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Abstract

The ideal-magnetohydrodynamics (MHD) energy principle is used to derive a necessary stability

criterion for high-toroidal-number (n) external modes in axisymmetric equilibria. The corresponding

trial functions are expressed in the ballooning representation, but have a finite amplitude at the plasma

boundary and can apply to equilibria where the conventional, high-n internal ballooning criterion pre-

dicts stability. These trial functions are constructed by solving the standard local ballooning equation

at the plasma boundary flux surface with the radial wave number parameter as a complex eigenvalue,

such that the radial envelope of the mode is an exponential decaying into the plasma. The resulting

stability criterion includes the surface and vacuum contributions to the MHD potential energy asso-

ciated with the mode finite edge amplitude, and provides a framework for analyzing free-boundary

ballooning and peeling modes.
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I. INTRODUCTION.

Tokamak plasmas in the H-mode confinement regime are characterized by significantly large edge

values of the pressure gradient and the parallel current density. These can be sources of free energy

to drive ideal-magnetohydrodynamics (MHD) instabilities, and are presumed to have a key influence

on edge localized fluctuations and general tokamak performance",2. For low values of the toroidal

wavenumber n, the MHD stability analysis requires two-dimensional numerical simulations. However,

for high-n, the ballooning formalism 3 - 6 provides a powerful tool that allows one, under certain circum-

stances, to reduce the analysis to a series of one-dimensional problems. In its original formulation 6 as

well as in a recent generalization 7, the ballooning formalism applies only to pressure-driven internal

modes: their amplitude is required to vanish at the plasma boundary either because the instabil-

ity drive is internally localized 6 or because a perfectly conducting wall at the plasma boundary is

assumed7 . For edge-localized instabilities it is important to relax the conducting wall boundary con-

dition and consider external modes. These result in a non-vanishing perturbation of the plasma

boundary and the vacuum magnetic field, and can tap the instability drive associated with the equi-

librium parallel current density. The work of Ref.7 included also a study of such external modes at

moderate to high values of n for the simplified s - a equilibrium model3 but, like in the conventional

low-n analyses, this relied on a two-dimensional numerical code.

In this work we present a generalization of the ballooning formalism that is applicable to high-n,

edge-localized external modes. Based on the ideal-MHD energy principle8 , we derive a necessary cri-

terion for stability that involves only one-dimensional calculations. Its expression is valid for general

axisymmetric equilibria and applies to configurations where the conventional high-n internal balloon-

ing criterion predicts stability. Thus our criterion extends the applicability of the one-dimensional

ballooning representation techniques to a new class of instabilities including the surface kink or peel-

ing modes7'9"0 .

II. POTENTIAL ENERGY MINIMIZATION.

The ideal-MHD energy principle8 states that an equilibrium configuration is linearly stable if

and only if, for any small perturbation compatible with the ideal-MHD constraints, the incremental

potential energy is positive. Assuming an equilibrium without surface currents and an incompressible
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perturbation displacement (, the incremental potential energy associated with such displacement is

W[(1] =WF[L±] + Wv[ -], (1)

WF[] 3X 12 + B 2 (V +2. r) 2 - 2Q Vp)(. r) + j Lj. ( -' x (2)
2 Ilasma

wv[ a] d3X I Qv 12. (3)

Here B, K, j and p stand respectively for the equilibrium magnetic field, magnetic curvature, current

density and pressure, and the subscripts 1l and I refer to the components parallel and perpendicular

to the equilibrium magnetic field. The perturbed magnetic fields in the plasma and vacuum regions

are Q = V x ( x B), and Qv which is determined by the conditions that its curl vanishes and its

normal component equals that of Q at the plasma-vacuum interface, plus regularity at infinity.

We use the following two representations for the equilibrium magnetic field:

B = VV x Vp + F(V)Vo = V7 x VS, (4)

where 2inV) is the poloidal flux, 2wF is the poloidal current, p is the toroidal angle and V, S are a pair

of Clebsch potentials. Then, the component of the perturbed magnetic field normal to the equilibrium

flux surfaces is

Q -VO = B -V( - VV)). (5)

After standard application of Green's theorem, the vacuum energy integral can be reduced to a

double surface integral at the plasma-vacuum interface Sa:

+ [B -V( -VO) [B -V( -VO)]
Wv[ -170= dSa dS' - (x) G (x; x') (X'), (6)

87r fs s. + a9 | + VO

where G(x; x') is the Green's function satisfying

V 2 G(x; x') = -47 6(x - x') (7)

with the boundary conditions that the normal component of its x - gradient vanishes at the plasma-

vacuum interface plus regularity at infinity. For axisymmetric configurations, the following Fourier

expansion in cylindrical coordinates holds:

G(x; x') = 1 cos[n( p - ')] Gn(R, Z; R', Z'). (8)
n=-o
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The plasma contribution to the incremental potential energy WF [L] can be minimized with respect

to the component - (VV) x B) by perturbative expansion in the limit of large toroidal mode numbers,

exactly as in the conventional theory of internal ballooning modes. We introduce the representation

- VO = R le-iWY (V, X)] , (9)

where 0, x, p are orthogonal flux coordinates with volume element d3x = J do dX dcp, and assume

the orderings

iR 2 VO- V =n >> 1, (10)

iVO - V = O(n), (11)

B -V =O(1). (12)

The result is

S. (V4 x B) = R e- VIP -VY(O, X) + o(±)], (13)
1 n n

where the correction of order 1/n is given explicitly in Ref.6. Substituting this minimizing solution

into WF[ L] and integrating over the toroidal angle we obtain a plasma energy functional WF[Y]

which, like the vacuum energy, depends only on the component of the displacement normal to the

equilibrium flux surfaces.

As in the theory of internal ballooning modes, we adopt the following norm functional:

N [Y ] = J dop dx 1 1 | y |2 + 2 O1 i ay 12 (4)
2 plasma | VV |2 B2 n og ]

Then, for any positive A2 to be considered here as a variational parameter, we obtain after integration

by parts:

WF[Y] + A2 N[Y] = WBT[Y] + 2NBT[Y] J do dX Y* (LY + A2MY). (15)
2 plasma

The boundary terms WBT[Y] and NBT[Y] are surface integrals at the plasma-vacuum interface that

we must retain since we will be considering external modes. Their expressions, to leading order in

n> 1, are:

WBT[Y]= 2 7dX Y( in )J) Y JB ~[ iny)Y] (16)( -JF jB) |VO|2 i 19 [(0 JF)
WBT i x -9X R2 B2 JB2 ng -aR Y ,91

NBT~y = ' Jd *IV 2 ay(7
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The linear differential operators L and M are given explicitly in Ref.6, and

LY + A2 MY = 0 (18)

is the Euler equation to minimize WF[Y] subject to the constraint N[Y] = constant, A2 being the

corresponding Lagrange multiplier.

Our next step, at which we depart from the conventional theory of internal ballooning modes, is to

consider trial functions Yt(V), X) that are solutions of the Euler equation (18) subject only to regularity

throughout the plasma domain but free of any boundary condition at the plasma-vacuum interface.

Such solutions can be found for a continuum of values of the variational parameter A2 > 0, which

remains otherwise unconstrained and makes Eq.(18) non-singular. Furthermore we restrict ourselves

to the class of such trial functions that can be realized by the ballooning representation 3 -6:

Yt(V), x) = ein[Sso(()J e- 2in() y(V', X - 27rl), (19)
1=-00

with

I I < I I= 0(1). (20)

We have chosen to define the multivalued Clebsch potential S as

S(@, x,s) = J- d )' ()@, x'), (21)

and to write down explicitly the still arbitrary flux function So(o). The latter can be reprsented as

So(V)) = - d ' k(V'), (22)

so that k(o) can be interpreted as a wavenumber for the fast variation of the perturbation perpendic-

ular to the equilibrium flux surfaces. The equilibrium inverse rotational transform is

SJF
27rq(0) = f d ( 2)(0, X). (23)

Then, Yt(o, x) is a solution of the Euler equation (18):

a a JF) , i; 2M' V) 8
L[ , -in2, Yt(V, X) + A ,', XJYt(0, x) = 0, (24)

provided y(V', r), with -oc < 7 = X - 27rl < so and y(±, -> too) -> 0, is a solution of

[ 9S i2M as J i 
L [k + + i , '9, 0, 77; - y(0, 7) + A2 k + -+ ), , 77]y(0,77) = 0. (25)ft nB ft 97 n K 9 n ft
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Once the above described trial function Yt(o, x) has been obtained, the corresponding incremental

potential energy, whose positivity is a necessary condition for stability, is

W[Yt] = Wv[Yt] + WBT[Yt] + ,2 NBT[Y] - A2N [Yt], (26)

where WV, WBT, NBT and N are as defined by Eqs. (6), (16), (17) and (14) respectively. For a given

equilibrium, Y and W[Yt depend on the parameter A, which should be varied to seek the minimum

of W[Yt].

III. STABILITY CRITERION FOR EDGE-LOCALIZED MODES.

The Euler equation in ballooning representation variables (25) is readily amenable to a perturbative

solution for small 1/n. To lowest order, one gets the n = so local ballooning equation 3- 6:

L[(k+ ), , 4, ; 0] yo(4,ri) + A2M (k + ), 4', yo(0, 77) = 0. (27)

This is an ordinary differential equation in the extended poloidal variable q, where 4 enters only as a

parameter. If at some flux surface 4, and for some real positive A2 and real k, a solution of Eq.(27)

exists satisfying the boundary conditions

yo(o,17 -+ +oo) - 0, (28)

then the equilibrium is unstable against n = oo internal ballooning modes.

We are interested in the situation where no such solutions exist, namely the equilibrium is stable

against the n = oc internal ballooning criterion. In this case we may solve Eq.(27) subject to the

boundary conditions (28) at the plasma-vacuum interface 4 = Va, with A2 as a real positive parameter

and k(4'a) = kaR + ikai as a complex eigenvalue. If one such solution yo(4a, rj) exists with kai > 0, we

can construct, based on it, a regular and physically acceptable external mode trial function Y(0, x).

To leading order in n >> 1 this is

Yj(4', x) = enkal( -*)~in[ka -ba)+Ss-< -(- yo(4a, X - 2,rl), (29)
1=-00

where q, = q(O') and q' = dq(4'a)/d4'. This function has a radial envelope that decays exponentially

into the plasma and retains a finite value at the plasma-vacuum interface.
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Taking Eq.(29) to Eqs. (6), (16), (17) and (14), we can evaluate the different contributions to the

potential energy (26) generated by our trial function. To leading order in n > 1 and up to an overall

positive constant we get:

/o o o &yo(?) Oyj(i')

WV = d d' cos[nS(q) - nS(7,')] nGn(Oa, ri; 4a+i) a ,, (30)

WBT 2i E 7IEo+21) (Y) aR + ikaI + )
1=-00F0co J ?

(31)

NBT = -2i 1 2
7ilAq J d77 y*(ri + 271r) yo(7) 2 kaR + ikaI + a), (32)

1=-00co0

0o -27rilAq 00
N = k J J drl yo(r + 27rl) yo(r) x (33)

-00 ka -wilq oo

|X 2+ 2 (kaL - ika - 2,clq' + S (k+a 71
2  .

In the above Eqs.(30-33), all quantities are evaluated at the plasma boundary flux surface Oa.

There is an explicit dependence on the equilibrium parameter

Aq = nqa - ino, (34)

where m0 is the integer nearest to nqa, so that -1/2 < Aq < 1/2. As functions of Aq, W, WBT,

NBT and N are periodic in the interval [-1/2,1/2]. This is a reflection of the translational invariance

of the system with respect to the fast radial variable nq, since, for n > 1, there are many equivalent
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mode rational surfaces within the scale of the equilibrium variation. Despite the explicit appearance

of n in the expression for the vacuum potential energy, the latter is of order unity and comparable to

the other terms as n - o because G, = 0(1/n) and the integrals are dominated by the contribution

from the region 77 ~ q' where the Green's function peaks. The boundary term that arises from the

plasma potential energy, WBT, consists of two pieces: the first one represents the kink instability

drive due to the equilibrium parallel current, and the second one is a residual contribution from the

magnetic field line bending energy. We note that the evaluation of the norm N, using Eqs.(14) and

(29), required an integration over 0 that could be carried out analytically to leading order in n > 1 by

virtue of the exponential dependence of Yt(4, X) on V). Finally, it is worth pointing out that, although

not immediately obvious, the expressions (30-33) for WV, WBT, NBT and N are real and N is positive

definite as they should.

We can now state our stability criterion for high-n, edge-localized modes. In terms of the quantities

WV, WBT, NBT and N given by Eqs.(30-33), the necessary condition for stability is that, for any

positive value of A2,
W WV +WBT + A2NBT A 2 > (35)
N N

If, for some range of A, W/N becomes negative, then the equilibrium is unstable and our variational

estimate of the instability growth rate -y is:

Pm Y 2 = MinA [(W)(A)], (36)

where pm is some average of the mass density over the region where the mode is localized, namely the

plasma edge.

IV. CONCLUDING REMARKS.

Our stability criterion for edge localized, high-n modes has some features that are worthy of note.

It applies to external modes in general two-dimensional equilibria, but involves only one-dimensional

analysis. It applies also to the full range of values of the equilibrium parameter Aq, and shows man-

ifestly the periodic dependence on this parameter due to the presence of multiple mode resonant

surfaces in the toroidal equilibrium. For finite values of Aq, the effect of the coupling of multiple

poloidal harmonics in two-dimensional toroidal equilibria cannot be neglected, and our ballooning

formalism approach incorporates automatically such mode coupling effect with complete generality.

This is in contrast with the analytic peeling mode criterion 7 ,9, 10 . The latter is based on single poloidal
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mode analysis, and therefore should be applicable only for small values of Aq, when the perturbation

is dominated by the single poloidal harmonic whose resonant surface approaches the plasma boundary.

Finally, our criterion allows evaluation of instability growth rates, albeit in a variational sense. This

limitation is due to the fact that we restrict ourselves to trial functions that can be represented with

the ballooning formalism, and this might not cover the full range of allowable plasma perturbations.

Also, in order that our trial function be physically acceptable, the radial wavenumber k, obtained as

a complex eigenvalue of the local ballooning equation, must have a positive imaginary part. While we

do not have a general proof that such a solution will always exist, we have found this to be the case

for the s - a equilibrium model3 . The application of our theory to the s - a model will be reported

in detail in a forthcoming publication.
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