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Abstract

The objective of this thesis is to present a finite element method and the method of
finite spheres enriched for the solution of various wave propagation problems. The
first part of this thesis is to present an enriched finite element method which is an
extension of the procedure introduced by Kohno, Bathe, and Wright for one
dimensional problems [ 1 ]. Specifically, the novelties are: two-dimensional
problems are solved (and three-dimensional problems would be tackled similarly),
a scheme is given to overcome ill-conditioning, the method is presented for time-
dependent problems, and focus is on the solution of problems in solids and
structures using real arithmetic only. The method combines advantages of finite
element and spectral techniques, but an important point is that it preserves the
fundamental properties of the finite element method. The second part of this thesis
focuses on developing the method of finite spheres for the analysis of wave
propagations. This method is a truly meshless technique developed for the solution
of boundary value problems on geometrically complex domains [ 2 - 5 ]. In the
new development trigonometric functions are used to interpolate the solution of
wave propagations. An effective numerical integration rule resulting in a
significant reduction in computational cost is presented. Several numerical
examples are provided demonstrating the effectiveness of the scheme.
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Chapter 1

Introduction

1.1 Overview

The finite element method is known to be an effective numerical tool for the

solution of boundary value problems on complex domains [ 6 ]. However, the

standard finite element method is not very effective for the solution of wave

propagation problems [ 6 - 8 ]. The errors introduced in wave propagation

analyses using the piecewise polynomial approximations of standard techniques

have been identified and analyzed, see e.g. [ 9 - 10 ]. In the case of time harmonic

wave solutions, it is well-known that the accuracy of the numerical solution

becomes rapidly worse with increasing wave number [ 6, 11 - 14 ]. Therefore, for

problems with short waves, very fine meshes are required to obtain reasonable

solutions, so fine, that the numerical solution effort may be prohibitive. In the case

of transient wave propagations, the solution may exhibit spurious oscillations,

related to the Gibb's phenomenon, and the numerical wave propagation velocity

may be significantly different from the physical velocity, due to the numerical

period elongation and amplitude decay [ 6, 15 ] resulting in the dispersion and

14



dissipation errors [ 15 - 27 ]. When a wave travels long distances, the errors

become large and the numerical solution is very inaccurate. Therefore, whenever

high-frequency components are present in the loading, significant errors are

present in the numerical solution unless the mesh is fine enough to model the rapid

spatial variations.

In addition, in the implementation of the finite element method sometimes

complications arise with regard to constructing a good quality mesh [ 28 ].

Consequences of a poorly constructed mesh include the loss of accuracy and

reliability in the finite element solution. For the solution of wave propagation

problems, an unstructured mesh causes the wavefront of a physical wave to distort

resulting in the computed wave behaving as if it propagates in an anisotropic

domain even though the physical domain is actually isotropic. A large solution

error may occur because of one badly distorted element [ 11 ]. Furthermore, the

process of constructing a good quality mesh is time consuming.

A considerable amount of research has been focused on the development of the

finite element method for wave propagation problems. For time harmonic wave

problems, the partition of unity finite element method has been proposed for the

solution of Helmholtz problems at high frequencies [ 29 - 32 ]. An important

point is that in this method specific wave propagation solutions are incorporated

into the solution space. However, when solving practical wave propagation

problems, we frequently do not know a priori what waves and travels need to be

predicted. In fact, the solution is a sum of unknown waves and propagations, and

may also include wave conversions. Therefore, embedding general multiple wave

patterns, like we propose in this thesis, into the solution space seems to be a more

natural way of capturing the unknown wave solutions.
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The spectral method, see Ref. [ 33 ], the spectral element method, see Refs. [ 34 -

411 and the spectralfinite element method, see Refs. [ 42 - 45 ] and each time the

references therein, have also been developed to solve wave propagation problems.

Considering the literature, it is sometimes difficult to see whether a method

belongs to one or another of these categories. However, in all cases higher-order

polynomials or harmonic functions are used in the solution space.

The spectral method can be used to obtain numerical solutions very close to exact

solutions because harmonic functions are used as basis functions and the solutions

of wave equations are basically harmonic functions. However, the spectral method

is difficult to use for geometrically complicated domains, as encountered in

practice, since the method uses global basis functions. Hence in the analysis of

solids and structures, the method has found limited practical use. A natural

extension is therefore the spectral element method. Here, in essence, high-order

Lagrangian-based finite elements are used with special nodal positions and

integration schemes that lead to diagonal mass matrices. The method shows low

numerical dispersion with respect to standard finite element methods and can be

very effective in explicit time integration but does not lend itself to modeling

complex structures and to the hierarchical increase in the displacement

interpolations that we pursue in this thesis.

In addition, the spectral finite element method has been developed and is used

effectively to solve certain wave propagation problems in that it approximates the

solutions with trigonometric polynomials [ 42 - 45 ]. However, this method uses a

transformation of the governing wave equations to the frequency domain, the

solution in the frequency domain, and the back transformation to the time domain.

The method is overall an expensive procedure and also difficult to extend to

general nonlinear analysis.
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A considerable attention has been given to the development of discontinuous finite

element formulations [ 46 - 48 ]. These methods provide much generality for the

solution of problems and can in particular be used for wave solutions. However,

the methods are, in practice, not sufficiently effective because of the

discontinuities between the elements that need to be dealt with, for example, using

penalty factors. An extension of these techniques is the discontinuous enrichment

method in which free-space solutions of the governing problem are used for each

element in addition to the polynomial approximations [ 49, 50 ]. Hence these

methods too do not lend themselves to solve in a uniform and effective manner

general linear and nonlinear problems in solid and structural mechanics.

Meshless methods have become increasingly popular and are proving to be

supportive procedures for the finite element method in addressing the problem of

constructing a good quality mesh. Many have been developed for the solution of

wave propagation problems. Herein, we will provide a brief description of

representative meshless methods, particularly those which seek to analyze wave

propagation problems. These include the elementfree Galerkin method (EFG), the

radial basis function method (RBF), the meshless local Petrov-Galerkin method

(MLPG), and the smoothed-particle hydrodynamics method (SPH).

The elementfree Galerkin method employs the moving least square approximation

to construct the shape functions. This method has demonstrated good performance

when solving acoustic and elastic wave propagation problems; however,

shortcomings also exist. A requirement for using the moving least square

approximation is that the weight moment matrix, used to construct shape functions,

must be invertible. Furthermore, the shape function in this approximation does not

possess the Kronecker delta property unlike the shape functions of the finite
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element method, and so imposing the Dirichlet boundary conditions is not as

straightforward. In order to impose the essential boundary conditions, the

constrained Galerkin weak form with Lagrange multipliers can be used. However,

disadvantages arise including a larger system of algebraic equations and the loss of

positive definiteness which reduce computational efficiency. An alternative

method of enforcing Dirichlet boundary conditions is to use the constrained

Galerkin weak form with the penalty method. Using this method does not lead to

the disadvantages that arise when using Lagrange multipliers. However, the

problem with this method is that it requires selecting appropriate penalty factors

that can be applied universally to all kinds of problems [ 51, 52 ].

Radial basis functions have been successfully used to solve transient acoustic

wave propagation problems [ 53 ]. The strong form of the partial differential

equation was used in the differential representation of a variable within a local

domain. The field variable is spatially approximated by a point interpolation

method, and an explicit time marching scheme based on the central difference

method is used for time integration. Shape functions are constructed using both

multiquadric and Gaussian radial basis functions which warrant a non-singular

moment matrix, contrary to polynomial basis functions, but provide less solution

accuracy [ 53 - 55 ]. A problem with using the radial basis function method is

choosing a shape parameter which can be applied to a universal set of problems.

Shape parameters have to be chosen according to nodal distributions and the

number of nodes included for interpolation. Otherwise, the solution accuracy

decreases drastically. Thus, for arbitrary nodal distributions, this method is not as

stable as the finite element method [ 53 ].

The meshless local Petrov-Galerkin method is a truly meshless method because

numerical integration is performed within a local domain so that background cells

18



are not necessary for numerical integration. The method adopts trial functions and

test functions from different approximation spaces resulting in various

formulations [ 56 - 59 ]. In [ 58 ], the MLPG is used to solve propagation and

scattering of the electromagnetic wave field. Trial functions are constructed using

moving least square approximations and tests functions are constructed using the

solution of Green's problem. While the method obtains accurate solutions, the

main drawback reported is the high computational cost due to numerical

integration. The MLPG is also used for the solution of wave propagations in 3D

poroelastic solids [ 59 ]. Test functions are constructed by using a unit step

function and trial functions are constructed using radial basis functions and point

interpolation approximations. The numerical solutions obtained are in good

agreement with analytical solutions, but it is reported that as the density of nodes

increases, the computational cost increases drastically due to numerical integration

for the trial functions which are usually complex within the subdomains.

Consequently, as seen throughout, high computational cost of numerical

integration is the main obstacle preventing meshless methods from being used

widely [ 56 - 59 ].

Smoothed particle hydrodynamics is a particle method commonly used for

simulating fluid flows. However, current research for SPH also shows good results

have been obtained for wave propagations in solid materials. The method presents

the field quantity in an integral form based on kernel approximations. The kernel

approximation functions can be categorized as either Eulerian or Lagrangian and

are related to the stability of SPH. Early development of SPH used an Eulerian

kernel which exhibited tensile instability due to expressing Lagrangian motion

with Eulerian kernel functions. However, the problem with Lagrangian kernel

functions is that they become unstable through large deformations since the

influence domains are distorted. Two major issues commonly cited for SPH are
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tensile instability and boundary deficiency [ 60 - 61 ]. Tensile instability refers to

an unstable solution when tensile stresses are present. Boundary deficiency is a

consequence of not satisfying zeroth-order consistency near or on the boundary of

the problem domain. Improved versions of the method, which address these issues,

have been developed [ 60 - 61 ]. The model equations were formulated with stress

and velocities as variables [ 61 ]. A corrected form of the Lagrangian kernel

approximation was used for the spatial discretization [ 61]. This corrected form

enables linear fields to be reproduced exactly, thus overcoming the boundary

deficiency issue [ 61 ]. For the temporal discretization procedure, a two-step time

discretization scheme using Taylor series expansions was proposed. This

procedure requires using virtual particles to calculate solutions at intermediate

time steps [ 61 ]. This method showed good accuracy for the solution to

viscoplastic wave propagation problems [ 61 ]. However, SPH still requires the use

of a large number of nodes in order to obtain reasonably accurate solutions since

the approximation of the field variables still depend only on the kernel function. In

addition, Randles and Libersky mentioned that, the tensile instability is latent for

the problems which involve material strength so that very often the damages in

solid continuum models grow much faster than the growth rate of the tensile

instability [60]. Lastly, if irregularly distributed particles are used to approximate

the solution field, then the order of accuracy becomes less [60].

In order for the meshless methods to be practical engineering alternatives, they

must be computationally efficient and reliable. In 2000, De and Bathe introduced

the method offinite spheres [ 2 - 5 ], which is based on the meshless local Petrov-

Galerkin approach. It is a truly meshless technique where both interpolation and

integration can be performed without a mesh. The method offinite spheres uses the

partition of unity paradigm to construct the approximation functions. Dirichlet

boundary conditions can be satisfied effectively when using a special arrangement
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of the nodes. The method offinite spheres is reasonably effective for the solution

of boundary value problems on geometrically complex domains [ 2 - 5 ]. The

potential of the method in solving wave propagation problems will be investigated

in this thesis.

1.2 Thesis outline

The outline of this thesis is as follows. In Chapter 2, we provide a generally

applicable enriched finite element scheme for the solution of wave propagation

problems. The solution field is discretized with the usual Lagrangian functions

plus harmonic functions within the elements that provide for additional element

behavior and degrees of freedom. In the following, in Section 2.1, we present the

governing equations of the elastic wave propagation problems that we consider in

this thesis and the new finite element interpolation functions. A practical point is

that these functions are formulated to avoid computations in complex arithmetic.

We also discuss how to impose the boundary conditions, the use of the

interpolations with distorted elements, and the problem of ill-conditioning of the

governing algebraic equations. To overcome ill-conditioning, we introduce a

simple computational scheme. Then, in Section 2.2, we present the results of a

range of numerical tests that illustrate the capabilities of the method. We consider

the cases of time harmonic and transient scalar wave equations; the impact of an

elastic bar against a rigid wall; a two-dimensional elastic transient wave

propagation problem and the solution of a Helmholtz equation around a cylinder,

both in infinite domains. For the transient analyses we use an implicit time

integration and focus on the capabilities of the spatial discretization. It is seen that

the finite element formulation can be used to control the numerical dispersion and
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dissipation by increasing the element degrees of freedom, and that accurate results

can be obtained.

In Chapter 3, we demonstrate the effectiveness of the method offinite spheres for

the solution of wave propagation problems. In Section 3.1 the formulation of the

method of finite spheres is outlined as it pertains to the solution of wave

propagation problems. Specifically, the global approximation space, defined by the

Shepard partition of unity functions multiplied by trigonometric functions, results

in efficient and reliable solutions. In Section 3.2, the formulation for two-

dimensional elastic and viscoelastic wave propagation problems is introduced. An

important discussion of improved numerical integration techniques is given in

Section 3.3. A two-dimensional linear elastostatics problem will be used to

demonstrate the efficiency and convergence properties of the numerical integration

rule that will be used for the wave propagation problems. Section 3.4 illustrates the

solutions to various complex wave propagation problems which show the

effectiveness of the method offinite spheres.

Finally, in Chapter 4 we present the conclusions.
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Chapter 2

A finite element method enriched

for wave propagation problems

The objective of this Chapter is to extend the specific procedure of Ref. [ 1 ] to

solve multi-dimensional wave propagation problems. We provide a generally

applicable enriched finite element scheme. The solution field is discretized with

the usual Lagrangian functions times harmonic functions within the elements that

provide for additional element behavior and degrees of freedom.

2.1 Formulation of the method

In this Section we first present the governing equations of the physical problems

considered, then the finite element procedure, and thereafter some important

attributes of the solution technique.
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2.1.1 Governing continuum mechanics equations

We consider an elastic, isotropic, homogeneous medium, V, occupying a domain

in R3 . The boundary of V is denoted by S. In order to model an unbounded

domain, a "model boundary condition" is used on S,,t. The displacement is

denoted by u(x,t) where x e V.

For isotropic elastic wave propagations, the equations of motion are

pu =V -r u)+fB (2.1)

where p is the mass density, fB is the body force vector, and r®u) is the stress

tensor [ 6 ].

The equations of motion are completed with appropriate boundary conditions. As

is usual, we split the boundary S into two parts Su and Sf with the boundary

conditions

u= uS. on Su (Dirichlet boundary) (2.2)

r(R)- =fsf on S, (Neumann boundary) (2.3)

Here usu is the prescribed displacement, n is an outward unit normal vector on Sf,

and fs' is the imposed boundary traction vector.

Included in Sf is the boundary, St, used to model an unbounded domain, on

which we use
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f s =-CLPf vfl- CTPVT (2.4)

Here vT = V -[v -nn is the velocity tangent to the surface and cL and CT are the P

and S wave velocities, respectively.

2.1.2 Variational form of the governing continuum mechanics

equations

Multiplying Eq. ( 2.1 ) by a virtual displacement i and integrating by parts over

V we obtain in the standard way the principle of virtual displacements [ 6

TT rdV+J p T iU dV f i fsfdS+ f U TfB dV (2.5)
V V Sf V

where i is the virtual displacement and T is the corresponding virtual strain. The

important point is that for the method we propose, the usual standard procedures of

finite element analysis are used. Hence, regarding the finite element formulation

the only - but important - novelty is the use of the specific interpolation functions

given next.

2.1.3 Element interpolation functions

While we next consider the two-dimensional analysis of solids, the basic equations

can directly be generalized to plate, shell and three-dimensional solutions. The

element interpolation functions for Eq. ( 2.5 ) are for two-dimensional analyses

given by - considering only one typical solution variable u
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u(r, s) = h(r, s)[U + E, >+ 1 {COS( )UC +s5in x)U S }

+J {cos(2.T )Uc +sin( )U }
y (2.6)

+ co( + )U, + sin(2x + "'U g

CO2sk( - U +sin( - 2  Ukyys
A+ )Uja'k (

2
Y A, A,, )U' a,kyk,

where the U(a,kk, with superscripts are the nodal degrees of freedom; here the S,

C and + and - are used in the superscripts to correspond to the harmonic

expressions. In one-dimensional solutions, Eq. (2.6 ) is simply [ 1]

u(r) = 1ha(r)[Ugo + X ={cos(.Lkxx) U( C +sin(' kxx) Usk}] (2.7)
a

In Eq. ( 2.6 ), x and y are the coordinates at any point of the element and ha is the

conventional finite element interpolation function with a the local node number of

the element. Hence for a 4-node element we have a = 1,...,4, and for a 9-node

element we have a = 1,...,9. These conventional interpolation functions are

enriched by harmonic functions to obtain the actual interpolations used for the

displacements. Of course, these interpolation functions can be written using

exponentials on the complex plane, but since we consider the solution of solids we

mostly use real arithmetic (see Section 2.2.5 for an exception) which can be much

more effective.

For the geometry interpolation of the elements, we use the original functions ha in

the natural (rs) space.

In Eq. ( 2.6 ), the A, and A, are fundamental wavelengths, and kx and k, are

integers in the range of I5kx < n, 1 k, s m, respectively, where n and m are

the cutoff numbers for each term. The analyst needs to choose these data, as part
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of the finite element model definition, for the problem solution. In our current

work, and in all solutions given in Section 2.2, we have so far used A, = 2Ax and

A, = 2Ay, where Ax and Ay are typical element sizes. This choice is physically

appropriate and has also some mathematical basis, see Ref. [ 1 ].

Considering the integers n and m , values between 1 and 3 are most appropriate

as exemplified in Section 2.2. Here we should note that it is not necessary to use n

= m but if done, the functions not needed will simply not add additional solution

accuracy as it is always the case in finite element analysis.

Of course, the elements used with the interpolation functions in Eq. ( 2.6) satisfy

the rigid-body mode criteria and the patch tests [ 6].

2.1.4 Imposing boundary conditions

The way we impose boundary conditions is explained in detail in Ref. [ 1]. Here it

is important to note that in this finite element scheme the nodal values U(akk)

contain the effect of the harmonic functions. Hence to exactly satisfy the

displacement boundary conditions, we choose the following values

U(ak.,,) =Us- for k.,=0 and k, =0 (2.8)

U(ak.,,)=0 for k ,*O or k, 0 (2.9)

where us- is the prescribed displacement. Therefore we impose the boundary

displacements not using the harmonic functions. For the Neumann boundary
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conditions, the boundary term in the discretized equations is calculated in the same

way as in the standard finite element method.

2.1.5 Geometrically distorted elements

To evaluate the coefficient matrices, analytical integration (as used in Ref. [ 1)

can directly be used as long as the elements are rectangular. If the elements are

slightly distorted, a semi-analytical integration may still be possible. However,

when the element distortions are significant, numerical integration is probably

necessary. In this research we simply used the conventional Gauss-Legendre

integration scheme [ 6 ]. While we use this scheme it is clear that more efficient

techniques are very desirable.

To test the performance of the elements when these are distorted, we solve a

simple problem in the domain [0,1]x[0,1] for which the exact solution is

u(x,y) = sin(41rx), see Fig. 2.1(a). Fig. 2.1(b) shows a distorted lOx 10 mesh using

4-node elements. Here, the distortion ratio is defined as the ratio of the longest side

length of any of the elements over the shortest side length of any of the elements in

the domain [ 6].

In the study we use the 10x10 mesh of 4-node elements and a 5x5 mesh of 9-node

elements (simply geometrically combining four 4-node elements to one 9-node

element) which leads to the same number of total degrees of freedom, and

(n,m) = (2,2) for the cutoff numbers. Fig. 2.2 shows the results obtained using the

4-node and 9-node element meshes. Note that the numerical result using the 9-

node enriched element is very similar to the analytical solution even for the largest

distortion ratio.
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Fig. 2.1: (a) Analytical solution ofproblem considered; (b) 1040 mesh of 4-node

elements with distortion ratio = 4.
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Fig. 2.2: Numerical solutions using (a) the 4-node enriched element and (b) the 9-

node enriched element; the distortion ratio =10.
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Fig. 2.3 shows the relative error in the L2 norm, in percent, defined as

|[u |2 dV
V x 100(%)

Ju2 dV
(2.10)

While the 4-node enriched element is quite sensitive to distortion, the 9-node

enriched element is not that sensitive and hence performs much better.

40

35 - - -- - -- - -

oi.23 Reaieero nLnorelmeunt en- hdelmns

>25............ ................ A

~20

.. ...... .. .

0 1 2 3 4 5 6 7 8 9 10 11Distortion ratio

Fig. 2.3: Relative error in L2norm using enriched elements.

This result can be explained by the loss of predictive capability of the elements

due to element geometric distortions, which is discussed in Refs. [ 6, 62 ].

2.1.6 A scheme to overcome the (possible) ill-conditioning of

the algebraic equations

In earlier research on the partition of unity finite element and generalized finite

element methods, it was reported that the resulting interpolation functions can lead
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to singular matrices or to ill-conditioning of the system of linear equations. The

singularity occurs because some interpolation functions are linearly dependent,

and the ill-conditioning occurs because the interpolation functions used are "close"

to each other. With Eq. ( 2.6 ), the functions are linearly independent but do

become close to each other as the cutoff numbers become large.

Strouboulis et. al. [ 63 ] proposed to change the stiffness matrix slightly, and then

iterate in order to annihilate the resulting error. However, our aim is to not iterate

and, also, to have a scheme that lends itself to nonlinear analysis, in which exact

tangent stiffness matrices change and may become singular (for physical reasons).

Hence we change the mass matrix, rather than the stiffness matrix, and use in the

time integration on the left-hand side of the algebraic equations

M =G - a)M,,,,,,,,,+ aM,,,,,, ( 2.11 )

and on the right-hand side of the equations

M= M.,,,,,,,,,, ( 2.12 )

where a is a parameter of very small magnitude, and we calculate the lumped mass

matrix M,,ped using the total mass and allocating the lumped masses in the ratio

of the diagonal elements of the consistent mass matrix. Specific results using this

scheme are given in Section 2.2.2. Note that the mass matrix in Eq. ( 2.11 ) is only

used to overcome a possible ill-conditioning of the coefficient matrix and not to

reduce artificial dispersion or dissipation.
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2.2 Numerical examples

In this Section, we illustrate the performance of the enriched finite element method

by solving several wave propagation problems. First, we solve time harmonic and

transient scalar wave equations and focus on the numerical dispersion. Then, we

use the method to solve for the stress wave in the impact of an elastic bar and

focus on the sharpness of the wave front. Third, an elastic wave propagation

problem is solved which contains P, S and Rayleigh waves. Finally, we use the

method to predict the propagation of an acoustic pressure wave, originating from a

circular cylinder, in an infinite domain.

For all transient analyses we use implicit time integration - which is not mostly

employed in practical wave analyses. However, using implicit time integration

provides a stringent test on the spatial discretization scheme and when employed

in practice can be more reliable [ 6].

2.2.1 Solution of time harmonic scalar wave

For the problem considered, the solution for u is governed by

- + +k2u=0 , 05x52 and 0 y52 (2.13)
&x2 ay 2

with the boundary conditions

u(O y) = , u(x,2) u(x, 0) -0,

(2.14)
= 4;r( and =8x for case 2)

8x
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where k =8r(32ir) in 0:5 x51 and k = 4r(87r) in 1:5 x s2 for the case 1(case 2).
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Fig. 2.4: Analytical solutions for problems considered (a) case 1; (b) case 2.
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Fig. 2.5: Solution errors using uniform meshes: (a) case 1, using 80 linear

elements of the conventionalfinite element method; 8 linear enriched elements

with cutoff number 2; 4 quadratic enriched elements with cutoff number 3; (b)

case 2, using 320 linear elements of the conventional finite element method; 20

linear enriched elements with cutoff number 3; 16 quadratic enriched elements

with cutoff number 3.
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In Fig. 2.4, we present the exact solutions of u for both cases. This is, of course,

really only a one-dimensional problem but it is a useful problem to study the errors

occurring in numerical schemes. In Fig. 2.5, we study the error

e = u(x, 0) - u. (x, 0) using equal-sized elements in each solution. The error in the

finite element solution is due to the numerical period elongation and amplitude

decay, also referred to as numerical dispersion and dissipation. Analyses of these

errors are given, for example, in Refs. [ 6, 11 - 15 ]. We see that in these cases the

4-node and 9-node enriched elements perform very well.

2.2.2 Solution of transient scalar wave

The scalar wave equation with a Ricker wavelet source at the center of a two-

dimensional domain, as considered in Ref. [ 25 ], is given by

a + aU+ F(0, 0, t)=--a (2.15)
8x2  a2 c2 & 2

F(0,0,t) = 10 (1-2)r2 f 2 (t -0.25) 2) exp(-lr2 f 2 (t -0.25) 2  (2.16)

where u is the displacement solution sought, c is the wave velocity, f is the

central frequency and in this example c =1 and f = 6Hz . Only the domain

[0,1]x[0,1] shown in Fig. 2.6 is used for the finite element solution because of

symmetry. While, in general, absorbing boundary conditions should be prescribed

at the outer boundary, in this solution no "absorbing" boundary conditions are used

because for the time considered 0.95s, the wave does not reach this boundary.

With the conventional finite element method, an 80x80 4-node element mesh is

employed, leading to 6,561 degrees of freedom. For the enriched method, an 8x8
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4-node element mesh with cutoff numbers (n, m) = (1,1), (2,2),(3,3) is used,

leading to 729, 2,025, and 3,969 degrees of freedom, respectively. In all solutions,

we used the trapezoidal rule of time integration, with a very small time step

At = 0.00625s, which corresponds to a CFL number = 0.5 for the 80x80 mesh. To

assess the accuracy of the solution, we also solved the problem with the 8x8 mesh

of 4-node elements and (n, m) = (4,4) and obtained negligible differences to the

response calculated with (n, m) = (3,3), see Fig. 2.7.
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Fig. 2.6: Snapshots of displacements at t=0.95s with various cutoff numbers.
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Fig. 2.6 gives snapshots of the displacements at time t=0.95s as calculated using

the conventional and enriched methods. As expected, the numerical results of the

enriched method exhibit better accuracy as the cutoff number increases. Also, for

the meshes used, the conventional method gives results that are not as good as

obtained with the enriched method with the cutoff number (n, m) = (3,3) .

Considering the displacement variations along the x-axis [ 25 ], as shown in Fig.

2.7, the error in the response prediction increases, using the traditional method,

with the distance of wave travel in the computational domain. As well known,

even an apparently small error in wave propagation velocity may result into

unacceptable displacement and hence stress errors as time increases.

n 
2 ......d .m=44 ..... Ueho 2)(4

25u 01 02 . . . 5 . . . .

0x 
x

-0.5 -- - . .

S-Enched method (.m)e(3.3) .s -E(ch d method (n) =.953)
SEnriched method ( s.m)m(4e4) vnEnrchd method .m)(mA)

-e Cobtain dth method - r-Conventio-ot method
-15 .

0 0.1 0.2 0.3 04 0.5 0.6 14 0.5 0.6 0M7 0.8 09 I

x x
Displacement variations at (a) t=O.S5s and (b) t=O.95s

Fig. 2.7: Displacement variations along the x-axis at two times.

We obtained the results given above without regard to ill-conditioning of the

coefficient matrix. However, as pointed out in Section 2.1.6, using the

displacement interpolation functions of Eq. ( 2.6 ) can lead to ill-conditioning and

indeed in this problem solution, ill-conditioning can be seen when calculating the

condition number (although the solution is obtained without numerical difficulties

even when (n, m) = (4,4)). Table 2.1 lists the condition number of the coefficient
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matrix using various cutoff numbers and values of a in Eq. ( 2.11 ). Fig. 2.8

shows the relative solution errors calculated over the domain in the L norm when

using different parameters, and also the displacements along the x-axis obtained

with (n, m) = (4,4). As seen, when using a = 0.00,00,1 the condition number is

much improved while the error due to using this value of a can be neglected.

Table 2.1: Condition number of coefficient matrix (largest eigenvalue/ smallest

eigenvalue [ 6 ]) for various cutoff numbers and values of a using the 8x8 mesh of

4-node enriched elements.

Cutoff number Condition number

a=0 a =0.000001 a =0.00001 a =0.0001

(n,m)=(1,1) 5.8E+07 3.6E+07 1.1E+07 1.7E+06

(n,m)=(2,2) 3.4E+10 1.2E+09 1.5E+08 1.7E+07

(n,m)=(3,3) 9.7E+12 4.OE+09 4.OE+08 4.2E+07

(n,m)=(4,4) 2.8E+16 8.1E+09 8.3E+08 7.8E+07

a=0.O001 a=0.00001 a=0.000001 a=O

(a)

25

U 2

1.5

0

-05

4s

a

-14 0.5 0.6 0.7 0.8 0-9

x
(b)

Fig. 2.8: Study of solution accuracy at time t=0.95s; (a) Relative errors in L2

norm for various cutoff numbers and values of a, the solution using a=0. 0 and

(n, m) = (4,4) is used as the solution to compare with; (b) Comparison of the

numerical solutions obtained using a=0. 0 and a=0. 00001.
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2.2.3 One-dimensional impact of an elastic bar

A good benchmark problem for testing a finite element method for wave

propagation solutions is the one-dimensional impact problem shown in Fig. 2.9

[ 27 ].

The problem can, of course, be solved very accurately using explicit time

integration, lumped mass matrices, and meshes of 2-node linear elements [ 6 ]. To

test the proposed formulation, we solve the problem using uniform meshes of

linear elements, consistent mass matrices, and in each case, we use the trapezoidal

rule of time integration with the very small time step At = 2.5 x 10-'s .

Fig. 2.9 gives the results obtained. As well known, using the traditional finite

element discretizations, spurious oscillations in the stress and velocity predictions

are obtained. These oscillations are somewhat reduced using the time integration

method proposed by Bathe [ 64 ] but are still present. As seen in the figure, when

we use the enriched finite element method, we can control the spurious high-

frequency oscillations and make them acceptably small. As mentioned already, we

used the consistent mass matrix, although in certain analyses, using a lumped mass

matrix or a combination of lumped and consistent mass matrices might reduce the

errors [ 65 ].
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Fig. 2.9: Solution of impact of a bar at time t=0.00005s using uniform meshes; (a)

elastic bar considered; (b) velocity distribution calculated using 100 traditional

linear elements; (c) solution using 700 traditional linear elements (d) solutions

using 50 linear enriched elements with cutoff numbers 0 ,1 ,5; (e) solutions using

the cutoff number 5 with 10,50,100 linear enriched elements.
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2.2.4 Solution of two-dimensional P, S and Rayleigh waves

In this Section, we solve the Lamb problem of elastic waves propagating inside a

semi-infinite domain due to an imposed surface vertical force [ 66 ], as considered

in Refs. [ 35, 36 ].

From Eq. ( 2.5 ), the finite element formulation gives for an element [ 6]

fH(m)T [P H() dV(m) + f H [', pcL 0P] H(m) dS(m)
V() 0 p_ -. 0 ~~s 0 pCr ( 2.17 )

+ f B(m)T C(m)(m)dV(m) U f H(m)T fs,(> dS(m)
y(M) S NM)

where H(m) is the displacement interpolation matrix obtained from Eq. ( 2.6 ),

B(m) is the corresponding strain-displacement matrix, and C(m) is the constitutive

matrix for the plane strain condition used. Note that the boundary condition to

model the infinite domain, Eq. ( 2.4 ) for Sx,, results into the velocity dependent

term in Eq. ( 2.17).

The isotropic semi-infinite elastic medium has a P-wave velocity 3200 m/s , an S-

wave velocity 1847.5m/s, a mass density 2200kg/m 3 , and is modeled as a

domain of size 4000x2000m 2 in plane strain conditions, see Fig. 2.10. The force, a

Ricker wavelet with a central frequency of 14.5 Hz, is applied on the free surface

at (xA yA) = (2000 m, 2000 m) . Two receivers are located at 640m and 1280m

from the applied force. For the numerical solution, we use a mesh of 50x25 4-node
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enriched elements, with (n, m) = (2,2) leading to a total of 66,300 degrees of

freedom, a consistent mass matrix, and the trapezoidal rule of time integration with

a time step 0.0008s. The total time of response to be calculated is Is; hence the P

wave will reach the outer boundary during the solution time.

Fig. 2.10 shows the wave profiles at time 0.72s, a strong Rayleigh wave along the

surface and the P and S waves inside the domain. Fig. 2.11 gives the numerical

prediction at the two receivers, which is in reasonable agreement with the

analytical solution. Note that in the finite element solution presented here, we did

not incorporate any knowledge of the two waves a priori - this response was

naturally solved for by use of our displacement interpolation functions, see Eq.

( 2.6 ). These displacement functions can naturally represent many different

waveforms and will automatically solve for the actual wave response.

yE OJ 2
M"

A R640 R1280

0 0 10 6 20 0 30 35 40

X [mj

Fig. 2.10: Wave profiles at time 0. 72s showing the Rayleigh, P and S waves in

Lamb's problem. Point A indicates the appliedforce position, and R640 and

R1280 indicate the positions of the receivers
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Fig. 2.11: Time history of displacement variations in x-direction andy-direction at

the two receivers, numerical versus analytical results.

2.2.5 Solution of time harmonic acoustic pressure wave

Consider an inviscid fluid for which we define the velocity potential # with

v=V#; p=-p# (2.18)

where v is the velocity and p is the pressure [ 6 ]. The equation governing the

pressure behavior is
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VP = 1-P( 2.19 )
C2 at2

with the wave speed c = 47ii71 where 6 is the bulk modulus and p is the density

of the fluid. Focusing on the propagation of a two-dimensional acoustic pressure

wave at a single frequency, the time dependent pressure p can be written as [ 67 -

69 ]

p(x, y,t) = Re[P(x,y)e-"' (2.20)

Substituting from Eq. ( 2.20 ) into Eq. ( 2.19 ) we obtain the Helmholtz equation

for the time harmonic pressure P. For the numerical test, we consider a circular

cylinder with boundary Sf placed in the unbounded domain V (see Fig. 2.12). Our

goal is to solve the Helmholtz problem like in Ref. [ 70]:

V 2 P+k2 P=0 inV,

-= g(x,y) on Sf (2.21)
an

limrr(2I -ikP) = 0.
r-+o ar

where k = w/c and r is the distance from the origin in the Cartesian coordinates

(Fig. 2.12).

Considering this problem, the Hankel function of the first kind satisfies the first

and third equations

P~x'y)= HO) kv{x-xo) 2+ (Y -yA)2 ( 2.22 )
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Hence using this function to prescribe g = OP/on on the boundary Sf, Eq. ( 2.22 )

is the exact solution for the Helmholtz problem in Eq. ( 2.21). Using x = 0.5,

yo =0, the radius of the circular cylinder = 1, like in Ref. [ 70], and k = 22.06,

Fig. 2.12(a) shows the analytical solution of the pressure.

In the finite element solution we prescribe the boundary condition g = OP/an on

the cylindrical boundary Sf and calculate the pressure response in the

computational domain.

To model the infinity of the physical domain, we use the perfectly matched layer

of Ref. [ 70 ] with the recommended parameters. This layer truncates the

unbounded domain in the numerical calculation by the following equations

I I -+ I +k2p= (2.23)
71 &x 7 &x Y2 OY 72 Oy

where

1 for IxI<2
1+ 1_ for 2 IxI 3 and

k(3 -IxI)

I for IyI<2

2 1+ for 2 IyI 3 (2.24)
k(3 - yj)
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Fig. 2.12: Solution ofpressure wave (a) the analytical pressure, A is at (xo,

yo) =(0. 5,0); (b) mesh of 9-node elements used including the perfectly matched

layer.

Fig. 2.12(b) shows the complete finite element domain meshed with 9-node

elements, giving a total of 576 degrees of freedom when (n, m) = (0,0).

Fig. 2.13 gives contour plots of the pressure numerical solutions using the cutoff

numbers from 0 to 2, where the result obtained using the cutoff numbers

(n, m) = (2,2) is in good agreement with the analytical solution.

As expected, the relative error in the L2 norm decreases as the cutoff number

increases, see Fig. 2.13, and only a few harmonic functions need to be included to

obtain sufficiently accurate results. If the numerical solution for a higher wave

number k were to be obtained, it would be necessary to either increase the number
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of elements or the cutoff number in order to have the same level of solution

accuracy.

We note that while in all previous solutions, we only used real arithmetic, in this

example solution, we employed complex arithmetic for the perfectly matched

layer in the discretized domain.

3

y 0

-3
-3 0 3 -3 0 3

x x

(a) (n,m)=(0,0) (b) (n,m)=(1,1)
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x

(c) (n, m) =(2, 2)

0 2
Cutoff number

(d) Relative error in L2 norm

Fig. 2.13: Numerical solutions including the perfectly matched layer, and relative

error in L2 norm not including the perfectly matched layer as afunction of the

cutoff number.
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Chapter 3

The method of finite spheres enriched

for wave propagation problems

The objective of this Chapter is to demonstrate the effectiveness of the method of

finite spheres for the solution of wave propagation problems. An effective

numerical integration scheme is introduced which improves the computational

efficiency of the method. Several examples of wave propagation are used to

illustrate the advantages of the method of finite spheres.

3.1 Method of finite spheres interpolation

functions

The objective in developing the method of finite spheres is to obtain an efficient

and reliable method to solve complex boundary value problems without the

construction of a mesh. The selection of efficient and reliable interpolation

functions used for the solution of wave propagation problems will be presented

here.
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3.1.1 The partition of unity functions

The method of finite spheres is based on the Shepard partition of unity functions

[ 2 - 5 ]. These functions are nonpolynomial and have zeroth-order consistency.

The nonpolynomial nature of these functions poses a challenge for numerical

integration, which will be addressed in Section 3.3. Zeroth-order consistency

ensures rigid body modes can be reproduced exactly.

Boundary Sphere

SS

By V

Interior Sphere

Fig. 3.1: General problem domain V with domain boundary S = S. u Sf.

Let V e Rd (d =1, 2, or 3) be the computational problem domain. Let S be the

boundary of the domain, where S= Su uSf and Sur- S =0, with Sf being the

Neumann boundary and Su being the Dirichlet boundary. Then
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{B(x,,r,); I= 1, 2,..., N} is a set of spheres which form a covering for V, i.e.,

V c U x B r(x1, ), where x& and r, refer to the center and radius of the sphere, BI,

respectively, and where I is the 'node' number of each sphere and N is the total

number of spheres. The unit normal, n, is defined as positive in the outward

direction to the domain boundary. The spheres are categorized as either an interior

sphere, a sphere which is entirely within the problem domain, or a boundary

sphere, a sphere with nonzero intercept with the domain boundary, as shown in

Fig. 3.1.

Let W x) denote a weight function. Then the Shepard partition of unity functions

are defined as

W

with the following requirements:

ZN= Oj x)= Vx E V (3.2)

supp(97, x)) c B(xj, r) ( 3.3 )

The selection of the weight functions should consider the continuity class to which

they belong as well as how easily they can be differentiated and integrated. The

quartic spline weight functions are used since they provide a low cost partition of

unity. The quartic spline weight functions are

W,(x)=W(s)= {6S+8S3S4 1 (3.4)
0, S >I

where s =| -x I|/r,.
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3.1.2 The interpolation functions for wave propagation

In the method of finite spheres, the interpolation functions are easily modified for

various problems. The interpolation functions within each sphere are generated by

multiplying the Shepard partition of unity functions with local approximation

functions. It is the choice of the local approximation functions that makes the

method of finite spheres a powerful computational tool because any function

included in the local bases can be exactly reproduced. A suitable approximation

space for wave propagation problems is based on trigonometric functions.

As mentioned above, the Shepard partition of unity functions satisfy zeroth-order

consistency. For higher order consistency, a local approximation space

Vh = span,,,{P,(x} is defined at each node I, where p.(x) is a function in VI*,

3 is an index set, and h is a measure of the size of the sphere. Then, the global

approximation space V is generated by multiplying the Shepard partition of unity

functions with the functions from the local basis

v = X,,1 (3.5)

For two-dimensional wave propagation problems, the local approximation space is

defined as

Vh x 21rk x 2,ky 2y
V,= =span{,cos( ), sin( ),cos( ),sin( k)

A A A, A,
2xk x 2;rkyy 21rk x 2;rk y

cos( + ),sin( 2kYY + ', p ) (3.6)
A, A, AX A,

2yrk x 2xkyy 2rk~x _2ykyCos( ),si( ),kk,= p},p {,2,3}
AX A, AX A,
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where A, and A, are fundamental wavelengths in the x and y directions,

respectively, and p is the cutoff number. A suitable choice for the fundamental

wavelengths to be used throughout the thesis is AX = A, =2r, [ 71 ]. Higher order

trigonometric functions are included in the local approximation space as the cutoff

number increases. As additional higher order terms are included, the condition

number of the constructed matrices increases. Due to the fact that increasingly

higher order terms become less significant for approximating solutions, an upper

bound of p=3 has been selected in this thesis for two-dimensional wave

propagation problems.

A patch test was performed for two-dimensional linear elasticity problems [6]

using the above local approximation space. Although the interpolation functions

do not include the bilinear functions, the patch test is passed with reasonable

accuracy using regularly spaced and same radii spheres. This is because using a

finite number of terms of a Fourier series can approximate not exactly but very

closely the polynomial functions that are needed to reproduce the three constant

stress states. More investigations on the patch test using irregularly spaced and

different radii spheres are required, but in this thesis only regularly spaced and

same radii spheres are used even for a problem with a complicated geometry (see

Section 3.4.2). Also, see ref. [86] where the bilinear functions have been included.

Any function v. e V can be approximated by

V (X) = I' 3 hm(x)a,, (3.7)

where aim denotes the nodal unknowns at node I corresponding to the mth degree

of freedom and hjm() is the interpolation function,
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h,,,(x) = p,(x)p,.(x) (3.8)

Fig. 3.2 shows the one-dimensional interpolation functions for an interior node for

cutoff number p = 2. Here, it is important to question whether the interpolation

functions based on the trigonometric functions are effective in approximating the

solution of wave propagation problems. In order to answer this question, we refer

to the mathematical basis for the method of finite spheres. According to [ 2, 72,

73 ], the method of finite spheres is capable of reproducing p,,(x) exactly (as it is

included in the local finite dimensional space Vh). Consequently, choosing the

appropriate local approximation space Vh" is important in order to enhance the

approximation capabilities of the method of finite spheres. It has been shown that

trigonometric functions are one of the appropriate choices for the solution of wave

propagation problems in Chapter 2.

1 -

0.5

U 0

-0.5- -

1 1.5 2 2.5 3
X

Fig. 3.2: One-dimensional interpolation functions for an interior node for cutoff

number p=2

h1 , 2r 2n 2xr 2xrh~l= 1 I 12= ~lCOS(-Ax), h = h1 sin(xh, A = COS( Ao(2x), h, 5 = h11 sin(-Ax)

52



3.2 Wave propagations in 2D

Next, we apply the framework of the method of finite spheres and present the

fundamental equations governing wave propagations in two dimensions. Section

3.2.1 summarizes the formulation for the linear elastic wave equation, while

Section 3.2.2 presents the formulation for the linear viscoelastic wave equation.

3.2.1 Formulation for the linear elastic wave equation

Let us consider a bounded domain V e R2 with boundary S.

The governing equation is

_r , =0 inV (3.9)

where fB is the body force vector. The strain-displacement relation is

6 =_u in V (3.10)

and the stress-strain relationship is

r=Cc in V (3.11)

where C is the stress-strain material matrix. For plane strain conditions

C[1 C12 0

C= C1 CI 0 (3.12)

_0 0 c33
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E(1-v) Ev Ewhere c_ = = , and c = with E and v
(1+v)(1-2v) ' " (1+v)(1-2v) 2(1+v)

being the Young's modulus and Poisson's ratio of the material, respectively.

The boundary conditions are

NT=fs on Sf (3.13)

u=us on Su (3.14)

In Eqs. ( 3.9) - ( 3.11), , , and - are the displacement, strain, and stress vectors,

respectively; 8, is a linear gradient operator; fs is the prescribed traction vector

on the Neumann boundary Sf; us is the vector of prescribed displacements on the

Dirichlet boundary Su ; and N is the matrix of direction cosine components of a

unit normal to the domain boundary [ 2 - 5].

3.2.1.1 Variational form

We consider the following variational indicator [ 2 - 5]:

I(_)= T (u)CeudV -91 (3.15)
V

The term 91 accounts for the externally applied body forces, surface tractions, and

applied displacements,

9=JUTLBdV+ ffs+ffu"(-)dS (3.16)
V S1 b

where fU' is the traction vector on the Dirichlet boundary and may be expressed as
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fU = NCe(u) (3.17)

and we have fB = -p where only body forces due to inertia forces are

considered [ 6].

Invoking the stationarity of I* , we obtain the following weak form:

Find u e H (V) such that

eT (v)Ce(u)dV + pvi idV -

=f f sd-
V V.

f JTfSds
Sf

e T v)CNT u +v T NCe()] dS

T V)CNuTdSd6 tjvUa s Vv e H (V)

where H'(v) is the first order Hilbert space [ 2 - 6].

3.2.1.2 Nodal interpolations

The displacement field is approximated from Eq. (3.5)

u(xY) _H,(x, y) =H(x, y)U

where

L-~1 = olI!12 ffi3 a.

is the vector of nodal unknowns, and

9 =[' v'" i AI (3.21)
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is the vector of nodal unknowns at node J corresponding to the nth degree of

freedom ( ui" and v1" are the nodal variables for the x and y direction

displacements). The nodal shape function matrix corresponding to the nth degree

of freedom is

h,, (x, y) (3.22)Hj. (x, y)= 
((.20 h ,,,xY)

Hence, the discretized versions of Eqs. ( 3.10 ) and ( 3.11) are

e(x, y) = ZN B,(x,y)ct, = B(x, y)U (3.23)

and

1(x,y) = :N , = _CB(x,y)U (3.24)

where the strain-displacement matrix B(x, y) is partitioned as

B(x,yA)=[_B, i(x, y) B12(X9y A --. L B,(x Y) --- ] ( 3.25 )

with

~ahj,,/x 0
B,0 h,/y (3.26)

[8h,,lay ah,,/ax

3.2.1.3 Discrete equations

Substituting Eqs. ( 3.19 ) - ( 3.26 ) into Eq. ( 3.18 ), we obtain the discrete system

of algebraic equations corresponding to node Iand degree of freedom m
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N + X:N E a = I (3.27)

In this equation, the various matrices and vectors are as follows:

"= B,CBjdV
V, I

=MM offim H,dV
V,

where V =V r B(x,,r).

If I is a node associated with an interior sphere, then

f =0

(3.28)

(3.29)

(3.30)

If the sphere corresponding to node I has nonzero intercept on the Neumann

boundary, then

L, = H T fSdS
Sf'

where Sf = UtEN1 
5 f, , with Nf being the index set of such nodes.

On the other hand, if the sphere corresponding to node I has nonzero intercept on

the Dirichlet boundary, then

(3.32)=IN _K UnE3 ,,mJn -a ~n ilm

where

(3.33)KU,,,,, = f ,,,NCB,,dS + BgT,,C T,,,dS

S s
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and

f]_,, =f !,CNT usdS
S.,

(3.34)

where S. = U1eN, Su, , with Nu being the index set of such nodes. A point to note is

that we may incorporate the Dirichlet boundary conditions by a special

arrangement of nodes as discussed in [ 2 - 5 ]. If we use the special arrangement of

nodes on the Dirichlet boundary condition, then the specified value of the field

variable u at node Ion the Dirichlet boundary is taken up by the coefficient of h 1.

3.2.2 Formulation for the linear viscoelastic wave equation

Y-yr I ___y
f 2L__

L01(j 
17(O K

;7
P,

p~f si P1g

)2 (j)n
j~tyr

(a) (b)

Fig. 3.3: Schematic of the generalized Maxwell body for (a) the complex

viscoelastic bulk modulus and (b) the complex viscoelastic shear modulus.

In an isotropic viscoelastic body, the stress-strain relation can be expressed in

Einstein notation as

zr*(t)= Sf' <(t -r)Zk(r)dr +2f u(t - r)[e(r)--i(r)]dr3 (3.35)
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where c(t) and p(t) are bulk and shear relaxation functions, respectively [ 74 - 77 ].

We use a generalized Maxwell body, which is constructed in the frequency

domain, to approximate these two relaxation functions [ 77 ]. Fig. 3.3 shows the

schematic illustration of the complex viscoelastic bulk modulus and shear modulus,

respectively. The elastic bulk modulus and the elastic shear modulus are K and P,

respectively, Y, and Y" are the coefficients, o are the relaxation frequencies, n

is the number of relaxation mechanisms, and I ranges from 1 to n [ 77 ]. The

expressions relating the elastic bulk modulus to the relaxed bulk modulus, 1R, and

the elastic shear modulus to the relaxed shear modulus, puR, respectively, are

K=KR +K (3.36)

and

P = JR + =

By transforming the two complex viscoelastic moduli from the frequency domain

to the time domain, we can obtain the stress-strain relation in the time domain

[ 77 ] as

- = Kek 68I +2p[. - I8[]-L," [rY ( 8u+2pY/"( 7 -- {,kk,)] (3.38)
3 3

where 47f is the function defined as

4(t) = 0,( f exp(-, (t - r)) -e, (r)dr) (3.39)

which can be changed into
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# 
,7 (3.40)

For plane strain conditions, we write the stress in the form

- In T l (3.41)

where rE is the elastic contribution given by Eq. ( 3.11 ), and rA' is the viscous

contribution which on unloading disappears for the fth relaxation frequency given

by

rA'= CAl (3.42)

where

Y 7 0
C A= Y- G 0 and_=[4 4" 2,]T (3.43)

[0 0 p

where

+ X4 2 Y
y+ = KG+-p17'; 1- =KY7--p 1 (3.44)

3 3

The coefficients Y, and 17' are obtained from

Q-1() n '&k' +,9,v(ak) 17; k=1,...,2n-1; ve{p, s} (3.45)

where Q, and Qs are quality factors which characterize the attenuation of the

viscoelastic P- and S-waves, respectively [ 77 ]. The relaxation frequencies are

obtained by defining 42 = wi,..., 2n-1= o,, where k = 1,..., 2n -1. The coefficients

can be solved for by Eq. ( 3.45 ) using the least square method.
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The coefficients 17 , and Y, , Y7 are related to each other through the

expressions

K = I 3 c ; ("=S ("3.46)Y, (C2 _ 4C2 Y

where c, and c, are the elastic P- and S-wave velocities, respectively.

3.2.2.1 Discrete equations

The difference between the linear viscoelastic wave equation and the linear elastic

wave equation is embedded in the definition of the stress. In particular, the stress

defined in Eq. ( 3.41 ) for the viscoelastic wave includes the additional viscous

effect which on unloading disappear, whereas the stress defined in Eq. ( 3.11 ) for

the elastic wave, only has the elastic effect. Consequently, the counterpart to Eq.

(3.27 ), the discrete set of equations for the elastic wave, is the following discrete

set of equations

_IKneZ ,,,,,, +X M,,,,_dh,, =f +f (3.47)

where f,= jB',,,IdV is the force vector accounting for element stresses due to
V

the viscous effects which on unloading disappears , =2:= .
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3.3 Improved numerical integration procedure

Numerical integration is a focal point of development for the method of finite

spheres [ 78 - 80 ]. Unlike the finite element method where numerical integration

is efficient due to polynomial interpolation functions, non-overlapping elements,

and Gauss-Legendre product rules used over simple integration domains, the

method of finite spheres requires integration of nonpolynomial functions over

complicated integration domains such as spheres, truncated spheres, and general

lens-shaped regions for the overlap of spheres. Consequently, specialized

integration schemes have been developed, such as the piecewise midpoint

quadrature rule in Ref. [ 78 ]. While the integration rule suggests that it is possible

to contend with classical finite element procedures [ 78 ], more efficient

integration schemes are still needed and essential to the success of the method of

finite spheres. In this Section, we focus on developing a computationally efficient

numerical integration procedure for the method of finite spheres for two-

dimensional integration domains. By applying the integration rule to a two-

dimensional linear elastostatics cantilever plate problem, we seek to demonstrate

the improvements in numerical integration as a result of our new proposed

integration method. The efficiency of the proposed integration method will then be

further verified on problems of wave propagation in Section 3.4.

3.3.1 Piecewise midpoint quadrature rule

The piecewise midpoint quadrature rule was first presented by De and Bathe [ 78]

as an improved numerical integration rule from the former Gaussian product rules

[ 2 ]. Since the integrands to be evaluated are nonpolynomial functions over
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complicated integration domains, a high order Gauss quadrature rule was required,

which is not efficient. The premise of the piecewise midpoint quadrature rule is to

subdivide the domain and perform integration in a piecewise manner over these

subdomains with simpler quadrature rules. The complication of the integration

scheme is the selection of the number of integration points within each integration

domain.

3.3.2 Piecewise Gauss-Legendre quadrature rule

While the piecewise midpoint quadrature rule decreased the computational time of

the method of finite spheres [ 78 ], the integration rule still needs to be improved.

A prominent challenge is the appropriate selection of the number of integration

points within the integration domains. Since the solution is sensitive to the balance

of integration points within each integration domain, the method lacks reliability.

By inspecting the interior disk, it is evident that the number of integration points

near the center is greater than the density of integration points near the boundary.

Furthermore, the location and weights of the integration points for the regions of

overlap do not coincide with the integration points of the interior disk or boundary

sector, and the error can accumulate when the accuracy of the integrand for these

integration domains are not of the same order.

Consequently, the piecewise Gauss-Legendre quadrature rule was developed with

consideration of the density of the integration points. Furthermore, to avoid the

reliability issue of relative error between the overlap and the interior disk or

boundary sector, we do not calculate the overlap regions with a different set of

integration points, but rather, we use the same location and weights as defined

within the interior disk or boundary sector.
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The integration domains for two-dimensional conditions are interior disks,

boundary sectors, and lens-shaped regions of overlap, but for the piecewise Gauss-

Legendre quadrature rule, the integrands for the lens-shaped regions of overlap are

computed with the position and weights of the integration points for the interior

disk or boundary sector. The premise of this integration scheme is to reduce the

complexity of the integrand by subdividing the integration domain into quadrants

and employing Gauss-Legendre quadrature which provides an equal density

arrangement of integration points. For each of these domains, the procedure for the

piecewise Gauss-Legendre quadrature rule will be summarized.

3.3.2.1 Interior disk

Y Y

0 * 0 0 bo o o doo 00

0 0 00 0 0 0 0 000

0 0 0 0

(a) ()

Fig. 3.4: Integration points on interior disk (a) and lens-shaped region of overlap

(b)for piecewise Gauss-Legendre quadrature rule.

The piecewise Gauss-Legendre quadrature rule subdivides the interior disk into

four quadrants as in Fig. 3.4. Within each of these subdomains, a Gauss-Legendre

quadrature rule is selected, with the objective of achieving a reasonably accurate

solution using a minimal number of integration points. Note that only the
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integration points within the disk will contribute to the interior disk stiffness

calculation (red points in Fig. 3.4(a)). The location and weights of the integration

points used to calculate the stiffness of the lens-shaped region of overlap coincide

with those used for the interior disk stiffness calculation. In Fig. 3.4(b), the red

points indicate the integration points used to calculate the stiffness contribution

corresponding to the overlap region shown. The Gauss-Legendre quadrature is

performed in the global domain in contrast to the integration scheme of the MLPG

method as in Ref. [ 56 ] where the integration is performed using isoparametric

mapping. The piecewise Gauss-Legendre quadrature rule differs from general

Gauss product rules in that the integration domain is first subdivided to simplify

the functions that are to be integrated.

3.3.2.2 Boundary sector

Y Y

(a)
- Y

(b)
Fig. 3.5: Integration points on boundary sectors (a)

overlap (b)for piecewise Gauss-Legendre

0

0 0

and lens-shaped region of

quadrature rule.
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For the piecewise Gauss-Legendre quadrature rule for boundary sectors, the

integration domain is divided into subdomains. The number of quadrants depends

on the angle that the radii joining the center of the disk to the two intercepts of the

disk make interior to the domain. Within each of these quadrants, a Gauss-

Legendre quadrature rule is employed, but as for the interior disk, only the points

within the boundary sector contribute to the stiffness term of the spheres with

nonzero intercept with the domain boundary. Fig. 3.5(a) illustrates the integration

points within the boundary sectors encountered in the two-dimensional problems

presented in this thesis based on the Gauss-Legendre quadrature rule while Fig.

3.5(b) illustrates those points for the lens-shaped region of overlap.

3.3.3 Numerical integration rule comparison

For the finite element method, the element type, the mesh density, and the solution

parameters are some of the choices that must be refined until sufficient accuracy is

obtained. For the method of finite spheres, the sphere size, the local approximation

space, the type of integration scheme, and the imposition of the boundary

conditions are some of the choices that must be refined until sufficient accuracy is

obtained. By comparing the error in strain energy for the method of finite spheres

with the traditional finite element method, we will illustrate the advantages and

disadvantages of the numerical integration scheme.
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Fig. 3.6: Cantilever plate problem.

To illustrate the improvement in numerical integration, consider the cantilever

plate problem in Fig. 3.6. This two-dimensional linear elasticity problem will be

solved using the method of finite spheres with the piecewise Gauss-Legendre

quadrature rule. For two-dimensional wave propagation problems, the local

approximation space is given by Eq. ( 3.6 ), so the global approximation is the

Shepard partition of unity functions enriched by these trigonometric functions.

However, a suitable local approximation space for two-dimensional linear

elasticity problems are the polynomial functions. For this example, we take the

terms of a complete second degree polynomial, that is, Vh = span{1,x,y,x2 ,XY,Y 2
).

The piecewise midpoint quadrature rule is an improved numerical integration

method as compared to the Gauss product rules which can only provide 'global'

accuracy of the integration domain up to an arbitrary polynomial order. Since the

integrands are complex nonpolynomial functions, the Gauss product rules, which

can only give exact results when applied to a polynomial, require a large number

of integration points and are not efficient. However, the piecewise Gauss-Legendre

quadrature rule allows for 'local' high order approximations within the subdomains

of the integration domain. Since the numerical integration errors are due to the
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complexities of the integrand, subdividing the quadrature domain into subdomains

yields more accurate solutions since the complex integrand is divided into simpler

functions. Consequently, proper choice of how to subdivide the domain can

greatly increase the effectiveness of the piecewise Gauss-Legendre quadrature rule.

An optimal solution is one that achieves a reasonable level of accuracy using

minimal divisions, since an increase in the number of partitions increases the

computational effort. The interpolation functions of the traditional finite element

method and the method of finite spheres are illustrated in Fig. 3.7. An advantage

of the piecewise Gauss-Legendre quadrature rule is that the stiffhess terms

corresponding to the overlap regions are calculated with the same location and

weights of the integration points within the interior disk or boundary sector.

Therefore, we anticipate that the piecewise Gauss-Legendre quadrature rule will be

an improvement upon the piecewise midpoint quadrature rule.

Disaetization oftomam 0 2 Dimezation of Doman 0) in l

F=nte Element Method Method of Finite Spheres

0 051 2 1
0.5 1.5 -0.5 1.5

-1 0 -1 0

(a) (b)

Fig. 3.7: (a) Discretization of the finite element domain with Lagrange shape

function for a middle node and (b) discretization of the finite sphere domain with

internal disk shape function.
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3.3.3.1 Strain energy convergence

-0- 5x5 Spheres -U-7x7 Spheres --- 9x9 Spheres

-1.6-
-1.8--

-2-
-2.2-

.9 -2.4
-2.6 -

-. 0 0.5 1 1.5 2 2.5 3 3.5 4
Ratio of Integration Points

Fig. 3.8: Strain energy convergence for the piecewise Gauss-Legendre quadrature

rule

The error in strain energy is determined from the reference solution which is based

on the 50x50 9-node finite element solution of the cantilever plate problem. The

strain energy convergence plot presented in Fig. 3.8 is for the method of finite

spheres using the piecewise Gauss-Legendre quadrature rule. The ratio of

integration points is determined by the number of integration points used in the

method of finite spheres divided by the number of integration points used in the

finite element reference solution. Three sphere sizes are used for this numerical

integration scheme.

Using the piecewise Gauss-Legendre quadrature rule, it is evident that the method

of finite spheres solution converges as seen in Fig. 3.8. The behavior exhibited is

similar to the finite element method in that using a number of integration points

above a certain value will not improve the solution. By observing the ratio of

integration points, it is apparent that the computational cost for the method of

finite spheres is comparable to that of the finite element method. For a decrease in

the radius of support, we see an improvement of the error in strain energy.
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Therefore, the piecewise Gauss-Legendre quadrature rule demonstrates qualities

desirable of an efficient numerical integration scheme.

-e- Finite Element Method -e- Method of Finite Spheres

-1.8-
-2

-2.2
-2.4

-~-2.6

-2.8-

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0
log(h)

Fig. 3.9: Strain energy convergence with decrease in element size for the finite

element method and decrease in radius of support for the method offinite spheres.

From Fig. 3.9, it is clear that the method of finite spheres using the piecewise

Gauss-Legendre quadrature rule has a comparable rate of convergence as the finite

element method as seen from the slope of the two curves. Furthermore, by noting

the shift between the two convergence rate curves, it is clear that for a chosen

element/sphere size, the method of finite spheres using the piecewise Gauss-

Legendre quadrature rule provides a more accurate solution than the finite element

method. Therefore, since the accuracy and efficiency of the method of finite

sphere using the piecewise Gauss-Legendre quadrature rule is comparable to that

of the finite element method, it appears that this numerical integration scheme has

improved the method of finite spheres to be competitive with the traditional finite

element method.

For the two-dimensional wave propagation problems presented in this thesis, the

method of finite spheres is using the piecewise Gauss-Legendre quadrature rule.

The advantages of this improved numerical integration scheme was demonstrated
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in this Section for the cantilever plate problem but the integration rule is similarly

efficient for wave propagation problems. Furthermore, additional computational

savings can be gained from the analysis of wave propagation problems when

employing a uniform arrangement of equally sized spheres. The solutions to wave

propagation problems can exploit this uniform arrangement since the solution is

not confined to any specific region. Therefore, due to this uniform arrangement,

the integration over interior spheres can be patternized in order to significantly

reduce the stiffness and mass calculation cost.

3.3.3.2 Cantilever plate problem results

The computational cost of numerical techniques can be measured by the time of

the solution procedure, often approximated by the number of operations. The

major computational cost is in the computation of the global stiffness matrix and

in the solution of the resulting set of algebraic equations. For the method of finite

spheres, this means that the most expensive operations are the computation of the

interpolation functions and their derivatives, which are evaluated at every

integration point.

For the cantilever plate problem, the solution fields for displacement will be

compared for the finite element method and the method of finite spheres. The

centerline vertical displacement from the two methods will also be presented. The

finite element model results presented are based on a 50x50 9-node element mesh

and the method of finite spheres results presented are based on a 9x9 arrangement

of spheres.
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Fig. 3.10: Finite element results of (a) y -displacement and (b) z -displacement

and method offinite spheres results of (c) y -displacement and (d) z -displacement.

The displacement results of the finite element method in Fig. 3.10(a)-(b) are

similar to the displacement results of the method of finite spheres in Fig. 3.10(c)-

(d). The vertical deflection of the neutral axis for the method of finite spheres

using the piecewise Gauss-Legendre quadrature rule is in agreement with the

results of the classical finite element method as can be seen from Fig. 3.11.
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Fig. 3.11: Vertical deflection of the neutral axis for the 50x50 FE 9-node mesh

and the 9x9 MFS discretization.

In the midst of increasing popularity for meshless methods, the method of finite

spheres is proving to be a promising numerical technique for the analysis of solids,

structures, fluid flows, and fluid-structure interaction. While the method provides

reliably accurate solutions, the method lacks in computational efficiency when

compared to the traditional finite element method. Consequently, the piecewise

Gauss-Legendre quadrature rule was developed where from the results of the

cantilever plate problem, it is apparent that the method provides an accurate

solution with far fewer integration points than the previous piecewise midpoint

quadrature rule.

3.4 Numerical examples

The objective of this Section is to demonstrate the computational potential of the

method of finite spheres for the solution of wave propagation problems. The

examples used will demonstrate novel features of the method of finite spheres

including the use of interpolation functions enriched by trigonometric functions as
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well as the piecewise Gauss-Legendre quadrature rule for the numerical

integration procedure.

The first example is a two-dimensional scalar wave propagation problem. This

problem will demonstrate that accurate approximate solutions can be obtained

using the method of finite spheres. Furthermore, it will reveal certain behavior of

the approximate solutions when varying the sphere size, cutoff number, and time

step size. The method of finite spheres exhibits interesting behavior indicating

whether an error is due to discretization in space or time. We provide an estimate

for determining an appropriate time step size for the method of finite spheres in the

analysis of wave propagation problems. Finally, the computational costs using the

method of finite spheres are measured and compared with those using the finite

element method.

The second problem deals with scattered waves by an array of rigid circular

cylinders. This example illustrates the simple and direct procedure of

discretization for the method of finite spheres.

The next model concerns a two-dimensional linear elastic wave propagation

problem in a semi-infinite domain. In this example, we focus on the wave

propagation along the surface. Some meshless methods have shown poor accuracy

in approximating solutions along the free-surface boundary. This example will

illustrate the strong performance of the method of finite spheres with regard to the

free-surface boundary condition.

Lastly, the fourth problem is a two-dimensional viscoelastic wave propagation

problem. While elastic wave propagation is of importance, many media show

significant viscosity, and therefore, cannot be idealized as linear elastic bodies.
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Consequently, this example will demonstrate how the method of finite spheres is

able to capture this viscous dissipation.

3.4.1 Two-dimensional scalar wave propagation problem

In this Section, we solve a scalar wave equation with the Dirichlet and Neumann

boundary conditions considered in [ 71 ]. Due to the symmetry of the solution

profile, we consider only a quarter of the domain. Let V e R2 be a bounded two-

dimensional domain with the Dirichlet boundary on x = y = im and the Neumann

boundary on x = y = Om. The initial boundary value problem consists of finding

the solution u that satisfies

c u(.,t)- Au(x,t)= f(x,t) in V = VxI; V =[0,1m]2, I=(0,0.95s) (3.48)

where c is the wave speed and the initial conditions are

u(x,0)=0; z(x,0)=0 on V (3.49)

These equations are related to the dynamic motion of a prestressed membrane [ 811.

We choose c=1m/s and f(0,0,t)=10(1-2Yr 2f 2 (t-tO) 2 ) eXP_,r 2f 2 (t-tO)2)

where f=6Hz and to =0.25s are the central frequency and time shift,

respectively.

75



I 1.5 I L.5

0.8 0.81

0.6 .5 0.6 .5
y y

0.4 0.4

0.2 4.5 0.2 0.5

0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

x x

(a) (b)
1 1.5 2

-0e-Analytical Solution

8-
33x33 Spheres with CutoffNumber I

1.5 -- 17x17 Spheres with CutoffNumber 2
.81 -"- 9x9 Spheres with CutoffNumber3

1-

0.6 .5
y Uy u 0.5-

0.4

02
.5 -0.5-

0 -A
0 0.2 0.4 0.6 0.8 1 0 0. 0.4 0.6 0.8

x x

(c) (d)

Fig. 3.12: Displacement variations at time 0.95s for (a) 33 x33 spheres with cutoff

number 1, (b) 1 7x1 7 spheres with cutoff number 2, (c) 9x9 spheres with cutoff

number 3, and (d) a comparison between analytical solution and numerical

solutions for response along x -axis.

The Bathe time integration method was used to obtain the approximate solutions

since it has been proven to provide more accurate solutions for wave propagation

problems than the trapezoidal rule [ 82 ]. For the approximate solutions in Fig.

3.12, a time step size of At = 0.003125s was used, which is small enough to

assume that temporal discretization errors are negligible. Fig. 3.12(a)-(c)
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illustrates the wave response at time t = 0.95s for varying cutoff numbers and

sphere sizes and Fig. 3.12(d) compares these approximate solutions to the

analytical solution on the axis x = 0 [ 25 ]. The numerical results are satisfactory.

We will use this example to further investigate the accuracy of the method of finite

spheres by varying the spatial and temporal discretization.

3.4.1.1 Spatial and temporal discretization error

The purpose of a numerical method is to provide accurate solutions to the physical

system of interest. For the wave propagation problems analyzed in this Section,

analytical solutions are available so that the relative accuracy of our numerical

results can be tested directly. However, it is important to investigate the sensitivity

of the solution for our method since it is for solutions to complex physical

phenomena, for which analytical solutions are not known, that the accuracy of the

method is essential.

In numerical solutions, the error is usually a consequence of spatial and/or

temporal discretization [ 81 ]. In order to minimize the spatial discretization error

in the method of finite spheres, either the sphere size can be decreased, similar to

h-refinement, or the cutoff number can be increased, comparable to p-refinement

in the finite element method [ 6, 72 ]. To examine the h- and p-convergence of the

method of finite spheres, we use the percentage relative error of the L2 norm

f I-uI 2 dV
Jfu12 dV x100(%) (3.50)
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where u is the analytical solution and Uh is the numerical solution. Fig. 3.13 shows

the h- and p-convergence behavior of the method of finite spheres solution at time

0.95s for the scalar wave problem. As expected, Fig. 3.13(a) signifies that for

decreasing sphere radius (for different cutoff numbers) the solution accuracy

improves, while Fig. 3.13(b) indicates an improvement for increasing cutoff

number (for different sphere sizes).

400 40W
-6-Cutoff Number 1 -e-h = 0.5

-Cutoff Number 2 -9-h = 0.25
-- -Cutoff Number 3 -+-h = 0.125

300- 300- -h = 0.0625
-- h = 0.03125Z z

. 200 .9 200,

100 - 100

00 0.1 0.2 0.3 0.4 0.5, 1 2 3
h (Radius of A Sphere) p (Cutoff Number)

(a) (b)

Fig. 3.13: (a) h-convergence and (b) p-convergence behavior of the method of

finite spheres at time 0. 95s.

To inspect the accuracy of the displacement variations of the method of finite

spheres solution with regard to spatial discretization, consider the relatively coarse

5x5 sphere discretization corresponding to a sphere radius size of 0.25. The

percentage relative error of the L2 norm for this discretization, using the cutoff

number p = 3, is roughly 6.6%.

Fig. 3.14 illustrates the displacement variation results for this discretization and

cutoff number at time 0.95s as well as a comparison of the numerical solution and

analytical solution for the response along the x-axis. While the wavelength and

amplitude of the wave agree well with the exact solution, we observe spurious

oscillations in the response surrounding the peak displacement. The oscillations
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are a result of the spatial discretization. Therefore, while a relatively good quality

solution can be obtained for the peak displacement using a coarse spatial

discretization, spatial refinement is necessary to obtain a solution void of spurious

oscillations.
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Y u 0.5-

0.4
0

0.2 -0.5 -0.5

0-1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

x x

(a) (b)

Fig. 3.14: Displacement variations at time 0.95s for (a) 5 x5 spheres with cutoff

number 3 and (b) a comparison between analytical and numerical solution for

response along x-axis.

To inspect the accuracy of the displacement variations of the method of finite

spheres solution with regard to temporal discretization, consider different time step

sizes for the solution of the scalar wave problem. Fig. 3.15 shows the results for

the wave displacement along the x-axis at time 0.95s for four different time step

sizes. Observe that as the time step size increases, the numerical wave profile

shifts from the exact solution. The period elongation and amplitude decay of the

numerical results are a result of dispersion and dissipation errors [ 15 ]. However,

there are only few spurious oscillations in the solution, so we do not expect that
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spatial discretization is an issue. We can attribute the dispersion and dissipation

error to an insufficient temporal discretization.
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Fig. 3.15: Displacement variations along x-axis at time 0.95s for 9 x9 spheres and

cutoff number 3. Comparison between analytical and numerical solutions with (a)

At=O.003125s and At=O.00625s and (b) At=O.0125s and At=O.025s.

We have observed by numerical examples: the characteristic behavior due to

insufficient spatial or temporal discretization indicates which type of refinement is

necessary to improve the approximate solution for the method of finite spheres. In

particular, if the solution has spurious oscillations, then spatial refinement, either

h-type or p-type, is required, and if the solution exhibits dispersion and

dissipations errors, then a decrease in the time step size is necessary.
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3.4.1.2 Wave propagation time step size estimate

The spatial and temporal discretizations should be related to each other by the

wave speed [ 82 ]. In order to estimate the numerical dispersion property as a

function of CFL number, a very complicated calculation is usually required [ 82 ].

However, without carrying out such complicated calculations, Ref. [ 6 ] presents a

simple approach for choosing an appropriate time step size for various time

integration methods [ 6 ]. According to [ 6 ], we can assume that if the critical

wavelength to be represented is L., then the time for the wave to travel this

distance is

t, =--W (3.51)C

where c is the wave speed. We postulate that if n steps are required to approximate

the traveling wave accurately, then we can obtain the appropriate time step size for

the traveling wave by

t
At = t (3.52)

n

The time step size depends on the time integration scheme used [ 6 ]. We assume

that the smallest wavelength that the method of finite spheres can approximate

accurately is A, = 2r /p, where p is the cutoff number and r, is the radius of the

sphere. Here we assume that the critical wavelength is Lw = A, = 2rp. Then we

have

At= = = (3.53)n cn pen
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Fig. 3.16: (a) Percentage relative error in the L2 norm for increasing n.

Comparison between analytical and numerical solutions for 1 7x1 7 spheres with

cutoff number 2 for (b) n=10 and (c) n=12.

Fig. 3.16(a) shows the percentage relative error in the L2 norm for increasing n for

different sphere size/cutoff number combinations. It is evident that for all such

combinations, an increase in n reduces the relative error. Since the time step size

affects the computational cost of the method, it is practical to choose a time step
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size that provides a reasonably accurate solution without significantly increasing

the computational cost associated with calculating the solution.

Certain unexpected trends arise from the results of Fig. 3.16(a) that can be

explained without difficulty. First, we observe that the errors for cutoff number 1

and 2 are generally lower than that for cutoff number 3. This can be explained by

examining the smallest wavelength A, for each of these cases. The time step size

is related to the smallest wavelength, which is a function of both the cutoff number

and the sphere radius.

By calculating the smallest wavelengths for the three cases, it is evident that the

9x9 sphere discretization with cutoff number 3 combination gives the larger of the

smallest wavelengths for the three cases, resulting in slightly less accurate

solutions, due to a larger time step size. Furthermore, we observe that as n

increases, the error gradually decreases but with small fluctuations. This can be

explained by the fact that the percentage relative error is calculated for the

response at time 0.95s, but based on the time step size used, the approximate

solution used in the error estimate may not precisely coincide with this time.

The generally accepted value for number of time steps per wavelength necessary

to have an accurate solution is 10 steps. Fig. 3.16(b) illustrates the solution for

n=10 and Fig. 3.16(c) for n=12, both for cutoff number 2 with the 17x17 sphere

discretization. The percentage relative error in the I 2 norm is 10.5% for n=10 and

5.8% for n=12. Therefore, for an engineering approximation, we can say that n=12

provides a reasonably accurate solution. Thus, we recommend using this value for

solving two-dimensional problems using the Bathe time integration method.

83



3.4.1.3 Computational cost

Table 3.1: Computational times (in seconds) measuredfor the enriched method of

finite spheres.

Method Method offinite spheres

Discretization 9x9(p=3) 17x17 (p=2) 33x33 (p=1)

# of DOFs 3136 6400 9216

Int. Rule 4x13x13 4x9x9 4x6x6

Int. Points 39528 67048 113256

Time step size 0.003125s 0.00625s 0.003125s 0.00625s 0.003125s 0.00625s

Percentage relative error 4.53% 12.01% 2.82% 10.58% 2.11% 7.80%

Calculation of 28.00s 23.33s 13.38s 13.36s 7.61s 7.53s
stiffness matrix

Factorization of 2.02s 1.95s 3.77s 3.77s 2.86s 2.91s
stiffness matrix

Time Dynamic analysis 22.27s 11.47s 41.39s 20.72s 53.88s 27.39s

Total solution 52.34s 36.75s 58.66s 37.85s 64.56s 37.83s

Table 3.1 shows the computational cost for the scalar wave propagation problem

as seen in Fig. 3.12. The method was implemented in FORTRAN 77 and followed

the format of the program, STAP (STatic Analysis Program) [ 6 ]. Relative error in

L norm was used to measure the accuracy. Although the error seems to be large

when it says 12.01%, 10.58%, 7.8%, if we look at the Fig. 3.15(a) we can see that

the error is almost negligible.

Although the smallest number of integration points were used for constructing the

stiffness matrix for the case of 9x9 spheres and cutoff number 3, it took the longest

time to get it. It is because 49 functions are included per a sphere for the case of

cutoff number 3 so that constructing the stiffness matrix per a sphere is the most

expensive.
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Table 3.2: Computational times (in seconds) measuredfor the finite element

method.

Method Finite element method (4-node)

Discretization 80x80 160x160

# of DOFs 6400 25600

int. Rule 2x2 2x2

Int. Points 25600 102400

Time step size 0.00625s 0.0125s 0.003125s 0.00625s
(CFL=0.5) (CFL=1) (CFL=0.5) (CFL=1)

Percentage relative error 21.26% 12.73% 5.59% 3.27%

Calculation of 0.02s 0.03s 0.08s 0.09s
stiffness matrix

Factorization of 0.16s 0.16s 2.31s 2.44s
stiffness matrix

Time
Dynamic analysis 12.14s 5.94s 107.67s 57.22s

Total solution 12.32s 6.13s 110.06s 59.75s

For comparing the solution time with the finite element method, Table 3.2 shows

the computational time for 4-node finite element method is used. Bathe time

integration method is used for each case. In Bathe time integration method, when

we choose the time step size corresponding to CFL = 1 then we are able to obtain

the optimal accuracy [ 82 ]. Indeed, 80x80 mesh with the time step size of

At = 0.0125s gives an accurate result which is 12.01% in relative error in L2 norm

and it takes only 6.13s. However, the disadvantage of using an uniform mesh of 4-

node elements is that when we use a smaller time step size than the time step size

corresponding to CFL = 1, the solution accuracy becomes worse. We can observe

this phenomenon from Table 3.2 in which when smaller time step sizes were used,

the solution errors increased for both cases (80x80 mesh and 160x160 mesh) but
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for the method of finite spheres, the solution gets more accurate with smaller time

step sizes.

50

E40

u30

120

10

(a)

IO 2 4 8 1
_0 2 4 6 10

Distortion Ratio

(b)

12

Discretization 80x80 160x160

Distortion ratio 1 2 5 10 1 2 5 10

Percentage relative error 12.73% 25.20% 27.36% 49.20% 3.27% 3.32% 7.90% 15.26%

Fig. 3.17: (a) 80x80 mesh of 4-node elements with distortion ratio = 10 and (b)

Relative error in L2 normfor the finite element method.

In addition, in realistic situation, using distorted elements are inevitable [ 6 ]. Fig.

3.17 shows the distorted 80x80 mesh with the distortion ratio 10 as an example.

The distortion ratio is defined as the ratio of the longest side length of any the

elements over the shortest side length of any of the elements in the domain [ 6 ].

Fig. 3.17(b) shows the relative errors in L2 norm for the distorted 80x80 mesh and

the distorted 160x160 mesh. When the distortion ratio is 2, the solution error

increased from 12.73% to 25.2% for the case of 80x80 mesh, while the error

increased from 3.27% to 3.32% for the case of 160x160 mesh, which means that

inevitably, the 80x80 mesh is more sensitive to distortion than the 160x 160 mesh.
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The advantage of using the method of finite spheres is that it does not have the

issue of having distorted elements in the problem domain. The solution accuracy

for the 160x 160 mesh with the distortion ratio = 5 is 7.9% and when 33x33 spheres

with cutoff number 1 are used the solution accuracy is 7.8%. When these two

cases are compared, the method of finite spheres requires less computational time

than the finite element method.

The solution accuracies (the computational costs) are 4.53% (52.34s), 2.82%

(58.66s) and 2.11% (64.56s) respectively for the cases of 9x9, 17x17, and 33x33

spheres with the time step size At = 0.003125s and is 3.27% (59.75s) for the case

of an uniform 160x 160 mesh with the time step size At = 0.00625s. All cases are

almost the same in the computational costs and solution accuracies.

3.4.2 Scattered waves by an array of rigid circular cylinders

In this Section we consider the problem of scattered waves due to an array of rigid

circular cylinders in an infinite medium. Such problems are commonly

encountered in the construction of ocean structures such as oil rigs which consist

of a number of tension-legs anchored to the bottom of the ocean. In constructing

such structures, the interaction between water waves and the circular cylinders is

of interest [ 83, 84 ].

First, consider the problem of scattered waves by a single rigid circular cylinder. A

plane wave traveling in the x-direction strikes the circular cylinder and the wave

scatters around, and radiates away, from the cylinder. The schematic illustrating

this response is shown in Fig. 3.18. The analytical solution for the scattered waves

is given by

87



i, 'r) H,,(kr)cosn (
H,'(ka)

where pn is defined by po =I and p,, = 2 for all n >1, r and 0 are the polar

coordinates measured from the center of the circular cylinder, Hn is the Hankel

function, and Jn is the Bessel function, with the prime (') indicating differentiation.

The radius of the circular cylinder is a =1 while the other parameters are scaled

with respect to a. The wavenumber is ka = 6;r.
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Fig. 3.18: (a) Problem description and (b) discretization of the computational

domain. 21x21 spheres are arranged regularly and the spheres whose centers are

located inside the circular cylinder have been removed. The computational

domain is edged with a perfectly matched layer to model the radiation boundary

condition.

As before, the percentage relative error in the L2 norm is used to measure the

accuracy of the numerical solution. Since the analytical solution consists of an

infinite number of terms, we adopt n from 0 to 20 as our reference analytical
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solution. Eq. ( 3.54 ) for n = 0,..., 20 is applied to the boundary of the circular

cylinder through the Dirichlet boundary conditions [ 83, 84 ]. The radiation

boundary condition in an infinite domain is replaced by a perfectly matched layer

[ 71 ]. Using either an absorbing boundary condition or a perfectly matched layer

to simulate the unbounded physical domain results in some numerical errors, but

we assume that the error is negligible [ 83, 84 ].

Fig. 3.18(b) illustrates the discretization of the computational domain using a

sequence of regularly arranged spheres. A 21 x21 sphere discretization and the

spheres whose centers are located inside the circular cylinder are removed.

Discretization of the domain is simple and inexpensive for the method of finite

spheres. For the finite element method, constructing a good quality mesh is costly.

The nodes have to coincide with the boundaries of complicated geometries, often

leading to distorted elements [ 63 ]. Distorted elements are a common problem for

the finite element method resulting in loss of accuracy and reliability of the

solution. However, since nodes do not need to coincide with the boundaries of the

computational domain for the method of finite spheres, discretization is

straightforward and element distortion is never an issue.

Fig. 3.19 provides plots of the real part of the solution for the scattered numerical

waves using cutoff numbers 1-3. The results obtained using cutoff number 1 are

quite poor, due to inadequate spatial discretization within the perfectly matched

layer. Consequently, there is a reflected wave, and Fig. 3.19(a) shows the result of

the scattered wave deteriorated by this reflected wave which was not completely

absorbed by the perfectly matched layer. The results obtained using cutoff number

3 are in good agreement with the analytical solution [ 71 ].
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Fig. 3.19: Real part of numerical solution with (a) cutoff number 1, (b) cutoff

number 2, (c) cutoff number 3, and (d) percentage relative error in the domain not

including the PML in the L2 norm as afunction of the cutoff number.

Now, consider the problem of wave scattering due to an array of rigid circular

cylinders [ 83, 84 ]. In the multiple scattering problem scenario, the wave scattered

by one cylinder strikes another cylinder and again scatters [ 83, 84 ]. The exact

solution is given by
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u(r,)= XN 1+MB H j(krj)exp(iq93 ) (3.55)
=0) q=-Mq iH'(ka)

where a is the radius of the jth cylinder [ 83, 84 ]. The unknown coefficients Bq

are found by solving the equations

BP +z N +M B exp[i(q -)aka ] H _(kR )
j= q=-M B H'(kaj) e l p k 3.56)

= -exp[i(kx, +-l)]
2

where p =1,...,N and l=-M,...,M .
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Fig. 3.20: (a) Problem description and (b) discretization of the computational

domain. 37x37 spheres are arranged regularly and the spheres whose centers are

located inside the circular cylinders have been removed The computational

domain is edged with a perfectly matched layer to model the radiation boundary

condition.
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The schematic diagram in Fig. 3.20 illustrates the parameters a, and RP. Refs.

[ 83, 84 ] state that better accuracy is obtained by increasing M, and unless the

cylinders are too closely spaced, M =6 provides a reasonably accurate solution.

Here, we adopt M =10 , which has been found to provide a good quality solution.
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Fig. 3.21: Real part of numerical solution with (a) cutoff number 1, (b) cutoff

number 2, (c) cutoff number 3, and (d) percentage relative error in the L2 norm as

afunction of the cutoff number.
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An array of four rigid cylinders is located within the problem domain and a plane

wave is incident in the positive x-direction, as shown in Fig. 3.20. The problem

domain is discretized with 37x37 spheres, and as with the single cylinder case, the

spheres whose centers located inside the cylinders are removed. A Dirichlet

boundary condition is prescribed on the boundaries of the cylinders and a perfectly

matched layer is used along the edges of the domain boundary [ 71 ]. The wave

number is ka = 8;r. Fig. 3.21 provides plots of the real part of the solution for the

scattered numerical waves using cutoff numbers 1-3, and the results obtained using

cutoff number 3 provide the best solution and are in good agreement with the

analytical solution [ 71 ].

3.4.3 Two-dimensional elastic wave propagation problem

Wave motions appear in nearly every branch of physics, and there are numerous

examples. Wave propagation deals with many ways in which waves can travel.

Examples of waves found in elastic media include primary waves (P-waves) which

are longitudinal pressure waves, secondary waves (S-waves) which are transverse

shear waves, and Rayleigh waves which are a type of surface wave that travel near

the surface of solids. In this Section, we consider the response of elastic wave

propagations within a semi-infinite problem domain.

Consider an elastic medium with P-wave velocity, v, = 3200 m/s, S-wave velocity,

v, =1847.5 m/s, and mass density, p = 2200 kg/M3 [71 ]. The problem domain

is 4000mx2000m and will be discretized with a 51 x26 sphere discretization, using

the cutoff number 2. An absorbing boundary condition is used to model that the

problem domain is unbounded. The forcing function is a Ricker wavelet with
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central frequency 10Hz, vertically imposed at the surface at (xy)=(2000m,2000m).

The Bathe time integration method is used with a time step size of At = 0.0008s

[ 82 ]. The total duration of the numerical simulation is Is. Fig. 3.22 shows the

wave profiles at time t = 0.74s, where the P-, S-, and Rayleigh waves can be

identified [ 71 ]. Fig. 3.23 shows a comparison between the analytical and

numerical solutions at two receivers, one located at (x, y) = (2640m, 2000m) and

the other at (x,y)= (3280m,2000m).

2500

2000

A; t 9 9 .' t

1000NE

0 500 1000 1500 2000 2500 3000 3500 4000
x(m)

Fig. 3.22: Displacement field at time t=O. 74s.

The simulation of the traveling Rayleigh wave is a common benchmark problem.

The wave propagates along the surface, so this problem is used to test whether the

numerical method is capable of accurately approximating this free-surface

boundary condition [ 35 ]. Some meshless methods exhibit problems in accurately

approximating the solution along this boundary condition due to the nature of how

interpolation functions are constructed [ 28 ].
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Fig. 3.23: Displacement variations in x-direction andy-direction at the two

receivers. Numerical solutions are compared with analytical solutions (a) at 640m

from the source and (b) at 1280mfrom the source.

Fig. 3.23 shows that the numerical results for the method of finite spheres are in

agreement with the analytical solutions for the two receivers. This verifies that the

proposed algorithm exhibits accurate results along the free-surface boundary

condition and is capable of matching the analytical results with relatively few

degrees of freedom. Furthermore, the solutions do not exhibit any signs of

spurious oscillations or dispersion and dissipation, indicating that the spatial and

temporal discretizations are sufficient for the given frequency of loading. However,
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in Fig. 3.23(a), we observe that the height of the numerical solution for the P-wave

is slightly lower than that of the analytical solution. This is probably due to the fact

that the analytical solution models the loading as a point load.

3.4.4 Two-dimensional viscoelastic wave propagation problem

The characteristics of wave propagations in an actual body as compared to an

idealized linear elastic body can be different due to friction effects [ 74 - 77 ]. The

viscous property in actual media causes dispersion and attenuation in the traveling

waves [ 74 - 77 ]. In this Section, we consider wave propagation in a two-

dimensional viscoelastic body. The problem domain is 2000mx2000m and will be

discretized with a 33x33 sphere discretization and interpolated with cutoff number

3. The Bathe time integration method is used with a time step size of At = 0.0004s.

The Ricker wavelet vertically applied at the center of the problem domain is given

by

F(t) = (1 -2Z 2 f 2(t -to) 2 )exp(r 2 2 ( -to) 2 ) (3.57)

where the time shift is to = 0.06s and the cutoff frequency is f =50Hz. The

viscoelastic medium has P-wave velocity, v, = 3000 m/s , S-wave velocity,

v, = 2000 m/s, and mass density, p = 2000 kg/m3 . We define the quality factors

as Qp = 26 for P-wave attenuation and Q, = 19 for S-wave attenuation. Since the

quality factor for the S-wave is lower than that for the P-wave, we anticipate that

the S-wave will be attenuated more than the P-wave as waves propagate through

the viscoelastic medium. The analytical solution for this problem can be obtained

from Ref. [ 74 ].
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Fig. 3.24: Determination of quality factors using generalized Maxwell model: (a)

Qp=26 and (b) Q,=19 as afunction of relaxation mechanics.

Fig. 3.24 illustrates the approximations for the quality factors using the

generalized Maxwell body models. The black horizontal lines indicate the exact

quality factors 1/Qp and 1IQ,, while the remaining lines are approximations of the

quality factors for increasing number of relaxation mechanisms n. As the number

of relaxation mechanisms increases, the error decreases, but the computational cost

increases. Therefore, we have chosen to use n = 3 relaxation mechanisms.

Fig. 3.25 shows the displacement fields in the viscoelastic body at time t = 0.22s

and t = 0.32s. Fig. 3.26 compares numerical and analytical time histories at the

position x = y = 1500m, for both the x- and y-direction. Note that for the elastic

wave case, there would be no attenuation and the S-wave would be much stronger

than the P-wave. Here, for the viscoelastic case, we observe that the amplitude of

the S-wave is smaller than that of the P-wave due to stronger attenuation on the S-

wave. The numerical solution is in good agreement with the exact solution, but a

slight error is noticeable. This is due to an insufficient spatial discretization, so in

order to obtain a more accurate solution, smaller sphere sizes are needed. However,

in viscoelastic wave modeling, having a smaller sphere size leads to large
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increases in the computational cost because the element stresses accounting for the

viscous parts which on unloading disappear have to be updated at each integration

point within each sphere at every time step.

2000 ----------- -- 2000

X.M MI it~'
1500 ~ - H 150 m

1*14 HI ~ ~r~;[mU
500 II il- 00 4 : 1 1 1 l11111,1S OWR4

itp MM "I

10 50 100 50 00 150 50 00 150 2

tUOit2 due toavriclfre

1.5

1

0.5

.0

-0.5

-1

-1.5

x 0" x le

1.5

0.5

-0.5

-1

-1.5

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3
Time (sec) Tune (sec)

(a) (I)

0.4 0.5

Fig. 3.26: Displacement variations at x = y = 1500m compared with analytical

solutions in (a) x-direction and (b) y-direction.
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Chapter 4

Concluding remarks

The topic of this thesis is the development of effective numerical schemes for the

solution of wave propagation problems. In Chapter 2, we proposed an enriched

finite element method for solving wave propagation problems in solids. The

method is used as the traditional finite element procedures, but simply additional

degrees of freedom (corresponding to the harmonic terms) are added to the nodes

of lower- or higher- order standard elements. In many cases, only real arithmetic is

employed. We have illustrated the use of the method in two-dimensional solutions,

but the concept directly applies to three-dimensional solutions as well.

The method does not embed 'a priori' specific wave solutions, instead, the

procedure is a general scheme that directly and automatically gives the 'best'

solution possible in the assumed solution space - just like the standard

displacement-based finite element method by its minimization properties [ 6 ].

Therefore, like in the standard finite element method, the assumed solution space

must be rich enough to obtain an accurate approximation to the exact solution, and

this means that the mesh must be fine enough and the number of harmonics used
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must be large enough. In this way, based on our numerical experiences thus far,

accurate solutions can be obtained with reasonable meshes and solution data.

The method can be used with no enrichment functions (thus being the traditional

finite element method) and thereafter harmonics to enrich the solution space can

be selectively added, in an hierarchical manner [ 85 ]. This makes the method

flexible and attractive for practical usage.

In Chapter 3, we proposed the method of finite spheres enriched with

trigonometric functions, and using the Bathe time integration algorithm, for the

solution of wave propagation problems in elastic and viscoelastic media.

Advantages of the method of finite spheres are that it allows the problem domain

to be discretized and boundary conditions to be incorporated without difficulty,

which has been verified by way of several examples. The use of trigonometric

functions in the definition of the interpolation functions to reproduce the wave

fields in various media has been evaluated against analytical solutions.

Furthermore, the convergence behavior of the proposed scheme was demonstrated

in several examples by using hp-refinement for the spatial discretization.

A new strategy for addressing the numerical integration associated with the

method of finite spheres was presented and tested. The convergence study of the

strain energy for the cantilever plate problem showed the efficiency and reliability

of the proposed numerical integration scheme.

Still under development, the method of finite spheres has much potential with

many avenues to investigate. Future work should include the development of

efficient techniques for node generation, selecting the radii of the spheres for

acceptable accuracy, and computing the intersections of spheres with general
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boundaries [ 78 ]. Also, the numerical integration for irregular nodal arrangements

should be studied in conjunction with effective means of arranging nodes for a

complicated domain. The proposed scheme used the Bathe implicit time

integration method for the solution of wave propagation problems. However, for

extremely large-scale problems, an explicit time integration method has

advantages and might reduce the computational effort significantly. Hence, further

research should be pursued in order to develop the use of explicit time integration

with the method of finite spheres.
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Appendix

Formulation for linear visco elasticity

The stress-strain relation in a linear viscoelastic medium can be defined as

(A.1)r.()= V/,,(t -,r)4(r)d -r

where y, is the tensor describing the behavior of viscoelasticity. In an isotropic

viscoelastic body, the stress-strain relation can be expressed as

r 8(t)= f, J K(t - r)i4 (r)dr + 2J u(t - r)[i, () - IYe(r)]dr
3"

(A.2)

To make (A.2) easy to read, we use the symbol * for the convolution, then rewrite

(A.2) as

2Ur= 41 Kt)* e4 (t)+2plQ)* i2(t) -- 8, (t) * Ak(t)3J
(A.3)

According to the commutative property of the convolution, we can change Eq.

(A.3) as

(t)= kt)* e (t)+2j (t)* ey(t)--8 A (t)* et
3J

(A.4)
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We define k(t) and ft(t) as

M' (t) = k(t), M'U (t) = i(t) (A.5)

and rewrite Eq.(A.4) as

(t)= gy MK (t)* s (t )+2M" (t)* eu(t)- 2 M (t)* ek(t ) (A.6)

We can compare Eq. (A.6) with the stress-strain relation of an elastic body. While

the stress-strain relation of an elastic body is simply a linear relation with a

constant elastic modulus, the stress-strain relation of a viscoelastic body is time

dependent.

Using the Fourier transform and the inverse Fourier transform

F{r(t)}= f (t)exp(-iwt)dt and F-'{K(w)}= - K(w)exp(iwt)dw (A.7)

Eq. (A.6) gives

rj(w)= SQM' (c)- s (w)+2M' ()-s,(c)- 2 () (A.8)

where

M" (w) = F{M" (t)}= F{k(t)}, M" (w) = F{M" (t)} = F{fs(t)} and

k(t) = F-I{M" (w)}, f(t) = F-'{M" (M)} (A.9)

are the frequency-dependent moduli.

Using the Fourier transform property, we have
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M(t)(= F-'{ } and p(t)= F{M( )} (A.10)

While comparing Eq. (A.8) with Eq. (A.2), we notice that computing the linear

viscoelasticity in the frequency-domain is much easier than in the time-domain.

We simply replaced the real and time-dependent moduli in Eq.(A.2) with the

complex and frequency-dependent ones in Eq.(A.8).

We obtain the frequency-dependent moduli, M' (w) and MP (w) using the

generalized Maxwell body shown in Fig. A. 1,

M'(W)= R + and M"(w)=flR (A.11)
1=1 0)i+l0) j +0)

iCY KYic KY, YR RY

rL tk Y KnL I YI L __jJyn
0) 02 Wn (01 (2 (Dn

(a) (b)

Fig. A.1: Schematic of the generalized Maxwell body for (a) the complex

viscoelastic bulk modulus and (b) the complex viscoelastic shear modulus.

From Eq. (A. 11), we calculate the relaxed and unrelaxed bulk moduli with
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MR= limMk(c)= lim(KR + )KR andW-+0 + >

MU,=lim M(W) =lim (KR+Z E . CW-*CO -)ICO =I W1 + iW
(A.12)+ n1

In the same way, we get the relaxed and unrelaxed shear moduli,

Mu = pRand M = pR +py
1=1

(A.13)

where the unrelaxed bulk and shear moduli, Mu' and Mu , are elastic bulk and

shear moduli respectively so we have

K=R+K YX1 and a = pR
1=1 1=1

Using Eq. (A. 10), we have

rt=F-1 = F-1 +( X =
iW fil 1 I+iW}

~=F-1 = F-1 =F + =} P
iW f$ iW=1 W,0$ +i

(A.14)

KR + X K exp(-Wt)]. H(t) and

[PR + fln 17 exp(-it)] -H(t)

(A.15)

where H(t) is the Heaviside unit step function.

Substituting KR K ,3 and aR=,u - Y,-1 into (A. 15), we have
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K(t)= K - Kj 1(1 - exp(-t))]- H(t) and

P(t)= [ Y - (1- exp(-ot))]- H(t) (A.16)

and obtain the time derivative of the relaxation function

M'(t) = k(t)

n n 6t and= -r o, exp(-ot)- H(t) +r K - exp(-Ot)) 8 (t)ad

M.() = Ae(t)

= -py 17'o) exp(-at)- H(t) + P 1- K (1- exp(-COt)) -(t) (A. 17)

Inserting Eq. (A. 17) into Eq. (A.6) we get

t n

r (t)= -YK f Y a exp(- 1 (t -,r))- H(t - r)ec (r)dr

+, [ 1 (1- exp(- 1 (t - r))) -6(t - r)ek(r)dr

-2p f 1 Y/uo, exp(- 1 (t - r)) -H(t - r)eu (r)dr

(A.18)
+2p f I- i" (1- exp(- (t -r))) -(t - r)6i (r)dr

+ up f "Q exp(- 1 (t - r)). H (t - r)e e ()dr

3

and with further manipulations, we have
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n

TV (t) = SU (Lkt) - 8Q~ 1I:YjW1 f exp(- 1 (t-r - ekkrd

=1 --O

2-- 8Vue(t)
31

2 " e
+-8jjpj: YXo, fexp(-w, Q - v))ek(-r)dr

3 ,1 O

Here we define the function,

4(t) = a, f exp(-a1 (t -,r))- sq (r)dr

Finally, we have the stress-strain relation in the form,

r (t) = xk (t)S, + 2pu(cy (t) - CA(t))

- [ [ rz" (t)61 + 2uI7u (,y(t) - - ,(t),)]
__ 3

Applying the time derivative to Eq.(A.20) we have

47(t) = o, - f exp(-v, (t - )) ,(r)dr
t

= W[-, f exp(-c,(t -r))-C,(T)dr+ v(t)]

and

S() + ,j (t) = 0), (t) ; l=1,...,n .

(A.20)

(A.21)

(A.22)

(A.23)

In linear viscoelasticity, the time-domain stress-strain relation is defined with Eq.

(A.21) and Eq. (A.23) using the generalized Maxwell body.
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Manipulating Eq.

4
K+-j"

3
2

K--p

0

n11

3

2
IC, 3 1

0

(A.21) further we have

2 ~
K-- 0

3 s.(t)

K+-fl s(t)

0-f

ICY,7 -2 ly,1
3

Kl +-f 13
0

0

0

ly,

(A.24)

Lx(t) 1
4Y (t)[.247"(t)j

In Eq. (A.24), we have two distinct stresses. One is the elastic contribution and the

other is the viscous contribution which on unloading disappears. We change the

stress form as

Er = E n rAl (A.25)

n n

Substituting KR K-R and pR= Y/ into (A.11) and with more

manipulations, we have
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MK(W)= KR 4

=1 1=1 W, + 10
-~w iw

= n1Eg+ n
,=1 ,=K + i O

M"0 = PR +~ ipl
i=1 W, +i0

(P- PEG" = )+ + .
,=1 ,=1 0), + io)

andand =p[I-,1-
1=1

n Y4=: iM I
1=1 W, + 0)

x~+iI~0)

n 0 )

,=1 0 + 0)

n iY x0
+E. I

1=1 ), + ico n yu,+ y

Al y
0+ 10)

4 i+7e
1=10)1+10)

(A.29)

and

1=1 (0), i)(0),-0)MK(W) = I[1 (mw-) I
S(w, + iw)(w, - o)

= K[1X 2 0)1, -i' 0)0)
,= o + 0)

and
.1 (0) +i)(, -0)

=A - 2
1=1 Co" +0

(A.30)

We obtain the real and imaginary frequency-dependent moduli respectively as

YxC912
Re M'(w)= 1i~X W " 2]1=1 CO; +0)

ImM'(w)= xl '2 
'=1 W'2 +0

and

Given the viscoelastic moduli, the quality factor is

1

Qr(0)
and 1

Q,(0)

(A.32)
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W2 +2]

,=1 ) +CO

ImM"(0)= p$ 2
,=i 0), +0)

(A.31)

RM(W) YWI

ReMK() 2

lW2 2)+

ImMI(w)

Re M,(w) W1 2

W'2 +W2



With further manipulations we have

Q_,- (M)Q() (0n "YI 2I

r Y, X WQ- ( )W="O~ +0 W =1 W +0CO2

0)2 2 1,'

and Q,- (w)=y ' "2 (A.33)
1=1 Wil+0

Eq. (A.33) is numerically used and hence the frequencies are discrete quantities

not continuous so that we need to have a certain rule to approximate the Q(O)
values accurately. Ref. [ 77 ] mentions that if the Q(co) values are known at

frequencies &k ; k=1,...,2n-1, with &, = , I 2n-1 = c,, and the relaxation

frequencies o, are located equidistantly in a logarithmic scale, then using the least

squares method leads to the coefficients Y,. However, usually the quality factors

for the viscoelastic P- and S-waves are given [ 74 - 77 ] so that we use Eq. (A.34)

instead of Eq. (A.33) to calculate the coefficients, YP and Y' using the least

square method.

Q,-1(,) = +
)1 21 ~V(I,) Y'; k = 1,...,2n-1; v E {p, s} (A.34)

where Qp and Q, are quality factors which characterize the attenuation of the

viscoelastic P- and S-waves, respectively [ 77 ].
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After obtaining the coefficients, Y and Y, we obtain the coefficients, Y, and

Y," with

(C2y _ 42) y
Ys C2 - ; Yi " = Y/ (A.35)

(c,- c2)

where c, and c, are the elastic P- and S- wave velocities, respectively.
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