship

𝐶𝐿 = 𝐴*𝑐*. Using this relationship, it has been possible to show that the Reynolds

number greatly affects the lift coefficient. It is for this reason that the amplitude of

both rigid and flexible cylinders increases as a function of the Reynolds number.

Figure 5-1 plots Govardhan & Williamson’s data of dimensionless response am-

plitude, 𝐴* vs. 𝛼, their mass-damping parameter, in the same way they present it in

their publication. At a given value of mass-damping parameter, the Reynolds number

dependence of the response amplitude is clearly visible.

This can then easily be converted into curves of dimensionless response amplitude,

𝐴*, vs. damping parameter, 𝑐*, using the conversion factors calculated by Vandiver

(2012), namely that

𝑐* = 𝛼4𝜋3𝑓𝑛𝐷

𝑈

𝑓𝐷

𝑈
≈ 𝛼3.59
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Figure 5-1: Response amplitude,𝐴* vs. 𝛼, the mass-damping parameter
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Figure 5-2: Response amplitude,𝐴* vs. 𝑐*, the damping parameter
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Figure 5-2 shows the same data shown in Figure 5-1, but now the data is plotted as

𝐴* vs. 𝑐* instead of 𝛼, the Williamson mass damping parameter.

If the 𝐴* values shown in Figure 5-2 are divided by the Reynolds number factor,

𝑓(𝑅𝑒), in Equation 5.1, the three curves on the previous plot collapse onto a single

curve of 𝐴*/𝑓(𝑅𝑒) vs. 𝑐*, as shown in Figure 5-3.

Recalling that 𝐴*𝑐* = 𝐶𝐿 leads to: 𝐴*

𝑓(𝑅𝑒)
𝑐* = 𝐶𝐿

𝑓(𝑅𝑒)
since 𝑐* does not depend on

the Reynolds number.

This means that the curve in Figure 5-3 contains all the information necessary

to calculate a lift coefficient vs. amplitude curve with all Reynolds number effects

removed. Figure 5-4 shows how the three curves of lift coefficient, 𝐶𝐿, vs. 𝐴*, can

collapse onto a single line after the Reynolds number effects have been removed. (Note

that if the 𝑅𝑒 number dependence had not been removed the figured would look like

Figure 4-1)

It stands to reason that if one can collapse multiple different 𝐶𝐿 vs. A/D curves

onto a single curve by removing the Reynolds number effects then one could also

proceed in the converse direction. That is, one can start modifying a single 𝐶𝐿 vs.

A/D curve by multiplying both axes with the Reynolds number function, 𝑓(𝑅𝑒), in

order to introduce the Reynolds number effects. The next section will show how

making these changes to the 𝐶𝐿 data used in SHEAR7 results in response predictions

that are Reynolds number dependent and are similar to the response observed in the

SHELL tests.

5.2 Incorporating Reynolds Number Dependent 𝐶𝐿

Curves Into SHEAR7

Now that the effect of Reynolds number on 𝐶𝐿 has been demonstrated all that remains

is to start modifying the SHEAR7 lift coefficient curve to incorporate the Reynolds

number effects documented.

In SHEAR7, lift curves are defined by a set of four numbers. The procedure
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to incorporate the Reynolds number effects into the lift curve is straightforward

and requires multiplying each value defining the lift curve with a factor equal to

𝑓(𝑅𝑒) = log(0.41𝑅𝑒0.36) from Equation 5.1 in the beginning of this chapter.

SHEAR7 allows users to input their own lift coefficient curves in terms of 𝐶𝐿 vs.

𝐴/𝐷 the remainder of this chapter will only deal with one commonly used curve and

it’s modification to incorporate Reynolds number effects. The chosen curve is referred

to as CL-table-2 and is defined by defined by [0.9, 0.43, 0.8, 0.4 at fdim=1]. Table 5.1

below lists how these values have to be modified at a few different Reynolds numbers.

Figure 5-5 shows what the modified lift coefficient curves have to look like in order to

model the uniform flow tests on the 30𝑚𝑚 diameter cylinder from the 38𝑚 SHELL

dataset. The original 𝐶𝐿 curve is shown with black data points, and all lift coefficient

curves have been drawn at the same value of reduced velocity (or fdim=1).

Table 5.1: Parameters for defining the Reynolds number adjusted 𝐶𝐿 curves in
SHEAR7

𝑅𝑒 number 𝑓(𝑅𝑒) aCL0 aCLmax CLmax CLa0

5,000 0.944 0.850 0.406 0.755 0.380

7,150 1.000 0.9 0.43 0.8 0.4

10,000 1.053 0.948 0.453 0.842 0.421

20,000 1.161 1.045 0.499 0.929 0.464

... ... ... ... ... ...

70,000 1.357 1.221 0.584 1.086 0.543
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For uniform flows the choice of Reynolds number is trivial since the entire riser is

exposed to the same current and hence the Reynolds number does not vary along the

length of the riser. The same cannot be said, however, for linearly sheared current

profiles; here the Reynolds number varies from the maximum value on one end to zero

on the other end. Using the Reynolds number corresponding to the location of the

Power-In region would be a sensible choice. Experimental measurements and CFD

calculations usually place the center of the Power-In region at a distance of approx-

imately 0.25 to 0.30 𝑥/𝐿 from the high-speed end of the riser. For the sheared flow

cases shown in this chapter the corresponding Reynolds number was approximated

by 𝑅𝑒 = 0.75𝑅𝑒(𝑥/𝐿 = 0) (i.e, 75% of the Reynolds number on the high speed end

of the model).

The following sections will compare measurements and predictions using the stan-

dard lift coefficient tables as well as the Reynolds number adjusted 𝐶𝐿 curves. The di-

mensionless response frequency, which is referred to as ‘Strouhal number’ in SHEAR7,

is originally kept fixed at the recommended value of 0.18 and is later allowed to vary

as a function of Reynolds number according to the Equation 4.2.
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5.3 SHEAR7 Predictions and ComparisonsWith Mea-

surements From the 38𝑚 SHELL Experiments

5.3.1 Response Amplitude

The SHEAR7 predictions presented in the following section are based on the original

CL-table-2 and modified versions of these tables that account for the Reynolds num-

ber as described in the previous section. CL-table-2, is based on the experimental

data collected by Gopalkrisnan (1993) and allows the lift coefficient to be a function

of reduced velocity as well as the 𝐴/𝐷 response. This results in predictions that are

much closer to the measurements (i.e., the spatial mean agrees well with the mea-

surements) but roughly the same number of points will be over and under-predicted.

Allowing SHEAR7 to use these Reynolds number adjusted CL curves has a pro-

found effect on the predicted 𝐴/𝐷 response as demonstrated in Figure 5-6. The upper

plot shows the maximum amplitude anywhere along the cylinder and the lower plot

shows the spanwise averaged mean amplitude as function of the Reynolds number.

The measured data is shown with red stars and it is quite clear that the A/D value

depends on Reynolds number (at 𝑅𝑒 ∼ 9, 000 the 𝐴/𝐷 is approximately 0.6 and at

𝑅𝑒 ∼ 70, 000 the 𝐴/𝐷 has reached 0.9). The green rectangular data points show

the SHEAR7 predictions if the traditional 𝐶𝐿 curve is used. The blue data points

correspond to the SHEAR7 predictions using 𝐶𝐿 curves that depend on Reynolds

number (as shown in Figure 5-5). These Reynolds number adjusted predictions are

much closer to the measured values and show the same trend for 𝐴/𝐷 as a function

of 𝑅𝑒 number as the measurements. The standard CL-table-2 prediction shows some

variation due to 𝑉𝑟 (dimensionless frequency effects) but otherwise the 𝐴/𝐷 values

predicted across the Reynolds number range are fairly constant around 0.6.

Figure 5-7 is similar to Figure 5-6 but compares the measured values of the sheared

flow tests with the traditional SHEAR7 and the Reynolds number adjusted SHEAR7

predictions. The Reynolds number adjusted SHEAR7 predictions are slightly closer

to the measured values, especially at Reynolds number values above 20,000.
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Both Figures 5-6 & 5-7 also show predictions that allowed both the lift coefficient

and the Strouhal number to vary as a function of the Reynolds number. The figures

show that modeling the Reynolds number dependence of the Strouhal number does

not produce significant differences in uniform flows but does in fact improve the

predictions in sheared flows.

The primary difference between modeling sheared and uniform flows is the im-

portance that hydrodynamic damping will have in the first case. Unlike a cylinder

exposed to a uniform flow where practically the entire pipe length is available for

power-input, a cylinder vibrating in response to a sheared current will have a rela-

tively short power-in region (approx. 30% of the total length). This means that the

remaining ∼ 70% will have to contribute to the hydrodynamic damping.

Looking back at Figures 5-6 & 5-7 with the predictions using CL-table-2 it is clear

that the sheared flow predictions are under-predicting the measured response. This

could be for two reasons, either the lift coefficient data being used is not large enough,

or the hydrodynamic damping model implemented is assuming that there will be a

lot more damping than what actually exists.

Because the uniform flow predictions were very close to the measured values, one

could conclude that the lift coefficient data being used is appropriate. This only

leaves the hydrodynamic damping as the most likely culprit for some of the under-

predictions in sheared flows. The difference between the measured and predicted

response suggests that the damping coefficients and model currently implemented in

SHEAR7 are overestimating the amount of hydrodynamic damping present at these

Reynolds numbers.

5.3.2 Stresses

Figures 5-8 & 5-9 are typical scatter plots of predicted stress vs. measured stress.

Each data point corresponds to a certain location along the riser (30 sensors in the

CF direction) for a specific test. In such scatter plots, any points lying above the solid

black equality line have been over-predicted (i.e., conservative prediction) whereas any

points located below the line have been under-predicted. The low speed, low mode
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number and low Reynolds number cases are typically located on the lower left

whereas the high speed, high mode number and high Reynolds number cases are

located on the upper right portion of the equality line.

Figure 5-8 compares the SHEAR7 predicted stresses with the 1X measured values

for the 30𝑚𝑚 diameter cylinder (Pipe 2) in sheared and uniform flows. The red

data points are from predictions where the Lift coefficient was a function of Reynolds

number whereas the green data points are from predictions using the standard CL-

table-2. As expected, the cluster of points lies approximately on top of the equality

line, with roughly the same number of points being over and under-predicted.

In both cases, the predictions have used a fixed 𝑆𝑡 = 0.18 and this figure only

illustrates the effect of using a Reynolds number dependent lift coefficient, 𝐶𝐿, in

VIV predictions. Allowing the lift coefficient to be a function of the Reynolds number

results in slightly more conservative predictions at high Reynolds numbers; there is

a noticeable difference between the red and green data points on the right hand side

portion of the plot. On the contrary, the red and green data points on the lower

left portion of the plot are virtually identical since these correspond to low Reynolds

number cases where 𝑓(𝑅𝑒) is approximately 1.

In Figure 5-9 the red data points are based on predictions that allow the lift

coefficient to be a function of the Reynolds number but the Strouhal number is

kept fixed at 0.18 (this is the same data shown in red color in Figure 5-8). These

predictions are now compared to the blue data points which are predictions using

both a Reynolds number dependent lift coefficient and a Strouhal number. The most

obvious difference is that the blue predictions are closer to the equality line than the

red colored predictions. This effect is much more pronounced on right hand side of

the plot which corresponds to the high Reynolds number cases.

The difference in the predicted stresses after allowing the Strouhal number to be a

function of Reynolds is best explained by comparing the fixed Strouhal value of 0.18

with the relationship identified in Chapter 4. This is shown in Figure 5-10, where

the difference between the blue line representing the curve fit for the dimensionless

response freq. (Equation 4.2) and the dashed red line, which is constant at 𝑆𝑡 = 0.18,
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increases with Reynolds number. This means that predictions using 𝑆𝑡(𝑅𝑒) will have

a considerably smaller response frequency at larger Reynolds numbers.

The smaller predicted response frequency will excite a mode with a smaller wavenum-

ber and therefore it is very reasonable that the predicted stresses were smaller at high

Reynolds numbers since the predicted stresses are a function of both amplitude and

wavenumber:

𝜎 = 𝐸𝜀 = 𝐸𝐴
𝑂𝐷

2
𝑘2

The Damage Rates calculated in SHEAR7 will be influenced twofold since they are

a function of both the response frequency and the predicted stresses.
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5.4 Chapter Summary

A procedure was demonstrated through which VIV prediction software can be easily

adjusted to account for Reynolds number effects on the lift coefficient and dimension-

less response frequency (equivalent Strouhal number for vibrating cylinders). This

results in SHEAR7 predictions of response amplitudes that are much closer to mea-

sured values in the SHELL tests and show similar trends as the Reynolds number

increases. More specifically:

1. Allowing the lift coefficient to be a function of the Reynolds number:

∙ Has a pronounced effect on the predicted response amplitudes.

∙ Increases the predicted stresses at higher Reynolds numbers.

2. Allowing the dimensionless response frequency number to be a function of

Reynolds number:

∙ Has very small effects on the predicted response amplitudes in uniform

flows but can improve sheared flow predictions.

∙ Tends to decrease the magnitude of predicted stresses at higher Reynolds

number.

Even though incorporating a Reynolds number dependent lift coefficient doesn’t have

a dramatic effect on the predicted stresses (and hence damage rates) it is worthwhile

because accurately calculating the 𝐴/𝐷 response allows more accurate damping cal-

culations since the still water damping term depends on 𝐴/𝐷.

Drag coefficients are also amplitude dependent as shown by Vandiver (1983).

Therefore a more accurate prediction of the response amplitude will also improve

the accuracy of the drag calculations in these Reynolds number ranges.

It is important to note that the Reynolds number factor identified by Govardhan

and Williamson was determined from laboratory data in the range 1, 250 < 𝑅𝑒 <

12, 000. In this chapter it was shown that the same relationship produces very good

results at least up to 𝑅𝑒 ∼ 70, 000 when modelling the SHELL tests but under no
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circumstances should one expect that the same Reynolds number factor will be valid

at even higher Reynolds numbers or in the drag crisis regime.
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Chapter 6

Fatigue Damage due to Combined

Cross-Flow and In-Line Motion

The objective of this chapter is to evaluate and compare the contribution to the

damage rate that results from the cross-flow and in-line vibration on the flexible

cylinders used in the 38m long SHELL tests.

In this section, a framework is presented for determining the worst possible combi-

nation of Cross-Flow (CF) and In-Line (IL) damage. Specifically, I wish to determine

the position on the circumference of the cylinder’s cross-section that will experience

the most severe loading due to the simultaneous motion in both CF and IL directions.

The analysis shows that the damage due to the IL motion is comparable to that of

the CF motion, and that their combined effect results in a damage rate of the same

order of magnitude as the pure CF signal and is usually situated at a position on

the circumference of the cross-section that is very close to or coincides with the CF

direction.

6.1 Need for Rainflow-Counting

It is conceivable that due to the complicated motion of the cylinder while undergoing

VIV, the most damaging location on the circumference of the cross-section would not

coincide with the CF or IL directions but rather at some angle between the two.

91



In this chapter the stresses and damage rates are calculated at 24 positions

(i=1,2...,24) around the circumference of the cross-section as shown in Figure 6-1.

This is done at every sensor location along the pipe length.

At each circumferential position, the stress time-history, 𝜎𝜃𝑖 , is given by the

appropriate vector addition of the CF and IL stress signals, and respectively, shown

in Equation 6.1:

𝜎𝜃𝑖(𝑡) = ⃗𝜎𝐶𝐹 (𝑡) cos 𝜃𝑖 + 𝜎𝐼𝐿(𝑡) sin 𝜃𝑖 (6.1)

Figure 6-1: Cylinder cross-section showing the combination of ⃗𝜎𝐶𝐹 and 𝜎𝐼𝐿 at some
arbitrary angle 𝜃𝑖
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Figure 6-2 shows the results of this vector addition and the resulting stress time-

histories at the angles corresponding to 𝜃 = 0(i.e. CF), 𝜃 = 30, 𝜃 = 60 & 𝜃 =

90(𝑖.𝑒.𝐼𝐿). This is done at every angle, 𝜃𝑖, and each stress time-history is subse-

quently rain-flow counted and the most damaging position/angle is chosen as the

combined stress or combined damage for each one of the 30 locations along the length

of the pipe where the CF and IL strain gauges are located.

The idea is based on the analysis presented by Tognarelli et al. (2004), the

main difference being that in this work every stress time-history is rain-flow counted

whereas Tognarelli et al. first calculated a damage index based on the RMS stresses

for both the CF and IL directions and their respective response frequencies and only

then applied the coordinate transformation similar to Equation 6.1 to their RMS

quantities.

Estimating the fatigue life (or Damage Rate) for a perfectly sinusoidal stress time

history is straightforward since the analytic equations are straightforward to derive.

Similarly, if the stress time-history is narrow banded Gaussian once again the an-

alytic expressions for Damage Rate can be derived as shown in Crandall & Mark

(1963). If the signal contains multiple frequencies and the response amplitude varies

significantly, one has no other choice except to revert to cycle-counting to obtain the

relevant stress amplitude statistics.

Each plot in Figure 6-2 also lists the rainflow-counted damage rate and it shown

that at this axial position along the cylinder (𝑥/𝐿 ∼ 0.06), the most damaging lo-

cation around the cross-section was at ∼ 30𝑜. The WAFO toolbox (WAFO-Group,

2006) was used to carry out the rain-flow counting of each stress time-history.

Since fatigue properties were not available for the exact composite material that

the flexible cylinder was made of, all fatigue calculations assumed that it was made

of steel with an S-N curve defined according to the DNV-F curve (i.e., log(𝑎) =

11.378 and 𝑚 = 3.0, Det Norske Veritas (2010)).
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Figure 6-3 shows the response of the fully bare pipe under a uniform flow of 1.4𝑚/𝑠.

The top plot shows the CF and IL displacements as calculated by the modal recon-

structions. Observe that even though the IL response amplitude is much smaller,

there are certain locations where the IL stresses are of comparable magnitude with

the CF stresses! This happens because even though the IL response amplitude is sig-

nificantly smaller than the CF amplitude, the IL wavenumber is much greater than

the CF wavenumber due to the approximately two times higher response frequency.

The relationship between stresses and amplitude for a flexural wave on a beam is

shown in Equation 6.2. Here, 𝜎 is the bending stress, 𝐸 is the Young’s Modulus, 𝜀 is

the bending related strain, 𝐴 is the response amplitude at a specific time, 𝑂𝐷/2 is the

distance from the neutral axis at which the stresses/strains were measured (13.5𝑚𝑚)

and 𝑘 is the wavenumber.

𝜎 = 𝐸𝜀 = 𝐸𝐴
𝑂𝐷

2
𝑘2 (6.2)

Figure 6-3 also shows the damage rate along the length of the pipe. Each location has

two data-points corresponding to the damage rates as calculated from the CF and IL

stress time-histories and a third data-point corresponding to the damage rate from

the most damaging combination of the CF and IL stress time histories according to

Equation 6.1. The last plot shows the angle around the circumference of the cross-

section at which the most damaging combination of CF and IL occurred. With a few

exceptions the combined damage rate at most sensor locations coincides with the CF

direction.
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Top: CF and IL RMS response amplitude 2𝑛𝑑 from top: CF and IL RMS stresses (𝑀𝑃𝑎)
and the largest combination of the signals in both directions 3𝑟𝑑 from top: CF and IL

damage rates (1/𝑦𝑟) and the most damaging combination of the signals in both directions
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6.2 Results and Discussion

Figure 6-4a shows the maximum damage rate along the pipe span as a function of

towing speed for the uniform flow tests for the 80𝑚𝑚 diameter cylinder (Pipe 3). For

each flow speed there are three damage rate values: those corresponding to the CF

and IL directions as well as the most damaging combination of the two. Similarly,

Figure 6-4b shows the maximum damage rates for the sheared flow tests with Pipe

3. For both uniform and sheared flow tests it is shown that the IL damage rate is of

the same order of magnitude as the CF. The worst possible combination of the two

coincides or is virtually identical to the CF damage calculation suggesting that the

most damaging position on the circumference tends to be at or very close to the CF

direction (this was also demonstrated for a specific test in the last plot of Figure 6-3).

The stress signals used for plotting Figures 6-4a & 6-4b contained large amounts of

higher harmonics (3X and 5X for the CF and 4X for the IL directions) as is typically

observed in high mode number model testing. Figures 6-5a & 6-5b show what would

happen if the CF and IL signals had been band-pass filtered around the 1X and

2X frequencies respectively. Now, there are a few cases where the worst possible

damage calculation around the cross-section coincides with the IL signal/direction.

This happens because the CF signal no longer includes the 3X and 5X components

which greatly affect the damage rate of the CF signal.

The aim of this section was not to dismiss the importance of IL motion, to the

contrary, the intention was to carefully measure the fatigue caused by the IL mo-

tion and demonstrate experimentally that the worst possible damage accumulated

anywhere around the cross-section is generally in the cross-flow direction. If one con-

servatively designs for Cross-Flow VIV, then one should be confident that they have

also accounted for the worst possible combination of CF and IL VIV. This is espe-

cially interesting in light of the recent DEEPSTAR Factor of Safety papers (Fontaine

et al. 2011, 2013), where experimentally measured CF damage rates were compared

with results from VIV response prediction software that, to date, only account for

CF VIV.
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To further support the observation that the CF and IL damage rates are of simi-

lar magnitudes and that the CF direction tends to be the position around the cross-

section that experiences the most severe loading, the same analysis was repeated for

the 30𝑚𝑚 diameter cylinder (Pipe 2). Figures 6-6 & 6-7 show the CF, IL and com-

bined damage rates for the 30𝑚𝑚 diameter cylinder. The trends and observations

are virtually identical to those reported earlier and are not discussed further.
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Figure 6-4: Maximum Damage Rate (1/𝑦𝑟) vs. towing speed (𝑚/𝑠) in uniform flows
(a) and sheared flows (b) for PIPE 3. Data shown includes all higher harmonics
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Figure 6-5: Maximum Damage Rate (1/𝑦𝑟) vs. towing speed (𝑚/𝑠) in uniform flows
(a) and sheared flows (b) for PIPE 3. Data shown excludes all higher harmonics
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Figure 6-6: Maximum Damage Rate (1/𝑦𝑟) vs. towing speed (𝑚/𝑠) in uniform flows
(a) and sheared flows (b) for PIPE 2. Data shown includes all higher harmonics
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Figure 6-7: Maximum Damage Rate (1/𝑦𝑟) vs. towing speed (𝑚/𝑠) in uniform flows
(a) and sheared flows (b) for PIPE 2. Data shown excludes all higher harmonics
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Chapter 7

VIV in Time-Varying Flows

There is an industry wide need to be able to predict VIV in unsteady flows. These

unsteady flows can take many forms depending on the mechanism that causes them:

∙ One example is the oscillatory flow that exists near the free surface in the

presence of ocean waves.

∙ Oscillatory flow could also result from the heave or surge motion of an offshore

platform which will in turn cause any Steel Catenary Riser (SCR) or umbilical

connected to it to also move with the platform.

∙ The ebb and flow of tides will also result in unsteady flows that tend to behave

like slowly accelerating or decelerating flows.

Additionally, model testing long flexible cylinders for VIV in large ocean basins can

often be extremely expensive by the time a satisfactory test matrix is covered. There

is a real need to develop more cost effective ways to conduct VIV model tests. In this

thesis, a slowly time-varying flow is shown to be a more efficient substitute to a test

matrix of many discrete constant velocity tests.

This was the primary motivation for experimenting with ramp tests. A ‘ramp

test’ is very similar to the conventional way of testing cylinders for VIV but instead

of keeping the carriage speed (or the flume) constant it is accelerated or decelerated

during the course of a single test. There are two questions that have to be answered

first:
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∙ Can a cylinder experience VIV ‘lock-in’ during transients or unsteady flow con-

ditions?

∙ If lock-in is observed, is the cylinder’s response similar to the response observed

under lock-in in steady flow conditions?

One of the principal contributions of this thesis is the identification and experimental

verification of a dimensionless parameter that may be used to predict when a cylinder

in an unsteady flow will exhibit similar response characteristics to VIV in steady flows.

7.1 Prior Work on VIV in Unsteady Flows

Even though ocean currents are usually unsteady and can vary slowly or quickly in

time depending on geographic location and environmental conditions, surprisingly

little research has been carried out regarding the possibility of VIV in time-varying

flows.

Most efforts have concentrated on the VIV response of rigid cylinders in oscillatory

flows. The primary motivation was to study the response of cylinders and piles in

oscillating flows created by free surface waves. The most notable of all researchers is

Sarpkaya (1978, 1979 & 1986) with his extensive research program –spanning many

years– studying both forces on fixed cylinders exposed to oscillatory flows as well as

the dynamic response of elastically mounted cylinders exposed to oscillatory flows.

Summer & Fredsoe (1988) also studied oscillatory flow VIV on rigid cylinders.

More recently, Liao (2002) and Fu et al. (2013, 2014) studied oscillatory flow VIV on

flexible cylinders primarily motivated by the motion of Steel Catenary Risers (SCR)

and the fatigue at the touch-down point. Contrary to Sarpkaya, who used a U-shaped

water tunnel and oscillated the flow around the cylinder, the other authors created

an oscillatory flow by mounting the cylinder on specially designed forced motion

apparatuses that were capable of ‘towing’ the cylinders with a prescribed oscillatory

motion through still water.

All the aforementioned oscillatory flow experiments have in common that there is
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no mean flow. This in turn means that the cylinder will be forced to cross its own

wake. That is, immediately following the first half-oscillation of the test, as soon as

the cylinder starts its return-leg, it will be forced to travel through the very wake it

created during the outbound-leg, and the process will continue indefinitely. At very

large Keulegan-Carpenter numbers (KC), where the flow oscillation period is large,

this will probably not be a major issue since there will be sufficient time for the

vorticity to diffuse. At low KC numbers, the vorticity will not have enough time to

diffuse, and inevitably the situation starts looking more like Wake-Induced Vibration

instead of the expected VIV.

Fei (1995) conducted wind tunnel experiments on a flexible cylinder vibrating in

its first mode. The main objective was to study whether turbulence could disrupt VIV

and what happened to the response during strong wind gusts. Fei found that free-

stream turbulence up to 10% did not significantly affect the amplitude of vibration

of the cylinder. His tests showed that sudden gusts can disrupt VIV and he chose

the cylinder ‘rise time’ and the gust’s ‘duration of visit’ as the critical timescales that

characterize the problem.

Unlike Fei, who primarily focused on the effects of wind gusts and turbulence,

Frederic & Laneville (2002) studied the response of a flexible cylinder vibrating in its

first mode in slowly varying oscillatory flow created in a wind tunnel. Their goal was

to study the “response of the cylinder as the periodic variation of the flow imposes

a periodic entry and exit of the synchronization range (at the onset and at the exit

of synchronization)”. They found that given sufficient time the cylinder could reach

amplitudes similar to those observed in steady flow tests, however their cylinder’s

response was heavily modulated.

Both of these studies looked at the vibration of flexible cylinders in air instead of

water and as such their mass ratios were much larger than the range of mass ratios

(𝑚* = [1 − 2]) of the cylinders analyzed in this thesis and are of primary interest to

the Oil and Gas industries. The much larger mass ratio meant that the ‘rise time’ was

on the order of many tens of cycles, this was visible after examining the time-histories

in the published material.
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In stark contrast to tests performed in air, tests with low mass ratio cylinders

–usually performed in water– have a rise time that is much smaller, typically between

4-10 cycles. Appendix C shows that in the SJTU tests the rise time, defined as the

time required to reach the maximum response, was only 4 or 5 cycles.

7.2 The Unsteady Flow Parameter, 𝛾

This work introduces a dimensionless parameter, 𝛾, that governs the extent to which

VIV and lock-in is possible under unsteady flow conditions. The VIV problem is

governed by the incident current (flow velocity). It is the free stream that determines

the response, as such, the parameter chosen should be one that describes the change

in current velocity in a given amount of time. In this thesis, the parameter is formed

by the product of the natural period of vibration for the 𝑛𝑡ℎ mode, 𝑇𝑛 , and the ratio

of the instantaneous flow acceleration, 𝜕𝑈
𝜕𝑡

, to the current velocity necessary to excite

the same mode, 𝑈𝑛 , as shown in equation 7.1.

𝛾 =
𝜕𝑈
𝜕𝑡

𝑈𝑛

𝑇𝑛 (7.1)

The physical meaning of this parameter, can be thought of as being the fractional

change in flow velocity (or current speed) observed during one cycle of

vibration. One would expect that as 𝛾 decreases, the VIV response will approach

steady state conditions. As 𝛾 increases, steady state behavior becomes increasingly

less likely. An alternative is to think of this as a ratio of two time scales, the first is

the timescale that describes the changes in current speed compared with a timescale

that is critical to the structural response, the natural period of vibration. Another

timescale that is important to the structural response, and could have been used, is

the ‘rise time’ to maximum amplitude. In mechanical vibrations the ‘rise time’ is

typically defined as the time required to reach some fraction (e.g., 95%) of the steady

state vibration amplitude. This is typically several periods long and Appendix C

shows that it will depend on the cylinder mass ratio and damping present. It was not

used in this thesis because even though the experimental evidence available included
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four different cylinders or riser models, the mass ratio and damping ratio of all four

was very similar and as such it would not be possible to discern the influence of these

two parameters.

7.3 Dimensional Analysis

Sarpkaya (2004) presents a set of dimensionless parameters that govern the transverse

oscillations of a cylinder in time varying flow. He begins the analysis by listing the

following physical properties of the system: the fluid density, 𝜌𝑓 , dynamic viscosity,

𝜇, the ambient flow velocity, 𝑈 , the cylinder’s diameter, 𝐷, the cylinder’s length, 𝐿,

spring stiffness, 𝑘, the surface roughness, 𝑘𝑠 , the structural damping ratio, 𝜁, the

cylinder’s mass, 𝑚, the mean shear, 𝜕𝑈
𝜕𝑦
, the cylinder’s taper, 𝜕𝐷

𝜕𝑦
, the characteris-

tic turbulence intensity, 𝜖𝑡, the integral length scales of the ambient flow, 𝐼𝑖𝑙𝑠, and

the Schewe parameters, 𝑆𝑝, which typically include all the physical properties of the

system that are not easily controllable or quantifiable. These could include end ef-

fects, three-dimensional effects on a primarily two-dimensional body, blockage ratio,

secondary vibrations of the structure and its supports etc. He proceeds to form the

following groups in which he defines the dimensionless response amplitude 𝐴/𝐷, as

the dependent dimensionless group.

𝐴/𝐷 = 𝑓(𝜁,
𝜌𝑓𝑈𝐷

𝜇𝑓

,
𝐿

𝐷
,

4𝑚

𝜌𝑓𝜋𝐿𝐷2
,
𝐷

𝑈

√︂
𝑘

𝑚
,
𝐷

𝑈2
𝑜

𝜕𝑈

𝜕𝑡
,
𝐷

𝑈

𝜕𝑈

𝜕𝑦
,
𝜕𝐷

𝜕𝑦
, 𝜖𝑡,

𝑘𝑠
𝐷
,
𝐼𝑖𝑙𝑠
𝐷

,𝑆𝑝)

Where:

𝜌𝑓𝑈𝐷

𝜇𝑓
is the Reynolds number

𝐿
𝐷
is the cylinder’s aspect ratio
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4𝑚
𝜌𝑓𝜋𝐿𝐷2 is the mass ratio

𝐷
𝑈

√︁
𝑘
𝑚
is the reciprocal of the reduced velocity (based on the nat. freq in air)

𝐷
𝑈2
𝑜

𝜕𝑈
𝜕𝑡

is the ratio of the local acceleration to the convective acceleration

𝐷
𝑈

𝜕𝑈
𝜕𝑦

is the shear parameter

𝜕𝐷
𝜕𝑦

characterizes the cylinder’s taper

𝑆𝑝 are the Schewe parameters

The dimensional analysis produces a group of independent dimensionless parameters

which are fixed in number, but are not unique. One may find many more equally valid

sets by making simple combinations of members of the first set one finds. Whereas

Sarpkaya settled upon 𝐷
𝑈2
𝑜

𝜕𝑈
𝜕𝑡

as a group which characterizes the change in flow veloc-

ity, the equally valid parameter 𝛾 may be found by multiplying Sarpkaya’s unsteady

flow parameter by the reduced velocity based on the natural frequency as shown here:

𝛾 = (
𝐷

𝑈2
𝑜

𝜕𝑈

𝜕𝑡
)(
𝑈

𝐷

√︂
𝑚

𝑘
)2𝜋 (7.2)

Where a factor of 2𝜋 has to be included to convert the natural frequency from radians

per second into the natural frequency in Hz.
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7.4 Comments on the 𝛾 Parameter

Appendix C shows that in the SJTU tests the ‘rise time’ to approach the maximum

response is of the order of a few cycles, typically 4 or 5 cycles. This quick rise time

observed on low mass ratio cylinders is extremely important in explaining why it is

possible to observe a VIV response in time-varying or unsteady flows. This section

includes some simple calculations that will compare the duration of the excitation with

the minimum number of cycles necessary to approach maximum response amplitudes

in order to show that under large accelerations (large 𝛾) there simply is not enough

time for the cylinder to reach its maximum response.

Assuming that the lock-in bandwidth or synchronization region is 𝑈𝑛±20%, where

𝑈𝑛 is the velocity to excite mode 𝑛, the 𝛾 parameter can be rewritten as:

𝛾 =
𝜕𝑈
𝜕𝑡

𝑈𝑛

𝑇𝑛 ≈
Δ𝑈
Δ𝑡

𝑈𝑛

𝑇𝑛 =
1.2𝑈𝑛−0.8𝑈𝑛

Δ𝑡

𝑈𝑛

𝑇𝑛 =
2

5

𝑇𝑛

∆𝑡

Duration of the excitation force:

∆𝑡

𝑇𝑛

=
2

5

1

𝛾

Which is the time required to ‘traverse’ the entire synchronization region if the flow is

accelerating or decelerating linearly. This is also the duration of the excitation force

in a constant acceleration flow measured in cycles of vibration! Keeping in mind that

a low-mass ratio cylinder experiencing VIV needs at least 4 to 5 cycles to approach its

maximum response amplitude, one can compare the excitation duration (expressed in

cycles) with this minimum number of cycles and try to determine if there is enough

time for the response to ‘build up’.

This is demonstrated with the schematic shown in Figure 7-1 which shows the

duration of the excitation force measured in CYCLES as a function of 𝛾 for an
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unsteady flow of constant acceleration.

In an unsteady flow with 𝛾 = 0.4, the excitation will only last 1 cycle, therefore

it would be impossible for a system to respond and achieve high amplitude vibration

(keeping in mind that it requires a minimum of 4 cycles to build up its response). On

the other hand, in an unsteady flow with 𝛾 = 0.02 the force will be acting for ∼ 20

cycles which is several times longer than the 4 cycles that cylinder needs to reach

maximum amplitudes and therefore it is very likely that the VIV response will be

similar to what is observed in steady flows.

The exact 𝛾 values that determine the response in unsteady flows are not yet known,

and analysis of the experimental results in the following chapters will help define the

different response regions.
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Figure 7-1: Duration of the excitation force measured in cycles for different values of
𝛾 in unsteady flows of constant acceleration
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Chapter 8

Results From the Time-Varying Tests

at SJTU

This chapter presents the results from the time-varying tests (ramp tests) performed

at the State Key Laboratory of Ocean Engineering at the Shanghai Jiao Tong Uni-

versity (SJTU). The main objective is to demonstrate that the 𝛾 parameter is well

suited to predicting whether the response during a time-varying test is similar to that

observed in steady flows. It will be shown that results extracted from slowly vary-

ing ramps (i.e., small 𝛾) match well with their steady flow counterparts but results

extracted from quickly varying ramps do not compare well because the excitation du-

ration is shorter than the time necessary for the structure to ‘build-up’ its response.

This chapter begins by showing what the VIV response in a steady flow test at

SJTU looked like. This will serve as a baseline for comparisons when, and if, a VIV

response is observed in the time-varying flows or ‘ramp tests’. This is immediately

followed by the analysis of the VIV response in a slowly accelerating test. The primary

intention of presenting the data in this sequence is to convince the reader of the good

qualitative agreement between the VIV response in slowly varying flows with the

response observed in steady flows.

The chapter closes by presenting the results from the entire test matrix investi-

gated at SJTU in an abridged form and by showing how these results can be used to

classify the VIV response in time-varying flows using the unsteady flow parameter,

𝛾.
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8.1 A Constant Speed Test (or Baseline Test)

It is instructive to begin with a constant speed test and to review some traditional

data processing techniques used by the VIV community. It will be shown that these

standard tools have certain shortcomings when it comes to analyzing transient data.

Figure 8-1 shows the speed of the carriage for test-142b. Because of the relatively

short track length in the experimental setup, the test duration is short, only allowing

the carriage to move at a constant speed for approximately 2 seconds. Nonetheless,

the response frequency was 9.77Hz which meant that even this short time section was

long enough to observe approximately ∼ 20 cycles.
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Figure 8-1: Towing Speed vs. Time for Test-142b

It is fairly standard practice in conventional, constant speed tests to dismiss the first

5 − 15% and the final 5 − 10% of the time record in an attempt to exclude transient

effects. The remaining time-history can then be used as an approximate steady state

sample for data extraction and further analysis. An alternative approach calls for

identifying the statistically stationary portions of the time history and only using

those time sections. This can be extremely challenging in practice especially when
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dealing with flexible cylinders with multiple sensors because what seems to be a statis-

tically stationary time section at a specific sensor location may not appear stationary

at another sensor or location. These issues are addressed in detail in Appendix A.

Figure 8-2 shows the response spectra from CF and IL sensors located at the mid-

dle of the 4𝑚 long flexible cylinder. Because of the short record length the spectra

have quite poor spectral resolution. The upper two plots are computed using conven-

tional spectral analysis, based on the Fast Fourier Transform (FFT). The lower two

plots show the spectra generated from the same time-history, but using the Maximum

Entropy Method (MEM) which results in much better spectral resolution. The CF

spectrum shows a peak at approximately ∼ 10Hz which corresponds to the 1X VIV

frequency but also shows significant response at the 2X, 3X and 4X higher harmonics

which is common on flexible cylinders. The IL spectrum shows a lot of energy at the

2X peak but little anywhere else.
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Figure 8-2: Power Spectral Density (PSD spectra) for the CF and IL directions (test-
142b) Top row: computed using the FFT Bottom row: computed using the MEM

Due to the presence of the higher harmonics most subsequent analysis will use data
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that has been band-pass filtered around the 1X frequency or the 2X frequency for the

CF and IL directions respectively.

Figure 8-3 is a contour plot showing the CF strain as a function of time along the

cylinder’s span. As expected, since these are low mode number tests, standing waves

are observed in the CF direction. It is interesting to note that the maximum response

amplitude varies with time and that the time instant when the largest amplitude is

observed in the CF direction does not coincide with the time instants that maximum

IL response occurs (not shown).

It is much easier to identify the resonant mode through a modal reconstruction

in the manner described by Lie & Kassen (2006). Figure 8-4 shows the results of

such a modal analysis in the CF direction using the entire available time history.

The figure shows the mode weights (modal participation factors) where it is quite

clear that the response is dominated by mode 3. The star-shaped data points are the

measured curvatures at the 7 different locations along the cylinder whereas the solid

line is the curvature along the cylinder that results from the modal reconstruction.

The dimensionless response amplitude along the cylinder is also obtained from the

modal reconstruction.

Finally, Figure 8-5 shows the cylinder trajectories at three different locations along

the cylinder span. The simultaneous vibration in the CF and IL direction means that

the cross-section dances around in easily identifiable patterns that depend on the

magnitude of the CF and IL vibrations and most importantly the phase between the

two motions (Dahl, 2008).
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Figure 8-3: Contour plot of CF strain (𝜇𝜀) as a function of time and position along
the cylinder for Test-142b. The upper plot includes all higher harmonics. The lower
has been filtered to show the 1X frequency component only
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Figure 8-5: Cylinder trajectories at three different locations for Test-142b
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8.2 A Typical Ramp Test (Slowly Accelerating)

The objective once again is to study the cylinder response at a velocity of 1.4𝑚/𝑠

which should excite the 3𝑟𝑑 mode. However, instead of keeping the velocity constant

like the previous example in Section 8.1, the ‘ramp tests’ involved towing the cylinder

through the ‘target velocity’ of 1.4𝑚/𝑠 under varying amounts of acceleration, Test-8a

was one such example and is shown in Figure 8-6. The figure shows towing velocity

as a function of time and is very characteristic of the ramp tests performed at SJTU.

In the central portion of the ramp shown in Figure 8-6, the acceleration is approx-

imately 0.083𝑚/𝑠2, which corresponds to a 𝛾 value of approximately 0.006. In other

words, in every vortex shedding period the flow is changing by ∼ 0.6% which is quite

small and quasi steady state behavior might occur.
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Figure 8-6: Towing speed vs. Time for Test-8a

In general, one is still interested in measuring the same response quantities as would

typically be obtained from a constant speed test. These typically are the response

frequency, the dominant responding mode, the RMS amplitude along the pipe span,

the RMS strain, mean drag coefficients, etc.
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At this point, it is important to remember that since the speed is changing the cylinder

may or may not lock-in unless the conditions are favorable. If it does lock-in, it is

highly unlikely that it will lock-in for the entire duration of the test. For this reason

the data analysis should not be performed on the entire test but instead only on the

section of the time-record corresponding to the strongest VIV response. In order to

capture the unsteady behavior, all response statistics, like the RMS dimensionless

amplitude, etc. are computed from within a ‘moving window’ which passes through

the entire data record, the equations are given below.

A typical window length that was used, was one corresponding to 5 periods (𝑗 = 5),

with the shedding frequency determined using the instantaneous flow speed and a

Strouhal number of 0.16.

𝑇𝑣𝑜𝑟𝑡𝑒𝑥(𝑡) =
1

𝑓𝑣𝑜𝑟𝑡𝑒𝑥(𝑡)
=

𝐷

𝑈(𝑡)𝑆𝑡
(8.1)

The moving or running mean can be defined as:

Continuous: 𝜇𝑥(𝑡) = 1
𝑇 (𝑡)

∫︀ 𝑡+𝑇
2

𝑡−𝑇
2

𝑥(𝜏)𝑑𝜏 with 𝑇 (𝑡) = 𝑗𝑇𝑣𝑜𝑟𝑡𝑒𝑥(𝑡)

Discrete: 𝜇𝑥(𝑘∆𝑡) = 1
𝑁(𝑡)

∑︀𝑘+𝑁
2

𝑙=𝑘−𝑁
2

𝑥(𝑙∆𝜏) with 𝑁(𝑡) = 𝑇 (𝑡)∆𝑓 = 𝑗𝑇𝑣𝑜𝑟𝑡𝑒𝑥(𝑡)∆𝑓

where ∆𝑓 and ∆𝑡 are the sampling frequency (Hz) and the sampling interval (𝑠)

respectively.

Similarly, the moving or running Root Mean Square (RMS) can be defined as:

Continuous: 𝜎𝑥(𝑡) =

√︂
1

𝑇 (𝑡)

∫︀ 𝑡+𝑇
2

𝑡−𝑇
2

(𝑥(𝜏) − 𝜇𝑥)2𝑑𝜏 with 𝑇 (𝑡) = 𝑗𝑇𝑣𝑜𝑟𝑡𝑒𝑥(𝑡) (8.2)

Discrete: 𝜎𝑥(𝑘∆𝑡) =

√︂
1

𝑁(𝑡)

∑︀𝑘+𝑁
2

𝑙=𝑘−𝑁
2

(𝑥(𝑙∆𝜏) − 𝜇𝑥)2 with 𝑁(𝑡) = 𝑇 (𝑡)∆𝑓 = 𝑗𝑇𝑣𝑜𝑟𝑡𝑒𝑥(𝑡)∆𝑓

(8.3)
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Finally, the kurtosis (or 4𝑡ℎ moment) can be defined as:

Continuous:𝜅𝑥(𝑡) = 1
𝑇 (𝑡)

∫︀ 𝑡+𝑇
2

𝑡−𝑇
2

(𝑥(𝜏) − 𝜇𝑥)4𝑑𝜏 with 𝑇 (𝑡) = 𝑗𝑇𝑣𝑜𝑟𝑡𝑒𝑥(𝑡) (8.4)

Discrete: 𝜅𝑥(𝑘∆𝑡) = 1
𝑁(𝑡)

∑︀𝑘+𝑁
2

𝑙=𝑘−𝑁
2

(𝑥(𝑙∆𝜏) − 𝜇𝑥)4 with 𝑁(𝑡) = 𝑇 (𝑡)∆𝑓 = 𝑗𝑇𝑣𝑜𝑟𝑡𝑒𝑥(𝑡)∆𝑓

(8.5)

The kurtosis is included here because it is well-suited in distinguishing a sinusoidal

response, which will have a kurtosis of 1.5 from a broadband Gaussian response for

which the kurtosis would be equal to 3.0. (Kaasen et al., 2000)

Figure 8-7 shows how the moving RMS strain varied with time during the slowly

accelerating portion of the ramp test. The plot of strain vs. time includes four

different lines: the heavy blue line is the total CF strain, the green line corresponds

to the 1X band pass filtered signal, the red line corresponds to the 3X band pass

filtered signal and finally the dashed line is the sum of the 1X and 3X filtered signals.

By comparing the solid blue line and the dashed blue line and noticing that their

differences are small, one can confirm that indeed the 1X and 3X frequencies are the

main components of the raw signal and most of the energy is associated with these

two frequencies.

The CF strain peaks just after the 3𝑟𝑑 second. It is interesting to note that at

the same time, the kurtosis approached a value of 1.5 which would indicate a purely

sinusoidal signal.

Figure 8-8 is a contour plot showing the CF strain at every position along the

cylinder as a function of time, with the red and blue colors corresponding to tensile

and compressive bending strains respectively. The nearly vertical lines indicate a

standing wave response very similar to the steady flow case shown earlier. Note

that the figure indicates the magnitude and location of the anti-nodes change slightly

during the test, but consistently remain dominated by the third mode; recall that

this was also observed in the steady speed test. The figure shows that the response

is strongest around the 3𝑟𝑑 second which agrees with the data shown in Figure 8-7.
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Figure 8-7: CF RMS Strain (𝜇𝜀) vs. time for Test-8a calculated using the moving
window

Figure 8-9 shows the modal reconstruction of a short time record, equivalent to 5

cycles or ∼ 0.5 seconds, centered on the 3 second mark. Like the steady flow case,

the 3𝑟𝑑 mode dominates the response and the calculated response amplitude and

curvature are very similar to what is shown in Figure 8-4, with the slight difference

that this case had a larger non-resonant contribution from the second mode.

Figure 8-10 shows the cylinder trajectories observed during the ramp test. These

are qualitatively very similar to what was observed in steady flows shown in Figure

8-5. The main reason for showing all these response details from the unsteady flow

test and comparing them to the response details at constant speed (that was shown in

the beginning of this chapter) is to convince the reader that when the rate of change

of speed is slow it will result in a VIV response with very similar characteristics to

what is observed in steady flows.

The procedure described in this sections was used to analyze all the different ‘ramp

tests’ that were part of the SJTU dataset.
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Figure 8-10: Trajectories at three different locations for Test-8a
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8.3 A Quickly Accelerating Ramp Test (Large 𝛾)

In the previous section it was shown that results from a slowly varying unsteady test

(or ‘ramp test’) agree well with the steady speed test results. However, it will be

instructive to see how the cylinder will respond under stronger accelerations and how

this will affect the observed response.

Figure 8-11 shows one of the strongest ramps in the entire SJTU data correspond-

ing to Test-1a. The carriage ramps through both of the ‘target speeds’ of interest

(i.e. 1.4 and 2.3𝑚/𝑠), which are indicated on the graph with the red lines.
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Figure 8-11: Towing speed vs. Time for Test-1a

Even though the acceleration is constant in this portion of the ramp there are two

different 𝛾 values; one for each combination of mode/frequency and towing speed:

𝛾 = 1.07𝑚/𝑠2

1.4𝑚/𝑠
1

9.77𝐻𝑧
≈ 0.08 (8.6)

𝛾 = 1.07𝑚/𝑠2

2.3𝑚/𝑠
1

16.6𝐻𝑧
≈ 0.03 (8.7)

Figure 8-12 shows the CF strain along the span as a function of time for Test-1a.

The top-most plot shows the CF strain as recorded with no filtering. The distance
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between troughs and peaks is an indication of the response frequency which is observed

to start off very low and increases throughout the duration of the ramp. It is hard

to distinguish exactly what is happening around the 6 and 6.8 second marks, which

are of interest, because the plot’s scale is governed by the high amplitude response at

the end of the test.

Since the response frequencies are known it was possible to band-pass filter the

recorded strain data around each of the two frequencies and see if the cylinder actually

vibrated and locked-in during the predicted time-instances. The middle plot in Figure

8-12, shows the CF strain after the data was band-pass filtered around 9.77Hz. It is

immediately obvious that there is some response at this frequency before and after

the 6𝑡ℎ second. The bottom plot shows the CF strain after it has been band-pass

filtered around 16.6HZ, and once again it is clear that the pipe is also responding at

the second frequency from approximately 6.8 seconds until the end of the test.

Even though there is a discernible CF response around the 6𝑡ℎ second it only lasts

5-6 cycles. In this short amount of time the pipe has to start building-up its response

and eventually decay as the velocity increases to the point that it is outside the

synchronization region. Figure 8-13 compares the CF RMS amplitude and curvatures

extracted from the ramp test for a time window that lasts 5 cycles centered on the

6𝑡ℎ second. When these results are compared to the response envelopes from the

steady flow tests (green-gray areas) it is clear that they do not agree well. This

should not come as a surprise since the 𝛾 value corresponding to this speed, mode

and acceleration triplet was approximately 0.08, which implies an 8% variation in

speed EVERY cycle of vibration.

In stark contrast with the above case, the response between the 6.8-7 second

marks has a 𝛾 value of 0.03 which corresponds to a 3% variation in speed every cycle.

Figure 8-14 compares the data extracted from the ramp over 5 cycles centered at ∼ 7

seconds with the response envelopes from the steady speed or conventional tests. The

agreement is good which should further emphasize the importance of the unsteady

flow parameter, 𝛾, in dictating whether ramp extracted results (i.e., unsteady or

time-varying flow) are similar to the response observed at steady speeds.
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Figure 8-12: CF strain (𝜇𝜀) along the cylinder span (x/L) as a function of time (s)
for Test-1a. Top: No filtering Middle: band-pass filtered around 9.77Hz Bottom:
band-pass filtered around 16.6Hz
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Figure 8-13: Comparison of data extracted from ramp Test-1a with the steady state
values. Mode with excitation frequency of 9.77Hz (or 1.4𝑚/𝑠) and 𝛾 ∼ 0.08
Red lines: ramp results Gray areas: RMS response envelopes from constant speed
tests
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Figure 8-14: Comparison of data extracted from ramp Test-1a with the steady state
values. Mode with excitation frequency of 16.6Hz (or ∼ 2.3𝑚/𝑠) and 𝛾 ∼ 0.03
Red lines: ramp results Gray areas: RMS response envelopes from constant speed
tests
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8.4 Summary of All Ramp Tests Conducted at SJTU

Up to this point, it has been shown that in some time-varying cases the VIV response

observed can be very similar to the VIV response at steady flows or constant towing

speeds. This section compares the response at various values of 𝛾 with the steady

speed results in order to determine if there is a threshold 𝛾 value below which the

response in unsteady conditions is virtually indistinguishable from a steady state test.

Before presenting the results from the entire SJTU dataset, it is very important

to emphasize that due to the stochastic nature of VIV, even a steady speed test,

if repeated would not always yield identical results. Furthermore, during the dura-

tion of each such test the response amplitude and the strain will vary as the pipe

transitions from single frequency sinusoidal response, when most quantities are sta-

tistically stationary, to a strongly chaotic response typical of broadband excitation

(see Appendix A). The variability observed in the response of a steady speed or con-

ventional test is demonstrated in Figure 8-15, where instead of showing a single line,

an envelope that includes all possible RMS responses observed is utilized. The RMS

𝐴/𝐷 value was ∼ 0.25 at position 𝑥/𝐿 ∼ 0.2 and during the test this varied between

0.18 < 𝐴/𝐷 < 0.38.

Figure 8-16 shows the maximum RMS 𝐴/𝐷 response –anywhere along the cylin-

der’s span– as well as the spanwise mean RMS 𝐴/𝐷 response as a function of the 𝛾

value of the ramp from which the data was extracted. These are compared with the

results from the constant speed tests (steady flows), with the dashed lines indicating

plus or minus one standard deviation around the average value from the repeated

steady speed tests. In a similar manner, Figure 8-17 compares the constant speed

values with the maximum and mean RMS strain along the span obtained from all the

ramp tests.

From both of these figures, it can be seen that at values of 𝛾 smaller than ∼ 0.02

the response from the unsteady speed tests agrees well with the steady state values.

In fact the extracted results tend to be larger than the values observed during steady

speed tests. This is consistent with the fact that the pipe was free to respond at the
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exact speed which caused the greatest VIV response instead of being limited to a set

of predetermined flow speeds which could easily lie to the left (lower 𝑉𝑟) or to the right

(higher 𝑉𝑟) of the reduced velocity that would cause the greatest response, 𝑉 𝑟𝑐𝑟𝑖𝑡. In

essence, because a ramp test will pass through a given mode’s entire synchronization

region it is guaranteed to excite the cylinder at the 𝑉 𝑟𝑐𝑟𝑖𝑡 that will lead to the largest

possible response.

The threshold limits on 𝛾 are determined by identifying below which 𝛾 value the

unsteady results presented in Figures 8-14 and 8-15 are consistently higher or similar

to the steady flow results. For the time-varying tests around 1.4𝑚/𝑠 this value is

found to be 𝛾 ∼ 0.02.

Figures 8-18 & 8-19 compare the steady speed results with the ramp extracted results

around speeds of 2.3𝑚/𝑠. Once again, as a ramp’s 𝛾 value decreases, the results that

it provides are increasingly similar to the steady flow results. There appears to be

a range of 𝛾 values between 0.02 and 0.1 where the response is erratic. In a few

tests, the response observed was very similar to the steady speed response whereas,

for other tests in the same range of 𝛾 values the response was consistently smaller

than the steady speed tests.

There is clear need to further investigate the 𝛾 parameter space in the region 0.02

and 0.1 much more carefully in order to determine a more precise threshold on 𝛾,

below which a ramp result will always agree with or exceed the steady flow results.

This would require further experimental testing and it will be important to investigate

the effect of the moving operator length (5, 10, 15 cycles, etc) on the threshold. This

is discussed at this point because the threshold is determined by the 𝛾 value above

which the unsteady results are consistently smaller than the steady speed results.

As such, it is important to know whether the observed cylinder response is ‘small’

because it did not have enough time to reach its maximum vibration amplitude due

to the flow changing too rapidly and quickly exiting the synchronization region or

because the large amplitude response only lasted 3 cycles yet the RMS calculation

was performed over 5 cycles.
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Figure 8-15: CF RMS amplitude vs. axial position. Shaded gray area is the RMS
response envelope from a steady speed test. Red line is a ‘ramp extracted’ result
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Figure 8-16: Response amplitude vs. 𝛾 around 1.4𝑚/𝑠
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Figure 8-17: Strain (𝜇𝜀) vs. 𝛾 around 1.4𝑚/𝑠
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Figure 8-18: Response amplitude vs. 𝛾 around 2.3𝑚/𝑠
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Figure 8-19: Strain (𝜇𝜀) vs. 𝛾 around 2.3𝑚/𝑠

130



8.5 Chapter Summary

This chapter showed that even in a time-varying flow, flexible cylinders are still sus-

ceptible to VIV and this can be as damaging as the VIV experienced in steady flows.

Note, that in an unsteady flow even though the vibrations will only last for a short

time (while the reduced velocity is in the synchronization region) the response can

easily be larger than what is observed under steady flows. This happens because in a

ramp test the pipe traverses the entire synchronization region and is ‘free’ to choose

the conditions the will result in the largest VIV response.

The unsteady flow parameter, 𝛾, which was introduced in this thesis was shown to

be useful in predicting whether VIV will be an issue in time-varying flows. The reader

is reminded that the physical meaning of this dimensionless parameter is simply the

change in current or towing speed in one cycle of cylinder vibration.

𝛾 =
𝜕𝑈
𝜕𝑡

𝑈
𝑇𝑛

Based on the experimental results presented in this chapter, a preliminary classifi-

cation of the VIV response of low mass ratio flexible cylinders in time-varying flows

based on the 𝛾 value would be:

∙ For 𝛾 < 0.02 VIV very similar to what is observed in steady speed

tests

The results suggest that unsteady tests with corresponding 𝛾 values smaller

than 0.02 will show a response that is similar both in magnitude and responding

mode number to the response observed in conventional VIV tests. This was not

apparent a priori but is a reasonable conclusion seeing how a 𝛾 value of 0.02

corresponds to a speed change only of 2% per cycle.

∙ For 0.02 < 𝛾 < 0.1 VIV may be observed but response is not always

similar to steady speed VIV Tests with 𝛾 values corresponding to 0.02−0.1

show much more erratic behavior and the response often did not agree well with

the steady speed results. This is most likely related to structure’s response time
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and the limited duration of the excitation force. This is best explained with

an example: imagine a ramp with a 𝛾 value of 0.1 which means that in every

vibration cycle the speed is changing by 10% and it would only take 4 cycles to

completely traverse the 𝑉𝑟-bandwidth or synchronization region.

∙ And for 𝛾 > 0.1 No observable VIV On ramps with 𝛾 values larger than

0.1 it was extremely hard to even identify whether the cylinder vibrated for a

single cycle and as such the result extraction process is not possible.
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Chapter 9

Results From the Time-Varying 38𝑚

Shell Tests

This chapter presents the results from the time-varying flow tests conducted while

carrying out the test matrix for the 38𝑚 SHELL tests at MARINTEK. The SHELL

ramps tests were experiments of opportunity added to the test matrix at the last

minute. The SHELL tests predated the SJTU tests and, at the time, it was not

known what the test range of accelerations should be. A few values were chosen

to see what might be learned. Nonetheless, the SHELL ramp tests are extremely

interesting because they were performed at a very large ocean basin under moderate

accelerations which meant that during a single test many modes could be excited

consecutively while the towing speed was continuously changing.

The main objectives of this chapter are:

∙ To demonstrate that the 𝛾 dependence that was identified in the SJTU data is

not unique to that specific situation but instead it is a general property of low

mass ratio cylinders vibrating in unsteady flows. This is done by demonstrating

how the unsteady flow parameter, 𝛾, can be used to analyze ‘ramp data’ from

an entirely different dataset performed at a very different experimental facility.

∙ To show that a single ‘ramp test’ can provide similar, if not better, data de-

scribing the response of a flexible cylinder undergoing VIV than many constant
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speed tests (conventional tests).

∙ To demonstrate the effects that increasing or decreasing speed (i.e., the sign of

𝜕𝑈
𝜕𝑡
) can have on the observed VIV response of a flexible cylinder in time-varying

flows.

Early on in the thesis, it was stated that one of the motivating reasons for studying

VIV in unsteady flows was the desire to improve on current model testing practices by

drastically reducing the number of runs necessary to cover a test matrix. This would

result in a steep reduction in ‘tank time’ and associated costs. However, simply

performing the experiment faster is meaningless unless it can be shown that the

‘ramp tests’ are also capable of meeting the test objectives. A free vibration VIV

test may have objectives that vary based on the specific problems being investigated

(e.g., evaluation of suppression devices, buoyancy distribution, etc.) but it invariably

involves measuring the cylinder’s response at many different towing speeds. For rigid

elastically mounted cylinders this is done in order to span the entire 𝑉𝑟 range (i.e.,

synchronization region) whereas on flexible cylinders one wants to characterize the

response of many different modes over a range of speeds. This chapter shows some

results from ‘ramp tests’ that will support the claim that not only can ‘ramp tests’

be used to meet the typical objectives of a VIV model test but they can go one step

further by actually obtaining the response information at the most damaging external

conditions that are easy to miss on a grid-like test matrix used in conventional tests.

9.1 A Ramp From the SHELL Dataset

Figure 9-1 shows the towing speed as a function of time for a ramp test on the 30𝑚𝑚

diameter cylinder (Pipe 2). The acceleration was held constant until the carriage

reached a speed of 1.4𝑚/𝑠 at which point the carriage started decelerating. The same

figure has superimposed on it, lines showing the speeds which we would expect to

excite modes 1 through 8, assuming a ‘Strouhal’ value of 0.15. Each towing speed

and mode number combination has an associated 𝛾 value based on the natural period
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of the corresponding mode and the acceleration which is common to all potentially

excited modes in this specific ramp test.
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Figure 9-1: Towing speed vs. time (‘ramp test’: Test 3023)

Based on the results from the previous chapter, one would expect modes with an

associated 𝛾 value of 0.02 or smaller to be excited. Hence, one would expect to see

the cylinder responding in modes 4 or higher starting around the 35𝑡ℎ second. Mode

3 has a 𝛾 value of approximately 0.03 which is in the range where the response can

be erratic; sometimes it might be excited but other times it might not. Modes 1 and

2 have 𝛾 values of 0.25 and 0.07 respectively, which implies that the speed will be

changing by 25% or 7% every cycle; which is quite high and thus modes 1 and 2 are

unlikely to be excited.

Figure 9-2 shows how the response frequency, measured from all CF curvature

sensors, varied during the ramp. The 1X CF frequency is clearly visible in dark

red color, and the general trend of increasing and decreasing frequency is entirely

consistent with the increasing and decreasing towing speed. On the same plot the 3X

and 5X response frequencies can be seen to have a slope 3 or 5 times larger than the

slope of the 1X response frequency.
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Figure 9-2: Response Frequency (Hz) vs. Time (s)

Figure 9-3 shows the spanwise averaged CF RMS curvature as a function time for

the same test. All RMS calculations are actually ‘moving RMS’ calculations using

a time window corresponding to an estimated 10 cycles (see Equation 8.2). Since

the vortex shedding frequency and presumably the response frequency depend on the

flow speed, one vortex shedding period will be much longer at the beginning of the

ramp than at the peak flow speed. Therefore, even though size of the time window

that was used for all operators (moving mean, moving RMS, etc.) is of a fixed length

in terms of cycles its actual duration when measured in seconds (or discrete samples)

at low speeds will be much larger than the time window at high speeds.
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Figure 9-3: Moving RMS curvature vs. Time (Test 3023)

The local maxima that are easily identifiable on the plotted curvature signal are

indicators of VIV lock-in at different modes. In order to understand why this is so, it

would be useful to describe and explain some of the main features of Figure 9-3 and

how these relate to cylinder response:

The overall trend of increasing (and later decreasing) curvature is associated with

the general vortex shedding off of the cylinder which induces forces along its length.

As the towing speed or the incident current increases, there is more energy in the

flow and therefore the induced strains are larger.

Only when the flow speed is within the narrow band necessary to excite a mode

will lock-in occur (assuming the speed doesn’t change too rapidly). At lock-in the

response amplitudes will be larger and approaching their limit cycles, these larger

amplitudes induce considerably larger curvatures compared to those induced outside

the lock-in band and are responsible for the local maxima clearly visible in Figure

9-3.

Therefore the local maxima are primarily associated with VIV lock-in, as such the

local maxima indicate the time(s) when the largest response occurred. The increasing

137



and decreasing curvature around each one the identified maxima is consistent with

traversing the synchronization region of a given mode, this is readily visible for the

maxima labeled 𝑛 = 5.

The double peak at 50 seconds is most likely due to a temporary change in the

response behavior: while the cylinder is vibrating at mode 7, the second peak is due

to a return of the 6𝑡ℎ mode that was absent at the first peak. Appendix A shows an

example of this.

Figure 9-4 shows the reconstructed mode weights as function of time which should

reinforce the above observations. The plot shows the contributions of modes 3 through

8 to the total structural response during this ramp test. The 3𝑟𝑑 mode is the first to

show a significant contribution, and this is quickly followed by the 4𝑡ℎ and 5𝑡ℎ modes

and later by the 6𝑡ℎ and 7𝑡ℎ modes. The mode 8 response between 40 and 50 seconds

is a ‘non-resonant’ contribution to the total structural response that at the time is

being dominated by modes 6 and 7. The 8𝑡ℎ mode doesn’t become dominant until

the 57𝑡ℎ second until the 60𝑡ℎ second at which point the 7𝑡ℎ mode is contributing as

a non-resonant mode.

It is important to note that care should be taken when choosing which signals to

plot as a function of time, because on flexible cylinders with many distributed sensors

there is always the chance that a randomly chosen sensor is located close to a specific

mode’s nodal point (node) which will have very small motions and strains that could

easily be overlooked. A safer approach that was used in this thesis, would be to use

spanwise averaged quantities or at the very least several time traces from neighboring

sensors. Once the local maxima have been identified it is fairly straightforward to

isolate a small portion of the time history corresponding to that maxima and to pro-

ceed with modal reconstructions, drag calculations and any other analysis one would

perform on the data collected during a VIV test. The entire process is summarized

in the flowchart in Figure 9-5.
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Figure 9-4: Mode Weights, 𝑞𝑖/𝐷, as a function of time for Test 3023
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Using the Speed vs Time signal calculate how the size of the moving

window should change in time.

window size (t) = 10𝑇𝑣𝑜𝑟𝑡𝑒𝑥=10 𝐷
𝑆𝑡𝑈(𝑡)

Moving RMS calculations on the curvature sig-

nals using the calculated window size (t)

Create a plot of RMS strain or curvature or stress vs. time

(e.g Fig 9-3) and identify the local maxima, 𝑀𝑖 and the

times, 𝑡𝑖 , and towing velocities, 𝑢𝑖 , at which they occur

Isolate time sections ∆𝑇𝑖 centered around 𝑡𝑖 that correspond

to the local maxima, 𝑀𝑖 , identified above (Each time section

is ∼ 10 cycles long but the duration in seconds will vary...)

Perform Modal Reconstructions and any other de-

sired analysis for every isolated time section ∆𝑇𝑖

Figure 9-5: Flow chart summarizing data analysis procedure for each ’ramp test’.
Procedure was used to obtain datapoints shown in Figures 9-6 through 9-10
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Figures 9-6 & 9-7 compare the spanwise variation of the response observed during

a ramp test with the response during a steady speed test. This is done to confirm

that the two types of responses (i.e. steady speed test and ramp test) are in fact

similar and it is not simply by chance that the spatial maxima and mean values agree

since it is well known that more than one type of distribution (here spatial) can share

the same maximum and mean values. Furthermore, because the response at steady

speeds is not in fact stationary but varies in time (discussed in Appendix A) instead

of presenting a single result for the response, the author believes that presenting an

envelope of all possible response states is indeed much more representative of the VIV

response in steady flows.

Figure 9-6 compares the ramp response at ∼ 55.4 seconds with the response

envelope from the conventional Test 3009 which responded in the same mode number.

The upper plot shows the CF RMS response amplitude (𝐴/𝐷) along the cylinder

whereas the lower plot compares the CF RMS curvatures. The extracted ramp result

is shown with a solid black and is based on a reconstruction using signals that lasted

∼ 10 cycles. Similarly, the response envelope for the conventional speed tests is

created after processing the test data using a similar 10 cycle moving operator. The

shaded blue regions show the upper and lower limits of the cylinder’s RMS response

during the constant speed Test 3009, whereas the solid red line is the RMS response

observed if the entire time signal was used.

In a similar manner, Figure 9-7 compares the ramp result at approximately 74.1

seconds with the response envelopes from the conventional Test 3003, at the same

speed of 0.5𝑚/𝑠.

In both comparisons shown, (i.e., Figures 9-6 & 9-7) the ramp extracted results

are in good agreement with the steady flow results. In both cases, the maximum CF

amplitude and curvature along the span are larger than those for the steady speed

tests if the analysis had been performed on the entire time signal (solid red lines).

Figures 9-8 through 9-10 compare all the results extracted from two almost iden-

tical ramp tests with the 30𝑚𝑚 diameter cylinder. The two ramp tests, #3023 and

#3031, had identical acceleration and deceleration rates and maximum speeds. The
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Figure 9-6: Comparison of ramp extracted result with RMS response envelope from
a steady flow. Green-gray: the RMS response envelope for the conventional Test
3009, Solid Red: The RMS response for the conv. test using the whole time series,
Dashed blue line: +- 1 stand. deviation around the RMS response (conv. test).
Solid black: The ramp result from ramp 3023 at a 𝛾 ∼ 0.005 (or 0.5% variation per
cycle)
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Figure 9-7: Comparison of ramp extracted result with RMS response envelope from
a steady flow. Green-gray: the RMS response envelope for the conventional Test
3003, Solid Red: The RMS response for the conv. test using the whole time section,
Dashed blue line: +- 1 stand. deviation around the RMS response (conv. test).
Solid black: The ramp result from ramp 3023 at a 𝛾 ∼ 0.03 (or 3% variation per
cycle)
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only difference being the magnitude of the initially applied pretension. Figure 9-8 re-

veals the difference in the mean tensions during these two ramp and compares these

tensions with the values recorder during the steady flow (conventional) tests. The

examination of the following figures will reveal what effect this had on the extracted

results.

Figure 9-9 compares the CF spanwise mean and maximum response amplitudes

as a function of towing speed for the ramp tests and the conventional tests. It is

interesting to note that in most cases the response amplitude from the ramp tests

is larger than that of the conventional tests at similar towing speeds. This can be

explained because the data extracted from the ramp tests essentially correspond to

the velocities associated with the ideal reduced velocity for maximum response for a

given mode (i.e., the ‘sweet spot’). This is in contrast to the conventional speed tests

which are at specific pre-defined speeds which do not necessarily excite the pipe at the

critical reduced velocity since the variability in the dimensionless response frequency

(equiv. Strouhal number) makes it impossible to choose such a test matrix a priori.

At very low speeds (∼ 0.4𝑚/𝑠) the ramp results yield response amplitudes slightly

smaller than the conventional tests. This happens because these modes had moderate

𝛾 values ∼ 0.05 (between 0.07 and 0.03, see Figure 9-1) and examination of the

kurtosis for the data extracted suggests a behavior closer to Gaussian excitation

(mean values of 2.8, 2.5, 2.4) contrary to most of the other data points that had

kurtosis values much closer to sinusoidal excitation (mean values ∼ 1.8). This is a

further indicator that results extracted at 𝛾 ∼ 0.05 can be erratic and should be

avoided if possible.

Figure 9-10 compares the CF spanwise mean and maximum RMS curvatures as a

function of towing speed for the ramp tests and the conventional tests. Once again,

for ramp #3023 the maximum spanwise curvatures are larger than those recorded

during the conventional tests. This is entirely consistent with the larger amplitudes

shown in Figure 9-9, since:

𝜅 = 𝑘2𝐴 where 𝜅 is the curvature, 𝑘 is the wavenumber and 𝐴 is the response ampli-

tude.
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Note how the ramp #3031 results are consistently larger than both the ramp #3023

and the conventional test results. This is due to the smaller initial pretension on the

pipe at the beginning of ramp #3031. A smaller pre-tension will result in a lower

fundamental frequency
√︁

𝑇𝑒𝑛𝑠𝑖𝑜𝑛
𝑚𝑎𝑠𝑠

which means that at a given current velocity the

excited mode number will be higher than that of a pipe with a larger tension. So

even though the amplitudes are similar between the two ramp tests, a higher excited

mode number will always result in larger curvature.

Alternatively, the wave propagation speed is 𝑐 =
√︁

𝑇
𝑚

And the response frequency is primarily governed by the shedding frequency:

2𝜋𝑓𝑠ℎ𝑒𝑑 = 2𝜋𝑆𝑡
𝑈

𝐷
≈ 𝜔 = 𝑐𝑘 = 𝑐

√︂
𝜅

𝐴

Which can be rewritten as 𝜅 = 𝜔2

𝑐2
𝐴 and it can easily be shown that a cylinder with a

low wave propagation speed, 𝑐, will have a larger curvature, 𝜅, than a cylinder with a

high wave propagation speed at the same response amplitude, 𝐴 and same frequency

𝜔 or towing speed, 𝑈 .
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Figure 9-8: Tension vs. Speed for conventional and ramp tests (Pipe 2)
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Figure 9-9: CF Response amplitude vs. Towing speed for conventional and ramp
tests (Pipe 2)
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Figure 9-10: CF Curvature vs. Towing speed for conventional and ramp tests (Pipe
2)
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9.2 Effects of Increasing or Decreasing Speed on the

Response of Flexible Cylinders

The final pieces of evidence that will be presented to support the claim that lock-in

is possible even in time varying flows comes from ramp tests performed using the

12𝑚𝑚 diameter cylinder. Because of its smaller size compared to the 30𝑚𝑚 and

80𝑚𝑚 cylinders it will respond at much higher mode numbers. Since the cylinder

is responding at much higher mode numbers, mode overlap becomes increasingly

important and is believed to be responsible for the interesting phenomena observed.

Namely, that the cylinder shows a distinct preference to respond at a lower mode

number when the flow speed is increasing slowly and a preference to respond at a

higher mode number when the speed is decreasing when compared to the response

observed during steady speed test.

Figures 9-11 through 9-14 show 4 different ramp tests #2117, #2118, #2129

and #2130 that will be the main topic of discussion in this section. The four ramps

shown covered a large range of velocities and both positive and negative accelerations.

The figures include estimates of the 𝛾 parameter at certain speeds that have been

calculated after approximating: 𝑇𝑛 = 𝑇𝑣𝑜𝑟𝑡𝑒𝑥 and 𝑆𝑡 = 0.16 which leads to:

𝛾𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 =
𝑑𝑈
𝑑𝑡

𝑈
𝑇𝑛 ≈

𝑑𝑈
𝑑𝑡

𝑈
𝑇𝑣𝑜𝑟𝑡𝑒𝑥 =

𝑑𝑈

𝑑𝑡

𝐷

𝑆𝑡𝑈2
=

𝑑𝑈
𝑑𝑡

𝑈2

1

13.33

Based on these calculations, in ramp #2118 one would not expect to see much,

if any, response at speeds smaller than 0.5𝑚/𝑠. For ramps #2129 and #2130 one

would not expect to see a significant response at speeds lower than 1𝑚/𝑠. At speeds

higher than these one would expect to see considerable response due to VIV that is

qualitatively very similar to what would be observed in a steady speed test.

In every one of the ramps shown, the local maxima in the moving RMS curvature

signals (lower plots) indicate instances in time when the pipe locked-in. Time sections

that are approximately 10 cycles in duration are then isolated for every one of these

time instances, and subsequent analysis is performed on each one of the isolated short
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time sections.

The keen observer will notice that these local maxima also appear in the ‘steady’

portions of the ramps, a nice example of this is in Figure 9-14 between 43 and 47

seconds. When these local maxima appear during a steady flow (constant speed) they

are often due to mode switching and are a result of the variability in VIV response

observed even when the flow speed is constant. This is discussed in Appendix A.

Figure 9-15 compares the results that were extracted from the time-varying por-

tions of these four ramps and compares them with the conventional test results. The

plot shows the spanwise averaged RMS curvature versus towing speed. Unlike the

first example shown in Section 9.1 which only covered modes 3 ∼ 8, these four ramp

tests, which are primarily exciting higher modes 10 ∼ 25, clearly demonstrated the

difference that increasing (accelerating) and decreasing (decelerating) speed have on

the observed VIV response at the same speed.

There is a clear difference in the observed response depending on whether the flow

speed was increasing or decreasing. The difference is believed to be the result of mode

overlap and VIV lock-in: When the towing speed is continuously changing, the pipe

‘lags behind’ responding in the last excited mode for as long as possible. This means

that when the speed is increasing the response ‘lags’ in a lower mode than what would

be excited during a constant speed test. Similarly, when the speed is decreasing the

observed response tends to ‘lag behind’ in a higher mode than a conventional speed

test.

This difference in responding mode number between a conventional test and a

ramp test is shown Figure 9-15 which has a number next to every datapoint shown.

The numbers correspond to the dominant mode identified through modal reconstruc-

tions on the ramp extracted data (or time series) and are color coded to match the

ramp or test they refer to.

For the sake of clarity the figure does not list the 𝛾 values for each one of the

extracted results. Figures 9-11 through 9-14 showed that these were relatively large

at the beginning and ending of a ramp and can be very small (𝛾 ∼ 0.0025) near the

ramp’s peak. This, in turn, is responsible for the larger difference between ramp re-
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sults and conventional tests at the beginning and ending of the ramps when compared

to the difference between the ramp results and conventional tests for data extracted

near the peak of the ramp where the 𝛾 values were very small. This is clearly seen

with ramps #2117 and #2118 and is not surprising since a small 𝛾 value implies a

very small change in velocity for every cycle of vibration as such the test is essentially

quasi-steady and the results should be very close to the conventional tests or steady

flow results.

The implication of this observed phenomenon when performing model testing us-

ing ‘ramp tests’ is that, if the towing velocities are large and high mode numbers

are excited, then there will be a systematic bias in comparisons of stresses, strains or

curvatures between conventional tests and ramp tests.
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Figure 9-15: Comparison of ramp tests with conventional tests for the 12𝑚𝑚 diameter
cylinder (Pipe 1)
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9.3 Chapter Summary

This chapter demonstrated that the 𝛾 dependence that was identified in the SJTU

data is not unique to those specific tests but instead it is a general property of vibrat-

ing, low mass ratio, cylinders in time-varying flows. This was done by demonstrating

how the unsteady flow parameter, 𝛾, can be used to analyze ‘ramp data’ from an

entirely different dataset performed at a different experimental facility with three

cylinders that were much longer than what was used at SJTU.

It was shown that a single ‘ramp test’ can provide similar, if not better, data

describing the response of a flexible cylinder undergoing VIV than what could be

collected with many conventional tests at constant towing speeds. When designing a

test matrix for the conventional testing of flexible cylinders, one has no other choice

but to choose a few speeds and start testing but there is no guarantee that the test

points chosen a priori will actually correspond to the conditions that will cause the

most damaging response (i.e., 𝑉 𝑟𝑐𝑟𝑖𝑡 or the ‘sweet spot’). This is where a ramp test

can prove to be extremely useful; because the towing speed is continuously changing,

as long as this change in speed is slow (say 𝛾 < 0.02), the cylinder will ‘choose’ the

speed (or conditions) at which it wants to respond most vigorously. This means that

is easy to identify the most damaging current or towing speeds when post processing

the results.

Finally, by comparing results from tests on flexible cylinders responding at high

mode numbers (10-25) it was possible to reveal the effects that increasing or decreasing

speed (i.e. the sign of 𝑑𝑈
𝑑𝑡
) can have on the observed response of a flexible cylinder.

It was quite clear that once the cylinder locked-in, it wanted to continue to vibrate

at that specific mode for as long as possible. This, in turn, means that the cylinder

tends to ‘lag behind’ in response and the implication is that the cylinder will tend

to respond at lower mode numbers when the flow speed is increasing and at higher

mode numbers when the flow speed is decreasing when compared to the response in

an steady flow. Both situations lead to a ’hysteresis’ effect.
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Chapter 10

Proposed Method for Model Testing

With Ramps of Constant 𝛾

The linearly accelerating and decelerating ramps that were presented in the previous

sections all have in common, that the acceleration remains (mostly) constant during

the ramping-up and down processes. A constant acceleration test will have very large

𝛾 values for the low modes at the beginning of the ramp and very small 𝛾 values for

the higher modes excited at the peak of the ramp. This means that the response

at low mode numbers (if excited) will not be equivalent to response in steady flows

and conversely the higher modes will be responding for much longer than is actually

necessary to obtain meaningful statistics.

This section will demonstrate what the speed vs. time profile would look like if

one attempted to keep 𝛾 constant for every potentially excited mode in a ramp. This

will be done by creating an example ‘ramp test’ that would be capable of capturing

the VIV response of multiple modes of the 80𝑚𝑚 diameter cylinder (Pipe 3) used in

the SHELL experiments at MARINTEK.

Table 10.1 lists the natural frequencies and velocities that would excite modes 3

through 10 after assuming a 𝑆𝑡 = 0.16. The last row in the table lists the acceleration

through each ‘target velocity’ to ensure that 𝛾 ∼ 0.02. This specific value of 𝛾 was

chosen since the experimental results presented in the previous sections suggest that

for 𝛾 values smaller than 0.02 the VIV response is very similar to a steady flow test.
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Table 10.1: Kinematic Constraints for 𝛾=0.02 ramp

Mode Number (n) 3 4 5 6 7 8 9 10

𝐹𝑛 (𝐻𝑧) 1.36 1.81 2.27 2.72 3.18 3.65 4.11 4.59

𝑇𝑛 (𝑠) 0.74 0.55 0.44 0.37 0.31 0.27 0.24 0.22

𝑈𝑒𝑥𝑐𝑖𝑡𝑒 (𝑚/𝑠) 0.68 0.91 1.13 1.36 1.59 1.82 2.06 2.29

Accel for 𝛾 = 0.02 (𝑚/𝑠2) 0.018 0.033 0.051 0.074 0.101 0.133 0.170 0.211

The information presented in the last two rows of table 10.1 will determine what the

acceleration vs. time, speed vs. time and distance traveled vs. time plots will look

like. These are shown in Figure 10-1. On the carriage acceleration vs. time plot, the

red circles identify the accelerations necessary to excite modes 3 through 10 with a

𝛾 value of 0.02. The speed vs. time plot has a set of red lines superimposed onto it,

the intersection of each red line with the green curve represents the expected time at

which each mode will be excited. Finally, the last plot of distance traveled vs. time is

necessary to ensure that the test being designed can actually ‘fit’ in the experimental

facility in question.

Now that the speed vs. time profile has been determined, it is interesting to

estimate how much time is available for each mode to respond (i.e., the duration of

excitation). This can be approximated by assuming that the width of the lock-in

band is ±20% of the critical reduced velocity and then examining the appropriate

portion of the speed vs. time plot for each mode of interest.

This is shown in Figure 10-2 for modes 3 and 4, where the dotted lines correspond

to the critical reduced velocity and the dash-dot lines form the boundaries of the

lock-in bands. In a similar manner, Figure 10-3 shows the duration of the lock-in

band for modes 9 and 10. The results are summarized in Table 10.2.
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Table 10.2: Estimates of Mode Overlap

Mode Number (n) 3 4 5 6 7 8 9 10

𝐹𝑛 (𝐻𝑧) 1.36 1.81 2.27 2.72 3.18 3.65 4.11 4.59

𝑇𝑛 (𝑠) 0.74 0.55 0.44 0.37 0.31 0.27 0.24 0.22

Lock-in duration (𝑠) 13.9 10.2 8.2 7.1 6.0 5.2 4.8 4.7

Lock-in duration

(cycles) ∼ 19 ∼ 19 ∼ 19 ∼ 19 ∼ 19 ∼ 19 ∼ 20 ∼ 20

Overlap with prev.

mode(% of time) N.A. ∼ 36% ∼ 48% ∼ 62% ∼ 65% ∼ 69% ∼ 73% ∼ 75%

Figures 10-2 & 10-3 are instructive because they demonstrate the concept of mode

overlap (i.e., the fact that on flexible cylinders the lock-in bands of neighboring modes

tend to overlap). This effect becomes more pronounced at higher mode numbers since

the separation of natural frequencies of cables or tension dominated beams tends to

follow 1/𝑛. This is shown in the last row of Table 10.2 where the overlap is increasing

as the mode number increases. The existence of overlap will tend to lead to mode-

switching or mode jumping e.g., there is the possibility that the response will jump

from mode 3 to mode 4 even though the speed has not moved out of the mode 3 lock-

in band. The exact details of how mode overlap can affect the response of flexible

cylinders are not clearly understood and there is definitely room for more research on

this topic through carefully designed experiments. Even though the mechanism may

not be clearly understood the existence of mode overlap could lead to two possible

alternatives:

The first point of view would require the cylinder to pass through every single mode

and jump from one mode to the next as soon as the reduced velocity is favorable (i.e.,

as soon as the overlap starts; in Figure 10-2 this would occur at ∼ 39𝑠)

The second point of view would require the cylinder to continue to vibrate for as

long as possible at the mode number at which it is currently responding or locked-in

and only jump to the next mode when it has moved outside the current excitation

region (in the example in Figure 10-2 this would occur at ∼ 42.5𝑠). At high mode
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numbers (𝑛 ∼ 20), where the excitation regions of many modes overlap where the

natural frequencies are separated by only ∼1/20 Hz the 40% wide synchronization

region of several modes would almost completely overlap. This scenario would lead to

mode-jumping that could easily skip a mode (i.e., jump from mode 20 to 22, without

ever responding in mode 21).

Nature is rarely so ‘black and white’ and reality probably lies somewhere in be-

tween the two opposing scenarios presented. The differences in responding mode

number during the ‘accelerating’ and ‘decelerating’ branches of the ramps shown in

Section 10.3 seems to support the second point of view. 1

The effect of the overlapping lock-in bands and the possibility of mode switching

means that even though the lock-in duration has been estimated (listed in Table 10.2)

it is highly unlikely that one would ever observe the full 19-20 cycles of vibration at a

given mode since at the low modes the response could jump to the next higher one at

∼ 2/3 (i.e., 1-0.36) of the way through the lock-in band and at higher modes it could

jump to the next mode as early as 1/4 (i.e. 1-0.75) through the lock-in band. Recall,

that at least 4-5 cycles are necessary for VIV to reach its steady-state or maximum

amplitude and by the time one accounts for some lost cycles due to mode-switching it

should be clear that at 𝛾 ∼0.02 one would be left with less than 10 cycles to extract

the response data of interest.

Now that it has been shown that mode-overlap might prevent one from observing

enough cycles to obtain meaningful statistics, one could attempt to design an experi-

ment with a slightly different constraint. Instead of starting the design by specifying

a (specific) value for 𝛾, which will be kept constant throughout the test, we could

impose a different restriction:

We want to observe a minimum number of cycles within a very small band inside the

lock-in region; tightly centered around the critical reduced velocity.

1At this point it would be wise to discuss the effects that the cylinder’s mass ratio will have on the
preceding discussion. Govardhan & Williamson (2002) showed that that the synchronization region
of an elastically mounted cylinder tends to increase as the mass ratio decreases until the critical
mass ratio of 0.54 is reached at which point the synchronization region extends indefinitely. If the
synchronization regions of flexible cylinders are similarly affected by the mass ratio, issues related to
mode overlap and mode switching should be more pronounced on flexible cylinders with low mass
ratio compared to high mass ratio cylinders.
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For example consider the following requirements:

observe at least 10 cycles, within a band ±5% of the critical reduced velocity

These two requirements in association with the initial conditions uniquely define the

kinematics and as such the acceleration (and hence 𝛾) with which the carriage should

traverse a specific mode will be given by:

𝑎𝑐𝑐𝑒𝑙𝑛 =
1.05𝑈𝑛 − 0.95𝑈𝑛

10𝑇𝑛

And the corresponding 𝛾 value would be:

𝛾𝑛 =
𝑎𝑐𝑐𝑒𝑙𝑛
𝑈𝑒𝑥𝑐𝑖𝑡𝑒 𝑛

𝑇𝑛

The acceleration and associated 𝛾 values imposed by the above requirements are listed

in Table 10.3.

The carriage acceleration, speed and distance traveled vs time for the aforemen-

tioned conditions are shown in Figure 10-4. Note that since 𝛾 is half as large as the

initial example, this test would need to travel a distance twice as large.

Table 10.3: Kinematic Constraints Required to Observe 10 Cycles

Mode Number (n) 3 4 5 6 7 8 9 10

𝐹𝑛 (𝐻𝑧) 1.36 1.81 2.27 2.72 3.18 3.65 4.11 4.59

𝑇𝑛 (𝑠) 0.74 0.55 0.44 0.37 0.31 0.27 0.24 0.22

𝑈𝑒𝑥𝑐𝑖𝑡𝑒 (𝑚/𝑠) 0.68 0.91 1.13 1.36 1.59 1.82 2.06 2.29

Accel (𝑚/𝑠2) 0.009 0.016 0.026 0.037 0.051 0.67 0.085 0.105

𝛾 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
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Chapter 11

Conclusions and Proposed Future

Work

11.1 Conclusions

This thesis looks at two aspects of Vortex-Induced Vibrations on long flexible cylin-

ders. The work is split into a minor and major part. The minor part addresses the

effect of Reynolds number on flexible cylinder VIV. The major contribution addresses

the prediction of VIV under unsteady current excitation or time-varying flows.

The study on the effect of Reynolds number makes extensive use of a recent set of

experiments performed by MARINTEK on behalf of SHELL Exploration and Pro-

duction. Three 38𝑚 long cylinders of different diameters were towed through the

ocean basin over a wide range of Reynolds numbers in both uniform and sheared

flows.

The experimental data revealed that the response amplitudes and dimensionless

response frequency were strongly influenced by the Reynolds number. Both of these

Reynolds effects should be of interest to riser designers that traditionally rely or make

use of experimental data obtained at much lower Reynolds numbers. The effect of

Reynolds number on the response amplitude could be explained through the influence

of the Reynolds number on the lift coefficient. Identifying the Reynolds number effects

on the response of flexible cylinders in steady flows proved critical to explaining other
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details that were observed in the cylinder response. This was necessary before even

attempting to compare these results with the cylinder’s response to VIV that was

observed in unsteady flows.

One of the key findings from the analysis of the steady flow experiments was that

the VIV response amplitude will vary considerably throughout the duration of the

test. This has serious implications when choosing the time-section or time-record for

further analysis, since it is shown that using the entire time-section or attempting

to use a statistically stationary time portion will not reveal or does not necessarily

coincide with the largest VIV response and most damaging conditions.

The final finding from the analysis of the 38𝑚 SHELL experiments shows that the

Cross-Flow and In-Line damage rates are always of the same order of magnitude and

that the most damaging location on the circumference of the cross-section usually

coincides with the Cross-Flow direction.

In this thesis, I propose a dimensionless parameter, 𝛾, that governs whether lock-in

under unsteady flow conditions is possible and show that it is useful for determining a

priori whether the response under unsteady conditions will be similar to the response

under steady flows. The unsteady flow parameter, 𝛾, is a dimensionless parameter

that describes the change in flow speed in a single cycle of cylinder vibration. The

experimental data necessary to support this work is taken from a set of experiments

performed at the State Key Laboratory of Ocean Engineering at Shanghai Jiao Tong

University (SJTU), where a 4𝑚 long flexible cylinder was towed through an ocean

basin under carefully selected amounts of acceleration/deceleration. Further evidence

is drawn from a subset of the aforementioned SHELL tests which shows how a single

ramp test can be used to extract data equivalent to ten or more individual tests at

constant speeds.

The SJTU test included runs with slowly and quickly accelerating flows and it

was found that as long as the current or towing speed is within a specific band

(synchronization region), the response can typically be divided into three regimes

based on the acceleration or 𝛾 value:

∙ For very quickly accelerating flows (𝛾 > 0.1 i.e., greater than 10% variation in
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speed per cycle) the cylinder cannot react quickly enough and at most a couple

of cycles of small amplitude vibration will be observed.

∙ For moderately accelerating flows (0.02< 𝛾 <0.1) the cylinder will typically

start vibrating and can build up a significant response however most of the

time the flow will have exited the required synchronization region before the

cylinder manages to reach the maximum amplitudes observed in steady flows.

∙ For very slowly accelerating flows (𝛾 <0.02 i.e., less than 2% variation in speed

per cycle) the flow is changing considerably slower than the cylinder’s reaction

time and thus the cylinder has more than enough time build up its response.

This thesis shows that the VIV response in time-varying flows is qualitatively similar

to the response of flexible cylinders in steady flows and can often be larger than what

is observed in a typical VIV test matrix where cylinders are tested at predetermined

speeds believed to be close to the speed that will cause the greatest response. The

larger response amplitudes observed in slowly time-varying flows are the result of

allowing the cylinder to choose the speed at which it will respond the most vigorously

instead of limiting it to a few specific speeds. This, in turn, is one of the most

compelling reasons to use ‘ramp tests’ or slowly-varying flows for future VIV model

testing. Designers are typically interested in the most damaging response not one that

is believed to be close to the most damaging. Another reason to introduce ‘ramps’ in

VIV model testing is the ability to excite multiple modes in a single run through the

basin or towing tank.

This thesis shows how a single ‘ramp test’ may be used to obtain the same infor-

mation as ten constant speed tests. This can and will significantly reduce the number

of runs necessary to completely characterize the VIV response of flexible cylinders

and will translate into large cost savings in the future. The thesis closes by describ-

ing the differences observed in the VIV response at high mode numbers depending

on whether the time-varying flow was accelerating or decelerating. In both situations

a ‘hysteresis’ effect is noted, where the cylinder is found to ‘lag behind’ preferring to

vibrate in the previously excited mode as a result of cylinder lock-in. In accelerating
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flows, this means that the cylinder will typically be responding (at least) one mode

number lower than it would have in a steady flow. In decelerating flows the same ‘lag’

will cause the cylinder to respond (at least) one mode number higher than it would

have in a steady flow.

The rise time of the cylinder’s response and the transient behavior of the lift force

are very important when trying to explain why it is possible to excite and observe

Vortex-Induced Vibrations in time-varying flows.

11.2 Future Work

The experiments described in this thesis succeeded in answering many of the original

research questions and met the test objectives but as is typical with experimental

work, the analysis of the results identified several new issues or topics for further

investigation.

In steady flows, there is a great need to extended VIV model testing to the critical

and supercritical Reynolds number regime, because it is highly unlikely that the

Reynolds number dependence that was identified in this thesis will continue to hold

outside the sub-critical regime. Another topic that needs to be addressed is the large

variability in the VIV response of flexible cylinders. It is definitely worthwhile to try

and identify the causes of this variability in future model testing, some of these are

addressed in Appendix A.

In time-varying flows it would be very interesting to continue experimenting with

‘ramp tests’ but using cylinders of different mass ratios and under varying amounts

of damping. Both mass ratio and damping can affect the size of the synchronization

region and it would be interesting to see if, at high mass ratio and higher damp-

ing levels when the synchronization region is smaller, it is harder to observe a VIV

response.

These should be investigated independently since Appendix C shows that cylin-

ders with larger mass ratios will have a longer ‘rise time’ than their low mass ratio

counterparts, and the length of the rise time is important to explaining why VIV is
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possible in time-varying flows. Studying the effects of both of these parameters would

greatly help understand the threshold 𝛾 values that were identified in this thesis.

In conclusion, one of the motivations for studying VIV in time varying flows was

to be able to predict what will happen in an oscillatory flow that has a non-zero mean

flow. Appendix B sets out to explain how the lessons learned from this thesis could be

used to create a screening tool for predicting whether or not VIV will be in an issue

in a non-zero mean oscillatory flow, but obviously its applicability would need to be

confirmed with further model testing. The examples given in Appendix B would be

ideal scenarios around which to design a new unsteady flow experiment.
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Appendix A

Variability in VIV Response in

Steady Flows

The main objective of this appendix is to demonstrate that the VIV response ampli-

tude of flexible cylinders can show considerable variation even in steady flows. This is

usually not addressed in the literature and currently there is no framework or ‘best-

practice’ in the VIV community that can address statistically non-stationary data.

This variation in response can take two forms:

∙ In the first case, all sensor locations on the flexible cylinder have the same

dynamic response but this can vary in time (i.e., non-stationary)

∙ In the second case, different portions of the flexible cylinder show very different

response characteristics at the same instance in time.

This has serious implications when choosing the time-section or time-record for

further analysis, since it is shown that using the entire time-section or attempting

to use a statistically stationary time portion will not reveal or does not necessarily

coincide with the largest VIV response and most damaging conditions. This appendix

proposes a novel way to plot the VIV response of a flexible cylinder by making use

of the ’RMS response envelope’ which is capable of revealing the variability in the

response.

169



VIV is by its own nature a stochastic problem and treating it deterministically

will inevitably mask many interesting and fascinating features. This section will

investigate some aspects of this behavior by presenting some brief statistics concerning

the observed VIV response. This is done in order to increase the reader’s confidence

in the Reynolds number trends identified earlier in Chapter 4 in light of the relatively

large amount of scatter in the data.

Mandel (1984) offers a very convincing argument for the statistical analysis of

experimental data. His opinion is that the purpose of the analysis is to confirm the

presumed linearity (or other underlying trend) of an identified relationship and obtain

the best values for the parameters characterizing the relationship by investigating this

lack of definitiveness and thus ascertain the limits of validity of the conclusions drawn

from the experiment.

Additionally, having a range of possible response quantities for a given test will

provide some leeway when comparisons with the unsteady data are made later on.

Essentially this will mean that instead of comparing a ramp result with a single value

from the conventional tests, we will have the ability to compare the ramp result with

a range of values characterizing the VIV response in steady flows. Finally, statistical

analysis should be useful as a diagnostic tool. Causality is hard to determine, but from

a practical standpoint one could start asking whether the variability in the response

will get smaller if:

∙ The signals appear to be stationary in time

∙ The test is conducted at the exact 𝑉𝑟 that results in maximum response (i.e

𝑉 𝑟𝑐𝑟𝑖𝑡)

∙ There is no mode-switching

∙ There are no fluctuations in velocity

∙ There is little or no turbulence in the mean flow

Eliminating each one of the above would potentially decrease the size of the error

bands until they reach the point that they are entirely due to the stochastic nature
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of VIV and nothing else. The experimentalist often has little control over some of

the factors listed above and therefore it is not easy or straightforward to address all

of them. In this section the first three are addressed.

Modarres-Sadeghi et al. (2011) looked at the VIV response of flexible cylinders

and concluded that the response can usually be classified as type-1 or type-2 based on

the observed response. VIV response which is (almost) monochromatic and periodic is

classified type-1 (or quasi-periodic) whereas VIV which shows strong narrow-banded

response is termed type-2 (or chaotic). The authors observed three types of behavior:

∙ cases where the entire signal is mostly type-1

∙ cases dominated by type-1 response with occasional bursts of type-2 response

∙ cases entirely dominated by type-2 response where it is impossible/or very hard

to even identify a small time section with type-1 response.

Test 3002 involved towing the 30𝑚𝑚 diameter cylinder (Pipe 2) in a uniform flow of

0.4𝑚/𝑠. Figure A-1 shows some displacement time histories at 6 different accelerom-

eter locations; the top three plots correspond to neighboring accelerometers near one

end of the flexible pipe whereas the lower three plots correspond to three neighboring

accelerometers on the other end. The phase plane corresponding to each time history

is shown next to it. The displacements and velocities shown have been obtained by

integrating the accelerometer signals in the frequency domain.

Modarres-Sadeghi et al. used the phase-plane (among other tools) to identify

whether an observed VIV response is best classified as type-1 or type-2. The blue

line in the phase plane corresponds to the entire time signal of the test, whereas

the red line corresponds to the time sections shown in red. Just by observing the

time-histories colored in red one could conclude that the data looks very periodic and

stationary, but this is further reinforced by the neat phase shown planes in red. One

would expect a constant amplitude sinusoidal signal to have a phase plane that looks

like a circle or an ellipse depending on the scaling. The additional kinks present in

the red ellipses are due to the 3X and 5X contributions, i.e. the higher harmonics.
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For the time section identified in red color between 62 and 79 seconds, one can easily

conclude that the VIV response is dominated by type-1 or quasi-periodic behavior.
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Figure A-1: Time-histories and phase planes for Test 3002
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Test 3002 is an example of VIV response where one can indeed identify a statistically

stationary time section which could then be used for further analysis. However, it

will be shown that this type of response where every point of the entire structure is

behaving in a very specific manner is definitely the exception and not the norm when

analyzing the 38𝑚 long SHELL dataset.

Test 3003, shown in Figure A-2, is much more typical of the behavior observed in

the SHELL dataset. The testing conditions for Test 3003 were very similar to Test

3002, with the only difference being a slightly higher towing speed of 0.5𝑚/𝑠, yet

by observing the time histories in Figure A-2, it is very difficult to determine a time

section where all points along the flexible model behave in a similar manner.

Specifically, the time section identified in red color would appear to be a good

time section to use for analysis for one end of the pipe (sensors 17, 18 & 19) with the

response characterized by constant amplitude periodic oscillations. At the same time

though, it should be clear that the time section identified in red color is characteristic

of chaotic response for the other end of the cylinder (top three plots).

Figure A-3, once again shows the displacement time-histories from Test 3003, but

now a time-section characterized by type-1 (quasi-periodic) oscillations is chosen for

the opposite end of the pipe which had previously been characterized by a strong

chaotic response.

The behavior identified in Test 3003 is very typical of what is seen in the Shell

dataset, i.e., different parts of the riser model can have very different response charac-

teristics at the same instance in time. This fact makes identifying suitable stationary

time sections very hard or impossible and a different approach might be more suit-

able.

Many of the tools used to analyze the unsteady data (non-stationary data) can

also be applied for the analysis of steady speed tests (conventional tests). The moving-

RMS calculation proved especially useful in this situation. The moving RMS is cal-

culated according to Equation 8.2 with a window length corresponding to ∼ 5 vortex

shedding periods. For Test 3002 at a speed of 0.5𝑚/𝑠 the window length would be:
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Figure A-2: Time-histories and phase planes for Test 3003
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window length = 5𝑇𝑣𝑜𝑟𝑡𝑒𝑥 = 5(
𝐷

0.15𝑈
)

Figure A-4, shows how the mean (spanwise) CF RMS curvature varied with time

for Test 3002. The stationary time-section between 60 and 80 seconds, identified

earlier in Figure A-1, results in a constant curvature of ∼ 3.5 × 10−4(1/𝑚) for the

same time section. It is interesting to note that the large variations in the curvature

at the beginning and end of the time record are associated with large changes in

the modal weights whereas for the stationary time section the mode weights remain

almost constant.

Figure A-5 is a novel way of presenting VIV response data and this single figure

includes all the VIV responses observed during Test 3002. It is created in the fol-

lowing way: The grey-green envelopes shown are created by identifying the largest

and smallest RMS response after passing through all the data using a moving-RMS

operator. This envelope of RMS response does not include any information relat-

ing to the time instance when the largest or smallest RMS response occurred but it

brackets every response calculated during the ∼72 second test. The red line is the

RMS response using the ENTIRE time section instead of a moving 5 second window;

this is what would be typically shown in the literature as the response for a given

test. The dashed lines correspond to the result displayed by the red line plus or

minus one standard deviation as calculated at every point. This is best explained

using Figure A-6, which shows a histogram of the RMS amplitude calculated at the

position of maximum response (𝑥/𝐿 = 0.91). Examining this figure indicates that for

a large portion of time, at this specific position along the span, the RMS amplitude

was approximately 0.63𝐴/𝐷, but it in fact it varied anywhere between ∼ 0.48𝐴/𝐷

and ∼ 0.8𝐴/𝐷.

For completeness, the response during the short stationary time-section identified

in Figure A-1 between the 62𝑛𝑑 and 79𝑡ℎ second is shown in Figure A-8. Notice how

much ‘tighter’ the response envelope (shaded green) and the plus or minus 1 stan-

dard deviation lines (dashed blue) are in Figure A-8 compared to Figure A-5. Also
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note, how much narrower the band of possible RMS amplitudes is in Figure A-7 when

compared to Figure A-6.
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Figure A-3: Time-histories and phase planes for Test 3003
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Figure A-5: CF RMS A/D and Curvature (1/𝑚) as calculated using a moving RMS
for Test 3002
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Figure A-6: Variation in the RMS response at 𝑥/𝐿 ∼ 0.91 for Test 3002
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time section identified in Test 3002
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Figure A-8: CF RMS A/D and Curvature (1/𝑚) as calculated using a moving RMS
for a short stationary time-section identified in Test 3002
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Repeating this analysis for every test case in the SHELL dataset allows the calcu-

lation of ‘error bars’ as shown in Figures A-9 and A-10. Calling these error bars is

not entirely appropriate because they are not associated with experimental or data-

processing errors but instead they are indicators of the inherent variability in the VIV

response of flexible cylinders.

Examination of the uniform flow results shown in Figures A-9 and A-10 confirms

that the Reynolds number dependence of the VIV amplitudes shown in Chapter 4

persists even after taking into account the random variations in the response ampli-

tudes and curvatures of a steady speed test.

The most important conclusion of this appendix is the fact that the VIV response

of flexible cylinder in steady flows (i.e. constant towing speed) is anything but steady

and deterministic.
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Figure A-9: CF RMS 𝐴/𝐷 vs. towing speed for the 30𝑚𝑚 diameter cylinder (Pipe
2)
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Figure A-10: CF RMS 𝐴/𝐷 vs. towing speed for the 80𝑚𝑚 diameter cylinder (Pipe
3)
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Appendix B

Oscillatory Flow Examples - The

Parameter as a Screening Tool

Up to this point we have only encountered the unsteady flow parameter, 𝛾, in the con-

text of linearly (or almost linearly) accelerating and decelerating flows. As discussed

in the introduction, one of the motivating reasons for studying VIV in unsteady flows

was the possibility of cylinder or riser lock-in in time varying flows created by the

combined effects of steady currents and surface waves or platform motions. This sec-

tions decribes how the unsteady flow parameter could be used as a screening tool to

assess whether VIV and lock-in are possible under such conditions. This will be done

by presenting to the reader three different examples of oscillatory flow with non-zero

mean flows. In all three examples shown, the current speed vs time history could

be due to oscillatory flow superimposed on top of a steady flow or it could be the

incident current on a section of a riser in a steady flow with ’global’ motion that is

prescribed by the platform motion far way from the section of interest for example.

For each example we will be assessing whether lock-in is possible for the 4𝑡ℎ mode

of the 80mm diameter Shell cylinder. The fourth mode had a natural freq. approxi-

mately equal to 1.81 Hz.
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The screening process can be outlined as following:

1. Check to see which modes are excited by the range of velocities in the current

time-history

2. Calculate the unsteady flow parameter, 𝛾, for each one of these modes

3. Identify the regions where both the reduced velocity and the 𝛾 parameter are

within the limits necessary for lock-in

4. Determine the length of these regions in terms of vibration cycles, and then

dismiss regions that are too short in duration and do not allow enough time to

build up to large amplitude VIV.

The screening process presented above is based entirely on what has been learned

about VIV in time-varying flows presented earlier in this thesis, as such extensive

model testing would have to be carried out in order to confirm its applicability. In

any case the examples presented below could serve as the basis for the design of future

model testing experiments.

B.1 1𝑠𝑡 Example (Small KC Number)

The first current is created by combining a steady flow of 0.77𝑚/𝑠 with an oscillating

flow of amplitude 0.136𝑚/𝑠 and return period of 𝑇𝑤 = 5 seconds.

𝑈(𝑡) = 0.77 + 0.136 sin
2𝜋𝑡

5

The oscillating portion of the current would have a KC number of:

𝐾𝐶 =
0.136 × 5

0.080
≈ 8.5

The screening process described above will be demonstrated with the help of Figure

B-1. The top row shows how the incident current speed varies with time. The second
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row shows variation in reduced velocity with time that is a direct result of the varying

speed. The reduced velocity has been calculated as:

𝑉 𝑟𝑛=4 =
𝑈(𝑡)

𝐷𝐹𝑛=4

The second row also contains lines indicating the critical reduced velocity as calculated

assuming a 𝑆𝑡 = 0.16 and the reduced velocity bands for a reduced velocity bandwidth

of 0.4 (𝑈𝑛±20%). These lines are helpful because any portion of the time history that

falls within this reduced velocity band could be potentially excited assuming that the

flow acceleration and deceleration were not too large, i.e., that 𝛾 is below a certain

value.

The next step is to identify the portions of the time history that lie within the

reduced velocity band and have a 𝛾 value that will favor/allow VIV lock-in. Here the

unsteady flow parameter has been calculated with the following formulation:

𝛾(𝑡) =
𝑑𝑈
𝑑𝑡

𝑈(𝑡)
𝑇𝑛=4

as such the 𝛾 values will vary due to the oscillatory nature of the acceleration time-

history. The third row in Figure B-1, shows how the unsteady flow parameter varies

with time. On this figure we have drawn a line corresponding to 𝛾 = 0.05 which we

will take as the limiting 𝛾 value based on the linear acceleration results presented

earlier (Recall that 𝛾=0.05 lies half-way through the region of 𝛾 values where VIV

response is observed but can be erratic).

The green rectangles superimposed on the figure identify the time sections where

both the 𝑉𝑟 and 𝛾 requirements are satisfied. The final step is to try and identify

the duration of these sections in terms of vibration cycles. This is done because it

has already been shown that VIV needs between 4-5 cycles to reach its steady state

amplitudes. Examining figure G1 we can conclude that each green rectangle is only

1.5-2 cycles in duration. The conclusions that we can draw from this example is that

even though the flow is varying slowly enough to shed a couple of vortex pairs at

frequencies close to the resonant frequency there simply isn’t enough time available
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for the structure to build up its response before the flow conditions change and the

structure finds itself in a “power-out” situation where any vibrations will decay due

to the increased hydrodynamic damping (or negative lift coefficient) present outside

the synchronization region.
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Figure B-1: Oscillatory flow example 1
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B.2 2𝑛𝑑 Example (Large KC Number)

The second example has been chosen in such a way that the range of reduced veloci-

ties excited is identical to the first but now the oscillatory component of the flow will

have a much larger period of 𝑇𝑤 = 25𝑠. The much larger period of the flow implies

much smaller accelerations in the flow field and as such the computed 𝛾(𝑡) values will

be much smaller and time sections where both the 𝑉𝑟 and 𝛾 requirements are met

will include many more vibration cycles.

Figure B-2 demonstrates this graphically. Note how the width of the green rect-

angles which indicate time sections where both 𝑉𝑟 and 𝛾 requirements are being met

now has a length of approximately 29 vibration cycles. This is more than enough time

for VIV to build up and reach its steady state values and we would expect the VIV

response inside the green rectangle to closely resemble the VIV response in a steady

flow exciting the 4𝑡ℎ mode. During the time that is outside of the green rectangle (i.e

between 14 and 23 seconds) we would expect the vibrations to start decaying due to

the increased hydrodynamic damping until the ∼ 23 second mark where excitation is

again possible.
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Figure B-2: Oscillatory flow example 2
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B.3 3𝑟𝑑 Example

The third and final example case that will be discussed pertains to an oscillatory flow

that is always within the 𝑉𝑟 bands with the velocity time history given by:

𝑈(𝑡) = 0.905 + 0.136 sin
2𝜋𝑡

5

𝑈(𝑡) is shown in the top plot of Figure B-3. This is an interesting case because even

though the accelerations are large and the corresponding 𝛾 values can be above the

threshold limit of 𝛾 ∼ 0.05, the flow always remains within the 𝑉𝑟 band. Because the

structure will be vibrating at its resonant frequency for the entire time, as such the 𝛾

value will not affect whether or not lock-in is possible. The unsteady flow parameter,

𝛾, is relevant only when the flow moves into or out of the 𝑉𝑟 bands that can excite

the structure.
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Figure B-3: Oscillatory flow example 3
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Appendix C

Transient Behavior of the Lift Force

(or Excitation Force)

It has already been shown that under certain situations flexible cylinders exposed to

unsteady currents can lock-in and exhibit VIV responses very similar to steady state

VIV. This section attempts to explain why it is possible to observe a typical VIV

response even if the external forcing conditions are changing (i.e., the flow speed is

changing). The main goal is to study the transient portion of the structural response

and to determine the excitation that could have caused the observed behavior. Em-

phasis is placed on how quickly the VIV response can build up and the implications

that this must have for the excitation force.

The unsteady flow parameter can also be thought of as the ratio of two time scales:

𝛾 =
𝑑𝑈
𝑑𝑡

𝑈
𝜏 (C.1)

𝑈/𝑑𝑈
𝑑𝑡

is the timescale over which the excitation (or forcing) changes and 𝜏 is the

timescale at which the structure can respond (either the ‘rise time’ or 𝑇𝑛). Then, at

small 𝛾, the structural timescale is much smaller than the timescale characterizing

the change in excitation force and hence the structure has time to respond to changes

in the excitation.
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C.1 VIV Response Build-Up (the ‘Rise Time’)

Studying what the excitation (or lift force) looks like when it first starts acting on

the cylinder and how it evolves with time should help shed some light on the problem

at hand. The transient behavior is often overlooked in the literature simply because

the beginning and ending of any time-record is usually dismissed and excluded from

the analysis because researchers prefer to deal with ‘steady-state’ or ‘time-invariant

values’. Instead of dismissing the beginning of the VIV response record one can

obtain great insight by taking a closer look. Figure C-1, shows the CF strain at a

single sensor location for a steady speed test. It is very impressive how the measured

strain on the cylinder reaches its maximum value within a matter of 4 to 5 cycles

after the towing speed has reached its steady value.
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Figure C-1: Typical CF strain sensor time history from a constant speed test.

It should be noted here, that this very rapid rise time, is not unique to the SJTU

dataset but has been observed in many low mass ratio tests on single-degree-of-

freedom cylinders, also on flexible cylinders responding at high mode numbers, such

as the Miami 2 tests and the SHELL dataset as well as tests on joints from full scale

drilling risers. This rapid ‘rise time’ of the VIV response, usually in a matter of a
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few cycles is essential to explaining why cylinders are able to adapt rapidly to time-

varying flows. Consider first the response of a single DOF linear oscillator, consisting

of a lumped mass, a spring and a linear damper.

For linear systems excited by sinusoidal forces of constant amplitude, the rise time

is closely related to the damping present, specifically:

𝑥(𝑡) = (1 − 𝑒𝜁𝜔𝑛𝑡)𝐴 sin𝜔𝑑 + 𝜑

and the response envelope is described by: (1 − 𝑒𝜁𝜔𝑛𝑡)

So, for small amounts of damping the rise time to say 95% of the steady-state or

maximum amplitude would be:

𝑥(𝑡)

𝑥𝑚𝑎𝑥

= 0.95 = (1 − 𝑒𝜁𝜔𝑛𝑡)

0.05 = 𝑒𝜁𝜔𝑛𝑡

𝜁𝜔𝑛𝑡 ≈ 3

The rise time in (seconds) is

𝑡 =
3

𝜁𝜔𝑛

=
3(2𝑚𝜔𝑛)

𝑐𝜔𝑛

= 3
2𝑚

𝑐
(C.2)

The rise time expressed in cycles is

𝑡

𝑇𝑛

≈ 3

2𝜋𝜁
≈ 1

2𝜁

The cylinders used for VIV testing typically have very small amounts of structural

damping; the SJTU test cylinder had a measured structural damping ratio, around

1.5% of critical. This means that if the system had been excited by a constant

amplitude sinusoidal force it would have taken on the order of 30 cycles to approach

the steady state or maximum amplitude. As noted earlier, in Figure C-1 , the rise

time was 4-5 cycles which reveals that something different is going on here: It is
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well known that the hydrodynamic lift force is periodic and that the structure’s

dynamic properties are constant. This implies that the only way that a response with

a rise time of 4-5 cycles could be achieved would be if the amplitude of the periodic

excitation force was heavily modulated in the beginning.

Figure C-2 shows the amplitude modulation on the lift force for a spring mounted

rigid cylinder with little damping, calculated by Ravi et al. (2013). The rise time of

approximately 10 cycles, is slightly larger than what was shown in Figure C-1, and

is due to cylinder’s much larger mass ratio (10 vs. ∼1.5 for the SJTU cylinder). The

amplitude modulation which occurs during the first few cycles of vibration is entirely

consistent with our knowledge of how the lift coefficient depends on the response

amplitude, shown in Figure C-3. Specifically, the lift coefficient starts with a finite

value at zero or small amplitudes and grows larger with increasing response amplitude

until a certain point after which it starts decreasing as the amplitude grows larger.

After reaching the maximum response amplitude (which will be a function of the 𝑅𝑒,

𝑉𝑟 and damping present) the amplitude of the lift coefficient will remain constant at

a value that satisfies the equilibrium requirements.

Figure C-2: Rise time and amplitude modulated force from CFD (Ravi et al, 2013)
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Figure C-3: 𝐶𝐿 vs. 𝐴/𝐷 at a specific 𝑉𝑟

C.2 Deconvolution

Figure C-2 demonstrated what the excitation force would have to look like in order

for the system to build-up its response rapidly. It would be extremely insightful if

we could observe what the excitation force actually looks like for the SJTU model.

As mentioned earlier, since in these tests only the structural response was measured

we will have to come up with a method to infer what the excitation force might have

actually looked like. The fundamental idea of modal analysis is that the complicated

response of a continuous system to an arbitrary forcing can be analyzed/understood

as the linear superposition of the responses of many individual SDOF systems, each

one representing a given mode, to the same force. The response 𝑥(𝑡) of a linear system

to any arbitrary time dependent force 𝐹 (𝑡) is given by the convolution or Duhammel

integral :

𝑥(𝑡) =

∫︁
ℎ(𝜏)𝐹 (𝑡− 𝜏)𝑑𝜏
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Where ℎ(𝑡) is the impulsive response function:

ℎ(𝑡) =
1

𝑚𝜔𝑛

√︀
1 − 𝜁2

𝑒−𝜁𝜔𝑛𝑡 sin(
√︀

1 − 𝜁2𝜔𝑛𝑡)

In free vibration VIV tests the system response, 𝑥(𝑡), is the primary quantity of

interest and is typically recorded. If ℎ(𝑡) is known, then a numerical deconvolution

will yield the unknown forcing, 𝐹 (𝑡).

In the SJTU dataset, as noted earlier in Chapter 8, a modal analysis was performed

for each test, yielding the modal contributions, 𝑥𝑛(𝑡) to the total response. For each

one of the modes we can define a corresponding impulsive response function, ℎ𝑛(𝑡),

where the main assumption is that the added mass coefficient is equal to 1 and is not

time dependent.

Figure C-3 shows the modal amplitude for the 3𝑟𝑑 mode, 𝑥3(𝑡) that was obtained

from the modal analysis of Test-8a. For the 3𝑟𝑑 mode the impulsive response function

can be approximated as:

ℎ3(𝑡) =
1

𝑚𝜔3

√︀
1 − 𝜁2

𝑒−𝜁𝜔3𝑡 sin
√︀

1 − 𝜁2𝜔3𝑡

Figure C-4, shows the result of the numerical deconvolution, of 𝑥3(𝑡) with ℎ3(𝑡) which

will yield the modal force. The amplitude modulation of the modal force from 4 to

4.5 seconds is very similar to the amplitude modulation of the lift coefficient in the

first few cycles shown in Figure C-2.
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Figure C-4: Mode 3 modal amplitude and modal force for Test-8a

The experimental evidence supports the conclusion that the excitation force is am-

plitude modulated during the initial cycles of vibration while the VIV response is

still building-up. What is even more reassuring is that such an amplitude modulated

force is entirely consistent with our knowledge of how the lift coefficient varies with

the response amplitude.

C.3 Effects of Mass Ratio and Damping

Unfortunately, because it was shown that the lift force is heavily modulated during the

first few cycles of the response, the rise time cannot be predicted or computed directly

from Equation C.2. Nonetheless, Equation C.2 stills provides a lot of information

about the effects of mass and damping on the rise time.
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Specifically, it can be shown that as the system’s mass increases the rise time will

also increase, since energy is supplied by the flow or force at a finite rate and the

heavier (or more massive) system will have a large potential and kinetic energy at

steady state amplitudes.

The opposite is true for the amount of damping present: As damping is increased

the rise time to steady state or maximum response amplitude will be smaller because

the final or steady state amplitude at these conditions (high damping) is much smaller

than the steady state amplitude at small or zero damping and thus it will be reached

sooner.

Understanding the effects of mass (or mass ratio) and damping on the ‘rise time’

means that one can make an educated estimate of how these two parameters will

affect the 𝛾 behavior that was identified in this thesis for cylinders with mass ratios

between 1-2 and small amounts of damping (less than 1.5% of critical). For the

cylinders tested it was found that as long as 𝛾 was less than 0.02 (i.e., a change in

speed is less than 2% per cycle of vibration) it was possible to observe a VIV response

similar to what is observed in steady flows.

If cylinders with larger mass ratios (>2) were exposed to an unsteady flow they

would have to be subjected to a smaller change in speed per cycle (the 𝛾 threshold

would be lower) if one still wanted to observe a steady like response. This is because

the rise time will be greater and therefore the duration of the excitation force would

need to be longer.

If cylinders with much larger amounts of damping were exposed to an unsteady

flow, the change in speed per cycle could be greater (larger 𝛾) and one would still be

able to observe a large amplitude VIV response similar to what is observed in steady

flows. Now the rise time will be smaller and thus the duration of the excitation force

can be shorter.

Table C.1 summarizes how the two threshold values on 𝛾 that were identified in

these model tests would change due to the effects of mass and damping on the rise

time. Recall that for 𝛾 < 0.02 the response is similar to steady flows and for 𝛾 > 0.1

there was no observable VIV.
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Table C.1: Effect of 𝑚* and 𝜁 on Rise Time and 𝛾 Threshold

Rise Time 𝛾 Identified Threshold

Larger mass ratios (𝑚* > [1 − 2]) INCREASES DECREASES

Smaller mass ratios (𝑚* < [1 − 2]) DECREASES INCREASES

Larger damping (𝜁 > [0.7 − 1.5%]) DECREASES INCREASES

Smaller damping (𝜁 < [0.7 − 1.5%]) INCREASES DECREASES

The mass ratio and to a lesser extent the damping ratio, have also been shown to in-

fluence the size of the lock-in band or synchronization region. This too will influence

the 𝛾 threshold, since larger synchronization regions imply that the excitation dura-

tion will be longer and hence there is more time available for the cylinder to build up

its response. The size of the synchronization region becomes less important as mode

number increases, since the closely spaced natural frequencies will have increasingly

larger overlap in their synchronization regions.
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Appendix D

Determining the Axial and Bending

Stiffness of the SJTU Riser Model

The riser model tested at SJTU had an elaborate construction and therefore its

mechanical properties were determined by subjecting a small section of the cylinder

to tensile testing and three-point bending tests. All tests were conducted by the

personnel at the State Key Laboratory at SJTU. Figures D-1 and D-4 are photographs

of the riser model while it is being tested. Figure D-2 shows the Force vs. Strain plot

used to calculate the axial stiffness of 6.66 × 105𝑁 . Figure D-4 shows the Bending

Moment vs. Strain plot that was used to calculate the bending stiffness of 10.52𝑁/𝑚.
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Figure D-1: Tensile test for determining axial stiffness, 𝐸𝐴

Figure D-2: Measured axial stiffness, 𝐸𝐴 = 6.659 × 105𝑁
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Figure D-3: Three-point-bending test for determining bending stiffness, 𝐸𝐼

Figure D-4: Measured bending stiffness, 𝐸𝐼 = 10.522𝑁𝑚2
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Appendix E

Transverse Vibrations of Tensioned

Beams

This appendix presents the governing equations for the transverse vibration of a

tensioned beam and the procedure to calculate the beam’s natural frequencies in

bending. The material is often covered in textbooks on the mechanical vibrations of

continuous systems or structural dynamics. The derivation that follows is based on

the analysis presented in Rao (2011).

Figure E-1 shows a beam in bending and a free body diagram for a small differ-

ential element from this beam. 𝑉 is the shear force, 𝑀 is the bending moment, 𝑃 is

the applied tension and 𝑓 is a force per unit length.

Force equilibrium in the z-direction requires that,

−(𝑉 − 𝑑𝑉 ) + 𝑓(𝑥, 𝑡)𝑑𝑥 + 𝑉 + (𝑃 + 𝑑𝑃 )(𝑠𝑖𝑛𝜃 + 𝑑𝜃) − 𝑃 sin 𝜃 = 𝜌𝐴(𝑥)𝑑𝑥
𝜕2𝑤

𝜕𝑡2

Similarly, Moment equilibrium about point 𝑂 requires that,

(𝑀 + 𝑑𝑀) − (𝑉 − 𝑑𝑉 )𝑑𝑥 + 𝑓(𝑥, 𝑡)𝑑𝑥
𝑑𝑥

2
−𝑀 = 0
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Figure E-1: Transverse vibration of a tensioned beam (Rao, 2011)

For small deflections

𝑠𝑖𝑛𝜃 + 𝑑𝜃 ≈ 𝜃 + 𝑑𝜃 = 𝜃 +
𝜕𝜃

𝜕𝑥
𝑑𝑥 =

𝜕𝑤

𝜕𝑥
+

𝜕2𝑤

𝜕𝑥2
𝑑𝑥

and recalling that 𝑀(𝑥, 𝑡) = 𝐸𝐼(𝑥)𝜕
2𝑤

𝜕𝑥2 (𝑥, 𝑡) The equilibrium equations can be rewrit-

ten as

𝜕2

𝜕𝑥2
(𝐸𝐼

𝜕2𝑤

𝜕𝑥2
) + 𝜌𝐴

𝜕2𝑤

𝜕𝑡2
− 𝑃

𝜕2𝑤

𝜕𝑥2
= 𝑓

If the beam has a uniform cross-section and the mechanical properties remain constant

along the length, 𝐸𝐼 can be moved outside of the first differentiation term. Since we

are interested in the natural frequencies of the system, the free vibration equation
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becomes

𝐸𝐼
𝜕4𝑤

𝜕𝑥4
+ 𝜌𝐴

𝜕2𝑤

𝜕𝑡2
− 𝑃

𝜕2𝑤

𝜕𝑥2
= 0 (E.1)

The above partial differential equation can be solved by separating variables using,

𝑤(𝑥, 𝑡) = 𝑊 (𝑥)(𝐴 cos𝜔𝑡+𝐵 sin𝜔𝑡) where the constants 𝐴 and 𝐵 are found from the

initial conditions. Substituting 𝑤(𝑥, 𝑡) in Equation E.1 leads to

𝐸𝐼
𝑑4𝑊

𝑑𝑥4
− 𝜌𝐴𝜔2𝑊 − 𝑃

𝑑2𝑊

𝑑𝑥2
= 0

If the solution 𝑊 (𝑥) is a normal function 𝑊 (𝑥) = 𝐶𝑒𝑠𝑥, substitution into Equation

E yields the auxiliary equation

𝑠4 − 𝑃

𝐸𝐼
𝑠2 − 𝜌𝐴𝜔2

𝐸𝐼
= 0

whose roots are

𝑠21, 𝑠
2
2 =

𝑃

2𝐸𝐼
±
√︂

𝑃 2

4𝐸2𝐼2
+

𝜌𝐴𝜔2

𝐸𝐼
(E.2)

And the solution can be rewritten in the form of a transcendental equation

𝑊 (𝑥) = 𝐶1 cosh 𝑠1𝑥 + 𝐶2 sinh 𝑠1𝑥 + 𝐶3 cos 𝑠2𝑥 + 𝐶4 sin 𝑠2𝑥

Where the constants 𝐶1, 𝐶2, 𝐶3and𝐶4 are determined by the boundary conditions.

For a pinned-pinned beam 𝑊 (0) = 𝑑2𝑊
𝑑𝑥2 (0) = 𝑊 (𝐿) = 𝑑2𝑊

𝑑𝑥2 (𝐿) = 0 which leads to

sinh(𝑠1𝑙) sin(𝑠2𝑙) = 0

which requires that

𝑠2 = 𝑛𝜋 for 𝑛 = 0, 1, 2, 3 . . .

Rearranging Equation E.2 yields the natural frequencies of vibration now that 𝑠2 is

known
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𝜔𝑛 =
𝜋2

𝐿2

√︃
𝐸𝐼

𝜌𝐴

√︂
𝑛4 +

𝑛2𝑃𝐿2

𝜋2𝐸𝐼
𝑛 = 1, 2, 3, . . .
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Appendix F

Ramp Test with the 80𝑚𝑚 Diameter

Cylinder with Surface Roughness

This appendix presents the results from ‘ramp test’ using the 80𝑚𝑚 diameter flexible

cylinder when it was covered with P80 sandpaper to increase the surface roughness.

The results from the ramp test will be compared with the conventional test result

that where part of the SHELL 38𝑚 experiments at MARINTEK.

Figure F-1 shows the towing speed as a function of time for a ramp test on the

roughened 80𝑚𝑚 diameter cylinder. The plot has lines superimposed on it indicating

the speed to excite specific modes and the associated 𝛾 values based on the constant

acceleration of 0.04𝑚/𝑠2.
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Figure F-1: Speed vs. Time for ramp test 7045

Figure F-2 is a plot of spanwise averaged RMS strain as a function of time. The

figure clearly shows the local maxima associated with the pipe going into lock-in for

modes 2, 4, 5 and 3 as indicated on the figure. The 1𝑠𝑡 mode is not excited since it

has a 𝛾 value of 0.20 which implies a 20% speed change per cycle. Figure F-3 shows

the reconstructed mode weights as a function of time for the same ramp test. The

mode weights clearly show that the 2𝑛𝑑 mode is the first to be excited, followed by

the 3𝑟𝑑 mode. The 3𝑟𝑑 mode is followed by a strong response of the 5𝑡ℎ mode with

the 4𝑡ℎ mode being skipped on the accelerating branch an only appearing during the

decelerating portion of the ramp after the 60𝑡ℎ second.

Inspection of Figure F-4 reveals that the tensions for ramp test 7045 are very

similar to the tensions of the conventional tests which means that the ramp results

are directly comparable to the conventional test results. Figures F-4 and F-5 are such

comparisons of the dimensionless response amplitudes and the curvatures respectively.
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Figure F-2: Moving RMS strain vs. time for ramp test 7045 and dominant excited
mode for each local maximum.
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Figure F-3: Mode Weights/Diameter for ramp test 7045
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Figure F-4: Comparison of tensions during ramp test 7045 with the tensions recorded
in the conventional tests
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Figure F-5: Comparison of maximum and mean CF response amplitude from ramp
test 7045 with the conventional tests
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Figure F-6: Comparison of maximum and mean CF curvature from ramp test 7045
with the conventional tests
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Appendix G

Example .DAT File for SHEAR7v4.6

Figure G-1 shows a typical SHEAR7 .DAT file (input file) used for the SHEAR7

predictions shown in Chapter 6. When modelling each case from the 38m SHELL

experiments, the .DAT file was updated with the appropriate tension, current speed,

Strouhal number for each test case. The updated 𝐶𝐿 curves that take into account

the Reynolds number effects where provided in a separate .CL file.
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Figure G-1: Example .DAT File for SHEAR7v4.6 for Chapter 6
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