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ABSTRACT:

The study of human activity-travel patterns for transportation demand forecast has evolved a
long way in theories, methodologies and applications. However, the scarcity of data has become
a major barrier for the advancement of research in the field. At the same time, the proliferation of
urban sensing and location-based devices generate voluminous streams of spatio-temporal
registered information. These urban sensing data contain massive information on urban dynamics
and individuals’ mobility. For example, the transit smart card transaction data reveal the places
that transit passengers visit at different times of day. As tempting as it appears to be, the
incorporation of these urban sensing data into activity-travel study remains a big challenge,
which demands new analytics, theories and frameworks to bridge the gap between the
information observed directly from the imperfect urban sensing data and the knowledge about
how people use the city.

In this study, we propose a framework of analysis that focuses on the recurring processing and
learning of voluminous transit smart card data flows in juxtaposition with additional auxiliary
spatio-temporal data, which are used to improve our understanding of the context of the data.
The framework consists of an ontology-based data integration process, a built environment
measurement module, an activity-learning module and visualization examples that facilitate the
exploration and investigation of activity-travel patterns. The ontology-based data integration
approach helps to integrate and interpret spatio-temporal data from multiple sources in a
systematic way. These spatio-temporally detailed data are used to formulate quantitative
variables for the characterization of the context under which the travelers made their transit trips.
In particular, a set of spatial metrics are computed to measure different dimensionalities of the
urban built environment of trip destinations. In order to understand why people make trips to
destinations, researchers and planners need to know the possible activities associated with
observed transit trips. Therefore, an activity learning module is developed to infer the unknown
activity types from millions of trips recorded in transit smart card transactions by learning the
context dependent behaviors of travelers from a traditional household travel survey. The learned
activities not only help the interpretation of the behavioral choices of transit riders, but also can
be used to improve the characterization of urban built form by uncovering the likely activity



landscapes of various places. The proposed framework and the methodology is demonstrated by
focusing on the use of transit smart card transaction data, i.e., EZ-Link data, to study activity-
travel patterns in Singapore.

Although different modules of the framework are loosely coupled at the moment, we have tried
to pipeline as much of the process as possible to facilitate efficient data processing and analysis.
This allows researchers and planners to keep track of the evolution of human activity-travel
patterns over time, and examine the correlations between the changes in activities and the
changes in the built environment. The knowledge gained from continuous urban sensing data
will certainly help policy makers and planners understand the current states of urban dynamics
and monitor changes as transportation infrastructure and travel behaviors evolve over time,

Thesis Supervisor: Joseph Ferreira, Jr.
Title: Professor of Urban Planning and Operations Research



Acknowledgement

| would like to take the opportunity to express my gratitude to all the people who have
helped and supported me during my study at the Massachusetts Institute of
Technology.

I’'m particular grateful for my advisor Professor Joseph Ferreira for his guidance and
assistance throughout the period of my PhD study. He guided me to the areas of inquiry
and inspired me to focus on the processing and visualization of urban sensing data in
combination with geospatial data. Meanwhile, | have been influenced strongly by his
attitude and passion on research and life. I’'m truly honored to learn from him and work
with him. I’'m also very grateful for the other two members of my dissertation
committee, Professor P. Christopher Zegras and Professor Marta C. Gonzalez, who have
helped significantly in the course of my research and study. | was benefited intensively
by their creative ideas and insightful comments.

The thesis work would not have been possible without the support from the
SimMobility project funded by the Singapore National Research Foundation (NRF)
through the Singapore-MIT Alliance r Research and Technology (SMART) Center for
Future Mobility (FM). | want to thank for valuable inputs from Prof. Moshe Ben-Akiva
and Francisco C. Pereira. | also acknowledge the contributions of other collaborators at
MIT and in the FM team including Prof. Mi Diao, Xiaosu Ma and Pedro J.S. Gandol. In
addition, we appreciate the support of Singapore Urban Redevelopment Authority
(URA) and Singapore Land Transport Authority (LTA) on the EZ-Link data, HITS dataset,
the REALIS dataset and other helpful information.

| want to thank Sandy Wellford, Kirsten Greco, and Sue Delaney for their distinguished
administrative assistance and CRON for their technical and computing support.

My gratitude also goes to numerous colleagues, friends, and mentors beyond the
dissertation committee and the SMART program: Karan Polensky, Jinhua Zhao, Michael
Flaxman, Pengfei Ye and Xiaoting lJia, Mi Diao and Zuhua Cai, Weifeng Li and Jie Xia,
Zhiyong Wang and Chunguang Wang among others.

Lastly, | would like to express my sincerest appreciation to my beloved wife, Zi Ye, for
her unconditional love and caring. | would like to express special gratitude to my parents
for their constant support. | dedicate my dissertation work to them.






Table of Contents

Chapter 1. INtrOAUCLION ....cocvciinmii et ecs st asse s essaessanssbrssneens 14
1.1 BACKBIOUNM ...ccceeieiccieccecrirrtesssinne e sesbaessraaree s snr e e e s snnesesessssasesssssaesansssssessssnnans 14
1.2 Statement of the Problem.........ccciiinir e 14
1.3  Research Framework and ObjJectives...........iviveiimiirrireeirsecernerererieneeeseseenes 16
1.4 SUMMAry Of Chapters.....oviieiiciiiiinininetecssrreeenersrer s s s sanaes s s scsnnesesssnnassssanenens 18

Chapter 2. Exploratory Analysis of Transit Smart Card Transaction Data ........c.cccceennneen. 20
% W 1) oo [V Tt £ o o IO PP 20
by A =] =1 =T IRV Lo ] O 20

2.2.1 Urban sensing data and activity-travel research .........ccooeoviveiiiiincnccinenenccneen. 20
2.2.2 Spatiotemporal features of activity-travel pattern.......ccccccevrveerienceceriennnenn. 21
2.3 Urban development and transit system of Singapore..........ccceeevvevericneeinccinenenennns 23
2.3.1 Heterogeneous Urban SPACES ......c.cuciieeriieeiecoreresscssersresssnmeessasssssssssssessssanes 23
2.3.2 Urban transit SEIVICES ......occieiiiiiiiiireirecrte e e 24
2.4 Smart Card Transaction Data.........ccccvviiiviiiniiiniiniinsr s 27
2.5 Exploratory Analysis of the EZ-Link data........c.ccocveenrevmiinniiiiincnniicin s 28
2.5.1 Transit trip fFreQUENCY ..o e manees 28
2.5.2 Temporal travel patterns .......cccccvviecieiniciinncr e e s 30
2.5.3 Spatial Pattern......c.cciviiicieiiiiniiieeciniirerrs e s 33
2.5.4 Transfer PatterN ... et cesinss st ssareeessssne s ssssneressessns 34
2.6 SUMIMATY ceneeiiieieicieneeeerries s meamsre s reaseeaeerneereaereassasers et rasbessenssaneeetsrensseess 35

Chapter 3. Integration of Spatial-temporal Data for Activity-travel Learning.........cc.eeeu.. 37
3.1 INEPOAUCTION .ottt cts s essr st e s et sesasesanesossssban s an s e s e bs e sbaeeaben 37
3.2 Background and related Work.......ccccvvvviiiinriniinee s 38

3.2.1 Emerging data SOUICES .....cccviriiiimieiiiiiiniite it sass e s s abss s enans 38
3.2.2 Heterogeneous datasets......c.ccccviiiiiiieeiininiienneere e nssieeenes 39
3.2.3 Existing data integration approaches ........cocciiiniiiiiiininiininnes e 39
3.2.4 Ontology-based data integration.........cccvccireeincciiereinniinnereninieeneeeeeesessone 40



3.3 Data COHBCLION ceevveereeeiiiiiieeireetet e e rereresestreeeeerrreeesersansseressesssnansansssssessnnnssnessens 41

3.4 Proposed approach of data integration for the activity-travel analysis................. 42
3.4.1 General framework of the proposed data integration approach.................... 42
3.4.2 Creation of ontology to support semantic interoperability ............... 43
3.4.3 Schema-mapping between data sources and ontologies...........cc.cecuererenennen. 47
3.4.4 Data cleaning and NOrmalization ........ccceviveeenrennnernieciceeeeseeseecsesssseseens 49
3.4.5 Data quality @sseSSMENT ......c.cccviierrerieniinneereinreniee e esan s s seeessessssesnees 50
3.4.6 Integration OPEratioNS .....ccccrericierrresriecrersrerersier s crre e sae s e sabeeesssaeesssneesunsens 53

3.5 Integrating building information for built environment measurement................. 53

3.0 SUMIMAIY ciiiiiiiiiiirrecresere s seereseseees s e s s e e s e e e e e s e s sas s e s bae s s sbeesssbasessontaseensssssssens 60

Chapter 4. Measuring and Characterizing the Urban Built Environment........c.occceeeeen... 62

L B 414 Te 11T €T o O USSR 62

4.2 RelBEA WOTK ...cevirriiitiiiiiici et e ee s st e e e st e sasenssnbessaestessnessessesnans 63
4.2.1 Urban Planning and Physical Activity ............................................................... 63
4.2.2 LandSCape ECOIOZY ....cicuiireinriiiiieientieniereiiseeeseeseesssesssssessssssesssssnessessssessansensne 64
4.2.3 Urban DESIBN....c.eeiirerierireeiieeresieiersiessiesseesnssessesssessssesssssssssesssessssssessssessnenseses 64
4.2.4 Gaps iN the [Ierature ........cueiieieirenircreerererenrereseesse e esneessessseans 65

4.3 Data and Methods ........ccooiciiiiiniinicenrnnenenese e s e snee e s saestesaesbeesessassseseans 66
4.3.1 Catchment Areas of Transit Stations ............cccoevniinnncnniennncsceeseeee 67
4.3.2 Importance of Business Open HOUTS ........ccceecieeeveiieeecciieeecceeeeeeee e 69

4.4 Built Environment Measurement .........cccocrvereirninieniinieeseeniesnseessessseeesesssessessas 72
4.4.1 Framework of the Spatial Metrics Computational Procedure.........c.cccevvuvennen. 72
4.4.2 Land Use Mix................. et e ARt bR AR R b sttt rt 74
4.4.3 BUildings and SIreet LayOUL ..........ccoueeiieiiiiivinieneiieeeeiiseescesseeresssenesseessessssenans 78
4.4.4 Spatial distribution of EstabliShments ........ccocceevevieeiiieeceiierecivereeesrerseeseensns 84
4.4.5 Transit Network TOPOIOBY......ccovieiveivireienrininirinseesee s sesresesseeseseesessssssssses 89
4.4.6 Correlations amMONE INAICATOTS. .........coceceiriieinieieniseersaeeeeseesesseeesessesessssessessees 94

4.5 SUMMATY oottt seesseeceessesaeaestassessn st asnessestesnesssesssassnssssessssersssennrassnnes 94

Chapter 5. Learning Transit-oriented Activity Types from a Household Travel Survey ... 97

S L INErOAUCEION «....eeeeieccireeccie ettt ssee s cessee e st ssssaess e nreeesessnnnessssaesessseesssssssansas 97



5.2 MEthOGOIOZY....oeiiviieieiiieieie i seeresssss e st s s s e sbat s st s sas e s banesorasasesanassstasssnnsenses 98

5.2.1 Modeling FrameworK.......ccccoeivuiiniiiii i sissecs st 99
5.2.2 Multinomial Logit Regression model .........ccvveviuiirininiimcinnnsiennenenn 101
5.2.3 Conditional Random Fields model...........cccvriiniieiiieininc, 102
5.2.4 The Relation between CRFs and the MNL model ........ccconiiviniiniiiininiinnn, 104
5.3 Model SEIECLION .....coviiviirriecri e e 105
5.3.1 Spatial and temporal confounding effects .........cccovevvnniniinnn, 105
5.3.2 OVEIfIEING cveeeireiriiriceriierisinieserecnenssetie s e sran s sase s stansssbaesssn e seanssssssnsssanens 106
5.3.3 IMbalanced Classes......ccuiciicreierrrerceeerrctr i e s s s e e 107
5.3.4 Model validation .......cceovcieee et e e 108
5.4 Data and variables ... e e s e 109
5.4.1 Activity categorization ..., 109
5.4.2 Temporal iNterval........cocceiciirieiniiieinenneiini et s s essn s 110
5.4.3 Imputing the boarding and alighting Stops.......cccveiiiieicinnnininiceee 110
5.4.84 WEALNET ..ottt reree s e s mre s e s s e e ae e s e b et st n e s e e s nnnn s 111
5.5 Modeling results and assessSment........coicivicienneninieinnm e 111
5.5.1 Learning MOdEIS.......cc.coveveienneiniininineiiiincesaiesiessie s sssssssssnss e sssesnes s 111
5.5.2 Effect of spatiotemporally detailed urban built environment measures...... 113
5.5.3 Effect of model regularization ..o 117
5.5.4 Effect of resampling of the minority €lass .......cccvvevmnicviciicececninecenn 120
5.5.5 Effect of the transition of activity types .....cccooeiiinimieininiein e 121
5.6 SUMMArY Of FINAINGS..cc.corvriece ittt st e ettt e 122
Chapter 6. Activity Inference and Visualization..........cceeeerniininicinininc i, 124
6.1 INTrOQUCTION ..eevvreieeeiiriirerieieseeerasses e s e s sebs sber b st bt s sebaseesbassssnnsanasas anssanasassatassase 124
6.2 Home Location EXtraction.........eeriniiiiiiiiin e ssianee s s sisaccessnnes 124
6.3 ACLIVILY INTEIENCE ..o et s e st s s r e esane s 129
6.3.1 Inference using MNL MOdEIS ......cccvriinieinnnniin i s 129
6.3.2 Inferring Activity Types using CRFs models ........cccvvminiiiniininnicnnenieninenne 129
6.4 Examples of Exploring and Visualizing Activity-travel Patterns.............cccceevnneens 129
6.4.1 SINEIE Transit TEIPS cueeeeerermiemmimiiririt it e s e s bt sabe s e sae e 130



6.4.2 Individual ACtiVity-Travel PAtterN .....ooeeeoveeeeieeereeerteeesseeseeeeessnesesssesssssesssns 133

6.4.3 Activity Landscape of places .......ccooveevevvvevereeecesescenssenns s 137

6.5 Implications to activity-travel research and planning practice ........... R 138
6.5 SUMMAIY ..cciiiiiiiiii ittt sraeie et ibtecsr bt s e e s et sesessesastessssesssnsssssssenssssmnen semessns 140
Chapter 7. Discussion and CONCIUSIONS ......cc.cccceivreluiriinririniieietieneeeseessesessessessessssessas 141
7.1 MAJOr FINAINES ..cve et seveieeereet sttt eee s e seeseseesensessnsesssssesessseen s 142
7.2 Research limitations and FULUIre WOrK..........ccveeeeenionieeineieeeceeeeeeseessssese s 144
7.2.1 Built Environment M@asUr@ment .........cccceeeeveererevenrineereneereseeeereessesessesessens 144
7.2.2 Learning MOMEIS.........cccovriveiiivinireeeserenics s sssessesseessensessesasesesssessnessens 145
7.2.3 Assumptions and SPECUIGLIONS .........cuvvevriververeieiecreseeesresseeseesseessesesseeseens 146
7.2.4 Data exploration and ViSUAliZation .............e.eveeeeeeeeeeeseesreereeresseessseessessessens 147

7.3 CONCIUSIONS ....ocotiuiirititiieee ettt ere s er s ss s seseesesaeeesaobssnesesesnesssnsssssensasssenen 147
REFERENCES ...ttt ittt rves e st et estce e e e sesnaens eresreresr et s s s s eeeensenee 149
Appendix |. Building Type Categorizations in the Data Integration...............coevvevemene.n. 158
Appendix |1 Sectorial Categorization of Establishments............cvenn..... ereeeeeseeenesnes 160
Appendix 1Il. Model EStIMation RESUILS ........c.ceueeeeeeeeeeeseereeeeeesessessessesessessessessossersssesons 162

10



List of Figures

Figure 1-1.The proposed framework for using urban sensing data for activity-travel

ANIAIY SIS cttteeiiiirrrreeerieeerreee e s e e e e sre e s e e ee s sn e ee s b esse R e RS e e aRe e e s eret e e e se s ae s e s b b e e e r e renas 17
Figure 2-1. Land use plan (2008) Of SINEAPOTE ....cccceveriiiiiiiiiieieiiiiniren e ccbressessnees 24
Figure 2-2. Transit stations of the public transit system in Singapore ........c.ccceveeivnniee 26
Figure 2-3. Number of vehicle trips along time of day broken down by the types of

SBIVICES. 1ueereeiiiieireseerreeiessrteresssaasaeases e sesssaresststessensasetsenss nssrbbsbeaereessessssssssssnannnessentsssnranasas 26

Figure 2-4. Percent of the number of days EZ-link cards were used from April 11 to April

3 20 o O U PRSP 29
Figure 2-5. Average number of transit trips per day by the types of card holders.......... 30
Figure 2-6. The temporal distribution of the first and the last transit trips of the transit
smart card holders with at least two transactions on April 13, 2011 .......ccccceeviiiiiiennnn. 31
Figure 2-7. Temporal distribution of first and last transit trips for transit smart card
holders with at least two transactions from April 11 to April 15, 2011. .......ccccvviivinnnne 32
Figure 2-8. Thematic maps of the transit stations by alighting passengers at different
RT3 TN o 1o -1 O OO 33
Figure 2-9. The spatial distribution of bus-to-bus or bus-subway-LRT transfers in
Singapore observed in the EZ-Link data ..........ccccevvriiciniiinoninnniiiennee e, 35
Figure 2-10. Distribution of the transfer time in seconds extracted from the EZ-Link data
........................................................................................................................................... 35
Figure 3-1. Framework of the Proposed Ontology-based data integration approach..... 43
Figure 3-2. An example of the urban building ontology...........cecvvireivniniiniiininniiininns 46
Figure 3-3. Screenshots of the Protégé ........c.cccoveevniiiniiiniiniinien e, 47
Figure 3-4. Building footprints by categories from SLA. ........cccciviiimiiniinniennneee 54
Figure 4-1. Approximate walking distance of transit stations........c.ccccooveeiiiiiiniinnninnnen. 68
Figure 4-2. Results of the Random Forest (RF) model for open hour classification......... 72
Figure 4-3. Framework of urban built environment metric computations...................... 73
Figure 4-4. Spatial distribution of land use entropy index at the transit station catchment
E T =T T L1V OO OO PP 75
Figure 4-5. Spatial distribution of the Contagion Index.........ccccceoviinniiiiinnicnnninineninne. 77
Figure 4-6. Transit station catchment areas with the noticeable presence of parks....... 77

Figure 4-7. Spatial distribution of the average weighted mean shape index (AWMSI) ... 78
Figure 4-8. Building compactness index of the catchment areas of transit stations......... 82
Figure 4-9. Building centrality index of the catchment areas of transit stations ............. 82
Figure 4-10. The nearest neighbor index of the catchment areas of transit stations...... 83

11



Figure 4-11. Density of Local Road (> 0.05 m per square Meter)........cceceeveeevrreereereeserane 84

Figure 4-12. Spatial distribution of establishments by INDCD categories............ccooeu.e.... 87
Figure 4-13. Time varying entropy index and the nearest neighbor index of the
establishments in the catchment areas of three selected stations. ..........covevevvevnenennn. 88
Figure 4-14. lllustration of the urban transit network topology representation.............. 89
Figure 4-15. Frequency of transit services by road segments at different times of day.. 90
Figure 4-16. Correlation matrix of the selected built environment measures................. 96
Figure 5-1. lllustration of activity learning and inference from the EZ-Link data............. 99
Figure 5-2. Analytical framework of the activity-learning and inference module.......... 100
Figure 5-3. Illustration of activity learning models.........ccocvvvveiirirececireeeeceesessneseeenes 104
Figure 5-4. lllustration of SMOTE @pProach .........ceceeeermerieneeesiseeseeesesresssesssessessassrens 108
Figure 5-5. 5-fold cross validation accuracy rate by activity types.......c.ccoveeereeeeevereennnn 116
Figure 5-6. Regularized MNL with five-fold cross validation. ...........ceeuvevveceneererreerennnn 118
Figure 5-7. 5-fold cross validation accuracy by activity types (from MNLS to CRF1)..... 119
Figure 5-8. Activity transition coefficients from the linear-chain CRFs modei............... 122
Figure 6-1. lllustration of the procedure of extract home locations from the EZ-link data
......................................................................................................................................... 127
Figure 6-2. Spatial pattern of single transit trips in the EZ-link data on April 13, 2011. 131
Figure 6-3. Pattern of single trips ending at the Boon Lay bus interchange. ............... 132
Figure 6-4. Visualizing individual activity travel pattern. .......coceeceereeevviereeesrersrereressenns 135
Figure 6-5. The temporal pattern of transit trips ........cccevvvevireereeneereecteeeeceeeeeereesenerens 136

Figure 6-6. Visualizing the activity-travel landscape of the Chinatown MTR station..... 138

12



List of Tables

Table 2-1. Average daily ridership ... e e e 25
Table 2-2. The EZ-Link smart card transaction data sample..........ccccvmnncninnninn 27
Table 2-3. Number of transfers per trip in the EZ-Link data .......ceevviimevcviisrnncnennincnns 34
Table 3-1. Types of data heterogeneities and examples ............ccuivnnineinnniieininnns 39
Table 3-2. Types of correspondences specified in the urban modelling ontology

L= 11011 =TSOV RRO 44
Table 3-3. A look-up table for schema mapping between local datasets and global
ONEOIOZY .venveeererrerireeiierere e ses st eresetsas ssasis et s sre e s s sr an sae s e sas e Re ot a4 bebabs shab st sesAs s ben sEaunrsnnsusast rnaes 49
Table 3-4. A Summary of Data Quality Assessment Measure ..., 52
Table 3-5. A list of datasets available for building information integration .........cc........ 55
Table 3-6. Data quality measures for the type of buildings .......ccoccoviiminccnnicicnnnn, 56
Table 3-7. Number of building records that are classified in the process of

INEEBTALION. .. it e e e e s e s se e e e e r e 59
Table 4-1. Walking time to public transportation stations .........ccciiinininnienenen 68
Table 4-2. Ten most prevalent open hour patterns ... vinncine e e 70
Table 4-3. Spatial metrics for |and use patches ... e 76
Table 4-4. Spatial metrics for buildings and street layout measurement .............cc.c..... 80
Table 4-5. Measures of spatial distribution of businesses ..., 86
Table 4-6. Transit NELWOIrK MEASUIES .....ccorrreeerecerrmcnres s saistsssesvesasssaistesessan srnssssss sessenes 93
Table 5-1. Activity classification based on HITS 2008 dataset .........cinnreniennnnnins 109
Table 5-2. List of learning models and assessment MEASUres .........ccouevmscniinieninin: 112
Table 5-3. List of variables included in the model specification .........c.ccenniineiniineninens 112
Table 5-4. Estimation and validation measures of traditional MNL activity-learning
INOAEIS .. ee e ieiveireire st et e sre st e sees st e s sa s ns sasarese st s enaenasrEenssnare casous sh sus shsms bbb sesbararesesnab sabaras 113
Table 5-5. Effect of the selected explanatory variables on activity types from the

IVINLS ..o cte e ctree e s e cer e et e seatesesa e s sas aes e sanaeseun sues o0 sbebes o0s0ssass shanes Hovsrnass sasses sorsnsans srasasasnses 116
Table 5-6. Effect of the selected explanatory variables on activity types from the
MNLB.......orrrrreecerrrenrecerncreere s ssesans Cerseetiebeeesere et taeere e re st s eeases sReaes e eesnaness e e e s att sea s raLe shsn e rabes 120
Table 5-7. SMOTE augmented Samples ..o s s s sssissssnenes 120
Table Al. Results Of MNLL MOE ........ccocieineeriis s s sessensnsssss srssessan sasseneons 162
Table A2. Results of MNL2 MOE .........covereunrcninineeninees i s s sseisesses sessssssssess snnses 163
Table A3. Results of MNL3 MOdel ........covrirmceininiirecciniircen it s e veene 166
Table Ad. Results of MNLE MOdEl ........ccouiinininenenrmnimin s s s eene 169
Table A5. Results of MNLS MOAEI ...t s snesis sess mseens 172
Table A6. Results of MNLE MOEl ..cc.vivrriririniniecenenr et ceeescssssnesnesissessessosessesssssssanas 175

13



Chapter 1. Introduction

1.1 Background

Cities of the 21 century are increasingly concerned with ever growing challenges on
urban ecology sustainability and disaster prevention, aging population as well as the
impacts of economic recession, in addition to modern urban issues such as pollution,
sprawl, and congestion. To urban policy makers, the complexity in decision making
process is escalating as a result of various trends including decentralization,
gentrification, deindustrialization, globalization and energy conservation occurring
simultaneously in the context of urban management. Meanwhile, behaviors and
preferences of people and firms have been changing rapidly as a result of the explosion
of information, improved mobility and more differentiated lifestyles, which also require
urban management strategies to be more adaptive and responsive to the issues
exposed. Success in urban management calls for innovative decision making paradigms
that can provide timely and informative analyses and forecasts grounded on a sound
and profound understanding of the dynamics of urban systems.

From the point view of transportation and land use planning and
management, knowledge of peoples’ activity-travel patterns is important, because
activities and activity-derived travels are indicative of demands for transportation
services as well as other urban services and opportunities for various activities.
Moreover, the spatiotemporal distributions of people and activities are also crucial for a
series of urban management tasks like emergency planning, disaster management,
infrastructure services and resources allocation (Krygsman et al, 2007). For individuals,
households and firms, activity and travel preferences are correlated with the choices of
job, housing and vehicle ownership, firm location as well as lifestyles and business
operations, which together constitute the social, economic and cultural silhouette of a
city’s evolution. Hence, to capture a city’s pulse, it is essential to understand the
activity-travel patterns of its citizens.

1.2 Statement of the Problem

In the last couple of decades, trips and activities are mainly studied within the
framework of travel demand forecasting, which has evolved a long way from the trip-

based, aggregated models like the four-step model to the activity-based, disaggregated
14



models (McNally, 2000). However, the complexity of activities and travels, and the
enormous factors that may influence people’s choices and behaviors pose a big
challenge for predicting activities and travels analytically. For example, despite the
energetic research effort on activity-travel theory and modeling, questions like the
generation and scheduling of daily activities are still not well understood (Bowman and
Ben-Akiva, 2001). Moreover, our understanding of the impacts of the urban built
environment on individual decisions about activities is also inconclusive. The
predicament of the travel demand forecasting paradigm is in part related to data. The
household travel survey or the time use survey used in the four step modeling or the
activity-based modeling, are typically expensive and time consuming to collect. As a
result, the majority of household travel surveys or time use surveys only collect the trip
and activity information of respondents for one day. But it has been well recognized
that individual and households’ activity-travel behaviors present not only daily variation
but also day-to-day and weekday-weekend variations. Because of the high cost, the
surveys are typically conducted once every a few years, which provide limited empirical
evidence on how people respond to external changes of built environment or urban
policies since many changes could have occurred between two surveys.

On the other side, the surveillance devices and wireless sensor networks in
cities as well as the personal communication devices and location aware devices have
been supplying massive data every day. These urban sensing data are generally spatially
and temporally tagged, big in terms of sample size and having a longitudinal coverage.
These characteristics are virtually not found in the conventional survey data, which
makes urban sensing data distinctive in revealing the aspects of urban dynamics and
activity-travel patterns that are not well predicted by activity-based modeling. For
example, the large volume of urban sensing data allows researchers to explore the
patterns resultant from people’s activities and movement in different areas of city and
at different time points, which helps to expose the aberrant movement patterns under
various circumstances that are worth further inspection. Longitudinal data streams also
make it possible to track individuals’ behavioral responses to the changes in
transportation policy or land use. As pointed out by Jin and Batty (2013), one important
value of the emergent data for urban study is that these data may “stretch our notion of
the system and problems of cities that we might model”.

Nevertheless, urban sensing data are also imperfect for activity-travel
research. In the process of investigation, we found the following challenges need to be
confronted before trying to make urban sensing data useful for urban studies and
planning.
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1) Most urban sensing data lack the information on activities and trips in
which people participate, as well as the social - economic characteristics of
the travelers because of the anonymity nature of urban sensing data. This
prevents urban sensing data from being interpreted and understood
properly.

2) The value and meaning of urban sensing data are reduced if it is taken out
of context. To make the best sense possible from urban sensing data, it is
crucial to couple urban sensing data with additional information describing
the contexts.

3) Itis impractical to manually process and analyze the voluminous urban
sensing data that expand rapidly. Thus, there is a need for the analysis and
data processing techniques applicable in the big data environment.

Obviously, it is inappropriate to analyze these data through tradition means. In this
study, we propose an innovative framework of analysis to address these challenges. The
framework and the methodology is demonstrated by focusing on the use of transit
smart card transaction data, i.e., EZ-Link data, to study activity-travel patterns in
Singapore by putting emphasis on the movement trajectories of individuals, the activity
landscapes of urban space, and the types of interactions afnong travelers and urban
built environment. ' '

1.3 Research Framework and Objectives

Figure 1-1 shows the proposed analysis framework for the exploration and data mining
of urban sensing data for activity-travel study. The framework consists of six consecutive
parts: preliminary exploration, integration of spatially and temporally detailed auxiliary
data, and formulation of spatial metrics, activity learning models, activity inference from
urban sensing data, as well as the visualization and interpretation of results. The idea is
to make the best use of observable information in urban sensing data, i.e., location,
time and sequence, along with additional data from other sources to reconstruct the
contexts of the activities and trips contained in urban sensing data. Spatiotemporal
variables, in particular the urban built environment measures, are generated to
characterize the contexts. By using statistical learning approaches like probabilistic
graphical models (Koller and Friedman, 2009) and visualization tools, we expect to
extract the correlations between activity types and the spatiotemporal explanatory
variables from the traditional household travel survey. Then, the learning model is
applied to infer the unknown activity types associated with urban sensing data. The
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inferred activity types help to interpret the travel or movement patterns revealed by
urban sensing data by making connections to the types of places travelers visited.

Indeed, the proposed analysis approach requires urban sensing data to be
coupled with the data with high spatial and temporal resolutions and details. This is not
only because spatially detailed data provide better characterization of the urban built
environment, but also due to the fact that the majority of urban activities only take
place at a small portion of urban areas, consisting of local concentrations of built-up
lands, buildings and streets. Assessing a place using indicators calculated at zonal scale is
likely to out-off-focus the parts of urban form that directly interact with humans.

Urban sens

stream

Figure 1-1.The proposed framework for using urban sensing data for activity-travel analysis

Detecting unknown activity types and other activity related components is
intended to address the challenge 1). Integrating spatio-temporal data from multiple
sources and develop spatial metrics to characterize urban built environment represents
the effort to tackle the challenge 2). But the purpose of the study is more than those.
The framework is designed to modularize and pipeline the fusing, processing, exploring
and mining steps of urban sensing data and the auxiliary geospatial datasets, so that
urban sensing data streams can be examined routinely without the need for heavy
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manual work. Meanwhile, we take into consideration the flexibility and scalability of the
framework to make it more adaptable to the different needs of planning applications.

To be more specific, a number of research objectives are determined as

following:

1)

2)

3)
4)

5)

Propose a framework that enables repetitive exploring and learning of
dynamic activity-travel behaviors from emerging data sources including both
urban sensing data and other supporting datasets from a variety of sources.
Use spatio-temporal detailed data integrated from multiple sources,
including official and crowdsourcing information to enrich the measurement
of urban built environment.

Reconstruct unknown activity patterns by learning activity types from
traditional household travel survey.

Use a set of visualization applications to assist the interpretation and
understanding the activities and movement revealed by urban sensing data.
Provide insights on how the modeling framework can be used to inform
urban policy decision makers by understanding activity-travel patterns in a
responsive manner.

1.4 Summary of Chapters

According to the overarching framework outlined in Figure 1-1, the dissertation is
organized as follows:

Chapter 2 reviews related researches on urban sensing data and the
spatiotemporal feature of activity-travel behaviors in the existing literature.

Then, a preliminary analysis of the EZ-Link data is presented to provide a base for

further analysis under a framework specifically developed for learning activities
from big data.

Chapter 3 proposes an ontology-based data integration mechanism (Gardner,
2005) to merge relevant urban spatial datasets from a variety of sources. The
spatiotemporally detailed dataset obtained in this step will be used subsequently

to support more precise characterization of the urban built environment and the

improved analysis and learning efforts for the EZ-Link data.

in

Chapter 4, we review the literature on the urban built environment

measurement in several fields. A comprehensive set of spatial metrics is then

formulated to account for the four dimensions of the built environment: land

use, street layout, business distribution and transit network.
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Chapter 5 presents the statistical learning methodologies to classify activity
types encapsulated in a traditional household travel survey, the Household
Interview Travel Survey (HITS) of Singapore in 2008, using the spatiotemporal
detailed urban built environment measures and other exogenous variables as
predictors. Statistical learning methods like logistical regressions and Conditional
Random Fields (CRFs) are employed to examine the degree to which different
activity types are dependent on the contexts described by the predictors.

Using the estimated learning model, in Chapter 6, millions of trips recorded in
the EZ-Link data are interpreted to identify likely activity types. Visualization
applications are developed to explore resultant activity patterns, and scrutinize
the way that the transit network and urban spaces are used by the predicted
human activities.

Chapter 7 concludes and discusses the significance and limitation of the study as
well as some directions for future research.
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Chapter 2. Exploratory Analysis of Transit Smart Card

Transaction Data

2.1 Introduction

The emergence of urban sensing data has been stimulating growing interest in applying
urban sensing data to activity-travel behavioral research. In this Chapter, we first review
the related researches in this field. Then, an exploratory analysis of the transit smart
card transactions data provided by the Land Transport Authority (LTA) of Singapore is
presented to reveal the general temporal and spatial patterns of transit system
ridership.

2.2 Related Work

2.2.1 Urban sensing data and activity-travel research

Most of the studies in this field focused on the GPS or cell phone data because of the
prevalence of GPS devices and mobile phones. For the GPS data, considerable efforts
have been made to detect travel related features like routes and modes from passive
GPS logs. Papinski, Scott and Doherty (2009) developed a geographic information
system (GIS) to collect planned route information of 31 survey participants and
compared them with the personal GPS data gathered from real trips to understand the
decision making process of real-time route choices. Tsui and Shalaby (2006) used the
maximum and average speeds as well as the rate of acceleration derived from the GPS
data to estimate travel mode and achieved moderate accuracy. The accuracy can be
further improved if GPS trajectories are coupled with geospatial information of the
study area such as public transportation network (Chung and Shalaby, 2005; Stopher et
al,, 2008). A few researchers have looked into GPS data to explore the possibility of
extracting trip purpose. Wolf et al. (2006) used the GPS data from a Swedish study and
match them with local point of interest (POI) and land use maps to infer destination
types. Then, the researcher compare the result with the 2000 and the 2001 Swedish
national travel survey to determine the most probable trip purpose conditioned by
socio-demographic characteristics of respondents.
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For cell phone data, many studies focus on the mobility patterns and anchor
locations of users that can be extracted. Ahas et al., (2010) used cell phone data to
study the temporal patterns of space consumption of the households living in the
suburbanized areas of Estonia. From the perceptive of diffusion process, Gonzalez et al.,
(2008) focused on the movement trajectories of 100,000 mobile phone users tracked for
a six-month period and found individual trajectories extracted from the cell phone data.
show a high degree of spatial regularity and temporal periodicity. Besides, they noticed
that individual trajectories are characterized by the same two-dimensional probability
distribution after normalizing the scale of each user’s trajectory to unity. A limited
number of more recent studies have started to search for ways of detecting activity
patterns from mobile phone traces. For example, Phithakkitnukoon et al. (2010)
developed an algorithm to identify the most probable activity associated with a specific
location based on the spatial distribution of different types of points of interest. Jiang et
al. (2013) presented extensive data processing steps to extract useful information from
triangulated mobile phone traces and proposed to build probabilistic models to infer
activity types conditional on land use type, time and daily mobility chain.

In comparison with GPS and cell phone data, transit smart card transactions
not only reveal pattern of transit trips, but also reflect the performance of transit
system. Thus, considerable literatures on the transit smart card transactions data have
focused on using the information embedded in smart card transaction data to improve
the quality of service of transit system. In a recent review of the application of transit
smart card data, Pelletier et al. (2011) summarized that existing studies on the transit
smart card transactions can be grouped into three categories. Strategic-level studies
focus on the demands of different types of riders and the implication on long-term
network planning (Agard et al, 2006; Chu and Chapleau, 2008). Tactical-level studies
emphasize schedule adjustment, and longitudinal trip patterns. Operational-level
studies employ transit smart card dataset to measure the performance of transit
systems like schedule adherence and fare structure (Morency et al, 2007; Deakin and
Kim, 2001). These previous studies have shown the great potential of using the transit
smart card transactions data for in-depth activity-travel pattern analysis and mining,
especially when more refined learning methods and detailed built environment and
transportation data are available.

2.2.2 Spatiotemporal features of activity-travel pattern

Many researchers have been focusing on the variation of activity-travel behaviors within
one day, in part due to the cross-sectional nature of household travel survey, which is
the most common dataset used for activity-travel study. But it has been widely
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recognized that individual and households’ activity-travel behaviors present not only
daily variation but also day-to-day and weekday-weekend variations, which suggests the
model built on a one-day survey might not capture the interdependencies of activities
among multi-days. One of the evidences is from Huff and Hanson (1990). Based on the
1971 Uppsala Household Travel Survey which extended continuously for five weeks,
they found the longitudinal travel records of most people exhibit not only repetition of
regular trips like commuting but also variability of other trips from day to day. As they
point out, “seven-day record of travel does not capture most of the separate behaviors
exhibited by the individual over a five-week period, but it does capture, for most people,
a good sampling of the person's different typical daily travel patterns (p1, Huff and
Hanson, 1990) ”. Their finding was confirmed by Schlich and Axhausen (2003), who
investigated the regularity and variability in activity-travel behavior based on a six-week
travel diary survey. Schlich and Axhausen (2003) also reported weekday behavior tends
to be less variable than weekend behavior. Research also shows the heterogeneity in
intra-personal variability of activity-travel behavior across population subgroups
(Builung et al., 2008). These empirical evidences suggest the temporal regularity and
variability of activity-travel behavior can be attributed to human habitual behavior,
interdependencies of individual and household activities among multi-days, and the
factor of day varying preference. Therefore, it is necessary to examine activity
generation for multiple days in order to reveal the repetition and variability of activity-
travel behavior.

Like the temporal variability of individuals’ activity-travel behaviors, spatial
variability of destination and path choices in activity generation is not ignorable. But less
effort has been directed to questions concerning whether individuals make similar
destination choices and similar path choices over time. According to the theory of
habitual behavior, peoples’ activity patterns should exhibit a high extent of spatial
stability from day to day because of the uncertain cost and risk associated to explore
new locations and paths. Susilo and Kitamura {2005) showed that workers and students
demonstrate a quite stable spatial behavior on weekdays, in comparison with more
variable action spaces of non-workers and all respondents in the weekend based on the
6-week survey mentioned above. Despite differences in urban form and planning
polices, Buliung et al., (2009) found similar location-based repetitions in individuals’
activity pattern using the data from Canada. This is what Huff and Hanson (1990) called
“locational persistence”. Understanding the stability of individual activity destinations
over time provide insights on identifying the factors influencing peoples’ location
choices and activity-travel behavior analysis.
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Activity-travel pattern intrinsically is a series of activities with sequential
choices of locations, durations, transportation modes etc. These components are inter-
mingled in the process of determining and planning the course of activities. The
sequence of an activity-travel pattern not only signifies the priority of activities at
different time of day, but also is indicative of lifestyle. Thus, when developing models of
destinations, departing time and transportation modes, it is important to take into
account the sequence of activities and their interdependencies with each other.
Although many studies have dealt with particularly the activity generation, less effort
was made to investigate the evolution of the activity demands over time and the
activity-agenda formation considering explicit interactions with other components
(Habib, 2007). More insights on the interdependencies between different activities
within an activity-travel chain would help to increase the prediction capacity of activity
learning models.

2.3 Urban development and transit system of Singapore

Before investigating the spatio-temporal patterns of transit ridership exposed by the
transit smart card transaction data, it is necessary to briefly look at the characteristics of
urban development mode and transit system in Singapore.

2.3.1 Heterogeneous urban spaces

As a “city state”, Singapore is scarce in land and hence has a high level of urbanization.
High-rise buildings are ubiquitous and expressway infrastructures frequently snake
around buildings. Under the centralized planning process, Singapore presents a clear
partition in the functionality of urban space. Heavy industry is concentrated in Jurong
and light industry is distributed in several new towns in the North-western and Eastern
parts of Singapore (See Figure 2-1). Public housing towns are developed according to the
standard planning and development procedures. Each town has a local town center with
clustered commercial establishments. Although under the pressure of upward extension
and gentrification, Singapore has been effectively preserving many historic buildings and
neighborhoods. For example, shophouses and the “five foot way” are still common in
places like Chinatown and the neighborhoods around the Orchard Road. Consequently,
urban spaces of Singapore can be distinguished by the age of buildings and
infrastructures, the concentration of population by ethnicity, and the land use
functionality. The various zoning boundaries like the Electronic Road Pricing (ERP) zone
and school admission zones further exaggerate the level of space heterogeneity.
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In cities like Singapore where mixed use and transit oriented developments
prevail, characterizing urban form at the traffic analysis zone (TAZ) level has been
inadequate to distinguish the impacts of places on human mobility and activity because
many zones or towns present similar development patterns. On the one side, readily
available business statistics aggregated at zonal level neither can tell the difference
between shopping malls and commercial streets nor can differentiate restaurant
clusters from local hawker centers. These differences are not likely to be revealed in the
data of coarse spatial resolutions, but can have big impacts on location choices of
people and businesses. On the other side, the city of Singapore has been growing rapidly
in recent years. The changes in urban forms need to be captured for better
understanding of changing activity-travel patterns revealed by urban sensing data
stream. All these necessitate the search of spatially and temporally detailed data for the
better characterization of urban built environment.

== AGRICULTURE

. BEACH AREA . OPEN SPACE
= BUSINESS 1 = PARK

BUSINESS 1 - WHITE W PLACE OF WORSHIP
== BUSINESS 2 == PORT | AIRPORT

BUSINESS 2 - WHITE = RESERVE SITE
= BUSINESS PARK = RESIDENTIAL

BUSINESS PARK - WHITE = RESIDENTIAL / INSTITUTION
w1 CEMETERY RESIDENTIAL WITH COMMERCIAL
=9 CIVIC & COMMUNITY INSTITUTION AT 15T STOREY
w1 COMMERCIAL SN ROAD
BN COMMERCIAL 8 RESIDENTIAL " SPECIAL USE
= EDUCATIONAL INSTITUTION SPORTS & RECREATION
M HEALTH & MEDICAL CARE R TRANSPORT FACILITIES

HOTEL - UTILTY
= LIGHT RAPID TRANSIT " WATERBODY

WHITE

Figure 2-1. Land use plan (2008) of Singapore

2.3.2 Urban transit services

Singapore has one of the most extensive public transportation systems in the world. As
of year 2011, the time when the EZ-Link data used in this study were collected, the

24



public transit system of Singapore had been comprised of more than 4000 bus stops,
112 rapid transit stations serving four mass-rapid transit (MRT) lines and three light-
rapid transit (LRT) lines. Figure 2-2 plots the spatial distribution of transit stations, which
covered the majority of the built-up areas of the island. In the same year, the daily trips
made on the public transit system reached around 5.8 million! (Table 2-1), making the
transit system of Singapore one the busiest transit systems in the world. The mode split
of public transportation also outweighs other modes. According to the HITS 2008 survey
data, 54.37% the trips in the survey were made by bus or rail system, in comparison
with 29.7% of car trips (including car passengers), 2.7% of taxi trips and 2.1% of
motorcycle trips.

Table 2-1. Average daily ridership (‘000 passenger-trips)
Year MRT LRT Bus Taxi
2011 2,295 111 3,385 933

Transit services running along transportation corridors and connecting major
areas of the city generally have high frequency, which increases the attractiveness of
public transit services. Figure 2-3 shows the number of vehicle trips along the time of
day broken down by the types of services?. During most of the day (between 6am to
6pm), the system maintains a level of service having around 5,000 hourly vehicle trips.
Services of trunk routes account for the largest proportion of vehicle trips, followed by
the services from feeder routes. Besides the public transit system, there are a
substantial number of shuttle services provided by institutions, private companies and
shopping centers, which are important complement of the public transportation. Due to
the issue of data availability, they are not counted in this study.

1Singapore Land Transport: Statistics In Brief 2011, available at
http://www.lta.gov.sg/content/dam/Itaweb/corp/PublicationsResearch/files/FactsandFigures/Stats in Brief 2011.pdf
2 Bus service types are collected from the SBS Transit and SMRT Buses websites.
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Figure 2-3. Number of vehicle trips along time of day broken down by the types of services.
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2.4 Smart Card Transaction Data

The smart card transaction data used in the study is provided by the Land Transport
Authority (LTA) of Singapore, covering trip logs of 15 days in April and May, 2011. This
study mainly uses the EZ-Link data of the week between April 11, 2011 and April 17,
2011. The data originally came from the system for e-payments, which collects tap-in
and tap-out transactions of the EZ-link cards for the bus and rapid transit system (RTS)
systems. EZ-Link card is a contact less smart card with a tamper-proof IC chip and
antenna built in. Almost all buses and RTS vehicles have been equipped with smart card
readers. Because transit fare is charged based on the distance traveled, using smart card
is usually more convenient and cheaper than paying by cash. This results in a very high
penetration rate of EZ-link card in Singapore. Besides the EZ-Link card, NETS Flashpay
card, which is far less common, can also be used to pay transit fare. Using the EZ-Link
card, passengers can make up to 5 free transfers within a single trip, with a 45-minute
allowance between each transfer. But in a trip, passengers can only take the same
transit route once.

Table 2-2. The EZ-Link smart card transaction data sample

TRIP_ID ID of Trip ;s 111111111111
CARD_ID ID of EZ-link Card 111111 11 E1r119.241
PassengerType Type of EZ-link Card Adult
TRAVEL_MODE Transit Modes RTS
BOARDING_STOP_STN Boarding Station Code STN Lavender
ALIGHTING_STOP_STN Alighting Station Code STN Eunos
RIDE_Start_Date EZ-link card tap-in date 17/04/2011
RIDE_Start_Time EZ-link card tap-in time 42:37.0
Ride_Distance Distance of stage 4.8

Ride_Time Time of stage 121

FarePaid Fare paid by EZ-link card 0.91
Transfer_Number ID of Stage 0

Source: EZ-link data, LTA

According to the jargon of transportation, a trip generally refers to a series of
stages that made by travelers on different modes that connecting from origin to
destination, where a particular activity will be conducted. By tapping in when boarding
and tapping out when alighting, the EZ-Link card automatically identify trips taken by
travelers and generate a non-duplicated trip id. Information related to trips like the
boarding station code, alighting station code, ride start time and fare is also collected. In
addition, each EZ-Link card has a unique card id, which enables analysts to uniquely
identify a transit passenger and their likely social status based on the types of EZ-Link
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cards. Three types of EZ-Link cards are commonly seen: student/child concession card,
senior concession card and regular adult card. Table 2-2 shows a sample of EZ-link data
provided by LTA.

Despite of the high penetration rate of the EZ-Link data, two issues associated
with the EZ-Link data could affect their usability for activity-travel research:

1) Itis common that a passenger holds multiple EZ-Link cards.
2) A fraction of trip records in the EZ-Link data don’t have alighting stations because
the card holders failed to tap out when alighting.

i

Corresponding presumptions are made to circumvent the impacts of these
data issues. For the multi-card problem, it is assumed that in a given day, each traveler
only use one EZ-Link card. This presumption helps to justify the analysis of travel-activity
patterns from the perspective of trip-chain as opposed to individual trip. For the second
issue, it is assumed that the missing destination stations can be inferred from the most
likely alighting stations of the trips on the same route with the same boarding stations
but made on other observed days.

2.5 Exploratory Analysis of the EZ-Link data

2.5.1 Transit trip frequency

Because the EZ-Link data contain multiple-day trip information of the card holders, it is
possible to detect the typical transit trip patterns of the card holders and their anchor
locations like home and workplace. However, the accuracy of the detection may depend
on the frequency of transit trips made by the card holders and recorded in the EZ-Link
data. In other words, EZ-Link data can help to uncover the spatiotemporal distribution
of daily activities of those travelers who use transit system frequently, but are less
informative on infrequent transit users. Therefore, it is necessary to first examine the
frequency of transit usage revealed by the EZ-Link data.

In the week of April 11, 2011, around 3.35 million EZ-link card ID numbers are
uniquely identified, among which 79.54% are adult ticket type cards, 12.11% are
child/student concession type cards, and the rest 8.35% are concession cards for senior
citizens. Figure 2-4 plots the percentage distribution of the number of days that EZ-link
cards were used in the week broken down by card types. This does not consider the
possibility that transit passengers used different EZ-Link cards on different days. Around
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20% of the EZ-Link cards were only used in one day, which implies a large number of
Singaporeans use transit system infrequently. In contrast, less than 15% of cards were
used on the daily basis, suggesting only a fraction of residents were completely transit
captive for their daily activities. In terms of the weekday-weekend split, over 30% of
cards were used in weekdays only and a little over 10% of cards were only used in
weekends. Virtually, there is no significant difference in the frequency of EZ-link card
usage among different groups of card holders. Senior concession card holders were
more likely to take transits in only one day or two days while child/student concession
card holders used transit system more frequently in the week.
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Figure 2-4. Percent of the number of days EZ-link cards were used from April 11 to April 17,
2011.

According to the EZ-Link data, a typical weekday (Monday to Thursday) in
April, 2011 had 3.9 million passenger-trips on average, which is converted to 2.06 transit
trips per card holder. On the Friday, the ridership increased to 4.3 million passenger-
trips, and the transit trips per card holder rose to 2.14. That corresponding numbers are
3.5 million passenger-trips and 2.15 trips for Saturday, and 3.1 million passenger-trips
and 2.1 trips per card holder for Sunday. Although the overall transit trips were fewer in
the weekends, transit riders on average made more trips. Figure 2-5 plots the
distribution of average number of trips of all card holders per day in the week from April
11, 2011 to April 17, 2011, broken down by the types of card holders.
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Figure 2-5. Average number of transit trips per day by the types of card holders

2.5.2 Temporal travel patterns

To show the temporal travel patterns of transit riders, the trips in the EZ-link data in a
typical weekday (April 13, 2011) are selected. Among the 1,928,723 card holders who
used transit system on that day, 61.3% made at least two transit trips. Figure 2-6 plots
the temporal distribution of the pairs of first transit trip and last transit trip been made,
divided by the types of card holders. The y axis represents the starting hour of the first
transit trip and the x axis corresponds to the starting hour of the last transit trip. The
thicker the red color, the greater the percentage of the corresponding trip pair
characterized by the hours of the first trip and the last trip. As shown in Figure 2-6, most
of adult riders started their first trip during the morning peak hours (6am-9am) and
returned in hours between 5pm to 10pm, which are likely the commuting trip chains.
The starting hours of the first trips of students were more concentrated, mostly at 6am
and 7am. A subset of students, presumably having school scheduled at afternoon,
started their daily transit trip at around 2 pm. In contrast, the distribution of the time of
the last trips are more dispersed for students, ranging from 12pm to 10pm. Senior
citizens were more likely to start their trips earlier and also end their trips earlier when
compared to the temporal patterns of the other two groups. Besides, the time durations
between the first trips and the last trips are mostly shorter.
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Figure 2-6. The temporal distribution of the first and the last transit trips of the transit smart
card holders with at least two transactions on April 13, 2011 (Wednesday).

The regularity of the temporal-patterns of transit trips is shown in Figure 2-7, which
plots the hours of the first transit trips and the last trips of transit passengers from April
11, 2011 (Monday) to April 15, 2011 (Friday). It can be seen that the temporal travel
patterns are highly regular from Monday to Thursday, as a large proportion of daily
transit trips are commuting trips. On Friday, there were more late trips, suggesting more
active night lives on the last working day of a week.
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Figure 2-7. Temporal distribution of first and last transit trips for transit smart card holders with
at least two transactions from April 11 to April 15, 2011.
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2.5.3 Spatial Pattern

Figure 2-8 shows the spatial distribution of the hourly volumes of alighting passengers
by stations at different time of day. Except for the time before 6am and after 12am, the
transit system of Singapore has been quite busy throughout the day. Even in the late
night, there are still transit riders take the transit system to major residential
neighborhoods. Overall, the differences in the spatial distributions of hourly alighting
passengers between 7am and 12am are insignificant. Generally speaking, more
passengers are in travel during the morning peak hours from 7am to 10am and the
evening peak hours from 7pm to 8pm. In the morning peak hours, a greater volume of
passengers are observed to alight at the transit stations in the industrial zones in the
west as well as the corridors along the Bukit Timah road. While in the evening peak
hours, more passengers alight at the stations in the east part of Singapore, the Jurong
area and Punggol (see Figure 2-1). But meanwhile, the city center and the Orchard Road
are also attracting more visitors from buses and rails. The RTS stations, especially the
MRT stations, generally served more passengers than bus stops. The spatiotemporal
distributions of passengers clearly present the main transit corridors, the major
workplace areas and residential neighborhoods in Singapore.
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Figure 2-8. Thematic maps of the transit stations by alighting passengers at different time of
day.
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2.5.4 Transfer Pattern

Transfers are important parts of transit trips. Taking transfers into consideration when
planning transit system is critical for balancing operational costs and passengers’
convenience. From the perspective of passengers, easy transfers (short walking distance
and good walking environment) among transit stations can influence the choices of
routes (Guo and Wilson, 2011). From the perspective of location choice of businesses,
having a position along major transfer corridors tend to benefit businesses because
some pass-by passengers may be attracted by the intervening opportunities provided by
businesses. This is especially the case in Singapore where many transfer routes are
designed to wind around large shopping centers and underground pedestrian malls.
Moreover, as will be discussed more in Chapter 4, transfers observed in the EZ-Link data
can help to integrate bus network and rapid transit network, which otherwise can only
be dealt with separately in the network analysis.

Table 2-3 shows the percentage of trips with different number of transfers
observed in the EZ-Link data from all 15 days’ of observations. Around 26.5% of the total
transit trips involved transfers. But only less than 4% of the trips had two or more
transfers. The statistics do not count for the internal transfers within RTS because no
transactions are needed for transfers among subway lines and interchange stations.

Table 2-3. Number of transfers per trip in the EZ-Link data
Transfers 0

Percentage 73.46% i

The spatial distribution of the transfers in Singapore is displayed in the Figure
2-9. The map on the right zooms into the city center area. The degree of opaqueness
and the width of the transfer link lines are proportional to the amount of transfers
observed in the EZ-link data. To exclude the irregular transfer paths, only the transfer
links that have at least two transfers per day on average are shown in the Figure 2-9. In
the city center, activity transfers are observed between MRT stations and surrounding
bus stops.
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Figure 2-9. The spatial distribution of bus-to-bus or bus-subway-LRT transfers in Singapore
observed in the EZ-Link data (15 days)

The e-payment system of the public transportation of Singapore allows a
transfer up to 45 minutes. Transfer time refers to time between the moment that a rider
tapped out at previous stage of trip and the moment that rider tapped in at next stage
of trip. Transfer time typically include walking time and waiting time. Figure 2-10 shows
the distribution of transfer time in seconds extracted from that EZ-Link data. The shape
of the distribution approximates the normal distribution truncated at around 30
seconds. The distribution peaks at around 3 minutes.

count

Transfer_time

Figure 2-10. Distribution of the transfer time in seconds extracted from the EZ-Link data

2.6 Summary

This chapter provides a preliminary analysis of a week’s transit smart card transaction
data of Singapore. The data provide a potential to extract continuous profiles of transit
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use of different types of card holders in their daily lives. Although the overall temporal
pattern of transit trips appears to be similar among weekdays, there is considerable
spatial variability of the trips as evidenced by the low trip repetitiveness rate. This
suggests that individuals have different choices of activities and destinations on each
day within a week and necessitates the introduction of spatially detailed urban form
measures to help infer the purpose of trips. However, when the trips are aggregated to
the station level, the overall spatial distributions of the boarding and alighting
passengers appear to be alike in the most time of a day. In addition, the special transit
trip patterns like transfers observed from the EZ-Link data are unlikely to be learned
from the traditional household travel survey data. This information is not only relevant
to the activity-travel choices of individuals, but also reveals the spatial heterogeneity of
places as a result of differentiated transit service provision and usage.

In a nut shell, the preliminary exploration is an important step for the analytics
of urban sensing data. It helps the researchers to form a general knowledge of the data
like the formats of the data, the types of information contained, as well as the strength
and the weakness of the data. It also facilitates the identification of unanticipated
patterns and findings that warrant special attentions in the following analysis steps. The
general spatio-temporal patterns of transit trips exposed in this section provide a good
foundation for further analysis and modeling in the next step. Meanwhile, it is
recognized that the interpretation of observed patterns at this step are mostly
superficial and hypothetical. In order to have a profound understanding of these
patterns and the underlying activity-travel behaviors, we need to couple the EZ-Link
data with other datasets.
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Chapter 3. Integration of Spatial-temporal Data for

Activity-travel Learning

3.1 Introduction

The value of the EZ-Link data is limited for human activity-travel research if only the
information of the trips are presented but other important driving forces of travelers’
choices such as the purposes of the trips and the durations of the stays are unknown. It
is conceivable the activities associated with observed transit trips can be inferred based
on the correspondences between the behaviors of travelers’ and the characteristics of
urban environment surrounding the origin and destination transit stations, this needs
spatially and temporally detailed data to characterize the urban built environment,
which are usually difficult to acquire. However, the pain of data collection and
preparation can be somewhat alleviated thanks to the open data initiatives participated
by many government agencies and the unprecedented temporal and spatial information
embedded in the readily accessible data sources like web services and crowdsourcing. It
is necessary investigate generic ways to assemble datasets from different emergent
sources to support urban sensing data analytics that concern increasingly detailed and
complicated urban policies and built environment settings.

This first calls for innovative approach to integrating datasets from multiple
sources, which present heterogeneous formats, qualities and information. Most
secondary datasets collected from online sources or provided by agencies are by-
products of other tasks. Therefore, it is common that a dataset only provide partial
information for the analysis and modeling. In addition, although available datasets are
growing explosively in recent years, the format and quality of datasets become
increasingly heterogonous as a result of more diverse data sources. It is rare that two
datasets from different sources can be merged directly without pre-processing. This is
especially for the case of emergent datasets, which usually have very different
structures from the data from traditional sources. Therefore, it is a big challenge to
resolve the compatibility issue between different datasets in the process of data fusion.

In this section, we propose an ontology-based data integration mechanism to
evaluate, sift and integrate geospatial information from heterogeneous data sources.
Ontology defines the vocabularies and concepts that are commonly understood in a
domain. Building ontology is usually a collaborative effort requiring the involvement of

37



domain experts to achieve consensus on concept definition. The focus of this study is
not to build a comprehensive ontology for activity-travel research. Instead, we will
present a prototype that allows semantic-level matching between local data and a
simplified ontology to demonstrate the benefits and applicability of proposed data
integration approach. The objective is to create an integrated dataset that absorb the
reliable and detailed spatial information like building, business and land use from
various sources, to facilitate the characterization of the urban built environment and the
inference of activities from the EZ-Link data.

3.2 Background and related work

3.2.1 Emerging data sources

Ubiquitous sensors equipped in urban areas and location aware devices like
smart phone and GPS have been used widely in travel behavior data collection as a way
to supplement conventional household travel survey or activity-based time allocation
survey (Wolf, 2006; Asakura and Hato et al., 2004; Forrest and Pearson, 2007). Lately,
Hato (2010) proposed a behavioral context information measuring instrument, which
integrates a variety of sensors like atmospheric pressure sensor, barometric pressure
sensor, sound sensor and 3-dimension accelerator in addition to a basic GPS. The idea is
not only to record the positions of device carriers, but also to collect detailed movement
information like acceleration and characteristics of surrounding environments like noise
level, which may help to infer personal travel behavior and activity.

The web has an enormous reserve of information. The open data initiatives
have motivated many agencies and companies to share their data. Mashup or web-
based services created by data providers result in more and more data available to
public through internet. Meanwhile, the amount of user generated information
accumulates at an unprecedented rate per day fuelled by proliferation of “social
websites and applications” like Wikipedia, Facebook and Twitter. Users are also
increasingly willing to share information tagged with location using their location-aware
devices such as smartphones and tablets. Besides the social network data, volunteered
geographic data like OpenstreetMap (OSM) has been widely used in many applications
and are receiving growing attentions in academia (Haklay and Weber, 2008; Neis et al,
2011). The advancement of technology like recent efforts on semantic web and linked
data is likely to empower data search, access, and use on the world-wide web in a more
intelligent, interoperable and convenient way.
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3.2.2 Heterogeneous datasets

However, only a small fraction of urban sensing and web open data is readily
discoverable and accessible, much less usable. Whilst the emergent data appear to
stimulate new efforts in urban modeling and human activity studies, their values can be
extracted fully only when being coupled with other datasets. One of the biggest
challenges in data integration is how to reconcile all types of heterogeneities stemming
from different data sources. A diverse range of heterogeneities and conflicts can be
found among datasets from different sources, as listed in Table 3-1.

Table 3-1. Types of data heterogeneities and examples

Examples

Syntax Heterogeneity e Different tuple (entity, identifier)

Structural Heterogeneity o Different cardinality between entities

 Different entity-identifier relationship

e Polysemy, Synonymy and homonym
Sematic Heterogeneity  Different abbreviation
e Different categorization

e Accuracy

Data Quality

A Completeness
Heterogeneity = P =

e Source trustworthiness

Different data format and type

¢ Different spatial scale and representation
Different temporal scale and representation
Different measurement unit

Data Type Heterogeneity

While variations in data models and schema lead to syntax and structural
differences among datasets, semantic difference is more common due to different
naming or categorization conventions of data providers. Besides, heterogeneity in data
quality, in data collection time, as well as in privacy and security requirement also
hinder the integration of relevant information from different data sources.

3.2.3 Existing data integration approaches

To tackle with the issue of data interoperability and integration, in the field of
computer science, several approaches are commonly used to deal with the data
interoperability and integration. Software vendors and consortiums like W3C and OGC

(Open Geospatial Consortium) set standards on data formats and representations.
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Examples are XML for web service based data sharing and CityGML for the storage and
exchange of virtual 3D city models. But these standards only addressed the syntax
heterogeneity of datasets of the same type. Besides, data warehouse realizes data
integration through a common data storage strategy. This approach focuses more on
the physical location of datasets than on the fusion of information.

Multiple database based integration uses a global schema and mediators to
reconcile semantic differences of local DBMS (Ziegler and Dittrich, 2004). Mediator-
wrapper architecture is used to translate user defined queries to queries that can be
carried out by wrappers built for local databases. Most applications of this type are
generally based on relational data models and global schemas tightly coupled with tasks
or applications (Ziegler and Dittrich, 2004). Schema matching is typically performed
manually by database or domain experts. Besides, traditional data manipulation that is
built on the basis of relational database schema becomes increasingly difficult to deal
with semi-structured, unstructured data with increasing spatial and temporal
complexity.

A deluge of urban sensing data and web-based information requires that an
integration approach has capabilities to incorporate different types of data. But it is
more demanding when data with various semantics, temporal and spatial
representation, and quality need to be merged together. More complicated operations
like comparing, cross-validating, correcting, aligning and aggregating become necessary
in the data integration process.

- Further, it is not necessary to require end users to know the nuts and bolts of
every dataset. It is also unrealistic to expect all end users have the expert skills to tackle
with these datasets. Providing a single entry point to the integrated data and
information will greatly facilitate the analysis and modeling of human activities and
travels. As the size and the variety of data accumulate over time, a capability for
automatically handling changes is very necessary. Heavy manual intervention is not only
time consuming, but also error prone. Successful data integration requires a system that
does more than just exchange or merge data. The meaning, representation and
structure of data need to be understood as well (Nathalie, 2009).

3.2.4 Ontology-based data integration

As alluded in the last section, data integration approach relying on mediator-
wrapper architecture and middleware is usually task-specific and will become more
complex and cumbersome when facing complicated urban modeling and analysis.
Meanwhile, different users need to repeat the data processing and schema matching
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procedures to acquire the same datasets. It will be desirable if data integration
approach can map local datasets from different sources to a purpose-generic but
domain-specific global schema which provides a common representation and
interpretation of the information needed for the research and application in the
domain, and a single entry point for users. Ontology provides a promising solution for
the idea.

As defined by Mars (1995), Ontology is “a structured, limitative collection of
unambiguously defined concepts”. In general, Ontology explicitly defines the meanings,
representations and the structures of the concepts in a domain, which forms the
mutually understandable, sharable and reusable domain knowledge repositories. This
definition implies the potential of ontology in reconciling the conflicts in the semantics
and syntax of datasets arisen from unstandardized ways of data encoding. Many
previous researches have shown ontologies can be a valid tool for addressing the
interoperability of information from multiple heterogeneous sources (Partridge, 2002;
Nathalie, 2009).

An integrated ontology from one or several domain-specific ontologies can
benefit the community by providing guidance on generic vocabularies and
correspondences to represent data and modeling related knowledge. However,
although ontology-based approaches have reached a good level of maturity in other
fields, its application in the domain of urban planning and modeling is limited
(Benslimane et al., 2000).

3.3 Data collection

Activity-travel analysis requests comprehensive and very detailed information
regarding the urban built environment, transportation network and service as well as
people’s travel behaviors. Urban planning researchers are in particular concerned with
the spatial and temporal changes of urban environment and the impacts on human
behaviors. Geospatial data at a variety of geospatial levels like parcels, buildings and
zones, transit stations, public parking lots and roads are all desired for the measurement
of the urban built environment. To account for the temporal coherence of datasets,
which is important for a rapid-changing urban environment, the temporal information
of datasets is also required. Therefore, many efforts have been made to gather data
from heterogeneous sources including government agencies, web services,
crowdsourcing, and corporate data owners.

In addition to the official datasets provided by government agencies, a series
of web-scrapping and web-service programs were developed and streamlined to
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systematically retrieve online information. For example, the data mall of Land Transport
Authority allows the retrieval of real-time information of Carpark lot occupancy in the
major shopping malls at the Marina Center, Orchard and Harbourfront areas of
Singapore. Moreover, user contributed information from websites like FourSquare and
OpenStreetMap are also collected to complement and enrich the characterization of
contextual factors for analysis and modeling.

While most of the datasets are already secondary at the time they are
gathered, the primary approaches of data collection are very diverse, from interview to
urban sensing, from government registration record to volunteered contributed
information. Therefore, these datasets show tremendous variations in the scope and
granularity of details, the data types and formats and in particular the data qualities.
Most of the datasets have limitations in one aspect of data quality or another such as
reliability, completeness and timeliness, which restrict the extent of analysis and
modeling can be carried out. But more notably, the data quality issue complicates the
integration process. It is always a challenge to sift and assemble valuable information
from the datasets with dubious quality.

3.4 Proposed approach of data integration for the activity-travel analysis

Activity-travel analysis deals with a large amount of objects and concepts in an urban
system that can take on various representations and relationships. Different
classification and naming conventions as well as different reference system adopted by
different agencies adds to the complexity of the already intricate integration tasks. For
example, buildings can in one case geometrically be represented as points or footprint
polygons, but in other cases they are represented as nested polygons based on the
aerial view from above. In the transit network analysis, node is usually considered as a
synonym of vertex. Edges could refer to links, connections, and routes, which can be
confusing for inexperienced data users. As the amount of data grows, it is not only
desirable but also imperative to build a knowledge base to ekplicitly support
interpretation and exchange of entity representations and correspondences in a field.
The proposed ontology-based framework covers ontology building, ontology mapping,
and custom tools to support integrating, sharing and exchanging of the information
needed for the analysis of human activity-travel patterns. The proposed framework can
also be transferred and applied to the data integration process in other fields.

3.4.1 General framework of the proposed data integration approach

Figure 3-1 illustrates the proposed framework of the ontology-based data integration
approach used in this study. The framework centers on a domain ontology, which is
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used as an unambiguous and persistent knowledge reservoir consisting of the concepts
and relationships used in the activity-travel analysis. In the domain ontology, concepts
and relationships are elaborated and annotated by the definition and terminology that
are generally accepted in the field. As outlined in Figure 3-1, the approach contains a
series of sub-modules like data cleaning and standardization, schema mapping, data
guery and integration based on matched schemas, and the imputation of missing
attribute. Each of these sub-modules is discussed in details in the following sections.

3.4.2 Creation of ontology to support semantic interoperability

Creation of a domain specific Ontology requires great efforts and collaborations on the
design of knowledge representations as well as annotations on concepts, relationships
and axioms. The focus of this study is not on developing a comprehensive generic
ontology for urban planning and modeling, but on demonstrating the utility and
applicability of the proposed approach that can generate more spatial-temporally
precise and detailed information to support further analysis and modeling efforts with a
small-scale task-oriented ontology example.

Query Path

Domain Ontology
(Section 3.4.2)

Define local
Schema. -~

s
’

Figure 3-1. Framework of the Proposed Ontology-based data integration approach
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The data model adopted in this ontology example is compliant with the
Resource Description Model (RDF) triples <Subject, Predicate, Object>, a metadata
model specified by the World Wide Web Consortium (W3C). The subject and object are
classes representing real-world entities, and the predicate denotes to a relationship
between the subject and the object. For example, to represent the notion “Car license
has a period of validity of 10 years” in RDF, a subject is denoting “Car license”, a
predicate is denoting “has” and an object is used to represent “period of validity”. “10
years” is the value for the object “period of validity”. Based on this primitive RDF data
model, RDF schema was specified to describe ontologies. It contains two basic elements:
class and property. Class represents real world objects and property defines the
correspondences and rules applied to classes. RDF is usually written in a XML-like
language. Thus, it is machine-readable and can be easily shared and integrated with
other applications and platforms, either online or offline.

Much of the power of ontology comes from its capability and flexibility in
defining the correspondences between classes that capture complex relationships in the
real world. In addition to entity-attribute association commonly seen in the traditional
relational database, ontology often includes other types of correspondences such as
subsumption, mereology, equivalence and constraint. These relationships enable a
richer and more precise matching with increasingly sparse, complicated and
heterogeneous data. For example, in the traditional relational database schema, public
housing buildings are often listed in the “buildings” table to avoid the redundancy.
However, public buildings typically have specific properties and policy constraints that
only apply to them. In this sense, a data schema that allows hierarchical definitions of
the building entity is more appropriate, because it is able to elaborate not only the
superclass-subclass inheritance relationship between generic buildings and public
residential buildings, but also the attributes specific to public housing buildings.
Similarly, in ontology, it is possible to include spatial and temporal correspondences
among entities that have been receiving growing attentions in modelling and analysis.
Table 3-2 lists a number of correspondences used in creating the urban modelling
ontology example used in the study.

Table 3-2. Types of correspondences specified in the urban modelling ontology example.

Type Relationship Description Ex
siinerdss, of subsumption  also an instance of superclass.

One class is a property of Building h-as height.
another class. Lk
Every key uniquely identifies  Building has key address.

--has_ attribute entity-attribute

—has_ke Identifier Sy

_Key a class instance.
--part_of —— One class is a part of the Bridges are part of roads.
--have gy other class. Buildings have units.
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Two classes are equivalent. HDB building is equivalent to public

--equivalent_to equivalence Al
A 0 housing building.

--constrained . One class is constrained by The classification of children is
constraint .

by another class. constrained by age (under 20).
--from_time temporal The temporal validity of a Activities start from timel.
--to_time correspondence class. Activities last to time2.

! : The spatial containment Buildings are located in zones.
--located_in spatial : 2 : s

i ; - relationship between two Parcels contain buildings.

--contain relationship e

One of the benefits of using ontology for data integration is that at the
ontology creation stage, we can start with the relevant ontologies deigned by others
because the modification and extension of ontology is relatively straightforward. A few
ontologies have been developed for urban management and planning (Teller, Lee and
Roussey, 2007). However, none of them are designed for the modeling and analytics of
activity-travel research, especially for the analytics of emerging big data. Figure 3-2
presents an urban building ontology example targeted at the fusion of building
information of Singapore. One of the major purposes of using ontology is to reconcile
semantic conflicts. Many pairs of classes have an “equivalent as” relationship between
them. For example, “year built” of buildings from one dataset is assumed to be
equivalent to “lease commence year” from another dataset. “Transit” and “public
transportation” is assumed to refer to the same concept. Also, as mentioned above, this
ontology enables a more flexible representation of the hierarchical and intricate
relationships among different types of buildings as well as the relations between
buildings and other entities. For example, it is clearly exhibited in the diagram that
“multiple-story car park (MSCP)” is a subclass of “building” but also a subclass of
“parking”. Ontology allows classes at the same level to be overlapped with each other
unless the disjointness between classes is explicitly stated. This makes it easier to
classify buildings like “shop-house”, which has both residential and commercial uses.
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Figure 3-2. An example of the urban building ontology (as a part of the ontology for activity-
travel analysis)

The example ontology used in this study is generated by using the Protégé, an
interactive ontology editor developed by the Stanford Center for Biomedical Informatics
Research at the Stanford University School of Medicine (Knublauch et. al, 2004,
Tudorache et. al, 2008). Figure 3-3 shows the screen prints of four different components
in the Protégé that can be used to assist ontology creation and reasoning. Figure 3-3a)
displays the classes editing panel of the Protégé, which allows users to define the
superclass, the subclass or the equivalent class of a given entity and to add annotations.
The relationships between classes are specified in the “property matrix” panel as shown
in Figure 3-3 b). Figure 3-3c) provides a graphical view of the relationships among
different classes. The reasoning process of the Ontology is usually executed by the
SPARQL query, which is also implemented in the Protégé, as shown in Figure 3-3 d).
Readers can refer to Horridge et al. (2004) for a comprehensive introduction of the
Protégé.
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a) Class editing panel b) Class-property matching panel
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Figure 3-3. Screenshots of the Protége

3.4.3 Schema-mapping between data sources and ontologies

One of the most critical challenges for data integration is to fit the information from
individual data sources to the global data schema, i.e. ontology, designed for tasks. This
challenge is addressed by schema mapping, which aims at finding correspondence
between semantically related entities based on the mapping between local schemas
and global ontologies. Many schema mapping approaches have been proposed (Kokla,
2006; Nathalie, 2009). These mapping approaches can be grouped into two types: lexical
matching and structural matching. While lexical matching focuses on using linguistic and
text techniques to detect the correspondence between ontology labels and local column
names, structural matching relies on the structural relationship outlined in the ontology
to sort out the relationships among information contained in various datasets. The
proposed data integration approach adopts the structural matching between local
datasets and the global ontology.

As shown in the ontology diagram for buildings in Figure 3-2, the ontology
example has a tree-like structure incorporating the hierarchy of classes and the
heterogeneity of relationships among classes. It is convenient and straightforward to
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convert to static ontology schema to a graph data structure metadata with the vertices
of the graph representing classes, and the directed edges representing
correspondences. The analysis of graph data is supported by a rich set of algorithms, like
tree traverse and shortest-path search. These algorithms have been implemented in
various programming and statistical analysis packages, which make the ontology
mapping more plausible for automatic computer processing. For example, the data
integration process can reason through relationships not explicitly defined in the
ontology by measuring the connectivity or adjacency between relevant entities. This is
especially helpful when the size of the domain ontology grows with more details, which
will make the manual inference and consistency check difficult.

In order to facilitate the schema matching process, for each local dataset, a
local-global schema mapping needs to be specified compliant to the format drafted in
Table 3-3. The idea is to list the information provided by the dataset that matches the
entity relationships specified in the ontology. Each row in Table 3-3 represents
information from local dataset matches to an edge (correspondence) in the global
ontology. For example, the first row of the table matches with the edge indicating
“subclass HDB building has an attribute finished year”. “Nodel” and “Node2”
correspond to two classes “HDB” and “Finish_Year” in the ontology. “Field1” and
“Field2”, instead, list the names of the fields corresponding to “Nodel” and “Node2” in
the local datasets. In this case, the “address” field in the hab_sale dataset is used as the
primary key of HDB building and the “lease_commence” field is assumed to have the
information on the finish year of buildings. The first row of Table 3-3 indicates that the
information of “Finish_Year” attribute of “HDB” buildings can be found in
“lease_commence” field of “hdb_sale” dataset with the HDB buildings identified by
“address” field.

In the schema mapping look-up table, the temporal tags of the datasets are
included in order to help users to retrieve the information that is temporally valid. The
last column “DR_index” is a composite data quality index used to determine the
sequence of retrieval when information from multiple datasets matches with the same
edge (i.e. correspondence between classes). For example, the age of building
information contained in different datasets may be in conflict with each other.
Therefore, it is important to evaluate the quality of information and select the most
accurate information into the integrated dataset first, followed by less reliable
information. More discussion on this can be found in Section 3.4.5.
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Table 3-3. A look-up table for schema mapping between local datasets and global
ontology

From_time To_time DR_in
_field _field dex

Dataset Fieldl Field2

|

HDB Finish_Year hdb_sale address IeaseLr0 =reaLCam NULL 0.9

mmence mence
i |

HDB Finish_Year  hdb_resale Gelllkee TSROl eRsR RONY L iy 0.9
mmence mence

Private_housing  Building_type private_street_dir address type NULL NULL 0.7

o Zhdk . rop_t

Condominium Building_type condo_sax_dir address z RLYP year NULL 0.7

Condominium Building_type condo_guru_dir address  type NULL NULL 0.7

Private_housing  Building_type realis_private address type year NULL 0.9

The schema mapping process is semi-automatic in this example. A fuzzy text
matching method based on the generalized Levenshtein distance®is used to align table
names and field names from source datasets to the semantically closest concepts
predefined in the ontology. Meanwhile, equivalent concepts or entities are matched
directly. A recommended mapping result will be provided for manual inspection and
validation. The local-global schema mapping table only needs to be prepared once as
long as the schemas of local datasets keep the same. New data from the same local
sources can be automatically integrated based already established schema mapping.
Therefore, this approach is especially useful for the datasets that update frequently
such as urban sensing data.

3.4.4 Data cleaning and normalization

Before data from different sources are merged together, data cleaning and pre-
processing routines need to be gone through to improve the coherence of values for the
same entities and attributes. Tasks in this step include data type convention, attribute
value normalization and hidden information extraction. Besides, data formats and
constraints are sometimes included to improve the validity of dataset. For example, it is
essential to make sure that every individual in the person data has an age value
between 0 and 120. Some ontology editors like Protégé have incorporated a data
property component, which is explicitly used to set constraints for the types and
formats of classes.

3 The generalized Levenshtein distance is measured by the minimal possibly weighted number of insertions, deletions
and substitutions needed to transform one string into another string.
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In this study, a series of look-up tables are prepared for the normalization of
attribute values like street name and business name. The “street” of address
information is important for buildings or businesses. But in some datasets, “street”
names come with abbreviated forms (e.g. “Ave” for Avenue and “Rd” for Road). A look-
up table with street names and corresponding abbreviations was used to ensure the
consistent “street” format across all datasets. There are also some routines targeted at
ad-hoc data issues. For example, the building data from Singapore Land Authority (SLA)
has the 6 digit postcode information encapsulated in the 30-digit building identifier
numbers. Therefore, a simple function is included to extract the postcode information.
Other common data issues like casing, categorization inconsistency, and inconsistency in
spatial and temporal representations are also dealt with in this step. In the future, it is
more desirable to incorporate some of these look-up tables and processing routines into
the ontology. In a nutshell, the purpose of this step is to standardize the data types and
formats to make datasets from heterogeneous sources more coherent for the following
integration steps.

3.4.5 Data quality assessment

Data quality is an old problem rooted in data collection and processing. As the sources
of datasets become increasingly heterogeneous and electronic data become more
pervasive and easy to spread, data quality issues have acquired renewed attentions in
data and information related disciplines like statistics (Karr, 2006; Winkler, 2004). It is
recognized that data with poor quality can create significant economic inefficiency, cost
and performance issues.

The data issues presented often include inconsistent data types, misspellings
and mistakes during data entry, missing information, as well as outdated records,
information duplication, inaccurate geographical tags and time stamps, erroneous
records when urban sensing devices went wrong. These issues are more manifested in
datasets from many emerging sources. In the volunteered geospatial data, errors,
incompleteness, and redundancy are common (Mooney et al, 2010).

Therefore, it is essential to inspect the dataset before integration, singling out
valid information and filtering out unreliable information. If the quality of inputs is not
controlled, the “dirty data” from one source can contaminate other data in the process
of integration. Nevertheless, a broader range of data sources also provide new
opportunities to detect and correct data errors through cross-validation. In order to
determine which information can be preserved and which cannot in the data integration
process, it is an important prerequisite to evaluate the quality of datasets through
preliminary dataset analysis (Rahm & Do, 2000). As argued by Boin and Hunter (2008),
data quality measures can help users make informed choices towards reducing possible
uncertainty in the data.
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The data quality literature has provided a comprehensive conceptualization
and classification of the dimensions pertinent to data quality issues, although there are
discrepancies in the definitions. As shown in Table 3-4, data quality matrices can cover a
long list of dimensions like accuracy, reliability, consistency, completeness, timeliness,
unambiguousness, source trustworthiness, and understandability (metadata) and value-
added. However, the quality of data is not independent of the needs of data users. The
importance of the dimensionality of data quality is to a large degree depends on the
task at hand. Therefore, user’s input on the allocation of weights to different measures
is critical in order to generate a composite data quality index (equation 3-1) to help
guide the data retrieval and integration process.

DR = Zfl\l:l W; S; (3'1)

Where DR is the data rank index; N denotes to the number of measures assessed; s; is
the rank of the dataset across all available datasets when assessed by measure i. w;is
the weight allocated to measure /.

The reputation and reliability of data sources are established through the
confidence on data providers and preliminary data quality assessment. Data quality
measures provide some factual basis for the evaluation. Dataset with low data rank
index usually means more reliable information and high selection priority. In contrast,
data with high data quality index indicates fewer added values for the tasks, which will
result in reduced use. However, judgment and subjectivity are introduced into the data
quality assessment in the steps like measures selection and weights assignment.
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Table 3-4. A Summary of Data Quality Assessment Measure

Dimensions Descriptions Reference Measures

& Syntactic Accuracy Weather value matches with corresponding definition Bratini et al. (200) The distance between the value stored inthe
domain in the real world. — _ - database and the correct ones

- Sati Accuracy Accuracy of the positions, geometries and spatial " Girres & Touya (2010), Yang et al. Number of valid values / total number of
relationships of geographical features. (2013) values expected

opleteness Extent to which a given data include corresponding real Bratini et al. (2009), Jark et al. -
world features. (1995), Girres & Touya (2010)

- Commission Presence of excess features not existing in the real wrld Girres & Touya (2010) ' Ratio of excess values in the dataset to the
total number of values.

- Logical consistency Degree that data comply with logic rules and integrity Bratini et al. (2009), Girres & Touya Number of consistent values /number of total
constraints (2010) ~ values

| Source Trustworthiness Degree of confidence on data sources Bratini et al. (2009) max(0,1)

Uniqueness Concerns whether the information can only be provided Number of values / Total Number of values
by the given dataset from all datasets
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3.4.6 Integration operations

Because ontology has a richer representation of the correspondences among classes, it
enables users to formulate more specific and tailored queries based on custom defined
transitivity rules. In this study, three operations are designed and developed to facilitate the
integration of multiple datasets.

1. Construct entity list: construct the most comprehensive list for the entity given the
datasets at hands and the targeted time periods. When building the list, the
algorithms are designed to traverse the graph-structure ontology to include all
instances of targeted entities and instances of its subclass entities that can be found
in the datasets. For example, when constructing the list of private residential
buildings, the function automatically includes instances of condominiums,
apartments and detached-houses etc, which are subclasses of the private residential
buildings. ’

2. Retrieve attribute values: select and complement values of the targeted attribute
for an entity. Based on the list of instances belonging to the entity, the algorithms
are implemented to search and retrieve corresponding attribute values from all
relevant entity classes (including superclasses and subclasses). For example, when
querying the “built year” of private housing buildings, in addition to search the
datasets for the private housing buildings, the function would also look for the “built
year” information in the building (superclass) datasets and as the apartment
(subclass) datasets. The sequence of information retrieval is dependent on the
quality of dataset evaluated in Section 3.4.5.

3. Impute missing values: three types of imputation functions are defined in the study.
First, for the attributes of some geospatial objects, missing values of attributes of the
targeted instances are substituted by the existing attribute values of instances
spatially similar. Second, regression models are calibrated to estimate the possible
values of an unobserved attribute based on its correlations with other observed
variables. For example, Zhu and Ferreira (2013) use a multinomial logit model to
infer the missing household income information based on the characteristcis of the
building that the household occupy. Third, a classification model is developed to
estimate the possible open hours of establishments. This imputation approach is
discussed in details in Section 4.3.2. '

3.5 Integrating building information for built environment measurement

Buildings are among the most important geospatial objects in cities. They are the places that
people live, work and engage in other activities. However, buildings are complex because
the classifications are various. Detailed and complete information on buildings is usually
rare but very valuable for the measurement of urban built environment as well as in land
use and transportation modeling. For example, Figure 3-5 shows the thematic map of
buildings by types using the building footprint shapefile dataset from SLA. The categories
“Block” and “Standard” are ambiguous in meaning and are clearly not consistent with other
categories like “HDB” and “Industrial”, which imply the main usage of buildings. These two
types of buildings amount to 55,846 records, which makes up around 34% of total building
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records. Also, the types of buildings crucial to the characterization of urban spaces like
“Commercial” or “Civic” are not classified. Besides the types, the dataset only have address
information of buildings. Important building properties like time of completion, storey and
number of units are all absent. Therefore, although the building directory from SLA has a
detailed spatial representation, the attributes of buildings are very limited, which makes the
data insufficient to support the level of urban built environment measurement and urban
modeling desired by researchers. In this sense, it is essential to search for building
information from other sources to complement the SLA dataset.

I Apartment
Condominium

I Executive Condo

I Warehouse

2 HDB (Public Housing)

I |ndustrial Building

I Block

I Other Residential
Standard

I Walkup

B Walkup(sub address)

Y o
g

Figure 3-4. Building footprints by categories from SLA.

Unlike conventional ways of data gathering that is usually a one-time effort, the
data collection and integration has increasingly become a continuous process, because the
information from emergent sources like OpenStreetMap is updated frequently. In addition,
over the time, one may discover new sources of building information become available for
the analysis. Hence, the information of buildings needs to be dealt with in a flexible and
evolving way, starting from a base ontology and a few data sources, which can be extended
later by including a richer set of semantics and additional sources of information about
buildings. In this section, the proposed approach is applied to integrate building information
of Singapore for the activity-travel analysis. The objective is to generate a comprehensive
list of buildings with essential attributes such as the number of floors, the number of units,
year built and type of lease. Except for the ontology creation, the other steps of the
integration practice are accomplished by processing the scripts and functions written in R.

Table 3-5 lists a number of datasets pertinent to buildings that have been
gathered from different sources, including the building directory from the Singapore Land
Authority (SLA), the housing unit transaction information, and the semi-structured building
lists collected from various websites. These datasets differ in building types, numbers,
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attributes and data qualities. Although the official building data provided by SLA are very
reliable and complete in terms of the number and the spatial locations (represented by
address and postcode) of buildings, the attributes of buildings of great interest to analysts
like the year built and the floor information are absent. Besides, the classification of building
types in the dataset from SLA is ambiguous. Therefore, information like building types,
capacities, finished year, property value and unit types and areas need to be retrieved from
other datasets, which are considered less authoritative and complete but more error-prone.

Table 3-5. A list of datasets available for building information integration

Data type Coverage Source Records Attributes Year
Building List All types of building SLA 162491 postcode, address, type 2008
Building List All types of buildings Street Directory 111591 postcode, address, type 2013
i e ostcode, address, type,
Building List HDB, Condos and Apts  FourSqaure 14256 sear : typ 2013
postcode, address, type,
Building List HDB blocks HDB web service 9276 vyear, unit type and 2013
amount
address, type,
Housing Unit HDB and Private HDB web lease_commence_date,
; 3 i ) i 54375 , 2013
Transaction Record housing units service/Realis floor area, transaction
price, min/max level
Address, postcode, year,
Building List Al f buildi 13
uilding Lis | types of buildings EMPORIS 6868 ¥isae alght 20

The first task is usually to identify the reference attributes of the entity class. In
the case of this study, because addresses are available in most datasets and are semantically
consistent, it becomes an ideal attribute for the cross-reference among datasets. Although
in the real world, one building may have multiple addresses, it is assumed here that one
address corresponds to a pseudo building instance, which can be a part of a large building
complex.

As mentioned in the section 3.4.4, a series of data normalization routines were
applied to the attributes like address, postcode, building types and year to ensure the values
of the same attributes are coherent across different datasets. In addition, information in the
housing unit transaction records was converted to information for the buildings. For
example, the room numbers of units are parsed to estimate the number of floors and the
total number of units in a building.

The quality of data is evaluated at the attribute level as opposed to the dataset
level because there are significant variations in the reliability of information for different
attributes from the same data source. When assessing an attribute, the values of the
attribute from a dataset that is most trustworthy are picked out as reference for the
attribute values from other datasets to compare against. The most important attribute of
building is probably the functionality types. Types of buildings are tricky to deal with
because of its hierarchical classification structure as shown in the building ontology diagram
in Figure 3-2. For example, EMPORIS classifies buildings at a very detailed level (e.g. primary
school, church, fire station and theme park etc). Building list from SLA has a mixed levels of
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classification with some buildings are tagged as “Residential” while some others tagged as
“Walk-up”.

Based on the analytic need, an accurate classification of buildings at medium
aggregated level (HDB, Apartment, Factory, Warehouse, Retail and Office etc) is desired for
the result of data integration. Therefore, the Housing and Development Board (HDB)
building list collected from the web service of HDB official website is selected as reference
because of its high reliability and completeness. After that, lists of buildings tagged as “HDB”
in other datasets are compared with the reference HDB list. Table 2-5 shows the results of
data quality measures used in the assessment. It appears that housing unit transaction
dataset has the lowest semantic error (misclassification of building types), while EMPORIS
has the highest error. This is because most of the HDB buildings in the EMPORIS dataset are
simply tagged as “Residential”, which indicates the quality of user contributed information is
usually poorer than desired.

Table 3-6. Data quality measures for the type of buildings

Dataset Semantic Error Completeness Commission  Omission DR index

n(D1nD2
( ) NN N(D1 ¢ D2) N(D2 & D1)

N(D1nD2) N2 N2
HDB web service o B : ¥ Basa
dataset
Housing unit transaction  0.0005 0.9428 0.0414 0.0965 1.5500
SLA 0.0065 1.1523 0.2033 0.0493 2.8500
Streetdirectory 0.0134 1.1051 0.1298 0.0211 2.7500
FourSquare 0.0183 1.1341 0.1837 0.0525 3.8500
Emporis 0.9060 0.0524 0.0126 0.9590 4.0000

Note: D1-assessed dataset, D2-refernce dataset, N1-number of building records in D1, N2-number of building
records in D2, n(D1 n D2)-Number of matched records with different “building type” values, N(D1 n D2)-
number of matched building records, N(D1 & D2)- number of records in dataset D1 but not in dataset D2,
N(D2 & D1)- number of records in dataset D2 but not in dataset D1.

When calculating the composite data quality, special attentions are given to value
accuracy. Semantic error, which indicates the misclassification of building types, is in general
less tolerable than other measures. Besides, commission of additional building records to
the base HDB list may also indicate misclassifications. In contrast, completeness and
omission are less important because the missing buildings have chances to be
complemented by other datasets. Thus, the weights allocated to four measures: semantic
error, completeness, commission and omission are 0.6, 0.05, 0.3 and 0.05. The resultant
data rank index (DR_index) suggests that building type information should be retrieved
sequentially from the HDB web service dataset, the housing unit transaction dataset, the
streetdirectory dataset, the SLA dataset, the FourSquare dataset and at last the EMPORIS
dataset.
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Figure 3-5. lllustration of building type integration process

Figure 3-5 illustrates the process of merging building information from multiple
datasets based on the building list provided by SLA. In this case, categories of building types
from local data sources are mapped to building classes and subclasses pre-defined in the
example ontology. The building classes are semantically enriched by the building types that
appear in local data sources (Appendix |). A generic R function is written and applied to carry
out the fusion of building type information. Because the graphic-based schema mapping
allows the data user to easily traverse the graph, the returned building types not only
include the values from the inquired datasets but also their superclasses. For example, if an
inquired building record is tagged as "primary school”, then the returned building record
will not only be tagged as “primary school”, but also be tagged as “community” and “civic”,
which are the parent and grandparent classification types of “primary school” in the
ontology.

Table 3-7 shows the contributions of different datasets in providing useful building
type information for the integrated data. As we can see from the table, the streetdirectory
appears to have the most significant contribution because of its very detailed classification
of building types. In comparison, Emporis dataset provided very limited building type
information. Figure 3-6 shows the thematic maps of integrated buildings by different levels
of categorizations. Category 1 building types are very generic and only have 8 types, which
leads to around 12.1% of buildings unclassified. In contrast, Category 3 building types are
quite specific, which results in a large number of buildings with missing Category3
information. See Appendix | for the three levels of building type categorizations.

Table 3-7. Number of building records that are classified in the process of integration
Dataset Category 1 Category 3

HDB Web service data 76

+ Housing Unit Transaction 33687 33687 18327
+ Streetdirectory 119768 84451 84451
+ SLA 144604 135329 95409
+ FourSquare 144900 135707 95929
+ Emporis 144908 135709 95929
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The opportunity for users to verify where data originates from and how it was
combined and converted into its current form is critical for enabling users to distinguish
between facts and assumptions and, in consequence, to establish trust in integrated data.
Therefore, in the integrated dataset, an additional column called “building_type_source” is
added in the integration process to address the lineage and traceability issues of integrated
dataset.

Likewise, other attributes like building finished year are also merged following the
same procedures. However, because 76.7% of buildings did not find finished year
information from any of these datasets, a spatial similarity-based imputation is performed
to infer the finished year of remained buildings. In this case, a set of heuristic rules were
designed to determine the how the missing finished year values are filled by using the
corresponding available information of nearby buildings. These rules dictate that the search
will first be directed to the buildings of the same type in the same development project as
the targeted building, followed by the buildings of the same type on the same street. If
these two searches fail, the values for the nearest building of the same type will be used.
This imputation approach helped to bring the percentage of buildings with missing
completion year values down to 15.7%. Most of these buildings are industrial buildings in
recently developed areas, as shown in Figure 3-6.
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Figure 3-6. Different levels of building type classification in the integrated dataset.
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Note: buildings with missing type information are filled in white.

Year Built
N I T
D (D O 40 O
S ELELEF
NG S S
& ST
5 RN R R N N

W
Figure 3-7. Finished Year of buildings

Note: buildings with missing year information are filled in white.

3.6 Summary

The scarcity of spatiotemporal data restricts the depth and scope of researches that
can be conducted. Although data become available from more and more sources, merging
information from multiple datasets is held up by the data interoperability and quality issues.
This chapter presented an ontology-based schema mapping approach to reconcile the
existing semantics and data representation conflicts between datasets. The approach
explicitly builds the domain knowledge into a task-specific ontology to help integrate data
for the urban built environment measurement and activity-travel research. The ontology is
regarded as globe schema using the generic representation of entities and relationships
among them, which are independent from the available data. To address the heterogeneity
and scarcity of information from various data sources, a local dataset is matched with global
schema via a graphic structure matching table consisted of nodes corresponding to entities
and edges corresponding to relationships, which permits greater flexibility and less
information loss. Then, needed information encapsulated in local datasets can be identified,
retrieved and integrated based on the interpretation from the agreed concepts and
correspondences laid out in the ontology. The quality of information in each data source is
assessed in the process of data integration to avoid the contamination of problematic data.

We demonstrated the approach by applying it to gather information about buildings
such as usage type, stories and completion year, which are all missing in the official building
directory dataset. A significant improvement is observed in complementing the missing
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values of attributes for buildings, as evidenced by the examples of building type and
completion year. In addition, one important reason of using the ontology-based approach is
to make the data integration process more automatic and reliable, because the data
integration is likely to be a repetitive process in the future planning and research practices
as longitudinal data become increasingly available. Further, the ontology can also be used as
a single entry point for users to query the integrated information without the need to have
the knowledge of each individual dataset.

Further, as urban modeling and simulation becomes increasingly complicated and
data demanding, the proposed ontology-based data integration approach may help to
improve the efficiency and reliability of many aspects of urban modeling. For example, it is
always a challenge to generate a good synthetic population for agent-based urban
modeling. it requires reconstructing the current “state of the world” by estimating detailed
spatial and aspatial attributes of agents like individuals, households and firms from limited —
and not always consistent - data sources. In order to assign synthetic agents such as
households to building units in a plausible fashion, good information on buildings are
needed. In the case of Singapore, although the geometry of buildings and the transactions
of some units are available, it is difficult to acquire information on the number of units in
total in each building, nor the time of construction or last renovation from official sources
{Zhu and Ferreira, 2014). To overcome the data limitation, we need to infer required
information from existing data sources and gather imperfect information about the required
data from additional datasets. Building age can be estimated if construction date from any
unit in the building is available. Building height may be estimated from the highest floor
level recorded in a sales transactions for the building. In this case, the information about
buildings are dispersed in a number of imperfect datasets. It is not immediately clear to
researchers what can be extracted from which dataset if one doesn’t have a good
knowledge of all datasets. Using ontologies to make these inferences more automated and
reliable is especially important for the new round of urban simulation models that work at
individual household and building scale.

In fact, ontology can play a more important role in the field of urban modeling and
analysis by possibly providing a consistent knowledge base and hence stimulate more
connections and collaborations among researches. As argued by Yin and Batty (2013), “the
outstanding data and methodological challenges require modelers, who tended to work in
isolation in the past, to develop an in-depth understanding across model types and styles
regarding possibilities in concert with one another, so that models can be linked to each
other and to the policy questions on which they are focused”. In addition, Ontologies are a
key component of the semantic web, which is defined by W3C as the “common framework
allowing data to be shared and reused across application, enterprise and community
boundaries”. It is also likely to be a critical part of the web 3.0 initiative, which stresses on
the shareability, interoperabity and connectivity of distributed datasets based on the
semantic web and linked data technologies (Hendler, 2009). Thus, it is proactive and timely
to consider the application of ontology-based data integration approach for both online and
offline data fusion.
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Chapter 4. Measuring and Characterizing the Urban Built
Environment

4.1 Introduction

The urban built environment and its transportation facilities are important factors that
influence the daily life functions, activity spaces, and travel options of urban residents. In
this sense, activity-travel studies are required to quantify the obscure built environment
components and to capture the reciprocal impacts between human activities and urban
spaces. This situation is the case for Singapore, a rapidly changing city shaped by various
trends from service and job decentralization to personal mobility improvement and new
urban lifestyles that are increasingly influenced by information and technology as well as
comprehensive urban policies. These trends have molded Singapore into a city with
heterogeneous urban spaces but also have given rise to diverse and complex location and
time preferences for different urban activities among residents. Although many previous
studies have formulated built environment indicators with relatively coarse resolutions
(Talen, 2002), the advancement of the research agenda in activity-based studies calls for
improved urban built environment measures that can inspect and compare urban dynamics
and human activity-travel patterns at more fine-grained resolutions, both spatially and
temporally. This aim is becoming a possibility via the availability of more detailed,
disaggregated, and comprehensive datasets from various sources, as described in Chapter 3.

The objective of this section is to formulate a group of generic metrics that are
able to capture and measure the obscure components in the urban built environment that
have differentiated impacts on the locational choices of different activities to enable the
detection of the underlying activities in urban sensing data with the assistance of the
selected indicators. However, the answer to the question of which built environment
components correlate with activities is not as obvious as might be assumed. This situation
prompts a search for good measures of the urban built environment. In the previous
literature, some studies have considered the urban built environment solely in terms of the
morphological patterns and fabrics of the urban form. Others include the socioeconomic
aspects of the urban form, i.e., population density and average land price. In this study, we
include not only the physical structure of the locations but also the spatial distribution of
businesses and the topology of transit network in the urban built environment
measurements. These dimensionalities of the built environment display different degrees of
association with the behaviors and choices pertinent to human activities. The measurement
process draws on spatial and temporal detailed datasets from the data integration
processes described in Chapter 3. Therefore, special attention is focused on the spatial and
temporal representation of measurements because these two dimensions are generally well
recorded in urban sensing data.
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4.2 Related work

Measures of urban built environment have for years been an important topic in the urban
planning literature. It is generally acknowledged that the social, economic and
environmental outcomes of urban form can only be captured by evaluating the relative
differences in the type, pattern, and intensity of development in different urban areas,
although considerable ambiguity remains in the definition and understanding of urban built
environment (Clifton et al., 2008). In addition to the urban planning and urban design, fields
like land ecology, public health and network analysis have growing interests in formulating
built environment measures from the perspectives of their research scope, which help to
enrich the defining dimensions and measurements of urban form. In this part, | will briefly
summarize the previous research efforts in built environment measurements in these fields,
and bring to light the indicators that correlate with human activities.

4.2.1 Urban Planning and Physical Activity

In the context of urban planning, built environment has been investigated extensively in two
areas: quantifying urban development pattern (Song and Knaap, 2004; Galster el al., 2001)
and investigating the effects on travel behaviors (Cervero and Kockelman, 1997; Crane,
2000). The measures developed in former tend to emphasize land use composition, street
network topology and accessibility at neighborhood level or bigger scales. For example,
Galser et al. (2001) identified eight dimensions of land use, namely density, continuity,
concentration, clustering, mixed uses, proximity, centrality and nuclearity.

In contrast, researches emphasizing the effect of urban built environment on
human activities usually focus on constructs like accessibility, mobility, and density as well
as the social-economic aspects of urban form. For example, Cervero and Kockelman (1997)
classified urban built environment measures into three big categories: density, diversity and
design. Detailed geospatial information like points of interest (POIs) and streetscapes
including sidewalks, parking and lighting were used to construct the built environment
variables associated with travel demand. Krizek (2003) proposed an operationalizable
neighborhood accessibility measure that is composed of three sections: density, mixed land
use and streets/design. Krizek argued that the variables under three dimensions are simple,
parsimonious and significant in influencing travel behaviors at neighborhood level. In an
attempt to pinpoint the correlation between vehicle miles travelled (VMT) and the built
environment of residency location, Diao (2010) included a group of accessibility variables
measuring distances to nearest main activity centers like grocery store, school, mall and
theater, other than the variables describing local road and transit systems.

Similarly, in the field public health, it is believed that environmental intervention
may lead to changes in physical activity, which can help to reduce the risk of having obesity
and promote healthier lifestyle. Studies in the field usually resort to the planning principles
and measures similar to those developed in the urban planning community but have a
conscious emphasis on the walkability, and accessibility to open space and sporting sites
(Durand et al., 2010).
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In general, these measures in the urban planning literature are designed not
only to quantify urban form variability but also to embody the key features of development
schemes. For this reason, the measures are readily to be used for evaluating and comparing
the impacts of alternative planning scenarios.

4.2.2 Landscape Ecology

Landscape ecology is concerned with the expansion of urban areas and the potential risk it
may pose on the natural environment and wild species (Durand, 2011). Therefore, the
evolution of land covers is of particular interest to the researchers in this field. Data on land
cover changes are usually come from aerial photography and satellite remote sensing
images. In order to identify the types of land cover in these datasets, landscape measures
focus on depicting the shapes, the compositions, and other morphological features of
patches like continuity and compactness. The morphology of land patches also implies the
natural and artificial geographical boundaries of areas like rivers, hills, railways and
expressways.

Urban form measures of this field have been used widely to evaluate
environmental topics like the loss of agricuitural lands as a result of urban area expansion,
and the correlation between landscape and animal distribution. However, they are rarely
applied to assess the effect of urban landscape on human activity and movement. As
pointed out by McGarigal and Marks (1995), that isolated patches usually have fewer
species, and isolated land use in the urban area may also have lower attractiveness to
human activities. Also, a large, single-use urban area and a fragmented mixed use urban
area may have different attractions to urban residents. In this sense, bringing in some of the
meaningful measures of landscape ecology to characterize the land use dimension of built
environment will be helpful.

4.2.3 Urban Design

Urban design focuses on the design details of urban built environment and their effects on
how peoples perceive and experience space. Physical features and design elements of a
place are considered to be correlated with a variety of physical activities and social
interactions, usually by shaping the walkability, accessibility and attractiveness of places
(Clifton, et al, 2008). Good urban design creates a distinctive sense of place and attracts
more people to visit. For example, street features like wide sidewalks, sufficient coverage of
tree shade, and the enclosure from building facades, the presence of streetlight are usually
considered to be associated with good walkability. In an effort to rethink and measure
urban intensity, Sevtsuk et al. (2013) looked at specific street layout and building design
variables including sheltered walkways, building setbacks and entrances, and ground-level
floor heights in addition to three common urban form variables: gross floor area, spacing
between buildings, and pedestrian network of a place. Evidently, quantitative analysis in this
field deals with built environment measurement at very fine-grained resolution.

Within the field, a considerable number of researches focus on quantitative
models of the configuration of urban space and the ways that human use space. This area is
typically known as space syntax. From a topological stance, space syntax analysis is based on
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the geography theory, and is regarded as an extension of network analysis into architecture
and urban planning (Hillier, 2007). One important aspect of space syntax analysis is axial
analysis, which inspects the geometrical properties of road network on the distribution of
movements of both vehicle and pedestrian. Typical measures like depth and number of
turns from starting points are used to gauge the physical environment of different paths
from origin to destination in an urban space like a building, a park or a neighborhood place.

However, as critiqued by Ratti (2004), axial analysis based on the topological
representation of urban spaces is less compelling because it underestimates or even ignores
other metric characters of spaces. Clearly, simplified geometric properties of spaces like
lines and grids are only part of the complex urban system and their effect on human
behavior is inconclusive without the support from additional empirical evidences. To
overcome this limitation, in the study investigating the spatial location choices of retail and
eating, Sevtsuk (2010) not only used the geometric features along the shortest paths toward
buildings like distance, betweeness, number of interactions and number of turns to measure
accessibility, but also the indicators of land use and businesses reachability at building level.

In the literature of urban design, the importance of individuals’ perceptions and
experiences of built environment and attitudes of places has been generally recognized.
Handy et al. (2006) differentiated the objective measures of built environment with the
perceived measures and found perceptions of safety, attractiveness of place, and distance
played even more significant roles in walking and cycling travel than the corresponding
objective measures, suggesting how individuals perceive the neighborhood space and scale,
and how they filter spatial information are very critical when making spatial choice
decisions.

4.2.4 Gaps in the literature

The urban built environment is a comprehensive concept. Each reviewed field has
formulated measures used to evaluate the aspects of the built environment that are of
interest to the respective field. Most of the measures are simplified and less sensitive to the
components in the built environment that can lead to spatial variability. Although a growing
number of voices advocate for more comprehensive and cross-disciplinary measures for
empirical analysis (Ratti, 2004; Clifton, et al, 2008), the response has been inadequate 4
(Sevtsuk, 2010), primarily due to a lack of awareness of the measures used in other fields
and the limited data availability.

In reality, most of the data required to measure the built environment are only
available at the aggregated level. One problem arises when studies compare the activity-
travel behaviors of individuals across judgmentally pre-defined neighborhoods, which are
usually surrogated by census tracts and traffic analysis zones (TAZs) in which urban form
data are more readily available and easily matched to travel data. However, a slight change
in the scale of the geographical analysis could give rise to divergent measurement results.
This situation is known as the modifiable areal unit problem {(MAUP), and the problem is
more evident if different built environment attributes display different spatial extents of
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influence on travel choices. The question of how to address this problem has become an
important challenge for researchers (Horner and Murray, 2002, Zhang and Kukadia, 2005).

Although urban design methods measure space at a notably high level of
resolution, the sources of data required for computing these measures are difficult to
acquire at the scale of a city. Data are often collected through field observations or
interviews (Clifton et al., 2008), and a significant amount of manual efforts and resources
must be invested. Hence, most studies that use urban design measures focus on a site or a
neighborhood in the city.

Furthermore, most of these spatial metrics have traditionally treated urban space
as stationary, and the temporal changes of various elements of the urban built environment
are minimally accounted. As argued by Kevin Lynch (1960, p108), “we need fresh thought on
the theory of forms which are perceived as a continuity over time...”. Despite the stationary
physical components of the urban built environment, the city is dynamic due to such moving
elements as people, activities, and time-varying urban services and opportunities. In recent
years, increased interest has arisen in urban dynamics and longitudinal evolution. However,
the scope of research has been limited to investigation of the longitudinal evolution of the
urban form using relatively coarse satellite land use images.

The current study draws on interdisciplinary research efforts, innovative data
collection methods, and an integrated approach to examine different dimensionalities of
the urban built environment that are deemed to affect activity-travel patterns. Using the
geospatial data at the disaggregated level, each built environment variable was computed at
the local area (the catchment area of transit stations) to describe the “micro-environments”
that people experience in the locations in which they engage in daily activities.

4.3 Data and Methods

To capture the richness and diverse dimensions of the urban built environment and their
impacts on human activities, the measurement process uses the datasets for buildings and
establishments fused in the data integration process described in Chapter 3. In addition, the
land use plan data for the year 2008 provided by the Urban Redevelopment Authority (URA)
of Singapore is used to gauge the landscape mix of the catchment areas of the transit
stations. This work also uses transit schedule information to assess the position of each
transit station in the entire transit network.

The temporal dimension of the urban built environment is primarily reflected by
the temporal variation of the available opportunities and services on the supply side. For
businesses, the open hours of venues taken from FourSquare (FSQ) were applied to
establishments via a matching procedure. For transit service, the operational frequencies
and headways of transit routes in the schedule were used to mimic the temporal variability
of transit services. Moreover, the synchronicity among various datasets is usually desirable
for analysis and modeling efforts. However, it is unlikely that all supporting datasets for the
same years as those of the travel survey data and EZ-Link data will be acquired. The
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household survey data are taken from the year 2008, and the available EZ-Link data are
from the year 2011. However, the transit services schedule and the FSQ dataset were
collected in 2013. In this case, we retain the FSQ venues for the buildings that existed in
2008. Similarly, for the RTS stations, only those that were in operation in 2008 are retained.
Because it is difficult to sift out the stops that were added after 2008, all bus stops in the
transit schedule data are retained in the analysis.

4.3.1 Catchment Areas of Transit Stations

Because the EZ-Link transit transaction dataset only records the boarding and alighting
stations of transit trips, it is unlikely to determine the types of origins and destinations of
the trips. Instead, it is possible to classify the types of places in the local areas surrounding
the transit stations. Therefore, the main purpose of the built environment measurement in
this section is to quantitatively characterize these local areas surrounding the stations or the
catchment areas. The catchment areas of the transit stations are defined as the areas
surrounding bus stops or RTS stations that are more accessible by walking from the station
than by transferring to another transit route. The catchment area of a transit station also
implies the range of potential activity spaces of a station that transit passengers may
explore or are planning to visit when alighting at that station.

Theoretically, the sizes of the catchment areas might be distinguished for different
transit stations due to the variation in station layout in different areas of the city. In this
study, it is assumed that the sizes of catchment areas are the same for stations of the same
type, i.e., bus stop or MRT station. To determine the catchment areas, the walking times of
transit trips reported in the HITS 2008 dataset are used for reference. Table 4-1 summarizes
the average walking time for respondents from origin to transit station or from transit
station to destination. On average, Singaporeans were willing to walk approximately 4.5
minutes to or from bus stops, 6 minutes to or from MRT stations, and 4 minutes to or from
LRT stations in the year 2008. Assuming that the average walking speed is 5 km per hour,
the average walking distance to a bus stop observed in HITS trips is approximately 400
meters. The average walking distance to the LRT station is approximately 350 meters, and
the mean distance to the MRT station is close to 500 meters.

The range of walking distance also can be inferred from the distance between
boarding and alighting stations. Figure 4-1b) shows the Euclidean distance between the
intermediate alighting stations and final alighting stations if the trips involve transfers,
which are observed in the EZ-link dataset. it appears that transit passengers choose to
transfer only if the final destination stations are at least 500 meters away from the current
alighting stations. Therefore, we consider that the catchment areas of bus stops consist of
the 400-meter ring buffers surrounding the stops, and the catchment areas of MRT and LRT
stations are respectively defined by the 500-meter and 350-meter ring buffers surrounding
these stations. To further distinguish the areas surrounding the stations, it is also possible to
generate built environment measures for multiple ring buffers around the stations, although
this topic is not covered in this study due to the time limitation.
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Table 4-1. Walking time to public transportation stations

To Bus Stop To MRT Station To LRT Station Taxi Transfer

Standard Deviation (min) 3.196 4.303 2.680 2.313 2.878

1st Quarter (min)

3rd Quarter (min)

No. of observations 729 1609

Source: Household Interview Travel Survey in 2008

a) Walking time distribution to different types of public transportation stations.
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Figure 4-1. Approximate walking distance of transit stations.
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Note. In a)}, the distributions of walking time are compared with the truncated normal distributions (dashed lines).

4.3.2 Importance of Business Open Hours

Presumably, the temporal availability of services and opportunities will cause the
attractiveness of certain places to vary within a day, which directly influences the location
and time choices for activities. However, this temporal variation on the supply side is
seldom accounted for in the urban built environment measurement, primarily due to data
scarcity. Although crowdsourcing websites, such as FSQ, provide detailed information on the
open hours for most listed venues, because most of the information is sourced from users,
the data quality is often dubious. For example, names and addresses of businesses are
usually inconsistent in terms of semantics. The convenience store “seven-eleven” can be
spelled in different ways, e.g., “7-11” or “Seven Eleven”. Many buildings and businesses
have nicknames known only to local residents. In addition, FSQ uses its own classification
system for venues. Semantic matching is required. Therefore, the data integration approach
discussed in Chapter 3 is applied to integrate the FSQ venue lists with business data from
other sources.

Another issue in crowd-sourced data is incompleteness. In this study, the open hours
of 15,600 venues are found in FSQ, which accounts for only approximately 1/10 of the
amount of establishments collected from other sources, i.e., streetdirectory. Using
concatenation of the name and postcode of establishments as the primary identifier, 4,430
out of 15,600 venues collected from FSQ have counterparts listed in Streetdirectory. To
impute the open hours of the remaining businesses that are not found in the FSQ, relatively
strong assumptions are adopted, and a series of sequential heuristics rules are applied:

1) Establishments in the government and manufacturing sectors have open hours
between 8 am to 6 pm.

2) The same types of the businesses located in the same building have the same
open hours.

3) Businesses in malls, markets, food centers, and theme parks comply with the
operational hours of these venues.

4) An open-hour classifier is developed based on the FSQ data and is applied to
impute the open-hour patterns of the remaining establishments.

The first three steps of the procedure successfully determined the open hours of
approximately 54,000 establishments out of nearly 146,000 records in total. To predict the
operational hours of the remaining establishments, it is practical to focus on a group of
general patterns, i.e., open at noon and afternoon as opposed to specific hours and
minutes. One method is to discretize the open hours. To limit the number of combinations
in the classification model, the temporal resolution is reduced to a 4-hour period (1 am to 5
am) and ten two-hour periods between 5 am to 1 am on day+1. This categorization is
consistent with the classification of within-day time periods used in the activity learning
models (see Section 5.3.2). At the same time, a filter is applied to retain only the open hour
patterns that have an ignorable presence in the FSQ dataset (greater than or equal to 30
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observations), which reduces the number of open hour classes to 43. Table 4-2 lists the
most common open hour patterns found in the FSQ dataset.

Table 4-2. Ten most prevalent open hour patterns

Open hours Time period encoding Percentage
1lam—11 pm 00001111110 10.86%
1lam—9 pm 00001111100 9.74%
1l1lam-=3pm &5 pm=-9pm 00001101100 5.83%
llam-3pm&5pm-11pm 00001101110 5.81%
5pm-11pm 00000001110 5.30%
5pm-1am 00000001111 5.17%
9am-9 pm 00011111100 5.11%
7am—9pm 00111111100 4.74%
9am-—11pm 00011111110 3.89%
1pm-—-11pm 00000111110 3.36%

Note: The open hours of venues are on Wednesdays.

This work used a supervised learning technique based on the Random Forest (RF)
decision tree to learn the classification of open hour patterns. The advantage of Random
Forest over other classification methods (i.e., SVM and Naive Bayes) is that it is able to
address the complex (non-linear) relationships between classes and explanatory variables if
insufficient instances are available for training. In addition, this approach performs
reasonably well even if a large proportion of data are missing. Furthermore, this approach
contains a mechanism to balance errors from different classes with imbalanced data (see
additional discussion on this topic in Chapter 5).

In general, RF creates multiple classification and regression trees (CART), and
each is trained on a bootstrap sample of the training data. CART is a type of decision tree
that involves greedy and recursive partitioning of the instance space into disjoint areas. The
CART tree grows by generating binary branches that split at the terminal nodes, which
correspond to the conjunction of variables. The Gini measure of impurity is one of the most
common criteria used to determine whether to split at a node. For a given node v and
variable inputs X, the Gini measure takes the form of (Khalilia et al., 2011):

Gini(v,X) = TK, 2L (v,) (4-1)
B\ >
() = 1 - Zéoo (22) (4-2)

where n,, is a subset of samples with values x;, and 7, . is a subset of samples that have
values x; and belonging to class c. N is the total number of observations in the training
dataset, and K is the total number of descendent at node v. After computing the Gini
measure for all possible terminal nodes and variables, the split that maximally decreases the
Gini measure is selected. The process repeats until all terminal nodes contain very few cases
or the samples at the nodes all belong to same class.
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During the training process, instead of including all explanatory variables, only a
randomly selected subset of variables will enter each decision tree to avoid overfitting of
model. At the stage of prediction, each CART will predict a class output for each set of new
inputs. The output that obtains the majority vote from the outputs of all trees becomes the
predicted class of the Random Forest model {Breiman, 2001).

A RF approach implementation in the R package, randomForest (Liaw and Wiener,
2002}, is used to classify the open hour patterns. This work incorporates 32 explanatory
variables into the RF model, including 16 types of businesses (i.e., restaurants, bars, and
cafes) and accessibility measures for businesses (i.e., distance to CBD, distance to the
nearest mall, and distance to the nearest food center) as well as the number of different
types of businesses within 50 meters of the given business location. The RF classifiers with
different parameter configurations with the number of decision trees {500, 1000, 2000} and
number of variables for each tree {4, 5, 6, 7} are randomly selected to decide the best
variable for splitting at each node. The results of the classifier that uses 1000 trees and four
variables was reported in this study because it showed good performance in terms of both
prediction accuracy and time efficiency.

Because RF is a bootstrapping type of learning approach and only samples a subset
of observations each time to train the decision trees, the out-of-bag (OOB) samples
(observations that are not selected for training) are used as if they were novel test samples,
and the prediction accuracy is recorded. This process is carried out for all OOB samples, and
the average prediction error is known as the OOB error. Figure 4-2a) plots the OOB error of
the RF classification model with the number of trees. It appears that the OOB error declines
rapidly in the beginning and stabilizes when the number of trees increases to approximately
100. Only marginal improvement in the classification accuracy is observed when the number
of trees increases from 100 to 1000.

The RF also can identify the importance of variables as measured by the average
change in the OOB errors by randomly permutating a variable from the model. If the
classification error decreases substantially, then the permuted variable is considered to
have a strong association with the response variable. Figure 4-2b) lists the top 30 variables
sorted by the estimated importance in terms of the average decreased accuracy. It appears
that the dummy variable “Restaurant” is the most important variable in the RF model. In
other words, restaurants have relatively more predictable open-hour patterns.

Figure 4-2c) plots the confusion matrix between the predicted responses and
observed responses averaged over all OOB tests. The cells on the 45-degree diagonal line
from the bottom left to the top right indicate the true positive rate, whereas the other cells
show the false positive rate, which represents the proportion of observed classes that are
incorrectly marked as other classes. Overall, the model has a true positive rate of 0.257,
which means that approximately 25.7% of the predicted classes of observations match with
the observed open hour classes. Considering the large number of classes that must be
distinguished and the lack of evident and separable boundaries among classes, a model with
this accuracy rate is acceptable. Taking a closer look at the plot of the confusion matrix in
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Figure 4-2c), we observe that many misclassifications occur between similar open hour
patterns. For example, a high proportion of businesses with the pattern 00000001100 (open
between 5 pm and 9 pm) are classified as 00000001110 (open between 5 pm and 11 pm).
Therefore, the classification accuracy can be further improved if the open hours are grouped
into larger time intervals (e.g., every four hours) or additional predictors (i.e., explanatory
variables) are included in the RF model.

a) Number of decision trees in the RF models and the corresponding OOB errors
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Figure 4-2. Results of the Random Forest (RF) model for open hour classification

4.4 Built Environment Measurement

4.4.1 Framework of the Spatial Metrics Computational Procedure

Urban built environment measurement generates indicators and variables that can be used
to comparatively analyze urban forms such that better plans and policies can be enacted.
For activity-travel research, these spatial metrics are important explanatory variables that
can assist in revealing the effects of urban spaces on people’s behaviors and choices.
Traditionally, due to the limitation of data availability, only stationary spatial metrics are
formulated. Conceivably, it is important to develop measures that can best describe the
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context in which each individual makes decisions or choices in daily life. In other words, for
different activities, the built environment indicators should also differ because these
activities occur under different spatio-temporal environments. However, much ambiguity
exists in determining the spatial and temporal effects of built environment components.
One approach to tackling this problem is to experiment with indicators with various spatial
and temporal scales/scopes (e.g., various sizes of catchment areas). In addition, as new
datasets become available and accumulate, built environment measurement will become a
routine task for various analytical efforts. To cope with the need to generate different sets
of spatial metrics, it is crucial to streamline the computing procedure for spatial metrics to
reduce the amount of repetitive manual work.

Figure 4-3 shows the procedure for computing the urban built environment metrics
in this study. At this point, a set of the geo-processing tasks, i.e., buffering of transit stations
and the interactions between land use patches (or buildings) and the buffered areas, are
accomplished in ArcGIS 10.1. The remainder of the indicator computation work is carried
out by four routine R script programs, each generating a group of indicators that gauge one
dimensionality of the built environment. For most indicators, the R scripts are also designed
to automatically create summaries and plot distributions. The procedure is semi-automatic
up to this point and requires inputs from users to specify the input locations and
parameters, i.e., the time periods at which the urban built environment is measured.

Figure 4-3. Framework of urban built environment metric computations
73



The urban built environment metrics formulated in this section are based on three
aspects of consideration:

1) Preprocessed spatial data on land cover, buildings and establishments, and transit and
road systems as a result of the data integration process described in Chapter 3.

2) A set of urban forms and built environment indicators identified by reviewing related
work. )

3) Theindicators that may have an impact on people’s daily activities and travels and can
be derived from both the HITS dataset for model estimation and the EZ-Link dataset
for activity inference.

The following sections describe four groups of indicators.

4.4.2 Land Use Mix

The measures developed in this section are primarily used to describe the land use
composition in the catchment areas of transit stations. Land use composition refers to the
mix of land patches for different uses in the area that may create synergy, which leads to
improved attractiveness to the groups of people who might engage in particular activities.
For example, a mix of commercial and residential land uses can promote short-distance
shopping activities. Creation of large parking lots around a commercial strip will encourage
more driving to shopping. Therefore, it is necessary to inspect whether the compositional
relationships among different land uses result in increased attractiveness or increased
repulsion in destination choices. At the same time, we want to investigate whether the
extent of the mix and the shapes and sizes of land patches also correlate with the location
choices of various activities.

Table 4-3 lists selected measures of land patches in the catchment areas of
transit stations, including land use richness (RICHNESS), land use diversity, and area ratios of
different types of land uses, i.e., open space/park area (OPR/PARKR) and contagion index
(CONTAGI). The land use mix is commonly considered to be correlated with accumulative
accessibility (Huang, 2006) and therefore leads to reduced use of cars. However, the type of
mix and to what extent spatial fragmentation is attractive to different types of activities are
ambiguous qualities. Presumably, areas with additional open spaces and parks will attract
more sports and recreation activities.

Figure 4-4 shows the land use entropy index of the areas that surround the
transit stations. The land use entropy index measures the evenness of the distribution of
areas among different land use types relative to the areal totals. Higher values are
representative of more diverse land use types (see the lower middle map in Figure 4-4). If
only one land use type exists, the entropy index is O (see the lower right map in Figure 4-4),
and the land use entropy index in this case approximates a left-skewed normal distribution,
suggesting that the area distribution among land use types is more or less uneven. As
expected, areas surrounding the transit stations in the city center, Holland Village, and
Queenstown show a higher degree of land use diversity.
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Figure 4-4. Spatial distribution of land use entropy index at the transit station catchment area level.

The contagion index measures the extent to which the land use types are separated in
the catchment area. Higher values of contagion may result from landscapes with a few large
and contiguous patches characterized by poor dispersion and interspersion of patch types.
Figure 4-5 shows the distribution of the contagion index of the catchment areas and two
examples corresponding to areas with high and low contagion indices. It is obvious that the
land use entropy index is correlated with the contagion index because a large number of
different land use types usually suggest that the land patches are more dispersed and
separated. Figure 4-6 shows the catchment areas that have a notable presence of parks (the
ratio of park area is greater than 33%). The station’s proximity to parks may attract
additional recreational and sporting activities.
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Table 4-3. Spatial metrics for land use patches

Indicator Formula Range  Description Citation
Part 1. LAND USE MIX (unit of analysis - land patches)
Land use richness n; — Number of land use types considered >1 Number of land use types considered in the Wu et al., 2002;
(LURICH) catchment area.
Mean patch size (MPS)
Land use area ratio Pi P; = Aj /A atchment 0-1 Area ratio of different land use types (open space, Schwarz, 2010; Huang et
- iis a land use type park, commercial, mixed use, waterbody etc). al., 2007;
Land use diversity z >=0 Measures the evenness of the distribution of areas Krizek, 2003; Cervero &
(LU_ENTROPY) LU _ENTROPY = ;Pi In(1/ )/ In(n,) among different land use types relative to zonal Kockelman 1997; Wu et
totals. Higher values are representative of more al., 2002; Li and Yeh,
diverse land use types. 0 if only one land use type in 2004;
the zone.
Area weighted mean AWMSI = IiL, /4 JAixp; >=1 Measures the regularity of land use types. It equals1  Wu et al., 2002; Schwarz,
shape index (AWMSI) N for circular patch and increases as patch becomes 2010;
- l; is the perimeter of patch i more irregular.
Area weighted mean AWMFD =3 .2 x1n(0.25 x [;)/In(4)) X p; >=1 Measures the raggedness of patch boundaries. The Huang et al, 2007; Wu et
patch fractal dimension fractal dimension approaches to 1 when shape has al., 2002; Longley and
(AWMFD) simple perimeters and approaches to 2 when shape Mesev, 2000.
becomes more jagged.
Contagion index 0-1 Measures the extent to which the land use typesare  Wu et al., 2002; Herold et

(CONTAGI)

S| BB | mip) 2
=Yg, pX A
=l

=1

CONTAG =1+

2Inn
gij is the number of adjacencies between land use i
and j.

separated in the catchment area. Higher values of
contagion may result from landscapes with a few
large, contiguous patches characterized by poor
dispersion and interspersion of patch types.

al., 2002;
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Figure 4-6. Transit station catchment areas with the noticeable presence of parks (park area ratio
greater than 33%).
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In addition to the land use mix of the patches, their shapes could also matter. Spatial
indicators that include the average patch size (APS), landscape shape index (LSI), area
weighted mean shape index (AWMSI), and area weighted mean shape fractal dimension
(AWMFD) are used to measure the regularity and raggedness of patch shapes. It is worth
noting that the unit of analysis for computing these indicators is the intersected pieces of
land use patches and transit station buffer areas as opposed to the original land use
patches. If the buffer area of a transit station lies within a large land patch, then its AWMSI
value will be equal to 1, which means that the shape of the patch within the catchment area
of that transit station is circular, although the shape of the real patch could be quite
irregular. In other words, the circular boundaries of the buffer areas can make the shapes of
lands look more regular and less ragged, which consequently biases shape measures such as
AWMSI and AWMEFD to lower values.

For example, Figure 4-7 plots the AWMSI values of the station catchment areas.
As the values approach 1, the shapes of the land patches become more circular and regular
on average. Otherwise, because the values are larger, the shapes of patches become more
irregular. Overall, the AWMSI values approach a normal distribution.
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Figure 4-7. Spatial distribution of the average weighted mean shape index (AWMSI)

4.4.3 Buildings and Street Layout

Street layout and streetscapes are critically related to the mobility and walkability of places.
Better connectivity of local road networks facilitates additional walking and bicycling
activities. In contrast, cul-de-sacs are less desirable from the point of view of pedestrian.
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Expressways usually block the continuity of landscapes and fragment the local
neighborhood. Drawing on the data on building footprint geometries and road networks
provided by SLA together with the integrated attributes from other data sources, spatial
metrics on the spatial distribution of buildings and street layouts are intended to evaluate
the local street landscape at a more detailed level. The density, compactness, and street
circulation of the local built-up areas around transit stations are of particular interest. In
recent years, the urban form of Singapore has been subjected to the combined efforts of
redevelopment for higher densities and transit-oriented new development on vacant lands.
Transit-oriented development requires easy pedestrian access at the areas near transit
stations such that people can access the places where they live, work, shop, and conduct
other activities via public transportation and walking. Empirical studies report that a
compact urban form with well-connected road system encourages walking and bicycling
trips (Benfield et al., 1999; Talen, 2002) and thus aids in improving the prosperity of the area
by providing additional opportunity for social interaction for people and more intervening
opportunities for local businesses.

Table 4-4 lists the indicators selected to measure the building layout and street
connectivity in local areas of transit stations. The compactness of buildings is estimated
based on the comparison between the perimeter of the footprint of each building and the
corresponding perimeter of a circle that has the same area (Li and Yeh, 2004). The lower the
compactness index (COMPACT), the greater the compactness of local urban form will
appear from the point of view of existing buildings. On the contrary, the more regular the
shape of buildings and the smaller the building numbers, the higher the compact index
value. As shown in Figure 4-8, the compact urban forms in Singapore are mostly located at
the central and eastern areas such as city center, little India, Geylang and Hougang.

The centrality measures the proximity of other buildings relative to the building with
the largest footprint size in the catchment area and aids in characterizing how other
buildings are spatially distributed around a node building such as a mall, MRT station, or
local stadium. The more elongated the distribution pattern, the higher the centrality index
(Huang et al., 2007). As shown in the Figure 4-9, the catchment area with a single large
building (e.g. airport terminal) tends to have high centrality value while the catchment areas
with many like-sized buildings have lower centrality values.
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Table 4-4. Spatial metrics for buildings and street layout measurement

Part 2. Spatial Distribution of Buildings (unit of analysis — building footprints)

Building density (BLDDen)

Building footprint size ratio
(BLD_FP_RATIO})

Largest building index (LBI)

Mean building footprint size
{MBFS)

Normalized building footprint
size standard deviation
(BFSSD)

Compactness Index
(COMPACT)

Centrality Index
(CENTRALITY)

Nearest Neighbor Statistics
(NNgig)

HDB units density
{HDB_UNIT_DEN)

BLDDen = Nyia/Adeveiopea
- N4 is the number of buildings

N
BLD_FD_RATIO = z FS; /Agevetopea

i=1
- FSiis the footprint size of building i
LBI = max(FS;) / Adeveloped

MBFS = X FS; [Ny

N,
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- D; is the distance of building i to the
largest building in the zone.
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- d; is the distance of building j to the

nearest building

HDB_UNIT_DEN = Nypp ynie/
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>=0

0-1

0-1

>=0

>=0

0-1

>=0

>=0

The number of buildings per developed unit
area.

The ratio of total building footprint area to the
size of the developed lands in the catchment
area of transit stations

The ratio of the area of the largest building (path})
to the size of the catchment area.

Average building footprint size.

Higher values means greater variation in building
footprint size

Measures the compactness of buildings in the
catchment area. The more regular the shape of
buildings and the smaller the building numbers,
the higher the compact index value.

Measures the closeness (average distance) of
other buildings to the building with the biggest
footprint size.

Measures the spatial distribution of building
footprint polygons. A clustering tendency has
values approaching 0. 1 means completely
random distribution and perfect uniformity
corresponds a theoretical value of 2.15.

A proxy for measuring public housing population
density.

Wu et al., 2002;

Li and Yeh, 2004;
Herold et al., 2002;
Schwarz, 2010;

Li and Yeh., 2004;
Herold et al., 2002;
Schwarz, 2010;

Mesey, 2005;
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Part 3. Walkability (unit of analysis: road segments and intersections)
Intersection density INT_DEN=Number of interactions / road
(INT_DEN) length

Ratio of four-way intersections Inter4_R = Nlnten,way / (Nlntermay +
(INTER4_RATIO) Ninter 3way)

Ratio of Expressway EXPRESS_R = Learap/L)
(EXPRESS_RATIO)

Ratio of Pedestrian Mall PED_MALL_R = Lpeg man/L
(PED_MALL_RATIO)

Ratio of Cul-de-sac CUL_DE _SAC R = Ly de sac/L
(CUL_DE_SAC_RATIO)

>=0

0-1

Ratio of four-way intersection to the total
number of four-way and three-way intersections.

Ratio of the length of Category A (Expressway)
and Category B (Highway and Arterial) to the
total length of road network in the area.

Ratio of the length of pedestrian mall to the total
length of road network in area.

Ratio of the length of cul-de-sacs to the total
length of road network in area.

Song & Knaap, 2004;

Song & Knaap, 2004;

81



Bullding Compactness Index ‘{3)- h ' — -

@ 0000000 - 0.000856 <y
@ 0.000657 - 0.001427
@ 0.001428 - 0.002182

0.002183 - 0.003188 ‘ n |
0.003167 - 0.282095 )
I building footprint fi S
Stop Name: Opp Chinese Cemy Path 11 P N e
313 NN Index: 0.285 s L

Figure 4-8. Building compactness index of the catchment areas of transit stations (the compactness
index is lower in highly compact areas as shown by points in red)

i, " Stop Name: Bef ST Airport Sves
Compaciness Index: 0018175
Buiiding Centrality Index ‘9 -

@ coo0-o1e8 N

® o1s9-0195 3 ]
® o0.106-0222 S
0.223-0.250 "

0.260 -0.682 o = G R

I biking footprint 'ﬁ‘.ﬁ‘.jhc_:_\]w_) - ’
— A

bt S = SO

Figure 4-9. Building centrality index of the catchment areas of transit stations (the centrality index is
lower in areas with more centrally distributed buildings as shown by points in red)
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The nearest neighbor (NN_BLD) index measures the spatial distribution of buildings
relative to the random spatial distribution. According to Mesev (2005), the nearest-neighbor
indices compare the observed average distance between neighboring building centroids to
the expected neighboring distance among building centroids under the random distribution
condition. If the nearest-neighbor index approaches 0, the tendency of spatial clustering
becomes stronger. If the value of the nearest-neighbor index approaches 1, the locations of
buildings show a random distribution pattern. If the value approaches 2.15, then the spatial
distribution is prone to be uniform. The three small maps in Figure 4-10 show situations in
which buildings are clustered, randomly distributed, and approach to a uniform distribution.

iy
Stop Name: Bef Wallace Way | N

NN Index: 0.254 | I el
Nearest Neigthbor Index

@ o000-0.387
@ o38e-0730
® a731-083
0.939 - 1.177
1.178 -2.727

B building footprint

Figure 4-10. The nearest neighbor index of the catchment areas of transit stations

The density of intersections, especially four-way intersections, has been used
widely as an important indicator for street connectivity and walkability. A greater number of
intersections on a given length of street suggest shorter street blocks and better street
circulation, which will potentially offer additional attractions for transit riders who are more
likely to explore the destination area by foot. Similarly, a high density of local roads (class A
and B roads) imply good walkability and connectivity for pedestrians (Figure 4-11). In
contrast, areas characterized by street networks with a high proportion of expressways and
cul-de-sacs tend to attract additional car users.
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Figure 4-11. Density of Local Road (> 0.05 m per square meter)

4.4.4 Spatial distribution of Establishments

The magnitude of services or opportunities is usually measured using the number of jobs by
economic sectors. Because it is difficult to obtain employment data at disaggregated levels
as buildings or establishments, the information of establishments are used accordingly to
gauge the spatial distribution of opportunities for different types of activities. Usually, when
an individual makes destination choices for an activity, both the amounts and the mixture of
the relevant types of establishments can matter. As argued by Fotheringham et al. (2001),
spatial location choice involves a hierarchical process in which a large destination area is
first selected and the alternatives within the area are subsequently evaluated. For example,
for a dining trip, travelers may first pick a food center that contains clusters of restaurants
and subsequently choose a particular restaurant. In this sense, all establishments within the
catchment areas of the transit stations constitute the choice set of activity destinations. The
size of the choice set is also relevant.

Hence, the indicators constructed in this section are intended to measure the
levels of spatial agglomeration of establishments of individual sector as well as the degree
of mixture of various sectors of establishments. The sectorial categorization of
establishments is built based on the two-digit Singapore Standard Industrial Classification
2010 (SSIC) categories (Appendix Il). In reality, the availability of commercial opportunities
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does not only vary spatially but also temporally. The temporal dimension is captured in the
measurement using the open hours of establishments as constraints on availability.

To consider the agglomeration effect of businesses, the locational quotient is used
to measure the sectorial specification of establishments. The measure is based on a sectorial
share of the number of establishments within the catchment area relative to its share in all
of Singapore. The mixture of businesses is measured once again using Shannon'’s entropy
index. If all types of establishments are equally common in a catchment area, then the
Shannon index takes the value In (number of establishment types). The more unequal the
quantities of the types, the larger the weighted geometric mean values will be, and the
smaller the corresponding Shannon entropy. If practically all establishments tend to belong
to the same type, the Shannon entropy approaches zero.

In addition to the concentration and diversity of establishments, the spatial
distribution of business points is also important to consider. Whether establishments are all
clustered in a single building (i.e., a mall) or spread along the streets might imply different
activity patterns. Additionally, the distances of the businesses from transit stations might
suggest different development patterns of urban form. Similar to the spatial distribution of
buildings, the nearest-neighbor indices are used to distinguish different spatial distribution
patterns, from clustering to random distribution to diffusion.

Table 4-5 lists the measures of the distribution of establishments in the catchment
areas of the transit stations considered in this study. In addition to the spatial variability, we
examine the effect of the temporal variability of in-operation businesses on the activity-
travel patterns. The open status of establishments is obtained by learning from the FSQ
samples, as described in Section 4.3.2. Figure 4-12 displays the geographical distribution of
establishments according to our categorization based on the Singapore Standard Industrial
Classification (SSIC) 2010 (Appendix ll). The map on the left plots all establishments, and the
maps on the right show the open establishments during three different time periods of a
weekday. In the early morning (5 am — 7 am), most available services belong to the category
of food and beverage service activities (red dots on the maps). This observation is in line
with the reality that restaurants and cafes that provide breakfast always open early. At noon
(11 am — 1 pm), most establishments involved in retail and wholesale activities (blue dots on
the maps) are open. In the late evening (11 pm -1 am), the establishments that are still open
are mostly restaurants or businesses in the category of creative, art, and entertainment
activities (orange dots).

Figure 4-13 zooms into the catchment areas of three transit stations located in
different regions of Singapore: Former Tang Village, Changi Airport, and Parkway Hotel. In
addition, the entropy index and the nearest neighbor index of the establishments are
labeled on the map in the catchment areas of three selected stations at different times of
day. The indices vary both spatially and temporally. For example, in the catchment area of
the Parkway Hotel bus stop, the entropy index changes from 0 in early morning (5 am -7
am) to 0.839 at noon (11 am — 1 pm) and 0.793 at night (9 pm = 11 pm), indicating that the
degree of business mix of the local area begins with zero in the morning when only food
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Table 4-5. Measures of spatial distribution of businesses

Indicator Formula Range Description Citation
Unit of Analysis: Establishments
Business Density (BIZ_DEN) BIZ _Deng = Ng/Ageveiopea >=0 Average number of establishments Cervero and
- Ng is number of establishments in the developed per square kilometer Kockelman, 1997;
lands in the catchment area
Normalized Mean distance to BIZ_AVG Disty = Z?—_ﬁ(dﬁ /dguss)/Ng 0-1 Normalized average distance of (all,
station (BIZ_AVG_DIST) - dg; is the distance of the establishment i to the food, retail) businesses to the nearest
corresponding transit station; dpy; is the radius of the transit station
catchment area of the corresponding transit station;
Normalized Distance standard 1 N , >0 Normalized standard deviation of the
deviation (BIZ_DIST_SD) Bz DIST SDg = J N—szifl (dgi — Dist)” /dpurs distance of (all, food, retail)
- Distg is the mean distance to station businesses to the nearest transit
station
H,= il’m log(1/ p;)/logn;) >=0 Higher values are representative of Kumar et al, 2007;
Establishment Diversity = more diverse business types.
(BIZ_ENTROPY) Pe=Ng/N;
Specialization index LOC_QUO; = NEi/Ng - NE;and NE are the total >=0 Measure the concentration of a de Bok & van Oort,
(LOoC_Quo) NEi/NE ) particular type of establishment in 2011; Garcia-Lopez,
number of establishments of type i and the total he area. Higher values indicate & Mufiz. 2013:
number establishments in Singapore ! -8 ’ !
agglomeration economy?
Competition Index COMP; = ln(;) , Herf, = Ng; X ( 1 )2 >= Measure thfe degree_ of compt.etition. Martin et al, 2011
(COMPI) Herf; NE; each establishment in sector i faces in
a catchment area.
Nearest Neighbor Index >=0 Clustering when NN<1.0 and Mesev, 2005

(NN_BIZ)

d
NN, = 2% 12dnl 4

n
- djis the distance of establishment j to the nearest

establishment

dispersion when NN>1.0.
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Figure 4-13. Time varying entropy index and the nearest neighbor index of the establishments in the catchment areas of three selected stations.
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services are available, reaches a maximum point at noon, and decreases at night because
businesses such as retail are closed. In parallel, the nearest neighbor index changes from
0.469 to 0.299, and again to 0.313, which suggests the extent of spatial clustering of
businesses increases from morning to noon and decreases from noon to night.

4.4.5 Transit Network Topology

For urban residents who rely on the transit system for their daily trips, knowledge of transit
network not only helps them to decide on the destinations for accessible activities but also
assists in scheduling activity chains during a day by taking into consideration the
destinations that can be conveniently connected by transit services. Unlike air
transportation networks or social networks in which the links between nodes represent
direct connections, the urban transit network contains two levels of network, i.e., the
underlying infrastructure network and the operation network served by buses and trains.
Accordingly, the concept of the spaces L and P proposed in (Guimera, et al., 2005) was used
in a series of analyses that focused on the public transit network (Sen, et al., 2003). Space L
represents the physical network of transit system composed of rails and roads. The transit
network is typically formulated as space P in which the edge between two nodes indicates a
bus or a train route that serves the two nodes (Figure 4-14). In this sense, the degree K in
the urban transit network corresponds to the number of stations directly reachable by a
single bus or train route without transfer. In this study, we use the transit schedule
information from 2013 provided by LTA to measure the transit network topology of
Singapore since the corresponding data from 2008 were not available. Most urban residents
plan for trips according to the transit schedule information. Therefore, the measures of the
transit system derived from the schedules better reflect the transportation knowledge of
the people who use the system.

L-Space

f
1
Figure 4-14. lllustration of the urban transit network topology representation

4.4.3.1 Temporal variability of transit service

On the supply side, the frequency and coverage of urban transit services usually vary by
time of day. Typically, services are more frequent at peak hours but less frequent at night.
The frequency of service is directly related to the waiting time for transit trips and may
influence the transportation mode and destination choices of an activity. According to the
transit schedule data in 2013, Figure 4-15 shows the maps of the frequency of transit
services for road or railroad segments at different times of the day. It can be observed that
many bus and RTS services are in operation early in the morning. At the morning peak hour,
the frequency of services reaches the maximum for the day. In addition, it appears that
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certain long-distance services connect the northwestern region of Singapore to the
downtown area only during the morning peak hour. The levels of service are quite stable
during the day between 11 am to 7 pm, and frequency begins to decrease in general after 7
pm. Only selected night services are available (e.g., from downtown to the airport) that run
between 1 am and 5 am. A lack of empirical evidence exists on how the temporal variability
of transit service affects activity, but to examine the effect of transit network topology on
activity, the temporal variation of service is accounted for in the transit network
measurement in this section.

SAM -7 AM 1AM -1PM

MRT/LRT Lines

Bus Routes

s headway <=2min
headway 2 Smin
headway >5min

Figure 4-15. Frequency of transit services by road segments at different times of day.

4.4.3.2 Transit Transfer

Most early research on network analyses focused on the properties of network
components, such as nodes and edges formed by a single type of connection, i.e., airlines or
co-author relationships. This situation gives rise to two issues if the methods are applied to
study urban transit systems. First, the urban transit network in large cities usually contains
both bus networks and rail networks. The two different networks are treated separately in
most of the network analysis literature. However, the transit system consists of these two
networks that have an inseparable relationship in transportation planning and operation.
From the view of travel demand, it is impractical to presume that transit passengers
consider only the bus or only RTS when planning trips. Therefore, it is essential to combine
the bus and rail networks when evaluating the transit network. Second, unlike airports,
which are usually distantly located and relatively independent (airports in the same city are
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usually clustered together in the network analysis), urban transit stations have strong spatial
dependencies. Nearby stations that serve different transit routes often do not have
connected transit services due to proximity. However, these stations together shape the
transit accessibility of the local area. In this sense, it is desirable to account for the spatial
dependences among neighboring stations in the network analysis.

One of the methods for addressing these two issues consolidates the transit
network by introducing transfers as virtual links among stations. Whether a transfer link
exists between two stations depends on many factors, i.e., the existence of walkable paths.
Fortunately, in this study, we are able to add virtual transfer links into the network analysis
based on the observed transfers in the EZ-link dataset. To single out the infrequent
transfers, only those station pairs with at least two observed daily transfers are considered
for virtual links. Based on this prerequisite, approximately 10,238 transfer links are directly
observed and are added to the transit network.

4.4.3.3 Connection Power

To avoid the situation in which all connections among transit stations are counted
equivalently in the network analysis, weighting of the connections is introduced to
distinguish the connectivity and accessibility of connections caused by different quality of
services. Following Mishra et al. (2012), the weight of edges between transit stations are
formulated as:

1
Pj: =a(Fj ) xp T (4-3)

where j, j are two transit stations, F;;, is the frequency of the transit services between
station i and j during time period t, T} ; is the average scheduled travel time of the transit
services between station i and j during time period t, « is the scaling factor coefficient
calculated as the reciprocal of the average frequency of all edges, and g is the scaling factor
coefficient represented by the average travel time of all edges in the network.

4.4.3.4 Transit network measure

Table 4-6 lists the selected indicators of the transit network analysis. These indicators are
generally derived at the station level. The degree of centrality of a node is commonly
measured by the number of other nodes to which it is linked. The strength of a node is the
node degree weighted by connection powers of its edges or the sum of connection powers
on the edges of the node. However, the traditional method of computing degrees and
strengths does not necessary reveal the centrality of a node because RTS stations are only
directly connected to other RTS stations, which are generally far fewer in the number of bus
stops. According to the EZ-Link data, although the no-transfer trips account for 73% of total
transit trips, 22% of the trips involve one transfer. Therefore, it might be more reasonable to
calculate the degrees and strengths of nodes based on the connectivity involving no more
than one transfer.

The connectedness of a station is represented not only by how many other
stations it is connected to but also by how connected those stations are as well. A regional
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bus station junction with connections to other regional bus station junctions and MRT
stations may be weighted more heavily than a bus stop served by same amount of bus
routes. Eigenvector centrality considers the variance of the influence of nodes with different
consecutiveness (Bonacich, 2007). Technically speaking, the eigenvector centrality of a node
is the value of the first eigenvector of its adjacency matrix and can be interpreted as arising
from a reciprocal process in which the centrality of each node is proportional to the sum of
the centralities of those nodes to which it is connected. In other words, nodes with high
eigenvector centralities are those that are connected to many other nodes, which are again
connected to many others, and so on. The idea behind eigenvector centrality is that the
importance of the nodes with which a node is connected influences the importance of that
node in the network. Unlike other directed networks, in the case of the directed transit
network in this study, eigenvector centrality is concerned with the importance of outgoing
nodes as opposed to that of incoming nodes because people are more inclined to forward
thinking when planning trips or activities in a day.

An extension of eigenvector centrality is hub and authority centralities, which
are formulated to describe two types of roles played by nodes in the network. Stations with
a high hub centrality value generally have many services linked to those stations with a high
authority centrality value and thus present a large out-degree. In contrast, stations with a
high authority centrality value generally have many services linking from those stations with
high hub centrality value and thus present a large in-degree. In other words, a station is
good hub if it has transit services oriented toward major transit stations in the city that are
connected to and from many other stations. A station is a good authority if it has transit
services from those stations that connect to many other stations. A single station may have
high hub centrality and authority centrality at the same time. According to Newman (2010),
hub centrality is actually the eigenvector centrality of the matrix AT 4, where A is the
adjacency matrix. Authority centrality, in contrast, is the eigenvector centrality of the matrix
AAT . Unlike the eigenvector centrality, which only generates non-zero values for the
strongly connected node cliques in directed networks, hub and authority centrality can
generate non-zero centrality values even for weakly connected node cliques (Newman,
2010).

The closeness centrality is defined as the average shortest scheduled travel time
of all nodes in the network to the given node. Closeness centrality is a natural measure of
the spatial centrality of spatial networks such as the urban transit network. The assortativity
coefficient measures the level of homophyly of the graph based on certain vertex labels or
values assigned to vertices (Newman, 2010). If the coefficient is high, this means that
connected vertices tend to have the same labels or similar assigned values.

Measures of centrality and connectivity typically describe a station position in
the global network. In the local transit network, the role of a station is related to how many
other neighboring stations passengers transfer to it or how many other neighboring stations
passenger transfer from it. Analogous to degree centrality, the number of stations that have
transfer connectivity with the target station is the named transfer degree in this case.
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Table 4-6. Transit network measures

Indicator Mathematical Formula Range Description Citation
Centrality and Connectivity
Routes >=0 Number of routes
Degree centrality iia 0-1 Normalized degree based total Newman, 2010; Soh
D ()= T ¥ number of direct connection to etal., 2010;
()= N-1 other stations Barthelemy, 2010;
where a;j =1 if i and j are directly connected and 0 otherwise.
Strength ii“ » 0-1 Weighted degree based on the Newman, 2010;
S.(n)= 57 v frequency of services between Barthelemy, 2010;
T ON-1 station pairs
where pij ‘ is the weight of connection between iand j defined by eq(4-1)
Eigenvector E@)= 1 Z“' EG) >=0 Measures the influence of nodesin  Newman, 2010;
centrality Az the network. Barthelemy, 2010;
where A is the greatest cigenvalue of AE = AE, 4 is the adjancey matrix {a,}
Closeness centrality ii’ >=0 Average shortest travel time Newman, 2010
CCny= L= ¥ between a station and all other
T ON-1 stations in the network.
Where l;is the shortest travel time between station j and station j
Transfer degree ii” >= Number of stations connected with
i observed transfers.
TDC (n) = T]—
where ”ij =1 if iand j are directly connected by transfer links.
Transfer strength ii . pr. >=0 Number of stations connected by
TS, (n) = 257 vE transfers weighted by number of
¢ N-1 observed transfers.

where trij =1 if i and j are directly connected by transfer links.

pry is the trasnfer weight between i and j.




The topological properties of a transit station may influence the decisions of
people who schedule multiple activities. It is also recognized that these measures are
generated based on the entire transit network and might lie beyond the scope of
consideration of travelers who are more likely to only focus on a subset of the transit
network related to their activity spaces. In addition, indices such as hub and authority score
may be correlated with certain land use, building, and establishment measures.

4.4.6 Correlations among indicators

Although the indicators are formulated to measure different dimensions of the urban built
environment, it is inevitable that selected indicators may have high levels of correlations.
For example, AWMFP and AWMSI could be highly correlated with the ratio of open space.
The more fragmented and complex the local landscape mosaic, the larger the open space
compared with the total area. Because these place indicators are used to predict activity
types, to avoid high co-linearity and to increase the parsimony of learning models, it is
important to select the appropriate independent variables.

Figure 4-16 shows the correlations among the built environment indicators.
From the correlation matrix graph, it is clear that the levels of correlations among most
indicators are low or moderate with a few exceptions. A strong positive correlation exists
between the centrality and compactness indices of buildings. In addition, as expected, two
measures that measure the shape of land use patches are highly correlated, i.e., AWMFD
and AWMSI. In addition, the competition indices of businesses in different sectors (food,
retail, social, and entertainment) are positively correlated with each other. Certain transit
network measures, such as hub score and authority score, also have a strong correlation.

In the previous literature on the built environment measurement, factor
analysis is an approach commonly employed to use smaller number of factors to represent
the variability of many correlated variables (Diao, 2010; Krizek, 2003). In this study, because
some built environment metrics vary spatially but also temporally, we need a
spatiotemporal clustering approach that can distill the correlations of the measures in two
dimensions. Few clustering approaches have achieved satisfied performance on this
problem due to the escalated complexity of two-dimensionality. Moreover, it is unclear
whether the factor loadings derived from the factor analysis can be directly applied to
calculate new factors for new data, which could have a different correlation structure due to
the changes in urban built environment. More theoretical or empirical evidences are
needed. In this study, the highly correlated built environment indicators are further
scrutinized and selected when they are fed into the activity learning models.

4.5 Summary

The objective of this section is to formulate generalized spatial indicators that can capture
and measure the rich set of spatial and temporal components in the urban built
environment that have differentiated impacts on the locational choices of different
activities. The intent is to facilitate the translation of transit card traces into meaningful
daily activity patterns by using the built form indicators to estimate the types of activities
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that transit riders engage in. The measurement draws on the rich spatial information
generated from the data integration processes described in Chapter 3. The temporal
information of businesses like the open hours is imputed using a supervised learning model
developed based on the Random Forest (RF).

The spatial metrics of built environment focus on four dimensionalities: land
use composition, spatial layout of buildings and streets, spatial distribution of
establishments and transit network topology. For example, the land use contagion index
measures the extent to which the land use types are separated in the catchment area. The
neatest neighbor index of establishments measures the level of spatial aggregation of
establishments in the catchment areas, from clustering to random distribution to uniform
distribution. Each measure was computed individually for the catchment areas of transit
stations to describe the “local environments” that people experience when they traveled
and engaged in activities. Special attention is paid to the spatial and temporal dimensions of
measurement. Measures of the availability of establishments and urban transit services are
differentiated by time of day based on estimated open hours and transit schedules
respectively. The spatial metrics described in this chapter are able to provide a more
comprehensive and time-sensitive measurement for the urban built environment
surrounding transit stations, which might have more correspondences with the choices and
behaviors of travelers.

The spatial scale effect of measurement is always an important concern for the
built environment measurement since the spatial aggregation of geographical entities such
as buildings and businesses varies as spatial scale changes. In this study, the spatial scale of
the catchment areas of transit stations is approximated by the average walking distance
observed in the Household Interview Travel Survey (HITS) of Singapore in 2008,
differentiated by the type of transit stations. However, some built environment measures
can be sensitive to changing spatial scales. It is more desired to include values of measures
corresponding to multiple spatial scales of the catchment areas when characterizing urban
forms. Since the spatial scale effect of measurement is not the focus of this study, we will
examine this in future work.
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Chapter 5. Learning Transit-oriented Activity Types from a
Household Travel Survey

5.1 Introduction

Traditionally, household travel survey data or time-use survey data have typically been
used for activity-based travel demand modeling. However, transit smart card
transaction data have their advantages when used for the exploration of activity-travel
patterns. The data are easy and cheap to obtain. Detailed transit trip information of
users can be generated over a long period of time, as long as the electronic fare
payment system is in operation. In addition, the data provide the possibility to capture
the trajectories and movements of users through the spatial and temporal details of the
transit trips recorded. Further, the data usually cover a much larger population size than
do most surveys. In Singapore, the majority of frequent transit passengers use smart
cards for convenience and, sometimes, economy. However, the drawbacks of the transit
smart card transaction data are equally salient. The social-economic and demographic
information of users, which is crucial to activity-travel behavioral research, are generally
lacking in this type of data. We can only rely on the types of cards to differentiate
passengers. Moreover, except for the in-vehicle travel time, the waiting time and
walking time for trips are absent in the data. The spatial unit of the analysis is usually
the transit station because only the boarding and alighting stations of the transit trips
are recorded. However, one of the most outstanding problems that hinder the use of
transit smart card transaction data in activity-travel research is that the purposes of the
transit trips (i.e., the activities) are unknown. This gives rise to the question of whether
it is possible to infer the unknown activity types from observed information in the data
such as the time, the location and the sequence of trips.

Although it is of great interest to researchers, decision makers and service
providers to extract the embedded activity patterns from the transit smart card
transaction data, few studies have focused on the activity aspect of transit smart card
transaction data. In this chapter, a group of statistical learning methods is investigated
to learn the activity types from a household travel survey dataset, the HITS survey in
year 2008. The models incorporate the detailed spatial and temporal explanatory
variables including the urban built environment metrics discussed in Chapter 4 to
determine potential activities.
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5.2 Methodology

Because the information provided by the EZ-Link dataset is limited, it is a challenge to
make the best use of the known information and, based on this information, to derive
variables that can be used to forecast activity and travel from other data sources.
Meanwhile, it is also crucial to find out proper ways to recognize unknown activities in
future data. In this study, we investigate a set of machine learning models with different
specifications and structures to estimate the associations between activities and
assembled variables learned from existing data.

The decision-making process of activities and travels is very complex.
Components such as activity types, destination choices, departing times, and activity
durations, choice of transportation mode, interpersonal dependencies and social-
economic characteristics of individuals are all simultaneously intertwined as a part of
the decision-making process. In addition, an individual’s choice of activity is considered
to be subject to a number of constraints (Arentze and Timmermans, 2004):

- Household constraints: Household members share household obligations and
resources, such as cars. Household incomes may constrain the number and
types of activities.

- Situational constraints: The appropriate transportation mode must be in place
to enable the actor to pursue a certain activity. Destinations lacking parking
capacity and bicycle lanes will discourage car and bicycling trips.

- Institutional constraints: Working schedules and business hours of shops
restrict the time allocations of certain types of activities.

- Time constraints: The time and duration of discretionary activities are
conditioned by the time and duration of mandatory activities.

- Spatial constraints: Destinations are usually specific to a certain activity
purpose. This means some activities cannot be conducted at certain locations.
Moreover, the time constraints restrict the location choice of successive
activities.

These constraints and dependencies provide a basis for activity type recognition,
in light of a list of variables that are considered correlated with activities or travels but,
in addition, can also be derived from the information in the EZ-Link dataset: specifically
time, location, sequence and trip. Based on the time of trips, it is possible to determine
the availability of opportunities and the weather conditions. Based on the location of
origin and destination transit stations, the built environment of the surrounding areas
can be characterized. Based on the sequence of trips and the locations, it is possible to
learn home locations, workplaces and other frequently visited places. Based on the
recorded trip information, the accessibility between the origin and the destination can
be built into the learning model. In short, to maximally draw on the observed
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information of the EZ-Link data into activity-learning models, it is necessary to couple
the EZ-Link data with auxiliary data from other sources to establish the spatially and
temporally detailed contexts for the observed trips using quantitatively computable
measures and variables. Then, the behavioral choices of travelers under reconstructed
contexts can be estimated from training data, which is the household travel survey data
in this case. Figure 5-1 is the conceptual interpretation of the learning and inference of
activity types associated with the EZ-Link data.

Activity
19
| Arrival time 1140 AM w' Dependerf!
? Station lation: 1.3122, 101.1517 S B LT e L
Distanceto home: 1.23km ‘Eﬂwl@g&ﬂq?ﬂ
Ge— i hOlder type: adult
Station Type MRT T

Other Correlations

Figure 5-1. lllustration of activity learning and inference from the EZ-Link data

5.2.1 Modeling Framework

The proposed framework of learning and inferring activity-travel patterns from the
transit smart card transaction data contains two pipelines, as shown in Figure 5-2. The
first pipeline is to train the learning models by drawing on the transit trip and activity
information in the HITS survey dataset from 2008. The second pipeline, which focuses
on the activity inference of the EZ-Link data, is described in Chapter 6. To apply the
learning models to the EZ-Link data, it needs to be ensured that the same set of
explanatory variables or predictors can be generated from both datasets. However,
unlike in the EZ-Link data, whereby both the boarding and alighting stops are known,
only the boarding and alighting RTS stations can be found in the HITS 2008 dataset.
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Information about the bus stops of transit trips is absent, although bus routes were
reported. Therefore, the first task is to identify unknown bus stops in the HITS dataset
from the observed destinations (recorded as postcodes) and bus routes. In addition, as
the types of activities engaged are to a large degree correlated with the opportunities
available at destinations as well as the surrounding built environments, pre-computed
built environment measures for the catchment areas of transit stations are retrieved as
a major part of the specification of the model. Other variables observable or extractable
from the EZ-Link dataset and considered to be relevant for the decision-making process
of activity engagement, such as the weather, estimated distance to home, and travel
impedance information, are also incorporated into the learning models.

Despite the high penetration rate and usage of the EZ-Link smart card in
Singapore, the trips recorded in the EZ-Link dataset do not include those using
transportation modes other than the public transit system. In other words, the EZ-Link
dataset only contains part of the daily trip information for most travelers and does not
include information about those people who do not use the public transit system. This
raises the question as to whether it is valid to treat the transit-oriented activities of an
individual as a chain, which excludes the activities traveled to using other transportation
modes. To circumvent this theoretical challenge, it is assumed that when people make
decisions concerning their daily activities, the choice of transportation modes dictates
the types of activities engaged in as well as the times and destinations of the activities.
Theoretically, people are prone to planning and scheduling activities from a holistic
perspective, taking into consideration the constraints from time, space, expense, family
and available transportation modes. The assumption supposes that Singapore residents
tend to plan and schedule transit-oriented activities together under the overall
considerations of daily activities that need to be performed. Activities using other
transportation modes will be scheduled separately from these transit-oriented
activities. This makes transit trips a sub-chain of peoples’ daily activity-travel sequences
and makes the transitions between transit-oriented activities more interpretable.

Household Travel . : Estimation
Survey Data —— || Imeuta unknown Retrieve [t Model
bus stops i i :
(HITS, 2008) matching built '
environment : 1
variables and : Dependencies /
other 1 Parameters
Transit Smart Card Data | _. Identify Anchor || —» | SPatiotemporal } ]
T'FE:'IS:‘:"’;:)E’B"’ = Fitering {home) Locations features f Activity type ]| Activity Patiem |
nk,

\ ] Inference 1| Visualization
Figure 5-2. Analytical framework of the activity-learning and inference module

In this study, we employ two types of learning models in light of two different
activity generation and scheduling assumptions. The first type of learning model is the
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multinomial logit model (MNL), which focuses on individual transit trips without
considering the dependencies among sequential trips and activities. The second type of
model is a Conditional Random Fields (CRFs) model, which accounts for the sequence of
activities in the form of Markov chains. The Conditional Random Fields model is a full-
fledged sequence-learning model, which has been demonstrated to be effective in
inferring sequences of unknown information from sequences of known observations. It
has been used intensively in the field of pattern classification in the areas of, for
example, gesture and speech recognition. Under the framework of CRFs, the activity-
travel patterns of travelers are treated as sequences, and the transitions among
different types of activities are explicitly represented.

5.2.2 Multinomial Logit Regression model

The multinomial logit model, also known as multinomial logistic regression, is a discrete
choice model usually used to predict probabilities of different categorical outcomes of
dependent variables contingent on given independent variables. It is also used
extensively for classification and pattern recognition in the field of machine learning.
Within the multinomial logit model framework, the probability that an individual p
engages in activity type y near location s during the time period t conditional on mode
choice being transit and given the individual, temporal, locational and trip-related
attributes {Xp, X, Xst, Xpst} can be formulated as

e(BogtB1aXp+B2qXt+B3qXst+BagXpst)

P(Y|X) = 5

_ECe(Boi+B1iXp+B2iXt+ﬂ31Xst+ﬁ4iXpst)

(5-1)

where f is an n-dimensional vector of coefficients corresponding to n independent
variables and C is the collection of all activity types. Traditionally, B is estimated by
maximizing the log-likelihood function of the specification

N
LL(B) = In l_l P,(alp,s, )%
»

J
eBog*B1aXp+B2qXt+B3aXst+BagXpst)

— SN X -
- Zi=1 Sj In (ziECe(BOi+B1iXp+BZiXt+ﬁ3iXst+B4iXpst)) . (5 2)
]

where N is the sample size and q; is the activity type of sample j. For C alternatives, only
C-1 alternative-specific constants and alternative-specific variables are estimable
because for any values of the parameters {8y, B1, B2, B3, Ba}a, {Bo + ¢, B1 + ¢, B2 +

c,B; + ¢, B4 + c}, gives the same probabilities (Ben-Akiva and Lerman, 1985}, where c is
a constant value. However, as we will see later, regularized MNL models are able to
identify the coefficients of variables for all C alternatives by including a penalized
regulation term that is sensitive to manipulation of coefficients as in {8, + ¢, 5, +

¢, B2 + ¢, B3 + ¢, By + ¢}, in the log-likelihood function. Using the estimated parameters
B and equation (5-1), the MNL model can predict a set of probabilities representing the

101



chances that an individual engages in different types of activities under the occasions
described in the new data.

5.2.3 Conditional Random Fields model

A daily activity pattern is a series of activities based on sequential choices of locations,
durations, transportation modes etc. These components are inter-mingled in the
process of determining and planning a course of activities. The sequence of an activity-
travel pattern not only signifies the priority of activities at different times of day but also
implies a lifestyle. Regularly doing shopping on the way from a workplace to home and
doing shopping after eating out at night indicate two different lifestyles. Hence, when
investigating the correlations between activities and urban-built environments, it is
important to consider the sequence of activities and their interdependencies. Because it
is not straightforward to incorporate sequences of activities into traditional MNL
models, a linear chain conditional random fields (CRFs) model is employed to formulate
sequential dependent relations among activities.

A CRFs model is an undirected graphical model that has been increasingly used
for temporal classification (Vail et al., 2007). The model represents the conditional
probability of a particular sequence of states or classes Y given a sequence of observed
independent variables X. Similar to the Hidden Markov Model (HMM), CRFs are doubly
stochastic models whereby observations are modeled conditioned on a small number of
discrete states, with Markovian transitions formulated among the states. However,
unlike HMM, which models the joint distribution P(Y, X), CRFs focus on the conditional
probability P(Y|X), which can be partitioned into computationally tractable sub-models.
This avoids the complexity that dependencies among the input variables X need to be
explicitly represented and hence afford the inclusion of a rich set of features and
structures during model specification (Lafferty et al, 2001; Sutton and McCallum, 2006).

In the context of activity-travel studies, the daily activity chain of an individual
can be considered as a stochastic process over a day. Changing from one activity to
another is represented as a state transition within a Markov chain. Along with the
activity chain, there are other synchronized sequences, such as destination chains, that
can often be retrieved from household travel diaries as well as from the transit
transaction data. In this study, activity types are considered as hidden states because
they are not directly observable from urban sensing data. Locations are regarded as
observable signals conditioned by the hidden states — activities (see Figure 5-3 c).

Two concerns arise when formulating a CRF model for learning activities from
the HITS dataset and for inferring activities from the EZ-link dataset. First, the transition
probabilities of activities and the correlations between urban spatial forms and choices
of activities may vary across the time. Instead of specifying temporally varying
dependencies, which will dramatically increase the number of parameters, the temporal
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variation in associations is expected to be captured by including within-day time periods
as a group of dummy variables and using the time-varying built environment indicators
to represent the dynamics of places. Second, when formulating the self-transition
dependencies among activities, it is assumed that the choice of the current activity
types is conditioned only by the last activity type. This assumption is consistent with the
formulation of the first-order Markov chain. In reality, the current activity may depend
on more than simply the last activity. This can be addressed by the skip-chain CRF
model, which is not discussed in this study. Briefly, the main function of the CRF model
is to learn the probabilities of activity types for each travelers given the time of day, the
destination built environment, and the types of prior activities.

The linear-chain conditional random field specifies the conditional probability
P(Y|X) as follows:

p(y|x)= Z(x )eXP{Zﬂ SO Vi l,xk)} (5-3)

where fi, (¥, Yk-1.Xx) is defined as a feature function representing the correlations
between the observed variables of trip k, activity type of trip k and activity type of trip k-
1. M is the number of feature functions in the model, including the relations between
dependent variable and independent variables as well as the transitional dependencies
among independent states. The feature function usually takes the form of an indication
function. A, is the parameter for the feature function m. In the CRF model in this study,
fm Yk Yr-1%) can be decomposed into two types of relations fm(yk,yk_l)

and f;, (yk,xk), where

(1 ifyp=landy,_, =j
fm(yk,yk—l){i‘jlk} - { 0 otherwise

and
fm(yk,xk){i’j‘k} = xm,k

Each of the feature functions corresponds to a type of dependency in the model
specification. f; ()’t,}’t—1) is the transition from the last activity to the current activity,
and f; (yt_xt) represents the dependency between the observed activity and the
observed explanatory variables. The model is log-linear on the feature function. By

changing the formulation of the feature function, it is possible to include more complex
dependency relations in the learning model.

The conditional probability in Equation 5-3 requires calculating Z(x), which is a
normalization function that guarantees that the sum of the probability distribution

p(y|x)is 1.
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Z(x)= ZCXP {zﬂmﬁ,(hay“axk )} (5'4)

Note that Z(x) sums up all possible activity sequences, a number that is exponentially
large. Fortunately, researchers have developed numeric approaches to compute Z(x)
efficiently using the backward-forward algorithm (Lafferty et al, 2001; Sutton and
McCallum, 2006). The coefficients are estimated by maximizing the log-likelihood
function

LL(A)= ZZZMm Ly - ZlogZ(x‘”) (5-5)

i=l k=1 m=1
where i is the i-th individual in the dataset, N is the total number of individuals, and K is

the total number of trips observed for individual i.
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5.2.4 The Relation between CRFs and the MNL model

Unlike Hidden Markov Models (HMMs) and Naive Bayes Models that assume that
observations are independent of each other given the hidden states, both logistic
regression models and CRFs make no assumptions about the correlations among
explanatory variables. In other words, these models allow observed variables to be
correlated. In this sense, the conditional random field (CRF) model is actually a
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generative form of the logistic regression model based on explicitly accounting for the
dependencies between states. To see this, assume in the CRFs model that

fm(yk,yk—l){i']‘k} = O

which means that the transitions among activities are not correlated. Then, eq. (5-3)
takes the form of

p(ylx)=z(1 )eXP{Zﬂ S es k)} eXP{Z mk},

m=1

and Z(x) becomes

Z(x)= Zexp{z . mk}

m=1

As a result, the probability of Y conditional on X becomes

M
exp {Z lmxm’k}
m=;/! ,
Z exp {Z A’mxm,k }
y m=1

This is exactly the form of how P(Y|X) is formulated in the MNL model.

p(y|x)=

5.3 Model selection

In this section, four aspects of modelling are discussed for both the MNL model and the
CRF model. Spatial and temporal confounding effects are a common issue faced by
statistical models. Overfitting and imbalanced samples are common issues faced by
classification and machine learning models. Model validation will be used to guide the
comparison and selection of the model for activity inference from the EZ-Link dataset.

5.3.1 Spatial and temporal confounding effects

In statistical modeling, the confounding effect refers to the impact from unobserved
variables that leads to biased estimates of the correlations between the dependent
variables and the explanatory variables. Spatial and temporal confounding effects are
likely to be present when the residuals of the statistical models are spatially or
temporally correlated. Consider the effects of the time of day on the choices of activity
types. Many variables explain the temporal variability of activities, including the working
and school hours, open hours of businesses, weather conditions and the services
provided by transit agencies. These variables correlate with the types of activities but
also varying temporally. Similarly, spatial confounding variables are those variables
correlated with the dependent variable but also vary spatially. If some of these variables
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are not included in the learning models, it will be difficult to distinguish the effect of
observed spatial-temporal variables and the unobserved ones due to the correlations
between the residuals and predictors. Therefore, it is necessary to include the spatially
and temporally precise measures of the urban built environment as well as other spatio-
temporal factors in the activity learning models to reduce the biases caused by the
confounding effects.

5.3.2 Overfitting

Because this study applies models trained using the HITS dataset to predict the activities
embedded in the EZ-Link dataset, there is a danger that the trained model may fit the
noise of the training dataset as opposed to the true patterns by including irrelevant
variables during the model specification. This is certainly the case when a group of
urban built environment indicators and transit network measures are considered
relevant to activity participation despite empirical evidence being limited. Therefore, it
is most likely advantageous to select a simpler model that fits the training data worse
over a more complex model that fits the training data better if the former model is
restrained from matching noise in the training data.

To address the potential risk of overfitting, the regularized multinomial logit
regression model (Bishop, 2006; Friedman et al, 2010) is employed for the learning task.
Regularization typically refers to the trade-off between the goodness of fit and the
model complexity. Unlike traditional MNL specification, the regularized multinomial
logistic regression model includes extra regularization terms in the log-likelihood
function to avoid model overfitting by penalizing an excessive number of variables and
by detecting important predictors from redundant variables. According to Friedman et
al., (2010), the regularized MNL includes the penalized log-likelihood (PLL) function in
the form of

PLL(B) = In[I}-, P(alp,s, )% — AP, (B) (5-6)

(1 —a)lIBlI3
2

F,(B) = +allBlly

where P,(B) are the penalized terms used to prevent extreme values of variable
coefficients; ||Bll; is usually known as an L1 regularization term taking the form of

Y4|B; |; IBII3 is known as an L2 regularization term taking the form of X, BZ; A(= 0)
is a complexity parameter used to discount the complex model specification; 0ga<1 is
an elastic-net mixing parameter used as a compromise between the L2 regulation ridge
(a=0) and the L1 regulation lasso (a=1); and a is the hyper-parameter, which needs to
be tuned in the process of model estimation. Because the regularized MNL model
considers the size of the regression coefficients to be part of the error term, the
coefficients are encouraged to be small.
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Similarly, in this case of the CRF model, to avoid overfitting, regularization is also
used, which is a penalty on coefficient vectors whose norm is large. A common choice of
penalty is based on the Euclidean norm (L2 regulation term). Then, the likelihood
function (5-5) becomes

N X M . . . N . M 2’2 5 7
2R W WHACRBEIOR N TTCUS W (5-7)

i=l k=1 m= i=1 m=1

-

where O is a free parameter determining the strength of the penalty or the variance of
the Gaussian prior distribution (Goodman, 2004).

5.3.3 Imbalanced classes

The problem of imbalanced data in the field of data mining refers to the fact that the
learning process of statistical models will usually be dominated by classes with many
instances while underestimating or even ignoring rare classes (Weiss and Provost,
2001). When the sample size is limited, the ability of models to learn regularities
inherent in small classes is also restricted. As a result, observations belonging to the rare
classes are more prone to being misclassified than are classes with higher proportions of
observations. Some datasets are naturally imbalanced across classes, such as activities
in this study (see Table 5-1).

To urban planners and researchers, it is more valuable to correctly detect small
classes, such as recreation and social activities, in the activity-based learning model
because these activities have greater implications on the demand of urban services than
do working and in-home activities, which account for the majority of activities in the
daily life of urban residents. Moreover, in comparison with working and in-home
activities, the destination choices of other activities are more volatile and hence more
difficult to understand.

There are two common approaches to addressing the imbalanced class problem. One
is to achieve a balance through resampling from training data by either oversampling
rare classes or by underdamping dominant classes. The other approach is to increase
the cost of misclassifying rare classes, which is also known as cost-sensitive learning
(Sun et al., 2009).

In this study, we used the Synthetic Minority Over-sampling Technique (SMOTE) to
augment the training dataset to improve the classification accuracy of rare activity types
learned by the MNL models. Rather than resampling existing data, SMOTE creates
synthetic instances of the minority classes. By synthetically generating additional
instances of the minority class, the learning models are able to broaden the regions of
the high-dimensional feature vector spaces associated with the minority class.
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The SMOTE samples are generated by linearly combining the target minority samples
with the k-th nearest neighbors of the same class in the feature vector space (Blagus
and Lusa, 2012). The new SMOTE samples of a minority class will have supporting
features taking the values of

X=X+a(X?-X)

where X is the feature value of a target sample of the minority class, X¥ is the feature
vector of a sample randomly selected from the k-th nearest neighbors of the target
sample, and a is a parameter between 0 and 1. According to Blagus and Lusa (2012),
SMOTE includes the following theoretic features:

1) The expected value of the SMOTE-augmented minority class is not changed by
newly created synthetic samples. Instead, the variability is decreased.
2) SMOTE does not introduce correlations among variables. However, it does
introduce correlations between original samples and new samples.
SMOTE provides a plausible measure for the issue of imbalanced classes faced by MNL
models. However, it cannot be applied to CRFs models, which learn based on the chains
of activities as opposed to the individual activity.
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Figure 5-4. lllustration of SMOTE approach

5.3.4 Model validation

For traditional MNL models, the overall goodness of fit of the model is considered as a
criterion during the model assessment. The overall goodness of fit is measured by the

~

statistic commonly known as the adjusted likelihood ratio p* or the adjusted McFadden
R?, which is computed as follows:

_LLB)/(n=p—1)
LL(c)/(n— 1)

where LL(f) is the maximum value of the log-likelihood function given the included
explanatory variables, LL(c) is the initial value of the log-likelihood function when only
a constant is included, n is the total number of samples and p is the number of
independent variables.

p?=1
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In the field of machine learning, the quality and predictivity of learning models are
often validated and assessed using the results of a k-fold cross validation, which divides
the dataset into k subsets. The model is also estimated and assessed k times. Each time,
k -1 sets of the dataset are used for the estimation, and the remaining set of the dataset
is used for validation. Next, the average error across all k trials is computed. The
advantage of this method is that it is less dependent on how the data are divided. Every
data sample is in a test set exactly once and is in the training set k -1 times. The
disadvantage of this method is that the training algorithm has to be rerun k times, which
means that it takes k times as many computations to perform an evaluation. Common
choices of k are 5 and 10, depending on the size of the dataset and the computational
cost. In this study, we choose the 5-fold cross validation, considering the estimation of
some models is quite time consuming.

5.4 Data and variables

5.4.1 Activity categorization

The categorization of activities is mainly based on the trip purpose information reported
by the respondents in the HITS 2008 dataset. As shown in Table 5-1, 17 trip purpose
types are grouped into 10 activity categories. Multi-purpose trips are not included due
to the absence of relevant information in the HITS survey.

Table 5-1. Activity classification based on HITS 2008 dataset
ID Activity Trip purpose type Total Transit Ratio (transit
Category subset! to total)

Return home, return to another
| R e Y i AR 1o S 45.92%
2 Working Go to work 14533 | 7324 50.40%
3 | Education | Education 8372 l 3152 37.65%
i Leisure Entertain;ﬁ;aﬁf, hécreation, | 666 | 311
| Sports/exercise | } 46.70% |
5 | Shopping Shopping | 2037 | 1212 59.50% |
' 6 | Eating Meal/eating break | 1568 | 383 24.43%
7| social Social visit/gathering | 15031 752 50.03%
8 | Personal | Personal errand, Medical, Religious- ‘ 1241 | 518 | 41.74% |
|___| Business | related matters | |- |
9 | Business Work-related business | 1318 L 318 24.13%
' 10 | Other To drop-off/pick-up someone, To | 5065 | 314 | 6.20%
| accompany someone . |

Note. 1. A subset of trip-samples in the HITS 2008 dataset using public transit means (bus, MRT or LRT).

The correlation found for using transit and conducting different types of
activities is in part revealed by the ratios of trips using transit to total trips broken down
by activity types (Table 5-1). For most activity types, the ratio for choosing transit is
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approximately 50%. However, for three types of activities, the chances of using transit
are disproportionally low: eating, business and dropping off or picking up someone. Car
drivers and car passengers together account for 37% of business trips, 55.9% of eating
trips, and approximately 77.6% of other trips (mainly dropping-off/picking-up someone).
Short-distance walking is another major mode of transportation for business (18.3%)
and eating (10.2%). It is also noteworthy from Table 5-1 that the samples of different
activity types are very imbalanced.

Because around half of the transit trips in the HITS 2008 are returning home
trips, in the MNL model, returning home is not included as an alternative activity choice.
Although returning home is comprised in the activity chains in the CRFs model to
estimate the transitions among activities, it is explicitly tagged as known. For the
returning home trips, the idea is to identify them by developing approaches to extract
approximated home locations in the light of multiple day transit trip records in the EZ-

-Link data. This will be discussed in Chapter 6.

5.4.2 Temporal interval

Activity participation usually shows significant relevancy for within-day time periods. To
capture this effect, we include dummy variables for the day of the week and the time of
the day in the classification models. One day is divided into 11 time intervals: early
morning (5-7 am), morning-peak hour (7-9 am), morning-work (9-11 am), noon (11 am-1
pm), afternoon-work (1-5 pm), afternoon-peak hour (5-7 pm), night (7-9 pm), and late
night (10 pm-1 am). Most transit services stop before midnight, and only a few night
buses provide services between 1 and 5 am. Consequently, there are a very limited
number of trips made by transit and recorded in the EZ-Link dataset during this time
period; therefore, it is not considered in the study. In addition, in this study, only
weekdays are considered because the HITS survey data only covers weekdays. The
weekend pattern is typically different from weekday pattern because most working and
education activities do not occur on the weekends.

5.4.3 Imputing the boarding and alighting stops

In the HITS 2008 dataset, the information regarding the boarding and alighting bus stops
of the trips is not disclosed if the trip was made using a bus. Instead, the route of the
bus was reported by most survey respondents. This makes it possible to impute the bus
stops associated with the public transit trips based on the route and the trip origin and
destination. In this study, it is assumed that the stops on the reported bus route that
have the smallest Euclidean distance to the origin and destination postcode locations
are boarding and alighting stops, respectively. For records in the dataset where the bus
route information is missing, all the bus stops within 400 meter buffers of the origin and
destinations are considered as candidates, and subsequently, the transit network is
skimmed to identify the fastest route connecting any one stop in the origin buffer with
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any one stop in the destination buffer. Accordingly, the origin and destination stops
associated with the identified route are assumed to be the boarding and alighting stops.

5.4.4 Weather

Weather conditions vary across time and locations and could influence an individual’s
choice of activity. Although in Singapore, weather, such as thunderstorms, only
influences local areas, only city-wide precipitation conditions and temperature
information are available.

5.5 Modeling results and assessment

To learn the activity types from the transit trip and activity information encapsulated in
the HITS survey, a group of models (as shown in Table 5-4) are specified to evaluate the
following:

1) The effect of the time period;

2) The effect of built environment measures, especially concurrent built
environment measures concerning the attractiveness of the catchment areas of
the destination transit stations;

3) The effect of other concurrent factors, such as the weather and the travel time;
and

4) The significance of transitions among different types of activities.

Meanwhile, on the modeling methodology side, we want to investigate whether the
predictivity of the learning models will be improved by

1) Including regularized terms in the models to reduce the chance of model
overfitting and

2) Including resampling strategies in the models to address the issue of imbalanced
classes.

5.5.1 Learning Models

Table 5-2 lists the models estimated and assessed in this study. As described in
section 5.2.3, models are compared on the basis of the likelihood ratio test as well as
the classification accuracy resulting from a 5-fold cross validation for each model. For
traditional MNL models, all exploratory variables, including the intercept term, enter
into the model specifications as alternative-specific variables. Regularized MNL models
are able to estimate coefficients of variables for all alternatives (Friedman et al., 2010).
Table 5-3 lists the detailed variables considered in the learning models.
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Table 5-2. List of learning models and assessment measures

Model name

MNL1

Model description
Traditional
Multinomial Logit

I Model (MNL)

| MNL2

MNL3

| MNL4

MNLS

MNL6

7 Regularized MNL

Explanatory variables / features
Smart-card-holder types + zonal
population and job densities

Smart-card-holder fypes + Siétiohéry
built environment measure of transit
station catchment areas

Assessment
likelihood ratio test +
classification accuracy
by activity type
likelihood ratio test +
classification accuracy
by activity type

Smart-card-holder types + concurrent
built environment measures of transit
station catchment areas
Smart-card-holder types + stationary
built environment measure of transit
station catchment areas + time period
of day + transit trip + weather

built environment measure of transit

of day + transit trip + weather
Smart-card-holder types + concurrent
built environment measure of transit

| station catchment areas + time period

of day + transit trip + weather

likelihood ratio test +
classification accuracy
by activity type
likelihood ratio test +
classification accuracy
by activity type

Smart-card-holder types + concurrent | Ilkehhood ratio test +

classification accuracy

station catchment areas + time period | by activity type

C"I-éssification accuracy
by activity type

MNL7

CRF1

| Regularized MNL +
SMOTE Resampling

Regularized CRF

Smart-card-holder types + concurrent
built environment measure of transit

of day + transit trip + weather
Smart-card-holder types + concurrent
built environment measure of transit
station catchment areas + time period

of day + transit trip + weather +

| transitions among activities

Table 5-3. List of variables included in the model specification

station catchment areas + time penod

Classification accuracy
by activity type

| Classification accuracy

by activity type

Variables

Variable type
Dependent variable /
response variable

| Independent
| variables / predictors

Variable category

Activity types

Smart - card holder typ types

Activity

| Senior, Student/Child, Adult (f(;r reference)

Time period of day

Built
environment
measures

night, late night

Park area ratio, Open space area ratio, Mixed area

Land use ratio, Worship area ratio, Sport area ratio,
composition | Waterbody area ratio, Land use richness, Contagion
_index, AWMSI, Land use entropy, AWMFD
HDB unit density, Nearest neighbor index, Centrality,
Compactness, Ratio of residential buildings, Ratio of
Layout of : ] : i i
e School buildings, Ratio of commercial buildings, Ratio
buildings

112

of community buildings, normalized standard
deviation of building footprint size

Early morning, morning peak, noon, afternoon peak,
|



. | Ro: ity io of pedestrian mall, ratio of
Shrdat | Road density, ratio of p

| i | expressway, ratio of four-way intersections, number
i | of intersections per km road length
\ Nearest neighbor index, Business entropy index,
‘ b normalized mean distance to station, standard
fei et deviation of distance to station, location quotient
distribution ; ; :
(food, retail, social, entertainment), number of
business by types
Transit Transfer degree, strength centrality, hub score index,
. | Network | trip frequency, degree centrality, |
okt 2 In-vehicle time, transfers, MRT, dist (distance from
| Transit Trip S ; i -
i alighting station to estimated home location)
| Weather Rain (dummy variable), temperature

5.5.2 Effect of spatiotemporally detailed urban built environment measures

For models MNL1 through MNLS, traditional MNL models are used to classify activity
types but using different sets of explanatory variables. In all five models, the working
activity is used as a reference for the estimation. Table 5-4 presents the estimation and
validation results of the MNL models.

In addition to the type of EZ-Link card holders, model MNL1 uses population
statistics as well as jobs by different sectors at the Traffic Analysis Zones (TAZ) where
transit stations are located as proxies of local attractiveness. The population and job
statistics at aggregated zonal levels are common indicators of built environments and
can be found in many activity-travel studies. As a baseline model in the study, MNL1 is
used to show the extent to which the activity types can be recognized if additional
spatially and temporally detailed built environment variables are not considered. The
goodness of fit of MNL1 using the HITS 2008 dataset is 0.3276 in terms of the adjusted
McFadden R?. The average prediction accuracy of the 5-folder validation is 55.65%.
However, most of explanatory power in MNL1 is actually contributed by the information
on the types of card holders, which alone can achieve 0.275 of the adjusted McFadden
R2. The estimation result of MNL1 is reported in Table A1 of Appendix Ill.

Table 5-4. Estimation and validation measures of traditional MNL activity-learning
models
Log-likelihood -14,864 | -14,143 | -12,255 | -11,285.94 | -11,146.44
Adjusted McFadden R | 03276 0.354 | 0.437 0.484 | 0.492 |
5-fold cross validation accuracy = 55.65% | 57.92% | 60.53% 62.59% 62.96%

As opposed to the zonal population and job density information used in MNL1,
model MNL2 uses stationary built environment measures of the catchment areas of
transit stations, as described in Chapter 4. These measures are selected to capture
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characteristics such as land-use composition, spatial distributions of various types of
buildings and establishments, street layouts and transit service connectivity at local
neighborhoods, without considering the temporal variability. The estimation results are
reported in Table A2 of Appendix Ill. According to Table 5-4, a moderate increase is
observed in both the goodness of fit and the classification accuracy when comparing the
result of MNL2 to that of MNL1.

Unlike the stationary built environment measures used in MNL2, MNL3 include
the time-varying built environment measures, mainly the measures of establishments
and transit services as a result of accounting for open hours and transit schedules in the
measurement. This leads to a significant improvement in the goodness of fit, which rises
from 0.354 (MNL2) to 0.437 (MNL3). However, as discussed later, this does not
necessarily imply that the concurrent built environment measures are significantly
better than the stationary measures in predicting activity types. Rather, it is more likely
that the time of day, which is highly correlated with service availability at the supply
side, and the time constraint of people at the demand side, play a role in the
improvement of the explanatory power of MNL3.

The model specification of MNL4 is an extension of that of MNL2. In addition to
the same set of stationary built environment measures of transit station catchment
areas used in MNL2, explanatory variables in MNL4 also include variables concerning
transit trips, such as in-vehicle travel time, and variables concerning weather, such as
temperature. In particular, a set of dummy variables representing within-day time
periods of trips enter the model specification of MNL4 to capture the different choices
of activities at different times of day. As a result, the adjusted McFadden R2 increases to
0.484, and the accuracy of the 5-fold cross validation is raised to 62.6%.

In contrast to MNL4, MNL5 uses the built environment measures concurrent
with the transit trips. The estimation and validation results indicate that the prediction
accuracy and the goodness of fit of MNL5 are only marginally better than those of
MNL4. When comparing these results with the significant improvement from MNL2 to
MNL3, in which time period dummy variables are absent, it can be suggested that the
availability of opportunities and transit services are highly correlated with within-day
time periods. When the time period dummy variables are not included in the model
specification, the temporal variations revealed through the concurrent built
environment measures capture the temporal variations in the activity-type choices
caused by other temporal factors, such as working hours, and thus help to significantly
improve the explanatory power of the model. Factors such as transit service schedules
are already well tuned with travel demands. However, it is dangerous to jump to the
conclusion that the supply of opportunities and services has limited effects on peoples’
choices of activities. In MNL4, a good portion of the temporal effects of opportunities
have been represented by temporal dummy variables and other travel-related variables,
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which explains the evident improvement of MNL4 over MNL2. For a subset of travelers,
especially those who have fewer time restrictions, their choices of activities and
destinations can be contingent on the availability of relevant opportunities and services.
This is the reason that MNLS5 produces slightly more accurate predictions compared to
MNLA4. In addition, the estimates of built environment variables in MNL5 should be less
biased than those in MNL4 if we accept the temporal availability of opportunities at
destinations as a factor that people will consider when planning for travel and activities.

Additionally, it is recognized that the opening hours of businesses, which are
used to measure the spatio-temporal distributions of opportunities, are the results of a
simple classification model built on limited sample sizes. It can be expected that more
precise information on the temporal availability of opportunities will make additional
contributions to the learning models.

Figure 5-5 shows the classification accuracies broken down by activity types from
the 5-folder cross-validation for MNL1 to MNLS5. It is clear that all MNL models can
achieve relative satisfied classification accuracy for working and education activities, in
part due to explanatory power contributed by the types of card holders. But the
prediction accuracies are less satisfactory for other activities. It also appears that the
accuracies are closely related to the size of samples in the training data, as the activity
types with small sample sizes like leisure, eating and work-related business generally
have lowest classification accuracies.

The estimation result for the MNL5 model is presented in Table A-5 of Appendix
lil. The effects of selected explanatory variables on the likelihood of different activity
types are summarized in Table 5-5. Types of card-holders and the time periods of days
are significantly correlated with most of the activities. Destinations that are further from
home may imply higher probability for social, work-related and other activities. It is also
found that high temperature encourages most out-door activities except for working
and education. This is because most working and education trips occur in the morning,
when temperature is relatively low.
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Figure 5-5. 5-fold cross validation accuracy rate by activity types (from MNL1 to MNLS5)

Table 5-5. Effect of the selected explanatory variables on activity types from the MNL5
MNLS5 Education Leisure Shopping Eating  Social  Personal ‘Work-related  Other

Senior +* +* +* +*

Noon (1am-1pm)

Night (7pm-9pm)

Friday (dummy) e e + + - % . +

Distance to home (km)

Contagion index

LU entropy i - i + - + < +

Nearest neighbor index - Bld + ™ +* & + = = =

Compactness = = S + = - - %

Intersection per km road

Establishment Distance to station (stdev)

Hub centrality (transfer network) +* " + = + = 3 5

Note: * significant at <0.1 level. + positive coefficient; - negative coefficient
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Many built environment indicators are found to be significant in classifying one
or more types of activities. A greater contagion index corresponds to less segmented
land use. Thus, areas with a high contagion index are more likely to be study places,
such as Science Parks and Industrial Zones. Catchment areas with high area ratios of
parks are more likely to be associated with recreation, shopping and social activities.
Land use mix does not appear to be a significant factor for most activity types. This
could partly be because the area ratios of many types of land use are also included in
the model. The HDB unit density is used as a surrogate of the population density of the
areas. As expected, most activities, including education, are positively correlated with
HDB unit density in comparison to working activities. The centrality measures the
closeness (average distance) of other buildings to the building with the biggest footprint
in the areas. Apparently, workplace buildings are likely to have bigger footprints and are
likely to be more clustered. Thus, areas with high centrality attract working and work-
related trips. Most transit network measures do not appear to be significantly
associated with the types of activities. Travelers alight at stations with high hub
centrality values, which have many out-connections, and tend to have a greater
propensity to engage in education activities. In comparison with working, stations
having frequent services are more likely to be associated with shopping trips but are less
likely to correlate with recreation, personal business and other trips. The reason for this
is most likely because transit services are more frequent in shopping centers, hawker
centers and workplaces but less frequent in parks and in open spaces, where leisure
activity are likely to occur.

5.5.3 Effect of model regularization

As mentioned in section 5.3.1, the major objective of introducing penalty terms to the
likelihood function of the MNL models is to avoid overfitting. In this study, the
regularized MNL model implemented in the gimnet package of R is used to learn activity
types from the HITS survey data from 2008. The gimnet package can generate a series of
runs that take different input values of the complexity parameter A and determine the
explanatory variables in the model. If the value of A is sufficiently large, it will reduce the
number of explanatory variables with extreme coefficients and those making smaller
contributions to the model. On the other side, if A is small and if too many explanatory
variables are included in the model, the model may have a propensity to overfit the
data. The decision for the model selection is usually based on the minimum deviation
between two model specifications with different variables and A:

Dev(y) = —2(log(LL(ylx1,41)) — log(LL(y|x2, 13)))

where LL(y|x;, A1) is the log-likelihood of the first model, which takes explanatory
variables x, and the penalty variable 1,, while LL(y|x5, A;) is the log-likelihood value of
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the second model. It is important to note that all variables, expect for dummy variables,
are already standardized in MNL6.

Figure 5-6 shows the performance of the regularized MNL models with 5-fold
cross validation using different A values. The mean deviation is used as the measure of
error. The mean cross—validated error curve and a one-standard-deviation band are
plotted. The top axis of the plot indicates the number of explanatory variables included
in the models. The left vertical line corresponds to the model with the smallest
minimum error, and the right vertical line corresponds to the best model based on the
“one-standard-error” rule, which acknowledges that the risk curves are estimated with
error, therefore tending to the side of being conservative (Hastie et al, 2009; Friedman
et al, 2010). In this case, the model following the “one-standard-error” rule is only
marginally worse than the model of the minimum error but is more conservative. The
value of A corresponding to the “one-standard-error” line is 0.0028.
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Figure 5-6. Regularized MNL with five-fold cross validation.

Based on the results of the 5-fold cross validation, the overall performance of
MNLS is slightly better that of MNL5, with an overall accuracy of 64.35%. The
classification accuracy by activity type in MNL6 is close to that of MNLS5, as shown in
Figure 5-7. However, MNLG6 is able to select from variables with high correlations and
exclude variables having smaller contributions to the learning model. For example, the
dummy variable of the time period “noon (11 am — 1 pm)” is excluded because its effect
on the activity types is not significantly different than that of the base dummy variable
“afternoon study (1 pm —4 pm)”. Similarly, a land use entropy index is also utilized
because it correlates groups of area ratios with different types of land use. Among the
two shape indices of land use patches, AWMSI and AWMEFD, only AWMSlI is used
because of the high correlation among them. In this way, 10 variables are removed
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during the model specification to produce a more conservative learning model. The
estimation results of MNL6 are reported in Table A6.

On the other hand, as mentioned earlier, because of the inclusion of the penalty
term into the log-likelihood function of the regularized MNL model, the magnitude of
coefficients will shrink because of the effort of minimizing penalties. Thus, coefficients
cannot be scaled freely as those in the traditional MNL model can be. This extra level of
constraint allows the identification of the coefficients for all alternative activity types, as
shown in Table A6. In other words, no reference alternative is needed in the regularized
MNL model. This helps to improve the performance of the model. Meanwhile, it can be
observed from Table A6 that the magnitudes of coefficients of variables remain small,
mostly ranging between -1 and 1.
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Figure 5-7. 5-fold cross validation accuracy by activity types (from MNLS to CRF1)

Because of the difficulty in deriving the Hessian matrix in the process of
estimation, the standard errors of the coefficients are not calculated, and hence, the
significance of variables cannot be tested. Table 5-6 summarizes whether the effects of
the selected variables from Table A6 are positive or negative effects. In comparison with
the effects in Table 5-5 for MNL5, some changes between effects being positive and
negative are observed in MNL6 after the regularization and standardization of the
variables and the deletion of redundant variables. For example, according to Table 5-6,
student and child concession card holders are less likely to be involved in activities such
as shopping, personal businesses and work-related activities compared to adult card
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holders. However, the corresponding cells in Table 5-4 are all positive. The positive
effect of student and child card holders on shopping activities is ambiguous in Table 5-4

Table 5-6. Effect of the selected explanatory variables on activity types from the MNL6

MNL6 Work  Education Leisure  Shopping  Eating  Social  Personal Work-related  Other

Senior + + - - +

Noon (1am-1pm)

Night (7pm-9pm)

1
+

]
4
+
+

1

'

Friday (dummy)

+
1
1
+
+
L}
+
1
1)

Distance to home (km)

+
1
1
'
)
+
+
+

Contagion index

+
+
[

[

[

"

]
-+
'

LU entropy

Nearest neighbor index - Bld

+
1
]
+
+
&
!
+
1

Compactness

4
'
1
1
+
I
'
+

Intersection per km road

+
+
1

+
S
=
+

Establishment Distance to station (stdev)

+
+
+
1
1
]
+
'
5

Hub centrality (transfer network)

'
+
1
1
+
]
[
"
+

5.5.4 Effect of resampling of the minority class

To address the issue of imbalanced data in the MNL models, the SMOTE augmented
samples are generated using the R package DMwR developed by Luis Torgo (2010). The
SMOTE() function of the DMwR package enables the simultaneous addition of new
examples for the minority class based on k nearest neighbors and interpolation and
under-sampling the majority class examples. However, because SMOTE() only
recognizes the class with the fewest observations in the dataset as the minority class, it
is executed multiple times to achieve a more balanced sample number among all
classes, as shown in Table 5-7. To realize this, different over-sampling rates were
applied to different classes based on the original sample size of the training dataset. For
example, personal business was over-sampled by a rate of approximately nine. In other
words, for each original sample in the training dataset, nine additional synthetic
instances of personal business activity were generated using the random interpolation
between targeted samples and their five nearest neighbors.
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Table 5-7. SMOTE augmented samples

; Sh in ; Work
Work Education Leisure i i Eating Social Personal
g -related

Original training 257
samples

5642 243

" SMOTE | | | | | |
augmented 5690 2584 3027 | 4568 | 3371| 3570 3600 2583

| samples , | . | - | |

Using the SMOTE-augmented samples, the average prediction accuracy of the
regularized MNL model (MNL7) decreases to 58.03%, which is worse than most of the
other models. However, as shown in Figure 5-6, the decrease in performance is mainly
caused by the reduced prediction accuracy for study and education activities. For the
minority activity types, such as leisure, eating, work-related and other activities, which
are poorly handled by other models, significant improvements are observed in the
results of MNL5, which uses the sample-balancing approach. For example, the
predication accuracy for leisure increased from 8.08% in MNL6 to 22.39%, representing
an almost three-fold improvement. Even for other activity types, such as shopping,
social and personal business, there are still moderate improvements in the prediction
accuracy. The experiment shows the effectiveness of the SMOTE approach in providing
better classification results for the activity types with fewer observations.

5.5.5 Effect of the transition of activity types

By focusing on the sequence of transit trips as opposed to individual trips and by
accounting for the transitions among different activity types, the CRF model is able to
achieve the prediction accuracy of activity types to 73.8% on average in comparison
with 64.35% for MNL6 and 53.05% for MNL7, based on a 5-fold cross validation. In
comparison with the MNL models, the improvement in accuracy is mostly a result of the
better performance in classifying activities such as work, education, shopping and social
activities. For example, the prediction accuracy of shopping activities is 49.5%, and that
of education activities is 92.11%. However, the improvement in the overall accuracy is at
the expense of a worse performance for the minority classes such as leisure, eating and
work-related activities. Obviously, the issue of imbalanced classes is also salient in the
CRF model. However, because the unit of analysis in the CRF models is an activity chain
or trip chain, common sample-balancing approaches, such as SMOTE, are not directly
applicable. One potential strategy that may address this issue is to introduce
distribution-sensitive prior information of classes into the model as the prior belief of
the distributions of classes, which permits samples to have a balanced impact on the
learning process (Song et al, 2013). An experiment using this approach will be included
in future research work.
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Figure 5-8 shows the coefficients of the activity transitions from the linear-
chain CRF model. The higher the value, the greater the probability that the transition
between activity pairs can be observed in the training data, keeping all other variables
controlled. It appears that it is common that people engage in leisure activities
(including sports) after school or in shopping activities after some social gatherings. In
contrast, it is rarely observed that people study after social activities or go to
work/school after finishing personal business. Again, note that the activities in the
learning model are those participated by means of transit. At this point, the transitions
among activities are considered stationary given the limited size of the training data. It is
possible to make the transitions time-varying if additional training data are made
available.
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Figure 5-8. Activity transition coefficients from the linear-chain CRFs model

5.6 Summary of Findings

In this chapter, a group of activity learning models (i.e. MNL and CRFs models) are
tested on different model specifications and structures. For MNL models, it appears
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that incorporating more comprehensive and spatially detailed built environment
measures rather than zonal statistics into the model help to improve the goodness of fit
moderately. Moreover, as shown from model MNL2 to model MNL3, when the built
environment measures are changed from stationary ones to time-varying ones, there is
a notable improvement in the classification accuracy as well as the goodness of the fit of
the model. Nevertheless, when the time-of-day variables are present, the benefit of
incorporating temporally varying built environment measures becomes insignificant, as
shown by the comparison between model MNL4 and MNLS. The possible interpretation
is that the impacts of many temporal covariates are mixed up together with the dummy
variables of time periods. More empirical studies are needed to identify the variables
mattered temporally and the appropriate temporal scales of the variables. Meanwhile,
considering the imperfect information of business open hours is used to measure the
spatiotemporal distribution of establishments, it can be anticipated that more
improvements will be achieved with better temporal data.

To address the interdependencies among the activities, a linear-chain
conditional random fields (CRFs) model is tested to estimate types of activities according
to the conditional probabilities of observing a sequence of potential activities based on
the sequences of observed trips and destination locations. The result of the CRFs model
shows a notable improvement in the overall classification accuracy due to the inclusion
of Markovian transitions among activities as additional variables in the modei. However,
because the CRFs model selects the most probable activity chain based on the
sequences of observed variables as the predicted activities of the observed transit trip
chain, which tend to bias toward activities with more samples, the classification
accuracy rates of the minority activity types are generally worse in comparison with
those from the MNL models.

The methodology discussed in this chapter is still cross-sectional in nature.
Alternatively, the types of activities may also be learned based on the time and
frequency of visits over a long period of time. The trip and location histories are
especially valuable for the activity detection when considering certain activities like
shopping or personal businesses are planned weekly rather than daily. Nevertheless,
this requires the training data spanning over multiple days. In this study, the training
data come from a one-day household travel survey, which make it difficult to
incorporate the repetitiveness and variability of trips into the activity learning models.
In Chapter 6, we describe an approach to extract home location from week long transit
trip logs from the available EZ-Link data.
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Chapter 6. Activity Inference and Visualization

6.1 Introduction

With the activity learning models estimated in Chapter 5, the results can be applied to
the EZ-Link data to infer the hidden activity types and to explore the activity-travel
patterns of millions of transit passengers and their interactions with the urban built
environment. Because the in-home activity following the “returning home” trip is not
included as an alternative activity type in the multinomial logit (MNL) models, the first
task of the activity inference is to identify the approximate home locations of the transit
passengers. The identified home locations enable to differentiate the returning home
trips from other transit trips in the EZ-Link data. At the same time, we can compute the
distance of alighting stations to the approximated home locations, which is one of the
explanatory variables needed to estimate the probabilities of different activity types.

In the proposed analytical framework, activity inference is not the end of the
process. Instead, it should be considered as a starting point for a more profound
exploration and reasoning process to drill down to the human activity-travel trajectories
at disaggregated level, to identify the irregular patterns that are not well predicted by
the models and to extract more knowledge on the correlations between the
complicated activity-travel patterns and the urban built environment. As we start to
tackle with rapidly accumulated spatiotemporal information, and more complicated
models, the conventional thematic mapping or geoprocessing procedures that relying
on much manual work on post-processing effort become both too cumbersome and less
sufficient to present the level of detail that we want to explore. There are imperative
needs for new visualization approaches to account for these challenges.

In this chapter, we first discuss the algorithms used to extract the home
locations of the EZ-Link card holders. Based on the estimated learning models and home
locations, the activity types of the transit trips are inferred. Then, visualization examples
are prototyped to illustrate the spatio-temporal dynamics of individuals’ movements
and activities, as well as their collective impacts on the catchment areas surrounding the
transit stations. The built environment measures are included in the visualization to
describe and differentiate urban places, and to help interpret the context-dependent
choices of people.

6.2 Home Location Extraction

It has been noticed by researchers that the individual movement trajectories revealed
by the multiple-day urban sensing data contain the locational information that could
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help to extract the important features of activity-travel patterns. Many sophisticated
rules and algorithms have been developed to extract the mobility information from
urban sensing data, although the exact implication of the recorded positions may not be
clear. For example, Kim et al (2006) were able to identify the movement speed, pause
times, destination transition probabilities, and waypoints between destinations by
examining the WiFi traces of wireless users and explicitly define the physical properties
of movement such as pause and flight. Rhee et al. (2008) has demonstrated that from
GPS trajectories it is possible to extract information like moving direction, velocity and
hotspot. Hariharan and Toyama (2004) also adopted a set of heuristic rules to parse
locational information like stay, destination, trip and path from the GPS data. In their
study, a stay is a single instance of place that an object spent some time. A destination is
defined as a place that one or more objects had a stay. A trip is the movement between
two successive stays and a path is composed by a set of trips connecting destinations.
These characteristics of human mobility are commonly used to fit mobility models such
as random walk models and Levy Walks.

In comparison with the other types of urban sensing data such as GPS or cell
phone data, the information collected from the transit transaction smart card has the
advantage of that all spatial information is sensible. It is either the boarding station or
the alighting station of the trips. Considering the density of transit stations in Singapore
and the transit trip records collected over muitiple days, it is likely the spatial locations
of homes can be extracted approximately if the spatial-temporal rules of the home-
based or home returning trips can be detected. Because the EZ-Link data only record the
positions of the transit passengers at the level of transit stations, the primary task of
determining the home location of a passenger is to find out the transit stations
surrounding the home location that the passenger can directly access from home by
walking. Here, we define the concept “home station” as the transit stations used by a
given transit rider that are more accessible from the home by walking than by
connecting from other transit stations. Here, the accessibility is a composite measure
that not only takes into account the distance but also considers the time, the cost, and
the convenience of connections. Home station detection is not as easy as it appears to
be. Note that a home is usually served by multiple home stations with which the transit
passenger can travel to different destinations via different transit routes. Also, it is
important to realize that the mostly visited transit station in the observed EZ-Link trips
of an individual is not necessary his home station. For example, the MRT station close to
the workplace may be visited more than the nearest bus stop to home if there are
multiple “home stations” that divide the home-based trips and the returning home
trips. In addition, the starting station and ending station of a home-based tour can be
different because passengers may select the more frequent bus route if multiple transit
routes are available between origin and destination.
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To account for these complexities, a hierarchical nesting of heuristic rules are
applied to extract home locations. The degrees of difficulty for detecting home locations
are different for different passengers, depending on the volume of trips contained in the
EZ-Link data. The more transit trips made by a passenger, the greater the likelihood that
the approximate location of home can be detected. Therefore, as opposed to
formulating generic rules that try to match with all card holders, it is more appropriate
to have complex rules applied to those card holders with sufficient information but have
simple rules applied for those who have limited information recorded. In brief, the
approach is intended to extract the best possible result for each card holder using the
differentiated rules based on the amount of information contained in the data.

The proposed approach to extract home location consists of two steps. In the
first step, for each EZ-Link card holder k, a set of candidate “home stations” 5‘k are
identified from the 15-day EZ-Link dataset by finding all the stops sufficing one the
following conditions:

e Boarding stop of the first transit trip made between 5am and 10am on a
weekday;

¢ Alighting stop of the last transit trip made between 6pm and 2am on a weekday;

e Boarding stop of the first trip on a weekend or a holiday;

e Alighting stop of the last trip on a weekend or a holiday.

These rules help to narrow down the set of potential transit stations
surrounding home locations because most transit passengers normally start their daily
trips from home and end daily trips at home. But for an infrequent transit user, the
origin station of the first transit trip or the destination station of the last transit trip
might be irreverent to his home location. Thus, time constraints were placed in the rules
to reduce the possibility of falsely considering the stops of a transit trip neither starting
nor ending at home as “home stations”. According to the HITS 2008 dataset, 87.56% of
the first transit trips of respondents are originated from home. But if the starting time of
the first transit trip is constrained to the time period between 5am and 10am, the ratio
increases to 97.07%. Likewise, if one looks into the last transit trips that end after 6pm,
the chance that the trips end at homes is 93.97%. These statistics from the household
travel survey provide evidence for the heuristic rules in detecting the “home stations”.
For the card holders that don’t have candidate home stations identified in this step, the
most frequently visited stops are used as the surrogates of “home stations”. If multiple
home station candidates are found, the mostly visited one is then considered as the
“primary home station” PS;. The remaining candidate stations that are within an
appropriate distance dg (e.g. 500m) from the primary home stop are considered as
secondary home stations, which are also used, although not as frequent as the primary
home station, for home-based transit trips. Figure 6-1 b) illustrates of the identification

of candidate home stops from the transit trips recorded in the EZ-Link data.
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a) Map transit journeys b) Identify home stations c) Approximate home location

Q Transitstations of journeysrecordedin the EZ-link data === Transitroute segment

@ Other transit stations = Origin ends
=== Destination end

O Home stations

Figure 6-1. lllustration of the procedure of extract home locations from the EZ-link data

In the first step of the approach, one or more “home stations” are identified
for each EZ-Link card holder k and a “primary home station” PS;, is determined. In the
second step, the spatial resolution of the potential home locations is reduced to building
level by examining the potential residential buildings hj surrounding the set of “home
stations” §k. By combining the topology of transit network and the information
contained in the transit trips, we can bind the home locations to a clear-cut
geographical area (Figure 6-1 c). For each transit trip starting or ending at a home
station, the previous stop and the next stop of the home stations are retrieved. Only
those residential buildings that are closer to the identified home stations than to the
previous or next stops of the recorded transit routes are considered as the eligible home
locations. Then, a building is sampled from the eligible residential buildings in the area.
This building is regarded as the approximate home location of the given card holder H.
To protect the privacy of travelers, the locational information of home is not revealed
and only the relative spatial relationships like distances between the destination
stations and the estimated home locations are preserved.

A pseudo code of the home location extraction approach is given in Table 6-1.
The inputs are the transit trips from the EZ-Link data recording the EZ-Link card id, trip

starting time, boarding station and alighting station TR {c;, t;, sfoaming,sf“ghtm‘g}, as
well as the residential building directory B. first_trip(t;, c;) and last_trip(t; c;) are
the functions used to determine whether a trip sufficing one the first trip and last trip

conditions mentioned above. The dist() function calculate the Euclidean distance
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between two spatial objects. sia”ghti"g *1 denotes to the next station of the alighting

station in the transit route and s, alighting=1 jenotes to the previous stop.

Table 6-1. Pseudo code of extracting home locations from the EZ-Link data

Input: raw EZ-Link transit trip record TR {c;, t;, s % "9, s2Hghtingy
residential building list B
radius of the catchment area around transit stations d

Output: estimated home location vector H

Initialize k< 1,i< 1,5 <@, PS—@,H< @,h< 0@
While k<N
m « count( c; = card holder ;) +i—1
i=i
While i<m
If first_trip(t;,c;) = TRUE
Sk - Sk U Sboardmg
Else If last tnp(t,, ¢;) = TRUE
Sk - Sk U S,altghtm.g
End
i—i+1
End
PS - 3 max_count
k k
" hy « B s.t. dist(B,PSy) <dg
Whilei < m
If S?oarding € g

dist ( boardmg

) dist (h , SPoardlng+1)
dist (h , sf’ °‘”d"‘9)

)

)<d

hk « hk s.t. dist (h , S{;oardmg-— )

I/\

Else If s?l'ghtmg €S,

di St( ‘ siallghtmg <d ( S%zlighting+1)
hk A hk s.t. dist (h ' Sallghtmg ( ) S?lighting—l)
End
iei+1
End
Hy « sample(h,, 1)

End
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6.3 Activity Inference

6.3.1 Inference using MNL models

Once the same set of explanatory variables are computed and assembled for the transit
trips in the EZ-Link dataset, the estimated activity learning models can be applied to
infer the hidden activity types associated with the transit trips. MNL learning models
predict the probability of each activity type based on the pertinent trip information and
the built environment measures of the areas surrounding the destination station
according to the equation 5-1. Rather than choosing the activity type with the largest
predicted probability, a Monte Carlo simulation method is used to decide the activity
types. This avoids the situation that the minority activity types are absent in the
predicted results because their probabilities are usually low. Meanwhile, it adds the
stochasticity to the results, which to some extent reveals the randomness in the real
world that is not captured in the learning models.

6.3.2 Inferring Activity Types using CRFs models

Considering now the parameters of a conditional random fields (CRFs) model have been
estimated from training dataset, which means the estimates of the activity transition
rates and the context dependency coefficients as well as the initial activity state
distribution are known, the problem becomes how to infer the unknown activity types
in the form of activity chain. Under the framework of CRFs, we need to find out a single
best activity sequence that can maximize the joint probability of hidden activity types
conditional on observed sequences of trips, locations and temporal factors. This
problem can be effectively solved by the forward-backward algorithm, which is also
referred to as Viterbi algorithm (Rabiner, 1989). Although the estimated CRFs model has
a higher overall accuracy in predicting activities, it has been shown in the Chapter 5 that
it performs worse in classifying the minority activity types like leisure and personal
business. Therefore, in the visualization examples discussed below, we use the activities
inferred from the regularized MNL model (MNL6).

6.4 Examples of Exploring and Visualizing Activity-travel Patterns

- The abundant information contained in urban sensing data and the intertwining
relationships of multi-facets of activity-travel patterns make it difficult to examine the
data, the models, and the prediction results. The contextual information adds to the
complexity of exploration and reasoning process. Therefore, there is an urgent need for
effective visualizations to assist in understanding activity-travel patterns and
interpreting the spatiotemporal associations among activities, trips and the urban built
environment. ldeally, visualization examples should not only provide an overview of the
data, but also allow exploration at a variety of geographical and temporal scales,
because both the overall urban dynamics at the city level as well as the built
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environment at the neighborhood level are important for comprehending the behaviors
and choices of individuals. Moreover, the visualizations must present individuals’
activity trajectories together with the built environment information. In this study, three
visualization examples are prototyped to demonstrate the strength of coupling EZ-Link
data with built environment information to acquire insights on individual activity-travel
trajectories, urban space usage, and the interactions between human behavioral choice
and urban environment. By combining the:analytical reasoning with visual exploration, it
is expected to not only facilitate the detection of methodological issues, but also
stimulate the knowledge discovery, which can be used to augment the analysis process.

6.4.1 Single Transit Trips

The large volume of information contained in the EZ-Link data provides
opportunities for researchers to focus on the patterns that are relevant but less
emphasized in the convention studies. One example is the pattern of transfers as a
result of the choices of transit paths (see Chapter 2 for more description). Another
example is the single transit trips made by travelers during any of the observed days.

In the process of exploration, we found around 24.9% of the transit riders only
made one transit trip in a day. These single transit trips account for around 10.7% of the
total transit trips. That means these travelers took transit system for a one-way trip and
might use other transportation modes for the other legs of the trips if their trips were
round trips or looped tours. Understanding these single transit trips can provide insights
for the choices of multi-mode transportation for people’s daily travel chain. The single
transit trips are paired by origin and destination stations and are plotted on Figure 6-2.
Each line in Figure 6-2 represents an OD pair flow with observed single transit trips. The
width and the levels of opaqueness of the lines are proportional to the magnitude of the
single transit trips. The lines are coded in three colors with the orange ends connecting
to boarding stations and blue ends connecting to alighting stations.

The map is helpful in identifying places that produce or attract such trips. For
example, the places like Changi airport and the Singapore-Malaysia border attract and
generate significant amount of single transit trips because travelers just come from or
prepare to travel abroad. These are all one-way trips. Jurong point mall appears to be
another strong attraction for the single transit trips. The places like harbor front,
downtown and the neighborhoods around the Jurong Point seem to be the main
sources of the single transit trips. To understand why some places attract or generate
such single transit trips, it is useful to explore the trips side by side with the urban form
information of areas surrounding the origin and destination transit stations. Next, we
dig into the example of Jurong point mall to demonstrate the exploration and reasoning
process that can be facilitated by visualization examples.
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Figure 6-2. Spatial pattern of single transit trips in the EZ-link data on April 13, 2011.

When zooming into the Boon Lay bus interchange, the main bus stop next to
the Jurong Point mall, it can be seen from Figure 6-3 a) that the single transit trips are
mainly originated from the transit stations in the nearby neighborhoods and Jurong
west as shown by the purple and red lines which indicate a relatively high volume of
transit trips. In contrast, the number of single transit trips from the stations east to the
Boon Lay bus interchange is generally low, mostly ranging from 1 to 9.

Figure 6-3 c) shows a parallel coordinate plot intended to depict the
surrounding built environment of transit stations by a group of selected indicators. The
colors of lines are corresponding to the volume break down of the single transit trips.
The thick red line denote to the origin station that generate the maximum volume of
single trips to the Boon Lay bus interchange. The thick blue line represents the Boon Lay
bus interchange. As shown in Figure 6-3 c), it is relatively clear that the areas that
generate more single transit trips to the Boon Lay bus interchange are those with less
fragmented land use types (high contagion index), low presence of businesses indicated
by relative low business entropy values and retail amounts, low node centrality in terms
of transfer degree and strength, high industrial areal ratio and mid-high residential areal
ratio. Coupling the map a) and the parallel coordinates c), a number of possible
hypotheses might be contemplated to interpret the great number of single transit trips
ending at the Boon Lay bus interchange. First, the shuttle services provided by the
Jurong Point mall and other agencies enabled travelers to avoid the use of transit
service for their returning trips. Second, there are four taxi stands around the Jurong
Point mall, which make it much easier for travelers to get a taxi for the ride home when
they may be burdened with shopping bags. Third, the relative low presence of retail and
other businesses in the Western part of Singapore made the Jurong point not only a
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main attraction of various types of activities, but also a meeting point for people
from different origins. Conceivably, a considerable number of returning trips might
be accomplished by taking the cars driven by other travelers. These hypotheses are
worth to be explored further as additional information become available. To sum up,
the significance of the single transit trips call for attentions to underestimated
modes in the transportation planning like shuttles, company vehicles, taxis etc.

6.4.2 Individual Activity-Travel pattern

The individual movement patterns in the EZ-Link data contain plentiful information
to be explored. As an example, Figure 6-2 and 6-3 plot the transit trips that a subject
made between April 11, 2014 and April 15, 2014 and the inferred activity types side
by side. The subject is selected because he is among the passengers who made the
most transit trips in the selected time period in the EZ-Link dataset. To protect
privacy, the names of the stations are replaced by implicit station IDs and the
coordinates of the locations are tweaked to make it difficult to identify the actual
locations.

To represent the rich information of activity-travel pattern, a variety of
graphical encodings are used in the visualization. The transit trip trajectories
displayed in Figure 6-2 use different line styles to represent different days of the
week. For example, the solid lines correspond to the trips made on Monday and
dotted lines correspond to the trips made on Wednesday. In addition, for the trips
between same origin and destination but were made on different days, offsets were
added to the trip lines to show the repetitiveness of the trips. In Figure 6-2 b), one
can see multiple parallel lines connecting among transit stations, which suggests the
regular pattern of the trips. The types of transit stations are differentiated by the -
colors, with blue circles representing origins and yellow circles representing
destinations. The sizes of the circles are proportional to the number of transit trips
observed to originate from or designate at the given stations. The stack bars next to
each yellow circle (i.e. trip destination) indicate the inferred probabilities of engaging
different types of activities under the given circumstance. The number of bars is in
line with the number of trips made between the same OD pair.

One can see that the predicted results of activity types are different for the
same trip routine made on different day. This is because the contexts of the transit
trips have changed due to the variation of temporal factors like weather, transit
services and time of day. However, this gives rise to the question about whether the
regular routine trips should always have same trip purposes. If the answer is yes,
then the multiday regularity of the trips should be built into the activity learning
models as an additional variable. Because the HITS data only cover the trips of the
respondents on a single day, the question is left to be answered in the future.
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As shown in Figure 6-4, the activity space of the selected subject
concentrates in two areas connected by daily routine trips. One is at the northern
part of Singapore, where the estimated home is located (Figure 6-4 b). The trips
ending at the stations surrounding the estimated home locations are mostly
returning home trips. The other is at the central part of Singapore (Figure 6-4 c),
where the subject appeared to be very active in engaging social, eating and shopping
activities. One may speculate that the workplace or school of the subject is in the
second area because of the daily routine trips. However, the activity types inferred
from the learning models suggest that the purposes of trips ending in the area are
not very likely to be working or education. This motivates me to explore further by
considering the temporal distribution of the trips.

Figure 6-5 shows the temporal pattern of the trips made by the selected
subject. The X axis denotes the time period between April 11, 2014 and April 15,
2014 grouped by every two hours. The Y axis displays the station IDs of the boarding
stations (blue dots) and the alighting stations (red dots) of the observed trips. The
black lines linking pairs of boarding and alighting stations are the transit trips. It is
clear that most of the transit trips were made at late afternoons (after 3pm) or in the
evenings. No trips were made in the mornings.

Moreover, the subject was very active between 3pm to around 11pm,
because he made around 7 transit trips on average on the observed days. Some trips
are quite regular temporally. For example, the trips from station 37 to station 32,
which can be observed at about the same time (3pm) on Monday, Wednesday and
Thursday. The time and the levels of activeness of the observed transit trips both
imply the purposes of routine trips from the estimated home location to the major
activity destination are unlikely to be working or education. Instead, it is possible
that the subject’s parents or other important relatives were living in the second area,
which may explain the regular transit trips made between the estimated home
location and the major activity destination area. '
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Figure 6-4. Visualizing individual activity travel pattern.
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Figure 6-5. The temporal pattern of transit trips
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6.4.3 Activity Landscape of places

Beyond revealing the activity-travel patterns of individual transit passengers, it is
informative as well to use the inferred daily activity types to depict the activities profiles
of places in the Singapore. Characterizing place is not only crucial for urban design but
also important for location choice models in transportation and urban modeling.
Traditionally, researchers rely on static land use data to differentiate locations. With the
EZ-Link data and the activity learning models, it is possible to explore how urban spaces
are utilized by transit passengers over time in a day. Figure 6-6 a) shows the magnitudes
and the types of transit-oriented activities occurring in the areas surrounding the
Chinatown MRT station throughout a weekday. A trellis display chart is presented to
show the built environment measures the location (Figure 6-6 b).

In Figure 6-6 a), the estimated activity profile of the transit passengers alighting
at the Chinatown MRT station is represented by a wind rose chart. Each bar column
around the inner circle corresponds to the volume of passengers boarding or alighting at
the station in every 10 minutes. The grey bars pointing inward to the circle center
describe the volume of boarding passengers. The stack bar columns stretching outward
represent the aggregated probabilities of different activity types of the alighting
passengers. It is clear from the figure that most of the trips ending at the Chinatown
MRT station during the morning peak hours were working trips. There were at most
around 90 passengers per minute arriving in the area by the MRT trains. As time passes
by, a higher proportion of transit passengers came to the area for the purposes of
shopping, eating or personal business. At around 6pm, the volumes of both incoming
trips and outgoing trips attained another peak. The main purposes of the incoming trips
were shopping, eating and social.

The trellis display chart shown in Figure 6-6 b) displays the built environment
measures of the place from four dimensionalities: land use, building layout, distribution
of establishments and transit network connectivity. The values of the measures showed
in the chart have already been standardized. For each selected built environment
measure, the chart represents the values corresponding to the Chinatown MRT station
in red dots, the minimum value in yellow dots, the maximum value in blue dots, as well
as the values of other stations in grey dots. This enables us to know the relative position
of the target place among the catchment areas surrounding all transit stations regarding
particular aspects of the built environment. For example, the catchment area of the
Chinatown MRT station generally has high land use diversity, but low presences of either
park or open space. The standard deviation of the building footprint sizes is
comparatively low, indicating relatively uniform building types in terms of the footprint
size. Besides, the area has a high mix of the types of businesses and the MRT station has
a high degree of transfer connectivity with the surrounding transit stations. Compared
with the other locations, the businesses within the Chinatown area also tended to be
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more clustered as indicated by the nearest neighbor index. These measures help to
interpret the attractiveness of the area to shopping, eating and social activities. Overall,
these figures enable a better understanding of the locations within the Singapore and
can provide better support for urban management and location choice modeling.
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Figure 6-6. Visualizing the activity-travel landscape of the Chinatown MTR station.

6.5 Implications to activity-travel research and planning practice

This study investigated an analysis framework to incorporate the EZ-Link data
into the activity-travel behavioral study with the assistance of improved measurement
of context, in particular the urban built environment, by drawing on the
spatiotemporally detailed data from multiple sources. Central to the proposed
framework is the development of learning models to recognize the unknown activity
types of the observed transit trips based on the estimated correlations derived from a
household travel survey. It is crucial for policy makers and planners to know the
activities associated with trips because activities explain the question why trips are
made. In addition, recognizing various activities in a place provide rich information on
interpreting how urban places are used. In this sense, the framework shows some
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potentials of using EZ-Link data to complement our understandings of activity-travel
behaviors and urban dynamics.

Generally, EZ-Link data can extend the scope of the questions that can be
investigated. The large sample size might help to expose the patterns that are not easy
to be discovered from traditional surveys. We present two examples: transfers among
transit stations and single transit trips. Both examples are important to consider from
the perspective of mode and path choices in the travel demand forecasting but are not
well addressed in the conventional activity-based modeling approach. On the one side,
transfer is critical for the path choice of travelers. The place of intermediate stop may be
considered in the process of activity scheduling for activities like grocery shopping or
personal banking service. On the other side, understanding the transfer preference of
travelers help to better organize the transit services and therefore reduce operational
cost by removing or adjusting under-demanded route or link segments. Traditional
mode choice models usually predict the same transportation mode for trips between
the same origin and destination. Single transit trips indicate the importance of
considering multiple modes and other contextual factors in the mode choice model
since an unignorable portion of round trips might be made by different modes for each
way. For example, some transit riders may switch to taxis when raining or accumulating
shopping bundles. Similarly, additional insights on the travel patterns might be exposed
by the EZ-Link data, such as the choices of rapid transit routes, trunk lines and other
feeder lines. The difference in path choice can be analyzed to detect the problems with
underused routes such as long detours and to help improve the efficiency of transit
system by addressing the detected issues.

The second aspect of contribution results from the longitudinal coverage of
EZ-Link data. At the individual level, we would be able to observe the regularity and
variability of weekly transit trips, and detect the frequently visited activity destinations.
This is important because most people plan and schedule their activities over multiple
days. More significantly, the longitudinal data enable us to capture the behavioral
changes of people in response to the land use change such as the conditions that a new
subway line is in operation. It is also possible to track the evolution of activity spaces of
people potentially shaped by their spatial knowledge. This can be useful to help
determine the choice set of destinations in the destination choice model.

From the perspective of land use and transportation planning, the exploration
of the transit trips recorded in the EZ-Link data and the correspondingly inferred
activities help to reveal the usage of urban spaces for different purposes at different
time of day and day of week. Meanwhile, for a particular place, we are able to find out
where the visitors come from via transit service. This enables us to identify the spatial
distribution of potential customers of a local mall or the spatial range of attractiveness
of a community center. It is also possible to estimate the impact on an existing mall if a

139



new mall is opened in the next town. Of course, this type of analysis needs to couple EZ-
link data with spatio-temporally detailed urban built form information.

Further, EZ-link data can be used to test and validate activity-based models.
This is an important research topic but beyond the scope of this study.

In summary, EZ-link data have the potential to enrich the understanding of the
context dependencies of human activity-travel behaviors by assisting the detection of
changes or irregular patterns. The possible causes of the changes might be
distinguished, and the exploring and reasoning process can be facilitated, when coupling
EZ-Link data with other spatio-temporally detailed data. This is helpful in expanding the
knowledge base to support more realistic activity-based modeling and planning
practices.

6.6 Summary

In this section, we demonstrated the possibility of detecting home locations based on
the multiple-day trip records in the EZ-Link data and of inferring the hidden activity
types using the estimated learning models. In addition to the home location, it is also
likely to detect other anchor locations of individual travelers such as workplaces and
schools based on the regularity of the trips, if the EZ-Link data are available for more
days. The visualization examples illustrates the types of analytical reasoning that the
proposed visualizations facilitate by presenting the spatiotemporal details of the transit
trip trajectories alone with the predicted activity types of individuals. For a specific
place, the visualization examples can be used for pursuing a wide range of inquiries (e.g.
what type of people visit this place for what purposes at different time of day). This kind
of place-based inquiry will contribute to our understanding of destination choice
behaviors and location-activity interactions.

- One important issue that must be confronted is privacy. As the EZ-Link logs
accumulate over days, the spatially explicit information on the trajectories of individuals
make it hard to anonymize subjects completely. Although the raw data access is strictly
limited, it is important that the processed data are presented with appropriate attention
to privacy by either aggregating the information or transforming the spatial and
temporal tags of the data to make it impossible to identify any subject or the actual
locations they visited (Gutmann et al., 2008). In this study, offsets are added to the
transit stations and estimated home location to make it hard to recognize the actual
locations from the visualization example.
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Chapter 7. Discussion and Conclusions

The study of human activity-travel patterns for transportation demand forecast
has evolved a long way in theories, methodologies and applications. However, the
scarcity of data has become a major barrier for the advancement of research in the field.
At the same time, the proliferation of urban sensing and location-based devices generate
voluminous streams of spatio-temporal registered information. These urban sensing
data such as the EZ-Link data contain massive information on urban dynamics and
individuals’ mobility. For example, EZ-Link data reveal the places that transit passengers
visit at different times of day. As tempting as it appears to be, the incorporation of these
urban sensing data into activity-travel study remains a big challenge, which demands
new analytics, theories and frameworks to bridge the gap between the information
observed directly from the imperfect urban sensing data and the knowledge about how
people use the city. This study represents a step toward this objective.

We propose a framework of analysis that focuses on the recurring processing
and learning of voluminous EZ-Link data flows in juxtaposition with additional auxiliary
spatio-temporal data, which are used to improve our understanding of the context of
data. The framework consists of an ontology-based data integration process, a built
environment measurement module, an activity-learning module and visualization
examples that facilitate the exploration and investigation of activity-travel patterns. The
ontology-based data integration approach helps to integrate and interpret spatio-
temporal data from multiple sources in a systematic way. These data are used to
reconstruct the context under which the travelers made their transit trips. In particular,
a set of spatial metrics are formulated to characterize urban built environment of the
trip destinations. In order to understand why people make trips to destinations, we
need to have a sense about the possible activities associated with trips. Therefore, an
activity learning modaule is developed to infer the unknown activity types from millions
of trips recorded in transit smart card transactions in Singapore by learning the context
dependent behaviors of travelers from the traditional household travel survey. The
learned activities not only help the interpretation of the behavioral choices of transit
riders, but also can be used to improve the characterization of urban built form by
uncovering the likely activity landscapes of various places.

Although different modules of the framework are loosely coupled at the
moment, we have tried to pipeline as much of the process as possible to facilitate
efficient data processing and analysis. This allows researchers and planners to keep
track of the evolution of human activity-travel patterns over time, and examine the
correlations between the changes in activities and the changes in the built environment.
The knowledge gained from continuous urban sensing data will certainly help policy
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makers and planners understand the current state of urban dynamics and monitor
change as transportation infrastructure and travel behavior evolve over time.

In addition to incorporating new data, the framework has feedback loops that
facilitate the refinement of each module, such as better measurement of urban form,
and the improved learning models. Therefore, the knowledge and ideas generated in
the process of analysis are readily to be applied and tested.

7.1 Major Findings

Through the exploratory analysis, we found the overall transit travel patterns revealed by
the multiple day EZ-Link data present regularity in both spatial and temporal dimensions.
However, there is considerable variability at the level of trips as evidenced by the low
trip repetitiveness rate within the observed week. This suggests that individuals have
different choices of activities and destinations on different day of the week, which
necessitates the investigation of multiday activity-trip pattern and the introduction of
spatial detailed urban form measures to infer the purpose of trips.

In order to support finer analysis and modeling efforts of the EZ-Link data,
spatial and temporal data relevant to the urban built environment are gathered from a
variety of sources including government agencies, web services and crowdsourcing.
However, these datasets from heterogeneous sources take on different structures,
formats, naming conventions and data qualities, which make it difficult to merge into an
integrated dataset. To overcome the barriers for data interoperability and integration,
we demonstrated an ontology-based approach to integrate multiple datasets by
matching the schema from each local dataset to a global schema, i.e., a task-specific
ontology. Routine processing procedures are developed for the cleaning, evaluating and
fusion of multiple datasets. These procedures enhance the spatio-temporal detail and
attribute richness of a city’s built form and socio-economic activity in ways that can be
helpful for many aspects of urban planning and urban management. In our case, we
focus on using the data fusion results to improve our interpretation of EZ-Link data.

The framework also facilitates the processing of the spatial-temporal detailed
dataset and the production of a comprehensive set of spatial metrics to measure the
transit station centric urban built environment from four dimensions: land use
composition, building and street layout, spatial distribution of businesses, and transit
network typology. In particular, the measures of transit network are included to gauge
the centrality and connectivity of a station in the network. The transit network analysis
is augmented by the transfers among stations observed in the EZ-Link data. Presumably,
the destination choice may involve the consideration of accessibility of the destination,
especially when multiple trips will be made. However, according to the results of the
MNL activity learning models, the measures of transit network and transit service are
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mostly not significantly correlated with the activity types. This is probably due to the
correlation between transit network measures and other station-centric built
environment measures. Otherwise, it may imply the accessibility and centrality
measures derived from the transit network analysis do not really capture the factors
correlated with activity types from the perspective of individual travelers, since the
activity designation may be only part of what motivated the destination choice and
route choice.

Incorporating the temporal variation of establishments and transit services to
the built environment measurement provides a better portrayal of the surroundings of
each transit trip destination at the time the trip was made. By using the concurrent built
environment measures, the goodness of fit as well as the prediction accuracy of the
MNL learning model does increase, although only marginally. But considering the
imperfect information of business open hours is used to measure the spatiotemporal
distribution of establishments, it can be anticipated that more improvements will be
achieved with better temporal data. In addition, the impacts of many temporal
covariates are mixed up together in the learning models if only the dummy variables of
time periods are included, to disentangle the mixed impacts and reduce the possible
spaito-temporal confounding effect, we must use the built environment measures that
are more precise both spatially and temporally.

To address the interdependencies among the activities, a linear-chain conditional
random fields (CRFs) model is used to estimate types of activities according to the
conditional probabilities of observing a sequence of potential activities based on the
sequences of observed trips and destination locations. The result of the CRFs model
shows a notable improvement in the overall classification accuracy due to the inclusion
of Markovian transitions among activities as additional variables in the model. However,
because the CRFs model selects the most probable activity chain based on the
sequences of observed variables as the predicted activities of the observed transit trip
chain, which tend to bias toward activities with more samples, the classification
accuracy rates of the minority activity types are generally worse in comparison with
those from the MNL models. This suggests we may need to consider higher order
dependencies in the CRF chains or identify other factors that distinguish transit trip
types in the EZ-Link data for which we could fit separate models.

In this study, we also discussed several methodological issues that are
confronted by the activity learning models. Regularized MNL model is employed to
avoid the model overfitting issue in the traditional MNL model by including extra
penalty for the coefficients of explanatory variables. For the issue of imbalanced classes
concerning the poor classification of the minority activity types in the learning models,
we have experimented with a resampling approach, SMOTE, to attain relative balanced
sample sizes of the training dataset for different activity types. The 5-fold cross
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validation shows that the classification accuracies of the minority activities are improved
to different extents, at the cost of reduced prediction accuracies of working, education
and shopping activities.

In a nutshell, the proposed analytical framework demonstrates that the use of
urban sensing data such as EZ-Link transactions for urban planning purposes requires
considerable data processing and juxtaposition with many other datasets about the city,
including traditional household travel surveys and newly emergent online data sources.
The rich context is needed to piece together the trips, the inferred activities and the
urban built environments under which the activity-trip behaviors are observed in urban
sensing data. What's more, the framework emphasizes the streamlining of the analytical
modules, which can make the future analysis more adaptive for the new data, new
learning models and new measures of the contexts of activities and trips.

7.2 Research limitations and Future Work

7.2.1 Built Environment Measurement

One of the objectives of this study is to formulate appropriate measures for the urban
built environment, which is mainly used to infer the types of activities based on the
correlations between the locational built environment and trip destinations. But more
generally, measuring the built environment is a part of the effort to quantitatively
describe the broader contexts under which the activities and trips are participated,
which can include more spatio-temporal factors than what are included in this study.
Although a set of spatial metrics are calculated to evaluate the built environment from
different perspectives, some simplifications and assumptions in the process of the
measurement can be further refined in the future.

Because employment data are not available at the disaggregated level, the
information about establishments becomes important for characterizing the
opportunities and attractiveness of urban places. While the temporal availability of the
establishments is accounted for in the study, it is recognized that the classification
model used to impute the open hours should be improved. To improve the model, we
can experiment with additional predictors or search for extra training data from new
sources.

In addition, the types of establishments were determined on the basis of two-
digit Singapore Standard Industrial Classification (SSIC) categories, which is a much
aggregated level of classification. For example, all businesses related to food and drinks
are classified as “Food and Beverage Service Activities”. Such a classification is not
oriented to match with human activity types. Restaurants, pubs and coffee shops are of
the same type and are considered to have the same effect on human activities. This
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certainly increases the ambiguity of the calculated spatial metrics. Therefore, a more
detailed and activity-oriented classification of establishments is needed. More and more
online information like yellow book and FourSquare provide concrete description of the
businesses. Applying the ontology-based data integration approach and text mining
approach may help to acquire the categorization that is more appropriate for the built
environment measurement and activity learning.

Further, the role of a transit station in the transit network directly influence the
connectivity and accessibility of the urban place it serves. The transit network analysis in
this study addresses the issue of the integration of bus network and transit network by
including transfers between stations as virtual links. The indicators focus on measuring
the topological position of the stations in the network, such as centrality and connection
strength. However, because the unit of analysis of transit network analysis is station as
opposed to place, the centrality and-accessibility of the individual station cannot be
explicitly translated to the accessibility of places since one urban place may be served by
multiple transit stations. From the point view of transit passengers, what needs to be
measured is the accessibility of places, not only the accessibility from origins, but also
the connectivity to next destinations if a chain of activities are scheduled. In this sense,
although the transfers and frequencies of the services are accounted for in the current
measurement, to measure the transit accessibility of a place (e.g. the catchment area of
a transit station), it is necessary to identify other stations serving the same place and
count the contributions from those stations on transit accessibility. Clearly, additional
research effort is needed in order to transform the “network of stations” to the
“network of places”.

7.2.2 Learning Models

Good fearning models are the ones that can extract relatively homogeneous
relationships between activities and explanatory variables. This depends on two factors:
the availability and quality of the data for both the dependent variables and the
independent variables, and the structure and specification of model. The discussion in
this section revolves around these two factors.

In this study, we adopt the trip purpose categorization used by the HITs survey as
major activity types. However, this type of categorization is still too general and
ambiguous. For example, among those activities categorized as social, the behaviors and
choices of meeting with friends could be very different from meeting with relatives.
Also, the variation between the grocery shopping and street shopping is not smaller
than the variation between shopping and recreation. The multiple purpose trips are not
accounted in the HITS data. Thus, it is necessary to further distinguish the types of
activities to make it more specific and less ambiguous for the learning task.
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Regarding the modelling structure, machine learning methods like logistic
regression and conditional random fields (CRFs) are employed to learn the probability of
various activity types contingent on the dynamically changing urban built environment
quantified by a set of spatial metrics and other spatio-temporal variables. Both models
belong to the generative graphic model. Although linear-chain CRFs model included the
transitions among activities, it is limited at the first-order transition level, which only
considers the constraints and associations between two consecutive activities in an
activity chain. Given the complexity of choices involved in the activity planning, a
number of improvements in the model structure and learning techniques should be
investigated in the future:

1) Much of accuracy in predicting activities in the existing models comes from work
and school trips. As more EZ-Link data become available, it is possible to
separately estimate the locations of workplaces and schools of the card holders
from the histories of trips, while leaving the model to focus only on predicting
the location, characteristics, and timing of non-work locations.

2) Taking into consideration the interdependences among distant activities in an
activity chain, which is potentially allowed by a skip-chain CRFs model.

3) Accounting for the latent status of the activities engaged (e.g. discretionary or
mandatory) using the latent class choice model or Hidden-unit CRFs (van der
Maa et al., 2011).

4) The dependencies or correlations in the current models are stationary over time,
which may not match the reality. The dynamic interactions between human
activities and urban environment conceivably can be better accounted for by
using the time-varying dependencies in the model.

5) Class imbalance appears to be a major issue restricting the classification accuracy
of the CRFs model. This necessitates more research on the appropriate class
balance approach for sequential models. One example is the distribution-based
balance approach (Song et al, 2013).

Meanwhile, more evidences from empirical studies are needed to distinguish important
factors from less relevant factors to prioritize the modeling efforts.

7.2.3 Assumptions and Speculations

In addition to activity learning models, many assumptions are made at various stages of
analytics. For example, a number of heuristic rules are employed to impute the missing
values of variables such as the open hours of businesses and the home locations of the
EZ-Link card holders. Not all the assumptions and speculations are verified by existing
data or supported by empirical studies. The unjustifiable assumptions can potentially
lead to biased estimates of activity learning models and misclassification and
misinterpretation of activity-travel patterns. Therefore, a side process needs to be
established to re-check the assumptions involved in the analytical procedure as more
data become available.
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7.2.4 Data exploration and Visualization

As the complexity of activity-trave! patterns and the amount of datasets increase, new
generation of visualization tools are needed to digest and visually represent the ever-
updating information in a dynamic and interactive way to facilitate more timely
exploration and analysis. The development of the visualization application will continue
by adding consolidated exploratory features for locations. Meanwhile, | will also
experiment with other visual metaphors and labeling strategies, and apply them to
datasets of various sizes. Another imperative task is to investigate ways to link the front-
end user interface to the data processing components (i.e. R) so that the data analysis
methods can be integrated smoothly into visualization and exploration process.

Currently, we only have access to the EZ-Link data of 15 sample days, which is
insufficient to carry out the types of study that may reveal the casual relationships
between the built environment and human activity-travel behavior such as the before
and after analysis of a new MTR line. But as we start to accumulate multiple types of
urban sensing data including parking lots availability and taxi GPS traces, it is desired to
investigate the value of these urban sensing data in the longitudinal studies of activity-
travel behaviors, and to compare the analytical power of the longitudinal studies with
the cross-sectional studies fed by the data from surveys.

In the future, novel visualization tools are designed to meet these requirements
by focusing on features like web-based interactive interface, dynamic information
updating and consolidated visual representation of information. These are expected to
support the modeling and decision-making, and facilitate more effective participation in
urban planning process. Therefore, | believe this research will not only benefit other
researches on activity based modeling but also facilitate the pro-active decision making
process of policy makers through continuously updated data and interactive
visualization tools.

7.3 Conclusions

The growing data flows from emergent sources become available to urban planning and
management today are generally too big and too unstructured for traditional means of
analysis and modeling designed for data stocks. To convert massive information in these
data to the knowledge meaningful for urban planning, new analytical framework is
needed. The framework needs to have the capability of gathering, integrating, analyzing
and interpreting data repetitively so that the aberrant patterns can be captured and the
fast-break trends can be monitored. Then, the insights gained from these efforts can be
linked to the operations of public services and urban planning to support urban
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management in a more responsive way. Much of the knowledge can also help to
improve the existing research paradigm of urban studies. For example, the longitudinal
information on individual mobility contained in new data sources can help us develop a
richer description of activities that could improve activity modeling.

Towards this end, this study proposes an analytical framework for using the
transit smart card transaction data for human activity-travel research. Through the serial
processes of preliminary data exploration, data integration, urban built environment
measurement, and activity learning and inference, we investigated the potential of
using the transit smart card transaction data, i.e., EZ-Link data, for better understanding
individuals’ activity-travel pattern, as well as the activity profiles of urban spaces. As has
been emphasized throughout the thesis, we consciously avoid fitting urban sensing data
to the existing activity-based research paradigm because of the evident gaps between
the information embedded in these emergent data and the information needed for the
activity-based modeling. Instead, we focus on the recurring exploration of the activity-
travel patterns and urban dynamics enabled by the streams of urban sensing data and
other auxiliary datasets.

The framewaork is composed of relatively independent modules, most of which
are generic and transferable. This enables the framework to be readily adapted to
handle other types of urban sensing data and to examine other aspects of urban
dynamics, since the processes like the data integration, urban form characterization,
and data visualization are essential for the majority of studies falling into the category of
urban analytics. Some of modules such as the ontology-based data integration and the
urban built environment measurement are useful for many other applications beyond
the academic research. For example, it is always a challenge for the public sector to fuse
and manage the data collected by various agencies. The ontology-based data integration
approach may have some implications in this regard. Besides, the spatial metrics that
can provide better characterization of urban form are useful to planning agencies.

In a nutshell, the type of analysis of EZ-Link data enabled by the proposed
framework opens the door for the possibilities of exploring many other aspects of
human behaviors and urban dynamics on account of large size of samples and
continuous data streams. The examples described in this study such as transfer patterns
and single transit trips represents a small portion of what is possible (e.g. the spatial
segregation of activities, the destination choices of the residents living in the same
neighborhood). In the future, we expect a close look at the longitudinal evolution of
individuals’ activity-travel patterns along with the changes in the urban environment can
enlighten a more broad scope of inquiries on the interactions between human activities
and urban environment, and provide new insights to the human activity-travel research.
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Appendix I. Building Type Categorizations in the Data

Integration
CATEGORY | CATEGORYII CATEGORY IlI CATEGORY | CATEGORY Il CATEGORY Il

CHURCH GAS STATION
COURT KIOSK
EMBASSY MERCANTILE
FIRE STATION RESTAURANT
GOVERNMENT SERVICE BRANCH(ES)
HDB BRANCH SHOPS
MOSQUE com COMMERCIA  SHOPPING CENTER
MUSEUM MERCIAL L RETAIL THEATER/OPERA
POLICE ACADEMY VEHICLE SERVICE
POLICE OFFICE BUSINESS / SCIENCE PARK
POLICE STATION FOOD & BEVERAGE
STATUTORY BOARD MALL SHOP

COMMUNIT  tempLe OFFICE

¥ CITY HALL OTHER RETAIL
COMMUNITY CENTER BUDGET HOTEL
e HOTEL HOTEL HOSTEL
LIBRARY REGULAR HOTEL
OBSERVATORY ASSEMBLY

civic :?klgéu,mmsns INDUSTRY (UNSPECIFIED)
E?s‘;vpﬁgunou G INDUSTRIAL MANUFACTURING
POWER PLANT TRIAL —
(NATURAL GAS)
SENIOR LIVING WAREHOUSE
TEMPLE (BUDDHIST) FACTORY/WORKSHOP(B2)
WASTE DISPOSAL WAREHOLSE LIGHT INDUSTRIAL(B1)
CLINIC SHOPHOUSE
HOSPITAL WINER :/'EI;(IE)DE NTIAL  CONSERVATION HOUSE
RESIDENTIAL

HOSPITAL NURSING HOME RETAIL SHOP/SHOPHOUSE
POLYCLINIC CAMP
CHILDCARE MILITARY
JUNIOR COLLEGE OTHER OTHER NON-  FOOT TRAFFIC
KINDERGARDERN RESIDENTIAL ™G atenouse

SCHOOL PRESCHOOL MILITARY APARTMENTS
PRIMARY SCHOOL MILITARY OFFICE
PRIVATE SCHOOL SWITCHING STATION
SCEONDARY SCHOOL RESIDENTIAL APARTMENT  REGULAR APARTMENT
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SPECIAL SCHOOL RENTAL APARTMENTS
TERTIARY SERVICED APARTMENTS
UNIVERSITY CONDOMINIUM
TRAINING SCHOOL REGULAR CONDOMINIUM
ADV_CAMP CONDOMIN] _OFFICE CONDOMINIUM
BADMINTON um CONDOMINIUM
FITNESS CENTER BUNGALOW
INDOOR SPORTS PUBLIC HOUSING
INLINE HOCKEY CHALET
MULTI-USE SPORTS DETACHED LODGE
SPORT SQUASH DORMITORY

SWIMMING E)C()EI\E:I;J SIVE RESIDENTIAL
TENNIS HDB SEMI-DETACHED
TRACK AND FIELD OTHER TERRACE
MEDICAL RESIDENTIAL  BUNGALOW HOUSE

EA?)':/E"\;ERC'AL COMMERCIAL OFFICE CLUSTER HOUSE
RESORT CORNER TERRACE

COMMERCIAL CONFERENCING SPACE SEMI- DETACHED HOUSE

OFFICE CINEMA DETACHED EXECUTIVE CONDOMINIUM
FOOD CENTER GOOD CLASS BUNGALOW
;?&?(ETENTER AND SEMI-DETACHED HOUSE
MALL TERRACE TERRACED HOUSE
MARKET TOWN HOUSE

COMM SUPERMARKET WALKUP
ERCIAL THEATER CAR PARK

THEME PARK CAR PARK MULTISTOREY CAR PARK

COMMERCIAL AMUSEMENT PARKING

RETAIL CANTEEN AIRCRAFT TRAFFIC
—
CLUB HOUSE PUBLIC BUS STATION
CONCERT LOCATION TRANSPORT \ETRo STATION
DRY LABORATORY RAIL STATION
EXHIBITION TRANSIT STATION

GALLERY




Appendix Il Sectorial Categorization of Establishments

SSIC 2010 Categorization

01  AGRICULTURE AND RELATED SERVICE ACTIVITIES
02 FORESTRY, LOGGING AND RELATED SERVICE ACTIVITIES Agricuiture
03 FISHING, OPERATION OF FISH HATCHERIES AND FISH FARMS; SERVICE ACTIVITIES

INCIDENTAL TO FISHING
08  MINING AND QUARRYING Mining
09  SERVICE ACTIVITIES INCIDENTAL TO OIL AND GAS EXTRACTION EXCLUDING SURVEYING
10  MANUFACTURE OF FOOD PRODUCTS
11 MANUFACTURE OF BEVERAGES
12 MANUFACTURE OF TOBACCO PRODUCTS
13 MANUFACTURE OF TEXTILES
44 MANUFACTURE OF WEARING APPAREL; MANUFACTURE OF ARTICLES OF FUR;

MANUFACTURE OF KNITTED AND CROCHETED APPAREL
15  TANNING AND DRESSING OF LEATHER; DRESSING AND DYEING OF FUR; MANUFACTURE OF

FOOTWEAR
16  MANUFACTURE OF WOOD AND OF PRODUCTS OF WOOD AND CORK, EXCEPT FURNITURE;

MANUFACTURE OF ARTICLES OF STRAW AND PLAITING MATERIALS
17 MANUFACTURE OF PAPER AND PAPER PRODUCTS
18 PRINTING AND REPRODUCTION OF RECORDED MEDIA
19 MANUFACTURE OF COKE AND REFINED PETROLEUM PRODUCTS
20 MANUFACTURE OF CHEMICALS AND CHEMICAL PRODUCTS Manufacturing
21 MANUFACTURE OF PHARMACEUTICALS AND BIOLOGICAL PRODUCTS
22  MANUFACTURE OF RUBBER AND PLASTIC PRODUCTS
23 MANUFACTURE OF OTHER NON-METALLIC MINERAL PRODUCTS
24  MANUFACTURE OF BASIC METALS
25  MANUFACTURE OF FABRICATED METAL PRODUCTS EXCEPT MACHINERY AND EQUIPMENT
27  MANUFACTURE OF ELECTRICAL EQUIPMENT
28  MANUFACTURE OF MACHINERY AND EQUIPMENT ,
29  MANUFACTURE OF MOTOR VEHICLES, TRAILERS AND SEMI-TRAILERS
30 MANUFACTURE OF OTHER TRANSPORT EQUIPMENT
31 MANUFACTURE OF FURNITURE
32  OTHER MANUFACTURING
35  ELECTRICITY, GAS AND AIR CONDITIONING SUPPLY
38 WATER COLLECTION, TREATMENT AND SUPPLY i )
pee SEWERAGE Public Service
38  WASTE COLLECTION, TREATMENT AND DISPOSAL ACTIVITIES; MATERIALS RECOVERY
41 CONSTRUCTION OF BUILDINGS
42  CIVIL ENGINEERING Construction
43 SPECIALISED CONSTRUCTION ACTIVITIES
45  WHOLESALE AND RETAIL TRADE OF MOTOR VEHICLES AND MOTORCYCLES
46  WHOLESALE TRADE, EXCEPT OF MOTOR VEHICLES AND MOTORCYCLES Retail and Wholesale
47  RETAIL TRADE, EXCEPT OF MOTOR VEHICLES AND MOTORCYCLES
48 LAND TRANSPORT AND TRANSPORT VIA PIPELINES
50 WATER TRANSPORT
51 AIR TRANSPORT Transportation
52 WAREHOUSING AND SUPPORT ACTIVITIES FOR TRANSPORTATION
53  POSTAL AND COURIER ACTIVITIES
55 ACCOMODATION Accommodation
56  FOOD AND BEVERAGE SERVICE ACTIVITIES Food
58  PUBLISHING ACTIVITIES

160



MOTION PICTURE, VIDEO AND TELEVISION PROGRAMME PRODUCTION, SOUND RECORDING

59 AND MUSIC PUBLISHING ACTIVITIES
80  RADIO AND TELEVISION BROADCASTING ACTIVITIES Information and
81  TELECOMMUNICATIONS g:;‘v’i'::”icaﬁ""
62 COMPUTER PROGRAMMING, CONSULTANCY AND RELATED ACTIVITIES
63  INFORMATION SERVICE ACTIVITIES
84  FINANCIAL SERVICE ACTIVITIES, EXCEPT INSURANCE AND PENSION FUNDING
65  INSURANCE, REINSURANCE, PROVIDENT FUNDING AND PENSION FUNDING Financial Service
86  ACTIVITIES AUXILIARY TO FINANCIAL SERVICE AND INSURANCE ACTIVITIES
68 REAL ESTATE ACTIVITIES Real Estate Service
69 LEGAL AND ACCOUNTING ACTIVITIES
70 ACTIVITIES OF HEAD OFFICES; MANAGEMENT CONSULTANCY ACTIVITIES
71 ARCHITECTURAL AND ENGINEERING ACTIVITIES; TECHNICAL TESTING AND ANALYSIS
Professional Service
72 SCIENTIFIC RESEARCH AND DEVELOPMENT
73 ADVERTISING AND MARKET RESEARCH
74  OTHER PROFESSIONAL, SCIENTIFIC AND TECHNICAL ACTIVITIES
75  VETERINARY ACTIVITIES Other Service
77 RENTAL AND LEASING ACTIVITIES
78 EMPLOYMENT ACTIVITIES
79  TRAVEL AGENCIES, TOUR OPERATORS AND RESERVATION SERVICE ACTIVITIES
80  SECURITY AND INVESTIGATION ACTIVITIES Administrative Service
81  CLEANING AND LANDSCAPE MAINTENANCE ACTIVITIES
82  OFFICE ADMINISTRATIVE, OFFICE SUPPORT AND OTHER BUSINESS SUPPORT ACTIVITIES
84  PUBLIC ADMINISTRATION AND DEFENCE
85  EDUCATION Education
86  HEALTH SERVICES
87  RESIDENTIAL CARE SERVICES Social Service
88  SOCIAL SERVICES WITHOUT ACCOMMODATION
90  CREATIVE, ARTS AND ENTERTAINMENT ACTIVITIES
91  LIBRARIES, ARCHIVES, MUSEUMS AND OTHER CULTURAL ACTIVITIES Entertainment and
92  GAMBLING AND BETTING ACTIVITIES Recreation
93 SPORTS ACTIVITIES AND AMUSEMENT AND RECREATION ACTIVITIES
94  ACTIVITIES OF MEMBERSHIP ORGANISATIONS
95  REPAIR OF COMPUTERS, PERSONAL AND HOUSEHOLD GOODS AND VEHICLES
96  OTHER PERSONAL SERVICE ACTIVITIES Other Service
87  ACTIVITIES OF HOUSEHOLDS AS EMPLOYERS OF DOMESTIC PERSONNEL
99  ACTIVITIES OF EXTRATERRITORIAL ORGANISATIONS AND BODIES
00  ACTIVITIES NOT ADEQUATELY DEFINED
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Appendix lll. Model Estimation Results

Table Al. Results of MNL1 Model

Education Leisure Shopping Personal Work-related
iaraads -3.679%** -3.719*** -2.396*** 3.529%**  2.732%** 23.149%%*% .3 2)q%** -2.754%%*
(0.133) (0.125) (0.069) (0.112) (0.085) (0.097) (0.111) (0.096)
Card holder types
7.293%** 3.246%** 2.203%** 2.535%*+ 2.575%%* 2.237+** 0.820** 1.570***
Student/Child (dummy)
(0.149) (0.158) (0.122) (0.160) (0.133) (0.162) (0.279) (0.179)
, -0.437 1.978*** 1.880*** 1.656*** 1.842%** 2.207%** 0.465* 0.965%**
Senior (dummy)
(0.592) (0.159) (0.090) (0.142) (0.107) (0.112) (0.465) (0.145)
Population and Job density
Population density 50.847*** 24.608* 45.463*** 67.466***  92,554%** 53.745***  50,075%** 88.339%**
(person per m2) (6.343) (10.271) (5.389) (7.676) (5.579) (7.083) (8.730) (6.375)
Job density -125.03***  -33.796* 18.894** 7.646 -67.191*%**  .27.909* -23.668' -60.417**
(iobs per m2) (20.051) (15.330) (5.765) (10.065) (15.279) (12.359) (13.638) (18.409)
Retail job density -126.76%**  22.038** 42.887%%* 19.564** -0.641 15.813** 12.660’ -2.088
(jobs per m2) (13.715) (6.720) (3.136) (6.024) (7.280) (6.091) (7.314) (9.057)
Manufacture job density A196.38%**  .140.83***  _357.64*** . 317.5***  -151.5%** -82.56***  -54.446* -193.72%**
(jobs per m2) (26.973) (35.509) (35.933) (54.926) (25.716) (21.368) (23.255) (33.794)
Office job density 74.092* 40.943* -73.775%%*  -34.919* 37.835' 9.002 14.304 -14.364
(jobs per m2) (29.417) (19.537) (11.232) (16.460) (21.010) (17.228) (18.138) (30.422)

Note. 1. Log-Likelihood: 14764; Adjusted McFadden R2: 0.3276; Significance codes: *** 0.001, ** 0.01, * 0.05, * 0.1;
2. Figures in the parenthesis are the standard error of coefficients.
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Table A2. Results of MNL2 Model

Education Leisure

Shopping

Eating

Social Personal

Work-related Other

Intercept -33.228* | -15564 | -37.052* | -76.02*** | 26.746' | -13.854  -13.911 -35.145*
| Card holder types - - - -
' Student/Child T |74 3247+ |2270*** [2572*** |2596*** [2.297°* |o@eart | 1601***
Senior | -0.293 1912%**% | 1.023*** | 1.695*** | 1.880*** | 2.172*** |0549** | 0.955%**
Land use measures
Contaglon Index o | -0.041' | -0.110%** | -0.061*** | -0.056* -0.055** | -0.029 -0.037 -0.092***
LU entropy 1905 a9 |1 248 [0475 | -1780 _ [0a93  |-1755 | 0487
Park area ratio 0.282 4.971%** | 4.033*** 3.474* 3i672¥%*% |I|4:357 £ 0.989 1.840’
' Open space area ratio i -0.240 [6625 11198 o |5451 [ 2616 ' 6.021 3307
Commercial area ratio | =223757 3.621* 3.503*** 3.244* -2.043’ -0.101 4.709** 1.122
' Mixed use area ratio e [, e \gag G 2w W 060
Worship area ratio 22.667** 24.763** ' 21.261%* 13.284 | 14.917* 27.16%%% 22.47** 16. 936*
' Sport area ratio : |03 | 6.049*** | 1.895 | 0123 10920 | 2384 | -0.062 | 2.855'
Waterbody area ratio 2733 -0.024 -11.44%** -11.069%** | -0.046 || =5:672* | 2.451 -5.590*
' Reserve land area ratio ~ |isw [D@9s |OEE 130 [1759* |03 [Fapee (138
| AWMSI i | 3194’ -3.978 5.399** | -8.223*** |-2878 | -0349 | -2.376 -3.428'
AWMFD 27537 | 23.879 | 41.673** | 79.652*** | 28601 |7.188 | 15837 | 39.439*
LU Richness | -0.069 -0.037 0071 | -0.045 0.020 | 0001 | -0.065 -0.075’
\ Buﬂdr‘ng"and Street layout = SRe T
BId footprint area ratio 1520 | 1.967 | -4.059*** | 1.659 0159  |-0372 |-1911 | -1.101
' Normalized building footprint size 10137 0131 0.237* | -0.038 0094 | -0.030 -0.228 | -0.100
Residential building ratio | 2.139%* 0.699 | 2.245%** | 2.515%x 0576 | 1.008 | 0.461 1.880%*
' School building ratio |ses5*** |.1388 | 1733 3843** | 0205 | 3.052** | -3161* | 1464
" Commercial building ratio -1.798 0.933 | 5.418%** | 1.101 2214  0.823 -6.659* 0204
 Mixed building ratio T hagpeee | giien - adigges 0o (0473, |O@ss [ Dawe - [<6eR
Community bualdmg ratio | -2.570 -7.000** -3.209* -6.556* -0.672 1.676 -2.995 0.910
 HDB density (units per m2) T e 10T DT [oise- | [ ozearrr oo 061 [ Das*e*
Nearest nghbor lndex bulldlng 5292 2.667 5.522%%% 3.342 |2 113** 1.522 -1.177 0.461
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l Authonty score (one transfer)
Note. Log-Likelihood: -14143; Adjusted McFadden R2:0.354; S|gn|f|cance codes: EEMO.001, *E 0.01, E 0.05, 0.1;
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Table A3.Results of MNL3 Model

Education Leisure Shopping Eating Personal Work-related Other

Intercept -32.669° | 18.836 -0.306 433700 | -7.131 -4.248 1.305 -24.628

' Student/Child 7.439%*% | 3.068*** | 2.052*** | 2.441*** | 2.467*** | 2.124*** | 0.80** | 1.454%** |
Senior 0416 [2350% | 22739 [Zager [t [ aaer [ gt [ n3e0trr |
Contagion index -0.042 | -0.114*** | .0.073*** | -0.062* -0.064** | -0.056* | -0.044’ -0.098*** |
LU entropy index | 0.404 | -3346* [ 0522 | -0.696 -2316* | -1.072 -3.262* | -0.827
Park area ratio | 1.93 6.112*** | 3.800*** | 4.743*** | 4.709*** | 2.358* 1.479 | 3.208** |
Open space area ratio | 0.360 | 8.314** | 10.32*** | 6.258' | 3.769 | -1.727 6.753** 2.126 |

| Mixed use area ratio | -1.388 2.019 2.88* | 2.759' | 0.670 1.472 0.576 -0.144
AWMSI -4.189* | -0.780 2758 | 6031* [-1433 | 0462 1172 e

 AWMFD 34.432 9218 | 8.356 52.02* 11.946  6.100 4.894 33.98’
Worship area ratio 28.337*** | 26.295** | 26.652*** | 16632 | 14.794* | 25.160*** | 25.282** 19.440**

' Sport area ratio -1.199 | 8.541*** [ 1741 | 0.367 | 2487’ 3.629* 1.190 4.753** |

~ Waterbody area ratio 2377 2.800 | -6431** | -7.a35* 2359 -4.692' 4.464 * | 3598 |

‘Reserve land area ratio 0.443 -0.736 0.609 ' 1.891' 2.062* | 0.691 3.048** 2.372*

_ Commercial area ratio [ 3.024* | 1766 | 2.253* | -4.054** |-3.619** [ -3270* 3.421* | -1.468
Richness 0.000 -0.059 -0.089* | -0.043 0.022 0.027 -0.012 -0.017
Patches e 0.000 | 0.002 | 0.001 -0.010** | -0.006** | -0.002 0.000 | -0.008** |
HDB unit density (unit/m2) | 0.095*** | 0.031 0.212*** | 0.160*** | 0.115*** | 0.092*** [ 0.082*** | 0.173***
Nearest Neighbor Index 3550 | 3.813 | 6.697*** | 3.719 5.319** | 2.579 -1.057 2347

| Centrality Index - | -18.055* | -17.130 | -26.283*** | -18.238' | -20.930** | -16.671’ 5.309 | -12.175

* Compactness Index | 21801 | 9393 52943 [15880 | -33.269 |-35459 | -11.096 | -17351'
Bld foot print area ratio | 0.013 -1.525 -8.325*** | -1.459 -4.116*** | -3.984** -2.879* | =5:205%%% |
Residential building ratio | 2.663*** | -0.764 0.927’ | 1.455 0113  [o0001 0.088 | 0.753 !
School building ratio | 5.411%%* | -0.891 0.910 2.572° 0.898 | 3.022%+ | -3.026* 2.240*
Commercial building ratio 0.613 | -0.163 4171*** | -2.554 5.656** | 0.848 7.93** 2476 |

“Mixed use building ratio -1.371* | 0.043 1.083* 0.356 -0.108 -0.125 -0.881 0.881" |
Community building ratio -4435* | -7.654** | -5555*** | 6771 -2.219 0.035 -4.256’ |
Normalized footprint size SD —d | 0.022 -0.027 0.386*** _f_0.133 0.086 0.179 -0.175 | 0.048

' Road density (1000m/m2) 76.347** | -19.405 | 43.448 | 11.946 50.862* | -11.136 | 45.154 27299 |

' Pedestrian mall length ratio | 16.764** | 2.040 -4.082 3.709 0.229 6.735' | -10.792’ | 12.624**
Expressway length ratio i -0.906* | -0.998' | -0.938* -0.300 0.179 | -0.562 -1.068' [0208 |
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Four-way Intersection ratio 0.726' 0.609 0.332 0.420 1.033** | 0.074 - 0.096 1.607%**
Intersection per km road | 158.220* | 70.028 32293 | 334.21*** | 243.64*** | 142,72’ -60.765 252.620**
Nearest neighbor index - establishment | 0.476 | 0.976’ | -0:179 -1.237’ 0.669’ 0.508 -1.462** 1.243%*
Distance to station (standard deviation) | 2.096' 1.208 0.491 | -3.094' A3 | La2p -0.331 -1.631
Entropy - establishment -0.929 13:48%%+ || 13:519%4% || 16:007**% | 12.954**% | 14.071%** |4 0g7** 12.363***
Establishment share (1/1000) 0239 | -0397* [-0123*** |-0.767*** [-0.409** |[-0.702*** | 0385 A DIEI**
Location quotient - food | 0.015 -0.276** || -0.269*** | -0.281*** | -0.276*** | -0.276*** [ -0.121 -0.261***
Location quotient -social | 0043 | -0535*** |-0070* | -0.739*** |-0.427*** |0.006 | -0.075 0031
Location guotient-retail | -0.159* | -0.350** | -0.287*** | -0.230* -0.162* -0.221** -0.111 -0.106
Manufacture establishments [3021 |-7190 | 4412 | -9.528* -10.713*** | -8.050** | -9.387** =i
Professional service establishments | -2.926 -4.354 | -14.665*** | -10.871** | -7.965** -5.562’ -6.805’ -3.948
Cultural service establishments " | m9a | D3s6 | 0189 | 0S522* . |-0312 | 06si*™ | 0ag8 o087
Outdoor | 0.087 |-0.1300 | 0.131** [ 0.027 | 0.121* -0.039 -0.120’ | 0.072
Transfer links (from other stations) 0013 | -0045 | o0.0007 | 0.008 | -0.042** | -0.032 -0.021 | -0.037'
Transfer links (to other stations) 0.014 0.026 | -0.049** | -0.006 0.026 | -0.003 0.022 | -0.013

Hub score (one transfer network) | 6.254*** | -10.758*** | -14.103*** | -10.686*** | -7.258*** | -16.899%** | -6.393*** -3.157

| Strength (one transfer network) -0.026 1 0.100 | 0.137 1 0.131 | 0.073 0.143 | 0.074 | 0.049 |

_ Authority score (one transfer network) |-1706 | 2.207 | 3.512*** | 1.992 | 0.086 | 2.385* -0.698 | o558 |
Location quotient -entertainment | 0.012 0.047 | -0.243*** | 0.055 - 0.060’ -0.187** -0.129’ [ -0.189***

 Other services | -6.646' | 4.587 11.463*** | 5.163' | 2571 | 10.520*+* | 4.281 | 12.994%** |

' Sport establishment | 0.094 0.223*** 0:207*** | 0:216%** | IDi197**+* 0.166*** 0.143*%* 0:230%**

~ Government establishment 4171 | 8.150' 15.470%** | 12.850** | 12.550*** | 0.902 10.967* 11.952**

' Other establishment - -2.194 | 0.180 | 2.028 | 3.546" | 2.725 7:209**% 4.022' [ 8.721***

 Average distance to station o801  [2311* | o0s883 | 1427 1521* [ 2652*** |0234 | 2.360**
Average pair distance -0.191 -0.779 | -0.543 -0.204 | 0.140 -0.692 | 0.270 | 0458

' Average distance to station - retail | 0.158 | 0.106 | -0.996*** | -0.675 -0.660* | -1023** [-0383 | -0726*

' Average distance to station - food | 0.179 -1.611*** | -0.379 -1.252* -0.486 -0.243 <0320 | -0.298

 Average distance to station - entertainment | 0.138 | 0.992** | -0.868*** |-0.976*** |-1219*** | .0.835** | -0.992** ST e
Transit trip frequency | -0.026 -0.184 | -0.177 G RTE L - -0.212 -0.353* |-0.297 [ -0.176

 Financial establishments -0.003  0.001 | 0.003’ £ 0.003' 0001  0.000 | 0.000 0.002
Information establishments 0.022** | 0.011’ 0.026*** 0.023*** | 0.021*** | 0.021*** 0.013* 0.015*
Diversity - food sector 0035 | 0dsa | -0701* [o0.611*** [0337** [0.503*** | 0.198 | 0.244

. Diversity - social sector 0.084 | -13.20%** | 0.550* | -13.198%** | -11.727%** | 0428 | 0.583%* | 0.408*
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. Diversity - retail sector
Note. Log-Likelihood: -12255; Adjusted McFadden R2: 0.437; Significance codes: *** 0.001, ** 0.01, * 0.05, ' 0.1;
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Table A4.Results of MNL4 Model

Education

Leisure

Shopping

Eating

Personal

Work-related

Other

Intercept 28072 | -23.987 -11.329 | -71.595** | 25774’ | -5.888 -20.656 | -30.129'
Student/Child 7.401%** | 3.05%** 2.044**x 2.474%**% | 2.493%** | 2.125%*%* | 0 703* 1.461%**
 Senior 0435 | 2466%** | 2339%*% | 2335%** | 2511%%* | 2506*** | 0.737%** T

" Early morning ' 0.552 | -3.403*** | -5.266*** | -3.148*** | -5.218*** | -3.506*** | -1.869*** | -3.356***

 Morning peak [0614* [ -3630*** [-3804*** |-3701*** [-3565*** | 3.622*** | 2.272*** -2.809%**
Morning work 0.063 | -2.204**% | 2,046%** | -1.989%** | 2.065%** | -1.647*** | -1.753%** | 2.451%**

" Noon [o67a** [-o0736*** |0451** [o0268 |[0801° |0226 | 0698 0344
Afternoon peak 1.176%** | 0.847*** | 0.759%** | 1466*** | 1273*** | 0069 | 0296 | 1.573***

Night | 0.826* | 1.637*** | 0.868*** 2.231%** | 1518%** | 1117*** | 0288 | 0.807***

' Late night -17.540 -0.492 21.239%** | 0295  1312*** | -19449 | 0772 | -0.269

' In vehicle time (min) 0008 | -0.019%** | -0.025***  -0.029***  -0.008* -0.016*** | -0.008' | 0.017%**
MRT 0.077 0.395 -0.991*** | 0.006 | -0.210 -0.470' | 0.355 0023

' Transfer # 0151 | 0129 [0615*** | -p4s2** 0144 |-0.190° 0.035 | -0.184
Rain 0.491* | 0.626* -0.001 0.531* 0.187 0.457* 0.335’ -0.148

 Temperature (>85) | -0.021 | 0.099*** | 0.044** 0041’ | 0.051** | 0.064*** | 0.030 | 0.009
Contagion index 0042 | -0.107** | -0.065** -0.053’ -0.054* -0.026 | -0.026 -0.095***

LU entropy | 0.856 Zdgs  ~ [4me | o [ R B 0525 1531 [T
Park area ratio 0.859  4.437** 3.749%** 2.709' 3.648** 1.048 0133 | 1.569 ]

' Open space area ratio 4253  [8197*  [984a%* [a2ss | 4670° 0611 5.730* | 1.955

' Mixed use area ratio -~ [-1.202 | o0.220 4.096** 2242 0506 | 1492 | 0.398 -0.184

- AWMSI |3137 [4328 | -2887  |-7699** [-2920' 0615 2991 | 3418

- AWMFD | 24.539 27.858 | 16.672 | 75.484** | 26.224 -2.285 21.415 37.3997

* Worship area ratio | 26561** | 24.064* | 19.307* 8175 | 11293 | 23.481*** | 20.410* [12326"
Sport area ratio -0.607 6.86%** 2470 0279 | 2.014 3.697* -0.063 | 4.113*

 Waterbody area ratio [93727 | o142 | 79s3** | 9099** [06%9  |[4292 |3184 e
Reserve land area ratio 11022  -0348 | 068 | 1761 | 2106* | -0.216 | 3.814*** | 1.640

' Commercial area ratio } -1.054 7 7' 3.241** | 3.047 | -2.655 —51;347 7_ | 5-402%** | 0.366
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hub score (transfer network)

Authontv score (transfer network) m -0 788 0 040 -2 093 2 159 -2. 989 -1 543

—m
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m
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m

mm

Note. Log-Likelihood: -11272; Adjusted McFadden R2: 0.484: Signrflcance codes: *** 0001**001 *0 0501

171



Table AS5. Estimation results of MNL5

Education
. -21.6250

Social Personal Work-related Other
' 35.745* -15.4900 -25.0660 -35.818’

Leisure
-10.2630

Shopping
-0.8466

Eating
-74.516**

| Intercept

Card holder types
Student/Child [7400%** [3079*** [201a*** [2486*** [2468*** [2088*** [0.7043* | 1.4085***
Adult (base)
Senior [Fi5225 [ Z5miar™ [2sare [23pat [ 24s0%* [Jsaairsd fomaser - [waianey |
Time of day dummy variables
Early morning (5am-7am) [o5814 [ 33377** [ 4242¢*¢ |-3292** | 6733*% | 2.576*++ | 10056/ | -2.9845%**
Morning peak (7am-9am) 0.2619 -3.6334%** | _3,5373%** | .3 5601%** | -3.3831*** | -3,1685*** | -1.8089*** -2.4475%**
Morning work (9am-11am) [odo7a | 22928°** | 1.5031%** | -1.8121%% | 19911 %*# | .3 5ea7eex | -1 53w | 2.2063***
Noon (lam-1pm) 0.792*** | 0.8098*** | -0.3615* | 0.3009 02308 | 03119 | -0.6785** -0.3181’
Afternoon work (1pm — 5pm) (base) !
" Afternoon peak (5pm — 7pm) 0.7103* | 0.7133* | 0.2332 1.3409*** | 1.1874*** | 02920 | 0.3506 1.3827*** |
Night (7pm-9pm) 0.5557' 1.5195*** | 0.5121* 2.0043***  13413*** | 1245***  0.4372 | 0.6004* |
Late Night (9pm-1am) -19.0280 | -0.7928 | -1.2715** | 0.1506 | 0.8809** | -20.1430 | -0.4436 | -0.5865
 Friday (dummy) [0319* [-03986* [00579 | 01293 | -0.1975' | 0.0448 -0.2882* 02074 |
| Transit trips
In-vehicle Time (min) 00073 | -0.0180*** | -0.0262*** | -0.0311*** = -0.0092** | -0.0182*** | -0.0088' | 0.020%** |
MRT (dummy) | 0.1297 0.3607 -1.1855%** | -0.1094 -0.2618 | -0.6621* | 0.2138 -0.1006
#Transfers | 0.1095 0.1174 -0.6313*** | -0.4272**  0.1494' -0.2108°  0.0123 [ 01710 |
Dist: Alighting station to home (km) -0.0133 | -0.0020 \ 0.0013 -0.0087 0.0266*_ | 0.0167 0.0367* -0.039**
Weather
' Rain -0.507* | 0.670** | -0.0231 | 0.5414* 0.2027 0.4444* | 0.3500’ | -0.1608 |
Temperature | -0.0215 | 0.1041*** | 0.0433** | 0.0439* | 0.0523** | 0.0671*** | 0.0327 oot |
| Land use measures i
Contagion Index 0.0469° | -0.1060** | -0.0638** | -0.0601* | -0.0590** | -0.0416’ -0.0300 -0.1038*** |
LU Entropy 0.5780 -2.2780’ 0.3490 0.8272 | -1.3603 0.0445 -2.1896' 0.4809 |
Parkarearatio 1.4129 3.8780** | 3.1158***  2.6548 3.3630** | 0.7911 -0.3792 19898 |
Open space area ratio -0.4130 9.1668** | 9.9345*** | 4.8259 2.8864 | -1.0849 8.2786** | 2.9640
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Table A6. Estimation results of MNL6

Work-related Other

Working Education Leisure Shopping Eating  Social Personal

 Intercept -1.935 -0.756 0636  -0.334 0355 | 0015  -0.203
Card Types S ' ‘ o

~ Student/Child = o A o 0290 | 0052 |0057 |-0278 | -1.148 - -0.817
Adult (base) _ _

~ Senior (-1380 | -0549 0440 0536 0363 | 0554 0689 | 0.462 | -0.190
Time of day 3 : |

 Early morning (5am-7am) (0897 0545 [ 0103 | -0475 |-0181 |-0604 |-0131 | 0125 2l
Morning peak (7am-9am) 1899 | 1.631 -0.579 0715 | -0.839 | -0.886 | -0.696 | 0.290 -0.104

~ Morning work (9am-11am) 11069 0493 | -0281 [ -0025 | -0357 |-0412 |0042 |-0045 | 0485
Afternoon work (1pm — 5pm) (base) ;
Afternoon peak(Spm—?pmi_ £ I 0.467 B | 0.012 | anin ;:”0.'1'35 7: 0.232 -0.190 | 0068 | 0.488
Night (7pm-9pm) 0642 | -0.267 0.291 0010 | 0474 0221 |0.155 | -0.137 -0.087
Late Night (9pm-1am) | -0017 0090  -0.013 0071 0007 0277 | 0066 | 0014 | -0012
Friday (dummy) 0.040 | -0.063 0020 | 0042 0040 | -0014 |0023  -0.025 -0.023

 Transit Trip I By 1 ______________ == i 3 ’ RS 1

' In-vehicle Time (min) 0.213 | 0.080 -0.005 | -0201  -0.206 | 0.133 |-0.030 | 0.109 -0.093

_ MRT (dummy) 10108 0025 002 |-0154 0014 0003 | -0054 |0061 | -0.027

| #Transfers 0.092 | 0.128 0.048 0248 | -0.134 | 0154 |-0.039 | 0.053 -0.054

 Dist: Alighting station to home (km) 10013  -0025 0014 | -0016  -0.042 0087 0025 0112 -0.138
Weather |

~ Rain = s 9%s - (oes -0001 | 0.031 0011 0030 0013 0007

. Temperature -0.198 | -0.254 0.190 0.113 0.009 |0.066 | 0.110 | -0.045 0.009

 Land use patches | = i R { i | - | 2
Contagion Index 0.120 | 0.027 0.003 | -0.090 |-0.018 | -0011 |-0.022 |0.070 -0.074
Park area ratio 0101 | -0042 0076 0077 | 0044 0021  -0.047 | -0.066 | 0.038
Open space area ratio -0.073 -0.020 0.047 0.074 0.023 0.006 | -0.070 | 0.007 0.005

. Mixed use area ratio |-0021 | 0027 [0001 0044 0051 |-0017 0010 |-0.026 | -0.015
Worship area ratio -0.155 | 0.075 -0.020 0.021 0.025 | 0003 | 0079 | -0.006 0.028
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