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Abstract

Living cells integrate a vast array of protein-protein interactions (PPIs) to govern cellular
functions. For instance, PPIs are critical to biosynthesis, nanostructural assembly, and in
processing environmental stimuli through cell-signaling pathways. As fields such as synthetic
biology and protein engineering mature they seek to mimic and expand the functions found in
living systems that integrate PPIs. A critical feature to many PPIs that are integrated together to
perform a complex function is orthogonality, i.e. PPIs that do not cross interact with each other.
The engineering of orthogonal PPIs is thus an alluring problem. Since it not only tests our
understanding of molecular specificity by having to stabilize and destabilize interactions
simultaneously. The results of the design process can also have interesting applications in
synthetic biology or bionanotechnology. The coiled coil, a rope-like structure made of helices, is
a PPI ubiquitously found in biological systems and is an attractive fold for engineering
orthogonal PPIs. Though the coiled coil is well studied, destabilization of undesired interactions
still remains challenging. In this thesis I will discuss strategies for obtaining orthogonal PPIs, and
describe the current sequence-to-structure relationships known about coiled coils. I will then
introduce the computational multistate design framework, CLASSY, and explain how I applied it
to the computational design of six orthogonal antiparallel homodimeric coiled coils. Five of these
designed sequences were experimentally tested, of which only three of the sequences adopted the
target antiparallel homodimer topology. All three of these sequences, as well as a previously
designed antiparallel homodimer, were tested for cross reactivity in a pairwise manner. None of
these sequences appeared to cross react. The sequences that failed to adopt the antiparallel
topology highlight the need for improving our computational design framework. In the final
chapter I will discuss strategies to improve our models, and applications for orthogonal
antiparallel coiled coils.

Thesis Supervisor: Amy E. Keating
Title: Associate Professor of Biology
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Chapter 1

Introduction

Fields such as synthetic biology and protein engineering are seeking to reengineer the molecules

that carry out the work of living cells in order to design biomolecular systems intended to reduce

the cost of manufacturing drugs, produce "green" fuels, and design targeted therapeutics (Khalil

& Collins, 2010). However, biomolecules are incredibly complex, making the manipulation and

construction of novel biomolecular systems exceedingly challenging. Thus these fields are

turning their focus to the design of modular parts to facilitate the engineering of these systems

(Bromley et al., 2009; Purnick & Weiss, 2009). Many fields of engineering rely on the design of

modular parts to expedite the fabrication of complex devices. This is because modular parts aid

in managing the complexity of a system by dividing it into separate components. This allows for

the parallel development of the various modules that comprise the system, enabling progress to

be achieved more rapidly. Perhaps even more importantly, modular parts help to reduce future

uncertainty by providing robust behavior in a variety of contexts. Additionally, when integrating

modular parts together to obtain more complex functions, orthogonality becomes a key property.

A part is orthogonal if it does not cross-react with other components in the system, allowing

components to be integrated together.
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Primarily, the design of modular biomolecular parts has focused on the development of

reagents encoded in genetic elements that are involved in transcriptional regulation (Tamsir et al.,

2010). However, vital parts to many biomolecular systems within cells are protein-protein

interactions (PPIs). The development and use of modular protein-protein interactions (PPIs) is

thus particularly alluring, and has several advantages over other biomolecular reagents. Through

recombinant DNA technology it is possible to express the components of a PPI within bacterial

cells, simplifying synthesis. Also, the proteins and polypeptides in PPIs are made up of a

chemically diverse set of 20 naturally occurring amino acids that provide a wide-range of

functions, and are now being expanded on by the development of nonnatural amino acids

(Hendrickson et al., 2004). Lastly, many cellular functions depend on PPIs, thus in order to

mimic these behaviors and rapiely modify them it will be advantageous to develop modular PPI

parts. However, in order to make PPI parts that can be integrated with each other, it will be

necessary to develop orthogonal PPIs (Figure 1-1), PPIs that do not cross talk. This is because

cross talk can be devastating to the functions of PPIs such as signal transduction in cell-signaling

pathways, enzymatic scaffoldig, and assembly of nangstructures (Kapp et al., 2012; Tsai et al.,

2013; Gradigar et al., 2013) (Figure 1-2). In this chapter, I will discuss the strategies for

developing orthogonal PPIs. Then I will provide a detailed description of the coiled-coil PPI.

Explain how it is an ideal molecular reagent. Present the known sequence-to-structure

relationships (design rules) of coiled coils, and lastly summarize the work in this thesis towards

designing and testing orthogonal antiparallel coiled-coil interactions.
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B

Orthogonal Pairs

Cross React

Figure 1-1. Concept of an Orthogonal PPI Pair. Boxes represent protein monomers. The
example depicts the simplest orthogonal pair, two homodimers that do not cross-react to form a
heterodimer. A true orthogonal pair would not form any type of A-B complex.

Intended Design Off-Target Assembly
A. Orthogonal Cell-Signaling Pathways Cross Signaling

SignW A vSignal B Signal A vSigna B

Co1 Surfae iCell SurfceA

cany Cany Cary Cam
Signa A signow B Signal B Sigpa A

B. Scaffolding Enzymes Inproper ocalization

C. Enclosed Structure Elongated Structure

Figure 1-2. Consequences of PPI cross talk. Three possible applications of PPIs are shown in
the left column, with improper assembly, due to cross talk, shown on the right. (A) The
introduction of two signaling pathways, A and B, into a cell is shown. Binding of the signal
molecule by a membrane receptor (gray rectangle) in both pathways is propagated into the cell
via a PPI between a receptor and an intracellular protein. Signal propagation is improperly
transduced into the cell if the PPIs can cross talk. (B) A pair of orthogonal PPIs is shown as
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colored circles. Enzymes involved in an enzymatic pathway are shown as numbered rectangles.
Improper localization of the enzymes will occur in the presence of cross talk shown by
differentially colored circles. Similarly in (C), improper folding of an intended super structure
will occur if the PPIs engage in cross talk.

1.1 Strategies for obtaining orthogonal PPIs

Four strategies for obtaining orthogonal PPIs will be presented in this section. Briefly,

they involve using native PPIs that are structurally distinct, mining structurally similar PPIs for

orthogonal PPIs in the native, or non-native sequence space, or computationally designing

orthogonal PPIs. Examples from the literature that implement these strategies will be

highlighted, along with the benefits and challenges of each of these techniques.

The first strategy involves engineering a network of proteins that use structurally distinct

protein interaction domains. Key to this strategy is that structurally distinct domains are unlikely

to cross react due to their geometrically distinct interfaces. This strategy was implemented by Lai

et al. to engineer a proof-of-concept molecular cage made from PPIs (Lai et al., 2012). In brief,

the approach taken by Lai et al. for engineering a molecular cage using PPIs involves fusing the

domains of multimeric proteins together through a linker sequence (Figure 1-3A). An angle, 0, is

defined between the interfaces of the PPIs that compose the cage (Figure 1-3B). Depending on

the oligomer adopted by each PPI, certain values of 0 will result in cage-like structures. The

linker sequence between the PPIs must be designed to enforce the desired angle between the PPI

interfaces to get the desired super structure (Padilla et al., 2001). If the PPIs cross talk,

misfolding will occur due to inappropriate pairing, similar to Figure 1-2C. Lai et al. fused the

trimerizing domain of bromoperoxidase with the dimerizing domain of MI virus matrix protein,
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through a rigid a-helical linker to obtain molecular cages. These domains did not engage in any

detectable cross talk. The advantage of using structurally distinct protein interaction domains is

that many unique PPI interfaces exist in nature. Estimates place the total number of structurally

unique PPIs in nature at about -4,000, allowing for many unique combinations (Garma et al.,

A. Tm-ovief rf- B. Side Vew of Interfaces

Trimerizing Interface
Trimer:

Rigid Linker

- 4

Dimer: 'b

Dimerizing Interface

Fusion:

Rigid Linker

Figure 1-3. PPI applied to the design of molecular cages. (A) A trimerizing domain is shown
in green. Its interface is colored red. A dimerizing domain is shown in purple, with its interface
colored in yellow. These domains are then fused together through a linker sequence. These
domains must not interact with each other for proper assembly. (B) The angle, 0, between the
interfaces is shown. A rigid linker must hold the PPI interfaces at the angle 0, then upon
oligomerization the desired structural assembly will occur.

2012). One disadvantage however is that if native PPI domains are to be used in application in

cells, the constructs are likely to cross-react with their native counter parts. Complications can

even arise when using native PPIs from one organism in a different organism. Zarrinpar et al.

observed that one peptide fragment from yeast, Pbs2, known to specifically bind the Shol SH3

domain in yeast, cross-reacted with several non-yeast SH3 domains (Zarrinpar et al., 2003).

Additionally, it is unclear how robust the assumption that structurally distinct domains will be
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orthogonal to each other. Mechanisms such as domain swapping (Liu & Eisenberg, 2002) of

beta-strands or other common secondary-structural elements may result in unwanted cross talk

between PPIs with geometrically distinct interfaces.

A second strategy involves mining homologous families of PPIs for orthogonal pairs.

Orthogonal PPI pairs have evolved in homologous families in order to maintain cell viability

during coexpression in a cell. For example, orthogonal components have been observed in the

two-component signal transduction pathway of prokaryotes (Laub & Goulian, 2007; Ashenberg

et al., 2011). These pathways consist of a dimeric histidine kinase that can transduce a signal by

binding to and phosphorylating a protein known as a response regulator. In prokaryotes, dozens

to hundreds of these pathways coexist in the same organism. It has been observed that both the

dimerization of the histidine kinase, and the binding of the response regulator to the histidine

kinase occur with strong preferences for their cognate partner. In another case, a study by Reinke

et al. uncovered a dozen or so orthogonal pairs among a set of bZIP transcription factors obtained

from multiple organisms, which dimerize to perform their function (Reinke et al., 2013).

The benefit of using interaction domains from large families of homologs is that it takes

advantage of the billions of years of evolutionary selection pressure for orthogonal PPIs.

However, screening native biological components for orthogonal PPIs remains challenging due

to the vast size of these spaces. In the study by Reinke et al., the largest orthogonal set was

slightly less then a dozen pairs, however nearly 2900 binding curves were measured.

Additionally, biological systems have not evolved to achieve the minimal amount of cross talk

between two components. For instance, given enough time a histidine kinase will begin to

phosphorylate non-cognate partners. Lastly, use of native orthogonal PPIs within cells may result
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in cross talk with the native sequence it was derived from, or related homologs, as mentioned

earlier.

A third strategy for obtaining orthogonal PPIs involves designing synthetic libraries of

PPIs, and then screening them for orthogonality. Typically, one member of the PPI is varied.

Variants are then selected for binding to the non-varied interaction partner (target). Specificity

can be introduced by selecting for variants that only bind to the target in the presence of a

competing homolog (off target) that does not interact with the target. Orthogonality can then be

introduced by screening the library again; however in this screen the off target is now the target,

and the original target is now the off target. For instance, Dutta et al. used a combination of

SPOT arrays and yeast surface display experiments to search for a mutant variant of the BH3

peptide Bim that would specifically bind to the pro-apoptotic protein Bcl-xL over its homolog

Mcl-1, and then repeated this screen, but for specificity towards Mcl-i (Dutta et al., 2010). One

peptide showed 100-fold specificity for Bcl-xL, and another peptide showed 1000-fold specificity

for Mcl-1, making an orthogonal pair of PPIs. This strategy has also been applied to the search

for orthogonal protein-DNA interactions. Temme et al. designed libraries of T7 RNA

polymerases by combing fragment sequences from homologs of T7 RNA polymerase into four

T7 RNA polymerase scaffolds known to reduce cytotoxicity to cells (Temme et al., 2012). These

recombined T7 RNA polymerase variants were then screened for activity and preferential

binding to the recombined fragment's cognate promoter site over non-cognate sites. One

challenge with this strategy is the ability to develop a selection assay that properly destabilizes

the off-target state. For instance, in yeast display, detection of binding involves the binding and

washing of fluorescent antibodies. However, sequences that strongly bind the off-target state can
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evade detection as long as the off rate of the binding to the off target is fast. Caveats like these

are often hard to remove from selection-based assays. A second challenge is the ability to screen

against many off-target states at once. In the work by Dutta et al., only one additional off-target

state was screened against.

Lastly, computational design is a very attractive strategy for obtaining orthogonal PPIs. It

provides a cheap way to screen a large number of sequences for orthogonality. Additionally, it

provides a rigorous test of our understanding of PPIs. Kortemme et al. devised a structural

modeling approach termed the computational second-site suppressor strategy for designing

orthogonal pairs implemented in the Rosetta framework (Kortemme et al., 2004). This

computational framework takes the structure of a known PPI as an input. It then screens the

known PPI for mutations that are predicted to disrupt binding. This is then followed by a search

for a compensatory mutation in the protein partner. The design pair is then thought to be

orthogonal to the parent PPI. This was first applied to a DNase-inhibitor PPI, and has now been

extended to several other PPIs (Sammond et al., 2010). In a recent hallmark paper, Kapp et al.

applied the second-site suppressor strategy to the GTPase/GEF PPI (Kapp et al., 2012). GTPase/

GEF pairs are interesting due to their role as binary switches in many signaling pathways in

mammalian cells. The synthetic GTPase/GEF pair was not only experimentally confirmed to be

orthogonal to its wild-type parent PPI, but the synthetic pair functioned as an orthogonal

signaling pathway within mammalian cells. Despite the success of this computational technique,

this strategy has not been applied to the design of multiple orthogonal pairs at once, or the

complete redesign of a PPI. Additionally, using computational structure-based models to predict

whether a single-point mutation in a protein structure is stabilizing or destabilizing remains
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challenging (Kellogg et al., 2010). One approach for overcoming the hurdles mentioned in this

strategy is to use a well-understood PPI, where models can more reliably predict the properties of

an interaction. The coiled coil is such a PPI. The characteristics and benefits of using coiled coils

will be the focus of the following sections.

1.2 Introduction to coiled-coil structure and sequence

Over 50 years ago, Linus Pauling and Francis Crick proposed that the X-ray diffraction

data of a-keratin could be explained by a structural motif they referred to as the coiled coil

(Pauling & Corey, 1953; Crick, 1953). Since then, the coiled coil has been discovered to be a

part of many protein-based macromolecular structures. It is predicted that 3-5% of the coding

sequences in all genomes encode amino acids that are part of a coiled-coil structure (Wolf et al.,

1997). As a result, the coiled coil has become a model system for studying PPIs (Woolfson,

2005).

The coiled-coil structure is made of a-helices that supercoil around each other, typically

with a left-handed twist (Figure 1-4A). The amino-acid side chains between the helices arrange

in an interlocking fashion that is defined as "knobs-into-holes" packing. Coiled coils adopt a

wide range of topologies. For instance, coiled-coil structures can vary in the number of helices,

the most prevalent of which are dimers, trimers, and tetramers (Figure 1-4B). Higher-order

complexes like heptamers have also been observed (Liu et al., 2006). Additionally, adjacent

helices can occupy two types of orientations with respect to each other. They can be either

parallel, meaning their N-terminal ends pack against each other, or antiparallel, meaning the N-
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terminal end of one helix packs against the C-terminal end of the other helix (Figure 1-4C).

Finally, coiled coils can form homo- or heteroassemblies.

Interestingly5 this diverse set of structural topologies can all be encoded by a repeating

sequence pattern typically called the heptad repeat, with the seven positions denoted as abcdefg

(Figure 1-4D). The a and d positions are located in the cores of coiled-coil structures, and are

typically occupied by hydrophobic residues such as isoleucine or leucine. These residues provide

the driving force for binding, as it is more energetically favorable for them to be occluded from

water. The e and g positions are partially buried and are most frequently occupied by charged

residues like lysine and glutamate. They often make salt-bridge interactions along the interface

of the helices. Lastly, the b, c, and f positions reside on the surface of the coiled coil. They are

occupied by polar residues such as glutamine and help promote solubility. These simple

sequence features have been used to design several synthetic coiled-coil complexes, which have

helped to further our understanding of coiled-coil sequence to structure relationships (design

rules). Several examples of synthetic coiled-coil complexes, and the design rules learned from

them, will be summarized in the next section.
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Figure 1-4. Coiled coil structural diversity. (A) Cartoon representation of the side view of a
dimeric coiled-coil backbone. The cartoon shows that the helices wrap around each other along
what is known as the superhelical axis. (B) Helices are represented as cylinders. The three most
common oligomerization states for coiled coils are shown, i.e. dimer (top), trimer (middle), and
tetramer (bottom). (C) The helices can have two orientations with respect to each other. They can
either be parallel, with the N-terminus adjacent to the N-terminus of its partner strand, or
antiparallel, where the N-terminus is adjacent to the C-terminus of its partner strand. (D) These
cartoons represent a cross section taken while looking down the superhelical axis of a dimeric
coiled coil. Coiled coils are made of a repeating unit known as the heptad repeat, denoted a-g.
Heptad positions are colored based on the amount of exposure to solvent, with dark grey
representing the most buried positions. Depending on the orientation of the helices (parallel vs.
antiparallel), different inter-helical heptad positions make direct contacts. For example, in the
parallel state a and a', as well as d and d', are adjacent to each other. In the antiparallel state a to
d' are adjacent to each other.
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1.3 Coiled coils as molecular reagents

Coiled coils have been applied to the manipulation of cell signaling pathways, the

construction of molecular electronics, and the design of polyhedra, just to name a few

applications (Bashor et al., 2008; Shlizerman et al., 2010; Gradigar et al., 2013). A list of several

applications can be found in Table 1-1. There are many reasons why coiled coils have been

widely used. They provide precise control over spatial arrangement. For instance, due to the

linear structure of a coiled coil it is possible to reduce or increase the length of the interaction

domain by removing or adding amino acids. Additionally, because coiled coils adopt different

oligomerization states, coiled coils can bring a small or large number of molecules together. The

surface positions of coiled coils can often play a minimal role in coiled-coil assembly (Mason et

al., 2009). As a result, these positions can be mutated to non-natural amino acids, or altered in

other ways, to confer novel functions on to the coiled coil (Li et al., 2008; Grigoryan et al.,

2011). Surface positions even provide a way to tune the stability of an interaction (Dahiyat et al.,

1997). Lastly, one of the major benefits of coiled-coil interactions is that with a small number of

amino acids, typically in the range of 35-42 amino acids, it is possible to encode complex PPI

networks (Reinke et al., 2010). This efficient encoding of information should facilitate the

transporting of these PPI networks into various synthetic biology and protein engineering

applications.
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Table 1-1. Applications of coiled coils.

COM-Co T -K1m Um

Parallel homodimer fined to zinc frmgers

Parallel heterodimer

Parallel homotrimer

Antiperaliel heterodimer and parallel hearodimers

Antiparallel homohexaner

Antipallel haterodimer

Parallel heterodimer

Antiparallel homodimer fised to p53

Parallel homotrimer

Parallel heterodimer and a parallel homotrimer

Antiparallel homodimers and parallel betaodimers

1.4 Synthetic coiled coils and design rules

Many of the applications involving coiled-coil parts require they adopt a unique structural

topology to function properly (Bashor et al., 2008; Shlizerman et al., 2010; Grigoryan et al.,

2011; Gradisar 2013). For instance, Shlizerman et al. described how antiparallel dimers and

parallel dimers alter the surface electronic properties of gold in different ways (Shlizerman et al.,

2010). In another example, Grigoryan et al. sought to coat single-walled carbon nanotubes
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Used in the design of an artifical tuascripdon factor.

Used to modulate the signaling dynamics of the ymaut MAP kinase pathway.

Used in the design of hydrogels.

Used to alter the surface electronic properties (Work function) of gold.

Used to assemble gold around a single-walled carbon nanombe.

Used to direct drug delivery to cancer cells in mice.

Used to create fibers and various nano cluC .

Used to design a protein-based filter that had nanometer sized pores.

Designed to adopt a pre-deternilned symmetry upon crystallization

Used to assemble into cages that were -80 nm in diameter.

Used in the de novo design of a protein-based tetrahedron

EF.

(Wolfe et al., 2003)

(Bashor et &i., 2003)
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(Shlizerman et aL, 2010)

(Grigoryan et al., 2011)

(Wu et al., 2011)

(Boyle et aL. 2012)

(Doles et al., 2012)

(Lanci et al., 2012)

(Fletcher et al., 2013)

(Gradilaret al., 2013)
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Figure 1-5. Coating SWNT with coiled coils. (A) Schematic looking down the axis of a SWNT
(hollow black circle). An antiparallel hexameric coiled coil, shown as a collection of gray circles,
wraps around the SWNT. (B) Shows the superhelical radius, Ro, proposed by Crick (Crick,
1953), for a hexameric coiled coil. It is measured from the point at the center of one helix, blue
circle, to a point that is equidistant to the center of all helices in the complex, red circle. Ro has
been measured for coiled coils of different oligomerization states (Grigoryan & DeGrado, 2011).

(SWNTs) with coiled coils (Figure 1-5A) (Grigoryan et al., 2011). When coiled coils form

higher-order oligomers, they can form pores, and if these pores are large enough, the cylindrical

SWNT can fit into it. The sizes of these pores depend on the oligomerization state of the coiled

coil (Figure 1-5B) (Grigoryan & DeGrado, 2011). The authors determined that a coiled coil

larger then a tetramer was needed to fully wrap around the SWNT, thus the authors designed an

antiparallel hexamer (Figure 1-5A). Additionally, adopting a unique topology was important to

the design of artificial transcription factors (Wolfe et al., 2003). The artificial transcription

factors were designed by combining dimeric coiled coils with DNA binding zinc-finger domains.

It was necessary that the zinc fingers remain on the same terminal ends of the coiled coil in order

to bind specific DNA binding sites, thus the parallel dimer topology was crucial to function.

To design coiled coils that adopt unique structural topologies in order to carry out their

function, it is necessary to understand the design rules that promote stability and specificity in a

particular topology (Table 1-2). A description of the known design rules that have been
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elucidated by the design of synthetic coiled coils, along with a list of some of the available

synthetic coiled-coils parts, will help future endeavors hoping to exploit coiled coils as molecular

reagents. More importantly it well help highlight the limitations of the existing coiled-coil parts

and direct future coiled-coil studies.

Table 1-2. Known coiled-coil design rules.

Physical Property Sequence-to-structure relationships (Design Rules)

* A decrease in chain length can weaken binding affinity.
Binding Affinity a Addition of residues with higher helical propensity at surface heptad positions b, c,

andfcan strengthen binding affinity.
* Polar or charged residues at heptad positions a and d can favor the formation of
dimers.
* Beta-branch residues at heptad positions a and d can favor the formation of parallel

Oligomerztion trimers.

e Leucine residues at heptad position a and beta-branch residues at heptad position d
can favor the formation of parallel tetramers.

* Placement of salt-bridge interactions (charge patterning) can preferentially stabilize
one orientation over the other (parallel vs. antiparallel).

Orientation * Asparagine residue pairs, that mismatch in the undesired orientation, will
destabilize this state.

* Beta-branched residues at heptad position d in the parallel dimer state can
destabilize the parallel dimer orientation.

* Placement of salt-bridge interactions (charge patterning) can preferentially stabilize
the desired interaction partner over an undesired partner.

Interaction Partner
* Asparagine residue pairs, that mismatch when bound to an undesired partner, will
destabilize this states.

The first few synthetic coiled coils were based on the consensus heptad sequence of

tropomyosin, (KLESLES at gabcdef heptad positions respectively) and are thought to adopt a

parallel homodimer configuration (St. Pierre & Hodges, 1976; Hodges et al., 1981; Lau et al.,

1984; Zhou, 1992). These studies helped to reveal many of the key design rules of coiled coils.

For instance, Zhou et al. studied how hydrophobicity in the core can stabilize the coiled coil

(Zhou et al., 1992). This was done by taking a designed sequence with leucine residues at all
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core a and d positions (except for one a site containing a cysteine) and making several new

constructs that had a pair of leucine residues at the a and d sites mutated to a pair of alanine

residues. The authors observed that each construct with an alanine pair was less stable then the

construct with an all leucine core. Additionally, the authors observed that alanine mutations

closer to the center of the coiled coil were more destabilizing than alanine mutations near the

termini. Lau et al. noted how increasing chain length increased stability in their synthetic peptide

(Lau et al., 1984). They worked with peptides that were 8, 15, 22, 29, and 36 residues long.

Peptides of less then 29 residues were shown not to dimerize. Of the peptides that formed

dimers, the 36-residue peptide was more stable than the one with only 29 residues. Thomas et al.

further verified this observation by using chain length to modulate the dissociation constants of a

set of parallel heterodimers (Thomas et al., 2013). The measured dissociation constants span the

micromolar to sub-nanomolar range.

Harbury et al. did mutational studies involving the core residues of the dimerization

domain of the GCN4 transcription factor, GCN4-pl (Harbury et al, 1993). The native GCN4

coiled coil forms a parallel homodimer, the structure of which was solved by O'Shea at al.

(O'Shea et al., 1991). These studies helped to reveal how side-chain packing of beta-branched

residues like isoleucine in the core influence the preferred oligomerization state of a coiled coil

through steric clashes (Figure 1-6). The sequences in this study were made up of various

combinations of leucine, isoleucine, and valine in the core. They were designed in such a way

that the a positions and d positions would be occupied by just one of these three types of

residues. Through analytical ultracentrifugation and size-exclusion experiments, the authors

learned that construct p-IL, with isoleucine at a and leucine at d, populated only the parallel
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homodimeric state. The construct, p-II, with isoleucine both at a and at d, populated the parallel

homotrimer state. The construct, p-LI, with leucine at a and isoleucine at d, populated the

parallel homotetramer state.

C

S N N N N

b

Heptad Register Parallel Dimer Bias Parallel Trimer Bias Parallel Tetramer Bias

Figure 1-6. Rules that govern oligomerization state bias of parallel topologies. The left-most
panel shows the heptad register mapped onto a helix. The remaining panels show how the
differential placement of isoleucine at heptad positions a and d can alter the oligomerization state
bias according to Harbury et al. (Harbury et al., 1993).

Fletcher et al. attempted to further validate Harbury's design rules by engineering another

set of parallel homo- dimers, trimers, and tetramers with different e, g, b, c, and f residues from

Harbury's designs (Fletcher et al., 2012). When isoleucine was placed at all a and all d positions,

or when leucine was placed at all a positions and isoleucine at all d positions, the designs formed

the expected oligomerization states of a trimer and tetramer, respectively. However, when

isoleucine was used at all a positions, and leucine was used at all d positions, a trimer instead of

a dimer was observed. The authors then looked at native parallel homo- dimeric and trimeric

coiled-coil sequences, and observed that isoleucine at a was not significantly enriched in dimers

over trimers. Trimer sequences however are enriched at isoleucine at d. In order to destabilize the

trimer state, and recover the dimer they intended to design, the authors mutated one isoleucine in

the core to an asparagine. Analytical ultracentrifugation studies, and X-ray crystallography

confirmed that the new asparagine-containing sequence formed a dimer. Additionally, the authors

noted that the original p-IL design formed a dimer and or a trimer in their analytical
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ultracentrifugation experiments depending on the concentration used in the experiment, thus

reconciling their work with that of Harbury et al. The work of Fletcher et al. is also consistent

with a tetramer designed by Betz and DeGrado (Betz & DeGrado, 1996). Betz and DeGrado

designed a series of antiparallel homotetramers. One of their designed sequences contained

valine at all a positions and leucine at all d positions. This sequence formed a homotetramer

according to analytical ultracentrifugation. The sequence was designed such that b and e

positions, as well as the g and c positions on different helices could only interact in an

antiparallel tetramer state. This provided another example that beta-branched residues in the core

a position aren't sufficient to dictate dimerization.

O'Shea et al. studied the effect that electrostatics at the e and g positions have on coiled-

coil formation (O'Shea et al., 1993). Two designed peptides, Acid-pl and Base-pl, form a

parallel heterodimer. The authors used charged residues at the e and g position to promote the

heterodimer state over the two-homodimer state. Additionally, each of Acid-pl and Base-pl have

an asparagine at an a position of the coiled coil that destabilizes the antiparallel state. The

authors observed that charged residues at e and g positions had more of an impact on

destabilizing the homodimer state than on stabilizing the heterodimer state. They concluded that

in this system electrostatic repulsion is more important to interaction specificity than electrostatic

attraction.

Monera et al. designed a model antiparallel heterodimeric coiled coil, to facilitate

learning antiparallel dimer design rules (Monera et al., 1993). These authors used almost the

same sequence for their design as the Zhou et al. study based on the consensus sequence of

tropomyosin, as mentioned above. Disulphide-exchange studies revealed that this sequence

27



preferred the parallel configuration. The authors subsequently re-designed the charges at the e

and g positions to be attractive in the antiparallel state and repulsive in the parallel state, which

improved the preference of the antiparallel sequence. Oakley et al. designed another antiparallel

heterodimer (Oakley & Kim 1998). The authors made a variant of Acid-pI/Base-pi. They shifted

the asparagine in both the Acid and Base sequence such that it could only form an interchain

hydrogen bond in the antiparallel state. This single asparagine stabilized the antiparallel state by

2.3 kcal/mol relative to the parallel state. The new sequence was named Acid-al/Base-al.

McClain et al. went on to make additional mutations of the Acid-al/Base-al construct (McClain

et al., 2001). This variant was named Acid-Kg/Base-Eg. The electrostatics were altered so that

stabilizing interactions were formed only in the antiparallel state, with many predicted repulsions

in the parallel state. The combined use of charge patterning and an asparagine-asparagine

interaction stabilized the antiparallel state by at least 4.4 kcal/mol relative to the parallel state.

Gurnon et al. and Pagel et al. each designed antiparallel coiled-coil homodimers (Gurnon

et al., 2003; Pagel et al., 2005). Each design used charged residues at the e and g position to

destabilize the parallel state, as was done for the anti-parallel heterodimers discussed above.

However, Gurnon et al. used two more design rules to stabilize the antiparallel state over off-

target states. The authors used a charged residue in a core d position to destabilize higher-order

states (McClain et al., 2002). It is thought that d positions are completely buried in higher-order

states, preventing the charge residues from being properly solvated. However, the d sites in

dimeric coiled coils are more easily accessible by solvent. This may allow charged residue at d

sites to interact with water, thus biasing the formation of dimers. Gurnon et al. also placed an
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isoleucine in the core d position such that it would sterically clash with itself in the parallel state,

as mentioned earlier.

Though many design rules have been elucidated that preferentially stabilize one topology

over another (Table 1-2, Figure 1-7), a model that can quantitatively compare and appropriately

weight the influence of these different interactions does not exist. And it is still unclear whether

Positive Design
A.

N N

Asparagine Matching

B.

N N

Beta-Branch Non Clashing

C. - - - -

N N .

Negative Design

N N

Asparagine Mismatching

N N

Beta-Branch Clashing

N N

Figure 1-7. Negative design rules shown on parallel dimers. Three design rules that can
preferentially stabilize a target state over off-target states are shown with helical wheel
representations of parallel dimeric coiled coils. The left column shows examples of when these
interactions stabilize a state. The right column shows examples of when these interactions
destabilize a state. (A) Shows asparagine matching and mismatching. (B) Shows non-clashing
and clashing beta-branch residues. (C) Shows both attractive (blue) and repulsive (red)
electrostatic interactions.
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all design rules have been uncovered, as several attempts to design coiled coils have met with

complications . For example, Hill and DeGrado attempted to design a coiled coil made up of a

helix-loop-helix that dimerizes into an up-down-up-down helical bundle (Figure 1-8A) (Hill &

DeGrado, 1998). The construct the authors designed however obtained a bisecting U motif

(Figure 1-8B). Another example by Fletcher et al., as mentioned earlier, attempted to design a

parallel dimer topology using rules about beta-branch residues, however their first design attempt

formed a parallel trimer. Lastly, Grigoryan et al. attempted to design sequences to be specific for

one representative member of the 20 human basic region leucine zipper (bZIP) transcription

factor families, which form parallel dimeric coiled coils (Grigoryan et al., 2009). Despite the

success achieved by Grigoryan et al., nearly half the design sequences bound off-targets more

tightly then the intended interaction partner.

A. B.

S'U.

Up-down-up-down Helical Bundle Bisecting U Motif

Figure 1-8. Schematics of two four-helix bundle topologies. Gray circles represent helices,
with terminal ends labeled N or C. The loop connectivities are shown with dashed lines for loops
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into the page, and solid lines for loops out of the page. (A) Shows an up-down-up-down helical
bundle. (B) Shows a bisecting U motif.

1.5 Coiled-coil databases for synthetic biology

As the sequence to structure relationship of coiled coils has become more established,

several groups have begun to design libraries of coiled-coil reagents containing various types of

interaction networks, to be used for synthetic biology and protein engineering. In a noteworthy

study by Reinke et al., all interactions among 22 peptides that form 27 synthetic heterodimers

were determined using a protein microarray (Reinke et al., 2010). These synthetic coiled-coil

peptides were referred to as SYNZIPs. Thompson et al. further characterized the biophysical

properties of SYNZIPs by measuring their helix orientation bias, oligomerization states, and

affinities, as well as by evaluating whether the SYNZIPs oligomerize in cells to down-regulate

the expression of a reporter gene (Thompson et al., 2012).

As large data sets of coiled-coil parts emerge, several groups have created depositories to

aid synthetic biologists and protein engineers in search of existing coiled-coil parts. For instance,

specification sheets listing the properties of the SYNZIP sequences can be found at the SYNZIP

website [http:// keatingweb.mit.edu/SYNZIP/]. Additionally, information on the constructs

engineered by the Woolfson group has been deposited in the Pcomp database [http://

coiledcoils.chm.bris.ac.uk/pcomp/]. It should be noted that both these databases are dominated

by parallel dimers. 96% of the SYNZIP sequences form parallel heterodimers. -63% of the
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Pcomp database form parallel homo- or heterodimers. Designing coiled coils that are not parallel

dimers will thus expand the coiled-coil toolkit in a meaningful way.

1.6 Design of orthogonal coiled-coil interactions

As the design of sequences that can adopt a single coiled-coil topology in solution has

become more standard, several groups have begun to attempt the design of coiled-coil interaction

networks. Of particular interest to synthetic biologists and protein engineers are orthogonal PPIs,

i.e., sets of PPIs that do not interact with each other (Kapp et al., 2012; Gradigar et al, 2013).

Gradisar and Jerala considered hydrophobic packing, buried polar residues, and electrostatics in

the de novo design of four orthogonal parallel heterodimers that are four heptads long (Gradisar

& Jerala, 2010). All 36 possible pairs of the eight sequences designed to fold into four parallel

heterodimers were measured using circular dichroism (CD). Sequences designed not to interact

often gave CD spectra characteristic of a random coil. The four pairs of sequences designed to

interact gave CD spectra indicative of a -helical structure, providing good evidence of success.

Bromley et al. carried out a similar successful study. Their orthogonal designs were a set of

parallel heterodimers as well, but their designs were three heptads long (Bromley et al., 2009).

Despite the successful design of these orthogonal parallel heterodimer sets, Gradisar et al.

have argued that a current limitation to using coiled coils as molecular reagents is still the

number of orthogonal coiled-coil pairs that are available (Gradigar et al., 2013). The authors

argued this based on a strategy they put forward to design polyhedra of arbitrary shape from

concatenating orthogonal coiled-coil dimers onto a single chain. The coiled-coils are intended to
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dimerize on the chain, forming the edges of the polyhedra. Using graph theory they determined

that the design of most polyhedrons require both parallel and antiparallel dimers. Yet, not only

are the current sets of orthogonal coiled coils small, but none of the synthetic coiled coil sets

contain orthogonal antiparallel dimers. This highlights the importance of expanding the number

of orthogonal antiparallel coiled-coil dimers for constructing protein polyhedra of arbitrary

shape.

1.7 Summary of thesis content

This thesis describes the computational design and experimental characterization of

several orthogonal antiparallel homodimeric coiled coils. The multi-state computational design

framework known as CLASSY was used for this design problem. One of the benefits of the

CLASSY framework is that it can design multiple orthogonal PPIs simultaneously. This is in

contrast to the second-site suppressor strategy developed by Kortemme, which only designs one

orthogonal pair at a time (Kortemme et al., 2004). Antiparallel homodimers are underrepresented

in the toolkit of coiled-coil parts, and as described above, modular-orthogonal parts have been

shown to be in great demand by the synthetic biology and protein engineering communities.
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Chapter 2

Multistate Protein Design Using CLEVER and
CLASSY

Reproduced with permission from: Negron, C., & Keating, A. E. (2013) Multistate protein
design using CLEVER and CLASSY. Methods in Enzymology, 523, 171490.

Structure-based protein design is a powerful technique with great potential. Challenges in two

areas limit performance: structure scoring and sequence-structure searching. Many of the

functions used to describe the relationship between protein sequence and energy are

computationally expensive to evaluate, and the spaces that must be searched in protein design are

enormous. Here, we describe computational tools that can be used in certain situations to provide

enormous accelerations in protein design. Cluster expansion is a technique that maps a complex

function of three-dimensional atomic coordinates to a simple function of sequence. This is done

by expanding the sequence-energy relation as a linear function of sequence variables, which are

fit using training examples. Generating a simpler function speeds up scoring dramatically,

relative to all-atom methods, and facilitates the use of new types of search strategies. The

application of cluster expansion in protein modeling is new but has shown utility for design

problems that require simultaneous consideration of multiple states. In this chapter, we describe

cases where cluster expansion can be useful, outline how to generate a cluster-expanded version

39



of any existing scoring procedure using the software CLEVER, and describe how to apply a

cluster-expanded potential to multistate protein design using the CLASSY method.

2.1 Introduction: Accomplishments and limitations of structure-based design

Nearly 30 years ago, Drexler suggested that proteins had the potential to be manipulated

to create molecular machines with predefined functions (Drexler, 1981). At that time, a realistic

strategy for designing proteins rationally could not be envisioned in detail. Several groups

subsequently tackled protein design using computational structure-based methods, culminating in

the first fully automated design of a folding protein sequence in 1997 (Dahiyat, Gordon, &

Mayo, 1997). Many researchers have now demonstrated impressive accomplishments in this

area, including the engineering of protein inhibitors of therapeutically relevant targets

(Fleishman et al., 2011), the creation of novel enzymes (Jiang et al., 2008; Rothlisberger et al.,

2008), and the assembly of molecular structures that incorporate proteins and other materials

(Grigoryan et al., 2011). Modem structure-based design requires two things: an energy function

for evaluating candidate sequences and an algorithm that can search the enormous space of

sequence-structure possibilities. The requirements for each are linked because the nature of the

scoring function dictates what kinds of searches are possible. One of the many limitations of

commonly used scoring functions is that they can be costly to calculate. For example, all-atom

scoring functions must, at a minimum, evaluate interactions between all pairs of atoms that lie

within a prescribed distance. Computing electrostatic interactions can be particularly expensive,

depending on the method used. Several techniques have been developed to increase the speed of
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energy evaluation. For example, Leaver-Fay et al. implemented a tree data structure in

RosettaDesign to eliminate redundant calculation of atom-atom interactions, and this gave a

four-fold speedup in the calculation of pairwise energy terms (Leaver-Fay, Kuhlman, &

Snoeyink, 2005). Many groups have also worked on speeding up the search component of

design. Early recognition that optimal search strategies using algorithms such as dead-end

elimination (DEE) are often too slow for real design problems led to widespread adoption of

stochastic sampling methods such as Monte Carlo optimization with simulated annealing and

genetic algorithms (Havranek & Harbury, 2003; Kuhlman et al., 2003; Voigt, Gordon, & Mayo,

2000). FASTER is a particularly noteworthy stochastic sampling method that was shown to be

100-1000 times faster than DEE (Desmet, Spriet, & Lasters, 2002) and subsequently improved

further (Allen & Mayo, 2006). Despite these innovations, design problems involving large

proteins, extensive structural sampling, or a large number of states can still be computationally

intractable. In this chapter, we focus particularly on challenges posed by multistate design. In a

multistate design problem, the designer is concerned not just with a single desired structure or

function of interest but with numerous states either desired or undesired. For example, when

designing dominant-negative inhibitors, it is important to avoid self-interaction or interactions

with other proteins in the cell (Chen, Reinke, & Keating, 2011). Harbury was among the first to

treat multistate design, designing topologically specific coiled-coil structures using multiple

backbone templates (Harbury, Plecs, Tidor, Alber, & Kim, 1998). Since then, several groups have

proposed different approaches (Allen & Mayo, 2010; Bolon, Grant, Baker, & Sauer, 2005;

Havranek & Harbury, 2003; Humphris & Kortemme, 2007; Leaver-Fay, Jacak, Stranges, &

Kuhlman, 2011; Yanover, Fromer, & Shifinan, 2007; Kortemme et al., 2004; Sammond et al.,
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2010), and several excellent reviews cover this topic (Erijman, Aizner, & Shifinan, 2011;

Havranek, 2010; Karanicolas & Kuhlman, 2009). In one example from our laboratory, Grigoryan

et al. used multistate design to engineer specific binding partners for representative members of

20 human basic-region leucine zipper (bZIP) transcription factor families (Grigoryan, Reinke, &

Keating, 2009). For this purpose, a novel computational solution provided both a dramatic

acceleration of energy evaluation and an efficient way to search a complex, multistate design

landscape. The approach used a method called cluster expansion (CE) to convert structure-based

models of protein energetics into sequence-based models. Grigoryan et al. showed that CE can

speed up energy calculations by seven orders of magnitude (Grigoryan et al., 2006).

Furthermore, the use of cluster-expanded energy functions allowed a novel application of integer

linear programming (ILP) to solve the multistate design problem. With the expectation that this

approach can be applied to other problems in protein design, we illustrate the use of the open-

source program CLEVER 1.0 to generate CE scoring functions, and discuss how such energy

functions can be used in conjunction with ILP in the multistate design method CLASSY.

2.2 Theory

CE is a general technique for deriving a simple linear function that approximates a

complex mathematical expression. It involves fitting a set of coefficients to describe a space

covered by a user-defined set of relevant variables. CE is used extensively in modeling alloys (de

Fontaine, 1994; Sanchez, Ducastelle, & Gratias, 1984), and Zhou et al. demonstrated how to use

CE to score the fitness of a protein sequence for a given protein structure (Zhou et al., 2005).
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That is, these authors showed how to apply CE when the complex mathematical expression to be

described is the energy of a protein sequence adopting a particular three-dimensional structure.

In this application, the energy of a protein sequence is written as an expansion around a reference

sequence, with energies from specific amino acids and groups of amino acids contributing to the

expansion. Two key assumptions are that lower order terms such as interactions between pairs of

amino acids at pairs of sites contribute more to the energy than higher order clusters involving

many residues, and that, consistent with this, a limited number of residue interaction terms are

sufficient to approximate the energy of a protein. These assumptions are well aligned with the

physical intuition of structural biologists, who expect short-range pairwise interactions to

dominate an energy expression. A brief description of the theory of CE as used for protein

energetics is presented here. For a more detailed description, see Grigoryan et al. (2006). Let the

variable al index the amino acid at site i. If there are M allowed amino acids at site i then ai can

take the values from 0 to (M-1). For a protein of length L amino acids, values of i range from 1

to L, and an amino acid sequence is represented by the vector a = [ai . . aL]. The energy of a

sequence, E(a), based on an expansion around a reference sequence, is expressed as:

I I JfrI

The J parameters are effective cluster interaction (ECI) values. Jo is a constant term that reflects

the energy of the reference sequence, and the other J values give the contributions of amino acids

and amino acid combinations relative to this reference. a represents the energetic contribution

of a single amino acid ai at site i, and a'a represents the energetic contribution from a pair of

amino acids ai and ai at sites i andj, etc. All higher order interactions, up to L-body terms, would
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be needed to obtain an exact expansion. The goal in deriving a CE is to find a minimal set of ECI

values that provide an accurate estimate of the energy. ECI values are eliminated by truncating

the expansion so that it does not include high-order terms, and by testing ECI values that capture

low-order terms to confirm that they make important contributions (and, if they do not, removing

them as described below). ECI values are determined by fitting, using a training set of sequences

for which the correct function value according to some model or experiment is known. In our

application, this is the protein energy E(a) computed using an all-atom model. Based on Eq. (1),

for any training set with N sequences we can write

E =XJ (2)

where E is an N-dimensional column vector of energies for the training sequences, J is a P-

dimensional column vector of ECI values, and X is an NP binary matrix indicating which

residues and combinations of residues contribute to the energy in each training sequence. The

presence/absence of different sets of residues is stored in "cluster functions" (or CFs) that

compose matrix X. For example, a CF indicating the presence of alanine at site 1 and leucine at

site 2 in a protein would evaluate to 1 for a given sequence only if that sequence had that

combination of amino acids and to 0 otherwise. Each CF has an associated ECI. For a given set

of CFs, the training-set sequences and their energies define matrix X and vector E in Eq. (2).

When there are more training sequences than ECI values, the system is over-determined, which

allows techniques such as least-squares fitting to be used to find the optimal values for the

unknown parameters J. The procedure used by CLEVER 1.0 to select CFs/ECIs to be included is

described in Figure 2-1 and more details can be found in Hahn et al., (Hahn et al., 2010). At the

outset, the user defines a set of candidate CFs (candidate amino acid combinations) likely to
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contribute significantly to the total energy. An iterative procedure is then used to determine

which of these should be included in the final expansion, using a leave-sequence-out cross-

validation procedure to avoid overfitting. After fitting, the accuracy of the expansion can be

evaluated by scoring another set of sequences, known as the test set, with both the original

energy function and the cluster-expanded version of it.
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Contains a list of design sites -96.6 V L A I I V

along with the Dani acid -83. 9 A L L F F I
choices fOr those sites. -95.2 L A V L L V
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Figure 2-1. Procedure for fitting a cluster expansion. Two inputs are required to train a cluster
expansion for protein design using the CLEVER package: the design file (see Figure 2-2) and the
training-set file. The design file lists a set of candidate cluster functions (CFs) and defines the
sequence space the user is interested in describing. The training-set file provides a set of
sequences with associated energies. The fitting procedure fits a subset of the variables listed in
the design file to reproduce the training-set data. In our implementation, the constant and point
CFs are always included in the fitting process. To avoid overfitting, pair and higher order CFs are
incrementally added, following an order that is predetermined at an early stage of the fitting
routine. The progress of the fitting is monitored using the cross-validated root mean square
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(CVRMS) error. When a new CF is added, all terms are refit, and a new CVRMS is calculated. If
the CVRMS score improves by at least A, the new CF is accepted and used in the final
expansion. If the CVRMS does not improve, the fitting process ends. The goal is to find the
smallest number of CFs that must be included to give a good model.

2.3 Benefits offered by cluster expansion in protein modeling and design

There are several reasons a protein modeler or designer might want to develop a cluster-

expanded version of their energy function of interest. To understand these, it is necessary to

focus on what CE delivers, which is an approximate version of a scoring procedure that is

extremely rapid and convenient to evaluate. The cost of obtaining this benefit is the diminished

accuracy of the CE function and the time required to develop it. Also, it should be emphasized

that in all cases tested so far, the relationships derived between sequence and energy using CE

have assumed conservation of the underlying protein backbone structure for all sequences. That

is, CE delivers a structure-specific scoring function. Apgar et al. observed good performance

when cluster expanding structure-based models that included some treatment of backbone

flexibility, but these structural changes were very small (Apgar, Hahn, Grigoryan, & Keating,

2009). CE provides a significant speedup to energy evaluation and thus will be of greatest benefit

when the energy evaluation confronted in design is especially challenging. For example,

electrostatic energies are often treated in a very crude way in protein design, in order to make the

resulting functions expressible as a sum over residue pairs. More accurate functions can be much

more costly to compute (Lippow, Wittrup, & Tidor, 2007). CE provides an attractive solution in

such cases, and Grigoryan et al. explored the expansion of various scoring methods including a

generalized Born treatment of electrostatics (Grigoryan et al., 2006). In another, more extreme
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example, CE can be used when protein energies are determined experimentally for a training set

of interest. The time and expense of experimental protein characterization means that only a part

of sequence space will ever be covered this way. But if sufficient examples are available, it may

be possible to train a CE expression that can be used to guide protein design. Hahn et al.

presented an example of using experimental data to train a CE for SH3 domain protein-peptide

interactions (Hahn et al., 2010). Importantly, CE energy expressions also help address the search

problem in design. Beyond just speeding up standard Monte Carlo searches, CE energy functions

can be used to formulate protein design as an integer linear program in sequence space. The ILP

provides provably optimal solutions and flexibility in optimization (see below). Another

advantage stems from the fact that in multistate design, the best approach for combining the

scores of many states into one objective may not be clear. Deriving CE functions for all of the

states allows facile searching and researching using a variety of different objectives and also

allows tradeoffs to be rigorously explored, for example, between optimizing stability and

specificity. This is discussed further below, where we illustrate one way to do this. Overall, the

suitability of CE for a particular problem will depend on many things, including the accuracy

with which a desired scoring method can be approximated by its expansion. Previous work has

shown that this varies considerably for different scoring functions and different structures. When

a cluster-expanded scoring method has low error, it provides a tremendous advantage to the

search part of the problem and is worth the cost of fitting. When the error is moderate, CE may

still provide a useful filter to help identify promising parts of the sequence space that can then be

examined in more detail with more expensive calculations. As more work is done, it will become

easier to judge those problems for which CE will provide the greatest benefit.

47



2.4 How to run a cluster expansion with CLEVER 1.0

Hahn et al. created the open-source package CLEVER 1.0, available at http://

web.mit.edu/biology/keating/software/, to aid users in developing their own CE models (Hahn et

al., 2010). Here, we provide an overview of how to use CLEVER to cluster expand an arbitrary

scoring method provided by the user. The discussion is geared toward a new user of the program.

More details can be found in the original papers. Instructions for installing CLEVER 1.0 can be

found in the cleveri.0 manual at http://web.mit.edu/biology/keating/software/, or in the docs

subdirectory that is created when unzipping cleveri .0-package.zip.

There are three executable modules in the CLEVER 1.0 package. First is the GenSeqs

module, which can help the user generate sequences for both training and testing a CE. The

second executable is the CETrFILE module. This program executes the crucial step of fitting the

ECI values, as described in the theory section. The third module is the CEEnergy module, which

uses the CE trained by CETrFILE to score sequences. This module can be combined with other

data to assess CE performance.

2.5 GenSeqs

The GenSeqs, or Generate Sequences, module helps with the preparation of unique

training and test-set sequences. It requires two inputs. The first is the desired number of training

sequences the user would like GenSeqs to return. A rule of thumb is to use at least 2.5 times the

number of training sequences as the number of CFs, although a larger number can reduce the
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error, as discussed in some detail in Hahn et al. (2010). The other input for the module is the

design file, which is crucial to many aspects of the CLEVER package. An example design file is

shown in Figure 2-2. The design file states which amino acids are allowed at each of the design

sites. It is not necessary to include any site where residues will not be changed. Given the

appropriate input, GenSeqs generates random sequences by selecting amino acids uniformly

from the allowed amino acids at each of the sites. Each sequence generated is checked for

uniqueness such that the training set contains no repeated sequences. In addition, the -o flag

combined with the training-set file can be used to generate test sequences not present in the

training set. It should be noted that sampling uniformly from the set of amino acids at each of the

positions may not provide a good description of the sequence space the user wants the CE to

cover. For example, some amino acid substitutions at certain sites may be considered much more

common or important, and a user might want to include these with higher frequency. In such a

case, the user should generate sequences using their own distribution for the amino acids at each

of the sites. An example command line for GenSeqs that would generate 3000 random sequences

based on information in design.file is

GenSeqs -n 3000 -d design.file
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# Designstart
1AVLIF
2AV LiF
3 AV LI F
4AVLIF
5 A V L I F
S6AVLI F
# Designend
# Clusterstart

2

3

12
13
14

# Clusterend

Figure 2-2. Example design file. On the left is a structure of streptococcal protein Glfrom
crystal structure lPGA (Gallager, Alexander, Bryan, & Gillard, 1994). The CP atoms of the six
sites chosen for variation in design are shown as spheres. For clarity, only subsets of the possible
pair interactions between the sites are shown as dashed lines. On the right is a sample design file.
It is composed of two parts. The first half lists sites where the sequence will vary, and these sites
are known as design sites. Each design site line lists the amino acids that will be allowed at that
site. In the second half of the design file, the user lists the cluster functions to consider for
inclusion in the expansion. A user must list all single sites. Only a subset of the cluster functions
used for fitting in this example is shown.

2.6 CETrFILE

The CETrFILE, or CE Training File, module uses the procedure in Figure 2-1 to fit ECI

values. This is the heart of the CE method. The module requires two inputs. The CETrFILE
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module, like GenSeqs, requires a design file. As mentioned earlier, the design file states which

amino acids are allowed at each of the design sites. The first amino acid in each design site

position is taken as the reference amino acid for that position. The design file also lists which

single and higher order interactions among the design sites should be considered during fitting.

This is an important choice, made by the user, which can strongly influence performance. There

must be a single body term for each of the design sites in order for the code to run; inclusion of

pair or higher terms is optional. The second required input is the training-set file, which includes

a list of energies paired with sequences. An example of the format for this file can be found in

the clever 1.0 manual. Briefly, this file should have a column of energies that can come from any

source. Each energy is followed by the sequence of residues at the design site positions. All

sequences should be the same length because all sequences should have the same number of

design sites. CETrFILE outputs several things to "standard out" such as a table containing all of

the ECI values for all of the CFs. CETrFILE also outputs a binary file containing ECI values

trained from the input data. An example command line for CETrFILE is

CETrFile -d design.file -s sequence file -r training. result

2.7 CEEnergy

CEEnergy scores sequences with the derived CE. This module uses the binary output of

CETrFILE, for example, training.result, and a sequence file with a list of test sequences. The

format of the test-sequence file is the same as the training-sequence file, except the energy

column is not used. To get a good idea of expected performance on new problems, test sequences
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should not overlap with sequences that the CE was trained on. Test sequences are specified using

only the design site residues. An example command line for CEEnergy is

CEEnergy -r training.result -s sequence file

2.7 Cluster expansion case study

In this section, we provide a simple illustrative example of how the RosettaDesign

conformational energy of selected sites in streptococcal protein Gl can be cluster expanded

using CLEVER 1.0. The Gol structure is composed of an alpha helix lying across a beta sheet

made up of two beta hairpins. Dahiyat et al. choose the Go1 domain as one of the first targets for

redesign using automated software (Dahiyat & Mayo, 1997). Unlike coiled coils, for which CE

has been used in numerous published examples (Apgar et al., 2009; Grigoryan et al., 2006; Hahn

et al., 2010; Zhou et al., 2005), Gol lacks any structural or sequence symmetry and thus

represents a generic globular fold. Here, we select only a few residues for modeling, to keep the

example very simple.

The first step is to create a design file as shown in Figure 2-2. We selected six positions in

and around the core of the GPl structure to vary and designated these as design sites, labeled 1

through 6, in the design file. Our choices correspond to residue positions 5, 7, 20, 26, 30, and 34

in PDB structure 1PGA (Gallager et al., 1994). We allowed the same small set of hydrophobic

residues (A, V, L, I, and F) at each of these mostly buried positions. Alanine is listed first for

each design position and serves as the reference at each site. In the bottom half of the design file,

we specified the interactions between the design sites that should be considered for CE. Only
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single and pair interactions between residues were considered, for simplicity, though it is

possible to include triplets of amino acids or even higher-order terms. Higher-order terms may

improve the accuracy of a CE, and suggested techniques for choosing them can be found in

(Grigoryan et al., 2006). In this case study, we considered 15 pair clusters and 25 possible amino

acid combinations for each pair, resulting in 375 ECI values to be fit. To fit these terms, 2000

random training sequences, drawn from the possible design space of 56= 15,625 sequences, were

generated using the GenSeqs module. The training sequences were modeled on the 1PGA

structure and scored using RosettaDesign with the "soft-potential" and "minimize side-chain"

flags. For simplicity, only the side chains of the design site residues were optimized. All other

side chains were fixed in their crystal-structure coordinates. The corresponding RosettaDesign

energy was then paired with each of the 2000 training sequences to make the training-set file,

which spanned an energy range over 70 Rosetta energy units (also referred to as kcal/mol). The

training-set file and the design file were used to train a CE using the CETrFILE module. Once a

CE is trained, it is crucial to evaluate its accuracy, as this can vary widely based on the type of

problem, the selection of candidate CFs, and the underlying scoring method being approximated

(Apgar et al., 2009; Grigoryan et al., 2006; Hahn et al., 2010). The CETrFILE module reports the

cross-validated root mean square (CVRMS) error. This is a metric for assessing how well the

results of a predictive model generalize to an independent data set. In this specific example, it is

a measure of how well the CE would be expected to predict the RosettaDesign energy of a

sequence threaded onto the Gfl structure. CE of the RosettaDesign energy function on the

1PGA structure gave a CVRMS score of 1.5 kcal/mol, as shown in Figure 2-3A. An additional

test of the error is to generate a test set of sequences, independent of the training set, and score
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them using both the structure-based method and the newly derived CE. For our example, the

GenSeqs module was used to generate 2000 test-set sequences nonoverlapping with the training

set that spanned an energy range of nearly 80 kcal/mol. The root mean square deviation (RMSD)

between the scores for the test-set sequences derived from the CE model and the structure-based

model was 1.6 kcal/mol, which is shown in Figure 2-3B. Overall, this CE performed very well at

approximating the structure-based method it was derived from. The example shown here is very

simple. Often, good performance requires refinement of the expansion protocol. There are

several techniques for reducing error discussed by Hahn et al. (Hahn et al., 2010). For example,

introducing higher order CFs such as triplets, increasing training-set size, or decreasing the

number of variable amino acids are approaches for reducing error. Additionally, Hahn et al.

presented techniques for identifying and removing from the design space CFs that are

particularly poorly fit.

(A) 12 0 Const CF A Point CFs 0 Pair CFs -30 RMSD = 1.6 kcal/mol R2 = 0.98

A

6 -80

3 1-105

0 -130
0 30 60 90 120 150 -130 -105 -80 -55 -30

Number of cluster functions Rosetta Energy (kcal/mol)

Figure 2-3. Cluster expansion error in the GP1 example. (A) Evolution of the CVRMS as
CFs were added to the model. The type of CF added in each iteration is indicated by shape, as
shown in the legend. A total of 122 CFs were added, giving a CVRMS of 1.5 Rosetta energy
units (also referred to as kcal/mol). (B) The performance of the cluster expansion on 2000
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randomly generated sequences not included in the training set. The RMSD between the CE test-
set energies and the RosettaDesign test-set energies was 1.6 kcal/mol.

2.9 Using cluster expansion with integer linear programming

As mentioned earlier, CE energy functions are amenable to linear optimization

techniques. Grigoryan et al. combined CE with ILP, resulting in the computational protocol

called CLASSY (Chen et al., 2011; Grigoryan et al., 2009). The use of ILP for protein design

was described previously by Kingsford et al. and is most easily explained for single-state design

using the graph shown in Figure 2-4. Here, each cluster of nodes represents a design site with the

associated nodes corresponding to design choices (Kingsford, Chazelle, & Singh, 2005). For

Kingsford et al., these choices represented different conformations of one or more residues; in

our case, they represent different residues because we are designing at the sequence level. A

design solution corresponds to selecting one node at each site and connecting the selected nodes

into a fully connected graph. A brief description of the ILP protocol for protein design based on

this graph now follows.
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Residue
Design Site - CoiceV1 V2 Choices

VV

L

Figure 2-4. Integer linear programming (ILP) formulation for protein design. Each design
site consists of nodes representing the allowed residue choices at that position. Edges between
nodes represent interactions between those nodes. Our Gpl1 example had six design positions
with five choices at each position. One set of nodes and the corresponding edges are highlighted
to show one possible design solution.

Using notation similar to Kingsford et al., the sequence space for designing a protein L

amino acids long can be represented with a node set V = Vi U. . .U VL. Each subset, V,, contains

a set of nodes that represent the possible amino acids at site i. Nodes (u) of V1 have a weight

( ETu ) representing the energetic contribution of that node to the target structure, T. Edges

between nodes of the graph D ={(u,v):uEVi and v EVj , i#]j} also have a weight corresponding to

the energetic contribution of that edge (E uv) to the target structure. ET represents the energy of
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a sequence as evaluated by the CE model. ET is obtained by summing over the node energies

Eu ) and edge energies (Ev ). When using a cluster-expanded scoring method, both types of

contributions can readily be written as sums of linear terms in sequence variables. Thus,

minimization of the total energy (Eq. 3) can be done in sequence space using ILP, the only

requirement being addition of constraints that enforce a unique and consistent choice of amino

acid at each site; this can be done using Eqs. (4)-(6). Equation (4) forces the design solution to

have only one amino acid at each design site. Equation (5) can then be used such that only the

edges from the amino acid being chosen at each design site are used for edge energies. In Eq. (6),

the terms xuu and xu, are the optimization variables and can have values of 0 or 1 corresponding

to the absence or presence of a node or an edge, respectively.

Minimi : E' - Ex.x + Erx, (3)
a~V {(ev)ED

subject to:

-x&w . for j =l1... LandvG=V\V, (5)

x,xX E{, } (6)

ILP has several attractive features for protein design. First, it is an optimal search technique and

thus ensures, if any solution is returned, that it will be the global minimum energy according to

the cluster-expanded scoring method. Second, we have found in practice that for protein design

problems of the type described here, the ILP optimization converges reliably and quickly.

Further, ILP readily accommodates the addition of arbitrary constraints that are linear in the

optimization variables. Such constraints can include limits on the sequence composition or total
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charge or helical propensity. Grigoryan et al. constrained designed sequences to have at least a

minimum score based on a position-specific scoring matrix; this was used to ensure that designed

sequences resembled natural sequences in their overall characteristics (Grigoryan et al., 2009). In

our Gopl example, ILP can be used to find the lowest energy sequence on the Gopl template. In

this case, the values u correspond to point ECI values, while the values for uv come from

the ECI values for pair interactions. For a multicriterion problem, a user can add constraints, for

example, restricting solutions that are similar to the wild-type sequence. An example of such a

WTconstraint can be seen in Eq. (7). Here, u takes on the value: 0.16 (one out of six sites) for

wild-type residues at their respective positions and 0 for all other residues at those positions. A

user can then define the maximum allowed sequence identity between the design solution and the

wildtype sequence of Gl.

WTx.. < Allowed _SeqID (7)

An open-source tool kit for solving ILP problems can be found at http://www.gnu.org/software/

glpk/ and can be used with any CE of the type described here.

2.10 CLASSY applied to multistate design

As mentioned in Section 2.1, Grigoryan et al. used CE to design specific peptide

inhibitors for human bZIP proteins (Grigoryan et al., 2009). The bZIPs are transcription factors

that can homo- and/or heterodimerize by forming a parallel coiled coil. They provide an

interesting design challenge because, due to the extensive sequence similarity between different
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bZIPs, designing a peptide to specifically interact with one bZIP but not others is challenging

(Mason, Muller, & Arndt, 2007). Grigoryan et al. selected one member of each of the 20 human

bZIP families as a target for design and used members of the remaining families as examples of

off-targets, to which binding of the design was not desirable. This was accomplished by using

CLASSY.

The advantage of using an ILP framework for this design problem is that it enabled

optimization of the design for interaction with the target with the addition of linear constraints

enforcing simultaneous consideration of the additional competing states. This is because both the

objective function, ET, and the energies of the undesired states, Ei, were written as linear

functions of design variables xuu and xuv. Thus, the difference in energy between ET and each Ei

could also be written this way. A series of equations of the form Ei - ET> A was constructed and

used as constraints to enforce an energy gap between the designed target and undesired

competitors. Figure 2-5 shows how the constrained ILP optimization was used in a protocol

known as a "specificity sweep." In the first step of a specificity sweep, the design is optimized

for binding to a target with no constraints on interaction energies with off-target partners. Due to

the high sequence similarity between bZIP families, this can often lead to sequences predicted to

interact more favorably with off-target sequences than with the target. Therefore, in a subsequent

round of optimization, a constraint can be imposed with a given value of A, such that the design

is required to bind the target at least this much better than the off-targets. In subsequent rounds,

A can be systematically increased until no more solutions can be found. The complete specificity

sweep protocol generates an extensive and systematic search of sequences with different

predicted stabilities and target versus off-target specificities. A user can then select any sequence
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or set of sequences along the specificity sweep for experimental testing. This protocol was

successful in generating experimentally validated specific binders, and the interested reader is

referred to the original work for details (Grigoryan et al., 2009).
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Figure 2-5. A CLASSY specificity sweep, illustrated using bZIP coiled-coil design. On the left
is a cartoon representation of the bZIP multistate design problem. The goal in this problem is to
design a sequence (white rectangle) that will interact with a target (gray rectangle), yet avoid
interactions with off-target sequences (striped rectangles). On the right is a plot of the energies of
the various states. Initially, the design-target interaction is predicted not to be the most stable
state for the design (far left). Constraints are added in subsequent rounds of design (moving to
the right) that impose specificity for the target at the price of the stability of the design-target
complex. The constraint on specificity can be increased until the most specific sequence in the
space defined for the search is found.
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A multistate design criterion can be introduced to our example of redesigning Gpl. For

example, a quadruple mutant of Gol has been shown to form a domain-swapped homodimer

(Byeon, Louis, & Gronenborn, 2003). Three of the design sites chosen for our CE case study

overlap with the four positions that can bring about the domain swap. To disfavor sequences

likely to adopt this domain-swap dimer in design, the domain-swap dimer can be introduced as

an explicit undesired state. This requires rescoring the training-set sequences with the

RosettaDesign energy function on the domain-swapped homodimer backbone 1Q10 (Byeon et

al., 2003). These energies can then be used to derive a new CE that describes the undesired dimer

state. An expression just like Eq. (3) can be written for this state, Ei, and a linear constraint like

that in Eq. (8) can be imposed to require that the energy gap between the undesired state and

target state be greater than A. Similar to Grigoryan et al., A could be varied and a specificity

sweep conducted to give multiple solutions with different values of A.

E' - E > Awhere E'-X EL..+ 7 E,',x (8)

2.11 Conclusion

CE provides a way of converting a complex nonlinear function into a simple

approximation of that function that has a linear dependence on sequence variables. This not only

allows protein engineers to convert structure-based models into sequence-based models but also

opens the door to new search protocols that operate in sequence space for protein design. In

particular, CE combined with ILP promises to be a powerful tool for multistate design, and
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previous analyses have suggested that even single-state problems can benefit (Grigoryan et al.,

2006). With the rapid acceleration of sequence-based energy evaluation, and the flexibility that it

affords in searching sequence space, designing protein-protein interaction networks using

protocols where numerous possible interactions are considered may soon be possible. Excitingly,

CE is not limited to expanding stabilities or binding energies resulting from theoretical structure-

based models. Hahn et al. demonstrated that it is possible to cluster-expand experimental data

directly (Hahn et al., 2010), and it may also be possible to cluster expand other protein properties

like association and dissociation rates. As larger data sets emerge from high-throughput

experiments linking sequences to protein properties, methods like CE will prove to be

increasingly powerful tools.
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Chapter 3

A Set of Computationally Designed Orthogonal

Antiparallel Homodimers that Expands the

Synthetic Coiled-Coil Toolkit

Submitted paper to: American Chemical Society.

Molecular engineering of protein assemblies, including the fabrication of nanostructures and

synthetic signaling pathways, relies on the availability of modular parts that can be combined to

give different structures and functions. Protein interactions are an important modular part, yet a

limited number of well-characterized interaction components are available. Coiled coil protein

interaction modules have been demonstrated to be useful for biomolecular design, and many

parallel homodimers and heterodimers are available in the coiled-coil toolkit. In this work, we

sought to design a set of orthogonal antiparallel homodimeric coiled coils using a computational

approach. There are very few antiparallel homodimers described in the literature, and none have

been measured for cross-reactivity. We tested the ability of the distance-dependent statistical

potential DFIRE to predict orientation preferences for coiled-coil dimers of known structure. The

DFIRE model was then combined with the CLASSY multi-state protein design framework to
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engineer sets of three orthogonal antiparallel homodimeric coiled coils. Experimental

measurements confirmned the successful design of three peptides that preferentially formed

antiparallel homodimers that, furthermore, did not interact with one additional previously

reported antiparallel homodimer. Two designed peptides that formed higher-order structures

suggest how future design protocols could be improved. The successful designs represent a

significant expansion of the existing protein-interaction toolbox for molecular engineers.

3.1 Introduction

Modular design is used for engineering complex devices in electronics, mechanics,

nanotechnology and other fields. Recently, biologists have begun to exploit modular parts as a

way to build novel synthetic biological systems.' Many types of parts are required to implement

diverse structural, binding and catalytic functions. Here, we focus on the alpha-helical coiled

coil, which is a protein-interaction domain highly suitable for inclusion in the growing molecular

parts toolkit.23 Coiled coils are prevalent in native proteins and are useful interaction motifs due

to their capacity to encode complex protein interaction patterns in a short protein sequence.4,5,6

Coiled coils form a rod-like structure composed of a-helices that wrap around each other

with a superhelical twist. Coiled-coil sequences have a characteristic motif commonly referred to

as a heptad repeat, denoted as [abcdefg]n. The a and d positions are dominated by hydrophobic

residues, and are found at the core of the structure; we refer to a and d as core positions. The e

and g positions are typically occupied by charged residues and form the boundary between the

core and the surface of the coiled coil. The b, c, and f positions are located on the surface of the
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coiled coil and are most often polar or charged. Lastly, in coiled-coil notation, a prime on a

heptad position indicates a residue on an opposing chain.

The relationship between coiled-coil sequence and structure is incompletely understood,

even after decades of study of native, mutant and de novo-designed coiled coils. This is partly

due to the many topologies accessible to coiled-coil sequences. For example, coiled coils can

fold into dimers, trimers, tetramers, and even higher-order oligomers. Additionally, oligomers

can be homo- or heteroassemblies. Lastly, the orientations (parallel vs. antiparallel) and axial

alignments of the constituent helices can vary.7,8 The general problem of predicting detailed

coiled-coil structure from sequence has not been solved, although progress has been made

developing methods to predict oligomerization state from sequence, and in particular to

discriminate parallel dimers from parallel trimers. 9-14

Coiled coils have been used in a wide range of applications. They have been applied to

the design of artificial transcription factors and used to manipulate cell-signaling pathways. 1516

They have also been used to build engineered crystals, and to modulate the charge-transfer

properties of electronic devices. 17 18 In many of these studies, controlling the orientation of the

helices in the coiled coil was important. For example, Shlizerman et al. modulated the

conductance between two monolayers of gold using coiled-coil dimers and showed that parallel

and antiparallel coiled coils differentially impacted the electronic properties of the system.

Coiled coils of different orientations have net molecular dipoles of different magnitude and

direction, and can thereby confer different electronic properties.18

Recently, an exciting strategy was developed to design polypeptide polyhedra based

around coiled-coil dimers. Gradigar et al. used a set of parallel and antiparallel dimeric coiled
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coils as building blocks to engineer a nanoscale single-chain tetrahedron with coiled coils

forming each edge. 19 The design strategy involved concatenating a series of 12 sequence

segments coding for different coiled-coil helices into a single chain. The artificial protein

sequence was designed such that folding of the chain, driven by pairing each coiled-coil helix

with its appropriate intra-chain partner helix, would generate a pre-specified three-dimensional

structure. A crucial aspect of the design strategy was the use of coiled-coil components that were

orthogonal to one another, i.e. that had low potential to cross-interact. The designed tetrahedron

was based on 4 parallel and 2 antiparallel coiled-coil dimers previously reported in the literature.

20-23 As part of their work, the authors computed the number and type of coiled coils that would

be needed to build different polyhedra. Interestingly, they found that most polyhedra require both

orthogonal antiparallel and parallel dimers. For example, of the 6 polyhedra considered by the

authors, only an octahedron could be built without using antiparallel dimers.

Despite the clear benefits of having reagents that allow manipulation of orientation in a

molecular assembly, most designed coiled coils adopt a parallel orientation. Very few antiparallel

coiled-coil dimers have been characterized or designed, and none have been tested for

orthogonality. In contrast, dozens of native and synthetic parallel coiled coils have been tested

for interactions and orthogonality. 6,23,24 There are currently two databases maintained for

designed coiled coils, the SYNZIP database, and the Pcomp database. 23 Currently 96% of the

SYNZIP sequences and -63% of the sequences in the Pcomp database form parallel dimers.

Between these two databases, the biophysical properties of only one antiparallel coiled coil (a

heterodimer) is reported.2 Thus, designing sets of orthogonal antiparallel homodimers would

expand the available coiled-coil parts in a meaningful way.
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Because coiled-coil sequences can encode many different structures, negative design to

destabilize undesired states is crucial when making peptides intended to assemble into a single

topology. 2 5 Several negative design strategies have been used in the past that involve placing

charged, beta-branched or polar asparagine residues such that they form unfavorable interactions

in undesired states.26-28 A recent study relied on all three of these strategies to design a parallel

homodimer, homotrimer, and homotetramer.3 The orientations of the helices were engineered to

be parallel by placing lysines at all e positions and glutamates at all g positions, which leads to

electrostatic attraction in parallel assemblies but repulsion in antiparallel states. Oligomerization

states were specified by the differential placement of beta-branched residues in core a and d

heptad positions, a strategy first discovered by Harbury et al., and by the use of asparagine

residues to specify dimer formation, which was originally reported by Lumb and Kim.2 7,28

Including charged residues in core a or d positions has also been observed to destabilize non-

dimer states. 29

Designing sets of orthogonal coiled-coil homodimers presents additional challenges

related to encoding interaction specificity. This is due to the increased number of undesired, off-

target states associated with forming hetero-oligomeric species. The number of possible hetero

species increases dramatically as the number of designed orthogonal coiled coils grows, such that

three orthogonal antiparallel homodimers have the potential to form six possible off-target

parallel or antiparallel heterodimers; other undesired structures are also possible. To design sets

of orthogonal antiparallel coiled-coil dimers, we therefore turned to computational methods to

keep track of the numerous desired and undesired structures in this design problem.
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Despite the many successes of structure-based approaches for modeling and designing

protein-protein interactions, treating multiple states is difficult with these techniques.3 0,31 The

computational costs of modeling each structure can be large, and current optimization functions

used with structure-based models do not provide efficient routines for optimizing one set of

states while simultaneously destabilizing many off-target states. The multi-state design

framework CLASSY addresses these issues by carrying out design in protein sequence space,

without the need to explicitly model all protein structures.32,33 By using a transformation of

structure-based models to sequence-based models, CLASSY addresses both the search and

scoring problems of multi-state design, and the method has previously been applied to design

parallel coiled coils specific for a target sequence over closely related off-target states. 32,34,35

This paper describes our work applying CLASSY in conjunction with the DFIRE36

statistical potential to the de novo design of sets of coiled coils consisting of three orthogonal

antiparallel homodimers. We designed two sets of three proteins, and used biophysical

techniques to determine the oligomerization state, helix orientation and thermal stability of

structures formed by the designed sequences. Some designed peptides formed trimers or higher-

order assemblies, but we identified 3 peptides (APH2, APH3, and APH4) that formed orthogonal

antiparallel homodimers. In addition, we showed that these proteins homodimerize in preference

to binding to APH, a previously reported antiparallel homodimer.21 Thus, we provide evidence

for four sequences that preferentially form antiparallel homodimers that can be used for protein

engineering applications.
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3.2 Materials and method

3.2.1 Building and Scoring Structures with DFIRE*

Structures were modeled on idealized coiled-coil backbones using Rosetta and scored

using a modified version of the DFIRE statistical potential that is described below and referred to

as DFIRE*. To construct libraries of parallel and antiparallel backbones, a set of 214 canonical

coiled coils (i.e. left-handed coiled coils with uninterrupted heptad registers, abcdefg) with 2

helices each longer then 20 residues were culled from the CC+ database as of August 18, 2010.37

Within the parallel and antiparallel sets, examples were filtered to have < 50% sequence identity.

This set of structures is referred to as the filtered CC+ set. Seven geometrical parameters defined

by Crick to describe a coiled coil were fit to each structure using the CCCP Structure Fitter.38,39

This set of backbones was then filtered to give 25 parallel and 23 antiparallel backbones with

parameters within one standard deviation of the average value for each parameter. Averages and

standard deviations are reported in Table 3-1. Idealized versions of these 48 structures were

generated using the CCCP Structure Generator.39 Coiled-coil sequences to be scored were

modeled on each idealized backbone using the fixed-backbone packing protocol of Rosetta 3.2.40

The soft-potential flag and expansion of the first and second dihedral angles of the rotamer

library were used, along with the side-chain minimization flag. All surface heptad positions (b, c,

and J) were modeled as alanine. Structures were scored using a modified version of DFIRE, a

distance-dependent pairwise statistical potential based on the distance-scaled, finite ideal-gas

reference state.36 Two modifications were made to the published energy function. The cutoff
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distance, rcut, was set to 5.8 A, and inter-atomic energies were evaluated only between residues

on opposite helices in the coiled coil. We refer to this modified version of DFIRE as DFIRE*.

DFIRE* outperforms DFIRE on certain interaction prediction tests for parallel coiled coils (V.

Potapov, personal communication). The lowest DFIRE* energy for each sequence over all 25

parallel or 23 antiparallel backbones was used as the parallel or antiparallel energy, respectively.

Table 3-1. Averages and standard deviations for Crick parameters fit to coiled-coil crystal
structures using CCCP.

Geometric Antiparallel Parallel
PGrametrc
Parameters Average Stdev Average Stdev

Ro (A) 4.77 0.25 4.90 0.19

Ri (A) 2.77 0.02 2.27 0.02

oo (deg/res) -3.34 0.80 -3.69 0.64

coi (deg/res) 102.79 0.39 102.79 0.42

a (deg) -10.78 2.03 -12.17 2.27

Zaa' (A) 2.64 0.99 0.06 0.36

p (deg) 352.53 6.81 353.20 7.39
a For detailed defitions of the parameters that describe the superhelix geometry, see reference
(39). Briefly:
Ro, superhelix radius

Ri, alpha-helix radius

oo, superhelical frequency

oi, alpha-helical frequency
a, pitch angle, i.e. the angle between a tangent to the super-helical curve and the super-helical
axis.
Z.', helical axial shift, i.e. the offset between the two alpha helices along the super-helical axis.
y, minor helical phase; defines the rotation of each alpha helix around its own axis, relative to
the superhelix interface. Defined usingf-position residues.
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3.2.2 Deriving cluster expansion models

Two cluster-expanded functions based on DFIRE* were derived to score the propensity

of sequences to form antiparallel and parallel coiled coils. For an outline of the protocol, see

Figure 3-1, and for an in-depth discussion of performing cluster-expansion calculations using

CLEVER 1.0 see Negron et al..33 In the present application, the cluster-expanded models express

energy as a sum of terms corresponding to weights for single amino acids at a, d, e, and g heptad

positions and pairs of amino acids at these positions. As in Grigroyan et al., only pairs of

positions within the same or adjoining heptads were considered. 41 Weights were fit to training

data using the CLEVER 1.0 package. 33,42 The training data consisted of DFIRE* energies for a

central two-heptad unit within a six-heptad structure, calculated using the scoring protocol

described in the previous section for 30,000 sequences. Another 8,000 sequences, non-

overlapping with the training set, were generated in the same way to be used as a test set.

Training sequences were 42 residues (six heptads) long and composed of a repeating two-heptad

unit. Training sequences were generated randomly but with heptad-specific single-residue

frequencies matching those of known coiled-coil dimers (both parallel and antiparallel).

Antiparallel frequencies were obtained from antiparallel structures in the filtered CC+ set.37

Parallel frequencies were obtained from the NPS database.1 4 Once determined, the cluster

expansion (CE) weights can be used to score antiparallel and parallel coiled-coil dimers of

arbitrary length.
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for the a, d, e, and g positions of AP
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a d

[AP Training Set and Design File

I Fit cluster finctions defined in
design file to the data in the training
set file using CLEVER 1.0.

AP Cluster Expansion Model P Chst Expansion Model

Figure 3-1. Schematic for deriving the antiparallel (AP) and parallel (P) cluster expansion
models. The training set files for antiparallel and parallel coiled coils consisted of a list of
randomly generated dimer-like sequences two heptads long, with energies computed using
DFIRE*. The same set of 30,000 sequences was used to derive both parallel and antiparallel CE
models; the set consisted of 15,000 sequences with residue frequencies matching those in P
coiled-coil dimers and 15,000 with frequencies matching AP coiled-coil dimers. Energies were
obtained by modeling a two-heptad sequence (red) as the central unit in a six-heptad long
structure consisting of three repeats of the two-heptad unit. The CE design files specified
important parameters for model fitting. They defined the sequence space for which the CE was
relevant by listing allowed amino acids for each position, and also listing which pairs of heptad
positions were included in the fitting procedure (an example of a pair that contributed to the CE
energy is shown on the AP and P structures as a dashed line). This entire procedure is described
in more detail in (33).
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3.2.3 Orientation test set

Examples of parallel and antiparallel coiled coils were obtained from the filtered CC+ set

and further filtered to exclude those with coiled coils shorter then 28 residues and those that

contained non-natural amino acids. For certain sequences, three residues at the terminal ends of

the two chains were removed until the two chains fully overlapped in both the parallel and

antiparallel orientations, i.e. the coiled coils that were modeled were blunt-ended in both

orientations. The final orientation test set contained 30 antiparallel complexes and 48 parallel

complexes. PDB IDs with chain and residue numbers for the orientation test set are given in

Table 3-2.

Table 3-2. Orientation test set.
Antiparallel

PDB ID Chain(s) Residue Numbers

394-436, 232-274

7-38, 7-38

330-358, 372-400

77-116, 77-116

34-65, 74-105

94-132, 7-45

6-38, 6-38

408-439, 64-95

460-495, 402-437

117-148, 226-257

688-726, 688-726

212-244, 212-244

4-35, 4-35

393-432, 333-372

444-489, 262-307

5-36,5-36

I

Parallel

PDB ID Chain(s) Residue Numbers

1ci6

ld7m

1deb

1 fos

lgd2

1go4

lh88

1 ik9

lj 1d

ljcc

ljnm

ljoc

lkd9

ln6m

lno4

lpI5

A, B

A, B

A, B

E, F

E, F

G, H

A, B

A, B

B, C

A, C

A, B

A, B

C, D

A, B

A, B

303-338, 247-282
244-339, 244-339

6-41, 6-41

158-190, 282-314

97-125, 97-125

494-526, 494-526

299-331, 299-331

123-169, 123-169

226-268, 90-132

13-48, 12-47

273-305, 273-305

1306-1337, 1306-1337

2-33, 2-33

300-345, 300-345

36-71, 36-71

A, S 1285-1341, 1285-1341
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1cii

lecm

lek9

1 exj

1 few

lfxk
lhf9

liol

118d

1qoy

It3j

1x03

lybz

2b5u

2ch7

2d8e

A
A, B

A

A, B

A

C

A, B

A

A

A

A, B

A, B

A, B

C

A, B

A, B



A 434-462, 483-5112hko

2hld

2jee

2oto

2p4w

2qOo

2vkl

2zqm

3ggy
3a8p

3htk

3i9w

3i9y
3aei

G

A, B

A, D

A, B

C

A, B

A

A

A

A, B

A

A

A

227-258, 3-34

46-78, 11-43

158-190, 137-169

127-155, 131-159

28-56, 67-95

14-45, 14-45

72-110

16-44, 53-81

671-699, 631-659

310-355, 751-796

99-130, 262-293

111-146, 278-313

9-37, 63-91

1r05

ltu3

luii

luix

lwu9

2aze

2c91

2dfs

2fxm

2gd7

2gzh
2no2

2o1k

2ocy

2oqq

2q6q
2v4h

2v4h

2v66

2w6a

2w83

2yy0
3a2a

3a7p
3bas

3c13

3dkw

3elr

3he4

3he5

3mud

3nwh
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A, B

F, G

A, B

A, B

A, B

A, B

Y, Z

A, M

A, B

A, B

B, C

A, B

A, B

A, B

A, B

A, B

A, B

A, B

C, D

A, B

C, D

A, B

A, B

A, B

A, B

D, E

A, B

A, B

A, B

A, B

A, B

B, D

47-79, 47-79

807-835, 807-835

99-145, 99-145

978-1041, 978-1041

193-224, 193-224

202-230, 203-231

193-221, 193-221

972-1042, 972-1042

852-957, 852-957

32-60, 32-60

453-481, 453-481

535-577, 535-577

98-133, 99-134

123-151, 123-151

5-40, 5-40
69-121, 69-121

291-333, 291-333

253-281, 253-281

62-97, 62-97

435-480, 435-480

396-445, 396-445

62-90, 62-90

228-263, 228-263

64-127, 64-127

846-916, 846-916

209-244, 209-244

127-155, 127-155

170-205, 170-205

17-52, 3-38

3-45,3-45
239-274, 239-274

116-148, 116-148



3.2.4 CLASSYpeptide design

A detailed description of how integer linear programming (ILP) can be applied as part of

the CLASSY multi-state design method is given in Negron et al..33 In this work, the objective

function for ILP was the total energy (ET), given by the sum of the energies of three antiparallel

homodimers (ET = El + E2 + E3). All energies were obtained from either the antiparallel or

parallel cluster-expanded models. The ILP solver of the IBM ILOG CPLEX optimizer was used

to minimize this objective function under a set of constraints.43 The constraints included energy

gaps to off-target dimer states (Figure 3-3A, 3-3B), as well as constraints on the number of polar

residues allowed at a and d heptad positions (maximum of 2 charged residues at a, and 1 Lys

residue at d per design sequence). A constraint was included on the energy gap between every

antiparallel homodimer and every off-target state (of those types considered in the calculation)

that the constituent peptide could participate in. The constraints were of the form EOT - Ex > A,

where EOT represents the energy of a single off-target state, of which there were several as shown

in Figure 3-3. Ex represents the energy of a single antiparallel homodimer, i.e. El, E2, or E3. A is a

user-defined specificity gap, and different values of A were used as shown in Figures 3-3C and

3-3D. A solution, representing three sequences, was obtained for each A. Two sets of design

calculations were done, one including glutamate as an option at a positions (sequence space 1)

and one not allowing glutamate (sequence space 2). One solution was chosen manually for

experimental testing from each calculation, based on predicted stabilities and specificities.
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3.2.5 Cloning, protein expression, and purification

Synthetic genes encoding computationally designed coiled-coil sequences, and control

sequences, were constructed by PCR amplification from two 258-base pair oligon.icleotides and

one 157-base pair oligonucleotide (gblocks) purchased from Integrated DNA Technologies.

DNA sequences were codon-optimized for expression in Escherichia coli using DNAWorks."

Low-frequency E. coli codons selected by DNAWorks were manually switched with

synonymous high-frequency codons.

Following amplification with primers to provide appropriate vector overlap, Gibson

cloning (New England Biolabs) was used to clone synthetic genes into pENTR vectors. The

products of the Gibson reactions were then recombined into pMAL (New England Biolabs)

destination vectors using LR Clonase II (Invitrogen) in 2.5 pL reactions. pMAL encodes MBP

followed by a TEV protease cleavage site (not used), a Gateway linker region, and a C-terminal

His6 tag. The LR Clonase II reaction inserted the synthetic gene between the Gateway linker

region and the C-terminal His6 site. The pMAL vectors were transformed into BL21 (DE3) cells

(Agilent). BL21 cells were grown in liquid LB cultures (1 L) at 37 'C to an OD600 of -0.4-0.6.

Protein expression was then induced with 1 mM IPTG for 4.5-5.5 h. Cells were pelleted,

resuspended, and then lysed by sonication. MBP-fused proteins were purified from the

supernatant using NiNTA (Qiagen) column purification under native conditions. The elution

buffer contained 0.3 M imidazole, 20 mM Tris base, and 0.5 M NaCl at a pH of 7.91. The

approximate sizes of MBP-fused proteins were confirmed using protein gels with size ladders.

79



A second set of constructs was made by amplifying from gblocks using primers encoding

a cysteine either at the N-terminal or C-terminal end, as well as flanking BamHI/XhoI restriction

sites. The genes were cloned by means of the BamHI/XhoI restriction sites into a modified

version of the pDEST17 vector. This vector encodes an N-terminal His6 tag as well as a

GESKEYKKGSGS linker shown to improve the solubility of recombinant proteins.34 Cysteine-

containing constructs were expressed in RP3098 cells grown, induced and lysed as described

above for BL21. However, these proteins were purified from the supernatant using NiNTA

(Qiagen) under denaturing conditions. The elution buffer consisted of 60% acetonitrile (HPLC-

grade) and 0.1% trifluoroacetic acid (TFA). Ni-affinity purification was followed by reverse-

phase HPLC with a water/acetonitrile gradient in the presence of 0.1% TFA. Masses were

confirmed by MALDI-TOF mass spectrometry.

Concentrations of all constructs were determined using the Edelhoch method,

measuring UV absorbance of aromatic residues at 280 nm in 6 M guanidinium chloride. Amino-

acid sequences of all constructs are given in Table 3-3.
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3.2.6 Sedimentation equilibrium analytical ultracentrifugation

Proteins were dialyzed with three changes of reference buffer (40 mM Tris base, 150 mM

NaCl, pH 7.91) over the course of 24 hours. Sedimentation equilibrium runs were performed

with a Beckman XL-I analytical ultracentrifuge using an An-50 Ti rotor at 20 *C. Proteins were

spun at three speeds and at least two protein concentrations. Constructs fused to MBP were spun

at concentrations ranging from 4 to 40 pM at 10,200, 16,300 and 20,400 rpm. These spins were

monitored either using UV absorbance at 280 nm, or with interference optics when multiple

MBP constructs were mixed. For protein constructs containing cysteine, 1 mM TCEP was added

to the reference buffer prior to dialysis. These constructs were spun at concentrations of 20 and

40 pM at 28,000, 35,000 and 42,000 rpm and monitored using interference optics. For each

speed, equilibrium was confirmed by negligible differences between the sample distributions in

the cells over sequential scans. Data sets for each construct were globally fit to a model for a

single ideal species using the program SEDPHAT.46,47 Values for v-bar, solvent density, and

viscosity were obtained from SEDNTERP. 48

3.2.7 Disulphide-exchange experiments

Cysteine-containing proteins in varying states of oxidation/reduction (depending on

construct) were placed in a redox buffer (500 pM reduced glutathione, 250 pM oxidized

glutathione, 40 mM Tris base, 150 mM NaCl, pH 7.91) at 20 pM of each protein at room

temperature. Redox reactions were quenched at different time points using a drop of 6 M
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hydrochloric acid. The products of the reactions were then run on an analytical Vydac Ci8

reverse-phase column with absorbance monitored at 220 nm using a linear water/acetonitrile

gradient containing 0.1% TFA. Equilibrium was confirmed by monitoring changes in HPLC

profiles as a function of time. Retention times for the reduced proteins and for the oxidized states

for each of the 6 cysteine-containing proteins were assigned by HPLC analysis of the constructs

in TBS (40 mM Tris base, 150 mM NaCl, pH 7.91) alone, in TBS with TCEP added for an

incubation time of 30 minutes (to generate the fully reduced species), or in TBS solution left

exposed to air and stirring overnight (to generate the fully oxidized species). Glutathione adduct

peaks were assigned by the appearance, following incubation in redox buffer, of a peak with a

retention time not consistent with the reduced or oxidized states of each of the six individual

protein constructs. Antiparallel peaks were assigned by monitoring the appearance of a peak only

observed after mixing two constructs that encoded the same coiled coil, but with cysteine

residues at opposing ends.

3.2.8 Circular dichroism (CD) spectroscopy

CD spectra and thermal-denaturation curves were measured on an AVIV 400

spectrometer. Peptides were equilibrated in PBS buffer (137 mM NaCl, 2.7 mM KCl, 10 mM

Na2HPO 4, 2 mM KH2PO4, pH 7.4) containing 1 mM of dithiothreitol (DTT) at -25 0C for at least

1.5 hours prior to measurement. Measurements were made in a 1 mm quartz cuvette at a protein

concentration of 20 pM using the N-terminal cysteine-containing constructs. CD spectra were

measured at 25 *C. For each sample, three wavelength scans were measured and then averaged.
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For each wavelength scan, data were collected from 190 to 280 nm, in 1 nm steps, averaging for

5 s at each wavelength. Thermal denaturation curves were generated by monitoring 0222 using a

30 s averaging time, 3 minute equilibration time, and temperature increments of 2.5 *C from 0 to

98 *C. Melting temperatures, Tm, were obtained by fitting the change of the CD signal over the

change in temperature to the equation below.49 Fitting was performed using the non-least squares

method in Matlab 7.8.

D*exp(HlT - HIT) * H

(I+exp(H /T - H IT))2 T 2

The fit parameters are D, H, and Tm. D is the difference between the upper and lower baseline, H

is the change in enthalpy, AH, over the gas constant R, T is the temperature, and Tm is the melting

temperature.

3.3 Results

3.3.1 Benchmarking DFIRE* on orientation prediction preference

Computational design of orthogonal antiparallel homodimers requires an energy function

capable of scoring antiparallel vs. parallel dimers. To assess whether our design energy function

could predict helix orientation for coiled-coil dimers of known structure, we implemented a test

similar to that in Apgar et al.. 50 We created a database of 30 antiparallel and 48 parallel dimer

structures based on the CC+ database of Testa et al.;37 we refer to this database as the orientation

test set (see Methods). The orientation test set in this study differed from that used by Apgar et

al. due to its higher stringency on length, >28 residues vs. >18 residues. 50 This more stringent
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cutoff has the effect of removing examples of short coiled-coil sequences embedded in large

structures, for which the helix orientation is less likely to be determined by the sequence of the

coiled-coil region alone. Furthermore, sequence features of antiparallel coiled coils in the PDB

are a function of their lengths, e.g. shorter coiled coils have a 16% higher frequency of

hydrophobic residues at the g position (Table 3-4).

Table 3-4 Frequencies of polar residues at different heptad positions in antiparallel coiled
coils.a

Heptad Positions

Lengthb a b c d e f g

>28 0.32 0.71 0.74 0.20 0.71 0.74 0.73

21 0.31 0.71 0.67 0.21 0.67 0.72 0.57

aPolar residues included: D, E, H, K, N, Q, R, S, and T.
bAntiparallel coiled-coil sequences were culled from the CC+ database with < 50% sequence
identity, with varying cutoff lengths as indicated in the table (37).

A modified version of DFIRE, DFIRE*, which includes only inter-chain energy terms

was used for scoring. The orientation test-set sequences were modeled in both parallel and

antiparallel orientations using Rosetta and scored using DFIRE*, as described in the Methods.

The DFIRE* energy gap between the antiparallel and parallel state for each sequence is plotted

in Figure 3-2A. We report energies in arbitrary units (AU), as we have no information at this

time about how predicted energies from this procedure correlate with experimental free energies.

The ability of DFIRE* to predict orientation preference on the test set was measured using the

area under the curve (AUC) when plotting the fraction of parallel test-set sequences predicted

correctly vs. the fraction of antiparallel sequences predicted correctly, as a function of the score
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cutoff used to discriminate parallel from antiparallel sequences. As seen in Figure 3-2B, DFIRE*

predicts orientation preference in this test with an AUC value of 0.91 (random predictions would

result in an AUC of 0.5).
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Figure 3-2. Predicting coiled-coil orientation preference and testing cluster-expanded
DFIRE*. (A) EAP and EP are the antiparallel (AP) and parallel (P) DFIRE* energies for each
orientation test set coiled coil. Antiparallel coiled coils (according to PDB structure) are plotted
with red crosses; parallel with black diamonds. The line at EAP - Ep = 0.18 AU gives optimal
separation of parallel and antiparallel examples. Min_gap was used to remove examples with
small DFIRE* orientation preferences (see text); shading indicates increasing min gap from the
line of optimal separation. (B) The fraction of antiparallel sequences predicted correctly vs. the
fraction of parallel sequences predicted correctly, as the cutoff value for EAP - EP was changed, is
plotted for DFIRE* and the CE model of DFIRE*. Curves for data sets with different mingap
are shown for the CE model of DFIRE*. (C, D) DFIRE* energies vs. the CE model of DFIRE*
energies for randomly generated dimer-like test structures in the antiparallel (C) and parallel (D)
states.
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3.3.2 Cluster expansion of DFIRE*

Cluster expansion (CE) is a computational method for generating a sequence-based

scoring function that approximates energies calculated using structure-based techniques.41 42 ,s1

Once generated, a CE model eliminates the need for computationally costly structure building in

protein design. Two CE models were built to approximate DFIRE* energies for antiparallel and

parallel coiled-coil dimers, as described in the Methods, and the models were used to score 8,000

test sequences (Figures 3-2C, 3-2D). Both models showed good correlation with DFIRE*, R2 = .

90, indicating that the approximation of structure-based modeling with a sequence-based

function introduced relatively little error within the sequence space explored.

We benchmarked the orientation prediction performance of the CE models using the

orientation test set. Every pair of sequences in the set was scored with the antiparallel CE model

and the parallel CE model. The energy difference between the two CE models was used to

predict the orientation preference of each sequence. The AUC value, using the CE approximation

of DFIRE*, was 0.84 (Figure 3-2B), demonstrating that the faster, yet more approximate model

gave reduced performance, as expected. However, the AUC value significantly improved as

coiled coils with small energy gaps were removed from the orientation test set. For 44 coiled

coils for which the predicted difference in CE energy between parallel and antiparallel

orientation was greater than 0.4047, the prediction performance (0.93) was similar to the

performance of DFIRE* on the entire orientation test set. For 20 examples with predicted energy

gaps greater than 0.8094, prediction performance was perfect. This information was used to set

energy gap requirements for off-target states during the sequence-design stage of CLASSY
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3.3.3 Computational design of orthogonal antiparallel homodimers using CLASSY

CLASSY is a protein-design method that uses integer linear programming (ILP) to

optimize a protein sequence using a CE scoring function. Importantly, the method allows a user

to impose numerous constraints on the designed sequence. These can include constraints on

sequence composition or properties (e.g. total charge). In multi-state design, it is convenient to

impose a constraint on the energy of a designed sequence adopting an undesired structure, to

disfavor formation of that structure.

In our application, the antiparallel and parallel CE models were combined with ILP to do

CLASSY design of six-heptad long antiparallel homodimers. Only residues at a, d, e, and g

positions were designed; these residues are thought to be most critical for interaction specificity.

52,53 The b, c, andf surface positions were taken from APH, which is one of the few characterized

antiparallel homodimers reported in the literature. The surface of APH mainly consists of an

oscillating pattern of glutamine and alanine residues at b and c positions, and lysine residues atf

positions. This patterning has been used in both parallel and antiparallel designed coiled coils,

and is thought to play a minimal role in interaction specificity.2 1,2 6

We used the CE model of DFIRE* to design the globally best-scoring antiparallel

homodimer in a sequence space without cysteine, proline, or glycine and found that the designed

sequence was highly charged and contained no hydrophobic residues in any heptad position. This

peptide would not be expected to fold into a coiled-coil structure. The unrealistic design

sequence is not inconsistent with the good performance of DFIRE* and the CE model of

DFIRE* on the orientation prediction test above. In the orientation test, each of two compared
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structures had the same sequence. In contrast, without constraints on sequence composition,

optimization using the CE model of DFIRE* has the freedom to build a sequence entirely from

charged pairs that have highly favorable CE weights. Surprisingly, the 20 most favorable weights

in the CE DFIRE* model are all core-to-edge, or core-to-core charge-charge residue interactions.

The weight of the most stabilizing hydrophobic-hydrophobic interaction is two-fold weaker then

the most stabilizing charge-charge interaction. To use CE DFIRE* in protein design, we

therefore imposed a native-like sequence composition on all sequences and restricted the design

calculations to subsets of sequence space, as described below.

Two separate sequence spaces, sequence space 1 and sequence space 2, were chosen to

search for antiparallel homodimer sequences (Figures 3-3A, 3-3B). Both sequence spaces

included residues known to influence coiled-coil structural specificity through mechanisms such

as electrostatic attraction/repulsion and beta-branch residue packing/clashing. 26,27 Sequence

space 1 differed from sequence space 2 by the addition of glutamate as a choice at a positions.

Statistics from the coiled-coil databases we analyzed show a three-fold frequency enrichment of

glutamate in a sites of antiparallel dimers relative to parallel dimers (Table 3-5); this difference

has also been noted by Straussman et al.."

To design three non-interacting coiled coils, we optimized the sum of the CE energies of

three antiparallel homodimers using CLASSY Constraints were added to allow no more than

two hydrophilic residues at a positions and no more than one at d positions. This maintained the

hydrophobicity of the design solutions at these positions close to that of known antiparallel

dimers of lengths greater than four heptads. Constraints were also placed on the predicted

energies of competing states. In particular, all design calculations treated all three possible
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antiparallel heterodimer states as undesired states. Without these constraints, the global energy

minimum would correspond to three copies of the lowest-energy antiparallel homodimer.

Constraints on the off-target states were imposed as an energy gap, by requiring the energy of

each antiparallel homodimer to be lower than the energy of each of the off-target states that

sequence could participate in, by a fixed amount (Figure 3-3). Excluding parallel trimers, very

few structures of higher-order states of any specific topology passed the orientation test set filters

of <= 50% sequence identity and > 27 residues (0 antiparallel trimers, 6 antiparallel tetramers,

and 9 parallel tetramers). Thus it was not possible to accurately benchmark DFIRE* ability to

discriminate oligomerization preference. As a result, we did not include these states in the

modeling process.
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Figure 3-3. Computational design of orthogonal antiparallel homodimers. (A, B) All target
and off-target states included in two design calculations. Colors represent distinct sequences, and
colored circles indicate the N-terminus of each helix. An energetic constraint, A, was enforced
between the energy of each target antiparallel homodimer state (EI, E2, E3) and every off-target
state that peptide could participate in (examples shown with gray dashed lines). The sequence
space used for each design is indicated. Different numbers of off-target states were included for
sequence space 1 (A) vs. sequence space 2 (B). (C, D) The total energy ET = E1 + E2 + E3 vs. A is
plotted for sequence space 1 (C) and sequence space 2 (D). Each value of A led to a set of
optimized sequences, and the grey squares mark the solutions chosen for experimental testing.

91

E

C -6.6

-7.0

-7.4

Target States
APHomodimers

D

-6

.4w- l

Target States
AP Homodimers



Table 3-5. Ratios of position-specific amino-acid frequencies in antiparallel vs. parallel
coiled-coiled dimers.

Heptad Positions

a d e g

A 0.4 1.2 1.4 1.6

D - - 1.5 0.5

E 3.1 - 0.6 0.9

I 1.7 3.9 1.8 -

K 0.8 1.4 0.9 1.1

L 0.9 0.8 1.5 1.4

M 1.0 0.8 - -

N - - 1.2 1.4

Q 5.2 1.0 0.8 0.9

R 1.0 - 0.8 0.7

S 1.3 0.8 1.2 1.0

T - 1.2 0.9 1.2

V 0.6 1.2 2.1 1.2

Y 1.0 0.7 - -
Antiparallel frequencies obtained from the orientation test set.

Parallel frequencies obtained from the NPS database (14).

CLASSY design was done iteratively, by progressively increasing the energy gap that

was imposed between the target antiparallel homodimers and off-target antiparallel heterodimer

states. As the gap to off-target states increased, the total predicted stability of the three

antiparallel homodimers decreased (Figure 3-3C, 3-3D). This type of stability-specificity tradeoff

has been observed previously in the case of parallel dimer design using CLASSY32 Two sets of

solutions, one from each of the sequence spaces, were rationally chosen based on good stability-

specificity tradeoffs. The designs in sequence space 1 are referred to as APH j, APHij, and APHiii.

The designs in sequence space 2 are referred to as APHiv', APHv', APHvi'. For each set of

designed sequences, parallel and antiparallel homo- and heterodimer states were scored with the
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original DFIRE* structure-based model to predict relative energies of target and off-target

structures. For the antiparallel homodimers designed in sequence space 1, the predicted energies

of all modeled off-target dimers were much higher than the predicted energies for the antiparallel

homodimers. The smallest gap, of 0.77 AU, was between the antiparallel homodimer state of

APHiii and the parallel heterodimer APHiii would form with APHi (Figure 3-4A). However, APHj

gap to this state was 1.13 AU. At gaps of this magnitude, DFIRE* predicts the orientation

preference of native sequences with an AUC = 1.0. Thus, no additional states were added to the

optimization protocol for sequence space 1. For sequence space 2, we observed that one of the

parallel homodimers was predicted to be lower in energy than the corresponding antiparallel

homodimer (Figure 3-4B). Furthermore, other parallel homodimer states were closer in energy to

the antiparallel homodimers than when design was done in sequence space 1.
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Figure 3-4. DFIRE* scores for design solutions obtained with constraints imposed only
against antiparallel heterodimers. DFIRE* scores were calculated for design solutions chosen
in sequence space I (A) or sequence space 2 (B); see text for details. Subscripts indicate the

sequence (for a homodimer) or sequences (for a heterodimer) composing the coiled coil.

To address this, we added parallel homodimer states as off-target states in the

optimization protocol used for sequence space 2, and chose a new set of solutions in that space.

The final six designed sequences are shown in Table 3-6, with APM, APHii and APHiii resulting

from design in sequence space 1, and APHj,, APHy and APHvi from design in sequence space 2.

The two sets of designed sequences were also scored for cross-reactivity using DFIRE*.

Predicted energies for all parallel and antiparallel heterodimers that could be formed between

sets were significantly larger than predicted energies for the antiparallel homodimer states, with
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the smallest energy gap of 0.61 AU between the antiparallel and parallel homodimer states of

APHiv.

Table 3-6. Sequences of APH and candidate antiparallel homodimers.

Design fqabcde fgabcde fgabcde fgabcde fgabcde fgabcde fgabca

APH KQLK KELKQLK KELQAIE KQLAQLQ WKAQARK KKLAQLK KKLQA

APHi KEZKQIZ KZLKQIZ KZLQAIZ WRLAQLR KRLQALR KRKAQKR E
APHE

(APH2) KRLKQLZ KRLKQLR KRKQAKR WIZAQIE KILOAIE KQLAQIR E
APH2)
(APH3) K KKQER KRKQLR KRLQALE WQLAQIR KZLQAAZ KZZAQIE E

APHiW KZKKQLR KZLKQLZ KZLQALR WRLAQIZ KRLQAIR KRLAQKZ E

APHv KRLKQKZ KRKKQLR KRLQALR WQLAQIZ KZLQAAZ KZAAQLR E
APH4) KQLKQIZ KRLKQIZ KRLQAKZ WZKAQLR KZLQALR KKLAQLR E(APH4)

a Indicates the heptad register.
b Some sequences have two names, as described in the text.

3.3.4 Oligomerization states of designs

The molecular weights of complexes formed by designed peptides APHi - APHvj were

determined using sedimentation equilibrium analytical ultracentrifugation (see Methods). We

anticipate that the APH coiled coils will be used as fusion proteins in many applications, so we

did two sets of experiments: one in which the peptides were fused to maltose binding protein

(MBP) and one in which they were not. The results are shown in Table 3-7. The data for two

designed peptides, APHiii and APHvi, were consistent with these peptides forming homodimers.

APHi was determined to have a molecular weight greater than that expected for a dimer, and no

further data were collected on this construct. Single-species fits to APHji and APHiv gave
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molecular weights less than and greater than what was expected for a dimer, respectively. APHii

and APHiv were re-tested at higher concentrations to stabilize higher-order states. At 20 pM,

APHii formed a homodimer, whereas APHiv formed a homotrimer. Further experiments were

carried out only on designs APHii, APHjjj and APHvi, which we re-named APH2, APH3 and

APH4, respectively (see Table 3-7).

Table 3-7. Molecular weights determined by analytical ultracentrifugation.

Protein Concentration (g M) MW (global fit)/MW (calc.)a

APHi 4,8, 12 1.7

APHi (APH2) 4, 7.4, 11 0.76

bAPHjj (APH2) 20, 40 0.99

APHiij (APH3) 4.5,9, 14 0.94

bAPHiii (APH3) 20, 40 1.16

APHiv 7.7, 15.3 1.23

bAPHiv 20 1.58

APHvi (APH4) 4, 7.4, 12 0.96

bAPHvj (APH4) 20, 40 1.08

a MW (calc.) is the expected dimer mass of each designed coiled coil.

b Data collected using interference optics, and a construct not fused to MBP.
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3.3.5 Orientation and orthogonality of designs

To determine the helix orientation in complexes formed by APH2, APH3, and APH4, we

performed disulfide-exchange experiments, and resolved the products of the reactions using

HPLC (see Method). Key peaks are labeled in Figure 3-5, which shows changes in the

chromatograms over time. For all three designs, starting with a combination of oxidized parallel

species and/or reduced peptides, only one oxidized peak was detected at the end of five hours,

corresponding to a disulfide-linked antiparallel homodimer. Based on the smallest detectable

peak area, we estimate a minimum 105-fold preference for forming antiparallel complexes in

preference to parallel complexes for all designs.

A

HGSSG

RN R

i iNi

PC PN AP

B T APH2

Go Rc
PN

Retention Time (min.)

APH3 DAPH4

PC

C Rc

14 16 13 20 22 24 26 23 40 .2 34 4 Ji8 4441 I i Ii 3 3 2 2 4 26; 2 - 1 4 12 1 46 1 401

Retention Time (min.) Retention Time (min.)

Figure 3-5. Designed peptides APH2, APH3, and APH4 adopt an antiparallel helix
orientation. (A) Schematic view of the assay. Arrows indicate helix direction from N to C
terminus. The wavy line indicates two amino acids added to the designed sequence to change
peptide retention times (APH2 = YY, APH3 = QW, APH4 = YY). S represents the sulfur atom in

97



cysteine residue(s). (B, C, D) HPLC chromatograms show the results for the disulfide-exchange
reactions upon mixing equimolar amounts of N-terminal and C-terminal cysteine variants of each
design sequence (20 gM each). The reactions were quenched at 0 minutes (red), 15 minutes
(black), or 5 hours (blue). Peaks are labeled according to the scheme shown in panel A, with G
indicating a glutathione adduct.

A

AH2+APH
Ac AN BC BN APH2

44 1-6 I 2'0 22 24 26 28 S 30 34 36 A$ 40

Retenfion Tume (mm)

A APH4 APH4
APH3+APH4

APH2 APH3
14 16 to .1 2 4 26 23 it) a2 0 6 1 40 1 16 t 6 N 30 3 4 40 -4

Retention Tie (min.) Retention Tme (min.)

Figure 3-6. Designed peptides APH2, APH4 and APH4 do not form heterodimers. (A)
Cartoon showing four cysteine-containing peptides, two for each of two designs, that were
included in the disulfide-exchange cross-reactivity assay. (B, C, D) HPLC traces for all pairwise
mixtures of designed peptides after equilibration for 15 minutes. The blue and red traces are for
reactions with equimolar amounts of N- and C-terminal cysteine variants of a single designed
peptide (20 ttM each). The black trace is for a reaction with equimolar amounts of all four
peptides in panel A (20 pM each). (B) APH2 + APH3, (C) APH2 + APH4, (D) APH3 + APH4.

The same constructs that were used to measure orientation preferences were used to

determine whether the designs formed heterodimers. APH peptides were tested in a pairwise

manner (Figure 3-6). Each design formed a disulfide cross-linked antiparallel homodimer over

time, but we did not detect any disulfide bond formation between any pairs of designed peptides.

Each design was additionally measured for cross reactivity with the antiparallel homodimer-
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forming peptide APH, in a pairwise manner (Figure 3-7). No design showed any detectable

cross-reactivity with APH, in either orientation, extending the number of orthogonal antiparallel

homodimers from three to four.

APH

\PH2AH

441 6 I Si 2f, 2 4 2 5 2 4 3 8 4 2 4

Retention Time (min.)

CA

APH
APH3+APH

APH3

Retention Time (min.)

APHL

1: 14 161 8 2i 22 24 26 28 30 2 4 1 IS 4 42 4

Retention Time (min.)

Figure 3-7. Designed peptides APH2, APH3, and APH4 do not heterodimerize with APH.
(A, B, C) HPLC traces for all pairwise combinations of APH with designed sequences, with
experimental conditions as for Figure 3-6. The blue and red traces are for equimolar mixtures of
N- and C-terminal cysteine variants of APH (blue) or APH2, APH3 or APH4 (red) (20 pM each).
The black trace is for a mixture of four peptides, APH and the indicated design, each modified at
the N- or C-terminus with a cysteine residue (20 pM each). (A) APH + APH2, (B) APH + APH3,
(C) APH + APH4.

To determine whether mixtures of more than two APH coiled coils formed complexes

other than the expected dimers, MBP fusions of all four APH peptides were mixed at 20 or 40

pM of each APH design and analyzed by sedimentation equilibrium ultracentrifugation (as done

for individual MBP fusion proteins, see Methods). The ratio of the fitted mass to the dimer mass

was 0.91, with good fit quality (representative data in Figure 3-8), indicating that dimers formed
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as expected and no higher-order species were present in a mixture of all four APH fusions.
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Figure 3-8. Analytical ultracentrifugation data. Representative sedimentation equilibrium data
(points) and fits (lines) for absorbance (top-left) and interference optics (top-right) are shown for
constructs fused to maltose binding protein (MBP). Plots of the residuals for the fits are shown at
the bottom. The fits were obtained with data from three spin speeds, and at least two
concentrations. The left plot shows data collected for APH3 fused to MBP. The right plot shows
data collected for a mixture of APH, APH2, APH3, and APH4 at 20 pM each. In both plots, blue
corresponds to 10,200 rpm, red corresponds to 16,300 rpm, and green corresponds to 20,400
rpm.

3.3.6 Helicity and thermal stability

We measured the circular dichroism (CD) spectra of the three designed peptides APH2,

APH3, and APH4, using the N-terminal cysteine constructs in a reduced state. Each construct

contained 65 residues, of which 43 correspond to the designed coiled-coil sequence (Table 3-3).
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Our APH construct contained 66 residues, of which 44 correspond to the APH sequence. The CD

spectra of all three designs were characteristic of coiled coils, with distinct minima at 208 and

222 nm (Figure 3-9A). The mean residue ellipticity (MRE) of the designed peptides was similar

to that of APH, which is longer by one residue in the coiled-coil region. Thermal denaturation

experiments established that all designs unfolded cooperatively, which is a characteristic

property of coiled coils (Figure 3-9B). The thermal stabilities (Tm) of the designs at 20 pM

ranged from 47.4 'C for APH2, to 59.3 'C for APH4 and 78.3 'C for APH3, with APH3 being

slightly less stable then APH which had a Tm of 79.3 *C. All melts were reversible. Upon re-

cooling, all peptides regained >95% of the original MRE and fits of re-folding curves gave

melting temperatures within 1.5 'C of values obtained from the denaturing curves.
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3.4 Discussion

An expanded toolkit of coiled-coil interaction parts would be of great utility in protein

engineering. Many papers have reported the successful design of coiled-coil structures of diverse

topologies, but apart from parallel dimers, the number of biochemically characterized complexes

of any one type is limited.3,6,ss Designing coiled coils de novo is complicated by the fact that

different coiled-coil topologies have similar sequence requirements, and small sequence changes

can alter coiled-coil structure. For these reasons it is often necessary to explicitly consider

competing states in the design process. 2 ,28' 32

Treating off-target states in computational protein design can be costly, particularly when

there are many such states that must be modeled. One strategy is to incorporate a design element

known to strongly destabilize a set of off-target topologies, to reduce the number of off-target

states that must be modeled. For instance, Thomas et al. observed that the de novo design of

parallel heterodimeric coiled coils composed entirely of isoleucine and leucine cores did not

reliably destabilize higher-order states. 55 But the same design strategy in the background of a

single asparagine-asparagine interaction - which was known from prior work to favor parallel

dimer states over higher-order states - consistently gave dimeric assemblies.28 Unfortunately,

incorporating simpie design elements that reliably destabilize all off-target topologies, in all

sequence contexts, is not feasible. Exceptions have been reported for even the most thoroughly

studied coiled-coil structural specificity determinants,3,55 and for many coiled-coil topologies, the

sequence-structure relationship is not well understood. Of relevance for this work, our current

understanding of interactions that favor antiparallel over parallel helical alignments is very
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incomplete. Oakley et al. showed that in analogy to the role of asparagines favoring dimers over

higher order states, paired asparagines can be introduced at opposing a and d' positions to favor

an antiparallel helix alignment.56 Additionally, McClain et al. demonstrated that charge-charge

interactions at e and g positions across the interface can impart an antiparallel vs. parallel

preference.57 Lastly, isoleucine at a d heptad position paired with an alanine residue at an a

heptad position is thought to contribute to a bias towards the antiparallel state of APH over its

parallel homodimer state, in combination with charge-charge interactions at e and g heptad

positions.2' But these types of interactions do not adequately explain the orientations of native

coiled coils.

Modeling off-target states explicitly and including them in the design process provides a

broadly applicable mechanism for engineering specificity. In this work, we used explicit negative

design to disfavor antiparallel heterodimer states by imposing energy gaps between antiparallel

homo and heterodimers. Most of the sequence elements in our APH designs that disfavored

antiparallel heterodimerization within a design set involved charged residues predicted to

participate in repulsive interactions in heterodimer states. For example, all antiparallel

heterodimer states contained a-to-e' and d-to-g' charge-charge repulsions between lysine or

arginine residues. Designs from sequence space 1 additionally contained a-to-e' charge-charge

repulsions between glutamate residues. These core-to-edge charge-charge repulsions are the most

destabilizing weights available to the antiparallel CE DFIRE* model in the design sequence

spaces chosen, with lysine at d to arginine at g' being the most destabilizing.

The design strategies that led to destabilization of parallel homodimers differed in

sequences spaces 1 and 2. In sequence space 1, we allowed glutamate at a positions, and all
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designed sequences included this element. In fact, we identified a motif consisting of two

glutamate residues at a and g, and a lysine at d' with an arginine at e' on the opposing helix that

was present in all of the sequence space 1 designs (Figure 3-10). Interactions between residues in

this motif contain the first and fourth most favorable weights available in the CE DFIRE* model

in sequence space 1, such that the motif is predicted to contribute strongly to antiparallel

homodimer stability. Interestingly, in a parallel homodimer, the residues of this motif form

unfavorable interactions sufficient to provide a large energy gap between parallel and antiparallel

states. This can be demonstrated by modeling an artificial homodimer that includes the motif

embedded in a poly-alanine sequence. Due to symmetry of the homodimer, this results in two

copies of the motif in the structure. Scoring parallel and antiparallel homodimeric structures with

this sequence using DFIRE* revealed a significant preference of 1.64 energy units for the

antiparallel state (poly-alanine alone has a preference of 0.14 energy units for the antiparallel

state using this model). Thus, in sequence space 1, charge networks that stabilize the antiparallel

state lead to substantial destabilization of parallel homodimers, without explicit negative design.

The situation was different in sequence space , which did not include glutamate residues at a

positions. In this sequence space, designing antiparallel homodimers while disfavoring

heterodimers did not automatically lead to large energy gaps to parallel homodimer states for all

sequences (see Figure 3-2B); it was necessary to include parallel structures as off-target states in

the optimization problem. Doing so led to sequences that placed more isoleucines at d heptad

positions to favor antiparallel over parallel homodimers. For example, of the three sequences

originally chosen in sequence space 2, two sequences had one isoleucine residue at a d position,

while one sequence had no isoleucine residues at all. After placing constraints to the parallel
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homodimer state, all design sequences contained at least one isoleucine residue at the d heptad

position, with two sequences containing two isoleucine residues at the d heptad position. Each

designed isoleucine at a d position leads to a d-d' isoleucine pairing across the coiled-coil

interface in the parallel homodimer state. As previously mentioned, this interaction destabilizes

parallel dimers. The effect is captured in our models: isoleucine at d-d' is the fourth most

destabilizing weight for parallel dimers in sequence space 2.

Antiparallel Parallel

N .C N N
a do'

CE WeigtA Marker .-

< -0. 15
> -0.15 , < -0.05 ----- N N
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Figure 3-10. Sequence space 1 motif that favors AP helix orientation. Helical-wheel diagrams
show a motif that was included in all three of the designed sequence space 1 AP homodimers.
Positively and negatively charged amino acids are shown in blue and red, respectively. The motif
residues make strongly favorable interactions according to the CE DFIRE* model in the AP
state, but repulsive interactions in the parallel state, as indicated with colored and solid/dashed
lines.

Explicit consideration of off-target states requires enumerating and modeling the relevant

competing states. We successfully used this strategy to destabilize antiparallel heterodimer states

in sequence spaces 1 and 2, and to destabilize parallel homodimers when designing in sequence

space 2. But we did not explicitly model formation of higher-order assemblies, and as a result,

oligomers larger than dimers were formed by designs APHi and APHiv. Modeling higher-order

coiled coils is challenging due to the many different topologies that are possible. Each helix pair
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can be antiparallel or parallel, heteroassemblies can form with different stoichiometries, and the

geometry of helix associations can vary in subtle ways.58 ,59 It is therefore difficult to include a

comprehensive set of competing states and, even if such a set could be generated, the

computational modeling costs for considering all possibilities explicitly would be high.

One approach to disfavoring higher-order states could be to include just a small number

of trimer and tetramer topologies in the calculations. Adding representative off-target structures

would minimally alter the computational complexity of the current design framework, yet might

lead to broader destabilization of additional higher-order states. Indeed, our study provided such

an example where specificity was obtained against states that were not explicitly modeled,

possibly due to constraints on specificity against related states. The design solutions from

sequence space 1 were predicted to not form heterodimers with design solutions from sequence

space 2, despite not being explicitly constrained during optimization. We hypothesize that this

occurred because the consideration of many off-target dimer states gave rise to interfaces with

charge patterns low in symmetry, as well as hydrophobic cores with unique geometries due to the

placements of beta-branched residues in the core. As a result, the probability of cross-reacting

with another sequence to form dimers was low.

Considering just a few higher-order states may also have the effect of reducing or

removing design features known to favor higher-order states generally. For example, isoleucines

at d heptad positions are known to favor parallel trimer and tetramer states in preference to

parallel dimer states.3 ,2 7 Yet isoleucines at d heptad positions also favor antiparallel dimers over

parallel dimers, and were included in many of our designs for this reason, as discussed above

(also see Table 3-6). Interestingly, in native coiled coils isoleucines are approximately four-fold
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more common in AP dimers than in P dimers (Table 3-5). Isoleucines at d heptad positions that

were included in the design to favor antiparallel dimers might have inadvertently favored higher-

order assembly, which was not treated in the model. A constraint to disfavor just a few trimers or

tetramers might be sufficient to limit the use of this sequence element, or to drive inclusion of

compensating elements that are poorly accommodated in higher-order assemblies.

A significant obstacle to including even a few higher-order states in design is the small

amount of structural data available for coiled-coil trimers, tetramers, and higher-order assemblies

of a specific toplogy.37 Benchmarking the predictive power of models using experimental data is

important for determining the limitations of any model, and is useful for setting meaningful

energy cutoffs in design calculations. As the number of solved structures for higher-order states

increases over time, our ability to rigorously assess and validate models will improve, as seen by

the development of models like LOGICOIL.9 It should be noted that LOGICOIL does predict

that APH, APH3, and APH4 will form dimers, though it predicted that these would form parallel

dimers. LOGICOIL does not score inter-chain terms, which were designed to be the main

determinants of orientation preference in the APH sequences and may be the reason why

LOGICOIL assigns the wrong orientation to these sequences.

The new APH designs have many desirable properties for synthetic biology and materials

science. The peptides use well-known sequence features to establish orientation bias and

orthogonality that should aid in manipulating them. For instance, it appears most target states are

stabilized by salt-bridge interactions across the interface, and aliphatic residues at core a and d

heptad positions (Figure 3-11). Off-target states appear to be destabilized by charge repulsions

along the interface, and by steric clashes between beta-branched residues at core heptad
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positions. The surface residues of all APH designs were engineered to be passive, and may

provide useful positions for adding novel functions or modulating stability.52,60,61 The designed

structures also provide users with a range of thermal stabilities. Finally, the designs are

orthogonal to each other when used in pairwise or higher-order combinations. Proteins with this

property have been highly sought for many applications in synthetic biology and are thought to

be one of the limiting reagents slowing progress in this field.19,62 It should also be noted that

these designs could be used as off-target states in future design studies using the CLASSY

framework, allowing for the extension of this set. In conclusion, the antiparallel homodimer

sequences represent a significant expansion to the coiled-coil toolkit, which is currently

dominated by parallel dimers, and thus may find application in many molecular engineering

projects. 2,3
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Figure 3-11. Helical-wheel diagrams of APH, APH2, APH3, and APH4 as antiparallel
homodimers. Positively and negatively charged amino acids are shown in blue and red,
respectively, with non-charged polar residues in orange and hydrophobic residues in grey.
Potentially attractive salt bridges are shown as dashed lines. Sequences start at anf position and
end at an e position. Diagrams were generated using DrawCoil 1.0, http://www.grigoryanlab.org/
drawcoil.

3.5 Acknowledgements

We thank members of the Keating lab, especially R. Rezaei Araghi for performing mass

spectrometry analysis of peptides, as well as J. B. Kaplan and K. Hauschild for experimental

advice. This work used the MIT Bioinstrumentation Facility and we are grateful to D. Pheasant

for analytical ultracentrifugation support. Lastly, we thank C. M. Kougentakis and V. Xue for

110

APH2

N C

APH4



careful reading of the manuscript. Funding was from a National Science Foundation Graduate

Research Fellowship awarded to C. N., and from NSF award MCB-0950233 (supporting

experimental applications) and NIH award GM67681 (supporting computational design method

development) to A. K. We used computer resources provided by National Science Foundation

award DBI-0821391.

3.6 References

1.Purnick, P. E.; Weiss, R. Nat. Rev. Mo. Cell Bot. 2009, 10, 410-422.

2.Thompson, K. E.; Bashor, C. J.; Lim, W. A.; Keating, A. E. ACS Synth. Biot. 2012, 1, 118-129.

3.Fletcher, J. M.; Boyle, A. L.; Bruning, M.; Bartlett, G. J.; Vincent, T. L.; Zacci, N. R.;

Armstrong, C. T.; Bromley, E. H. C.; Booth, P. J.; Brady, R. L.; Thomson, A. R.; Woolfson, D.

N. ACS Synth. Biol. 2012, 1, 240-250.

4.Wolf, E.; Kim, P. S.; Berger; B.; Protein Sci. 1997, 6, 1179-1189.

5.Rackham, 0. J.; Madera, M.; Armstrong, C. T.; Vincent, T. L.; Woolfson, D. N.; Gough, J. J.

Mol. Biol. 2010, 403, 480-493.

6.Reinke, A. W.; Grant, R. A.; Keating, A. E. J.Am. Chem.Soc. 2010, 132, 6025-6031.

7.Lupas; A. Trends Biochem. Sci. 1996, 21, 375-3 82.

8.Woolfson, D. N. Adv. Protein Chem. 2005, 70, 79-112.

9.Vincent, T. L.; Green, P. J.; Woolfson, D. N. Bioinformatics 2013, 29, 69-76.

10.Woolfson, D.N.; Alber, T. Protein Sci. 1995, 4, 1596-1607.

11.Wolf, E.; Kim, P. S.; Berger; B.; Protein Sci. 1997, 6, 1179-1189.

12.Armstrong, C.T.; Vincent, T. L.; Green, P. J.; Woolfson, D. N. Bioinformatics 2011, 27,

111



1908-1914.

13. Mahrenholz, C. C.; Abfalter, I. G.; Bodenhofer, U.; Volkmer, R.; Hochreiter, S. Mol. Cell.

Proteomics. 2011, 10.

14.Trigg, J.; Gutwin, K.; Keating, A. E.; Berger, B. PLoS ONE 2012, 6, e23519.

15.Wolfe, S. A.; Grant, R. A.; Pabo, C. 0. Biochemistry 2003, 42, 13401-13409.

16.Bashor, C. J.; Helman, N. C.; Yan, S.; Lim, W. A. Science 2008, 319, 1539-1543.

17.Lanci, C. J.; MacDermaid, C. M.; Kang, S.; Acharya, R.; North, B.; Yang, X.; Qiu, X. J.;

DeGrado, W. F.; Saven, J.; G. Proc. Nati. Acad. Sci. 2012, 109, 7304-7309.

18.Shlizerman, C.; Atanassov, A.; Berkovich, I.; Ashkenasy, G.; Ashkenasy, N. J.Am.Chem.Soc.

2010, 132, 5070-5076.

19.Gradisar, H.; Bozic, S.; Doles, T.; Vengust, D.; Hafner-Bratkovi', I.; Mertelj, A.; Webb, B.;

Sali, A.; Klaviar, S.; Jerala, R. Nat. Chem. Biol. 2013, 9, 362-366.

20.Lumb, K. J.; Carr, C. M.; Kim, P. S.; Biochemistry 1994, 33, 7361-7367.

21.Gurnon, D. G.; Whitaker, J. A.; Oakley, M. G. J.Am.Chem.Soc. 2003, 125, 7518-7519.

22.Taylor, C. M.; Keating, A. E.; Biochemistry 2005, 44, 16246-16256.

23.Gradisar, H.; Jerala, R. J. Pept. Sci. 2010, 17, 100-106.

24.Reinke, A.W.; Baek, J.; Ashenberg, 0.; Keating, A.E. Science 2013, 340, 730-734.

25.Havranek, J. J; Harbury, P. B. Nat. Struct. Biol. 2003, 10, 45-52.

26.O'Shea, E. K.; Lumb, K. J.; Kim, P.S. Curr. Biol. 1993, 3, 658-667.

27.Harbury, P. B.; Zhang, T.; Kim, P. S.; Alber, T. Science 1993, 262, 1401-1407.

28.Lumb, K. J.; Kim, P. S. Biochemistry 1995, 34, 8642-8648.

29.McClain, D. L.; Gurnon, D. G.; Oakley, M. G. J. Mol. Biol. 2002, 324, 257-270.

112



30.London, N.; Ambroggio, X. J Struct. Biol. 2013, 185, 136-146.

31.Davey, J. A.; Chica, R. A.; Protein Sci. 2012, 21, 1241-1252.

32.Grigoryan, G.; Reinke, A. W.; Keating, A. E. Nature 2009, 458, 859-864.

33.Negron, C.; Keating, A. E. Methods Enzymol. 2013, 523, 171-190.

34.Reinke, A. W.; Grigoryan, G. Keating, A. E. Biochemistry 2010, 49, 1985-1997.

35.Chen, T. S.; Reinke, A. W., Keating, A. E. J Mol. Biol. 2011, 408, 304-320.

36.Yang, Y; Zhou, Y Proteins 2008, 72, 793-803.

37.Testa, 0. D.; Moutevelis, E.; Woolfson, D. N. Nucleic Acids Res. 2009, 37, 315-322.

38.Crick, F. H. C. Acta Crystallogr , 1953 6, 685-689.

39.Grigoryan, G.; DeGrado, W. F. J. Mol. Biol. 2011, 405, 1079-1100.

40.Kuhlman, B.; Baker, D. Proc. Nati. Acad. Sci. 2000, 97, 10383-10388.

41.Grigoryan, G.; Zhou, F.; Lustig, S. R.; Ceder, G.; Morgan, D.; Keating, A. E. PLoS

Computational Biology 2006, 2, 551-563.

42.Hahn, S.; Ashenberg, 0.; Grigoryan, G.; Keating, A. E. J Comput. Chem. 2010, 31,

2900-2914.

43.IBM Corp. IBM ILOG CPLEX Optimization Studio 2012. Version 12.5.

44.Hoover, D. M.; Lubkowski, J. Nucleic Acids Res. 2002, 30, e43.

45.Edelhoch, H. Biochemistry 1967, 6, 1948-1967.

46.Schuck, P. Anal. Biochem. 2003, 320, 104-124.

47.Vistica, J.; Dam, J.; Balbo, A.; Yikilmaz, E.; Mariuzza, R. A.; Roualt, T. A.; Schuck, P. Anal.

Biochem. 2004, 326, 234-256.

48.Laue, T. M.; Shah, B. D.; Ridgeway, T. M.; Pelletier, S. L. In Analytical ultracentrifugation in

113



biochemistry andpolymer science (eds. S.E. Harding et al.), pp. 90-125. The Royal Society of

Chemistry, Cambridge, UK.

49.John, D. M.; Weeks, K. M. Protein Sci. 2000, 9, 1416-1419.

50.Apgar, J. R.; Gutwin, K. N.; Keating, A. E. Proteins 2008, 72, 1048-1065.

51 .Zhou, F.; Grigoryan, G.; Lustig, S. R.; Keating, A. E.; Ceder, G.; Morgan, D. Phys. Rev. Lett.

2005, 95, 148103.

52.Li, Y; Kaur, H.; Oakley, M.G. Biochemistry 2008, 47, 13564-13572.

53.Mason, J.M.; Hagemann, U. B.; Arndt, K.M. Biochemistry 2009, 48, 10380-10388.

54.Straussman, R.; Ben-Ya'acov, A.; Woolfson, D. N.; Ravid, S. J. Mol. Biol. 2007, 366,

1232-1242.

55.Thomas, F.; Boyle, A. L.; Burton, A. J.; Woolfson, D. N. J.Am.Chem.Soc. 2013, 135,

5161-5166.

56.Oakley, M. G.; Kim, P.S Biochemistry 1998 37, 12603-12610.

57.McClain, D. L.; Woods, H. L.; Oakley, M. G. J.Am.Chem.Soc. 2001 123, 3151-3152.

58.Deng, Y.; Zheng, Q.; Liu, J.; Cheng, C. S.; Kallenbach, N. R.; Lu, M. Protein Sci. 2007, 16,

323-328.

59.Liu, J.; Zheng, Q.; Deng, Y.; Li, Q.; Kallenbach, N. R.; Lu, M. Biochemistry 2007, 46,

14951-14959.

60.Dahiyat, B. I.; Gordon, B.; Mayo, S. L. Protein Sci. 1997, 6, 1333-1337.

61.Kaplan, J. B.; Reinke, A. W.; Keating, A. E. Protein Sci. 2014, 23, 940-953.

62.Kapp, G. T.; Liu, S.; Stein, A.; Wong, D. T.; Remenyic, A.; Yeh, B. J.; Fraser, J. S.; Taunton,

J.; Lim, W. A.; Kortemme, T. Proc. Nati. Acad. Sci. 2012, 109, 5277-5282.

114



Chapter 4

Conclusions and Future Directions

Computational protein design has successfully produced several PPIs that are orthogonal to

native PPIs (Kortemme et al., 2004; Sammond et al., 2010; Kapp et al., 2012). However, using

computational protein design in de novo design of orthogonal PPI pairs has never been

attempted. In this thesis, I described a proof-of-concept application of computational protein

design that produced a set of de novo orthogonal antiparallel homodimeric coiled coils. In this

chapter, I will discuss how our computational design framework CLASSY is useful for the

design of orthogonal PPIs. I will then describe strategies for improving our computational

models, and present a strategy to more rapidly screen large sets of candidate orthogonal coiled

coils experimentally. Lastly, I will speculate on possible applications that could benefit from

large sets of orthogonal coiled coils.

4.1 Designing orthogonal sets with CLASSY

There are several advantages to designing orthogonal PPIs with CLASSY For example,

CLASSY can be used with a diverse set of energy functions (Grigoryan et al., 2006). This allows
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it to be coupled with an energy function that is empirically observed to have good performance

on the system of interest. In the CLASSY framework, it is possible to design multiple orthogonal

pairs at once, which is a problem for other orthogonal design strategies (Kortemme et al., 2004).

CLASSY can be used to perform rapid searches through sequence space, and if a solution is

found, this is guaranteed to be the minimum energy solution for the energy function used

(Kingsford et al., 2005). This facilitates the evaluation of energy functions, because any failed

design sequences can be attributed directly to the energy function, and not the search algorithm.

This is not true of other multi-state design strategies (Havranek & Harbury, 2003). Additionally,

users can systematically evaluate the tradeoff between stability of the target state and

orthogonality with respect to off-target states. Lastly, it has been shown that incorporating

backbone flexibility in molecular models is crucial for recapitulating certain properties of

proteins (Ollikainen et al., 2013). Yet, most protein design algorithms are built to perform side-

chain optimization on a single fixed backbone (Gordon et al., 1999). This is often due to the

computational time added in exploring a larger structure space. Cluster expansion provides a way

to reduce this computational time by deriving energies that approximate scoring on multiple

backbones (Apgar et al., 2009).

As a proof a principle, we experimentally characterized a set of six orthogonal

antiparallel homodimeric coiled coils designed using CLASSY. These designs represent the first

computationally designed antiparallel coiled coils, and are the only antiparallel coiled coils

designed and experimentally tested for orthogonality. Despite the success of three of these

designs, two of the design sequences did not adopt their target structure. However, several

strategies exist for improving the models used in this work.
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4.2 Improving models for the design of antiparallel coiled coils

4.2.1 Incorporating coupling energies

An accurate energy function is a critical component in any computational protein design

problem. In this work, a cluster-expanded model of a modified version of the statistical potential

DFIRE was used. This model's performance on predicting the orientation preference of known

coiled-coil dimers was suboptimal, with an area under the curve of 0.84. An important factor

when predicting orientation preference is the accurate scoring of interactions among residues at

the core a and d heptad positions (Apgar et al., 2008). As a result, interactions between core

residues are a potential issue for the cluster-expanded energy functions used in CLASSY, and

may be an avenue for improvement.

Previously, our group showed that simple structure-based models used in the design of

parallel dimeric coiled coils poorly capture the energetic contributions of core residues

(Grigoryan et al., 2006). In a later study, Grigoryan et al. were able to overcome this by replacing

the inter-chain energies of core residues with experimentally measured coupling energies

(Grigoryan et al., 2009). Coupling energies (AAAG) are measured by performing a double

mutant thermodynamic cycle between a pair of amino acids in a structure (Serrano et al., 1990).

Many coupling energies have been measured for core residues in parallel coiled-coil dimers

(Acharya et al., 2006). Hadley and Gellman measured coupling energies for antiparallel coiled

coils (Hadley & Gellman, 2006). These can in theory be used to replace the weights for

interactions between core residues in the cluster expansion model, as done by Grigroyan et al. for
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parallel coiled-coil dimers (Grigoryan et al., 2009). However, there are far fewer measurements

for antiparallel coiled coils than for parallel coiled coils, 25 vs. 100, respectively (Hadley &

Gellman, 2006; Acharya et al., 2006). This is problematic when predicting properties of native

coiled coils, because native coiled coils have many core residue interactions for which there is no

measured coupling energy. In the de novo design of coiled coils, however, it is possible to restrict

the sequence space that is used. With such a restriction, the calculation can be set up such that

evaluated sequences are highly enriched in interactions for which coupling energy measurements

are available. With such an arrangement, the coupling energies can potentially make a significant

impact improving design performance, despite their sparse description of the possible core

residue interactions.

4.2.2 Allowing greater backbone flexibility

In deriving cluster expansion models in this study, ensembles of backbones were used to

represent the antiparallel and parallel states. However, these backbones ensembles were chosen

to have minimal structural diversity (backbone R.M.S.D. < 1 A). This was due to the concern

that a single cluster expansion model would not be able to accurately approximate a scoring

procedure that used structurally diverse backbones. However, a recent study by Murphy et al. on

the four-helix bundle CheA showed that backbone motions between 1-2 A were needed to design

a sequence with a fully mutated core within the Rosetta molecular modeling software (Murphy et

al., 2012). Perhaps the backbones used in modeling antiparallel and parallel dimers in this study

lacked sufficient structural diversity to accurately capture the properties of core residues in
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dimers. If true, using a more structurally diverse set of backbones could improve prediction of

orientation preference.

The cluster expansion models used to approximate energies on a more structurally

diverse set of backbones would need to be tested, to determine how accurately they capture this

new scoring protocol. It should be noted that the cluster expansion models in this study captured

energies derived from backbone ensembles that differ by up to 1 A RMSD very accurately, R2 -

0.90. Thus, obtaining a cluster expansion that accurately captures backbone motions of 1-2 A

seems feasible. Additionally, one could compare the cluster-expansion weights of core residue

interactions to their corresponding coupling energies, and systematically check how

incorporating more structurally diverse backbones affects the correlation between these values.

As mentioned earlier, coupling energies are experimentally derived weights for residue-residue

interactions, and thus provide a way to evaluate predicted residue-residue interactions that arise

when fitting the pairwise terms in the cluster expansion models.

4.2.3 Using a standard set of terminal heptads

A strategy used by Havranek and Harbury to design parallel coiled-coil homo and hetero

dimers was to mutate only the central heptad of a variant of GCN4 (Havranek & Harbury, 2003).

GCN4 is a native parallel homodimer, and using it as a scaffold provides two advantages. First,

the flanking sequence around the central heptad contains sequence determinants that favor the

dimeric state of a coiled coil in preference to higher-order assemblies. As mentioned earlier,

formation of higher-order complexes rather than antiparallel dimers was the most common way
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that my designs failed. Additionally, terminal ends are difficult to model since these are often

very flexible regions in the absence of capping motifs (Harper & Rose, 1993). Moreover, the

cluster expansion models were derived to approximate energies within the central heptad of a

coiled-coil structure. As a result, the cluster expansion models are not well equipped to score

residue interactions at the N and C terminal ends of a coiled coil. Having standard terminal

heptads would prevent the need to model these terminal ends.

Coiled-Coil Scaffold

Constant Region

Variable Region

Constant Region--

Figure 4-1. Using a standard set of terminal heptads. A cartoon of a dimeric coiled coil is
shown as two rectangles. The rectangles are composed of two regions. The constant regions are
located at the terminal ends of the coiled coil and are colored dark grey. The sequences in these
constant regions are unchanged. These sequences can be taken from wild-type or synthetic
coiled-coil sequences. The second region is the variable region, colored in yellow and blue.
These represent the design positions, and can be mutated. The differential coloring indicates that
these sequences can be independent of each other, indicative of a heterodimer, or they can be
equivalent sequences, indicative of a homodimer.
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GCN4 would not be an ideal scaffold for the terminal heptads in designed antiparallel

homodimers because of its preference for the parallel state. However, the antiparallel homodimer

domain of Bcr, from the Bcr-Abl oncoprotein, represents one of the most well studied

antiparallel homodimers; it could be an ideal scaffold (Taylor & Keating, 2005). For instance,

this domain has been used as a reagent in polyhedron design, establishing its use as a molecular

reagent (Gradigar et al., 2013). Another scaffold to base the design of new antiparallel coiled

coils is the rationally designed antiparallel homodimer APH. This could be a particularly useful

scaffold due to its high thermostability (Gurnon et al., 2003). There is one challenge that arises

from using either of these scaffolds, however: terminal heptads derived from homodimers will

promote heterodimerization of different designs. However, this may be a minor problem as long

as adequate negative design elements are included in the designed part of the sequence. For

example, the antiparallel homodimers designed in this work using CLASSY were six heptads

long. If only the two terminal heptads were replaced with scaffold sequence to promote the

formation of antiparallel dimers, many specificity determinants could still be placed in the

central four heptads to destabilize any cross talk between the designed PPIs. It is also important

to note that studies on coiled coils suggest that the central heptads play a larger role in stabilizing

a complex than terminal heptads (Zhou et al., 1992). As a result, it is likely that the sequence

features in the central heptads can override the unwanted stabilization of antiparallel

heterodimers from the use of known terminal ends.
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4.2.4 Including higher-order off-target states

Lastly, one strategy to improve the design of antiparallel homodimers is to include

models that capture higher-order states. In my design of antiparallel homodimers, two designs

appeared to form higher-order states. Analytical ultracentrifugation data were consistent with one

being a trimer and the other appearing to be in monomer-tetramer equilibrium. Including higher-

order states in the design methodology would be challenging, but could be attempted. Trimers

and tetramers can adopt a wide range of topologies because the helices in these oligomerization

states can have a variety of orientations with respect to each other, as well as form different types

of heteroassemblies. However, one approach for dealing with the multitude of higher-order off-

target states may be to place energetic constraints to just a single trimer and tetramer state. This

may have the effect of destabilizing several higher-order states that are not explicitly constrained.

For instance, in chapter 3 two sets of three antiparallel homodimers were designed with

constraints to various dimeric off-target states, but no explicit constraints were placed on

interactions between the two sets. However, computational modeling predicted that the

sequences in these two sets would not cross react. For the subset of these sequences that folded

into antiparallel homodimers, two of these predictions (APH2 and APH4; APH3 and APH4) were

experimentally validated to not cross react. This demonstrates that under certain conditions,

negative design can be obtained without explicit modeling, as long as several closely related off-

target states are considered.
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4.3 Screening libraries of orthogonal PPIs

As computational resources continue to increase in speed, and our algorithms become

ever faster to evaluate, as well as more accurate, it may be possible to design large sets of dozens

to hundreds of orthogonal PPIs. This could be done by computationally designing small sets of

orthogonal interactions and then computationally testing for cross-reactivity, as done in this

thesis, or by simultantously designing a dozen or more orthogonal PPIs at once. As larger

orthogonal PPI sets are designed, the number of PPI to experimentally test will increase rapidly.

For instance, designing ten homodimers would require testing 55 PPIs. The overwhelming

majority of these PPIs, 45/55 in this example, would be predicted to be weak. Ways to quickly

discriminate non-interacting proteins from those that do associate could dramatically reduce the

time needed to experimentally evaluate designs.

Several high-throughput strategies exist for measuring whether two proteins interact

(Fields & Song, 1989; Newman & Keating, 2003; Remy & Michnick, 2006). An assay developed

by Magliery et al. to test for protein interactions is particularly noteworthy (Magliery et al.,

2005). To detect binding in this assay, a split version of the green fluorescent protein (GFP) is

made, which can no longer fold on its own. The split version is composed of an N-terminal half

and a C-terminal half. The N-terminal half of GFP is genetically fused to one member of the PPI,

and the C-terminal half of GFP is fused to the other PPI partner (Figure 4-2).
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Antiparallel orientation Parallel orientation

N-terminal GFP C-terminal GFP N-terminal GFP

N N

C C

C-terminal GFP

Figure 4-2. Split GFP Assay. Green semi-circles represent the two green fluorescent protein
(GFP) fragments. Yellow and blue rectangles represent the subunits of a coiled coil, with N
indicating the N-terminal end and C indicating the C-terminal end. In the antiparallel orientation,
GFP assembly can occur because both fragments are presented on the same side of the coiled
coil. However, in the parallel orientation, the C-terminal fragments are spatially secluded from
the N-terminal fragment, preventing assembly.

The constructs are then transformed into bacteria. In the absence of binding the GFP will not

fold, but upon binding and proper colocalizing of GFP fragments, the GFP will fold and

fluoresce in the cell. This assay could be used to quickly assess whether ten sequences designed

to be homodimers interact in a manner that allows reconstitution of GFP. Additionally, the same

assay could be used to assess whether any of the 45 possible heterotypic interactions compete

with the 10 homotypic interactions, thus testing orthogonality. The benefit of this strategy is that

it does not require purification of any protein components. Additionally, this assay determines

whether the PPI being evaluated functions inside cells, a property useful for synthetic biology.

Magliery et al. applied this assay to evaluate binding for 256 antiparallel heterodimeric coiled

coils, suggesting the technique is amendable to the antiparallel homodimer design problem

mentioned in this thesis.
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Several caveats with respect to the GFP reconstitution assay should be considered when

applying this to the screening of orthogonal antiparallel homodimers. The folding of GFP is

irreversible, and as a result even if the equilibrium of a binding reaction heavily favors

homodimers, GFP assembly may trap a transient interaction between heterodimers. Additionally,

even if a pair of sequences are detected to be orthogonal antiparallel homodimers, the orientation

preference of these sequences are not known, since these sequences may be trapped in the

antiparallel state due to the GFP, but actually prefer the parallel state. Thus orientation preference

would need to be further tested using more time consuming methods. Lastly, in the context of

testing antiparallel homodimeric coiled coils, if heterodimers form in the parallel orientation,

they would evade detection. This would occur because the GFP components would be on

opposite termini and could not assemble (Figure 4-2). One solution to this issue is to make an

additional construct for every sequence in the design set that has the C-terminal GFP component

at the N-terminus of the design sequence, allowing testing of both antiparallel and parallel

interactions. This would also have the added benefit of reporting on topological features of the

interactions. As ever larger sets of orthogonal pairs are designed, the experimental speed up

provided by this split-GFP assay would likely outweigh the cost of setting up the assay and

developing additional reporters.

4.4 Application of orthogonal coiled coils

It is interesting to speculate on the possible applications of a large set of orthogonal

coiled coils. I will describe two possible applications. Gradigar et al. developed a technique to
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design polyhedra of arbitrary shapes using orthogonal parallel and antiparallel coiled coils, as

mentioned in previous chapters (Gradi'ar et al., 2013). This technique requires an orthogonal

coiled coil for every edge in a polyhedron. Given a large set of orthogonal coiled coils, one could

attempt to design icosahedrons. Icosahedrons have 30 edges, and are the typical geometry used

by viral capsids (Zandi et al., 2004). Icosahedrons are attractive since they generate the maximal

enclosed volume for shells composed of a single subunit (Caspar & Klug, 1962), and therefore

may be ideal molecular cages for the transport of large molecules, or a large collection of

molecules.

Beyond polyhedra design, a large set of orthogonal coiled coils may be useful for

modifying the activity of nonribosomal peptide-synthetase (NRPS) pathways. NRPS pathways

synthesize peptides independent of mRNA. The peptide products of NRPS pathways have many

important medical applications. For example, they are used as antibiotics, antitumor agents, and

immunosuppressants (Strieker et al., 2010). NRPS pathways are made of multiple enzymatic

modules, with each enzymatic module perforning a unique catalytic function. Given a large set

of orthogonal heterodimeric coiled coils, it would be possible to genetically fuse a member of

each heterodimer to a terminal end of an NRPS module to form assembly lines (Figure 4-3A).

Orthogonal homodimeric coiled coils can additionally be used to create clusters of assembly

lines, which may increase the efficiency of these pathways due to their higher density (Figure

4-3B) (Tsai et al., 2013). Lastly, some groups have begun reengineering the enzymatic substrate

specificities of the enzymes in the NRPS modules (Chen et al., 2009). Combing these

achievements with orthogonal coiled coils will allow for the design of completely synthetic

NRPS pathways, which may revolutionize how molecules are synthesized.

126



A.

B.

Figure 4-3. A schematic of coiled coils manipulating NRPS pathways. Coiled coils are shown
as elongated rectangles, and NRPS modules are shown as rounded rectangles. (A) Shows
orthogonal coiled coils as tools for directing assembly line formation among a set of NRPS
modules. (B) A homodimer, that is orthogonal to the other coiled coil heterodimers, is used to
promote the formation of clusters.

4.5 Summary

Orthogonal PPIs are of high value to many fields that involve molecular engineering.

CLASSY provides a computational strategy for designing multiple orthogonal PPIs at once, and

has now been experimentally validated as an approach for orthogonal design. It should also be

noted that CLASSY was previously combined with an energy function that was developed

specifically for parallel dimers (Grigoryan et al., 2009). In this work, CLASSY was combined
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with an energy function broadly developed for modeling protein properties. As a result, it may be

possible to extend the strategy used in this work to many other PPI systems. The ability of

CLASSY to model non coiled-coil interactions has only been minimally explored, but results

have suggested that this is possible (Grigoryan et al., 2006). Lastly, as computational resources

and models of PPIs improve, computational strategies such as CLASSY will become a more

attractive approach for the design of orthogonal PPIs.
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Appendix A

Experimental data on antiparallel homodimers
from the literature

Below are the "Specification Sheets" for antiparallel homodimers. The "Specification sheets"

summarize the data for antiparallel homodimers that have been biophysical characterized in the

literature. The known, or hypothesized, sequence alignments are shown. Additionally, the

helical-wheel diagrams for those alignments, generated using DrawCoil 1.0 (http:I/

www.grigoryanlab.org/drawcoil/), are provided. At the bottom of each sheet is a table that lists

the values from experimental measurements performed on the antiparallel homodimer in

question. Names and references involving the antiparallel homodimer are listed on the top. SEC

refers to size-exclusion chromatography. AUC refers to analytical ultracentrifugation, and AP

stands for antiparallel.
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Name: Oligomerization domain of hepatitis delta antigen

Paper Reference:
Zuccola et al. Structural basis of the oligomerization of hepatitis delta antigen. Structure (1998)
vol. 6 (7) pp. 821-830.

Alignment:
heptad position
......... gabcdefgabcdefgabcdefgabcdefgabcdefga
......... GREDILEQWVSGRKKLEELERDLRKLKKKIKKLEEDNPWLGNIKGIIGKY
............. agfedcbagfedcbagfedcbagfedcbagfedcbag
YKGIIGKINGLWPNDEELKKIKKKLKRLDRELEELKKRGSVWQELIDERG
- from crystal structure, PDB ID: 1A92

Helical Wheel:

E er i

Experimental Characterization:

f

I I I I X-ray -

Additional Comments:
Structure has a unique property that towards the bottom of the coiled coil the helix kinks out
allowing the dimer to form octamers. Removing the helices that kink out results in structures that
are significantly less helical according to the authors.
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Name: Bovine IFI

Paper Reference: Gordon-Smith et al. Solution structure of a C-terminal coiled-coil domain from
Bovine IF1: The inhibitor protein of FI ATPase. Journal ofMolecular biology (2001) vol. 308
pp. 325-339.

Alignment:
heptad position
..... defgabcdefgabcdefgabcdefga
ALKKHHENEISHHAKEIERLQKEIERHKQSEDDD
..... agfedcbagfedcbagfedcbagfed
.. DDDESQKHRE IEKQIRE IEKAHHSIENEHHKKLA
- from NMR structure, PDB ID: 1HF9
- Color = CC+ defined coiled coil region

Helical Wheel:

4

f

a

e

a
f

Experimental Characterization:

I I I I NMR -

Additional Comments:
At a pH value below 6.5 it forms an active dimer. At higher pH values, two dimers associate to
form an inactive tetramer.
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Name: Coiled-coil domain of Osmosensory Transporter ProP in E. Coli

Paper References:
Zoetewey et al. Solution structure of the C-terminal antiparallel coiled-coil domain from
Escherichia coli osmosensor ProP. Journal ofMolecular biology. (2003) vol. 334 pp. 1063-1076.

Hillar, et al. Detection of R-helical coiled-coil dimer formation by spin-labeled synthetic
peptides: A model parallel coiled-coil peptide and the antiparallel coiled-coil formed by a replica
of the ProP C-terminus, Biochemistry. (2003) 42, 15170-15178.

Hillar et al. Formation of an antiparallel, intermolecular coiled-coil is associated with in ViVo
dimerization of osmosensor and osmoprotectant transporter ProP in Escherichia coli,
Biochemistry. (2005) 44, 10170-10180.

Alignment:
heptad position
......... abcdefgabcdefgabcd
CGGDNIEQKIDDIDHE IADLQAKRTRLVQQHPR
......... dcbagfedcbagfedcba
... RPHQQVLRTRKAQLDAIEHDIDDIKQEINDGGC
- from crystal structure, PDB ID: 1R48
- Color = CC+ defined coiled coil region

Helical Wheel:

b e '
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Experimental Characterization:

28 *C
@ 95pM

Measurea
transporters uptake

rate

Cross-linking study
to check

dimerization
occurred in vivo in
an AP orientation.

Additional Comments:
The construct is four heptads long. Authors noted the existence of a five-heptad construct. A
Pfam model, OsmoCC, exists, and contains about 544 sequences from 540 species. Also
important to note, the structure has a unique bend in the coiled coil.
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Name: Coiled-coil domain of Osmosensory Transporter ProP in A. tumefaciens

Paper Reference:
Tsatskis et al. Core Residue Replacements Cause Coiled-Coil Orientation Switching in Vitro and
in ViVo: Structure-Function Correlations for Osmosensory Transporter ProP. Biochemistry
(2008) vol. 47 pp. 60-72.

Alignment:
heptad position
.. bcdefgabcdefgabcdefgabcdefgabcdefgabcde
.. QHIEKSVEEIDEELAKLEEQKKILQTKREGLVGRHPDLT
edcbagfedcbagfedcbagfedcbagfedcbagfedcb
TLDPHRGVLGERKTQLIKKQEELKALEEDIEEVSKEIHQ
- alignment based on a crystal structure, PDB ID: 1R48 *Crystal structure is
of a homolog found in E. Coli.

Helical Wheel:

C C

f r

Experimental Characterization:

COM~II by (SEC or AMC) (Kdo Ira T strudtame

AP pref -45.5 *C -Measured 'transporters
@ 50 pM uptake rate

Cross-linking study to check
dimerization occurred in vivo

in an AP orientation.
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Additional Comments:
Authors also tested a mutation of this sequence, K4981, that showed increased thermal stability,
(63.5*C). It also showed antiparallel preference in a disulphide competition, and similar kinetics
in measured transporters uptake rate. Important to note that this paper may be the only paper to
show a change in biological function when orientation is switched.
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Name: Mitofusin domain HR2 V686M/1708M mutant (Mfnl HR2)

Paper Reference: Koshiba et al. Structural Basis of Mitochondrial Tethering by Mitofusin
Complexes. Science (2004) vol. 305 (5685) pp. 858-862.

Alignment:
heptad position
.................................... abcdefgabcdefgabcdefgabcdefgabcdefgabcd
LVPRGSHMFTSANCSHQVQQEMATTFARLCQQVDMTQKHLEEEIARLSKEIDQLEKMQNNSKLLRNKAVQLESELEN
FSKQFLH

dcbagfedcbagfedcbagfedcbagfedcbagfedcba
.......................... HLFQKSFNELESELQVAKNRLLKSNNQMKELQDIEKSLRAIEEELHKQTM
DVQQCLRAFTTAMEQQVQHSCNASTFMHSGRPVL
- from crystal structure, PDB ID: 1T3J
- Color = CC+ defined coiled coil region

Helical Wheel:

d

4
4
4
4
4

ii

a

4
-- 4

p.- -- 4
P. 4

4

f

Experimental Characterization:

78 *C
@ 50 pM

X-ray Tested for
mitochondrial fusion

activity

Additional Comments:
Authors also checked for proteolysis resistance. The proteolysis product corresponded well with
the predicted heptad repeat. In addition, the construct showed the ability to self-associate in an
immunoprecipitation assay.
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Name: Bcr Coiled-Coil Oligomerization Domain

Paper Reference: Taylor and Keating. Orientation and oligomerization specificity of the Bcr
coiled-coil oligomerization domain. Biochemistry (2005) vol. 44 pp. 16246-16256.

Alignment:
heptad position
.... cdefgabcdefgabcdefgabcdefgabcdefgabc
.... DLEQELERLKASIRRLEQEVNQERSRMAYLQTLLAKGGC
... cbagfedcbagfedcbagfedcbagfedcbagfedc
CGGKALLTQLYAMRSRLQNVEQELRRISAKARELEQELD
- based on a crystal structure, PDB ID: iKlF *Crystal structure is of a
tetramer formed from the homodimer (really a dimer of two Helix-loop-Helix
constructs). It also includes an N-terminal extension sequence. The authors
also made three mutations to the sequence in the crystal structure.

Helical Wheel:

4
- 4

4
- 4

4
IC 

-- C

d

a a

a

I
--- I

Experimental Characterization:

Al-' preTerence monomerw 53 *G*
@ 25 pM

*This is for the *This is for the
disulphide linked disulphide linked

monomer monomer

Additional Comments:
The construct tested is technically not a homodimer due to two point mutations.
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Name: Coiled-coil domain of MdvI

Paper Reference: Koirala et al. Molecular architecture of a dynamin adaptor: implications for
assembly of mitochondrial fission complexes. The Journal of Cell Biology (2010) vol. 191 (6)
pp. 1127-1139.

Alignment:
heptad position
.............. defgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcd
......... GPQRTLVNSLEFLNIQKNSTXSE IRDIEVEVENLRQKKEKLLGKIANIEQNQLXLEDNLKQIDDRLDF
LEEYG
........... dcbagfedcbagfedcbagfedcbagfedcbagfedcbagfedcbagfedcbagfed
GYEELFDLRDDIQKLNDELXLQNQEINAIKGLLKEKKQRLNEVEVEIDRIESXTSNKQINLFELSNVLTRQPG
- from a crystal structure, PDB ID: 2XU6
- Color = CC+ defined coiled coil region
- X = Selenomethionine

Helical Wheel:

f

4
4
4
4
4
4
4

- . *1

4
4
4
4
4

a

4A

14

14
14
14
14
14

14
14
I' ~'4

l- 4

I
I
I
I
I
I
I

C

14
14
14
14
14
14
I

I

AM

Experimental Characterization:

dimer x-ray A set oT KU witn
replacement followed by

various functional assays.

Additional Comments:

140



Name: Coiled-coil domain of Beclini

Paper Reference: Li et al. Imperfect interface of BeclinI coiled-coil domain regulates
homodimer and heterodimer formation with Atg 1 4L and UVRAG. Nature Communications
(2012) vol. 3 pp. 662-11

Alignment:
heptad position
..... abcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgab
GPGSDSEQLQRELKELALEEERLIQELEDVEKNRKVVAENLEKVQAEAERLDQEEAQYQREYSEFKRQQLELDDELK
cdefgabcdefgabcde
SVENQMRYAQMQLDKLKKK
.... edcbagfedcbagfedcbagfedcbagfedcbagfedcbagfedcbagfedcbagfedcbagfedcbagfedc
..KKKLKDLQMQAYRMQNEVSKLEDDLELQQRKFESYERQYQAEEQDLREAEAQVKELNEAVVKRNKEVDELEQILR
bagfedcbagfedcba
EEELALEKLERQLQESDSGPG
- from a crystal structure, PDB ID: 3Q8T

Helical Wheel:

e

f f
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Experimental Characterization:

dimer 40 OQ
@ 89 PM

X-ray Characterize the self
association of Beclin 1 in

vivo

Additional Comments:
Authors made mutational variants of BeclinI, referred to as MutStab, with improved stability.
Predominately, the mutants have substitution of the E in the core with L. Mutants showed
dimeric behavior by AUC, and increased thermal stability, with the most dramatic Tm increase to
600C.
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Name: SARAH domain.

Paper Reference: Aruxandei et al. Dimerization-Induced Folding of MSTl SARAH and the
Influence of the Intrinsically Unstructured Inhibitory Domain: Low Thermodynamic Stability of
Monomer. Biochemistry (2011) vol. 50 pp. 10990-11000.

Alignment:
heptad position
.............. defgabcdefgabcdefgabcdefgabcddefga
GS DYEFLKSWTVEDLQKRLLALDPMEQEIEEIRQKYQSKRQPILDAIEAK
.............. agfeddcbagfedcbagfedcbagfedcbagfed
........... KAEIADLIPQRKSQYKQRIEE IEQEMMPDLALLRKQLDEVTWSKLFEYDSG
- from a crystal structure, PDB ID: 2JO8
- Color = CC+ defined coiled coil region

Helical Wheel:

f

a

e

4
- 4

4
C

a

'a

f

* Only the longest canonical region of this coiled coil is shown.

Experimental Characterization:

- dimer NMKI - I

Additional Comments:
This is a non-canonical coiled coil. A d position follows another d position. In addition, a unique
3 1o-helix at the N-terminus makes an important set of interactions.
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Name: Oakley's AP homodimer

Paper Reference: Gurnon et al. Design and characterization of a homodimeric antiparallel coiled
coil. Journal of the american chemical society (2003) vol. 125 pp. 7518-7519

Alignment:
heptad position
abcdefgabcdefgabcdefgabcdefgabcdefgabcdefga
MKQLEKELKQLEKELQAIEKQLAQLQWKAQARKKKLAQLKKKL
... agfedcbagfedcbagfedcbagfedcbagfedcbagfedcba
... LKKKLQALKKKRAQAKWQLQALQKEIAQLEKELQKLEKELQKM
- based on intended design

Helical Wheel:

Experimental Characterization:

AP pref dimer 2 nM

Additional Comments:
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Name: Koksch's AP homodimer

Paper Reference: Pagel et al. Advanced approaches for the characterization of a de novo
designed antiparallel coiled coil peptide. Organic & Biomolecular Chemistry (2005) vol. 3 (7)
pp. 1189.

Alignment:
heptad position
gabcdefgabcdefgabcdefgabcdefgabcdefgabcde
RLEELREKLESLRKKLEELKRELRKLEKELKKLEEELSSLE
edcbagfedcbagfedcbagfedcbagfedcbagfedcbag
ELSSLEEELKKLEKELKRLERKLEELKKRLSELKERLEELR
- based on intended design

Helical Wheel:

Experimental Characterization:

dimer* >1 U100
@ 50 pM

*oligomerization was * Authors measure a 1 H,1 5N
tested using ESI- HSQC for a subset of side

FTICR-MS chains confirming an AP
dimeric state in solution.

Additional Comments:
Authors additionally conducted a FRET study that was consistent with the presence of an
antiparallel coiled coil in solution. In addition, the NMR experiments mentioned above, had an
L to F mutation at the second L in the a position.
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