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Abstract

Natural ventilation in buildings has the potential to reduce the energy consumption
usually associated with mechanical cooling while maintaining thermal comfort and
air quality. It is important to'know how building parameters, in particular its thermal
mass properties and heat loads incurred, affect a building's transient thermal response
to incoming outdoor air. A proper ventilation schedule is also needed to make optimal
use of the free direct or night cooling.

To investigate these factors, a first principles heat transfer energy model is devel-
oped to numerically simulate in MATLAB the air temperature profile of a single-zone
cross-ventilated room. The physics behind natural ventilation at building level is also
investigated using multi-zone modeling, as done in CoolVent, an existing MIT airflow
modeling tool. In the process, the simulation capabilities of MIT Design Advisor,
an existing building energy simulation tool, are expanded upon from shoe-box to
interconnected multi-zone modeling.

Optimal natural ventilation scheduling, with a view to maximizing thermal com-
fort, is then studied using two optimization techniques: dynamic programming and
global search optimization, using the simple room energy model as the simulation
engine. In the process, an algorithm framework is developed to optimize the ven-
tilation scheduling on a rolling day-horizon basis based on input weather data and
occupancy schedule. The use of rule-based control, as opposed to the aforementioned
model-optimized control, is also explored due to its ease of implementation in building
automation software. The former form of control is found to maintain comparable
thermal comfort when seperate rules for specific scenarios, such as night-overcooling
or day-overheating, are gathered together to constrain the room air temperature. It
is however critical to identify and calculate proper set-points for these rules.

Thesis Supervisor: Leon Glicksman
Title: Professor
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Chapter 1

Introduction

1.1 Thesis motivation

In developed countries, building energy consumption amounts to 40% of the total final energy

consumption and more than half of this amount is consumed in Heating, Ventilation

and Air Conditioning (HVAC) systems[I]. In the U.S, 41% of primary energy was consumed by

the buildings sector as shown in figure 1-1, and this constitutes 20 quads of delivered (site)

energy annually[2]. Out of this, 10% is used for space cooling and 3% for ventilation, as shown

in figure 1-2.

WORLD ENERGY
CONSUMTION

U.S. ENERGY
CONSUNMPON

U.S. BUILDINGS
SECTOR

TRANSPORTATN-]

RENEWA8LES
9%

Figure 1-1: World and U.S energy consumption and its breakdown by sectors [2]
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Figure 1-2: Building energy consumption breakdown by end use [2]

Several studies have shown that natural ventilation has the potential to significantly reduce the

energy costs, both first and operating costs, associated with mechanical ventilation of buildings,

while maintaining ventilation rates that are consistent with acceptable indoor air quality and

comfort [3]. In fact, it has been suggested that naturally ventilated buildings have lower sick

building syndrome, which potentially increases occupant productivity, amongst others

advantages [4]. As natural ventilation is being touted by the "green buildings" community as a

means of reducing energy costs and improving indoor air quality within commercial buildings,

there has been an increase in the past decades in naturally-ventilated commercial buildings

worldwide, even in moderate and cold climates such as Central Europe. This has been partially

attributed to increase in internal loads (due to more electrical equipment, lighting etc), as well as

higher solar gains as architecture tends towards modern building with extensive glazing [5].

Natural ventilation can be defined as ventilation provided by thermal, wind or diffusion effects

through openings in the building fagade. Equipment required for ventilative cooling in residential

or commercial buildings is available. This could be through windows (figure 1-3), or louvre and

damper arrangements (figure 1-4). Hybrid variations of these systems are also available,

whereby mechanical devices are added to enhance the performance and control, in the form of

volume control dampers or exhaust fans for example. Natural ventilation is usually used in

mixed-mode buildings, whereby natural ventilation, mechanical ventilation, as well as

mechanical air conditioning are used to provide space cooling. Savings from mixed-mode

cooling, as opposed to solely standard air conditioning, could be expected to range from 5% to
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30% [6]. These variations are due to locations, climate variability, and building design, in

particular its amount of thermal mass.

Figure 1-3: Automated windows with hydraulic actuation [7]

Figure 1-4: Typical natural ventilation systems, including louvre intake and damper arrangement,
floor and ceiling grilles, ceiling laminar flow diffusers, floor outlet swirl diffusers, transfer

grilles, exhaust wall outlets, penthouse exhaust turret (going clockwise from top left bubble) [8]

However, the question of when to use natural ventilation remains without any definite answers.

Day ventilation and/or night ventilation can be used to maintain thermal comfort, depending on

climatic conditions and building parameters. Often times, high outdoor temperatures can make

thermal comfort worse. Givoni suggested the use of simple rule of thumb of using night-time

21



cooling mainly for ariduregions, where comfortable indoor conditions cannot be met by day

ventilation, and which have day-time temperature range of 30-360C , and night-time

temperatures below 20'C [9]. In general, night-cooling is used in climates with high maximum

day temperatures (which means high cooling demand) and low minimum night temperatures

(which means high cooling potential). In some cases, night-time ventilation is the only option

when day-time conditions are prohibitive: for instance, traffic noise, air pollution, high wind

speed or high-security occupancy limits the opening of windows or dampers.

The most prevalent form of building controls for natural ventilation in industry is rule-based, for

which the set-points are derived from general rule of thumbs and fine-tuning for a specific

building. When it is ideally best to use natural ventilation is a complex optimization problem.

The optimization can be done with respect to maximizing thermal comfort, minimizing energy

consumption, or even minimizing peak electricity demand. Numerous studies are being done on

optimization of building controls in these fields in the academic sphere, notably using Model

Predictive Control. A proper optimization is three-pronged: it entails a proper definition of (i) the

building as an energy model, (ii) the optimization problem itself and (iii) the control systems

[10]. The advantages of optimized control are clear: since it essentially requires the active

modeling of the energy flows in buildings, it takes into consideration the building parameters, as

well as disturbances to the system such as occupancy and weather variations. On the other hand,

detailed optimized control, such as that implemented by a Model Predictive Control, is not used

extensively in industry till now because of the need of a knowledgeable authoritative entity in

charge of these three aspects, in addition to the need for a robust building energy model.

1.2 Thesis outline

This thesis seeks to explore the three-pronged approach to optimization of building controls with

respect to natural ventilation with the goal of maintaining thermal comfort. To do so, it is

essential to identify and focus on the building and climate parameters which affect natural

ventilation. Note that these parameters can be either fixed or variable. For example, fixed

parameters are the building properties such as thermal mass and volume; variable parameters are

the current active parameters such as solar heat gains, daily mean temperature, daily temperature

swings and occupational variations (plug loads, lighting usage) etc.
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The aim of this research is to have a holistic approach to addressing the problem of optimized

control of natural ventilation. It is three-pronged: (i) building a simple energy model based on the

examination of the building physics, both analytically and numerically with relevant parameter

variations; (ii) formulating the optimization problem; (iii) using the optimization algorithm on

the building energy model to obtain the optimal window schedule, and comparing the optimal

results to rule-based control results.

In Chapter 2, a preliminary study of the underlying physics of first a simple room, then a multi-

zone network representation of a building is carried out. Such a study allows us to define the

parameters which have a first-order effect on the thermal behavior of a building. To do so, a

dimensional analysis of the energy balance is carried out. Numerical simulations to predict the

room air temperature given variations in those identified parameters are then carried out.

In Chapter 3, a study of physics of the multi-zone network representation of a building is

expanded upon, using two existing stand-alone simulation tools: CoolVent and Design Advisor.

CoolVent is a simulation tool for coupled thermal-airflow with natural ventilation, whereas

Design Advisor is a building energy simulation with mechanical ventilation capabilities. An

integration of those two tools is carried out to allow enhanced natural ventilation capabilities

while taking advantage of its already-integrated packages for calculating precise heat gains

(through wall, window, solar radiation, roof heat gain).

Chapter 4 looks more closely at natural ventilation strategies covered in literature. It also looks at

the impact of cyclical ventilation, as opposed to continuous ventilation, in modulating the

resulting room temperature, by using the simple numerical energy model set up in chapter 2.

Chapter 5 does a preliminary overview of building controls as covered in industry and in the

academic sphere, in particular, the use of Model Predictive Control as a framework for optimized

control. In its section, it looks at two different optimization techniques, namely global

optimization and dynamic programming, and the algorithm framework needed to wrap around

the room energy model.

Chapter 5 looks at the optimization results for different case studies with variation in climate and

building parameters. The optimization results are then compared to derived rule-based controls

in terms of thermal comfort performances.
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Chapter 2

Thermal modeling

2.1 General building energy modeling

Ventilation aims to keep the climate within a building at a wanted level of thermal comfort and

air quality. While indoor air quality procedures are used to maintain specific target contaminant

concentrations or levels of acceptability of indoor air quality and dictate a minimum ventilation

rate based on the occupancy category [11], this thesis will not be concerned with the constraint

of ventilation limit. On the other hand, thermal comfort level imposes important lower and upper

temperature limits for to the thermal modeling of buildings. ASHRAE standard 55 defines the

thermal comfort criteria to encompass the temperature (air, radiant and surface), humidity, air

speed [12]. That of air temperature is to be considered in this thesis.

A building, or to a simpler level even a room, undergoes many modes of heat transfer. Energy

exchanges take place through conduction, convection and radiation and mass transfer, through

the building envelope, between the outdoor and indoor environment, and between the surfaces

inside a room. There are solar radiations absorbed by the window pane, wall and even the roof.

Arons [13] and Urban [14] covered in details the derivations for net solar radiation reaching

inside the room through different building fagades, including double-skin and different window

types with or without blinds. Ray [15] extended similar energy modeling to different roof-tops

including green, bitumen and cool roofs. These were implemented as separate modules in Design

Advisor as will be covered in the next chapter.

Apart from solar gain, internal gains contribute to the heat load in a building. Internal gain is

comprised of heat released by equipment (plug load), people (sensible and latent heat), or light
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fixtures. Hence this type of internal gain can be called an occupational heat gain, and follows the

building's occupancy schedule.

Thermal mass is an important consideration in building energy modeling, because its high heat

capacity enables it to store heat during the day and release it at night, thus dampening the

temperature of the room air. External thermal mass includes walls or roofs which are directly

exposed to both the ambient and indoor air. Internal thermal mass such as furniture and concrete

slabs are not directly exposed to the ambient air but only to the indoor environment. Zhou et al

presented a study where the effect of external thermal mass was investigated analytically [16].

The external thermal adds complexity to the thermal modeling because the interface with the

exterior presents added radiation, which changes with solar radiation intensity changes

throughout the day. Moreover, the external thermal mass, i.e. the wall, often consists of

insulating materials such as gypsum and fiberglass. These materials have low conductivity and

hence do not contribute much to the thermal mass effect, as heat cannot penetrate deeply and be

conducted back to the air effectively. Thermal mass, henceforth, will refer to the internal

concrete mass.

A building with natural ventilation can be considered as an open system, due to air flow in and

out. The change in internal energy of the inside air is the sum of the heat transferred into the

system and the heat generated within it. This energy balance combines the effect of all the modes

of heat transfers through the different interfaces. It is assumed that the temperature is uniform

within the identified control volume for the open system. The general equation representing the

energy balance for a zone in a building is:

mc dT(t) UA(t) (Tj(t) - Ti(t)) + nthjit(t)c (Tj(t) - Ti(t)) + qi(t)A (2.1)
inte ace connected

zonej

The first term on the right-hand side is the conduction heat transfer from outside to inside

through walls, window panes and other interfaces. The second term represents the convection

heat transfer for when a window is open or air is brought in from outside. The last term is the

generated internal heat gain.
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All of this is used to predict the indoor air temperature variation with time. This prediction can

serve to calculate the heating and cooling loads throughout the year, when the inside air

temperature does not meet thermal comfort standard and the system needs to be mechanically

cooled or heated.

2.2 Single-zone level energy modeling

For simplification, the single-room level represents a one-zone building with connection with the

outside, i.e. with the inside at uniform temperature and uni-directional air-flow from outside to

inside and back out, without back-flow of air as air can be assumed to be exhausted to a zone at

same temperature as the outside temperature. The control volume is a single zone and is assumed

to have thermal mass, internal heat gain. The energy balance for the system is the following:

mc dT= (Z UA(t) + th (t)cp)(T,,ut(t) - T (t)) + hA(Tthermai mass(t) - T (t)) + q[ (t)A (2.2)

Ceiling thermal mass

Qm"

Ventilation pathway !'

Qconv

Floorthermal mass

Qconv controj volume
Encompassing 3ir

c out

Qigen

Control volume
-- encompassing

thermal mass

Figure 2-1: Energy flows in a one-zone building model

At the most detailed level, all these terms could be a function of time, making any general

analytical solution difficult to obtain. To zoom in on the effect of ventilation and thermal mass

on the inner thermal environment, it is necessary to make several simplifications:

(i) the room can be assumed to be well insulated enough that the U-value for the

envelope is small enough;
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(ii) The heat load q(t) can be assumed to be constant or to follow the occupancy schedule

and take only 2 values.

(iii) The airflow rate rh can be assumed to be constant. While in reality, the airflow rate is

determined by the drop in pressure across an orifice (window), it is often augmented

mechanically to a suitable level by exhaust fans. Hence, it can be attributed a nominal

value of 5 roomful/h for air change rate.

(iv) Tout(t) can be approximated to a sinusoidal with period of a day, with the minimum

temperature occurring at 12am, such that:

Tout(t) = Tmean + ATsin ( -rt (2.3)
(24*3600' 2)/

(v) The solar heat gain is not considered here. Hence, the thermal mass does not have any

form of absorbed solar radiation and internal radiation is no considered.

The fourth assumption is made so that weather temperature inconsistencies do not mar the

analysis. Tmean is the mean monthly outside temperature, while AT is the amplitude of the

diurnal temperature swing, which can range from 20C only in Hong-Kong to 140C in California

to 23"C in Loma, Montana [17] . A good average will be 5*C for most cities.

Hence a simplified version of equation 2 is:

MCdT(t) = /h ~) j 24
m = mcP (Tout (t) - T(t)) + hA(Tthermai mass) - T t))-+ qA (2.4)

This partial differential equation for air temperature represents a first- order system, which is

coupled to a first-order system for the thermal mass as follows:

(MC) thermal mass dTthermal mass = hA (T (t) - Tthermai mass(t)) (2.5)

The crux of this thesis is how the temperature variation of the concrete affects the temperature of

the air spatially and temporally for a given set of building and weather parameters. This is

investigated by first looking at the solution and dimensional parameters of the equation.
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2.3 Diinensional Analysis

Before solving the above differential equations, it is important to identify the dimensionless

parameters, especially for heat transfer problems governed by differential equations that are

difficult to solve analytically. This will allow a concise form of the solution to be formulated, be

it for experimental or numerical data. The behavior of the system can thus be given by a single

curve, whereby the different variables in the dimensionless parameters do not all have to be

varied to obtain the same system response. Instead, the global variation in the dimensionless

parameters is what matters.

According to the Buckingham pi theorem [18], the following dimensionless groups can be

formed from the variables of our problem:

Temperature wise: qAIc rouimcp q 'inc

qA qA qA

Time wise: t mcp t MCp hAt mCp
mcTmass Mairc P maircv " hA

Energy wise: Cp
CV

The Buckingham Pi theorem gives us a good indication of the dimensionless parameters

involved in the dimensional analysis of equations 2.3 and 2.4, which is needed for a

generalization of our problem in terms of dimensionless parameters. To capture the convective

heat transfer and internal gain, f = is used as a temperature scaling parameter. As the
qA

~ thCP
thermal mass logically dictates the time constant of the heat transfer phenomenon, t = m

McTmass

is used as a time scaling parameter. Equations 2.3 and 2.4 can be re-written as:

(mc)air df (F)+ ir( )- 0out(-) + t' (i) - mass(F)) = 1 (2.6)
(mc)Tmass dm cp

Because (mc)Tmass >> (mc)air, the first term can be neglected, thus:

(T - Tout) + (f - Timass) = 1 (2.7)
?fCP
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df Tmass _ (f out 4 f Tmass) + 1(2.8)
dt + 1+i(2.8)

hA hA

From this dimensional analysis, the following dimensionless parameter pops out, A = M. It
hA

represents the coupling between the two energy balances and measures the relative strength of

convective heat transfer at the thermal mass surface.

It is interesting to note that the Buckingham Pi theorem gives three time constants for our

phenomenon: -j = (mc)thermal mass 2 (mcthermal mass . 3 = malrcv. As shown in table 2-1,p mcp hA -mcp

the time constant due to air is negligible because of its low thermal heat capacity, while those

due to the thermal mass and ventilation are not.

Air properties:
pair=1.2 kg/m3; ACH=5 roomful/h; cp1008 J/kgK; c,= 720 J/kgK; heightroom=3.5m

Thermal mass properties:
pconcrete=2 50 0 kg/im ; c..ncrete=8 8 0J/kgK; thicknessconcrete=5"; hconvective= 8 W/m2K

r1 (h) 13.2
r 2(h) 9.7

0.1

Table 2-1: Time constants for a simplified model of a ventilated room with thermal mass

Yam investigated deeply the nonlinear coupling between thermal mass and natural ventilation in

buildings, without the cycling associated with night-ventilation, i.e. windows are assumed to be

always open [19]. Similar dimensionless parameters to those derived by our dimensional analysis

were mentioned. Four general cases of such interactions were identified: (1) the thermal mass in

thermal equilibrium with the room air and fixed ventilation rate, (2) the thermal mass not in

thermal equilibrium with the room air and fixed ventilation rate, (3) thermal mass in equilibrium

and buoyancy-driven ventilation, (4) thermal mass not in equilibrium and buoyancy-driven

ventilation. Analysis of the first two cases is done below.

2.4 Thermal mass in thermal equilibrium with the room air

With the thermal mass as a lumped mass is at the same temperature as the inside air, the

convective term from the thermal mass surface disappears. Assuming that the heat capacity of

the thermal mass is much more than that of the room air, the energy balance is simplified to:
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dT
(mc)thermal mass = mcp(Tout(t) - T(t)) + qA (2.9)

For this first order differential equation with a sinusoidal forcing element, an analytical solution

can readily be obtained by integration by parts. It should be noted that the thermal mass has

impact on the amplitude of the fluctuations and the time-lag, but not on the mean indoor

temperature value. The solution is given by:

qA + AT _ At
T (t) = Tout mean + + (sin(wt - fl)) + constant * e~T (2.10)

J(cCP te, + m2,a2

Where r is the thermal mass time constant, i.e. r = (MC)theral mass

The short-term solution is represented by exponential term which is the natural response, given

an initial value condition. The long-term sinusoidal behavior is the forced response to sinusoidal

outside temperature of forcing frequency to corresponding to one waveform per day, given by:

Tout(t) = Tmean + ATOut(sin(ot)). It can be seen that the mean long-term temperature is

determined by the mean outside temperature Tmeanand the temperature increase due to the

internal heat gain, TE = -L. There is also a phase shift fl which represents the phase lag due to
mcp

the thermal mass, as shown in figure 2-2. In fact, the phase shift is a function of the thermal mass

time constant: fl = tan'(o ). More importantly, the effect of the thermal mass in dampening

the fluctuation of the air inside the room can be observed through the coefficient of the sine term,

*2T. With larger thermal mass, a larger dampening occurs. The long-term steady-state

solutions for a range of ventilation rates and outside temperature amplitudes were investigated

and resulting temperatures are plotted below for the range of variable parameters given in table

2-2 below.

Parameters Values

c, specific heat of thermal mass (J/kgK) 1-50

T, thermal mass time constant (h) 0.02-24

ATOut (C) 1-10

Table 2-2: Parameters used in the simulation for thermal mass in equilibrium
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For illustration, figure 2-2 shows the effect of different thermal masses on the damping factor

and phase shift. With a larger thermal mass, the higher thermal time constant T causes more

damping (ATair = 2.0'C compared to ATair = 4.9*C) and a greater phase shift in the resulting

room air temperature (# = 5.0 h compared to l = 3.4 h).
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Figure 2-2: Temperature profiles for room air temperature in equilibrium with (a) normal thermal
mass (c=880J/kgK, T= 4.6 h), (b) high thermal mass (c=3x880J/kgK, T=14 h)

As seen by dimensional analysis, different combinations of the variables within the common

dimensionless parameter can give rise to the same system response. Consequently, the long-

term response, in terms of the normalized resulting room temperature amplitude and phase

shift, can be better analysed in terms of the variation in time constant due to the thermal

mass. Figure 2-3 shows the collapse of the indoor temperature behavior for variation in time

constant (thermal mass properties or ventilation rate). Note that the amplitude of indoor air

temperature fluctuation has been normalized by the amplitude of outdoor temperature

fluctuation. For this simulation, the internal heat gain was kept constant at 15W/m 2, which

does not affect the indoor temperature fluctuation in itself, but causes a vertical temperature

shift of TE = 0. Figure 2-4 shows the phase shift expected of the response to a sinusoidal

input signal.
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Figure 2-4: Phase shift of room temperature with variation in time constant t for room air
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2.5 Thermal mass not in thermal equilibrium with the room air

When the thermal mass is not in thermal equilibrium with the room air, there is convection

which follows Newton's law of cooling. As a result, the energy balance is given by equation 2.4.

This is energy balance of the room air is coupled to that of the thermal mass through the

convection heat transfer in equation 2.5.
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mc dt = ThCp (Tout(t) - T (t)) + hA(Tthermal mass(t) - T(t)) + qi A (2.4)

(mc)thermal mass dTthermal mass = hA(T(t) - Tthermal mass(t)) (2.5)

While the room air can be assumed to be at a single uniform temperature due to other forms of

heat transfer than thermal conduction, can the same be done for the thermal mass?

Air has a thermal diffusivity oCair = 2e-5 m2/s , whereas concrete has a thermal diffusivity of

OCconcrete= 2e-7 m2/s. Moreover, air can allow for natural and forced convection as a means of heat

transfer throughout its body, unlike a solid thermal mass and assuming no single-sided

ventilation which will allow for thermal air stratification. Over the time-scale of 1 minute, the

penetration depth(-at ) is of 3mm, while over a time-scale of 1 hour, the penetration depth is of

2cm. Hence, one can assume gradation in temperature in the concrete and a well-mixed

assumption for the air temperature.

In the case of our single-zone model, the question is whether the thermal mass can be idealized

as a single lumped layer, and by how much the room air thermal response differs if the thermal

mass needs to be discretized spatially into how many layers.

For the case when the thermal mass is one lumped model, it is possible to obtain an analytical

solution by solving equations 2.4 and 2.5. From equation 2.4, it can be assumed that the first

term is negligible as the air has a negligible internal energy compared to the internal heat gain

and convected heat gain. Thus,

0 = ?hcp(Tout(t) - T(t)) + hA(Thermal mass(t) - T(t)) + qjA (2.11)

Rearranging equation 2.11 gives:

Tthermal(t) = (1 + -) T(t) - T() (2.12)A/h hA (.2

Substituting equation 2.12 into equation 2.11, the following differential equation for the room air

temperature is obtained for a sinusoidal outside temperature:

dT(t) ,1 ,1 COT
T + A T(t) = (Tmean + TE) + ATOut(sin(ot) + WT cos(Cot)) (2.13)

+1+a1+A i+ AA
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Where = (mc)thermalmass and A = .

The analytical solution for this first-order differential equation can be obtained by superposing

the homogenous solution and the particular solutions. The overall solution obtained is as below,

similar to that obtained by Yam [19]:

T (t) = Tmean + T E + uT0 , +2d2 T 2 sin(wt - ,) + constant * e-I(1+)w1 (2.14)

Where # = tan-( ,2+(1+)

The exponential term represents the homogenous solution while the independent and

trigonometric terms represent the particular solutions, which can be obtained using the method of

undetermined coefficients [20] to solve for the step forcing term and the trigonometric forcing

term. The corresponding explicit equation for the thermal mass temperature is obtained by

substituting the above in equation 2.12:

Ttherma(t) = + ) (Tean + TE + AT0ut 2 + 
2 sin(ot - P) + constant * e Acan) -

h (TMean + AT0ut sin(wt)) - qA (2.15)

From the explicit solutions for the air and thermal mass temperatures, it can be seen that once the

transient dies out, the air temperature has a maximum and minimum as below:

Ta1  =Tmean + TE + LAT 0ut A2 +&22(.6

Tminair Tmean + TE - ASout (2.17)

Comparatively, the thermal mass temperature has a maximum and minimum as below:

(i CO(+ h hATmam, = (+ ) , Tmean + TE + ATout a2(+ )2) + (Tmean + AT - 8

Tmintm = (i+ ) Tmean + TE - + out mean - AT2) + (2 .9)
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These limits can be used to define the domain of the state space of the temperatures during the

optimization part.

As can be seen the dimensionless parameters identified by the dimensional analysis, namely

mc I hA
-r = - and A = -, appears here too. A generalization of the thermal behavior, in terms of

the increase indoor air temperature fluctuation and its phase shift with respect to the outdoor air

temperature, of a continuously ventilated room can thus be made based on these parameters.

Figure 2-5 shows the collapse of the indoor temperature behavior for variation in time constant

(thermal mass properties or ventilation rate) and convective heat transfer parameter X (heat

transfer coefficient and ventilation rate). As parameter X goes to infinity, i.e. h goes to infinity,

the thermal mass is perfectly coupled to the air temperature, such that there is thermal

equilibrium. This gives the same collapse as in figures 2-3 and 2-4. The values used to generate

the plots in figures 2-5 and 2-6 are given in table 2-3. Important observations which can be

drawn from figures 2-5 and 2-6: for typical values of1 (0.2 for low h=3W/m2K and high

ACH=15 roomful/h to 13 for high h=15 W/m2K and low ACH=I roomful/h) and a building

with thermal mass time constant of 13h, this gives a damping factor of outdoor fluctuation of

half, and a low phase-shift of 1 hour or so. For that same range of X, increasing the time

constant, through a higher thermal mass, does not improve the damping. Another interesting

observation is that for same range of X, the phase shift increases then decays to zero with

increasing thermal mass or time constant [19].

7- -

E 05s oo o- 0 Iambda=O.2
-- 0 Iambda=1.5
L. 04 - 0 Iambda=12

CL 0

03W0 0 0 o - 0 iambda=92
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o 0148 - lambda=43e+04

E , , , , 0 1ambda=3.3e+05
0 10 xe :x t 

lambda=2.6e+06

Thermal mass time constant, T (h) 0 tambda=2e+07

Figure 2-5: Normalized room temperature fluctuation with variation in time constant x and
convective heat transfer number X
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Parameters Values

c, specific heat of thermal mass (J/kgK) 1-3000

thal, thermal mass time constant (h) 0.02-53

ATOut (C) 1-10

h, heat coefficient (W/m 2K) 1-1o

Table 2-3: Parameters used in the simulation for thermal mass not in equilibrium

2.6 Numerical methods and solutions

While analytical solutions are faster to compute, numerical solutions are needed when there are

no general closed-form solutions to the differential equations, when the disturbances are not

periodic, or when control decisions or calculations occur at small time-steps. Example of these

are when then the thermal mass cannot be considered as a lumped capacity or the differential

equations are coupled and non-linear, when the outside temperature is not sinusoidal or it is

cumbersome to find the coefficient of the Fourier series representing it, or when the heating and

cooling loads need to be calculated at small time-steps. The analytical solutions for the lumped

capacity case developed previously in the chapter can however be used to validate the numerical

methods and determine the discretization level needed for sufficient accuracy. The analytical

solution presents a caveat as it has to be solved as an initial value problem to determine the

constant term for different initial conditions at each period time-step, which turns out to be more
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computationally expensive in MATLAB than time-stepping using finite difference numerical

solutions.

The heat energy balance for the room control volume is coupled to the differential equation

governing heat diffusion through the thermal mass. Solving these coupled ordinary differential

equations can be solved analytically as has been done above. However, solving them for a

number of sequential time-steps to get the temperature values throughout hours and days can be

tedious as the explicit equations for each variable need to be written out for different initial

conditions. Hence a time-advancing scheme can be used to solve these coupled ordinary

equations numerically using finite difference method. The Crank-Nicholson scheme is used as it

is second order accurate in time: it uses the average temperature over the duration of the time-

step and is an average of the forward and backward Euler method. In iteration notation, equation

2.4 becomes:

(T(T t+1+ Ttt) Tt+1 t t+

2 Mt Ttut 2 __ +T s (T t )+ (2

The corresponding equation for the energy balance around the thermal mass is:

(Tt+ass+T t mass) t+1 t+1 t

(mc (t mass at 2+Tt) (Tt mass+Tt mass)
( )tmas At 2A 2 (2.21)

On the other hand, there can be a temperature gradient within the thermal mass. This is the case

when the internal resistance to heat transfer is small compared to the external resistance. This

ratio is represented by the dimensionless Biot number, Bi = -i-. Unless Bi<<l, the internal

resistance is not negligible and there is a temperature gradient. This heat diffusion is represented

by a parabolic partial differential equation with equation 4 as one of the boundary conditions:

8Tt mass(xt) 8T2t mass (xt)
at x2

Where oc= .
Pctmass

With Neumann boundary conditions:

(i) At top slab surface, x=0: -k dTt mass Ix=o = hA(Tair - Ttmasslx=o);dx
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(ii) At bottom slab surface, x=L, slab thickness: x=L = 0, since the interface of the

concrete to the ground can be assumed adiabatic.

convection

I nrm Top layer

Varying Tair . Slice thickness d

__ _ _ _ _ __ _ _ _ Middle layer
:LU7 ductldh

I i~,v~Au Ef~+u~~*
xl Bottom layer

Adiabatic surface
No heat transfer

Figure 2-7: Multi-slice representation for thermal mass

An analytical solution to this coupled partial differential equation problem is hard formulate for

multiple slices of thermal mass as it will require convolution of the thermal responses of the

individual thermal mass slices together. Comparatively, a numerical solution can easily be

implemented using finite difference. For the space and time discretization of equation 2.22, the

Crank Nicholson method can be used. It is second-order accurate in both space and time. The

heat diffusion equation is essentially an energy balance which can be done for each thermal mass

slice. The bottom and top slices have slightly different energy balances because of the boundary

conditions.

Middle slices:

m C(Ts'tile x - st i ic ex) -k A +A U

At x-d (shice x+1 - Tslice x + (Tslice x-1 T slice x) (2.23)
Top slice:

MC (Ttl ce x=1 -stlice x=1) sU c = lc = i-~siex1-4m c(T x At ii e i = 7k (slicex=2 - Tshicex=1) + hA(air - Tsicex=i) (2.24)

Bottom slice:

mc (Tlce x=Nsice x k (slice x=N-1 - 1 slice x=N) (2.25)
At d

- Tt+Tt+l
Where T = +

2
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For N slices, these energy balances result in a system of N linear equation of the form

[A][ Tt+l] = [C][ Tt] + [Q], where A and C are tridiagonal NxN matrices, and Q is an Nxl

vector representing non-conduction heat transfer terms. For our case this includes the convection

term for the top slice x=1.

For instance, for a thermal mass with 5 slices, the A, C and Q matrices will be as follows:

kAAt hAAt
Mc + 2d +2d

kAAt

2d
kAAt

2d

0

0

kAAt hAAt

mc 2d 2d
kAAt

2d

0

0

0

kAAt

2d
kAAt

mc+ 
d

kAAt

2d

0

0

kAAt

2d
kAAt

mc d
kAAt

2d

0

0

0

kAAt

2d
kAAt

mc+ d
kAAt

2d

0

0

kAAt

2d
kAAt

mc- d

kAAt

2d

0

0

0

kAAt

2d
kAAt

mc+d
kAAt

2d

0

0

kAAt

2d
kAAt

mc- d
kAAt

2d

0

0

0

kAAt

2d
kAAt

mc+ 2d

0

0

0

kAAt

2d
kAAt

mc- d

hATairAt
0

Q 0
0
0 J

It is necessary to find numerical methods for solving the differential equations, which are stable

and accurate. With the Crank-Nicholson scheme which is unconditionally stable and second-

order accurate in time and space, relatively big time-step and few slices can be used. However,

there is a compromise which needs to be made in terms of convergence to the accurate solution,
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as accuracy is lost thus. A time step of 7 minutes was seen to be fast and accurate enough. While

the explicit forward Euler is unstable with high Fourier number with time-step of 7 minutes, the

Crank-Nicholson scheme is not. Figure 2-8 shows that a space discretization of 10 slices was

seen to be accurate enough, using the same way to define accuracy, which occurred for Biot

number<1/2.

Convergence of error with
space discretization for 5"slab

34.5

34.4

34.3

34.2

34.1

34F

33.9 - - -- ,
0 10N c

No of slices
200

E

0.

Convergence of error with
space discretization for 5"slab

34.5 -

34.4 -

3
34.

34.1

34

33.9 ---
01 0.1 1

Blot number

Figure 2-8: Convergence of errors for different levels of thermal mass discretization as a function
of (a) number of slices used, (b) the corresponding Biot number

2.7 Heat transfer coefficient

A heat transfer coefficient, h is used to characterize the heat transfer between the thermal mass

and the room air. While air itself, being transparent, does not take part in radiative heat transfer,

it is assumed that the heat radiated between surfaces in the room eventually end up being

convected into the room air. Thus, h represents the combined value for convection and radiation.

(2.26)h = hrad + hcon,

The radiation coefficient can be computed using the linearized Stefan-Boltzmann law:

hrad - 4EOTavg 3 (2.27)

Where a, the Stefan-Boltzmann constant = 5.67x10~' W/m 2 K4,

Tavg is the average temperature of the thermal mass surface and other radiating surface in kelvin

(K),
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F, the effective emissivity of the these 2, assuming that they are large and parallel to each other,

such that [18]

E1 + (2.28)
Etmass surface 5 other surface

For a concrete surface, -0.8, and assuming a range of Tavg of 8-30'C, hrad is of the order of

5W/m 2K.

The convective heat transfer coefficient is less easily defined as it depends on the air-flow

regime within the building, and whether it is buoyancy-driven or dominated by forced

convection. Numerous correlations exist for different surfaces. For our room model, where the

thermal mass is assumed to be most significant in the floor and ceiling, those for stably-stratified

horizontal surfaces apply (warm air above cool floor) and for buoyant-flow from horizontal

surfaces (cool air above a warm floor). According to Beausoleil, a convection correlation can be

derived including both as follows using the Hammond correlation [21]:

16 161/2 ]3 1/3

honoyant = + [1.63AT + " 'T ] [0.159 + 0.0116(ACH)o08]) (2.29a)

3 1/3

hcon,,stratt ed = ~0.6 2 + ser] [0.159 + 0.0116(ACH)- (2.29b)

hconv= (hconvbuoyant + hconvstratified) (2.29c)

Where AT is the absolute value of the surface-air temperature difference, Dh (m) is the hydraulic

diameter of the horizontal floor or ceiling such that Dh= 4 x Area/Perimeter, Ts is the thermal

mass surface temperature, Tdiffuser is the ventilation air (outdoor) temperature, ACH is the air

change rate in roomful/h.

The most influential parameters in equations 2.29a and 2.29b above are AT and Ts-Tiffuser. When

the windows are closed, only the first terms of equations 2.29a and 2.29b matter. Their values for

a range of AT are plotted below. When windows are open and natural ventilation takes place

(mechanically aided or not), the second terms need to be considered. Since Ts-Tdiffuser _

AT
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Ts-Tout and Troom air follows Tout as seen in section 2.5, TsTdiffuser is of the order of unity.
Ts-Troom air AT

Consequently, for normal values of ACH less than 10 roomfuls/h, the second terms are

negligible compared to the first terms. Hence, as seen in figure 2-9, for a reasonable of Troom -

Tsurface values, hconv can be approximated to be 3 W/m2K.

4

3.5

3
o Z.2 5

2hconv, buoyant

1 5 convstrat

1 hconv

0.5

0

0 5 10

TrOOM- Tsurface

Figure 2-9: Convective heat transfer coefficient and its components for a range of (Troom-Tsurface)
values

Therefore, h=5+3=8W/m 2K is a reasonable value for the heat transfer coefficient, and that value

would henceforth be used in simulations.

2.8 Effective heat transfer coefficient

As seen in the thermal modeling section 2.6, assuming a lumped-capacity model is valid for Biot

number << 1. For a concrete slab of thickness of 5", thermal conductivity of 0.4W/mK and heat

transfer coefficient of 8 W/m2K, Bi=3.4. In fact, for a normal range of heat transfer coefficient

and thermal conductivity, 10 slices are needed to approximate the conduction through the

thermal mass numerically with reasonable accuracy. However, as will be seen in section 5, it is

better to use fewer temperature states to reduce the temperature state space which needs to be

covered. For this reason, an effective heat transfer coefficient is needed to approximate the

internal conduction resistance throughout the thermal mass, such that only its top slice

temperature needs to be defined.
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An approximation of this internal conduction resistance can be made by considering the

temperature disturbance towards the center of the slab in a time constant length of time. It has

been shown that a good approximation to within 20% of the current value [22] for the internal

resistance is given by
L
2Rinternai = kA (2.30)

This enables us to write the net effect of the convective and conductive resistance using an

effective heat transfer coefficient, i.e.

heff - k (2.31)
2

TTmass

internal External Thermal mass
Resistance Resistance Capacitance

U2kA 1/hA mc_v

Tambient Tambient

Figure 2-10: Approximate effective thermal circuit with lumped thermal mass

However, this transient thermal modeling has been validated for a constant ambient temperature

boundary condition, and not a sinusoidal room temperature dictated by a naturally-ventilated

room. Since it is unlikely that the coefficient of half can be used for this case, a resistance-

capacitance model is pursued by using the electrical circuit analogy to the situation involving

many slices of thermal mass. Note that with the last slice having a one-sided adiabatic boundary

condition, the equations representing this circuit are similar to equations 2.20 (without

representation for the internal heat gain), and 2.23-2.25. The situation is represented in the figure

below for the case when number of slice, N=3.
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Figure 2-11: Circuit equivalent for a room thermal model with thermal mass divided into 3 slices

An equivalent circuit to above can be used to simplify the parallel sets of capacitors-resistors by

considering their impedance. This can be done in the complex plane or the s-plane. A complex

plane representation is possible for a steady-state A.C signal, which is the case for a sinusoidal

27r
outdoor temperature, for which the angular frequency w = 3600*24 = 7e - 5 radls . For

simplification, one can assume that each thermal mass slice is of similar thickness, each with a

capacitance C and resistance R.

In the complex-plane,

Capacitor impedance, Zc = 1/jwC (2.32)

Resistor impedance, ZR = R (2.33)

The rules for impedance Zi and Z2 in parallel and series are:

Zseries = Z1 + Z2  (2.34)

Zparaiei = (2.35)
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Figure 2-12: Circuit equivalent for thermal model of a room with effective lumped capacity
model of thermal mass

An effective impedance representing the simplification of the circuit from figure 2-11 to figure

2-12 was derived using equations 2.34 and 2.35, with the symbolic simplification done in Maple

software:

(C 2 RZ 2 +5)R . C 4 R 4w 4
+8C

2 R2
w

2 +3
ZeC 4 ective = C4R

4
w
4

+1OC
2R2W2

+9 (WC(C4R4W4+10C2R2W2 +9 (2.36)

Since the terms containing w are very small, e.g. C2 R 2W 2 < 1 for typical values of thermal mass

parameters, this can be simplified to an effective impedance, which can be broken down in an

effective resistance and capacitance:

Zeffective = R - 1) (2.37)

Reffective - (2.38)

Ceffective = 3C (2.39)

This indicates that for a steady state A.C signal representation of a typical ventilated room, the

thermal mass circuit representation can be reduced to an effective resistance with its capacitance

unchanged. Compared to equation 2.30 which gives an approximate coefficient of 0.5, this

yields a different coefficient of 0.185, as for the thermal mass of thickness L divided into 3

slices, the effective resistance is:
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L
5 R 5 7 0.185L

Reff ective = - = __9= = (2.40)
efec~v -9 9 kA kA

Similar complex-plane simplification was carried out for thermal masses divided into a range of

slice numbers. A sample Maple code used for this simplification can be found in appendix A.

The resulting equivalent coefficients are shown below in figure 2-13. This shows that dividing

the thermal mass into more than 10 slices does not bring much change in the equivalent

coefficient. Since a slice number of 10 was found to be sufficient spatial discretization for a

reasonable level of accuracy for a range of thermal mass parameters, a coefficient of 0.29 is

chosen to represent the effective circuit. Hence, this gives a "penetration depth" of 0.29L, and an

effective heat transfer coefficient of 4.0 W/m2K for an original heat transfer coefficient of 8

W/m2K.
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' 0.250 -

0o0.200-

0.150 -

. 0.100 -
0r 0.050 -

0.000
0 2 4 6 8 10 12

No of slices

Figure 2-13: Equivalent coefficient for effective lumped capacitance model for thermal mass

For validation, a thermal circuit with 10 slices with the original heat transfer coefficient and

another thermal circuit with 1 slice with the effective heat transfer coefficient were simulated and

compared using Simulink, and shown. Note that the Simulink scope graph results below show

the temperature values as referenced from a mean outdoor temperature of 0.
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Chapter 3

Coupled airflow and thermal mass modeling at

building level

3.1 Multi-zone energy modeling

The simplified assumptions of a multi-zone model make it suitable enough for fast computation

of the bulk flow in the whole building, yet accurate enough to be able to capture the temperature

and airflow differences between different critical zones. Results from multi-zone modeling are

sufficient for comfort estimates without the need for CFD simulations, which are more time-

consuming [23]. Each zone considers the air as an ideal gas, and as well-mixed with uniform

density and temperature. The multi-zone modeling is carried out by solving the coupled airflow-

thermal and mass models at incremental time-steps.

The airflow solution with mass balance is first determined by solving for the pressure differences

between neighboring zones, which depend on their respective air-flow rates. This is determined

by the following non-linear equation (Yuan, 2007):

airflow rate, inij = C * (AP)1/ 2  (3.1)

where C, the discharge coefficient, is dependent of the type of opening (rooftop, internal

openings, windows) lining the zone,

AP is static pressure difference between zone I and j,

Airflow rate inij is between zone I and j.

Each zone's net airflow rate obeys mass conservation law. Thus, the airflow rates through all the

zones can be solved iteratively till convergence to the absolute criterion for residuals using the

Newton-Raphson method, which can solve non-linear equations [24]. As done in CoolVent, the
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convergence rate can be improved by incorporating the bisection method [24]. The pressure

difference itself is temperature-dependent as total pressure includes dynamic pressure (due to

wind velocity) and static pressure, which is given eventually given by the ideal gas constitutive

relation:

static pressure, P(Pa) = p(T)gH =Pat (3.2)
RT

where g is the gravitational constant (9.8 1m/s 2)9

H is the relative zone elevation (m),

Patm is the atmospheric pressure (Pa),

R is the ideal gas constant (J/kgK),

T is the zone temperature in kelvin (K).

The zone temperatures can be obtained by solving for the coupled energy balances for all zones.

Recall the energy balance for each zone i in a multi-zone model can be written thus:

MC1V (2.1)

where rhij is mass flow rate from zone j to zone I,

T7 is air temperature of zone j,

T is air temperature of zone I,

Si regroups heat fluxes from interfaces, solar and internal heat gain of zone I.

Note that the heat flux from the thermal mass interface to the zone air is calculated based on an

energy balance on it, with conduction through thermal mass system dictated by:

= A2T (2.22)

where T is the temperature of the space-discretized thermal mass material,

X is its thermal diffusion coefficient.

The difference with thermal in a single-zone here is that the thermal mass acts as connection

between the zones on either side. Hence, if both are present, the boundary condition at each

extremity is set as a heat-flux Neumann condition. If not, the extremity connected to the ground

or air is set as adiabatic.
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Equations 3.1 and 2.1 for all the zones in the building result in linear matrix equations, which are

solved for each zone's temperature and mass flow rate. Because of the interdependence of the

mass flow rate and temperature, a numerical coupling strategy is needed for the solution. Two

strategies exist: "Ping-pong" and "Onion". The "Ping-pong" strategy solves both sets of

equations in sequence without iterations within each time-step, whereas the "Onion" strategy is

more computationally expensive as it allows iteration. CoolVent implements the "Ping-pong"

strategy as small time-steps are inherently needed to capture the nonlinear dynamics effect [25].

Thus the mass flow rates and temperatures are solved in two quick steps, by for instance,

Newton-Raphson method and LU decomposition respectively. Convergence through the Newton

Raphson method requires a convergence criterion: sum of mass flow rates through all zones,

should sum to 0, with a tolerance of 10.-6. It is worth noting that In CoolVent, the thermal mass

temperatures are solved for using the new values for the air temperatures. Hence, the air

temperatures use the heat fluxes calculated from the old thermal mass temperatures. Because the

time-step is small, the differences between the new and old temperatures are not so significant as

to affect the thermal mass heat fluxes calculated.

3.2 Design Advisor and CoolVent description

Design Advisor is an online simulation user-friendly building design tool, aimed for use at the

early design stage at which a high level of details of the building parameters and HVAC system

is not available. Design Advisor enables the rapid simulation and analysis of different building

designs and their impact on the energy consumption. More details can be obtained on its website

(designadvisor.mit.edu) and in the works of past generations of students [14], [15]. The main

difference between Design Advisor and CoolVent is in their program architecture: Design

Advisor treats each room with different window orientation separately as a shoe-box, while

CoolVent divides the building structure into interconnected zones. The goal of each software

differs: Design Advisor provides a holistic design-oriented approach to knowing how the

building envelope specification impacts energy consumption mainly in a non-naturally ventilated

building, while CoolVent seeks to provide details of the airflow rate and temperature distribution

throughout a naturally-ventilated building. Moreover, Design Advisor has a more detailed

treatment of the heat flux, namely the wall, roof and window fluxes while CoolVent considers

adiabatic conditions for the wall and roof, and a hard-coded U-value for the windows.
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Additionally, Design Advisor has a daylighting simulation module, which provides daylighting

images for the rooms and the ensuing lighting requirement. Because Design Advisor's

calculations for these fluxes are done in locked classes of previously-written codes, the network

architecture of CoolVent was implemented into the body of Design Advisor program and not the

other way round, so as to be able to call upon the daylighting model, wall, window and roof

modules. In effect, Design Advisor's HVAC loads module will be taken over by a natural

ventilation module, which will provide zonal temperature and airflow predictions.

More details are given below on the aforementioned features of CoolVent and Design Advisor

which are to be retained. Then, the architecture of the combined software is explained.

3.2.1 CoolVent

The current energy modeling done in Design Advisor does not currently take into consideration

natural ventilation for different categories of building geometry. To cater to that, CoolVent, an

existing package dedicated to natural ventilation modeling is being adapted and integrated into

Design Advisor.

Building types

A number of different building geometries are considered: 1.Unconnected sides; 2. open-plan

cross-ventilated floors; 3. Central atria; 4. Side atria, which are representative of chimneys. The

definition of the dimensions of the atrium's opening can be changed to simulate airflow through

ducts of different sizes, for instance.

(a) (b)
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(c) (d)
Figure 3-1: Building types in CoolVent: (a) single-sided, (b) cross-ventilated, (c) atrium and

(d) chimney

The building airflow and thermal simulation

This more accurate multi-zone modeling of natural ventilation would simulate wind-driven as

well as buoyancy-driven flows, which is an important driving force in buildings with multiple

floors and large temperature differences. Since the thermodynamics and the fluid dynamics are

strongly coupled in a naturally-ventilated building, the airflow and temperature solutions are

strongly coupled as well, and are solved concurrently.

Our modeling also has the option of specifying a mechanical aid to help natural ventilation. The

options include user-defined light-duty, medium-duty or heavy-duty fans which are assumed to

be situated in the atrium/chimney. Another option is letting CoolVent choose the best fan, which

turns on when any zone's temperature overshoots a user-defined temperature set-point.

Each room or atrium level in a building can be considered as one zone, and the zones are

interconnected as per the flow-path specific to the building geometry. The inner partitions

between rooms are modeled by defining an internal opening discharge coefficient between the

zones. Only the zones connected to the outside capture the solar heat gains, while all the zones

capture the effect of the thermal mass storage due to floor and ceiling, with the exception of the

atrium/chimney zones. For window openings, the discharge coefficient (C in equation 3.1),

hence the pressure difference, is determined by the Swami and Chandra model [26] for given

weather conditions, wind speed and direction.
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The multi-zone modeling is carried out by solving the coupled airflow-thermal and mass models

at incremental time-steps of 30s using the quasi-implicit Crank-Nicholson method time-

discretization scheme.

Ventilation control options

Because it is detrimental to allow natural air-flow when the outside temperature is not optimal to

occupant's thermal comfort, it is essential to control when natural ventilation is allowed.

CoolVent has the possibility of including user-defined night-cooling and window operation

strategies. Night-cooling is currently defined in the modeling by the closing (morning) and

opening times (evening) of the windows at user-defined times. Another strategy would be to

control at what temperature threshold (outdoor or zonal) the windows should be closed.

Thermal mass

Because the thermal mass of a building is considerable, it has an important influence on the

transient behavior of the system's air-flow and temperature, due to the interaction between the

air and the thermal mass. The original CoolVent has the choice of different thermal mass

thicknesses and types (concrete, steel, and brick) for the floor and ceiling.

Because the modeling is multi-zonal, it allows thermal connection between floors through the

thermal mass slabs in between them and models insulation with the ground for the lowest floor

and insulation with the outside at the roof by setting the boundary conditions there as adiabatic in

the thermal mass heat/energy balance. Figure 3-2 shows a sample snapshot in time of resulting

airflow and temperature distribution in the zones and thermal mass slabs of an atrium-style

building. Note that the skewedness of the thermal mass temperature profile results because the

floor has an assigned heat transfer coefficient of 8 W/m2K, while the ceiling's is 3 W/m 2K

(Layer 10 is a floor connection while layer 1 is a ceiling connection). The exception arises for the

ground (Tmasses 1 and 6) and top (Tmasses 5 and 10) thermal masses which are adiabatic.

Hence, an accurate yet fast modeling of air flow requires a multi-zone approach with the thermal

mass connections defined between floors.
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Figure 3-2: Sample temperature distribution in the zones and relevant thermal masses (each
consisting of 10 layers, with 1 the lowest) for a 4-floor atrium style building with airflow

defined by the arrows in (a)

Improvement to numerical solving for thermal mass

The old CoolVent code solved equation 2.22, by using the explicit exponential solution for the

energy balance of each thermal mass slice. A neater approach was implemented to solve for the

thermal mass solutions using Thomas algorithm. This is possible because the differential

equation 2.22 can be represented by a tri-diagonal banded matrix system, as a slice can only be

connected to two other slices, and to one slice at the extremities. In fact, similar tridiagonal

matrices to the A and C matrices discussed in section 2.6 are obtained when the space and time

discretizations are done using the Crank-Nicholson method likewise. For the multi-zonal
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modeling however, the thermal mass has convective heat fluxes from its top and bottom surfaces.

Thus, if the thermal mass layer is discretized into 5 slices, the A matrix, C matrix and Q vector

are represented by:
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Thomas algorithm makes use of the fact that entries of the matrix are zeros, except within the tri-

band, to reduce computation time: while the normal methods to solve linear systems of equation

is LU decomposition, it is inefficient for tridiagonal systems as pivoting about the zeros is

unnecessary [24].

The Crank-Nicholson formulation for solving for the thermal mass solution was validated against

the old original method, as shown in figure 3-3. The new zone air temperature solution is seen to

55

C

kAAt
2d
kAAt

mc+ d
kAAt

2d

0

0

kAAt
2d
kAt

mc - d
kAAt

2d

0

0



agree to within 0.2 0C. A comparison of the two aforementioned numerical methods of solving

linear systems of equations, i.e. LU decomposition and Thomas Algorithm was done in figure

3.4. It can be observed that the Thomas Algorithm is consistently more efficient. The x-axis

represents the number of floors used in the simulation. While increasing floor number represents

an increase in number of slabs, it also represents increase in number of zones. As the thermal

mass calculations only represent a fraction of the overall simulation, the saving in computational

time increases but not significantly so for increasing number of floors.
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Figure 3-3: Comparison of resulting air temperatures of 2 selected zones within an atrium-style
building for a sample day (the dots representing the improved solution with the Crank-Nicholson

method, the lines represent the original solution)
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Figure 3-4: Comparison of computational time using 2 numerical methods for solving for
thermal mass temperatures (LU decomposition in blue and Thomas Algorithm in red)

3.2.2 Design Advisor

Design Advisor's aim is to use first-order effects and the basic physics of the building

components to predict the building energy consumption with mechanical ventilation and heating.

The HVAC system kicks in when needed to meet thermal comfort, i.e. when the next-step

temperature given by the energy-balance does not meet the thermal comfort standard. It also

fixes the air change rate when needed. The relevant physics-based calculations for the overall

energy balance and the different modules of the building (floor thermal mass, wall, window,

roof) are given below. Note that these calculations are done for each room, which is considered

as individual shoe-box models.

Overall Energy Balance

Design Advisor calculates zone temperatures every 60 seconds. The room temperature is given

by the energy balance, which incorporates all the heat gains and heat fluxes:

T mCl*T+dt*(qconst+qtm+qwindow+qwa11+qroof+Tout*mCout*T )
Tnext - m~nTnd*(AR6(34

dt*mCout* 600 +mCin

where mC is the heat capacity of one roomful of air,

ACR is the air change rate in roomfuls per hour,
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dt is the time step size (60 seconds),

qconst is the heat gain from internal loads (occupants, equipment, and light)

9thermal mass, qwindow, qwal, qroof are the heat fluxes from the thermal mass, the window, the wall,

and the roof respectively. The thermal mass heat flux is calculated every 60 seconds, while the

remaining fluxes are calculated every 15 minutes.

Window module

The heat flux conducted through the window and convected into the room is calculated by means

of a resistor network to model the different heat transfers (radiation and conduction) from one

window component to another. Different window types have different overall thermal resistance

and can be made up from different options: with single, double or triple glazing; with a user-

defined glass coating type; with or without blinds. When no blinds are present, there are

radiation and convection heat exchanges between the environment and the outside of the window

unit as well as between the room and the inside of the window. If a window with multiple

glazing is chosen, radiation and conduction between the glass sheets are calculated, with only the

air gap having non-negligible conduction resistance.

Roverali - RconpoutRradout + En RcondgapRradgap + RconvjinRradjn (3.5)
Rcon,out+Rrad,out gap=1 Rcond,gap+Rrad,gap Rconvn+Rradin

There is a resulting heat flux, due to the difference between the last window node layer's and the

room air's temperature and. This heat flux which gets convected into the room is the qwigdo, heat

flux term in the energy balance.

The solar radiation heat flux which gets through the window is assumed to be 80% absorbed as a

heat gain by the thermal mass, and 20% radiated back to the room air.

The presence of blinds adds more details to the heat flux calculation. The blinds in effect as

another pane with the transmitted, absorbed and reflected radiation fraction through it computed

according to user-defined blind geometry. This fraction is calculated by means of view factors

between individual slats and between the blinds and the window or room, which are calculated

using the crossed-strings method.
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Wall module

Heat flux through the walls of the building is determined via a similar thermal circuit

model. In fact, the wall is computationally considered as a single-glazing window with zero

solar and infrared transmissivity, and with a user-defined R-value for its insulation level (Rwai).

Similar to equation 3.5 for windows, heat is transferred to and from the wall on both sides via

radiation and convection. The overall resistance is given by:

Roveraul - RconvoutRrad,out + Rwall + (3.6)nRradjn
Rcon,out+Rrad,out Rconvjn+Rradjn

It should be noted that the convective heat transfer coefficient is given by published correlations

for convection on building facades and natural convection. The radiative resistance is the

linearized form of the radiation equation. More information on the values can be found in the

Urban thesis [14].

Roof module

The roof module enables Design Advisor to take into consideration 3 roof technologies which

have energy saving potential: bitumen, cool, and green roof. Details about these can be found in

the works of a past generation student [15]. In brief, bitumen is an asphalt-based roof, cool roof

is one with high solar reflectance and thermal emittance, while green roof is one covered with

vegetation. All roof types have the option of roof insulation, with user-defined insulation

material and location (top of bottom of roof). The main difference with the green roof is that

layers of grass and soil are present on top. In terms of numerical modeling, the cool and bitumen

roofs are modeled as concrete slab slices with the top one accepting a net heat gain, due to long-

wave radiation and convective heat transfer. The green roof additionally accounts for radiation

within the vegetation layer, evaporation from the soil and transpiration of the grass. The material

properties used in Design Advisor for these three roof types can be found in the Ray thesis [15].

Daylighting module

Design Advisor has an advanced daylighting module which computes the sunlight illuminance

levels throughout rooms with different window orientations, using the net illuminance calculated

by the window module. It considers the three-dimensional reflections from building surfaces to

generate a workplane illuminance level. More information on this can be obtained from the
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works of a previous generation student [27]. The daylighting module allows the calculation of

the lighting fixture load requirements needed to meet the illuminance level for a particular user-

specified occupancy type and lighting control strategy. The hourly lighting load calculations

affect the room energy balance in that the thermal energy generated by the lights is assumed to

be equal to the electrical lighting load.

Net solar heat gain calculations

While CoolVent, like Design Advisor, makes use of ASHRAE's method for calculating the solar

angle of incidence (0) onto the building surface [28], Design Advisor's calculation steps for solar

heat gain past that stage are more detailed:

(i) Overhang:

Design Advisor also has the option of adding an overhang to the windows. This has

the effect of diminishing the direct and diffuse solar radiation reaching the window

pane by a geometrical factor.

(ii) Incident solar flux:

CoolVent assumes that the reflected-incident radiation is negligible, and considers

only the direct (Edirect, incident) and diffuse (Ediffuse, incident) solar radiations.

Edirect,incident = Edirect,normal cosO (3.7)

Ediffuse,incident = Y Ediffuse,horizontal (3.8)

where Y = max (0.45,0.55 + 0.437cosG + 0.131 cos 2 0)

Comparatively, Design Advisor additionally calculates the reflected-incident

radiation from the ground to the window surface as follows [14]:

Ereflected,,incident = Edirectnormal (C + sinf)p, - 2cosS (3.9)
2

where astronomical ratio C=0. 118,

Ground reflectivity pg=0.2 0 ,

Vertical surface tilt E = 900.

(iii) Window transmissivity:

CoolVent assumes an arbitrary value of 0.6 for the window transmissivity.

Comparatively, Design Advisor allows a detailed definition of the windows and

60



computes the net radiation, allowing for the first set of internal internal reflections

throughout the different layers. Spectrally-selective material coating defined by the

user considers IR radiation, visible light, and solar-thermal radiation separately. In

effect a net window bulk-behavior transmissivity value, or transmittance, is calculated

for a user-defined window type. For instance, for a clear single-glazed window, the

transmittance results to 0.77.

(iv) Blinds:

In Design Advisor, the user has the option of including an interior blind, which can

potentially respond to temperature and solar intensity. Blinds up to now affect only

the solar radiation and illuminance, and the blocking effect of window blinds on the

airflow is not considered. More information can be obtained from Aron's thesis [13].

3.3 Integration of CoolVent into Design Advisor

The main changes involve expanding Design Advisor's engine capability to allow multi-zone

modelling in addition the original shoe-box single-room modeling. Multi-zone modeling is made

available for the four building types defined in figure 3-1, when pure natural ventilation is

chosen in the "Ventilation system" tab. Note that in that case, Design Advisor's HVAC module

is not used as the natural ventilation takes over without air-conditioning or heating. The Design

Advisor's input variables are augmented to allow the defmition of these building geometries.

Terrain properties inputs are also added to allow a better definition of the pressure distribution on

the building surface according to the Swami and Chandra model [26]. Additional inputs are

included to define the internal openings in terms of area and discharge coefficient. Ventilation

schedule options such as night-cooling options and temperature thresholds are also added.

Treatment of heat fluxes and gains

The building loads can be divided into the following for each zone, and their computations are

carried out by their respective original Design Advisor modules, unless otherwise mentioned:

(i) Temperature-independent loads:

- Lighting heat gain (dependent on solar radiation);

- Occupancy heat gain (with occupancy schedule);
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- Equipment heat gain (with occupancy schedule).

(ii) Solar heat gains: The solar radiation which gets through the window and blinds (if

present) is calculated by the window module.

(iii) Temperature-dependent loads:

- Latent loads for moisture balance. Note that these are set to zero for naturally-

ventilated buildings.

- Sensible loads:

o Window heat flux: It should be noted that during natural ventilation, when the

windows are open, the window heat flux still operates.

o Wall heat flux

o Roof heat flux (if roof is present)

o Thermal mass heat flux: Its calculation is incorporated in CoolVent's multi-

zone modeling since the temperature gradient throughout the thermal mass

affects the convective heat transfer to the zone's air on either side of the

thermal mass, as depicted in figure 3-2. Note that the top ceiling thermal mass

is disabled if a roof is defined, as roof heat flux is then used in the energy

balance instead.

All the heat gains are assumed to be partially absorbed by the floor thermal mass' top slice, and

partially transmitted to the zone air. In fact, 80% of the solar heat gain is taken to be absorbed by

the thermal mass, and 20% added to the zone air. In comparison, 50% of the sum of the

remaining heat gains (lighting, occupancy, equipment) is taken to be absorbed by the thermal

mass, and the remaining 50% added to the zone air. The window heat flux, wall heat flux and

roof heat flux (if present) are assumed to be totally convected to the room air, as the internal

radiation between the floor thermal mass and the ceiling, wall and window surfaces is assumed

to be negligible. Therefore, 50% of non-solar heat gains, 20% of solar gain, the aforementioned

window heat flux, and the thermal mass heat flux all goes into the zone air's energy balance.

Conversely, 50% of the non-solar heat gains and 80% of the solar heat gains gets absorbed by the

thermal mass' surface slice.

It should be noted that the combined Design Advisor-CoolVent software now considers both the

ceiling and floor as thermal mass. Hence, half of the zone heat gains destined to thermal mass
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goes to the surface slice of the ceiling and the remaining half goes to the surface slice of the floor

thermal mass. Additionally now, because thermal mass is critical in naturally-ventilated building,

it is important to train the software for a few days such that the thermal mass settles to a

reasonable initial temperatures, reasonable based on the weather conditions of the last week of

December, before the start of the yearly simulation. Thus, 10 training days are used.

Assumptions

The heat fluxes from the wall, window and roof (if present) are calculated every hour. They are

therefore based on the zone temperatures at the start of the hour. It is estimated that the

computational time saved on solving the systems of equations representing their resistance

networks is more advantageous than getting accurate fluxes for each computational time-step.

For the zonification of the building, several assumptions are made for simplification:

(i) the thermal masses of adjacent zones are not considered connected or at the same

temperatures, as conduction across a dimension other than the thickness is considered

negligible and programming-wise, connection between zones only occur at the mass

air flow level.

(ii) The work-plane of the daylight is considered to be that of the extremity zones. Hence,

inner zones are assumed not to receive sunlight as they are usually partitioned away.

(iii) While the building geometries considered for natural ventilation are essentially one-

dimensional, the wall heat flux considered comes from two fagade sides for middle

zones and from three fagade sides for exterior zones.

Sample results

For illustration, a cross-ventilated building with Boston weather (May 20-23) is simulated using

the combined program and the results presented below. The parameters used for this simulation

case-study used are listed in table B-I of appendix B. Figure 3-5 shows the resulting zonal

temperature profiles for a cross-ventilated building divided into 3 zones. As seen in section 2.5,

the thermal mass dampens the zone air temperature. Note that although the building is constantly

naturally ventilated, when the wind speed drops. The air temperature equilibrates to the thermal

mass temperature. This behavior can be seen for the small zone temperature increases during the

night of May 21.
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Zonal temperature and wind speed profiles for cross-ventilated
building, May 20-23
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Figure 3-5: Zonal temperature and wind speed profiles for case-study with cross-ventilated
building in Boston weather (May 20-23)

The following figures illustrate the effect of having more details in defining the heat gains to

each zone, through the aforementioned modules. Figure 3-6 shows the heat gains for the relevant

zones, resulting from occupancy heat gain, the net solar radiation transmitted through the

window (blue lines), the heat conducted through the window(brown lines), the heat conducted

through the wall (pink lines), and the heat generated by the use of lightings (gold lines) during

occupancy hours. Note that the zones 1 and 2 are exterior zones, while zone 1 is an interior zone.

As a result, the interior zone receives no window heat conduction, a lower wall conduction due

to smaller wall area and a higher lighting use since the interior zone is assumed not to receive

daylight. Because zones 1 and 2 have opposite window orientations, they have different window

heat conduction and net solar radiation transmitted. Because the input lighting control has been

set to efficient, the exterior zones do not require lighting during most of the occupancy hours.

Figure 3-7 shows the effect of using blinds with a control scheduled set to respond to solar

intensity. During midday when the solar intensity is too high, the blinds are closed. This results

in no solar radiation transmitted and an increase in lighting use.
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Figures 3-8 to 3-12 show typical thermal mass temperatures for an adiabatic ceiling, a cool roof

without insulation, a cool roof with insulation, a green roof without insulation and a green roof

with insulation respectively. The effect of the implemented roof modules can thus be observed.

Details of the roof properties used can be found in appendix A-1 and more information in Ray's

thesis [15]. Figure 3-8 shows the temperature gradient which exists within the thermal mass

which has been discretized into 10 slices. As seen in section 2.5, the thermal mass temperature

knows a phase shift and damping with respect to the incoming outdoor air temperature. Figure 3-

9 shows the temperature gradient through of a cool roof, which includes an outer cover-board.

The connection of this outer exposed slice occurs in terms of heat gain due to solar irradiation

and conduction to the outside. Therefore, this cover-board (roof slice 1) has a higher temperature

than the rest of the roof slices, which are slabs. Figure 3-10 shows that adding roof insulation

reduces the heat conducted from the outer roof surface to the inside. Figure 3-11 shows the

temperature distribution within the green roof which has no outer cover-board, but a vegetation

slice (roof slice 1), 12 soil slices (roof slices 2-13) and 11 slab slices (roof slices 14-24). It shows

that even without insulation, the low thermal conductivity of the soil limits the heat conduction

from the outside to inner zone air temperature. With added top insulation, the heat transfer to the

inner slabs of the green roof is even more hindered, as shown in figure 3-12. As an overview,

figure 3-13 compares the effect of using different roof types on the resulting connected zone air

temperatures. As expected, an adiabatic roof does not translate to the indoor zone air temperature

the effect of a high outdoor temperature during the day and that of a low outdoor temperature at

night. A cool roof with no insulation results in the highest day zone air temperatures.

Comparatively, a cool or green roof with insulation performs the best, with the lowest day zone

air temperatures. A green roof (with 0.15 m of soil) with no insulation performs almost as well

without insulation because of the soil already insulates without the need of a roof top insulation

between the soil and slab.
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Heat gains for cross-ventilated building, May 20-23
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Heat gains within the 3 air zones for the case-study with cross-ventilated building
without blinds, in Boston weather (May 20-23)
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Figure 3-7: How blind schedule affects the net solar radiation and the lighting requirements, for
the case-study with cross-ventilated building with blinds, in Boston weather (May 20-23). Blind

status of 1 indicates open blinds; 0 indicates closed blinds.
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Zone and roof temperature profiles, May 20-23
Adiabatic roof
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Tmass slice 7 - Tmass slice 8 - Tmass slice 9 --- Tmass slice 10

Figure 3-8: Resulting air and roof temperature profiles in one zone for the case-study with
adiabatic roof (10 slices, with slice 1 being in contact with zone air)

Zone and roof temperature profiles, May 20-23
Cool roof with no insulation
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-4- Out door te m perature -4-zone 1 temperature -- roof slice 1 roof slice 2
- roof slice 3 -- roof slice 4 - roof slice 5 - roof slice 6
- roof slice 7 -- roof slice 8 - roof slice 9 - roof slice 10

~ roof slice 11 - roof slice 12

Figure 3-9: Resulting air and roof temperature profiles in one zone for the case-study with cool
roof (12 slices). Cool roof has 1 slice for the cover-board (roof slice 1) and the remaining slices
(2 to 12) form the slab, with slice 12 being in contact with zone air (roof properties are in table

B-1). No roof insulation is used.
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Zone and roof temperature profiles, May 20-23
Cool roof with top insulation of R-value=5 m 2 oC/W
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-4-zone 1 temperature
- roof slice 3
- roof slice 6
- roof slice 9
- - roof slice 12

Resulting air and roof temperature profiles in one zone for the case-study with cool
roof (12 slices). Roof insulation of R-value=5 m2OC/W used.

Zone and roof temperature profiles, May 20-23
Green roof with no insulation

35

30

25

20

15-"

10

5
May-200:00 May-2012:00 May-210:00 May-2 112:00 May-220:00 May-22 12:00 May-23 0:00

- outdoor temperature
-roof slice 3
- roof slice 7
-- roof slice 11

- roof slice 15
- roof slice 19
- roof slice 23

-W-zone l air temperature
--- roof slice 4

roof slice 8
-- roof slice 12

-- roof slice 16
- roof slice 20
-- roof slice 24

-- roof slice 1
- roof slice 5
- roof slice 9

roof slice 13
- roof slice 17
- roof slice 21

roof slice 2
- roof slice 6
- roof slice 10

roof slice 14
- roof slice 18
- roof slice 22

Figure 3-11: Resulting air and roof temperature profiles in one zone for the case-study with
green roof (24 slices). Green roof used has 1 slice for the vegetation (roof slice 1), 12 slices for
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the soil (roof slices 2-13) and the remaining slices (14 to 24) form the slab, with slice 12 being in
contact with zone air (properties are in table B-1). No roof insulation used.

Zone and roof temperature profiles, May 20-23
Green roof with top insulation of R-value=5 m 2oC/W
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Figure 3-12: Resulting air and roof temperature profiles in one zone for the case-study with
green roof (24 slices). Roof insulation of R-value=5 m2OC/W used.

Comparison of resulting zone 1 temperatures with different roof types for
cross-ventilated building, May 20-23
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* Green roof with top insulation of R-value=5 - Adiabatic roof

Figure 3-13: Comparison of resulting zone 1 temperatures with different roof types (adiabatic,
cool with and without insulation, green with and without insulation)
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Combined Design-Advisor CoolVent program structure

In summary, the combined Design Advisor-CoolVent program structure is as depicted in figure

3-14 below, with the bridging with Design Advisor done at the load, heat flux and thermal mass

levels. The combined program retains its original capability (in green) of using mechanical

ventilation to find the heating, cooling and lighting load of its shoe-box building model in order

to meet user-defined thermal comfort and lighting requirement. Figure 3-15 and 3-16 show the

data logic progression for the whole simulation and the hourly simulation respectively.
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Figure 3-14: Overall combined Design Advisor-CoolVent program structure (blue: original CoolVent, green: original Design Advisor
functions)
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Ventilation Design Advisor
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Figure 3-15: Data logic flow for the overall combined Design Advisor- CoolVent simulation
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Figure 3-16: Data logic flow for the combined Design Advisor- CoolVent hourly simulation
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Chapter 4

Ventilation strategies

4.1 Literature review

Two forms of passive cooling are commonly used in buildings: natural ventilation and earth-to-

air heat exchanger. The other form of passive cooling, earth-to-air heat exchanger, consists of

pipes buried in the ground through which air is drawn to the surface for ventilation. The

exchanger is located at a depth such that the ground temperature is low enough to cool surface

air temperature in summer, and hot enough to warm it in winter [9]. Again, this goes back to how

a high thermal mass, in this case the earth, dampens and shifts temperature fluctuations as seen in

the thermal modeling section. While the earth-to-air exchanger can operate for heating too,

Breesch et al. found out natural night ventilation is more efficient than an earth-to-air heat

exchanger for cooling [29]. On the other hand, as will be examined in section X, the cooling

potential through night-ventilation depends largely on the thermal mass.

Both forms of passive cooling depend on three type of parameters: the climatic parameters (To0 t-

Tin, Tmean), the building parameters (thermal mass and heat transfer parameters), and control

parameters (control strategy, and actual ventilation rate set if mechanically aided) [29], [30].

4.1.1 Direct ventilation versus night-cooling

Night-cooling is the use of natural ventilation during the night because daytime outdoor

temperatures exceed the indoor cooling set-point temperature and direct ventilation is no longer

useful. By restricting ventilation to nighttime, the building's thermal mass can be cooled with

outdoor air and can thus offset daytime internal gains. Night-cooling is mainly suitable for low

peak air temperature [31] and large diurnal temperature swings. Givoni suggested a general rule
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of thumb of an average of 10-1 2C as minimum diurnal temperature swing for night-ventilation to

be effective [9].

The table below shows the results of Axley et al in determining a location's natural ventilation's

potential using hourly WYEC2 weather data for four climate zones. The effectiveness of night-

cooling was calculated as the number of days when the night cooling potential qcoo offsets the

internal gain qin. Axley assumed that the building had infinite thermal mass i.e. the cooling

potential is perfectly sustained by the thermal mass:

qcool = 1 - f -h cp Tic,, -Tout(t)) dt (4.1)

when Tout < Te,, (which is at night-time).

Hence, the potential of night-cooling here is an upper limit.

Direct Coolg
1 10 W/rn 20W/

W Nir8W
| 0 W/11? |80 W& I Coofin

Miami, FL - FLMIAMIT.WY2 data {FLMIAMIT.WY2 data} Hot-Humid-Coastal
Vent. Rate or 3.1*2.6 6.0 5.3 11.9 10.6 23.9 21.2 2.9 1.9
Cooling Potential ACH ACH ACH ACH W/m2-ACH

% 126%
2 26.5% 27.3% 27.3% 27.3% (79 days)

Los Angeles, CA - CALOSANW.WY2 dataHot-Arid-Coastal
Vent. Rate or 1.5+1.0 3.0*2.1 5.9 4.2 11.8 8.4 5.9*2.3
Cooling Potential ACH ACH ACH ACH W/n 2-ACH
% 93%
Efive 2  94.9% 978% 97.8% 97.8% (27 days)
Kansas City, MO - MOKANCTW.WY2 data Teoptra en-Continn__
Vent Rate or 1.9 1.8 2.6 3.1 4.8 6.1 9.7 12.1 4.5 3.2
Cooling Potential ACH ACH ACH ACH W/r 2-ACH

%I 57%
Effective 2  37.8% 67.4% 73.9% 73.9% 1das

Madison, WI - WIMADSNT.WY2 data Cold-Continental
Vent Rate or 1.8 1.7 2.4 2.8 4.1 5.2 8.2 10.4 6.0 3.0
Cooling Potential ACH ACH ACH ACH W/m2-ACH
% 182%
Effcive 2  39.3% 72.4% 88.7% 88.7% 1 (68 days)
Night cooling for subsequent days when direct cooling is not effective.

2 For direct cooling % = hours effective +8760 hours; for night cooling % = days effective + days needed.

Table 4-1: Climate suitability statistics for natural ventilation for four U.S. locations [32]

Some interesting results from that study are worth mentioning here. In hot cities like Miami,

where the outside temperature is not apt to be below the indoor cooling set-point temperature
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often, natural ventilation cooling is not possible most of the year. On the other hand, direct

natural ventilation can be expected to be most feasible and effective in the cooler locations, as in

Kansas City, for moderate to high internal gains. This is because at low internal gain and low

outdoor temperature, the resulting indoor temperature is less that the heating set point

temperature needed to require natural ventilation. While there may or may not be any thermal

comfort penalty, there is penalty in terms of air quality. Hence, some form of mechanical

ventilation is needed when natural ventilation is not possible.

4.1.2 Night-ventilation studies

Night-cooling is simply the use of natural ventilation during the night because daytime outdoor

temperatures exceed the indoor cooling set-point temperature and direct ventilation is no longer

useful. By restricting ventilation to nighttime, the building's thermal mass can be cooled with

outdoor air and can thus offset daytime internal gains. Night-cooling is mainly suitable for low

peak air temperature [31] and large diurnal temperature swings. Night-cooling has been shown to

be effective in mild UK weather and is in fact one of the default design options for "green" office

buildings [33]. Common evaluation criteria for how effective the night-cooling can be are:

1. Reduced peak day air-temperatures; 2. Reduced average temperature during the morning; 3.

Reduced slab day temperatures; 4. Time-lag between outdoor and indoor maximum

temperatures.

30

26

22

20__
- Air - no night ventilation

18 .. .Slab - no night ventilation

External
16- -- Air - with natural night ventilation

Slab - with natural night ventilation
14

00.00 06.00 12:00 18:00 00-00

Time

Figure 4-1: Typical monitored effect of natural ventilation on indoor and thermal mass
temperature [31]
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Similar to Axley [32], Artmann et al investigated climate suitability for natural ventilation, but

based off European climate [5]. His metrics for climate suitability are overheating degree hours

(ODH) and mean daily climatic cooling potential (CCP). ODH was defined as the number of

hours room temperature was above 26*C during working hours for a simple representation of

thermal comfort. CCP was defined as the number of hours during non-working hours for which

the outdoor temperature was below the room temperature, for a representation of the climate's

potential for ventilative cooling [5]:

1 '= N 1 EN h=hf m = 1 h if Tb - Te ATcrit (4.2)
CC N n=1 Yj _h Mn. (T1,n,, - Te,'h) m = 0 if Tb - Te < ATcrit

Where Tb= building temperature, Te= outdoor temperature, h= time of day, hi=starting hour for

night ventilation, h1= final hour for night ventilation, ATcit= critical threshold temperature

difference for night ventilation.

Artmann et al. conducted building energy simulations using HELIOS [34] to find the effect of

varying identified parameters on the resulting room temperature [35]. The parameters varied

during his study were: climate, thermal mass, heat gain, air change rate and heat transfer

coefficients. He found out that the climatic conditions and air flow rates during night-ventilation

had the largest effects while sensitivity to the heat transfer coefficients occurred for h<4 W/M2 K,

with the effects measured in terms of overheating degree hours. An interesting observation

pertinent to my quest is the effect of thermal mass and internal heat gains as shown in the figure

below. For instance, increasing the thermal mass from c/A=193kJ/m 2K (light-weight) to

c/A=692kJ/m 2K(heavy) reduced overheating from 164 to 23Kh/a for a medium heat gain office,

while increasing the internal heat gain from 159Wh/m2d (low) to 313 Wh/m2d (high) increased

overheating from 33 to 177Kh/a for a medium-weight building. It should also be noted that the

overheating effect of increasing heat gain has smaller sensitivity in heavy-weight buildings.

77



I Low gains

M dum ginos
High gmins

500

400

300

200

100

0
Light- Mediun- Heavy-

weight building construion

Figure 4-2: Effect of thermal mass and internal heat gains on thermal comfort (ODH>26*C) for a
night-ventilated building simulation for Zurich weather with h=7.7W/M2K [35]

However, in the parametric study, Artmann et al. used similar ventilation control parameters

despite varying the building parameters as shown in the table below.

Parameters Artmann study
Night-ventilation schedule 7p.m to 7a.m
Night-ventilation ACH used 6 ACH
Set-point constraint Tout <Troom surface- 3 C
Overcooling constraint 24-h Mean of To1 t> unspecified cooling setpoint

and Troom-surface> 20 0 C
Day ventilation 2 ACH
Heat gains Conduction through exterior and partition walls

Table 4-2: Control parameters for night-ventilation numerical simulation in Artmann's study
[35]

Multiple studies on night-ventilation have been conducted experimentally as well to investigate

the cooling potential of night-cooling. However, no clear control strategies defined by the

building or climate parameters, were determined when instigating the night-cooling. For

instance, Blondeau carried out his study on an office building in La Rochelle, France [30]. Three

test rooms were unoccupied (hence without internal heat gain) and night-ventilated through two

opened windows, allowing for one-sided ventilation. He tested through trial and error during a

month period, what the optimal working conditions would be for their night-ventilation strategy.

Their night-ventilation control sequence used was:
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Control parameters Blondeau study
Night-ventilation schedule 9p.m to 8a.m
Night-ventilation ACH used 8 ACH
Set-point constraint Tout <Troom air- 20 C
Overcooling constraint N/A
Day ventilation Windows closed

Table 4-3: Control parameters for night-ventilation in Blondeau's experimental study [30]

Breesch carried out an experimental study involving a night-ventilated low-energy office

building in Belgium [29]. The building was a 2-floor open-plan occupied office with a flow path

similar to that in the chimney-style of CoolVent, i.e. it allows for wind-driven and buoyancy-

driven air flow. By day, the ventilation system also involves an earth-to-air heat exchanger which

pre-cools the supply air flow. Again there is no hard-and-fast way by which the ventilation

control parameters were determined, as "the control parameters were optimized after the first

summer", to give the following heuristic parameters:

Control parameters Breesch study
Night-ventilation schedule 1 Op.m to 6a.m
Night-ventilation ACH used Natural air flow rate
Set-point constraint Tout <Troom air 2*C

If relative humidity<70%
If no rainfall
If wind speed<10m/s
If previous day's Tout,ma>23*C and Troom ai>20*C

Overcooling constraint If Troom ai>200C
Day ventilation Proportional control: from 5400 to 8000m 3/h for

Troom air from 23 to 26*C

Table 4-4: Control parameters for night-ventilation in Breesch's experimental study [29]

Other rules of thumb exist for setting the ventilation parameters. Zimmerman suggests the

following for an efficient night-ventilation: outside temperature should be at least 5K below

room temperature for more than 6h at air exchange rates of 5 ACH [36]. In her study of night-

ventilated buildings in Germany, Eicker highlighted that different starting times for night-

ventilation give rise to different cooling potential: for starting time of 9pm the maximum cooling

potential was of 5.5kWh and 4.7kWh for starting time of 6pm [37]. However, no specific control

parameters were mentioned. For mechanically-aided night-ventilation, she noted that COP of the

fans varied between 5 and 10, which was still more energy-efficient than conventional chillers.
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Although numerous studies have covered parametric and experimental studies of parameters

affecting night-ventilation potential, only heuristic rules actually govern the ventilation control

parameters such as set-point and ACH values, based on prior experimentation.

4.2 Ventilation modeling in buildings

Ventilation involves the closing and opening of windows. This can be done by automatic

actuation of the mechanical openings or by using vents. Natural ventilation involves mass-flow

rate supported by a buoyancy-driven or wind-driven air flow, and is thus variable. A wind-driven

mass-flow rate depends on the wind-speed and discharge coefficient of the opening. A

buoyancy-driven mass-flow rate additionally depends on the density or temperature difference

between two zones. However, natural ventilation can be mechanically-aided to achieve a wanted

air change rate using exhaust fans. Hence, a fixed air change rate of 5 ACH is assumed, as the

standard air quality requirement for an office building [12].

4.2.1 Cyclical ventilation with scheduling

Ventilation involves the closing and opening of windows. Although infiltration occurs when

windows are closed, the actual resulting ACH is usually very low, ACH=0.35 roomful/h for an

office building [12]. For a better analysis of energy simulation with windows closed, the mass

transfer term in energy equation 2.3 is neglected by setting ?h = 0.

MC, = hA(Tthermal mass( -T(t)) + qiA (4.3)

This equation is coupled to equation 2.5, which assumes a lumped-capacity model for the

thermal mass (i.e. thermal mass is at a uniform temperature):

(MC)thermal mass dTtherm,,alsms = hA(T(t) - Tthermal mass(t)) (2.5)
dt

Compared to the scenario of open windows, mc, -s- is no longer negligible. This can be seen

in figure 4-3: there is a crook in the air temperature solution when the window is just closed; then

the temperature equilibrates to the steady solution with mc, -T- negligible, which is just a linear

increase with time.
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Rearranging equation 2.5 and substituting into equation 4.3 gives the following second-order

ordinary differential equation:

mc, d 2 T dT mc, q 
_ q(A

hA dt2  dt (mc)T mass (mc)T mass

Solving equation 4.4 by the method of undetermined coefficients gives the following solution

using Tair=Tini and TT mass =Ttmass_ ini at t=0 for this initial value problem:

qA? 2  (1
qAt (T~ c+(mc)T mass

Tair(t) = Tin + + at + -in- Ttmass ini -_ ,r -)s (T-( +T2 (4.5)
mc,+(mc)T mass(+

qA'r2
TT mass (t) - , (4.6)

mcv+(mc)T mass 1 :r2 T2

mc - (mc) TmassWhere T1 =mc- and T2 = ( rs
hA hA

For mc, (mc) Tmass, is negligible and qAT 2  - Tair(t) and TT mass(t) can be
T2 mcv+(mc)Tmass h

simplified to:

mc+(ct massCT acTair (t) = Tini + Me,+(MC)T mass + (Tini - Ttmass ini _e (T,+ 2) (4s.7)kg

TT mass (t) = Ttmass ini + (mct mass8

For t>>-i, the air temperature, like the thermal mass temperature, equilibrates to a linear increase

with time for a constant interior heat gain. This is seen in figure 4-3, where the simulation uses

the simple single-zone energy model developed in chapter 2, with normal thermal mass

parameters (c=880 J/kgK, thickness=5", h=8 W/kgK) and a room volume of 1000m3 and area of

100M2
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The above figure shows the resulting room temperature profiles for four test cases (with the

simulation using the same energy model as in figure 4-3 above): 1. always open, with initial air

and thermal mass temperatures of 12'C and 140C respectively; 2. closed from 8am to 7pm, with

initial air and thermal mass temperatures of 12'C and 140C respectively; 3. always open, with

initial air and thermal mass temperatures of 14C and 16*C respectively; 4. closed from 8am to
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7pm, with initial air and thermal mass temperatures of 14*C and 16*C respectively. Figure 4-4

shows that different initial thermal mass temperature conditions, as well as different ventilation

schedules, result in different temperature profiles. This is because the time constant due to the

thermal mass used is of the order of 15 hours and hence it takes time for the system to equilibrate

to the steady-state temperature profile. This is more so with the cyclical ventilation schedule than

with the constant ventilation schedule.

4.2.2 Effective heat transfer coefficient with cyclical ventilation

In section 2.8, the use of an effective heat transfer coefficient was used to obtain the same

thermal response from the thermal mass when it is numerically modeled as one slice at one net

temperature, as compared to when it is numerically modeled as many slices with a temperature

gradient. However, this simplification of using an effective heat transfer coefficient was derived

for the variables being in the complex plane, i.e. for steady-state A.C signal in the circuit

analogy, or in continuous natural ventilation with a sinusoidal outdoor temperature in physical

terms. This is because second or greater order effects of the capacitance in parallel do not arise

but for non-steady signals. To see this, a similar analysis is done in the s-plane.

In the s-plane,

Capacitor impedance, Zc = 1/sC (4.9)

Resistor impedance, ZR = R (4.10)

Using the series and parallel rules in equation 2.X, the effective impedance is now:

C2R22+3CRs+l 
4.1Zeffective = sc(c2R2:2+4cRs+3)

Hence, for non-steady state A.C signal, the thermal mass section of the circuit cannot be reduced

to an effective resistance and capacitance without some errors as second or more order effects

are unaccounted for. The effect of non-steady signals on the error range for this effective

representation is investigated numerically using MATLAB by comparing the results with

temperature generated using a thermal circuit with 10 slices. Figures 4-5(a)-(f) compare the

resulting temperature profiles, always open and with a ventilation schedule, for the following
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cases: (i) with no occupational heat gain; (ii) with an occupational heat gain of 15W/m2; (iii)

with an occupational heat gain of 30W/M2. Note that for the profiles below, heat gain followed

an occupational schedule of 8a.m to 9p.m. For constant ventilation, it can be seen that the

effective circuit gives the correct room air temperature profile, while if only 1 slice is used with

the original heat transfer coefficient, the room temperature is more damped than in actuality.

However, with a ventilation schedule (here set to 8a.m to 9p.m), error slips in. Error is maximum

when the window has just been closed, and increases for greater occupational heat gain. This is

to be expected: with an unsteady signal, a single capacitance charging or discharging

respectively overestimates or underestimates the resulting room temperature than several

capacitances in parallel (the thermal mass slices) at different temperatures. Nevertheless, the

resulting errors are of less than 1*C, and are consequential mostly for high internal gains and
hk

after a change in ventilation. Hence, the effective heat transfer coefficient (heff = k+O.29IL) is

adopted as a means to reduce the number of dimensions of the temperature space during the

dynamic programming optimization process.
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Figure 4-5: Temperature profiles with (a) no heat gain and constant ventilation, (b) no heat gain
and ventilation schedule, (c) with heat gain of 15 W/m 2 and constant ventilation, (d) with heat

gain of 15 W/m 2 and ventilation schedule, (e) with heat gain of 30 W/m2 and constant ventilation,
(f) with heat gain of 30 W/m2 and ventilation schedule (with heat gain and ventilation schedule

both from 8am to 19pm)
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Chapter 5

Optimization

5.1 Building control and optimization in literature

5.1.1 Current building controls

Controls are prevalent in commercially available HVAC systems: they can be pneumatic, electric

or electronic and are monitored using energy management systems (EMS) or Building

Automation Systems (BAS). Control systems consist of the sensor, controller and controlled

device. The control actions can be on-off action, timed on-off action (with delay), floating action,

modulating action (example: proportional control). The last three actions are usually used for

HVAC systems focused on mechanical heating and cooling. For instance, PID controllers are

used to maintain the room temperature at a user-defined set-point for an air-conditioning system.

In our case, for natural ventilation, on-off actions are used to control the dampers (figure 1.2) or

mechanically-actuated windows according to the rule-based control defined by the BAS. For

example, Levermore analyzed the rule-based control at the PowerGen building in Coventry, UK,

which was used for night-ventilation [38]. The excerpt is below:

Initiate and maintain cooling by opening all controlled apertures when:

1. The average room/zone temperature at the end of the day exceeded 23C

2. The maximum outside temperature during the day exceeded 21C

3. The room/zone temperature exceeded 18C.

If condition 3 is violated, night cooling is not resumed until room/zone temperature rises above

20C.
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The rules above are an example of rule-based controllers used by the BAS. The control inputs

can be based on a series of rules of the kind "if condition then action". The conditions and

actions typically involve numerical parameters (usually threshold values of inputs) as control

parameters. The shortcoming of rule-based controls is that for good performance of the control

system, a good set of rules, as well as the associated parameters is required.

PID controllers and rule-based controllers are the norm in building control systems because of

the simplicity of its implementation. However, such simple heuristic strategies usually only

consider indoor and outdoor conditions, and do not incorporate an ongoing optimized control.

The controls do not actively seek to minimize cost or maximize thermal comfort, by taking into

consideration disturbances, such as predicted weather, and the building thermal dynamics

(characterized by a physical or data-driven model of the building).

5.1.2 Optimization for ventilation

Optimization is needed for the most effective use of natural ventilation. Extensive research exists

on the optimization of ventilation in buildings. However, the majority of it is carried out on

optimized controls of dual-mode (mechanical and natural cooling) ventilation in mixed-mode

buildings. As hybrid-mode ventilation was in question, the typical objective function to

maximize was the electricity savings from the natural cooling. Three types of optimization

predominate: 1. Model predictive control strategies, 2. user-behavior based controls, 3. passive

optimization. Passive optimization operates at the design level, while user-behavior based

controls have been developed more as a tool for building energy and air-flow modeling. Model

predictive control strategies, on the other hand, aim to optimize the control of the HVAC systems

during its daily operations.

Passive Optimization

Passive optimization involves modifying the building's envelope and thermal properties to affect

its thermal response. Wang conducted a study of optimization of the cost-return for mixed -mode

ventilation through a parametric run of varying thermal mass [39]. He developed a semi-

empirical model which is half building physics based, and half obtained by regression of data to

obtained fitting coefficients C1 and C2 for a certain climate. The empirical model used was:
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Esaving =(Ciexp (-) 2+ CD ( )4 - (C2(1G) + - exp(- T' )) (5.1)
Emechanical AO 0) Too- C2

Wang defined the time constant as r = , similar to m. The C 1 to C4 coefficients somehow
hz 9hA

encompass the effect of the building parameters such as area and insulation level, and were

found by fitting a simulation study result. It should be noted that in his simulations the natural

ventilation had the following heuristic set-points:

Working hours (8am-I7pm): 15 0C< Tot<22 0C and Ti,> 190C

Non-working hours: 10 "C <Tout< 22"C

While equation 5.1 is data specific, Wang's results were shown to agree with EnergyPlus

simulations, and do give an important indication of the impact of thermal mass on enhancing the

use of natural ventilation. The growth rate of savings initially increases with increasing the

thermal mass time constant, but eventually tapers off. This can be tied to the simple thermal

model analysis in section 2.5: as thermal mass time constant increases the steady state damping

factor tapers off. An interesting finding in his results is that increasing thermal mass in Miami

weather actually gives rise to a decrease in electricity saving for cooling. This was explained by

a larger time constant meaning that the building takes longer to gather the cooling potential

overnight [39]. However, it could be argued that the heuristic set-point strategies for natural

ventilation used in their study do not take into consideration the thermal mass. Essentially, this

highlights the need for a better natural ventilation control strategy by taking into consideration

the transient response of the thermal mass.

0Floor Area=225m2 E+
45% 9% - +Floor Area=600m2_E+
40% * 8% AFloor Ara=1500mn2 E+

35% 7% -

a~301/o~ 6%

V 5%U

20% 4% -

15% 3% -
10%--Mode Pr 2%

0 Floor Arew=225 m2 E+ 2
5% +Flow Aa=M + 1% A A A A A

0% . A Fkp A= 00/0
0 5 10 15 20 0 5 10 15 20

Thermal muss time costaWt (h) Thermal mass time constant (h)

Figure 5-1: Effects of thermal mass, floor area and climate (left: moderate Philadephia, right:
warm Miami weather) on electricity savings in simulation of a naturally-ventilated building [39]
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User-behavior based Controls

Rijal et al.[40] carried out a field survey on 15 existing buildings in the UK to gauge users'

control behavior of windows in buildings. Using logistic regression analysis, they came up with

an algorithm, called the Humphrey model, which could be embedded in building simulation

software to emulate the effect of building design on users' window-opening behavior, given the

actual outdoor and indoor temperatures. This algorithm is a very indirect way of optimizing

ventilation to maintain instant thermal comfort based on statistics. However, it assumes that the

actions (closing or opening of windows) of the people in the survey are actually the optimal

ones, and not the thermal comfort they perceive. Furthermore, knowledge of future disturbance,

such as weather forecast, cannot translate through the occupants' immediate action. Hence,

occupants cannot be expected to behave in an energy-efficient manner.

5.1.3 Model Predictive Control Strategies

The past decade has seen a growth in research on Model Predictive Control (MPC). MPC is a

control methodology that produces strategies for a given time horizon so as to minimize a

defined cost function, by making use of the predictions of a building energy model. MPC can be

online or offline: offline MPC has a defined horizon over which optimization is carried out;

online MPC is real-time optimization whereby the inputs and disturbances to the systems are

continuously being fed back to the model, hence considering the real-time results of the

optimization and allowing for correction due to model mismatch. Because the control is based on

a mathematically or physically-based model of the process in question, it can account for linear

or non-linear dynamics, and simple or complex interactions, defined by the model. The

shortcoming of MPC is that the model needs to be well-defined. Three kinds of models have

been investigated in literature: (i) forward (white-box) models; (ii) inverse (black-box) models;

(iii) hybrid (gray-box) models. Forward models are based on physical building parameters with

energy and mass balances solved numerically including those seen in Chapters 2 and 3; so they

require a lot of input details for proper modeling. Inverse models are data-driven, i.e. they

require training based on on-site measurements; based on empirical data only, they might not

model physical behavior properly. The gray-box model [41] seeks to reconcile their

shortcomings using transfer functions with parameters that are constrained to satisfy simple
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energy balance of energy flows in the building; it requires a smaller set of building parameters

and yet makes use of training data to better characterize the building.

MPC has been examined related to buildings in several fields: optimal control of active and

passive building thermal storage [42]; optimal scheduling of fans in hybrid-mode building, and

control modes of mixed-mode buildings using data-driven (gray-box) models [6], [43]; and

controls of windows in a mixed-mode office building using forward (black-box) models [44],

[45]. A more thorough study of MPC was carried out by a Siemens BT study, with modeling,

design and implementation done for 64 room types at four European sites [10], [46]: besides

thermal comfort maximization and energy usage minimization, minimization of peak electricity

demand was also a consideration.

Spindler and Norford [43], [47] developed flexible and accurate linear thermal models, whose

characterizations depend on measurements at several time intervals of indoor air and thermal

mass temperatures, loads and outdoor conditions. Spindler concurrently developed a flexible

type of regression, called Principal Hessian Direction Regression Tree (PHDRT), to deal with

nonlinearities expected for buildings with natural ventilation. While genetic algorithms and

simulated annealing were initially used as the optimization techniques, Spindler found them to be

inefficient; instead an optimization framework was developed whereby a set of cooling strategies

were defined and ranked. The optimization was carried out with respect to maximization of

thermal comfort and minimization of fan energy use.

Comparatively, May-Ostendorp's model was physics-based [44], [48]. In fact, the simulation

was carried out in EnergyPlus for a standard DOE'office building with natural ventilation.

Within the MPC framework, optimization of the window opening schedule was done using a

Particle Swarm Optimization (PSO) algorithm. Their optimization was carried out with respect

to minimization of cooling and heating energy and fan energy consumption while maintaining

thermal comfort. A weighted penalty which scales with the number of window state switching

was also incorporated. The optimization was shown to be effective compared to a reference case

where the non-optimization window schedule was defined by the Humphrey model discussed

above: a 54% savings was noted; compared to a base case where only mechanical cooling and

heating were available, a 10% savings was noted. The optimization results, for a summer -long
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worth of Boulder (CO) weather data, were then generalized for a defined model parameter set,

using a statistical technique with generalized linear models derived through multiple logistic

regression. They concluded that statistically-generated predictions, used offline in the same

baseline building as the MPC study, achieved 70-90% of the energy savings predicted by the

MPC [44].

The MPC study carried out by Hu and Karava [45], [49] expanded on a similar MPC framework

to May-Ostendorp's by adding and varying parameters in their building model, namely the

shading system heuristic controls, thermal mass variation and the presence/absence of an exhaust

fan. The building model itself was a multi-zone thermal and airflow model they developed in

MATLAB. Like in May-Ostendorp's study, the optimization was carried out by a PSO

algorithm. Their optimization results, for five summer days with Montreal weather data, was

carried out with respect to minimization of mechanical cooling energy while maintaining thermal

comfort. The optimization was shown to be effective compared to a base case where only

mechanical cooling was available, a 75% of energy savings was noted. Strikingly, a reference

case where the non-optimization window schedule was defined by a simple rule-based heuristic

control (notably, minimum and maximum ambient temperature set-points of 15-25 0C) was seen

to perform better in terms of energy savings (83%); however, thermal comfort was not

maintained always maintained in that case.

The application of MPC in buildings has garnered a lot of attention in the academic sphere

because of its effectiveness in providing substantial energy savings and improved indoor

comfort. However, it faces difficulties for its implementation in the supervisory control of actual

buildings: In addition to the numerous data (training or physical) needed to put up a suitable

model of the building, MPC requires cost and knowledge for data processing and its

maintenance. In particular, because the numerical optimization computation required by MPC

does not fit in the memory of actual Programmable Logic Controllers (PLC), a separate

computational core needs to be attached to the BAS [50]. In its implementation in two test

buildings, Cigler et al noted that MPC deployment required many months of monitoring and

tuning: one project has been ongoing for four years, with the modeling taking 60% of that time,

and the MPC development taking 35%. They also noted that for the lightweight building
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investigated, there was no payback: the existing conventional rule-based control worked well

enough as the thermal dynamics could not be exploited [50]. In fact, in the Siemens BT study,

MPC controls were found to be more beneficial over rule-based controls for buildings with high

energy fluxes and during transition seasons, as well as for heavyweight buildings [10], [46].

5.1.4 Optimized rule-based controls

While current research is focused on the afore-mentioned predictive algorithms, some reviews

have concluded that there is not much difference between from simple fixed-rules and these

predictive controls [51], [52]. Some of the simple fixed-rules for night-ventilation have been

addressed in literature (see section 4.1.2). However, most of these rules have set-point and

overcooling constraints with temperature thresholds which have been deemed most appropriate

after months of experimentation on the demonstration buildings through manual adjustments.

Nevertheless, according to Gyalistras, these kinds of rule-based controls are convenient and

flexible enough because they are easily implemented in non-standardized Building Automation

applications [53]. Therefore, they experimented with optimized predictive and non-predictive

rule-based controls to taking into account historical data, or weather forecast, internal gains and

occupancy predictions.

Gwerder et al. looked at improving current ruled-based control strategies [53]. Improvements

were made by looking at 2 types of rule-based controls: (i) non-predictive, (ii) predictive control

algorithms. The non-predictive control algorithm was based on historical data, i.e. measured

outside air temperature and calculated heat gains of the last 24 hours for the night-ventilation

control, whereas the predictive control algorithm was based on the predicted data for the next 24

hours. ). An example of optimized rule-based controls used for the natural night-time ventilation

subsystem is given in figure 5.2. The historical or predicted data was used to calculate the natural

night-time ventilation limit, an outside air temperature threshold defined to prevent overcooling.

It was the value for which the average internal heat gains compensated the heat loss through the

fagade, with the room temperature assumed to be in the middle of the comfort range. The

predictive rule-based controls were found to outperform the non-predictive rule-based controls in

terms of non-renewable primary energy usage. However, the controls operated on a different

systems, namely blinds, free-cooling, mechanical night-time ventilation operation, natural night-
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time ventilation and energy-recovery operation [53]. As such, it is difficult to ascertain for which

systems the non-predictive rule-based controls did not fare as well as its predictive counterpart.

(a)

If (ouitside air temperature > natural night-time ventilation limit) &
(unoccupied night-time)

if (room temp. > natural night-time vent. target room te. setpoint)
natural night-time ventilation operating mode = UNLOn;

else
natural night-time ventilation operating mode = LOAD;

end
else

natural night-time ventilation operating mode = LOAD;
end

(b)

* Operating mode LOAD

| Do not force natural night-time ventilation.

a Operating mode UNLOAD

If (outside air temperature < room temperature)
// perform natural night-time ventilation
automated window position - open;

else
// do no mechanical night-time ventilation
automated window position - closed;

end

Figure 5-2: (a) Example of optimized rule-based controls used for the natural night-time
ventilation subsystem in a Siemens BT study [46], with the definition of the two operating modes

in (b). Note that the target room temperature set-point was set to 1 K above the lower
temperature set-point of the thermal comfort range.

Levermore reported a similar adaptive threshold in the night-ventilation controls of the Ionica

building in Cambridge, UK [38]. To prevent overcooling, the controls included a self-learning

schedule to limit the night degree cooling hours, based on the day degree-hour heating and the

average day room temperature. If that temperature was above a predefined set-point, the night

cooling degree hour were increased beyond the day heating degree hour; if it was below, the

night cooling degree hours were decreased. However, the thermal performance with this type of

control was not reported.
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This literature review has shown that building controls, in literature research or actual site use,

are not straight-forward to optimize. Two main approaches can be seen: predictive control and

rule-based controls. Both approaches will be investigated in chapter 6, using the simple physics-

based energy model developed in chapter 2. The predictive control, using dynamic programming

as the optimization technique (covered in the next section), will provide the benchmark results

against which the rule-based control can be measured in terms of thermal performance.

5.2 Optimization problem formulation

All optimization problems can be formulated as an objective function to maximize or minimize,

subject to constraints. Optimization problems can be divided into three main cases: when the

problem is linear and the solution space is convex, when the problem is non-linear and the

solution space is convex, or when it is non-linear and the solution space is non-convex. Linear

programming is usually used for the first case and quadratic or non-linear programming for the

second case. Many optimization techniques exist for the third case, for instance: dynamic

programming (DP), combinatorial optimization, integer programming, heuristics such as genetic

algorithm (GA) or particle swarm optimization (PSO).

Our problem consists of choosing the optimal ventilation schedule (opening and closing times

for windows) for a pre-defined time horizon for a given set of climatic and building parameters,

with the objective of maximizing thermal comfort for that time period, i.e. wanting the room air

within thermal comfort limits for as long as possible during occupation. Our problem is non-

linear and non-convex: the objective is not a linear function of the pattern of window closing and

opening, and there is not necessarily a global optimal solution as different window schedules can

give almost similar thermal comfort level. Therefore, the optimization techniques chosen for our

problem are dynamic programming and combinatorial optimization. The heuristic methods

mentioned above were not chosen because although faster than dynamic programming or

combinatorial optimization, they approximate the solution and converging on a solution is not

efficient if the swarms or generations are not defined and generated properly. Moreover, the size

of our problem is not so bad in terms of memory or running time as to require any

approximation.
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The hierarchy of controls for natural ventilation only entails closing and opening windows. In

physics term, this means it affects the flow rate of outside air entering the room, hence the

convective heat transfer. The controls operate on an hourly basis, as determined optimally every

time period by the dynamic programming.

In all natural ventilation simulation results, it is assumed that an air change rate of 5 ACH is met

with the window open, with negligible energy cost associated with fan usage to meet this air

change rate.

Reward/cost function definition

An optimization problem needs to be defined in terms of a cost or reward function to be

minimized or maximized. Our problem aims to maximize thermal comfort. For this reason, it is

necessary to define the thermal comfort limits uniformly throughout all simulations. These can

be defined by the ASHRAE thermal comfort standards 55. Two standards exist:

1.

2.

Predictive Mean Vote (PMV) used for air-conditioned buildings

Adaptive model (for buildings without mechanical systems)
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Figure 5-3: Thermal comfort models: (a) Predictive Mean Vote model, (b) Adaptive model

The adaptive thermal comfort model takes into account people's thermal responses in terms of

recent thermal experiences, clothing adaptation, availability of control options and their

expectations in naturally conditioned spaces. The model thus relates the acceptable range of

indoor temperatures to the outdoor climate, without the need for humidity, air-speed limit and

clothing values [12]. Because of its simple derivation, this adaptive model was chosen for

determining the thermal comfort range for a particular mean outdoor temperature. The mean

monthly outdoor temperature in the figure above is the average of the mean daily minimum and

mean daily maximum outdoor (dry-bulb) temperature for the month. Based on the 90%

acceptability limit for the adaptive comfort model, the minimum and maximum temperature for

thermal comfort can be put as a function of the outside temperature as:

Tmin comfort = 0.3 * (Tout - 15) + 20 (in *C) (5.1)

Tmax comfort = 0.3 * (Tout - 25) + 28 (in *C) (5.2)

Initially, a reward function was used whereby, if the state of the indoor temperature was within

the thermal comfort range at a particular time-step, the reward was incremented by 1, else it

given a value of 0. The overall reward for the time period (Ih) was then normalized by the total

possible reward within that period. The resulting cost function could be defined thus:

cost = Etimestep t=1 to n X (5.3)
n

Where X0O if Tmin comfort < Tair t< Tmax cornfort, else X=1.
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However, it was found that that binary form of reward was not sensitive enough to distinguish

and reward when the indoor temperature was closer to the thermal comfort range than when it is

not. Now, the optimization problem is formulated in terms of a cost function, which is defined as

a difference between the actual room temperature and the closest thermal comfort threshold, i.e.

the minimum and max comfort temperature, normalized by the difference between that minimum

and max comfort temperature. The cost function is given by:

cos timestep t=1 to n min(|Tair t - Tmin comfort I*X ,ITairt- Tmax comfortl*X)
f*(Tmax comfort-Tmin comfort)

Where X=0 if Tmin comfort < Tairt < Tmax comfort, else X=1.

5.2.1 Combinatorial optimization

Combinatorial optimization involves finding the optimal solution from a finite set of possible

solutions [54]. As the set of solutions is discrete, the solution search can be exhaustive if the set

is not too large.

Combination optimization is ideal for my case where the solution set is restricted to having

closing and opening once or twice. Thus it can be used to investigate optimization of night-

ventilation, where windows are only closed and opened once. This is computationally feasible as

there are fewer than 242 possible combinations of closing and opening hours, since the opening

hours can be restricted to occur after the closing hour, when there is no risk of overcooling such

that windows need to be closed before midnight. Thus, each combination gives a possible

window ventilation strategy schedule, and the thermal comfort cost resulting from a whole

horizon simulation with each schedule can be calculated. The optimal solution is then found by

sorting the resulting cost list and extracting the window ventilation schedule which gives the

least cost.

5.2.2 Dynamic programming

Dynamic programming is an optimization technique suitable for non-convex problems involving

sequential decision processes, which are inherently Markov Chain processes, i.e. the future/
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previous state depends only on the current state. Dynamic programming decomposes big

problems into many smaller ones, by defining time periods. Moreover, it can cater for stochastic

disturbances to the system by using expectancy based on a corresponding probability

distribution. Dynamic programming is chosen as one of the optimization techniques for

optimizing the ventilation schedule because energy modeling of buildings inherently involves

non-linear behavior over even a single time-period; for instance, buoyancy-driven flows for

which the air flow rate depends on the temperature difference between zones. While, for our

simple single-zone model, such non-linearity does not arise, the aptitude of dynamic

programming can be tested before expanding to more complex energy models. Moreover, the

scheduling of ventilation involves making decision after regular time intervals.

Action Action

isturbance

Present N ext

State State

Reward Reward

Current Next
Period Period

Figure 5-4: Dynamic programming schematic for optimization

Three forms of dynamic programming exist: backward induction, forward induction and

approximate dynamic programming. Backward induction is chosen as it gives control in defining

the optimal path in the future based on what current state one is in. Backward induction is also

more familiar as it is similar in concept to how decision trees are solved by "folding back", i.e.

working backward from right to left. Comparatively, forward induction gives control in defining

the states one wants to end in, and the optimal path leading to them. In approximate dynamic

programming, it is not necessary to visit all states exhaustively. However the value function

needs to be iteratively approximated using stochastic gradient algorithms for convergence.

Compared to combinatorial optimization, dynamic programming breaks down the whole horizon

into smaller processes, but does not go through all the possible combinations of actions. Instead,
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it benefits from the folding back of the decision trees to weed out later actions which are

discarded as not optimal. Hence, it is less computationally expensive than corbinatorial

optimization: the latter would have run a total of 22 possible combinations of opening and

closing actions, if these actions were to be made every hour over a 24-hour horizon.

Dynamic programming requires the definition of the following key elements [55]:

(i) Decision period, t

For our problem, the decision period can be defined as a 1 hour time period as that is the interval

at which weather data are obtained, and a smaller decision period would be too frequent for the

mechanical actuation of the windows.

(ii) State space, S

It is critical to choose the state space properly. It needs to be a variable which requires no history

memory, and is a function of the action and disturbance. It could be multi-dimensional if it has

more than one variable. The domain the each state space can be subjected to different constraints

for each time period. For our problem, our multivariable state space consists of room air

temperature and thermal mass temperature. Contrary to discrete problems for which dynamic

programming is usually used for in system operations management (as in inventory problems for

instance), our states need to be discretized to suitable number of bins (B) to provide enough

accuracy.

(iii) Action space, X

The state space has only 1 action variable, i.e. x=window action. The possible window actions

which can be made at each decision point: close (set ACH=O) or open (set ACH=maximum).

Intermediate actions such has half-closed have been discarded as it has been proved that

temperature is not a convex function of the mass flow rate (see section 6.1.1 on the finite-

difference rule). Hence, it is always better to maximize or minimize the air flow rate.

(iv) Stochastic element space, W

The stochastic element space represents the variables which have uncertainty. It can also involve

stochastic disturbances such as predicted weather forecast or occupational level. However for our

simple model, the stochastic element is not necessary as weather files are usually used and for a

first-level design occupancy can be approximated.
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(v) Reward or cost, C(x, ,S )

The reward (to be maximized) or cost (to be minimized) is computed at each period, and is a

function of the current state. For my case, the cost function is determined by the thermal comfort

level as described by equation 5.4.

(vi) Transition function

The transition function defines how to move from one state to another, from one time period to

the other based on decision (window-opening) and information (weather). The transition

function, which gives the value of the states at the next time epoch, is governed by the following

recursion:

St+1 = Smodel(St, X,W) (5.4)

For our problem, it cannot be explicitly described in terms of the states and actions. The move

from one state of temperature variables to another is determined by the coupled differential

energy equations governing the building physics, which are solved numerically as explained in

chapter 2.2. For this problem, the transition function Smodel is determined by my black-box

MATLAB function representing the energy simulation engine, using a single thermal mass

element. The model evaluates numerically the temperature states St+I at the next decision time

step given the current states St, the decision action Xt to close or open window for the hour, and

the exogenous weather information Wt.

(vii) Value/contribution function:

Vn(Sn ) = mxX C(xn,Sn) + yVn+1 (Sn+ 1ISn)} (5.5)

This equation is the finite horizon (of N time periods) dynamic programming version of the

Bellman's optimality equation. The contribution or value function calculates the value of being

at a particular state Sn, at a particular time period. That value incorporates the current value for

the time period, i.e. the cost C(xn,Sn), as well as the future value of being at the next state sn+I

calculated by the transition function. The discount y can be set to zero, as the value associated

with thermal comfort does not need to depreciate with time.

(viii) Objective function

The objective function is given by the following equation:

max or min

IT :n=o toNVn (state Sn, decision xn (Sn I Sn~o)) (5.6)
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For our case, the objective function defines the optimum window policy r that maximizes the

thermal comfort over a time horizon of N=24 hours, given initial conditions for our states.

The figure below shows a simple schematic of backward induction dynamic programming for

our problem. Note that the red arrows are an example of an optimal policy for the actions.

IncreasingTime Periods, t

MV State MV State

MV State MV $tatt
2 2

MV State MV State
3 3

MHotterMV State '
4 4

MV State MVstate

5 5

MV State MV state
6 6

H otter T,,,(t,)

Action key:
Last Last

MV State MV State Close

Colder T0,t(t,) e Open

MV State MV stgte

MV state MV State

MV state MV State
3

MV State MV State

MV State MV State

MV ,tate MV state
6

MV state MV State

Co Id er TMt (tI)

Figure 5-5: Sample dynamic programming schematic for optimizing the closing/opening of
windows, where the columns indicates the multivariable state bins for a given time period t,, and

the red arrows represent a sample optimal path of window actions

Figure 5-3 indicates some of the downsides of using dynamic programming. There are three such

"curses of dimensionality": state space of I dimensions which can take L possible values, can

have L' possible states; uncertain Information space of J dimensions which can take J possible

values, can have MJ random signals; action space of K dimensions which can take N possible

values, can have NK possible values [55]. For my case, stochastic elements are disregarded and

action space is one-dimensional with only 2 values. Hence, the dimensionality of my problem

depends on the temperature (air and thermal mass) states and their possible values.
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Therefore, the constraints need to be imposed on our state space. The constraints are based on the

building physics and dictate the range of values adopted for the states. The simplest constraints

are that the state values have to be smaller than the maximum outdoor temperature and bigger

than the minimum outdoor temperature. The range of values needs to be discretized so as to give

enough accuracy in approximating in which bin the periodically computed next value state falls.

The whole point of the dynamic programming is that it captures the effect of future decisions at

the current decision time. The dynamic programming optimization algorithm works for whatever

disturbance, i.e. occupational schedule, outside temperature, and initial temperature imposed. For

instance, for Miami temperature for May 15-17 obtained from TMY3 weather data, the optimal

window schedule looking over successive time horizon of 25 hours for 3 days is shown below.

Figure 5-6 also shows the resulting optimal values of the state variables (room air temperature,

Tair and thermal mass temperature TTmass) in the blue and red line respectively, and the given

disturbance Tout in green line, and occupancy schedule in the third subplot. The thermal comfort

limits, which define the cost function, are also shown.

32- -air

28----- ....--------------- -------- Tout

26 --- - - Tcomfort limits

22

1 F
08

U) 0 0 6 12 18 0 6 12 18 0 6 12 18
Time of day (h)

Figure 5-6: Resulting optimal window strategy for Miami weather May 15-17 Energy model
parameters used: low heat gain, q=15W/m 2 ; normal thermal mass heat capacity c=880 J/kgK.

Thermal cost for each day=[2.7, 1.0, 1.1]

In the parametric investigations of the effect of different building parameters on the window

opening/closing strategy, a simple sinusoidal outside temperature with a period of a day is first

used. In doing so, it is easier to validate the models using known analytical solutions and account

for the general sinusoidal temperature patterns rather than having temperature weather anomalies

distort the DP strategy investigation.
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Dynamic programming usually deals with discrete states. Because, the window-actions do not

result in a linear mapping in the post-decision state but instead by a function mapping

determined by the hour's energy balance, the state space needs to be discretized in a large

enough number of bins, such that the dynamic programming can choose the optimal path based

on the closest bin to the resulting temperature at the end of the hour.. The temperature change

within the hour is a function of the building and outside temperature parameters, and can be as

low as 0.1 C for high thermal mass. Hence, in that case, a state discretization of the order of a

hundred is needed for a state space spanning 10 degrees. As can be noted in the above figures,

when a large enough state space is used, the resulting temperature profile is accurate enough

such that energy balance is maintained between each decision period.

The dynamic programming optimization method gives us a means of establishing the optimal

window strategy with hourly decision pattern, whatever the disturbances. Thus the dynamic

programming optimization algorithm can be implemented in a simulation engine in a similar way

to how model predictive control is wrapped over a desired time horizon to dictate the optimal

strategy over a time period less than the time horizon, given the weather forecast. It is however

computationally expensive: as described before the accuracy of the computation depends on the

state space, i.e. the larger the state space, the more accurate the temperature profile. While for the

above simulations, the only disturbance was the outside deterministic temperature forecast, it can

be expanded to include stochastic element, and a wider range of actions.

The nature of the sequential window action problem suggests the use of dynamic

programming over a rolling finite horizon. Its downside is that it becomes computationally heavy

with a larger energy model, which has more states in terms of zone temperatures for example.

However dynamic programming is still more computationally efficient that global optimization

if there is no constrained of one opening and closing per day, since the backward inductions help

to weed out non-optimal sequential paths of the window actions.
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Chapter 6

Case-studies of optimized and rule-based controls

As was seen in section 4.2 on ventilation modeling, it is not clear what the optimal ventilation

schedule is, with respect to thermal comfort. This chapter seeks to use the two optimization

techniques developed in section 5.2 to identify the optimal ventilation schedule for different

case-studies, with variation in the parameters defined in chapter 2. Two categories of case-

studies are carried out: (i) simplified sinusoidal outdoor temperature profiles of known mean

temperature and amplitude; (ii) sample dry-bulb outdoor temperature profiles from four different

cities.

The two optimization techniques allow two types of optimal ventilation schedules to be

developed within reasonable computational simulation times: (i) dynamic programming allows

multiple onsets of natural ventilation throughout the day; (ii) brute-force global optimization

allows only one onset of natural ventilation daily, i.e. this is night-ventilation mode whereby

there is only one closing/opening. Optimization runs utilizing brute-force global optimization use

an energy model with spatially-discretized thermal mass (10 slices), while optimization runs

utilizing dynamic programming use an energy model with thermal mass at a uniform temperature

(1-slice) and the effective heat transfer coefficient developed in section 2.8. This is done so as to

limit the state domain space through which the optimization algorithm has to search, hence

limiting simulation time.

In the process, simple easily-implemented heuristic rules, which do not require real-time energy

simulations, are sought. These rules are then tested and its results compared against the

optimized ventilation schedules generated using dynamic programming and brute-force global

optimization.

The developed heuristic rules are used to form a holistic optimized rule-based control algorithm

to cater for a wide range of parameters. The holistic control algorithm is then used to predict the
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optimal ventilation schedule for simulations using real weather data for different cities. The

results are then compared to those generated by the optimization techniques, in terms of thermal

comfort cost.

In effect, the optimization techniques used can be considered to take part in an offline Model

Predictive Control framework, whereby the energy model is physics-driven and kept simple to

one defined by energy equation 2.4, and whereby the cost minimization is simply that of thermal

comfort. The overall framework for this is shown in figure 6-1. The optimal control which

results can be used as a benchmark against which the developed optimized rule-based control

algorithm can be measured.

Optimal
natural ventilatior

schedule

Hourly wind

Design Constraints
& Parameters

Thermal comfort
range Day Temperature

Occupational schedule forecast
and heat gain

Dynamic Programming
or Global Search

Optimization

End-of-day temperatures

ow actions Room Room Temperature

Energy Model Profile

Figure 6-1: Overall algorithm framework for optimizing ventilation control to maintain thermal
comfort

6.1 Rule extraction

The ventilation strategies section highlighted the lack of an optimized natural ventilation

schedule, which takes into consideration the building, climatic, and ventilation parameters. The

window schedules resulting from dynamic programming optimization can reasonably be

assumed to be the optimal one over a 24-hour horizon and given a set of constraints. Four types

of simple ventilation rules or strategies were investigated:
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1. Heuristic rule: when the outside air temperature is greater than inside temperature,

close the windows, i.e. put ACH=O;

2. One-hour horizon: at every decision period, run the simulation with windows

closed and open and choose the action which gives the lowest resulting room

temperature.

3. Finite-difference rule: this rule chooses the action which gives the lowest

resulting room temperature. This is an improvement over the one-hour horizon

strategy in that the window opening/closing decision can be made based on the

current time period's values of temperatures and forecast outdoor temperature

instead or running the simulation twice to determine what is the best action. This

is done using the equations developed in the next section.

4. Overcooling-prevention strategy: this strategy is needed to makes sure that night-

ventilation is not so excessive that the thermal mass is pre-cooled causing the

room air temperature at the start of occupation to be below minimum thermal

comfort level. As such, this strategy is more involved than the above rules as it

requires knowledge of the room's thermal dynamics and thermal history.

6.1.1 Finite-difference rule

The heuristic rule is the simplest logical one. In order to lower the indoor temperature, it is

beneficial to open the windows when the outdoor temperature is lower than indoors. However,

the benefit of closing the windows if the temperature outside is greater than inside is not as

straightforward: if there is a high interior heat gain, it might still be more beneficial to allow

natural ventilation such that the convective heat transfer, through air mass transfer, prevents the

interior heat gain from accumulating. This is catered for by rule 2 and 3, quantitatively so by rule

3.

The finite-difference rule is an approximation of the room temperature T at the next time step.

Several time-marching variations of the energy balance equation can be made.

Written explicitly, the room energy balance from equation 2.4 is first-order accurate in time:

Tt+1 = Tt + CA(Totut - Tt) + hA (TtT mass - Tt) + qAt (6.1)
mcWt mc, mcT mass

Written implicitly, the energy balance from equation 2.4 is still first-order accurate in time:
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Tt+1 = Tt + 1 rhc At(Tott - Tt) + hAAt(Tt T mass - Tt) + qAAt} (6.2)
\MCT mass+mhcpst+h1A)

However, these formulations do not allow minimization of T"t+ with respect to the mass flow

aT t+l
rate rh as a. *f(rh).

Written semi-implicitly using the trapezoid rule, also known as the second-order Runge-Kutta

numerical method [24], the energy balance from equation 2.4 becomes second-order accurate in

dTt+l dTt

time and gives. Using the trapezoidal rule, i.e Tt+1 = Tt + At 2 +:

Tt+1 = _Tt + 2Tout + Tot'+ ca + ( +_) {2 maircv(Tt 
- Tout) + hAAt(TTmass-Tout) + qAAt }

(6.3)

Totut+Totu+t - t+14qt
Where !oUt = 2 and q =t2

This formulation can be used as the basis for the finite difference rule as it allows minimization

of T"t+ by variation of the mass flow rate rh, hence the window state.

s
(Tr .. r)>0 Yes Put h maximum

andfr..-i-.) > 0 i.e. open windows

No

1m ,.c(Ttrt Yes Put maximum
+ h ~ (T'i.e. open windows

No

Put * minimum
i.e. close windows

Figure 6-2: Control logic for finite-difference rule
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The finite-difference rule enables the decision of whether to start or stop natural ventilation as

shown in the control logic in figure 6-2, given knowledge of the current room air and thermal

mass temperatures, and of the heat gains. However, the finite-difference rule is not easily

implemented using normal Building Automation software, as it requires exact temperature of the

thermal mass. As highlighted by in literature, monitoring the thermal mass temperature is

difficult and not encouraged as the temperature is very sensitive to position and surface depth

[38].

6.1.2 Over-cooling strategies

Overcooling strategies are needed to prevent the thermal mass from being pre-cooled to such an
extent at night that the room air temperature at the start of occupation is below minimum thermal
comfort level.

Strategy 1: thermal mass temperature estimate threshold

One strategy would be to make use of the thermal mass surface temperature as the room air,

having comparatively low heat capacity and having a low time constant of the order of a quarter-

hour, rapidly equilibrates towards that temperature when ventilation stops. Hence, night-

ventilation is stopped when the thermal mass temperature drops below the minimum thermal

comfort limit temperature, Tmin comfort. From chapter 2, for continuous ventilation, the thermal

mass temperature at time t can be obtained using equation 2.12, as a function of the active

variables which can comparatively be more easily measured (Tt, Ttout, q', fnlt-):

Trmasst := (1+ m 'P)Tt _ m cP Tott - q (6.4)
hA j hA oth(64

Hence, the control logic is as shown in the figure below, and is only sensible because after

occupational hours, the outdoor temperature keeps decreasing and allows the thermal mass to

cool down further.
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Is Y JsUe control logic
for rule 1, 2 or 3

No

ar- yes Put * maxiMUM
Trd=(+yT i.e. open windows

>Tmin co-fcr -

No

Put ?h minimum
i.e. close window's

Figure 6-3: Control logic for overcooling strategy 1

Strategy 2: degree-hour self-adjusting algorithm

Like strategy 1, strategy 2 seeks to find the cut-off point for night-ventilation. However, contrary

to strategy 1, it does not require building parameter characterization or assume that equation

2.12, i.e. a simple room energy model with only one thermal mass time constant is an accurate

enough representation of the energy flows. Instead, it self-adjusts the day ratio of "heating"

degree hours to "cooling" degree hours. Unlike Levermore's self-learning algorithm [38]

referred to in chapter 5.1, this strategy is not based on the mean day temperature and an obscure

set-point, but on the performance of the previous day's ratio, i.e. the resulting room temperature

deviation from thermal comfort at start of occupation, ATday D (Tair-Tmin comfort)h=occupation onset on day.

The degree hours are used with respect to a reference temperature. The minimum thermal

comfort limit was chosen as that reference temperature. "Heating" degree hours are the sum of

hourly resulting room air temperatures departing positively above the reference temperature,

with the summation done over 24h starting from occupation onset. "Cooling" degree hours are

for those departing negatively. The degree hours are defined thus because the learning curve of

the self-learning algorithm is small: any day is likely to have a room air temperature above Tmin

comfort due to occupational heat gain -hence allowing calculation of heating degree hours, as well

as room air temperature below Tmin comfort due to night cooling -hence allowing calculation of
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heating degree hours. A self-learning algorithm makes use of the previous day's performance in

order to determine the subsequent day's ratio and hence the stopping point for night-ventilation.

An example of the algorithm used is as follow Note that each day count is started at the start of

occupation.

For hour=8am on day D to 8am on day D+1
If (hour==8am)

If ATday D equal or close to 0
Keep the same ratio, i.e. ratio level increment=0;

else if ATday D

Increase ratio for less cooling degree hours, i.e. ratio level
increment=+1;
else

Decrease ratio for more cooling degree hours, i.e. ratio level increment=-
1;n
end

end
ratio levelday D=ratio levelday D-1+ratio level increment;
cumulate cooling degree hourssa, D if any,
cumulate heating degree hours&4y if any,

maximum cooling degree hoursdyD = total heating degree hoursday D
ratio corresponding to ratio le1elda D'

If cumulated cooling degree hoursday D<maximum cooling degree hoursday D
stop night-ventilation;

else
continue night-ventilation;

end
end

6.2 Baseline parameters and parametric runs

In all the parametric runs, the following baseline case was used and the thermal mass' specific

heat capacity and the room heat gain were individually varied as shown in table 6-1 below.

Baseline Parameters Values
Climatic:
Type 1: sinusoidal profile with minimum at midnight

outdoor Tmean (*C) [20, 25]
outdoor Tap (*C) 7.5

Type 2: weather data TMY3 data for Miami, Madison, Los
Angeles and Kansas

Building:
Room dimensions (m) 10 x 10 x 10
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Thermal mass thickness (in) 5"
Thermal mass material properties Concrete (p=2500kg/m3 , k=0.3W/mK)
Heat transfer coefficient (W/m 2K) 8.0 or 4.0 (effective value for 1-slice

thermal mass simulation)
Walls and windows Adiabatic and without thermal mass
Controls and schedules:
Ventilation ACH 5 roomful/h
Occupational schedule 7am-18pm
Varied Parameters Range
Specific heat of thermal mass, c (J/kgK) [ 220 880 2640]

Time constant with ventilation, TTmass= (mcTvMass(h) [3.3 13 40]
mhcp

Phase lag, -= t-[ ](h) [0.3 0.8 1.3] 2+w2r2(1+A) Mrts [2.4 9.7 29.1]
Time constant without ventilation, T2 = (( (h)
Heat gain when occupied (W/m2) [15 30 45]
Heat gain when unoccupied (W/m 2) 0

Table 6-1: Parameters used in parametric runs during optimization and rule-extraction
simulations

Varied parameters

The heat gain considered here is the "q" term of the room air energy balance of equation 2.4. The

range of values used is typical of an office building, where the lighting and normal equipment

electrical loads average from 10 to 50W/m2 [56]. Although a more detailed simulation would

include incident solar radiation and heat conduction through non-insulated walls and roof as

done in more complete energy-modeling software packages such as Design Advisor (figure 3-6),

the occupational heat load is the most significant one. Hence, the occupational heat gain is a step

function, which turns on during the occupancy schedule of 7a.m-1 8p.m. The heat gain is

assumed to go directly to the air only. The specific heat capacity is varied to represent variations

in a building's thermal mass. Typically, the latter can be characterized as light, medium or heavy

weight.

Thermal cost calculations

The occupancy schedule is taken into consideration when calculating thermal comfort cost.

Hence, the cost function of the optimization is modified such that room temperatures below

minimum thermal comfort have no associated cost when there is no occupancy. During

occupancy schedule, the thermal cost is calculated according to equation 5.4.
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Steady-state

In section 4.2.1, it was seen through figure 4-4 that different initial conditions give different

resulting temperatures for the same ventilation strategy and outdoor temperature day-profiles and

other simulation parameters. Hence, it is important to note that for each simulation run, the

results were only considered if the temperature profiles have reached "steady-state", i.e. the

model was "trained" for a number of days until the difference in thermal mass temperature from

one day to the other was less than 0.1C per slice of thermal mass. The temperature of the

thermal mass and not the air was chosen to define the convergence criterion because the thermal

mass has a much greater time constant than the air and hence takes longer to reach steady state.

In practical terms, this pre-optimization run can be considered as the training of the energy

model with the same weather day temperature profile. For the simulation runs with cities'

weather data, because the temperature profile varies from day to day, the energy models were

"trained" for 14 days with continuous natural ventilation schedule.

Getting building parameters

For the above control rules, some building parameters are needed to determine the time

constants and convective heat transfer parameter X, defined in chapter 2. However, it is unlikely

that the building's h or thermal mass are predetermined. Assuming that the room's thermal

dynamics can be lumped together into one time constant, the room's parameters can be

determined based on field experiments and by making use of equation 2.14, which gives the

room air temperature solution for continuous natural ventilation at known ACH. The damping

factor ( and phase shift # of the indoor room temperature with respect to the outdoor air

_,
2 +w 2  andF A A) epcivl.Fotemperature are given by (= = tan[ respectively. From

2+ 22 ;t2 LA+W2T(1+At)

these measurable data points, it is possible to solve for A and r numerically. Since r =

(MC)ther mass A = -, and the mass flow rate ?h is known, it is possible to deduce the

room's thermal characteristics: (mc)r mass and hA.

T,(t) = Tmean + TE + 2Tr 22 sin(wt - I) + constant * e-/(1+)wrT (2.14)

Where 1 = tan-[ r A2
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6.3 Case studies with sinusoidal outside temperature

The results of all the simulation runs done with both the 1-slice model (with effective h) and the 10-slice

model are listed in tables C. 1 -C.4 in Appendix C. For each parametric run, comparisons in terms of

thermal cost and window schedules are done for the different window control strategies: (i) always open,

(ii) optimal technique, (iii) heuristic rule, (iv) 1-hour horizon rule. The latter two were applied only during

occupational hours. It should be noted that the second-order finite-difference rule gave similar results to

the 1-hour horizon rule as expected. It is also reasonable to say that the 1-slice model with effective

h and the 10-slice model in general give corresponding results in terms of thermal performance

(thermal cost), the exception being when there is no forcing signal, i.e. windows are closed. As

illustration, see figure 6-4 below, which shows the resulting temperature profile and optimum

window schedules, as well as the used occupational schedule.
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Figure 6-4: Comparison of performance of the 2 optimization techniques: (a) dynamic
programming with 1-slice model, (b) global search optimization with 10-slice model. Parameters

used: Tmean=25*C, Tamp=7.5 *C, low q=15W/m2, normal c=880 J/kgK. Note that the horizontal
lines represent the adaptive thermal comfort band.

Two observations can be made from figure 6-4: (i) for warm weather, the optimal schedule is

that of night-ventilation; (ii) during occupational schedule and with room air is above minimum

thermal comfort, the best closing or opening time is that at the cross-over points, i.e. when the

outer temperature is respectively greater or less than indoor room air temperature.

In a few case studies however, it was better to open windows even though the outdoor

temperature is greater than the current indoor temperature. This occurred for medium to high
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heat gains: it is better to allow natural ventilation to flush out the interior heat gain more

beneficial to allow natural ventilation, such that the convective heat transfer and the air mass

outflux prevent the interior heat gain from accumulating. However, in these cases, the open or

closing times were only within an hour of a more optimal window schedule. As shown in figure

6-5 below, the heuristic rule result (red line) incurs a greater thermal cost penalty because it

closed windows from 7-8am.

Figure 6-5 also shows the slight limitation of the 1-hour horizon rule (black dotted line). In all

case-studies, the 1-hour horizon rule is only activated during occupational hours to prevent

overcooling beforehand. In this case, it is actually beneficial to have pre-emptive overcooling to

be able to sustain the subsequent high heat gains. Hence, a better rule is to activate the 1-hour

horizon rule when the minimum thermal comfort limit is surpassed.

35a
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19,
17
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Figure 6-5: Comparison of optimal and rule-based control performances for sinusoidal input
outdoor temperature with 1-slice model. Parameters used: Tmean=25C, Tap=7.5 C, medium

q=45W/m 2 during occupancy (7-18pm), normal c=880 J/kgK. Thermal cost for optimal policy
(blue), heuristic rule (red) and the 1-hour horizon rule (black) are 15.8, 17.2 and 15.9

respectively.
Varying thermal mass parameters

Figure 6-6 shows that increasing thermal mass results in decreasing thermal cost. As explained in

chapter 2, greater thermal mass means greater damping factor and phase lag in the room air's

thermal response. With no ventilation, the temperature rise with occupational heat gain is also
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inversely proportional to the amount of thermal mass. It should be noted that the optimal window

schedule follows the heuristic rule, i.e. close/open at cross-over points.
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Figure 6-6: 1-day temperature profiles with optimal ventilation schedule for case studies with
parameters: Tme~a=250C, Tap=7.5 0C, low q=15W/m2 and (a)low thermal mass, (b) normal

thermal mass, (c) high thermal mass

Medium to high heat gains

Figure 6-7(a) shows the resulting optimal temperature profile for the case-study with baseline

parameters and Tmean=20 *C, normal c=880 J/kgK and medium q=30W/m2 . The optimal window

strategy gives the best thermal cost of 1.02 as expected, as the earlier closing time gives a

thermal cost of 1.46 and the later closing time gives a thermal cost of 1.34. With an earlier

closing time, at the start of occupancy (7am), the initial room temperature has not cooled down

enough (1 8.93'C compared to 18.430C) and thus heats up to a higher maximum room

temperature (28.01 0C compared to 27.67 *C). On the other hand, with a later closing time,
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occupancy starts with a higher temperature closer to minimum thermal comfort threshold, but

ends up with a higher maximum temperature. The thermal mass, whose minimum has a time-lag

over the outdoor temperature, does not cool down enough at the earlier closing time. On the

other hand, with a later closing time, the thermal mass is on the "heating up" slope as the outdoor

and room air temperatures are then higher than that of the thermal mass.

This case-study shows that with medium or high heat gains, the thermal cost which occurs during

occupancy is more consequential than having the room slightly overcooled at the start of

occupancy as the thermal mass is cooled to its maximum potential. Heat gain quickly brings

back the temperature to thermal comfort range within the first hour of occupancy.
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Figure 6-7: 2-day temperature profiles for case (c=880 J/kgK, q=30W/m 2) with (a) optimal
strategy's closing and opening times (6am and 14pm), thermal cost=1.02; (b) with an earlier

closing time of 3am, thermal cost=1.46; (c) with a later closing time of 8am, thermal cost=l.34
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Low mean outdoor temperature and overcooling risks

For low mean outdoor temperatures, which lie outside of the corresponding thermal comfort

band, there is the risk of overcooling if the night-cooling is too extensive. Both optimization

techniques come up with 2 modes of night-cooling schedules for such cases (figure 6-8): (i) an

early mode ventilation whereby the windows are closed much earlier than occupancy start; (ii) an

late mode ventilation whereby night-ventilation does not start as early but continues up to

occupancy start.
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Figure 6-8: Comparison of 2 optimal night-cooling schedules: ventilation (a) just before
occupation (b) early in the night. Parameters used: Tmean=2 0

4C, Tamp7.5 *C, low q=15W/m2

normal c=880 J/kgK.
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The overcooling-prevention strategies developed make use of the early night-ventilation mode

because it is easier to predict the thermal behavior of the model once the windows are closed:

the outdoor weather disturbance, not as neat as the used sinusoidal outdoor temperature used

above, till occupancy needs not be forecasted and accounted for. Figure 6-9 shows that

overcooling strategy 1 does a good job of estimating the thermal mass temperature (magenta

squares) using equation 6.4 and based on current variable values (Tair(t), TOut(t) , q(t)) and

assumed parameters (ACH, h). Ventilation control based on this estimate enables the thermal

mass temperature, and hence the room air temperature to equilibrate to the minimum thermal

comfort limit at occupation onset. Note that in figure 6-9, the rule-based ventilation control

consists of the heuristic rule during occupation period and overcooling-prevention strategy

during non-occupation period.
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Figure 6-9: Resulting temperature profiles for ventilation controls with overcooling strategy 1.
Parameters used: Tmean=20*C, Tap=7.5 0C, low q= 15W/M 2, normal c=880 J/kgK.

Comparatively, the second overcooling strategy (defined by the algorithm on page 110) needs

several days to train and stabilize towards having minimum comfort temperature limit at

occupation schedule onset. There are many ways to define the ratio increment in the self-learning

algorithm. The first way explored is as follows: with the ratio levels chosen from a user-defined

lookup table (e.g. table 6-2 below), the ratio change is a unit ratio level increase, decrease or no-

change relative to the previous day's ratio level.
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Ratio level -4 -3 -2 -1 0 1 2 3 4
Ratio of heating degree hours to 1:10 5:10 7:10 9:10 1:1 10:9 10:7 10:5 10:1
cooling degree hours

Table 6-2: Degree-hour ratio used for arbitrary increment in self-learning algorithm to prevent
over-cooling

A sample resulting temperature profile with overcooling strategy 2 is shown in figure 6-10. The

parameters used by the self-learning algorithm (page 110) are plotted by day in figure 6-11: the

direction of ratio increment, the resulting ratio, the resulting AT=(Tair-Tmin comfort)t=occupation start,

and the degree hours plot. The latter includes the heating degree hours, calculated maximum

degree hours and the possible cooling degree hours. Note that the possible cooling degree hours

is greater than the maximum cooling degree hours defined by the ratio, because the former

additionally records the integral of Tair-Tmin comfort after closing while the latter only integrates till

closing. For day 1, the ratio is arbitrarily set to ratioday = 10:9 because ATday 1<0, i.e. more on

the heating side because there is overcooling. When ATday j<0 still, the ratio level is incremented

to ratioday 2= 10:7 so that the maximum cooling degree hours for day 2 could decrease, recalling

that ratio here is defined as heating degree hour: cooling degree hour. This goes on till ATday

4-=0. The algorithm therefore sticks to the previous day's ratio, i.e. ratioday 5= ratioday 4. However,

this leads to a slight undercooling as ATday S>0. Consequently, the algorithm chooses a ratio

decrement (level 4 to 3 in table 6-2 above) such that ratioday 6=10:5. For the subsequent days, the

self-learning algorithm maintains AT close to 0 by increasing and decreasing the ratio.

This example shows that the self-learning algorithm requires several training days before it

becomes effective in maintaining AT close to 0 at occupation start, and that care should be taken

in choosing the ratio level.
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hours, direction of ratio increment, ratio of degree hours defined for that day, and resulting
AT=(Tair-Tmin comfort)t=occupation stAM Note that day is defined 7am-6am, i.e. on occupation onset.

6.4 Results with weather data
Madison weather data from 5/15 to 5/19

T~an: 169400C, maximum T,: 11.65 'C
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Los Angeles weather data from 5/15 to 5/19
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Figure 6-12: Week weather data and the respective thermal comfort range for four cities
(Madison, Miami, Kansas, Los Angeles going clockwise from the top left)

Our assumptions up till now with our simulation runs were that the outdoor temperature profiles

were (i) sinusoidal; (ii) did not vary from day to day. However, with real weather data, the dry-

bulb outdoor temperature does not follow such a nice pattern. Simulations similar to those run in

section 6.3 are carried out using weather data from the four cities identified by Axley et al [32] in

table 4-1: (i) Miami-FL, (ii) Los Angeles-CA, (iii) Kansas City-MO, (iv) Madison-WI. The

weather data was obtained from NREL's website [57] and is in TYM3 format, i.e. hourly-value

data sets derived from 1991-2005 National Solar Radiation Data Base archive. The week-long
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(May 15 to May 19) weather data used for each city are shown in the figure above., and were

chosen to represent different weather patterns: Madison weather fairly steady day-to-day

temperatures with high amplitudes; Miami weather represents hot and fairly steady day-to-day

temperatures with low amplitudes; Kansas weather represents moderate but highly variable day-

to-day temperatures; Los-Angeles weather represents moderate but fairly steady day-to-day

temperatures.

Simulation results with optimization techniques

Simulations were run to find the optimal ventilation schedule as per the schematic in figure 6-1,

with the baseline parameters and with parametric variations in thermal mass and heat gain as

listed in table 6-1. Similar to section 6.3, the optimization was carried out using the 2 methods,

i.e. brute-force global optimization and dynamic programming. The energy room model was first

trained over 14 days, with the weather data prior to the optimization start date. The optimization

was carried out over a 5-day period using a rolling 1-day horizon, in the same line as an off-line

model predictive control algorithm, i.e. the optimal ventilation day-schedule at the start of each

day was determined using the day weather forecast data and the initial starting conditions (room

air and thermal mass temperatures). It should be noted that the domain space of the temperature

states needed to be re-defined from each day optimization as the daily weather is not steady. The

domain space is defined according to equations 2.16-2.19. If the calculated maximum air

temperature is lower than the maximum thermal comfort temperature (as set by ASHRAE's

adaptive comfort standard, figure 5-3(b)), the room air and thermal mass temperatures' domain

spaces' upper bounds are expanded to include it. Similarly, if the calculated minimum air

temperature is higher than the minimum thermal comfort temperature, the domain spaces' lower

bounds are also expanded. These two cases occur when a particular day's temperature profile is

drastically far from the week's mean temperature.

Both optimization techniques effectively pick out the day's optimal ventilation schedule which

minimizes the thermal cost during occupancy based, using as input the day's weather forecast

and initial temperature conditions. Sample results for Miami and Madison weather data and are

shown below for illustration. Results for other parameter runs and cities can be found in

Appendix C. Similar observations to those drawn in section 6.3 can be made: if the outdoor

temperature is greater than the indoor room temperature, the windows are in general
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preferentially shut, and vice-versa, as seen in figure 6-13. The exception arises when the outdoor

temperature is below the minimum thermal comfort temperature limit, or when the maximum

subsequent outdoor temperature does not exceed the maximum thermal comfort temperature

limit by much, as can be seen in figure 6-14. The highly variable weather of Madison below the

minimum thermal comfort temperature limit also shows the need for an overcooling-prevention

strategy.
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Figure 6-13: Optimization results for Miami weather, May 15-19 using (a) dynamic
programming and 1-slice model, (b) global search optimization and 10-slice model. Parameters

used: low heat gain, q=1 5W/m2; normal thermal mass heat capacity c=880 J/kgK.
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Figure 6-14: Optimization results for Madison weather, May 15-19 using (a) dynamic
programming and 1-slice model, (b) global search optimization and 10-slice model. Parameters

used: low heat gain, q=15W/m 2; normal thermal mass heat capacity c=880 J/kgK.

With irregular weather data as the input signal to the thermal system, it is necessary to verify

whether the 1-slice model with effective h can substitute for a 10-slice model. Although an

irregular weather can be thought of as the sum of several sinusoidal signals of differing

frequencies, the strongest frequency remains a sinusoidal signal of a day frequency. Hence, the

effective h remains valid. However, when there is no ventilation, the 1-slice effective model

slightly overestimates the resulting room air temperature: this is to be expected as when the

thermal mass discharges, the 1-slice model assumes a higher stored amount of heat than if there

were temperature gradation as in the 10-slice model. While figures 6-13 and 6-14 show the 1-
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slice and 10-slice models give slightly different optimal ventilation schedules, it could be that

there are several optimal ones with minimal thermal cost. Hence, additional simulations were run

using the optimal schedules obtained using dynamic programming but where the 10-slice energy

model (temperature profiles in solid lines) was substituted for the original 1-slice model

(temperature profiles in diamond markers), as shown in figures 6-15 to 6-16. This comparison

testing for the validity of the effective h for other weather data and parametric runs can be found

in appendix C. In general, it was found that when ventilation was on, the effective model was

valid. When it was not, the above-mentioned overestimation occurred.
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Figure 6-15: Testing the effectiveness of effective h with 1-slice model for Miami weather, May
15-19. Parameters used: low heat gain, q=15W/m2; normal thermal mass heat capacity c=880

J/kgK.
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Figure 6-16: Testing the effectiveness of effective 1-slice model for Madison weather, May 15-
19. Parameters used: low heat gain, q=1 5W/m2; normal thermal mass heat capacity c=880 J/kgK.
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Simulation results with rule-based controls

As was found in section 6.3, a holistic rule-based control needs to be applied, even more so with

irregular daily outdoor temperatures. A holistic rule-base control should include heuristic rules to

prevent overheating and overcooling during occupational hours, as well as an overcooling-

prevention strategy during non-occupational hours. During occupational hours, windows are

closed only if that action allows the room air temperature to be maintained within thermal

comfort limit, according to the control logic defined in table 6-3 below. Table 6-3 shows that the

control can be broken down into different modes: when the measured variables exceed the

corresponding control threshold parameters, a particular window action is required. In effect,

when the During non-occupational hours, the 2 overcooling strategies discussed in section 6.3

are implemented according to the control logic defined in table 6-4 below. Each strategy has its

own advantage and shortcoming. Overcooling strategy 1 (RBC-1), unlike overcooling strategy 2

(RBC-2), does not require training. However, the self-learning algorithm in overcooling strategy

2, whilst not needing building parameters, only approximates the limit to night-cooling as it

learns from the previous day's performance. Because it was found out in section 6.3 that it was

tricky to use of a user-defined ratio look-up table such as table 6-2 (RBC-2a), a new version of

overcooling strategy 2 is also explored, whereby the ratio increment is defined by the algorithm

on page 132 (RBC-2b). Table C-5 in the Appendix C compares the thermal costs of these rule-

based controls to those of the optimized controls for simulation runs using Madison and Los

Angeles, with the 1-slice and 10-slice energy models. The corresponding temperature profiles

can be found in figures C-62 to C-84. The optimization was carried out daily over 10 days, so

their mean outdoor temperature defined the thermal comfort limit.

Comparison of measured variables (Troom air, Tout)
and control threshold parameters (Tmx comfort Tmin comfort) Resulting

Mode Troom air > Tmax comfort Tout > Troom air Tout > Tmin comfort Window action

1 Yes Yes No (by default) Close
2 Yes No No (by default) Open
3 No Yes Yes Open
4 No Yes No Close
5 No No Yes Close
6 No No No Open

Table 6-3: Control logic for heuristic rules implemented during occupational hours for RBC-I
and RBC-2
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Algorithm mode Calculated variable Control Resulting
window
action

RBC-1 7 Estimated thermal mass TTmass < Tmin comfort Close
temperature, TTmass

8 Estimated thermal mass TTmass >Tmin comfort Leave open
temperature, TTmass

RBC-2 7 Cumulative cooling degree CDHday D> calculated Close
hours for day D, CDHday D maximum cooling

degree hours for day D
8 Cumulative cooling degree CDHday D < calculated Leave open

hours for day D, CDHday D maximum cooling
I degree hours for day D

9 If training for learning algorithm has started Leave open

Table 6-4: Over-cooling strategies implemented during non-occupational hours in RBC-1 and
RBC-2, giving resulting window mode action when calculated variable exceeds the threshold

parameter

Figure 6-17 below shows the resulting room temperature profile with RBC-1 (blue line)

compared to the optimal one calculated through dynamic programming (cyan dash lines). The

second subplot shows the ventilation mode schedule dictated by the algorithm, with the modes

defined in tables 6-3 and 6-4. Similar to figure 6-9, the magenta line shows the estimated TTmass

est closely matching the actual TTass (red line). The ventilation control which prevents

overcooling during non-occupancy hours can be seen from the shift from mode 8 to 7. This

occurs at the cross-over point of the TTmass est with Tmin thermal comfort (dashed horizontal line).

This control does a good job of keeping Troom air at that minimum limit as it eventually

equilibrates to TTmass upon window-closing. The optimal ventilation performs slightly better in

days 3 and 4, as seen by the difference between the blue solid line and diamond series. By

simulating the results over the following hours, the optimization technique picks out that it is

better to prolong the night-cooling such that TTmas is below TTmass at occupation start, as seen in

figure B-61.This results in a lower TTmass at 7am on day 3 when window is closed in the

optimization simulation, and lower Tair. The optimization technique's predictive capability again

leads to a lower thermal cost on day 4: at noon, it determines that the Tout is so low that it would

lower Troom air to below Tmin thermal comfort if the window were opened, showing the limitations of

day controls modes 1-6.

127



30
28
26
24

Q 22
S20
~18
S16

cL14

E

S12
h-10

8
6
8
7

0 6
= 0 4

~E 3
> 2

1
a' 0

75.,

U

I I...W

- -.I-

JI I I I I I I I I I I T 1 1

- -1T7 -1F- ,-

O 0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18
Time of day (h)

Figure 6-17: 5-day temperature profile for ventilation control with overcooling strategy 1 (RBC-
1).Parameters used: city: Madison, low heat gain, q=15W/m2 ; normal thermal mass heat capacity

c=880 J/kgK. Thermal cost for each day=[0, 0, 0.2, 1.3, 0]

Figure 6-18 shows the resulting room temperature profile with RBC-2a (blue line), i.e. self-

learning algorithm with arbitrary ratio level (defined in table 6-2) to prevent overcooling. The

thermal cost of 0.4 on the first day is due to overcooling, since the algorithm leaves the window

open all night prior to the self-learning. Because (degree hour) day one starts in the overcooled

state ATDay 0 =-5.4, ratioDay 1 is set to 10/9, leading to AT, =- 1.5 in 'delta T' plot (figure 6-19) and

the degree hours defined for day 1 in 'degree hours' plot. Note that the possible cooling degree

hours is greater than the maximum cooling degree hours defined by the ratio, because the former

additionally records the integral of Tair-Tmin comfort after closing (mode 7 to 8). Afterwards, the

day ratio is adjusted: if there is overcooling, ratio is incremented by 1 level (day 2 value in

'direction' plot) leading to ratioday 2=10/7 and AT3 =- 1; if there is not enough cooling, ratio is

decreased by 1 level, leading to a drop in ratio, for example ratioDay 4=10/1 to ratioDay 5=10/5; if -

0.2<AT<0.2, the ratio does not change as for days 6 & 7. The dips of ATDay 3 =-3.2 and ATDay 7=-

7 occurred because the windows were kept open as the day's ratio has not been met yet, and

Troom air did not equilibrate to TTmass strat, unlike previous days. However, these were not

significant in terms of thermal cost, because TTmass strat was above Tmin thermal comfort due to the

128

-
Tair opt
T--
ar RBC-1

-- Tmasa est

.....Tout

- comfort limt

-



previous day's high Tout. In fact, thermal cost during days 2-3 is negligible, even though Troom air

is slightly below Tmin thermal comfort at occupation start (7am), Troom air quickly ramps up with

occupational gain. In reality, the ramping will be slower as a stair function has been assumed for

the occupational gain. The thermal cost mostly stems from the ventilation controls during

occupational hours (modes 1-6) as seen previously for RBC- 1, as during days 9 & 10: figure 6-

18 shows that opening windows when Troom air<<Tmin thermlal comfort results in day-overcooling.

However, the above shortcomings of RBC-2a mostly occur for Madison, which has a varying

daily outdoor temperature profile. With a more stable weather like Los Angeles', RBC-2a gives

better results as shown in figure 6-20 to 6-21. As seen in the 'Delta T' plot, the algorithm learns

from previous days' performance (AT) and eventually gets the right ratio of heating degree

hours to cooling degree hours, achieving the aim of AT=O, i.e. occupation starting with no

overcooling. With Los Angeles having outdoor mean temperature below thermal comfort limit

like Madison, the thermal cost also resulted from ventilation controls during occupational period,

i.e. overcooling due to closing of windows.
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Figure 6-18: 10-day temperature profile for ventilation control with overcooling strategy 2
having arbitrary ratio levels. Parameters used: city: Madison; low heat gain, q=15W/m2; normal

thermal mass heat capacity c=880 J/kgK. Thermal cost for each day= [0.4, 0, 0, 1.2, 0, 0, 0.2,
0.4, 3, 1]
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Figure 6-20: 10-day temperature profile for ventilation control with overcooling strategy 2
having arbitrary ratio levels. Parameters used: city: Los Angeles; low heat gain, q=15W/m 2;
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normal thermal mass heat capacity c=880 J/kgK. Thermal cost
0.5, 0.3, 0, 0.4, 0.2]
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Figure 6-21: Plots of the parameters of the overcooling-prevention self-learning algorithm
corresponding to temperature profile of figure 6.20

To verify if the ventilation controls for the occupational hours (modes 1-6) all work, RBC-2a is

tested on Miami weather. In figure 6-22, we can see that RBC-2a gives close to the optimal

performance. The exception lies when mode 4 is applied: it is the same limitation of heuristic

rule highlighted by figure 6-5, i.e. although Tout>Troom air, it is beneficial to keep the windows

open because the heat gain otherwise accumulated, can be convected away. A solution to this

would be to use the 1-hour horizon rule developed in 6.1.1, which however requires building

parameters. Note that mode 8 does not kick in here as there is no risk of overcooling, such that

windows are always kept open overnight.
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Figure 6-22: 10-day temperature profile for ventilation control with overcooling strategy 2.
Parameters used: city: Miami; low heat gain, q=15W/m 2; normal thermal mass heat capacity

c=880 J/kgK. Thermal cost for each day=[3, 1.5, 1.3, 0.9, 0.7, 0.5, 0.2, 2.7, 2.4, 3.4]

The ratio levels used in RBC-2a were arbitrarily defined as per table 6-2. To see if the ratio level

increment could be defined by the performance of previous days' ratio increments, an algorithm

for self-adjusting the ratio level was developed (RBC-2b):

Proportion constant= ratio incrementdy D-J /(A Tday D-J-A Tday D-2);
Ratio incrementday D = -acceptable proportion constant *A Tday D;

New ratioday D=ratioday D-J ratio incrementday D ;
Note that for the first 2 days, the ratio increments' magnitudes were arbitrarily defined by table

6-2, but not their directions.

Figures 6-23 to 6-26 show the results with this RBC-2b for Madison and Los Angeles weather

data. The shortcoming of this self-adjusting algorithm is seen with variable Madison weather.

From figure 6-24, it can be seen that the algorithm has trouble decreasing AT from day 4

onwards, which starts occupation above thermal comfort, because the ratio decrease prescribed

by the above algorithm to increase the cooling degree hours is not enough. While the ratioDay 5

used by RBC-2a is 2 (figure 6-19), that prescribed by RBC-2b is decreased to 6 only (figure 6-

24).This may be because the proportion constant needed to decrease AT is not the same as the

proportion constant to increase AT, such that Troom air= Tmin comfort. The above algorithm should
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also be improved to catch instances where the ratio level becomes negative, as is the case in day

8. With negative ratio level, negative cooling degree hours result, such that no cooling is actually

done overnight.
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Figure 6-23: 10-day temperature profile for ventilation control with overcooling strategy 2
having self-adjusting ratio levels. Parameters used: city: Madison; low heat gain, q=15W/m 2;

normal thermal mass heat capacity c=880 J/kgK. Thermal cost for each day=[0.4, 0, 0, 1.2, 0, 0,
1.1, 1.8, 4.7, 2.3]
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With Los Angeles' steadier weather, as with RBC-2a, the self-adjusting algorithm is able to find

the ratio level, and hence tells when night-cooling should stop to just bring Troom air to Tmin comfort.

RBC-2b does so faster, i.e. ATday 4 -=O is reached on day 4 as seen in figures 6-25 to 6-26. The

amount by which the ratio on day 3 should be increased for the ratio on day 4 is dictated by how

much improvement previous ratio changes have resulted into, as per the proportion constant

defined in the above algorithm, reducing the gap of ATday 3=0.6 to ATday 4~0.

RBC-2b is better than RBC-2a in that it does not rely on tabulated ratio levels, which have to be

defined properly. However, improvements need to be made to it so that the errors highlighted by

the simulations of figures 6-23 to 6-24 are corrected; e.g., having 2 proportion constants for ratio

increment and ratio decrement separately. It may also happen that the ratio prescribed by the

self-learning algorithm, cannot be met, i.e. the night does not get cold enough to provide the

required cooling degree hours. In that case, the day ratio is readjusted to reflect what was

actually achieved, and the self-learning continues for the subsequent days. Overall, RBC-2 is as

good as RBC- 1, without the need to pre-determine building parameters such as ACH and h to

estimate TTmss. RBC could be improved if the one-hour horizon rule is integrated in the control,

which again requires that the building parameters be known or calculated.
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Figure 6-25: 10-day temperature profile for ventilation control with overcooling strategy 2
having self-adjusting ratio levels. Parameters used: city: Los Angeles; low heat gain, q=15W/M 2
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Chapter 7

Conclusion

The overarching purpose of this research was to investigate how the ventilation schedule can be

optimized to make the best use of the direct and night cooling provided by natural ventilation in

buildings. To do so, a simple energy model of a room was built to determine the parameters

affecting its thermal response to incoming outdoor air, and to serve as the simulation engine for

the optimization framework. In the process, an effective heat transfer coefficient was devised to

approximate the energy model's thermal response based on a single-slice lumped thermal mass

model instead of a multi-slice one. Using the energy model, two channels of ventilation controls

were explored: optimization techniques and rule-based controls.

In the above case-studies, it was found that the strength of the optimization techniques lies in

being able to forecast the thermal response of the energy model, given known design constraints

(thermal comfort limit, occupational gain and schedule), building parameters and model

disturbances (outdoor temperatures). For instance, it was able to weigh out the compromise

between having the room temperature below minimum thermal comfort limit at occupation start,

to having it above maximum thermal comfort limit during occupational hours. However, it

requires a proper energy modeling of the building to get the predicted optimal outcome on the

building itself. On the other hand, rule-based controls are easy to implement in existing Building

Automation Software: it does not require building parameters but measureable inputs of current

temperatures. During the day, the heuristic rules work well. Overnight, there is the risk of

overcooling. To cater to that, the threshold at which night-cooling should stop needs to be

determined. Two criteria were explored: (i) the thermal mass temperature estimate (RBC-1); (ii)

the ratio of the day's heating degree hours to cooling degree hours (RBC-2), which does not

require building parameters. The importance of the thermal mass in damping the response of the

room air temperature to the outdoor incoming air temperature was established in chapter 2. As
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the degree hours depend on the resulting room air temperature profile which is itself a function

of the thermal mass temperature, the behavior of the thermal mass is encompassed by both

criteria. While optimization techniques truly give the optimal ventilation schedule, a holistic

rule-based control comprised of day and overcooling rules, does not give a thermal performance

that far off for steady weather, provided that it allows for different rules for different scenarios,

such as occupational time overheating or night-time overcooling. However, for temperature

variations which swing wildly from day-to-day, identifying set-points for the overcooling rules is

tricky. To this end, the self-learning algorithm catering to the overcooling rules shows promise

but needs to be improved.

A proof-of-concept of a dynamic programming optimization framework was achieved, as well as

a comparison of the thermal comfort performance of the optimization techniques to that of rule-

based controls for ventilation. The developed framework has potential for further development.

Up to now, only one objective was considered, i.e. maximizing thermal comfort. Other

objectives are to be considered for future works, with the current energy model expanded to

include hybrid/mixed mode ventilation and the associated cost of using fans, and mechanical

cooling.
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Appendix A

Calculations for effective heat transfer coefficient

for lumped thermal mass model

The following is a sample Maple code used to simplify symbolically the effective impedance of
the thermal circuit in figure 2-11 so as to reach equation 2.32. Note that for a thermal mass
representation of more than 3 slices, the loop is increased to N-I times if N slices are used.

> parallelZ:= (xy) ;

(X, yA -+
x+y

seriesZ (x,y) -> x + y;

(x, y) -+x y

Zr := R; Zc := -I ;p := Zr;

R

I
wC

R

R

I
wC

R

z:= Zc;

wC

for i from I to 2 dop2 := seriesZ(Zr, z); z := parallelZ(Zc, p2); simplify(evalc(Re(z)));
simplify(evalc(Im(z))); end do

R -WICR wC

I(R- 
RC

WC( 21 +R~
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R

C2R2,2+ 4

2 22

wC(C2R 2 2+4)

I (R- W'C

4R 21+ R
SwC +RWC

(c 2 1 +)

( Rc

c R - C - + R

(C wC +

2 2
COR 4w 4+10 C2R 2W2+ 9

C4 R w +8C 2 R W +3

wC(CR w4 + 1OC2R2w 2 +9)
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Appendix B

Input parameter for simulation run of the

combined Design Advisor-CoolVent program

Building Properties Parameter Value
Climate and location City Boston

Terrain type Flat terrain
Height of surrounding buildings 5 m

Occupancy Occupancy heat loads 30 W/m2

Schedule 9am-19pm
Lighting requirements (office) 400 lux
Lighting control efficient

Ventilation control Night-cooling and window operation None
Normal thermal mass Thickness 0.10 m
(floor and ceiling) conductivity 1.0 W/mK

Density 2500 kg/n3

Specific heat capacity 880 J/kgK
Heat transfer coefficient (to room air) 8 W/m2 K

Building geometry Window fagade width 20 m
(cross-ventilated Zone Depth lOim
building) Number of sections 3

Window fagade orientation North-South
Roof (if present) Slab conductivity 1.4 W/mK

Slab density 2300 kg/n3

Slab specific heat capacity 880 J/kgK
Slab thickness 0.15 m
Insulation (cool or bitumen roof only):

R-value 5 m2K/W
Cover-board thickness 0.0127 m
Cover-board conductivity 0.133 W/m2K
Cover-board density 746 kg/m3
Cover-board specific heat capacity 1090 J/kgK

Soil properties(Green roof only):
Conductivity 0.8 W/mK

Conductivity x specific heat 1.4 x 106 J/m3 K
capacity 0.15 m

I Soil thickness
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Window % of exterior window fagade 20 %
Window type Triple glazed
Blinds (if present):

Schedule Responds to solar intensity
Closed angle 900
Width 15mm
Emissivity 0.2
Absorptivity 0.9

Coating Clear
Overhang none

Internal openings Area 20 m2

Discharge coefficient 0.7
Wall Insulation R-value 3.0 m2K/W

Table B-1: Input parameters used for simulation run of combined Design Advisor-CoolVent
program
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Appendix C

Results for case studies for optimized and rule-

based control of ventilation

C.1 Comparison of window ventilation strategies in terms of thermal cost and
opening hours with sinusoidal outdoor temperatures

This section gives a tabulated summary of the results for the parametric simulation runs with

sinusoidal outdoor temperatures and other input parameters defined in table 6-1. The

comparison, done in terms of thermal comfort and resulting window schedule, weighs the results

of optimized control (dynamic programming (DP) or global search optimization (GSO)) against

that of rule-based controls defined in section 6.1, i.e. heuristic and lh-horizon rule. The scenario

where the natural ventilation is continuous, i.e. windows are "always open", is added to gauge

when natural ventilation control is actually needed. Tables C-1 and C-2 list the thermal comfort

and window schedule comparison respectively for the energy model with a 1-slice uniform

thermal mass element (effective heat transfer coefficient=4 W/m2K), while tables C-3 and C-4

list those for the energy model with a 10-slice discretized thermal mass element (heat transfer

coefficient=8 W/m2 K). The thermal cost is computed for each strategy according to equation

5.4, with closing and opening times extracted for each strategy applied over the time period of 2

days.

Parameter Thermal cost for different window strategies

Set Always open DP Heuristic lh-horizon

Tmean=20*C; Tamp=7.50C, 0.87 0.01 0.03 0.01
c=0.25*880J/kgK, h= 8W/m2K, q=15 W/m2
(low Tmass, low heat gain)
Tmean=20*C; Tamp=7.5*C, c=880J/kgK, 0.38 0 0.02 0.02
h= 8W/m2K, q=15 W/m2
(normal Tmass, low heat gain)
Tmean=20*C; Tamp=7.5*C, c=3*880J/kgK, 0.32 0 0.03 0.03
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h= 8W/m2K, q=15 W/m2
(high Tmass, low heat gain)
Tmean=20*C; Tamp=7.5*C, c=880J/kgK, 1.61 1.61 1.61 1.61
h= 8W/m2K, q=30 W/m2
(normal Tmass, medium heat gain)
Tmean=20*C; Tamp=7.5*C, c=880J/kgK, 3.43 3.43 3.43 3.43
h= 8W/m2K, q=45 W/m2
(normal Tmass, high heat gain)

Tmean=25*C; Tamp=7.50 C, 10.50 1.73 4.07 4.11
c=0.25*880J/kgK,
h= 8W/m2K, q=15 W/m2
(low Tmass, low heat gain)
Tmean=25*C; Tamp=7.5*C, c=880J/kgK, 9.04 0.51 0.93 0.93
h= 8W/m2K, q=15 W/m2
(normal Tmass, low heat gain)
Tmean=250 C; Tamp=7.5*C, c=3*880J/kgK, 8.49 0.01 0.05 0.07
h= 8W/m2K, q=15 W/m2
(high Tmass, low heat gain)
Tmean=25*C; Tamp=7.50 C, c=880J/kgK, 12.44 12.38 12.97 12.44
h= 8W/m2K, q=30 W/m2
(normal Tmass, medium heat gain)
Tmean=2,5*C; Tamp=7.5*C, c=880J/kgK, 15.88 15.82 17.21 15.88
h= 8W/m2K, q=45 W/m2
(normal Tmass, high heat gain)

Table C-1: Thermal cost for the different ventilation strategies with 1-slice thermal mass (N.B:
DP denotes optimal results using dynamic programming)

Parameter 24h-window pattern

set DP Heuristic lh-horizon

Tmean=20*C; Tamp=7.50C, Close 2-4am Close 9-16pm Close 9-15pm
c=0.25*880J/kgK, h= 8W/m2K, q=15 Close 9-15pm
W/m2 (low Tmass, low heat gain)
Tmean=2 0*C; Tamp=7.5*C, c=880J/kgK, Close 2-6am Close 9-17pm Close 11-15pm
h= 8W/m2K, q=15 W/m2 Close 11-15pm
(normal Tmass, low heat gain)

Close 18-19pm

Tmean=20*C; Tamp=7.50 C, Close 2-6am Close 9-17pm Close 9-16pm
c=3*880J/kgK, Close 11-15m
h= 8W/m2K, q=15 W/m2
(high Tmass, low heat gain) Close 18-19pm

Tmean=20*C; Tamp=7.5*C, c=880J/kgK, Always open Always open Always open
h= 8W/m2K, q=30 W/m2
(normal Tmass, medium heat gain)
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Tmean=20*C; Tamp=7.5*C, c=880J/kgK, Always open Always open Always open
h= 8W/m2K, q=45 W/m2
(normal Tmass, high heat gain)

Tmean=25*C; Tamp=7.50C, Close 5-16pm Close 8-16pm Close 8-15pm
c=0.25*880J/kgK, h= 8W/m2K, q=15
W/m2
(low Tmass, low heat gain)
Tmean=25*C; Tamp=7.50C, c=880J/kgK, Close 6-17pm Close 8-17pm Close 8-17pm
h= 8W/m2K, q=15 W/m2
(normal Tmass, low heat gain)
Tmean=25*C; Tamp=7.50C, Close 7-18pm Close 8-18pm Close 8-17pm
c=3*880J/kgK,
h= 8W/m2K, q=15 W/m2
(high Tmass, low heat gain)
Tmean=25*C; Tamp=7.50 C, c=880J/kgK, Close 6-8pm Close 8-9pm Always open
h= 8W/m2K, q=30 W/m2
(normal Tmass, medium heat gain)
Tmean=250 C; Tamp=7.5*C, c=880J/kgK, Close 7-8pm Close 8-9pm Always open
h= 8W/m2K, q=45 W/m2
(normal Tmass, high heat gain)

Table C-2: Opening and closing times for the different ventilation strategies with 1-slice thermal
mass (N.B: DP denotes optimal results using dynamic programming)

Parameter Thermal cost for different window strategies

set Always open "DP" Heuristic lh-horizon GSO

Tmean=204C; Tamp=7.5*C, 0.92 0.01 2.97 0.01 0.01
c=0.25*880J/kgK,
h= 8W/m2K, q=15 W/m2
(low Tmass, low heat gain)
Tmean=20*C; Tamp=7.5*C, c=880J/kgK, 0.41 0 0.37 0 0
h= 8W/m2K, q=15 W/m2
(normal Tmass, low heat gain)
Tmean=20*C; Tamp=7.5*C, 0.05 0 0.21 0.01 0
c=3*880J/kgK,
h= 8W/m2K, q=15 W/m2
(high Tmass, low heat gain)
Tmean=20*C; Tamp=7.5*C, c=880J/kgK, 1.39 1.07 1.02 1.15 1.02
h= 8W/m2K, q=30 W/m2
(normal Tmass, medium heat gain)
Tmean=20*C; Tamp=7.5*C, c=880J/kgK, 3.17 3.14 3.20 3.17 3.13
h= 8W/m2K, q=45 W/m2
(normal Tmass, high heat gain)

Tmean=250 C; Tamp=7.50 C, 10.59 1.45 1.54 4.08 1.43
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c=0.25*880J/kgK,
h= 8W/m2K, q=15 W/m2
(low Tmass, low heat gain)
Tmean=25*C; Tamp=7.5*C, c=880J/kgK, 8.60 0.02 0.03 0.10 0.02
h= 8W/m2K, q=15 W/m2
(normal Tmass, low heat gain)
Tmean=25*C; Tamp=7.50C, 7.23 0 0 0 0
c=3 *880J/kgK,
h= 8W/m2K, q=15 W/m2
(high Tmass, low heat gain)
Tmean=25*C; Tamp=7.5*C, c=880J/kgK, 12.06 10.80 10.52 11.66 10.52
h= 8W/m2K, q=30 W/m2
(normal Tmass, medium heat gain)
Tmean=25*C; Tamnp=7.5*C, c=880J/kgK, 15.44 15.26 15.52 15.44 15.24
h= 8W/m2K, q=45 W/m2
(normal Tmass, high heat gain)

Table C-3: Thermal cost for the different ventilation strategies with 1-slice thermal mass (N.B:
"DP" denotes results using dynamic programming's window schedules and the 10-slice model,

while GSO denotes optimal results using the global search optimization technique)

Parameter 24h-window pattern

Set "DP" Heuristic lh-horizon GSO

Tmean=20*C; Tamp=7.50 C, Close 2-4 5-17 9-15 10-15
c=0.25*880J/kgK,
h= 8W/m2K, q=15 W/m2 Close 9-15
(low Tmass, low heat gain)

Tmean=20*C; Tamp=7.50C, Close 2-6 Close 7-15 Close 9-15 Close 9-24
c=880J/kgK, CloseI1-15
h= 8W/m2K, q=15 W/m2
(normal Tmass, low heat gain) Close 18-19

Tmean=20*C; Tamp=7.50 C, Close 2-6 Close 7-17 Close 9-16 Close 12-24
c=3*880J/kgK,
h= 8W/m2K, q=15 W/m2 Close 11-15
(high Tmass, low heat gain) Close 18-19

Tmean=20*C; Tamp=7.50C, Always open Close 6-14 9-13 Close 6-14
c=880J/kgK,
h= 8W/m2K, q=30 W/m2
(normal Tmass, medium heat gain)
Tmean=20*C; Tamp=7.5*C, Always open Close6-9am Always open Close 6-8am
c=880J/kgK,
h= 8W/m2K, q=45 W/m2
(normal Tmass, high heat gain)

Tmean=250 C; Tamp=7.50 C, Close 5-16 Close 5-17 Close 8-15 Close 4-17
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c=0.25*880J/kgK,
h= 8W/m2K, q=15 W/m2
(low Tmass, low heat gain)
Tmean=25*C; Tamp=7.5*C, Close 6-17 Close 5-18 Close 8-17 Close 6-18
c=880J/kgK,
h= 8W/m2K, q=15 W/m2
(normal Tmass, low heat gain)
Tmean=25*C; Tamp=7.5*C, Close 7-18pm Close 6-18 Close 8-17 Close 2-18
c=3*880J/kgK,
h= 8W/m2K, q=15 W/m2
(high Tmass, low heat gain)
Tmean=25*C; Tamp=7.5*C, Close 6-8 Close 6-14 9-13 Close 6-14
c=880J/kgK,
h= 8W/m2K, q=30 W/m2
(normal Tmass, medium heat gain)
Tmean=25*C; Tamp=7.50C, Close 7-8 Close 6-9 Always open Close 6-8
c=880J/kgK,
h= 8W/m2K, q=45 W/m2
(normal Tmass, high heat gain)

Table C-4: Opening and closing times for the different ventilation strategies with 1-slice thermal
mass (N.B: "DP" denotes results using dynamic programming's window schedules and the 10-
slice model, while GSO denotes optimal results using the global search optimization technique)
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C.2 Optimized and rule-based ventilation control results with weather data

The following graphs show the optimization results for the four cities (Miami, Madison, Los Angeles,

Kansas) with varying temperature profiles, using the two optimization techniques developed in chapter 5:

(a) dynamic programming with 1-slice thermal mass energy model, (b) global search optimization with a

10-slice one. A third graph is added in each set to show the validity of the effective single-slice lumped

thermal mass model. Parametric runs varying thermal mass and occupational heat gain were carried out.

Parameters: Miami, low heat gain q=1 5W/m 2 ; low thermal mass specific heat capacity c=220

J/kgK
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Figure C-1: Optimization results for May 15-19 using dynamic programming and 1-slice model

for parameters: Miami, low heat gain q=15W/m 2 ; low thermal mass specific heat capacity c=220

J/kgK. Resulting day thermal cost = [3.1, 0.8, 1.4, 1.0, 0.8].
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Figure C-2: Optimization results for May 15-19 using global search optimization and 10-slice
model for parameters: Miami, low heat gain q=15W/m2 ; low thermal mass specific heat capacity

c=220 J/kgK. Resulting day thermal cQst = [3.0, 0.7, 1.4, 1.0, 0.8]
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Figure C-3: Testing the effectiveness of effective h with I -slice model for May 15-19 for
parameters: Miami, low heat gain q= 15 W/M2; low thermal mass specific heat capacity c=220

J/kgK.
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Parameters: Miami, low heat gain q=1 5W/m2: normal thermal mass specific heat capacity c=880

J/kgK
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Figure C-4: Optimization results for May 15-19 using dynamic programming and 1-slice model
for parameters: Miami, low heat gain q=15W/m 2; normal thermal mass specific heat capacity

c=880 J/kgK. Resulting day thermal cost = [2.7, 1.0, 1.1, 0.8, 0.6]
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Figure C-5: Optimization results for May 15-19 using global search optimization and 10-slice
model for parameters: Miami, low heat gain q=15W/m 2 ; normal thermal mass specific heat

capacity c=880 J/kgK. Resulting day thermal cost = [1.9, 0.4, 1.1, 0.8, 0.6]
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Figure C-6: Testing the effectiveness of effective h with 1-slice model for May 15-19 for
parameters: Miami, low heat gain q=15W/m2 ; normal thermal mass specific heat capacity c=880

J/kgK.

Parameters: Miami, low heat gain q=15W/m2; high thermal mass specific heat capacity c=2640
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Figure C-7: Optimization results for May 15-19 using dynamic programming and 1-slice model
for parameters: Miami, low heat gain q=1 5W/M2 ; high thermal mass specific heat capacity

c=2640 J/kgK. Resulting day thermal cost = [1.6, 0.8, 1.0, 0.7, 0.6]
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Figure C-8: Optimization results for May 15-19 using global search optimization and 10-slice
model for parameters: Miami, low heat gain q=15W/m ; high thermal mass specific heat capacity

c=2640 J/kgK. Resulting day thermal cost = [0.1, 0, 0.2, 0.3, 0.3]
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Figure C-9: Testing the effectiveness of effective h with 1-slice model for May 15-19 for
parameters: Miami, low heat gain q=1 5W/rn 2; high thermal mass specific heat capacity c=2640

J/kgK.

Parameters: Miami. medium heat gain g=30W/mi normal thermal mass specific heat capacity
c=880 J/kgK
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Figure C-10: Optimization results for May 15-19 using dynamic programming and 1-slice model
for parameters: Miami, medium heat gain q=30W/m 2 ; normal thermal mass specific heat

capacity c=880 J/kgK. Resulting day thermal cost = [4.7, 2.5, 2.7, 2.0, 1.8]
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Figure C-11: Optimization results for May 15-19 using global search optimization and 10-slice
model for parameters: Miami, medium heat gain q=30W/m 2; normal thermal mass specific heat

capacity c=880 J/kgK. Resulting day thermal cost = [4.5, 2.4, 2.6, 2.0, 1.8]
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Figure C-12: Testing the effectiveness of effective h with 1-slice model for May 15-19 for
parameters: Miami, medium heat gain q=30W/m2 ; normal thermal mass specific heat capacity

c=880 J/kgK.

Parameters: Miami, high heat gain q=45W/m 2; normal thermal mass specific heat capacity c=880
J/kgK
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Figure C- 13: Optimization results for May 15-19 using dynamic programming and 1-slice model
for parameters: Miami, high heat gain q=45W/m 2; normal thermal mass specific heat capacity

c=880 J/kgK. Resulting day thermal cost = [5.8, 4.0, 4.3, 3.6, 3.4]
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Figure C-14: Optimization results for May 15-19 using global search optimization and 10-slice
model for parameters: Miami, high heat gain q=45W/m2 ; normal thermal mass specific heat

capacity c=880 J/kgK. Resulting day thermal cost = [6.0, 4.2, 4.4, 3.7, 3.5]
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Figure C- 15: Testing the effectiveness of effective h with 1-slice model for May 15-19 for
parameters: Miami, high heat gain q=45W/m 2; normal thermal mass specific heat capacity c=880

J/kgK.
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Parameters: Madison, low heat gain q=1 5W/m 2 ; low thermal mass specific heat capacity c=220

J/kgK
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Figure C-16: Optimization results for May 15-19 using dynamic programming and 1-slice model
for parameters: Madison, low heat gain q=1 5W/m2; low thermal mass specific heat capacity

c=220 J/kgK. Resulting day thermal cost = [0, 0.6, 0.7, 0.7, 0.6]
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Figure C-17: Optimization results for May 15-19 using global search optimization and 10-slice
model for parameters: Madison, low heat gain q=15W/m2 ; low thermal mass specific heat

capacity c=220 J/kgK. Resulting day thermal cost = [0, 0.3, 0.6, 1.8, 0.3]
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Figure C-i18: Testing the effectiveness of effective h with 1-slice model for May 15-19 for
parameters: Madison, low heat gain q=15W/m2; low thermal mass specific heat capacity c=220

J/kgK.

Parameters: Madison, low heat gain q=15W/m 2 ; normal thermal mass specific heat capacity c=880
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Figure C-20: Optimization results for May 15-19 using global search optimization and 10-slice
model for parameters: Madison, low heat gain q=1 5W/m2 ; normal thermal mass specific heat

capacity c=880 J/kgK. Resulting day thermal cost = [0, 0, 0, 0.1, 0]
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Figure C-2 1: Testing the effectiveness of effective h with 1-slice model for May 15-19 for parameters:
Madison, low heat gain q=1 5W/M2 ; normal thermal mass specific heat capacity c=880 J/kgK.
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Parameters: Madison, low heat gain q=15W/m 2 ; high thermal mass specific heat capacity c=2640
J/kgK
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Figure C-22: Optimization results for May 15-19 using dynamic programming and 1-slice model
for parameters: Madison, low heat gain q=15W/M 2; high thermal mass specific heat capacity

c=2640 J/kgK. Resulting day thermal cost = [0, 0, 0, 0, 0]
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Figure C-23: Optimization results for May 15-19 using global search optimization and 10-slice
model for parameters: Madison, low heat gain q=1 5W/m2 ; high thermal mass specific heat

capacity c=2640 J/kgK. Resulting day thermal cost = [0, 0, 0, 0, 0]
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Figure C-24: Testing the effectiveness of effective h with I -slice model for May 15 -19 for
parameters: Madison, low heat gain q=1I5W/M2 ; high thermal mass specific heat capacity c=2640

J/kgK.

Parameters: Madison, medium heat gain q=30W/m 2 normal thermal mass specific heat capacity

c=880 J/kK
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Figure C-25: Optimization results for May 15-19 using dynamic programming and -slice model
for parameters: Madison, medium heat gain q=30W/m2; normal thermal mass specific heat

capacity c=880 J/kgK. Resulting day thermal cost = [0.2, 0.6, 5.8, 2.8, 0.3]
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Figure C-26: Optimization results for May 15-19 using global search optimization and 10-slice
model for parameters: Madison, medium heat gain q=30W/m 2 ; normal thermal mass specific

heat capacity c=880 J/kgK. Resulting day thermal cost = [0.1, 0.5, 2.5, 2.6, 0.2]
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Figure C-27: Testing the effectiveness of effective h with 1-slice model for May 15-19 for
parameters: Madison, medium heat gain q=30W/m 2 ; normal thermal mass specific heat capacity

c=880 J/kgK.

160



Parameters: Madison, high heat gain q=45W/m2 normal thermal mass specific heat capacity

c=880 J/kgK
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Figure C-28: Optimization results for May 15-19 using dynamic programming and 1-slice model
for parameters: Madison, high heat gain q=45W/m 2; normal thermal mass specific heat capacity

c=880 J/kgK. Resulting day thermal cost = [0.2, 0.7, 3.4, 2.3, 0.3]
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Figure C-29: Optimization results for May 15-19 using global search optimization and 10-slice
model for parameters: Madison, high heat gain q=45W/m 2 ; normal thermal mass specific heat

capacity c=880 J/kgK. Resulting day thermal cost = [0.1, 1.1, 5.8, 2.9, 0.7]
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Figure C-30: Testing the effectiveness of effective h with 1-slice model for May 15-19 for
parameters: Madison, high heat gain q=45W/m 2; normal thermal mass specific heat capacity

c=880 J/kgK.

Parameters: Los Angeles, low heat gain q=1 5W/m2: low thermal mass specific heat capacity c=220
J/kgK
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Figure C-3 1: Optimization results for May 15-19 using dynamic programming and 1-slice model
for parameters: Los Angeles, low heat gain q= I5W/M 2 ; low thermal mass specific heat capacity

c=220 J/kgK. Resulting day thermal cost = [0.3, 0.3, 0.1, 0.1, 0.1]
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Figure C-32: Optimization results for May 15-19 using global search optimization and 10-slice
model for parameters: Los Angeles, low heat gain q=15W/m 2; low thermal mass specific heat

capacity c=220 J/kgK. Resulting day thermal cost = [0.3, 0.1, 0, 0, 0.2]
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Figure C-33: Testing the effectiveness of effective h with 1-slice model for May 15-19 for
parameters: Los Angeles, low heat gain q=1 5W/M2 ; low thermal mass specific heat capacity

c=220 J/kgK.

Parameters: Los Angeles, low heat gain q=15W/m2 , normal thermal mass specific heat capacity
c=880 J/kgK
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Figure C-34: Optimization results for May 15-19 using dynamic programming and 1-slice model
for parameters: Los Angeles, low heat gain q=15W/m 2; normal thermal mass specific heat

capacity c=880 J/kgK. Resulting day thermal cost = [0, 0, 0, 0, 0]
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Figure C-35: Optimization results for May 15-19 using global search optimization and 10-slice
model for parameters: Los Angeles, low heat gain q=15W/m2; normal thermal mass specific heat

capacity c=880 J/kgK. Resulting day thermal cost = [0, 0, 0, 0, 0]
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Figure C-36: Testing the effectiveness of effective h with 1-slice model for May 15-19 for
parameters: Los Angeles, low heat gain q=15W/m 2 ; normal thermal mass specific heat capacity

c=880 J/kgK.

Parameters: Los Angeles, low heat gain q=15W/m2 ;high thermal mass specific heat capacity

c=2640 J/kgK
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Figure C-37: Optimization results for May 15-19 using dynamic programming and 1-slice model
for parameters: Los Angeles, low heat gain q=15W/m 2;high thermal mass specific heat capacity

c=2640 J/kgK. Resulting day thermal cost = [0, 0, 0, 0, 0]
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Figure C-38: Optimization results for May 15-19 using global search optimization and 10-slice
model for parameters: Los Angeles, low heat gain q=15W/m 2;high thermal mass specific heat

capacity c=2640 J/kgK. Resulting day thermal cost = [0, 0, 0, 0, 01

25 -- i~ 1-sce

x- ar 10-slice
23-

21 ON- ---- Tn~ssI-lice

19 - r t

17E

0

0)0

o 0 0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18
Time of day (h)

Figure C-39: Testing the effectiveness of effective h with 1-slice model for May 15-19 for
parameters: Los Angeles, low heat gain q=1 5W/m 2 ;high thermal mass specific heat capacity

c=2640 J/kgK.
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Parameters: Los Angeles, medium heat gain q=30W/m2 ;normal thermal mass specific heat capacity

c=880 J/k
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Figure C-40: Optimization results for May 15-19 using dynamic programming and 1-slice model
for parameters: Los Angeles, medium heat gain q=30W/m 2 ;normal thermal mass specific heat

capacity c=880 J/kgK. Resulting day thermal cost = [0.4, 0.2, 0, 0.1, 0.3]
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Figure C-4 1: Optimization results for May 15-19 using global search optimization and 10-slice
model for parameters: Los Angeles, medium heat gain q=30W/m 2 ;normal thermal mass specific

heat capacity c=880 J/kgK. Resulting day thermal cost = [0.3, 0.1, 0, 0, 0.1]

167

- -- .~ .~%- ~ ~ *

* 4..- *.

- -.



27
25

q, 23

21i 21
19

E 17
15

-*- 10-0te

.......... T

_ _d

o A, LFI i EI F 7, Fi -17 E- I I I I

0 -EL I IF 7 1 FT 1 1 J 1 1 117

0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18
lime of day (h)

Figure C-42: Testing the effectiveness of effective h with 1-slice model for May 15-19 for
parameters: Los Angeles, medium heat gain q=30W/m2;normal thermal mass specific heat

capacity c=880 J/kgK.

Parameters: Los Angeles, high heat gain q=45W/m 2 ;normal thermal mass specific heat capacity
c=880 J/kgK
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Figure C-43: Optimization results for May 15-19 using dynamic programming and 1-slice model
for parameters: Los Angeles, high heat gain q=45W/m2;normal thermal mass specific heat

capacity c=880 J/kgK. Resulting day thermal cost = [0.4, 0.4, 0, 0.1, 0.3]
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Figure C-44: Optimization results for May 15-19 using global search optimization and 10-slice
model for parameters: Los Angeles, high heat gain q=45W/m 2 normal thermnal mass specific

heat capacity c=880 J/kgK. Resulting day thermal cost =[0.2, 0.2, 0.1, 0, 0.2]
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Figure C-45: Testing the effectiveness of effective h with 1-slice model for May 15-19 for
parameters: Los Angeles, high heat gain q=45W/m 2; normal thermal mass specific heat capacity

c=880 J/kgK.
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Parameters: Kansas, low heat gain q=15W/m 2 ow thermal mass specific heat capacity c=220

J/kgK
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Figure C-46: Optimization results for May 15-19 using dynamic programming and 1-slice model
for parameters: Kansas, low heat gain q=15 W/m2; low thermal mass specific heat capacity

c=220 J/kgK. Resulting day thermal cost = [0.6, 0.2, 0, 0, 0.8]
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Figure C-47: Optimization results for May 15-19 using global search optimization and 10-slice
model for parameters: Kansas, low heat gain q=1 5W/M ;low thermal mass specific heat capacity

c=220 J/kgK. Resulting day thermal cost = [0.5, 0, 0, 0, 0.8]
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Figure C-48: Testing the effectiveness of effective h with 1-slice model for May 15-19 for
parameters: Kansas, low heat gain q=15W/m 2 ;low thermal mass specific heat capacity c=220

J/kgK.

Parameters: Kansas, low heat gain q=1 5W/m 2 ;normal thermal mass specific heat capacity c=880

J/kgK
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Figure C-49: Optimization results for May 15-19 using dynamic programming and 1-slice model
for parameters: Kansas, low heat gain q=15W/m 2; normal thermal mass specific heat capacity

c=880 J/kgK. Resulting day thermal cost = [0, 0, 0, 0, 0]
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Figure C-50: Optimization results for May 15-19 using global search optimization and 10-slice
model for parameters: Kansas, low heat gain q=15W/m 2 ; normal thermal mass specific heat

capacity c=880 J/kgK. Resulting day thermal cost = [0, 0 ,0, 0, 0,1]
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Figure C-5 1: Testing the effectiveness of effective h with 1-slice model for May 15-19 for
Parameters: Kansas, low heat gain q=15W/m 2 ;normal thermal mass specific heat capacity c=880

J/kgK.
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Parameters: Kansas, low heat gain q=1 5W/m 2:high thermal mass specific heat capacity c=2640
J/kgK
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Figure C-52: Optimization results for May 15-19 using dynamic programming and 1-slice model
for parameters: Kansas, low heat gain q=15 W/m 2; high thermal mass specific heat capacity

c=2640 J/kgK. Resulting day thermal cost = [0, 0, 0, 0, 0].
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Figure C-53: Optimization results for May 15-19 using global search optimization and 10-slice
model for parameters: Kansas, low heat gain q=1 5W/m ;high thermal mass specific heat capacity

c=2640 J/kgK. Resulting day thermal cost = [0, 0, 0, 0, 0]
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Figure C-54: Testing the effectiveness of effective h with 1-slice model for May 15-19 for
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Figure C-55: Optimization results for May 15-19 using d namic programming and 1-slice model
for parameters: Kansas, medium heat gain q=30W/m ; normal thermal mass specific heat

capacity c=880 J/kgK. Resulting day thermal cost = [1.1, 0, 0, 0, 3.1]
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Figure C-56: Optimization results for May 15-19 using global search optimization and 10-slice

model for parameters: Kansas, medium heat gain q=30W/m2 ; normal thermal mass specific heat
capacity c=880 J/kgK. Resulting day thermal cost = [0.9, 0, 0, 0, 3.2]
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Figure C-57: Testing the effectiveness of effective h with 1-slice model for May 15-19 for

parameters: Kansas, medium heat gain q=30W/m 2 ; normal thermal mass specific heat capacity
c=880 J/kgK.
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Parameters: Kansas, high heat gain q=45W/m 2; normal thermal mass specific heat capacity c=880
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Figure C-58: Optimization results for May 15-19 using dynamic programming and 1-slice model
for parameters: Kansas, high heat gain q=45W/m 2 ; normal thermal mass specific heat capacity

c=880 J/kgK. Resulting day thermal cost = [1.0, 0, 0, 0.1, 4.8]
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Figure C-59: Optimization results for May 15-19 using global search optimization and 10-slice
model for parameters: Kansas, high heat gain q=45W/m 2; normal thermal mass specific heat

capacity c=880 J/kgK. Resulting day thermal cost = [0.6, 0, 0.2, 0.3, 5.5]
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c=880 J/kgK.
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C.3 Comparison of rule-based control to optimized control for ventilation

City Ventilation control Thermal cost for each day
Madison DP(1-slice) [0,0,0,0.2,0,0,0,0,0,0.1]

GSO (10-slices) [0, 0, 0, 0.1,0,0,0.5,0.2, 0, 0.1]

RBC-1 (1-slice) [0, 0, 0.2, 1.3, 0]

RBC-1 (10-slices) [0, 0, 0, 0.5, 0]

RBC-2a (1-slice) [0.4, 0, 0, 1.2, 0, 0, 0.2, 0.4, 3, 1]

RBC-2a (10-slices) [1.6, 0, 0, 0.2,0, 0, 0.7, 0.6, 1.2, 0.8]

RBC-2b (1-slice) [0.4, 0, 0, 1.2, 0, 0, 1.1, 1.8, 4.7, 2.3]

RBC-2b (10-slices) [1.6, 0, 0, 0, 0, 0, 0.5, 0.8, 1.0, 1.7]

Los Angeles DP(1-slice) [0,0,0,0,0,0,0,0,0,0]

GSO (10-slices) [0, 0, 0, 0,0,0.1,0.6,0, 0.2, 0.2]

RBC-1 (1-slice) [0.1, 0, 0, 0, 0]

RBC-1 (10-slices) [0, 0.1, 0, 0, 0]

RBC-2a (1-slice) [0.2, 0, 0, 0, 0.2, 0.5, 0.3, 0, 0.4, 0.2]

RBC-2a (10-slices) [2.7, 0, 0, 0.2, 0, 0,0.6, 0.6, 1.2, 0.8]

RBC-2b (1-slice) [0.2, 0, 0, 0,0,0.3,0.3,0, 0.4, 0.2]

RBC-2b (10-slices) [2.7, 0, 0, 0.2, 0.2, 0, 1.4, 1.3, 0, 0.8]

Table C-5: Performance of optimized (dynamic programming, DP and global search
optimization, GSO) versus rule-based control of ventilation in terms of thermal cost. Note that the

rule-based control (RBC) 1 is that with overcooling strategy 1, while RBC-2 is that with
overcooling strategy 2, with RBC-2a using arbitrary ratio increment and RBC-2b using self-
improving ratio. Parameters used: city: low heat gain, q=15W/m 2; normal thermal mass heat

capacity c=880 J/kgK. Thermal comfort limit is based on mean outdoor temperature for the 10
days.
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Figure C-61: Madison 10-day temperature profile with 1-slice model and optimal ventilation schedule

computed with dynamic programming

C)

0-

Q,

E

30
28
26
24
22
20
18
16
14
12
10

8
6

-T.
Tair

---- Tmass
. .s.........Tout

- - T(c]mfort limits

0[i f i l l

S0

' 0
06128061280612180612806128061218061280612806121806128

Time of day (h)

Figure C-62: Madison 10-day temperature profile with 10-slice model and optimal ventilation
schedule computed with global search optimization
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Figure C-63: Madison 5-day temperature profile with 1-slice model and RBC- 1 ventilation
schedule
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schedule
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Figure C-65: Madison 10-day temperature profile with 1-slice model and RBC-2a ventilation
schedule
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181

6 7 8 91 2 3 4 5
Day

30 - Tair opt
28-r

T aw RBC-2a26-
24- *T- ----- RM RC-2a
229-
20out
18 -- Tconforthits
16 --

9%

14 %- -
12 '' -
10 -
8 %

6 - -

4-
3-
2-
1 -

0 61218 0 61218 0 6 1218 0 61218 0 612180 6 1218 0 6 1218 0 6 1218 0 6 1218 0 6 1218
Time of day (h)

0

0

0



30 -ai o-pte
2 8 1 1 1 1 1 1 1 1 1 1T
26 - -_--air RBC-2a

20 "" out
18 T
1 6 -_ _* 

"_ 
_"_

14 ---- 8 -
12 -
10 -

8 - -
9
6 - --

4 -
3 --
2--
1 -

0612180 612180 612180 61218 0 61218 0 612180 612180 61218 0 61218 0 61218
Time of day (h)

Figure C-67: Madison 10-day temperature profile with 10-slice model and RBC-2a ventilation
schedule
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corresponding to temperature profile of figure above
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Figure C-70: Plots of the parameters of the overcooling-prevention self-learning algorithm
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schedule

Degree Hours
4000-

3500-

3000-

2500-

2000-

1500-

1000'

500

0
1 2 3 4 5 6 7 8 9

Day heating 0 
hours

possible coding * hours
Delta T max cooling 

0 
hours

0-1

0-

-

-5

0 1 2 3 4 5 6 7 8
Day

9

Direction
10

8-

6-

4-

2

-2
1 2 3 4 5 6 7 8 9

Day

Ratio
12

8

6 --

4-

2-

10

1 2 3 4 5 6 7 8 9
Day

Figure C-72: Plots of the parameters of the overcooling-prevention self-learning algorithm
corresponding to temperature profile of figure above

184

U



27
25
23

21

19
17

15
31,

-*Tair

----- TcM5W
.......... Tou

I I I I I III I I I I I I I I I I I I I I I I I I I I I I I I I0 K] I1111 K] I, IiK 1HIIH
0 0 1 IM I l I IM I I

0 61280 612180 612180 61280 61280 612180 61280 612J80 612180 612 8
Time of day (h)
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Figure C-74: Los Angeles 10-day temperature profile with 1-slice model and optimal ventilation
schedule computed with dynamic programming
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Figure C-79: Los Angeles 10-day temperature profile with 10-slice model and RBC-2a
ventilation schedule
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corresponding to temperature profile of figure above
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Figure C-83: Los Angeles 10-day temperature profile with 10-slice model and RBC-2b
ventilation schedule
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